
TECHNISCHE UNIVERSITÄT MÜNCHEN
LEHRSTUHL FÜR SICHERHEIT IN DER INFORMATIK

Fakultät für Informatik

Towards Self-sovereign, Decentralized
Personal Data Sharing and Identity

Management

Martin Schanzenbach

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Jens Grossklags, Ph.D.

Prüfende/-r der Dissertation: 1. Prof. Dr. Claudia Eckert

2. Prof. Dr.-Ing. Georg Carle

Die Dissertation wurde am 18.05.2020 bei der Technischen Universität München eingereicht und
durch die Fakultät für Informatik am 23.11.2020 angenommen.

Acknowledgments

I would like to thank my supervisor Prof. Dr. Claudia Eckert for giving me the opportu-
nity to conduct research in this highly relevant and interesting area. She provided me
with valuable insights, guidance and room for exploration throughout this project. I
would also like to thank my second examiner Prof. Dr.-Ing. Georg Carle.

Further, I wish to thank my colleagues at Fraunhofer AISEC who provided me with an
inspiring, productive and enjoyable work atmosphere in the past years.

I am especially grateful to thank Dr. Julian Schütte and Christian Banse for their patient
guidance and persistent encouragement giving me the perseverance to finish this dis-
sertation. This extends to Prof. Dr. Christian Grothoff for his insightful comments and
advice.

I thank my co-authors of the publications referenced in this thesis:
Ava Ahadipour for her work on surveying authorization in distributed systems.
Georg Bramm for his support and expertise in attribute-based encryption.
Bernd Fix for his ideas on improving proof-of-work calculations.
Thomas Kilian for his work on zero-knowledge credentials as part of his Bachelor thesis.

Finally, I would like to thank my parents and wife for their constant support and love.

Abstract

Today, identity management is a key element for commercial and private services on
the Internet. Over the past decade, digital identities evolved away from decentralized,
pseudonymous, user-controlled personas towards centralized, unabiguous identities
managed at and provided through service providers. This development was sparked
by the requirement of real identities in the context of electronic commerce. However, it
was particularly fuelled later by the emergence of social media and the possibilities it
provides to people in order to establish social connections. The following centralization
of identities at a handful of service providers significantly improved usability and
reliability of identity services. Those benefits come at the expense of other, arguably
equally important areas. For users, it is privacy and the permanent threat of being
tracked and analyzed. For service providers, it is liability and the risk of facing significant
punishment caused by strict privacy regulations which try to counteract the former.

In this thesis, we investigate state-of-the-art approaches to modern identity manage-
ment. We take a look at existing standards and recent research in order to understand
the status quo and how it can be improved. As a result from our research, we present the
following contributions: In order to allow users to reclaim control over their identities
and personal data, we propose a design for a decentralized, self-sovereign directory ser-
vice. This service allows users to share personal data with services without the need of a
trusted third party. Unlike existing research in this area, we propose mechanisms which
allow users to efficiently enforce access control on their data. Further, we investigate
how trust can be established in user-managed, self-sovereign identities. We propose a
trust establishment mechanism through the use of secure name systems. It allows users
and organizations to establish trust relationships and identity assertions without the
need of centralized public key infrastructures (PKIs). Additionally, we show how recent
advancements in the area of non-interactive zero-knowledge (NIZK) protocols can be
leveraged in order to create privacy-preserving attribute-based credentials (PP-ABCs)
suitable for use in self-sovereign identity systems including our proposed directory
service. We provide proof of concept implementations of our designs and evaluate them
to show that they are suitable for practical applications.

iii

Zusammenfassung

Identitätsmanagement ist ein Schlüsselelement von heutigen, Internet-basierten Diens-
ten. Über die letzte Dekade entwickelten sich digitale Identitäten weg von dezentrali-
sierten, nutzerkontrollierten und pseudonymen Personas hin zu eindeutigen Identitäten
welche zentral bei Dienstleistern verwaltet und gespeichert werden. Diese Entwicklung
wurde zunächst angestoßen durch Anforderungen bezüglich Identitätsfeststellungen im
Rahmen des elektronischen Handels. Nochmals befeuert wurde dies durch das Aufkom-
men der sozialen Medien und den damit verbundenen Möglichkeiten für Menschen
soziale Verbindungen aufzubauen. Die darauf folgende Zentralisierung von Nutzeriden-
titäten in einer Handvoll von kommerziellen Dienstleistern verbesserte die Nutzbarkeit
und Zuverlässigkeit dieser Dienste enorm. Diese Vorteile entstanden jedoch auf Kosten
anderer, aber gleichermaßen wichtigen Aspekten. Für Benutzer betrifft dies vor allem
die Privatssphäre und die Gefahr einem permanenten Tracking und Analyse ausge-
setzt zu sein. Für Diensteanbieter ist es primär das durch strengere Datenschutzgesetze
gestiegene Haftungsrisiko.

In dieser Dissertation untersuchen wir den Stand der Technik des mordernen Iden-
titätsmanagements. Wir werfen einen Blick auf existierende Standards und aktuelle
Ergebnisse aus der Forschung um so den Status Quo zu verstehen und Verbesserungen
zu erarbeiten. Im Rahmen der Arbeit präsentieren wir folgende Forschungsergebnisse:
Um es Nutzern zu ermöglichen die Kontrolle über ihre Identitäten und persönlichen
Daten zurückzuerlangen schlagen wir den Einsatz eines dezentralen Verzeichnisdiens-
tes vor. Ein solcher Dienst erlaubt es Nutzern ihre persönlichen Daten zu teilen ohne
dafür einen zentralen Identitätsdienst zu benötigen. Hierbei schlagen wir Mechanis-
men vor, welche es Nutzern erlauben effizient und selbstbestimmt den Zugriff auf
ihre Daten zu Verwalten. Weiterhin untersuchen wir wie Vertrauen in diese durch die
Nutzer selbst verwalteten Identitäten hergestellt werden kann. Dazu präsentieren wir
einen Ansatz zur Vertauensbildung durch den Einsatz von sicheren Namenssystemen.
Dies erlaubt es Nutzern und Organisationen Vertrauensbeziehungen aufzubauen ohne
hierbei auf zentralisierte Dienste Dritter oder einer zentralen Public-Key-Infrastruktur
zurückgreifen zu müssen. Wir untersuchen, wie neue Erkenntnisse im dem Bereich der
Zero-Knowledge-Verfahren genutzt werden können um datenschutzfreundliche Identi-
tätsattribute auszustellen welche das vorgestellte System ergänzen können. Schließlich
zeigen wir konzeptuelle Implementierungen unserer Konzepte und zugehörige Evaluie-
rungen um die Praxistauglichkeit unseres Systems testen.

v

Contents

Acknowledgments i

Abstract iii

Zusammenfassung v

1. Introduction 1
1.1. Motivation . 1
1.2. Research questions . 3
1.3. Organization . 5

2. Background 7
2.1. Directory services . 7

2.1.1. Standards and specifications . 8
2.1.2. Name systems . 10

2.2. Identity services . 14
2.2.1. Centralized . 15
2.2.2. Federated . 17
2.2.3. Self-sovereign . 19

2.3. Trust management . 21
2.3.1. Recommendation and reputation-based systems 22
2.3.2. Evidence and policy-based systems 23

2.4. Relevance in the context of this thesis . 24

3. State of the art 25
3.1. Centralized, privacy-preserving identity management 25

3.1.1. U-Prove . 26
3.1.2. Identity Mixer . 26
3.1.3. SPRESSO . 27
3.1.4. UnlimitID . 28

3.2. Decentralized directories and self-sovereign identity management 29
3.2.1. NameID . 29
3.2.2. DecentID . 31
3.2.3. Sovrin . 32

vii

Contents

3.2.4. uPort . 34
3.3. Distributed and decentralized trust establishment 34

3.3.1. Attribute-based delegation . 35
3.3.2. Privacy-preserving key transparency 37

3.4. Summary . 38

4. Decentralizing self-sovereign personal data sharing 41
4.1. Adversary model and security goals . 42

4.1.1. Adversary model . 42
4.1.2. Security goals . 42

4.2. Towards a decentralized, self-sovereign identity service 44
4.2.1. Identity directory service . 45
4.2.2. Cryptographic access control for attributes 48

4.3. The re:claimID system . 49
4.3.1. Definitions and foundations . 50
4.3.2. Overview . 52
4.3.3. Registration . 53
4.3.4. Adding and updating attributes . 54
4.3.5. Authorizing access . 56
4.3.6. Retrieval . 57
4.3.7. Revoking access . 58
4.3.8. Deletion and update . 61
4.3.9. Identity escrow and key management 62

4.4. Reference implementation . 62
4.4.1. Overview . 64
4.4.2. Attribute provisioning and sharing 68
4.4.3. Identity escrow . 78
4.4.4. Performance evaluations . 80
4.4.5. Usability studies . 83
4.4.6. Integration into federated infrastructures 88

4.5. Alternative approaches . 91
4.5.1. Identity token records . 91
4.5.2. Integrated approach . 96

4.6. Summary . 98

5. Establishing trust in self-sovereign identities 99
5.1. Delegation of attributes using name systems 99

5.1.1. Security properties . 101
5.1.2. Design . 102
5.1.3. Access control and policies . 106
5.1.4. Hidden delegations . 109
5.1.5. Example scenario . 109
5.1.6. Reference implementation . 112

viii

Contents

5.1.7. Caching considerations . 115
5.2. Non-interactive zero-knowledge credentials 117

5.2.1. Background . 118
5.2.2. Design . 119
5.2.3. Example use . 123
5.2.4. Reference implementation . 124

5.3. Summary . 126

6. Conclusions 129
6.1. Contributions to research questions . 130
6.2. Outlook and future work . 132

List of Figures 135

List of Tables 137

Appendix A. Publications in the context of this thesis 139

Appendix B. re:claimID prototype 143
B.1. Wire formats . 143
B.2. Key-Policy ABE Variant . 144
B.3. Usability studies . 145

B.3.1. Web study . 145
B.3.2. IoT study . 149
B.3.3. Results . 149

B.4. Security proofs . 151
B.5. Wire formats . 153

Acronyms 155

Glossary 159

Bibliography 161

ix

CHAPTER 1

Introduction

In this thesis, we present methods which enable and support the use of decentralized,
self-sovereign identity systems. Our core contribution is a decentralized attribute sharing
service which is enhanced using practical and privacy-preserving trust establishment
techniques.

We argue that moving away from commercially driven, centralized identity services is
the only way for users to reclaim authority and control over their digital personas. We
further argue that in order to achieve this goal, the development of user-empowering,
decentralized technologies for identity management is essential. This encompasses both
control over the personalized embodiment of the persona and the power to control
access to it.

In the following, we give a comprehensive motivation for our research and establish
the context of this thesis. Further, we formalize our research questions and give an
overview over our core contributions.

1.1. Motivation

Today, digital data is called the “new oil” [140]. This not only includes but arguably
specifically denotes personal and private information of humans. Personal information,
and whatever can be extrapolated from it, is a most profitable data category. Comparisons
between data and oil fall into place if we look at how data fuels the business models of
some of the most successful technology companies today, with Google and Facebook as
prime examples. But there is another aspect to this comparison which is particularly valid
with respect to personal and private data: Oil spills. Like oil spills, personal information
is notoriously difficult – if not nearly impossible – to clean up. Once exposed to the
environment, it becomes inseparable and untraceable in the vast lake of data which is the
Internet. Consequently, the management of our digital identities is an important aspect
in modern life. Interactions between users are increasingly occurring via digital means
and through social media as opposed to real life [82]. This is also true for interactions
between users and organizations such as companies or the state.

1

Chapter 1. Introduction

Recently, identity service providers which emerged from popular social network-
ing services claim sovereignty over the users’ identities. Often, the respective service
providers even require the use of a “real” name. We often forget that in the beginning of
the Internet, anonymity and pseudonymity were considered core values and enticements
by its users [90]. Internet identities were considered disposable and exchangeable. With
the emergence of social media, however, the revelation and nurturing of ones online
identity became the norm. Conversely, such behavior is unnatural and inconsistent with
psychological and philosophical observations. Current identity management does not
take into account that in the real world identities are used like masks. Human identities
commonly vary with respect to traits or discriminability depending on the social situa-
tion and context [31, 35, 126]. This has always been a key in social interactions to allow
a person integrate into its social peer group to, for example, avoid conflict. Maybe this is
even one of the reasons why social platforms today are a cesspool of heated arguments
and radicalization of opinions.

We argue that modern identity management must not only provide reliable means
for verifying the authenticity of identities and enable users to share their personal
information with other parties. Identity management must take into account that our
digital identities and the personal information they are comprised of are not only shaped
directly by ourselves, but also indirectly by the third parties we decide to share identity
data with. It has been argued that third parties establish behavioral profiles which are
just as much part of our digital identities as the data we choose to share [136]. They
allow to track users and learn what websites they visit and what content they prefer. This
concept is pushed further through the use of algorithms and even artificial intelligence
which allow data brokers to generate additional information based on the shared identity
data in combination with user behavior. Through this, personal circumstances such as
medical conditions or financial situations can easily be extrapolated. The user is limited
to a single lever in this context: What he decides to share with the outside world and
what not. The rest is not under his control.

Looking at it from another perspective, the state of modern identity management
does not look any better: Initially, any service provider from instant messaging to online
shopping implemented its own user and identity management system. This resulted in
a situation where each user created a multitude of online accounts. While this allowed
users to create alter egos, the number of duplicated user accounts and stale data that
had to be managed by service providers exploded. At the same time, usability suffered
for users when faced with managing a high number accounts. This prompted users
to reuse the same credentials across services and accounts – a cardinal security sin.
Besides the technical and organizational challenges which arose from this situation,
legislation such as the General Data Protection Regulation (GDPR) [101] decreed by
the European Union recently added another dimension to this development: Liability.
Albeit only enforced hesitantly until now, service providers are in theory now faced
with a sword of Damocles in the form of multiple millions of Euros or a percentage of
annual revenue in possible fines. Compromised or stolen user data – whether through

2

1.2. Research questions

accidental leaks or malicious hacking attacks – may very well spell the financial doom of
an enterprise. As a result, services are more than happy to outsource the management of
identities to specialized service providers. At the same time, centralized identity provider
services emerged from large social networks that claim authority over their users’ digital
personas. The most prominent examples are the identity services provided by Facebook
and Google and the “Social Login” buttons which can be found on a significant number
of websites. Due to the sheer number of user accounts registered at their respective
services, the two are the de facto standard when it comes to outsourcing identities.
Especially for smaller websites, such a service seems like a boon since it alleviates some
of the liability concerns surrounding the legal situation. It also redeems the services
from the correct implementation of security critical authentication mechanisms for its
users, including password storage which is a common and fatal pitfall. However, we
note that the dominant identity providers today do not actually take resposibility of
the above in a legal sense whatsoever. This arguably puts a service provider in an even
tighter spot: Less control over user’s data while at the same time shouldering all of the
legal resposibility.

1.2. Research questions

In the following, we state our research questions which are derived from and aim to
address the above situation. We identify and single out four observations which we
want to address in the context of this thesis:

Data as a liability As discussed above, most commercial services require user data for
daily business operations, but this data is inherently a liability [75]. This is especially
true in the current wake of strict data protection legislation and compliance laws such
as the EU GDPR [101]. Hence, both technical and legal risks must be considered which
likely requires a considerable mount of resources. In this situation, services turn to
specialized Identity Provider (IdP) services instead of managing user data and identities
themselves. Of course, those face the same types of liability risks which then become
even more severe due to the increased number of users to manage. This development
tends to induce consolidation of the respective IdP service offerings which directly leads
to the next challenge.

Closed shop The technical and legal complexity, financial costs as well as the resulting
risks are causes for a consolidation of the IdP market. Only large enterprises with the
respective resources to handle the above remain and consequently the entry barrier
for smaller competitors is high. The remaining providers manage and control over
hundreds of millions of user accounts containing personal, potentially sensitive data.
Studies such as Gigya’s survey on the consumer identity provider landscape show that a
service oligopoly of two service providers claim over 85% of the market [60]. Of course,
this development is partly also caused by the popularity and general brand awareness

3

Chapter 1. Introduction

that is associated with those two companies and their services. Another point is that
those entities are not authorities for every aspect of users’ identities. Information such
as official name, postal address, citizenship or even email address are not necessarily
attributes we would naturally expect a single identity provider to be the authoritative
entity for. Nevertheless, for the two dominant service providers in the market inclusion
of third party asserted attributes at the services is not possible at this time. We must
conclude that the identity service provider landscape is currently not an even playing
field with healthy competition or choice for end users.

If you build it, they will come Due to the consolidation tendency as discussed above
large, centralized identity service providers have emerged. We argue that the high
concentration of valuable, personal data attracts big data business interests [42, 9, 27],
law enforcement covetousness and malicious actors alike. Further, as the services are
normally free for the end user, the only business case of the mentioned IdPs often
consists of analysis and marketing of personal data. This includes the user data itself
as well as requests by third party services. The latter allows to track the user across
Internet services. This conduct is combined with the questionable practice that users
often have no choice but to agree that IdPs are allowed to analyze and market personal
data as part of the terms of service. Hence, this setup of omniscient intermediaries is
also a significant threat to the users’ privacy and restricts users’ ability to informational
self-determination [101]. Users must completely trust the IdP with respect to protecting
the integrity and confidentiality of their identity in their interest. Various breaches
of large IdPs such as the ones at Yahoo that revealed up to 3 billion user records to
the public [52, 145, 135] have shown that these expectations are hard to meet at times.
Finally, IdPs such as Facebook – and for a long time also Google – enforce a “real-name
policy” [29]. Denying pseudonymous identity can be considered to be in direct violation
to the human right to be forgotten [101].

No separation of concerns IdPs are essentially sovereign authorities over certain data.
They are capable of attesting the validity and correctness of specific statements regarding
an identity. However, modern IdPs such as those discussed above conflate this function
with the provisioning of this information to users and services. Implementations of
the former requirement is realized through directory services such as X.500 or through
cryptographic assertions such as X.509 certificates or a combination of both. The latter
is traditionally covered by protocols such as OpenID Connect 1.0 (OIDC) or Security
Assertion Markup Language (SAML).

The reasons for this conflation are deliberate: For one, identity information is usually
most useful when asserted by a trusted authority. By having the attestation authority
service serving user data directly, complex technical solutions including cryptographic
signatures and digital certificates are not necessary. Hence, it is not only a low hanging
fruit for an IdP to offer such services but also simplifies the verification of user data for
third parties. However, even more significant is that it allows the identity service provider

4

1.3. Organization

to cater to business models centered around data mining and targeted advertisements.
The revenue opportunities in those areas are strong incentives that entice IdPs in this
regard [42]. The consequence is that IdP services require end users to effectively yield
their right to informational self-determination upon service registration.

In this thesis, we show how the challenges above can be addressed using technical
means. We show that it is possible to design such a technical system in a way that is
independent of centralized, third party infrastructure. At the same time, our approaches
do not necessarily disrupt the traditional IdP business model which revolves around the
validation and verification of identity information.

The following are our three research questions of this thesis:

• Research Question 1: How can we ensure the users right to informational self-
determination regarding his digital identities?

• Research Question 2: How can we mitigate the liability concerns that arise with
the management of identity data?

• Research Question 3: How can trust in identity attributes be established in self-
sovereign identity systems?

The main body of this thesis contains a series of chapters in which we present our
research methods and results. After each chapter, we summarize its content and how it
relates to or answers one or more of the above research questions in the context of our
initial motivation.

1.3. Organization

This thesis is organized in the following chapters: In Chapter 2, we give an overview
over existing core concepts in the area of identity management which provide a baseline
for us in order to tackle the above challenges. We present relevant scientific related work
in Chapter 3. In Chapter 4, we present our main contribution: re:claimID, a decentralized
directory service for decentralized identity management and personal data sharing. To
complement our research in the area of decentralized directory services, we present
approaches for decentralized trust establishment in Chapter 5. Finally, in Chapter 6, we
conclude the thesis by giving a summary of our contributions and an outlook on future
work. We present our scientific, peer-reviewed publications in Appendix A and discuss
how they relate and contribute to our topic of research in the context of this thesis.

5

CHAPTER 2

Background

In this thesis, we present an approach to self-sovereign decentralized identity man-
agement. In order to understand our approach and the building blocks of identity
management in general, we discuss relevant concepts that revolve around this topic.
This includes a closer look at directory services, trust establishment as well as standard-
ization efforts that currently exist. In particular standardization is an important factor
in the design of decentralized systems related to personal data [96]. The revision and
structuring of those concepts allows us to understand, build upon and extend them in
order to address our identified research questions in the remainder of this thesis.

2.1. Directory services

Traditionally, identity information is stored in directory services. Essentially, directory
services fill the role of yellow pages in information systems. In fact, the directory service
Network Information Service (NIS) was originally called Yellow Pages (YP), in reference
to the telephone directory. The umbrella term “directory service” includes widespread
software such as the Lightweight Directory Access Protocol (LDAP) and Microsoft Active
Directory (AD) which are both part of the X.500 protocol family. X.500 is the de facto
standard when it comes to directory service protocols, but name systems such as the
Domain Name System (DNS) or the NIS also belong in this same service category. In
Figure 2.1, we present the various types of directory services, some of which are still in
use today, others are considered legacy. We note that historically, name systems and the
NIS precede X.500 directory services. The latter is considered a legacy directory service
and is commonly replaced by LDAP or AD in modern IT infrastructures. The origin of
one of our core contributions in this thesis comes from the idea to use name systems
as identity directories in order to realize decentralized services which can be used for
identity management and personal data sharing. In the following, we present past and
present standards in directory services.

7

Chapter 2. Background

Figure 2.1.: Directory services.

2.1.1. Standards and specifications

X.500 is the umbrella term for a series of standards designed originally by the In-
ternational Telecommunication Union (ITU). Of the many protocols defined in the
specifications, the Directory Access Protocol (DAP) is the most relevant in the context of
identity management. The DAP forms the basis for widespread implementations such as
LDAP [148, 128]. X.500 directory services provide IT infrastructure administrators with
the means to manage a Directory Information Tree (DIT). The DIT consists of entries
identified by a unique distinguished name (DN) and a set of attributes.

In Figure 2.2, we modeled a DIT according to a fictional example scenario and user
population. It contains both user and device entries which is indicated by the two distinct
organizational units (OU) below the domain components (DCs) in the DIT hierarchy. The
unique DN for the entry highlighted in gray is:

cn=john,ou=employees,ou=people,dc=mydomain,dc=org

Each entity managed in a DIT is identified by such a DN. The DN may be used to query
attributes associated with a specific entity. Attributes may take on a variety of defined
semantics, such as user attributes. Our example represents an entry commonly used
for user attributes including a common name (“cn”) and a unique user ID (“uid”). Our
example is by no means exhaustive or necessarily realistic but is only meant to illustrate
the architecture and semantics of an X.500 DIT.

X.500 directories are usually served using central servers which are not accessible
outside the local administrative domains. Consequently, X.500 directories are commonly
used as services for identity management within organizational domains such as an
internal company network. While public X.500 directory services are theoretically con-
ceivable, their administration models are based on traditional role concepts: For example,

8

2.1. Directory services

Figure 2.2.: Example of a DIT.

user self-service is rarely possible on the directory services themselves. Instead, the con-
tents of directory services are provisioned through central IT departments of companies
and organizations following well defined authorization hierarchies which are reflected
in the X.500 directory itself. Consequently, deployment of X.500 is rarely seen on the
Internet.

Security

Authenticity of data is guaranteed in X.500 directories as trust in the service is established
either implicitly due to the locality of the service in the internal network or through
traditional means such as TLS authentication. Further, the X.509 [28] standard defines
how third party asserted attributes can be managed in X.500 directories. X.509 is more
commonly known for being used in the TLS public key infrastructure (PKI) and defines
a certificate format. Originally, it was designed and intended for authentication in the
context of X.500 protocols, in particular as part of the DAPs. In such cases, the X.500 DIT
is used to bind a DN of an entity to the public key information contained in the X.509
certificate. We dive a bit deeper into X.509 and its use in establishing trust as part of a
PKI in Section 2.3. However, we can already see here a separation between assertions
such as X.509 certificates and the delivery mechanism X.500. We criticize the lack of this
separation in contemporary identity management in our introductory chapter.

Approaches to decentralization

In the wake of blockchain-based platforms and services, the need for directory services
that can be integrated in highly decentralized architectures arises. Specifically, the hierar-
chical naming structure of traditional directory services based on X.500 or DNS require
trusted third parties and thus stand in opposition to the idea of decentralized, “trustless”

9

Chapter 2. Background

{
"@context": "https://w3id.org/did/v1",
"id": "did:example:123456789abcdefghi",
"publicKey": [{

"id": "did:example:123456789abcdefghi#keys-1",
"type": "RsaVerificationKey2018",
"owner": "did:example:123456789abcdefghi",
"publicKeyPem": "<PEMFILE>"

}],
"authentication": [{

// this key can be used to authenticate as DID ...9938
"type": "RsaSignatureAuthentication2018",
"publicKey": "did:example:123456789abcdefghi#keys-1"

}],
"service": [{

"type": "ExampleService",
"serviceEndpoint": "https://example.com/endpoint/8377464"

}]
}

Figure 2.3.: A minimal self-managed DID Document [105]

distributed ledgers [6]. From this requirement, a draft specification for Decentralized
Identifier (DID) emerged [105].

A DID allows users to refer to identities in decentralized architectures by allowing
entities to act as their own root of trust instead of relying on centralized trust anchors.
This idea is reflected in the naming scheme for DIDs, which allows to define globally
unique names based on UUIDs. As such, a DID stands in direct opposition to a DN
commonly found in a DIT in X.500 DAPs. An example for a DID as given in [105]
is did:example:123456789abcdefghi. Another concept called “DID Documents” are
used to closer describe entities and attributes referenced by a DID. An example DID
Document is illustrated in Figure 2.3.

As mentioned above, DID-based naming schemes are commonly found in blockchain-
based designs of directory systems. One example would be uPort [137] which we dive
into in more detail later as part of our discussions on related work in Chapter 3.

2.1.2. Name systems

On the surface, name systems appear to be quite primitive systems that at the same
time are one of the major pillars of the Internet. In its simplest form, a name system is a
system that allows registration and resolution of name-value mappings. For example,
the DNS allows to translate domain names to IP addresses. Arguably, this is the most

10

2.1. Directory services

prominent and most important use case of the DNS and it is what enables users to
browse the Web. However, the use cases for name systems are not limited to IP address
resolution. As illustrated in Figure 2.1, a name system is just another type of directory
service. We want to put particular emphasis on the striking resemblances between X.500
directories and name systems: Those include the hierarchical organization of DITs as
well as the flexibility and use of its entries. Name systems such as DNS exhibit similar
properties, most notably the hierarchical structure. However, name systems have one
special feature that X.500-based services lack: Delegation of authority over parts of the
directory structure to other entities.

In DNS, the namespace is divided into subnamespaces which are owned by so-called
“authoritative”entities. Authoritative entities may further divide and delegate parts of their
delegated namespace. The root namespace is reserved for a special entity and is identified
by the label “.”. This reserved namespace is called the “root zone”. The authority over
this namespace reserved to the Internet Assigned Numbers Authority (IANA) which is a
function of the Internet Corporation for Assigned Names and Numbers (ICANN). Until
recently, IANA was managed by ICANN under the contract of the U.S. Department of
Commerce (DOC) [23]. At that time, the DOC verified additions and changes made to
the DNS root zone. On in October 2016, the functions of IANA were fully transferred to
ICANN1.

At the second level of the hierarchy are top-level domains (TLDs) such as “.com”
and “.org”. A significant amount of TLDs are managed by states (country code TLDs).
Figure 2.4 shows a fictional example of a DNS namespace hierarchy. In it, the top-level
domain “de” is managed by the DENIC. Ergo, IANA delegates authority over the “de”
subnamespace to DENIC. Names in DNS consist of ASCII labels which are optionally
separated by a dot. DENIC itself further delegates subnamespaces of “de” using labels,
such as “tum.de” to the Technical University of Munich. Each authority operates DNS
servers which are capable of giving authoritative answers to name resolution requests.

Where X.500-based directory services require DAPs, in name systems name-value
pairs are resolved top-down through the namespace hierarchy using name resolvers.
Name servers that recursively query authoritative servers along the hierarchy until a
result is found are called “recursive” resolvers. End users use so-called “stub” resolvers
that are solely used to proxy resolution requests and responses to recursive resolvers.
Stub resolver implementations are usually part of an operating system network stack.

Names in DNS are mapped to sets of resource records (RRs). Resource records serve
the same purpose as entries in an X.500-based DIT. The content of a resource record is
defined by its type. For example, the resource record type “A” denotes an IP address.
Extensions to DNS define record types for X.509 certificates [63] or OpenPGP public
keys [146]. Instead of DNs used in DAPs, in DNS we refer to records using fully qualified
domain names (FQDNs). While the qualifier is different, the semantics and meaning of
DNs and FQDNs are almost equivalent.

1https://www.icann.org/news/announcement-2016-10-01-en, accessed 2018/11/23

11

Chapter 2. Background

root

.org .com .co.uk .de

tum.de

in.tum.de

sec.in.tum.de

Root name server(s)
(<*>.root-servers.net, ICANN/IANA)

TLD name server(s)
({a,b,z}.nic.de, DENIC)

TUM name server(s)
(dns{1,2,3}.lrz.de, LRZ)

Chair name server(s)
(dns1.sec.in.tum.de, Chair)

= Zone handled by
Authoritative Nameserver(s)

Figure 2.4.: An example DNS namespace hierarchy.

Security

Security of name systems is a research area which in the real world has found little
application and even standardized security extensions are infamously unpopular. Para-
doxically, this is presumably a result of the core role the name system plays on the
Internet today. The DNS is critical infrastructure and as such disruptive changes to it
are difficult to apply without risking the interruption of millions of services. Regardless,
efforts to bring security properties to name systems have been made. This includes both
approaches which aim to improve the existing DNS, but also blank slate approaches.

A variety of extensions and modifications exist which aim to add security properties
to the DNS. Unfortunately, the DNS suffers from an inherent design flaw which makes
it difficult to design a security model that is able to withstand strong attackers: As
discussed above, domain names in the DNS are highly regulated and organized in a
strict hierarchy. It is prone to gradually degenerate into a quasi centralized system
from an organizational perspective. This property affects resilience as it attracts strong
attackers including nation state actors and facilitates legal actions such as censorship.

Research done by Grothoff et al. [58, 24] includes surveys, analyses and categorizations
of contemporary, state of the art name systems. The authors compiled a set of security
goals which are found in name systems that claim to add security properties including
integrity, authenticity, availability, confidentiality and censorship resistance to specific
aspects of the name system and its records.

In Table 2.1, we can see the analysis results for DNS, various DNS security exten-
sions, Namecoin, GNU Name System (GNS) and RAINS. It shows a comparison of
the defenses offered by the various designs and their relative deployment complex-
ity. According to the study, newer, disruptive approaches provide security properties
absent in DNS-based name systems including its security extensions [65, 34, 19, 144].

12

2.1. Directory services

This is particularly evident in the protection against network operator monitoring and
censorship. The authors conclude that the choice of name system is depending on a
variety of factors where security considerations only play a secondary role at best. For
example, organizational aspects of the ecosystems where the name system is to be used
and backwards compatibility including migration aspects are relevant. The authors state
that the choice of name system is highly political. For free and democratic societies,
it appears that peer-to-peer-based approaches such as Namecoin or GNS, should be
preferred over semi-centralized, distributed systems such as DNS or RAINS. As our goal
is the empowerment of users and returning the control over their identity back to them,
this is a significant factor for us.

One of those disruptive approaches is Namecoin [94]. Namecoin is an alternative
blockchain-based name system. The Namecoin blockchain is similar to the Bitcoin
blockchain in that it makes use of a hash-based proof-of-work consensus mechanism.
One property of blockchain-based name systems like Namecoin is that, except for stub
resolvers, every client stores all records and zones in its local ledger database. For
users, this means that record lookups are fast and cannot be intercepted or modified
by an attacker in the network as only local data is queried. As such, it provides strong
privacy and availability properties. The resulting drawback is the redundant replication
of the complete ledger by every participant. For regular users that are not namespace
administrators, Namecoin is essentially a local database with host names and other
name-value mappings. It is similar to a local /etc/hosts file that contains a synchronized
copy of all names in the domain name system.

The interesting property of Namecoin becomes evident at name registration. The
blockchain proof-of-work decentralized consensus algorithm ensures that name-value
mappings are difficult to delete or censor by third parties. This tamper resistance is an
inherent feature of any blockchain and is ensured through the consensus mechanism.
Integrity of the individual name value mappings is established through traditional
public key cryptography signatures provided by the namespace owners.

Another interesting aspect of Namecoin is that there are already efforts that propose
the use of this name system as identity directory [79]. We discuss this approach in detail
as part of our presentation of related work in Chapter 3.

The other analyzed peer-to-peer-based name system is the GNS. GNS is a petname
system [129]. A petname system implicitly mitigates name squatting by not having
globally unique names but instead relying on query origin relative names. Unlike
Namecoin, GNS does not use a replicated ledger as the storage mechanism of resource
records. GNS is a name system built on top of a distributed hash table (DHT). In order
to ensure availability of records, the GNS DHT also makes use of data replication across
nodes in the network. But, the replication rate is nowhere near the 100 percent of a
blockchain. Data replication is only as high as to avoid data loss in high node churn
situations, making it more efficient. The DHT routing protocol ensures storage and
retrieval of the mappings. Hence, lookups are not local but involve network queries
and responses. GNS prevents namespace enumeration and eavesdropping by network

13

Chapter 2. Background

Protection against Ease of
Manipulation Zone Client observation Traffic Censorship / Migration /

by MitM walk network operator Amplification Legal attacks Compatibility

DNS 7 3 7 7 7 7 +++
DNSSEC 3 7∗∗ 7 7 7 7 +∗

DNSCurve 3 3 3 7 7 7 +∗

DNS-over-TLS 3 n/a 3 7 3 7 +
Confid. DNS 7 n/a 3 7 7 7 ++
Namecoin 3 7 3 3 3 3 -
GNS 3 3 3 3 3 3 - -
RAINS 3 7 3 7 3 7 - -

∗ EDNS0 is not perfectly compatible, ∗∗ with NSEC5: 3

7: not satisfied, 3: satisfied, n/a: unchanged from DNS/DNSSEC, “+++/++/+” easy, “- -/-” hard.

Table 2.1.: Name systems security assessment results by Grothoff et al.[58]

operators using a query key blinding and encryption approach. In the context of our
design of a decentralized directory service, we make use of this name system for our
reference implementation. We provide more details and motivation on this choice in the
context of Chapter 4.

2.2. Identity services

In order to utilize a service on the web, users are often required to share personal data
like email addresses with service providers. As part of normal service operation, such
as notifications or billing, services require access to uo to date user data. This data is
required when a particular action is triggered.

Consider the use case of a user subscribing to a social networking service. After
successful registration and providing the service provider with an email address, the
service is able to send notifications such as status updates from friends to the user. At
the time of notification delivery, the service needs access to the users’ current email
addresses that must be notified. However, services cannot interact with users that are
offline in order to retrieve an up-to-date address. To mitigate this issue, services store
user data in a database upon registration or retrieve it from a third party Identity
Provider (IdP). If the data is persisted by the social networking service, it can become
stale unless diligent users continuously update their data. Further, as elaborated in our
motivation in Chapter 1, this data is a liability which poses potentially existential risks to
service provider if accidentally disclosed or mishandled. This has lead to the emergence
of decidated, third party identity services.

We distinguish between three types of IdP service architectures: centralized, federated
and self-sovereign. The centralized approach is the current norm on the Internet and the
so-called “Social Login” functionality provided by Google and Facebook IdPs services
are archetypal representatives.

14

2.2. Identity services

Federated identity services are traditionally found wherever disjoint trust domains
must be interconnected. This use case is mostly found in the context of universities
in order to facilitate common authentication for staff and students across research
institutions. Another example are corporations that are faced with integrating possibly
heterogeneous IT infrastructures as a result from mergers and acquisitions. In both cases,
identity federation is a useful concept which allows to address such scenarios without
the need of costly technology homogenization or inappropriate data sharing.

Finally, in the current wake of the blockchain hype, the addressing identity manage-
ment in the context of decentralized architectures and applications gains traction. No
central IdP can be integrated in such ecosystems without destroying the fundamental
underlying premise of decentralization. Hence, decentralized ecosystems resort to so-
called self-sovereign identity management. Self-sovereign identity management is the
idea that users manage and share their digital identities without using central identity
services. Instead, ad-hoc communication and peer-to-peer protocols are utilized in order
to store and share identity data. The data itself is either self-asserted by the user or
asserted by sovereign authorities such as governments (e.g. for postal addresses) or
businesses (e.g. for email addresses) through out-of-band trust establishment. The user
is enabled to share his data selectively with those who need it either directly or via a
shared, decentralized storage medium.

In the following, we discuss and compare centralized, federated and self-sovereign
identity systems while discussing their benefits and drawbacks.

2.2.1. Centralized

In centralized architectures, user identities and attributes are located, stored and man-
aged in a directory service within the domain of the IdP service. Users are able to create
identities by registering accounts and edit the respective identity attributes within the
limitations imposed by the service provider. Control over attributes by the user is limited
if the IdP validates and asserts attribute values such as account IDs or email addresses.
Occasionally, non-critical information such as nicknames are left to the discretion of the
user. Access control and data protection is ultimately delegated and enforced by the IdP.

Third party services, in this context referred to as relying parties (RPs), are able to
request access to user attributes at the IdP. The details of such authorization procedures
are defined in relevant specification such as OpenID Connect 1.0 (OIDC) or Security
Assertion Markup Language (SAML). In order to interact with the IdP, RPs are usually
also required to register at the service. Both user and service rely on the IdP to provide
fresh, authentic attribute data. In this design, an IdP is in a position where usage patterns
can be observed across RPs which can in turn be used for user profiling. Further, as
RPs delegate user management and authentication to the IdP, insufficient or faulty user
authentication as well as unavailable or incorrect user data may severely disrupt business
processes. Consequently, this design requires users and RPs to place strong trust in the
identity service provider to provide adequate availability, integrity and confidentiality
guarantees. Figure 2.5 illustrates the architecture of centralized identity services.

15

Chapter 2. Background

Figure 2.5.: A centralized IdP architecture.

Traditionally, central IdP services are built using the standardized protocol OIDC [112]
or SAML. OIDC is a HTTP-based protocol for identity and access management. The
official specification states that OIDC is an identity layer on top of the OAuth 2.0 [71] pro-
tocol. While OIDC is often used in a user authentication and login context, the protocol
itself is not an authentication protocol or mechanism. OIDC is an authorization protocol
that revolves around an end user giving authorization to access identity information
to a RP. In OAuth 2.0, a client requests authorization to access a protected resource
from the resource owner (RO). In the case of OIDC, the client is a RP, the RO is the user
and the resource is the user’s data. If the user consents, the RP receives an OAuth 2.0
authorization grant. Form factor, content and semantics of this grant depends on the
chosen grant types as defined in the specification [71]. The RP uses the grant to request
an access token from the OAuth 2.0 authorization server (AS). In OIDC the AS is in almost
all cases the same entity as the IdP service which also serves the user’s data. When
presented with a valid grant, the IdP issues an access token to the RP. From then on, the
RP is authorized to access the user information at the IdP by presenting the token.

In summary, the basic concepts of OAuth 2.0 apply directly to OIDC. Figure 2.6
illustrates the relation between OAuth 2.0 and OIDC entities. It shows a list of relevant
entities in the OAuth 2.0 protocol on the right, juxtaposed with the corresponding entities
in OpenID Connect 1.0.

Advantages The use of central service providers allows users to efficiently manage
identity information and control access. Entities providing sovereign assertions regarding
identities such as universities (enrollment status) or email providers (email address)
often offer a whole range of IdP services. IdPs are able to realize this this one-stop shop
approach with little to no additional effort using today’s cloud-based infrastructure
offerings. Further, users and RPs are primarily interested in the service functionality

16

2.2. Identity services

Figure 2.6.: A juxtaposition of related entities in the OAuth 2.0 and OIDC specifications.

and less with the actual attribute assertion and management behind it. Availability is
usually guaranteed through today’s cloud infrastructures. Solely legal interventions,
for example to impose censorship, are notable threats to the availability of centralized
services.

Disadvantages The main disadvantage of centralization is that the IdP has full access
and control over the managed user data. Abuse of this power is theoretically limited
by applicable laws and regulations [53]. But, such regulations can be ignored or chal-
lenged [87] and service providers are major targets for targeted advertisement businesses
as well as hackers, including government actors [30, 49, 66].

Further, centralized identity services inherently degenerate into identity service mo-
nopolies: From the perspective of a RP, the number of identity providers should be
as low as possible because each may require additional integration effort. This issue
is aggravated if identity providers use diverging formats for attributes and protocol
implementations. As a consequence, RPs have an incentive to offer the bare minimum of
IdP support to their users in order to guarantee a comfortable experience for most of
them. This hinders small and new IdPs to enter the market. This effect becomes evident
when looking at recent efforts to establish national alternatives [21] and their failure
in gaining traction. As discussed above, centralized IdPs are a magnet for legal inter-
ventions as well as malicious actors that aim to inflict maximum impact. Consequently,
large, centralized IdPs involuntarily act as prime targets for all kinds of attackers.

2.2.2. Federated

Identity federation is the approach to interconnect user populations across trust do-
mains. In general, identity federation architectures build on the centralized IdP pattern
discussed above and enhance it by allowing IdPs to exchange information. In a given
trust domain, a RP is able to delegate authentication of a user to a different trust domain.
The discovery of the respective user domain and associated IdP is done using dedicated

17

Chapter 2. Background

protocol extensions such as the SAML Identity Provider Discovery Profile [97] or the OpenID
Connect Discovery [111] specifications.

Historically, SAML was used for identity authentication and identity information
sharing. Out of the many use cases for SAML, Single Sign-On (SSO) and identity
federation are the most common. Use cases are modeled in so-called profiles in SAML.
The most common profile is Web Browser Single Sign-On. Counterparts to relevant actors
and entities in SAML can also be found in other, newer protocols such as OIDC. SAML
makes heavy use of the Extensible Markup Language (XML)-based Simple Object Access
Protocol (SOAP), which is characteristic for the time period it was designed in. Newer
protocols like OIDC are build using HTTP and representational state transfer (REST)-
based protocols. While OIDC has replaced SAML in most use cases including SSO,
SAML remains the dominant protocol for identity federation.

Figure 2.7 illustrates how user information flows across different IdPs and trust
domains from users to RPs in identity federation scenarios.

Figure 2.7.: A federated IdP architecture.

Advantages Identity federation theoretically makes it easier for a variety of identity
providers to enter the market. Users are able to manage their identities in their trust
domains and even at the IdP of their choice. Through this property, one could argue
that market mechanisms force IdPs to follow consumer demand also with respect to
privacy. Trust between domains is established individually between IdPs, bridging
the possible gap between user and RP trust domains. Standardized protocols were
specifically designed to support this use case and it is successfully applied widely in
academia [37].

Disadvantages The biggest problem with identity federation is that large IdPs have
no incentive to federate with other, smaller competitors. However, a well connected

18

2.2. Identity services

network of IdPs is central to the idea of large scale federated identity management. At
the same time, RPs have strong incentives to integrate and trust large IdPs in order to
cater to the larger user populations. It is obvious how this disparity leads to a situation
where RPs tend to establish trust directly with large IdPs instead of via local competitors.
Commercially, identity federation is not so much of an advantage which would explain
why SAML identity federation is mostly popular inside academia and large corporations
and much less in the consumer market.

2.2.3. Self-sovereign

The idea of identities without trusted authorities is not new. Previous research can be
found from as early as 1996, when Carl Ellison proposed a scheme to “establish identity
without certification authorities” [38]. In the wake of peer-to-peer and blockchain based
services, decentralized self-sovereign identity systems re-emerged. The requirement for
such systems arises from the fact that decentralized services and applications depend
on a decentralized identity system that conforms with the respective threat models.
Consequently, management and sharing of attributes and identities needs to be decen-
tralized. In self-sovereign identity systems, users share personal information with RPs
interactively upon request bypassing any third party IdP service. In its simplest form,
the identity data is not asserted by any trusted third party. However, this does not mean
that self-sovereign identity sharing does not support use cases where identity data is
asserted by a trusted authority.

Effectively, there are two locations where users manage personal information in self-
sovereign identity systems: locally or using a shared, distributed storage medium. In the
first case, personal data is managed by the user in a local credential “wallet” on their
devices such as personal computers or mobile phones. In the second case, users store
data on decentralized storage mediums such as DHTs or blockchains. The latter case
requires decentralized access control mechanisms in order to protect the user’s data
from unauthorized access.

One example for a system which follows the credential wallet approach is Idemix [22].
While the authors of Idemix do not categorize it a “self-sovereign” identity system, its
architecture exhibits the same properties. However, this approach makes it impossible
for the user to share his data in a way that allows RPs to access them even if the user’s
devices are offline. In fact, it forces RPs to persist the data on their end in order to ensure
it continues to be accessible in the future. Centralized and federated IdPs achieve this
by storing the data in their respective directory services. This implies the requirement
of accessible, open and decentralized shared storage mediums. Figure 2.8 illustrates a
high-level design of self-sovereign identities managed over a shared medium.

It is possible to combine the above approaches in order to allow interactive presentation
of attributes as well as non-interactive lookups of attribute data by RPs. Access to the
directory service does not necessarily need to include the IdPs and is instead only used
to bridge the trust domains of the user and the RP. In Figure 2.9, we illustrate how a user

19

Chapter 2. Background

Figure 2.8.: A self-sovereign identity architecture with a decentralized directory service.

is able to share IdP asserted attributes with an RP using either an interactive protocol or
the indirection of the shared storage medium.

Figure 2.9.: An architecture combining a decentralized directory service with ad-hoc
attribute sharing.

Advantages Self-sovereign identity systems put the user at the wheel when it comes
to identity attribute sharing. No intermediate entity is required in order to share user
data with RPs. At the same time, the possibility of attribute attestation through trusted
third parties is preserved. Ideally, self-sovereign identity systems additionally include a
directory service built on top of a shared storage medium. Such hybrid architectures

20

2.3. Trust management

support the separation of concerns we advocate for: The disentanglement of identity
provisioning and trust establishment.

As with its centralized counterparts, IdPs still have a place in self-sovereign identity
systems in order to provide data verification as well as attestation. However, IdPs are
removed from the equation when it comes to access control and authorization of RPs
through the user.

We even argue that this mitigation of central identity service providers enables
email providers, governments and other authorities to reclaim their place as sovereign
attestation entities themselves. At the same time, users are free to assemble one or more
identities with asserted or self-asserted attributes and share this information on a need
to know basis with RPs.

Disadvantages The classical self-sovereign identity approach comes with a few draw-
backs: If data is only shared on demand between the user and a requesting party,
propagation of updates to the data must be handled by the user as well. RPs might
have processes that require access to user data but those processes are not triggered
while direct interaction with the user is occurring. For example, a monthly notification
or a billing process requires fresh addresses and banking information. To address this
case, the RP has only one option: It must persist the data when it was requested from
the user. If the data changes, for example when it is updated by the user, the RP is left
with stale data. Another challenge in self-sovereign identity systems is the absence of
implicit attestations of user attributes provided by an IdP in centralized architectures.
Trust in attributes served over self-sovereign identity must be established out-of-band,
for example through the use of PKIs or other trust establishment mechanisms.

There are three inherent challenges of directory services built on shared mediums:
First, shared mediums such as DHTs or distributed ledgers are quite difficult to design
and build. Further, enforcement of access control decisions by the user as data owner is
difficult due to the absence of a trusted third party which usually takes care of this. The
second challenge is ensuring confidentiality of attributes. This can be addressed through
the use of an encryption scheme but this entails other challenges with respect to key
management and revocation. Third, the implicit attestations which are usually in place
when retrieving attributes via a centralized service are not available. Consequently, trust
in attributes must be established out-of-band.

2.3. Trust management

In order to facilitate secure communication on the Internet, first and foremost trust
between entities must be established. Respective mechanisms and protocols fall into the
context of identity and access management.

Traditional communication paradigms based on centralized client-server architec-
tures are shifting to decentralized communication between interconnected devices and
services especially in the context of self-sovereign identities. The decentralization of

21

Chapter 2. Background

Figure 2.10.: Trust management categories. [5]

communication and the diversification of trust domains entail non-trivial challenges on
trust management.

Centralized architectures typically imply a single trust domain. In such cases, trust
establishment is well understood and various solutions are available. It typically consists
of a trusted third party that provides authentic descriptions of entities and asserts
validity of properties. All entities use this information and interpret it as the trusted
foundation for access control models. This model is founded on the assumption that
assertions and attributes are managed by the central trusted third party. This assumption
does not hold in decentralized architectures that consist of a high number of disjoint
trust domains, as there is no central authority to manage assertions and to guarantee
the authenticity of entities and attributes.

We investigated the landscape of trust establishment systems in distributed and
decentralized systems in a survey [5]. In the survey, we categorize the employed trust
models into whether they can be used in centralized, distributed and decentralized
scenarios. Depending on the design of the various trust models, they exhibit properties
that allow them to be used in self-sovereign identity systems. Figure 2.10 shows the
different trust model categories which we discuss in the following.

2.3.1. Recommendation and reputation-based systems

According to Artz and Gil [7] there are two approaches to establishing trust in an entity.
The first approach is a result of direct, personal interaction with the entity. It is the
most common approach in trust establishment and the prime example is the X.509 PKIX
which we discussed as part of directory services. The second approach is to establish a
“reputation” of the entity using information from third parties, such as other peers in a
network.

Recommendation and reputation-based trust models are commonly evaluated on the
basis of trust metrics. Such metrics are computed using trust data which is collected and
aggregated in the form of recommendations or reputations asserted by other entities. The
used metrics and calculations vary across approaches which is its own field of research
and we consider this out of scope in the context of this thesis. Reputation systems such
as the one proposed by Abdul-Rahman and Hailes [1] establish an entities reputation by

22

2.3. Trust management

distinguishing between “direct” and “recommended” trust. Often, systems that model
recommendation and reputation-based systems, combine both direct and recommended
trust models [3, 2]. Notable approaches include the EigentTrust and EigenRep systems
by Kamvar et al. [74, 73]. In EigenTrust, global trust values are calculated between two
entities based on their previous local transaction history. In order to do this, transactions
between entities are categorized as either “satisfactory” or “unsatisfactory”. When
calculating the global trust values, local trust values are weighted by the reputation of
the entity which claims the local trust value over another entity. However, Selvaraj et
al. [127] found that approaches such as EigenTrust and reputation-based systems in
general require a central storage of reputation data. They argue that unless a trusted
central storage is available, reputation systems are susceptible to a variety of security
threats. The EigenRep approach [73] tries to mitigate those shortcomings through the
use of DHTs.

From our survey data we conclude that recommendation and reputation-based systems
generally suffer from the problem that a recommendation is based on a metric that is
difficult to describe objectively. In the literature, this metric is commonly referred to as
“transaction quality”. However, unless a global consensus on the meaning of acceptable
behavior for entities is found and interpreted identically by all entities, the meaning of a
resulting metric is of little use. Further, the resulting metric allows to compare the two
entities with respect to their reputation, but it is difficult to formulate sensible binary
authorization decisions on a continuous value. As such, binary decisions with respect to
trustworthiness are difficult.

In conclusion, recommendation and reputation-based fit into decentralized systems
and consequently self-sovereign identity management. However, their shortcomings
with respect to fuzzy metrics and the lack of practical, mature implementations are
disadvantageous.

2.3.2. Evidence and policy-based systems

Evidence and policy-based trust models mostly revolve around credentials and policies.
Unlike recommendation and reputation-based models, they rely on strong security
mechanisms such as cryptography in order to establish absolute trust. Examples range
from standardized PKIs such as X.509 to distributed policy languages.

X.509 historically is a type of entry in an X.500 directory service. However, the IETF
in its PKIX working group [67] built upon the original definition in order to appropriate
it for use as a PKI on the Internet. A X.509 certificate represents the binding of a public
key to a distinguished name (DNs, see Section 2.1.1). However, a certificate may contain
further assertions defined through extensions. The PKIX specifications define how trust
in an entity can be established by following a trust chain. A trust chain must start at one
or more certification authoritys (CAs) as trust anchors. Trust domains can be connected
in X.509 PKIs through cross certification: In order to enable trust establishment from
an externally certified entity, the local PKI creates a certificate for the external CA. This
essentially integrates the external PKI into the local PKI. However, if a trust path is

23

Chapter 2. Background

created to a CA outside the local PKI in this manner, it cannot be restricted from issuing
certificates for its own trust domain. This property is a severe security issue if CAs are
certified which become compromised or act maliciously. Research in this regard yields
that this threat is not theoretical [64]. The possibility of cross certification is an important
difference to DNS namespace delegation where only the authority over a subnamespace
can be delegated. X.509 naming schemes follow the conventions of X.500 and not DNS.
Yet, X.509 does have an infamous relationship with domain names: Commonly, X.509
certificates are used to bind DNS domain names to the public keys used by web servers
in the Transport Layer Security (TLS) protocol. In this case, the common name2 contains
an FQDN. In web use cases the domain name of the server must match this entry defined
in the certificate.

Alternatives to X.509 PKIs exists in the form of Simple Distributed Security Infras-
tructure (SDSI) [107] or RT0 [85]. Both try to mitigate some of the above mentioned
shortcomings of X.509 PKIs through the use of attribute-based delegation (ABD). ABD
is a suitable trust establishment mechanism especially in the context of distributed
and decentralized systems. In our discussion of state of the art trust establishment in
distributed systems in Chapter 3 we take a closer look at those approaches and how
they can be used in self-sovereign identity systems.

We conclude that, generally, traditional evidence and policy-based systems are also
suitable for use in combination with self-sovereign identity systems. In this thesis, we
investigate to what degree alternative approaches such as SDSI and RT0 can be used to
support trust establishment in self-sovereign systems.

2.4. Relevance in the context of this thesis

We use the background presented in this chapter in order to establish the technical
context of this thesis. We revisited existing protocols and technologies in order to
separate current identity management into three functional areas:

• The storage of user identity information in directory services.

• Identity information sharing between users and RPs through identity services.

• Verification and assertion of identity information through trust establishment.

This deliberate breakdown enables us to effectively address the challenges we stipu-
lated in our motivation. It allows us to split up current identity management models
which revolve around centralized service providers into disjoint functional components.
Accordingly, our contributions as presented in the main body of this thesis address the
respective functionalities. Further, it facilitates our discussion and classification of the
state of the art in decentralized identity management in the following chapter.

2Recently, domain names are also found in the “SubjectAltName” attribute.

24

CHAPTER 3

State of the art

In this chapter, we present existing research in the areas of privacy-preserving and
self-sovereign identity management, data sharing and trust establishment. Our goal is
to differentiate our contributions from the state of the art.

We organize this chapter as follows: First, we discuss research on privacy-preserving
identity management systems built on top of centralized infrastructures and standard-
ized services. In the second part, we present works on decentralized and self-sovereign
identity management. The respective approaches rely on peer-to-peer systems and
distributed ledger technologies such as blockchains. In contrast to the centralized ap-
proaches, the security goals of such systems are usually modeled with stronger attacker
models in mind that necessitate the decentralization of the underlying infrastructure
and services.

Third, we present related work in the area of trust establishment in distributed and
decentralized systems. Works in this research area complement the inherent lack of
attribute validation and assertions in self-sovereign identity systems. Most publications
in this context do not directly reference self-sovereign identity management as research
in this area largely predates this topic.

Finally, we give a brief summary over the insights we draw from existing research
and how the state of the art benefits from our contributions.

3.1. Centralized, privacy-preserving identity management

In this section, we present research with focus on privacy-preserving protocols which
integrate or are based on centralized infrastructures and services. This includes research
on protocols which extend existing standards such as OpenID Connect 1.0 (OIDC) and
add security and privacy properties, for example in the form of privacy-preserving
attribute-based credentials (ABCs).

25

Chapter 3. State of the art

3.1.1. U-Prove

U-Prove [100, 99] is a digital credential technology that allows a user to selectively
disclose claims issued by an issuer to a relying party (RP). Such claims can be presented
to a RP through the use of authorization protocols such as OIDC. The users are free
to choose which attributes they want to present to a RP and which to withhold. In
addition to selective disclosure of subsets of attributes, U-Prove also allows users to
prove predicate statements on attribute properties. A prominent example use case is
where users must provide to an online service that they are of legal age in order to be
allowed to use the service. For the RP, it suffices to know that a user is over a certain
age. The exact date of birth might be irrelevant.

U-Prove aims to improve the privacy of users through the use of privacy-preserving
credentials which are managed and presented via traditional identity provider services.
U-Prove primarily excels in protecting the user from malicious or data greedy RPs. It is
currently developed by Microsoft Research [106], but has not matured enough to be part
of the regular commercial offerings.

Differentiation In U-Prove, the user must request claims and respective predicate state-
ments through an interactive protocol with an issuer. Usually, this is the same entity as
the Identity Provider (IdP). The IdPs must be trusted with all attribute data and they
continue to be able to track the user across services. For example, for users to prove
to a RP that they are over 18 years old, they must request a claim which states this
information as part of a U-Prove token from the issuer. The proven statement cannot be
modified by the user at a later stage, even within the validity of the underlying attribute
value.

In this thesis, we present an approach that allows users to generate arbitrary statements
themselves as long as they are true with respect to the underlying attribute claims. The
user only needs to retrieve the asserted attribute – e.g. a certificate that states he is born
in a certain year – from the issuer. This claim is sufficient for the user to prove statements
based on this claim such as “is not 20 years old”, “is 24 years old” or “is over 18 years
old”.

3.1.2. Identity Mixer

Identity Mixer (Idemix) [22] is and approach similar to U-Prove. It is built using
novel cryptographic techniques based on the mathematical principles behind RSA
and Diffie-Hellman. Idemix is a sophisticated credential system that in addition to
privacy-preserving attribute-based credentials (PP-ABCs) also provides some anonymity
functionality, which is what separates it from U-Prove. It provides an extensive feature
set including support for attribute predicates, revocation and selective disclose of at-
tributes. Idemix heavily relies on centralized services which are used by the user and
RPs. The zero-knowledge presentation protocols required for Idemix credentials allow
the same applications as those discussed above in U-Prove.

26

3.1. Centralized, privacy-preserving identity management

In Idemix, users manage a local “credential wallet” containing ABCs issued by an
Idemix IdP. Users engage with RPs in an interactive presentation protocol which allows
them to prove predicates and statements over the Idemix credentials in the wallet.
Presentation of the credentials does not require interaction between user and IdP or RP
and IdP unless full disclosure of the attribute contents are required. User studies show,
that while the idea of credential wallets is easy to use, trust in such complicated systems
is difficult to establish [109].

Differentiation The attacker model of Idemix, especially with respect to attribute sharing
and disclosure as well as user tracking across RPs is not particularly strong. In our con-
tributions, we aim to provide technological means which are resistant to data collection
and behavioral profile building while at the same time provide PP-ABC features similar
to those of Idemix.

In Idemix, while users are able to provide credentials in a non-interactive fashion,
the system design does not include a decentralized store which would require this
feature per se. By design, Idemix does not address the use case of offline presentation of
credentials to RPs. What Idemix gains from this restriction, however, is that an already
presented proof cannot be replayed by a RP unless the issuer consents to this. This
feature is particularly relevant since Idemix supports the use case in which the user
stays anonymous and only provides credentials. In this case, mitigating replay attacks
is important to prevent impersonation attacks. A rather odd choice in the design of
Idemix (which otherwise emphasizes user privacy) is that RPs may request disclosure of
credential values at the IdP, potentially without the consent or knowledge of the user.

In our research efforts, we focus less on anonymity and more on empowering the
user to regain control and sovereignty over potentially pseudonymous identities. Un-
like Idemix, we consider transparency of paramount importance and the user should
have full disclosure over what happens with the shared personal data. Further, we
assume that interactive sessions between user and RP are authenticated. The user au-
thentication context is then bound to the presented credentials anyway, for example
through an attribute holding his public key. However, we built on the idea that users
manage their own credential collections on their local devices and either interactively
or non-interactively present them to the RP. In Chapter 5, we investigate how recent
advancements in non-interactive zero-knowledge (NIZK) protocols can be used in order
to design PP-ABCs.

3.1.3. SPRESSO

The authors of SPRESSO [44] propose a secure, privacy-preserving identity architecture
primarily focused on the use case of Single Sign-On (SSO) on the Internet. At the expense
of standardization and the associated ready to use tooling, the authors propose a protocol
redesigned from the ground up in order to mitigate some of the inherent privacy issues

27

Chapter 3. State of the art

of legacy versions of OAuth and OpenID1 [139, 131]. The SPRESSO protocol allows
users to login at any RP using their email address. Here, it is irrelevant what email
address is used as long as it is possible to discover an SPRESSO IdP with it: SPRESSO
RPs use the domain part of the user’s email address to discover the user’s IdP service.
This process is similar to OIDC IdP discovery [111] which did not yet exist at the time.
Due to this feature, RPs are not required to register at IdPs a priori, which is something
that other designs such as OIDC do not support. Because of this, the authors present
SPRESSO as a “decentralized” system. However, it fundamentally relies on traditional,
centralized identity service providers. Hence, it is not designed in a way which would
allow categorization as a self-sovereign identity system. User data is still under the
control of IdP services.

In order to hide the relation of user and RP, the protocol intends so-called fowarders
which proxy the communication between user, RP and IdP. The authors claim that
SPRESSO can be used by users without further software or browser plugins as a major
advantage over approaches like Mozilla’s decentralized authentication system Persona2.
But, the authors assume and require that forwarders are not malicious and do not
collaborate with RPs or IdPs in order to diminish the privacy of participants. Finally,
the exchange of attributes is not possible if the user is offline as this would destroy the
privacy provisions of SPRESSO.

Differentiation Unlike the authors of SPRESSO, we concede that in order to achieve
truly privacy-preserving, user-controlled identity management, additional software is
required. The protocols criticized by its authors have been superseded and today’s
incarnations, namely OAuth 2.0 and OIDC, remedy most of the identified security flaws.
However, privacy flaws inherent to the design around centralized service providers
remain in both protocols. That is, if the services are not operated by entities which must
be trusted by both users and RPs. In this thesis, we present our approaches with which
we aim to combine the best of two worlds: Standardized protocols like OpenID Connect
built on top of self-sovereign identity and directory services.

3.1.4. UnlimitID

The authors of UnlimitID [70] propose privacy-preserving credentials based on algebraic
MACs (aMACs). The system offers unlinkability between the user IdP and the RPs.
The high-level idea is that the user is enabled to derive pseudonymous identities from
a main identity registered at the IdP. Different pseudonymous identities are used
when interacting with RPs. The use of aMACs prevents IdPs from linking derived
pseudonyms to the original identity. The authors of UnlimitID acknowledge that access
to user attributes must be possible without user interaction. Hence, they include the IdP

1We note that the authors specifically address the legacy OpenID specification and not the more recent,
significantly different OpenID Connect specifications.

2The service and support by Mozilla has been decommissioned in 2016: https://wiki.mozilla.org/I
dentity/Persona_Shutdown_Guidelines_for_Reliers, accessed 2019/2/6.

28

https://wiki.mozilla.org/Identity/Persona_Shutdown_Guidelines_for_Reliers
https://wiki.mozilla.org/Identity/Persona_Shutdown_Guidelines_for_Reliers

3.2. Decentralized directories and self-sovereign identity management

in their attacker model and implement a protocol which protects the user’s privacy even
in the face of malicious service providers. UnlimitID can be used in combination with
standardized protocols such as OIDC which is a major advantage over approaches like
SPRESSO [44] or PseudoID [33].

Differentiation The security model of UnlimitID explicitly excludes the linking of iden-
tities through the disclosure of attribute values, such as email addresses. Hence, the
unlinkability of identities is only guaranteed if the attributes shared with RPs do not
allow to uniquely identify a user. For example, an email address is a unique identi-
fier which would allow an attacker to easily discover an identity even if UnlimitID
pseudonyms are used.

We consider this limitation not practical as one of the most common attributes which
are shared with RPs today are email addresses. In addition, UnlimitID integrates with
OIDC, which does not specify the used authentication mechanisms. However, the au-
thentication may also allow to de-anonymize the user. This means that UnlimitID still
depends on the IdP’s honesty when it comes to the privacy of user attributes. Conse-
quently, the threat model of UnlimitID addresses a “curious but honest” IdP. The IdP in
the design is allowed complete access over all user attributes.

We conclude that while UnlimitID is an innovative approach and the idea of aMACs is
an effective method to prevent tracking of users. However, our motivation and challenges
are only partially addressed by this approach.

3.2. Decentralized directories and self-sovereign identity
management

In the following, we present related work in decentralized directory services and alterna-
tive data sharing systems relevant to our research. We argue that in order to decentralize
an identity sharing service, we must first design a decentralized directory which allows
users to manage identity data.

The concept of decentralized identity services emerged from the idea of self-sovereign
identity management as discussed in Section 2.2.3. Various approaches based on dis-
tributed ledgers and blockchains try to address this challenge.

3.2.1. NameID

A recent and prominent approach to decentralized identity management is NameID [79].
NameID is a blockchain-based identity system that allows users to register identities
and manage identity attributes. NameID is an interesting approach as it illustrates
the distinction between a decentralized directory service and the identity service. The
NameID identity service, which is an OIDC implementation, is used to facilitate data
sharing between users and RPs through a standardized protocol.

29

Chapter 3. State of the art

The service uses the Namecoin name system as a decentralized directory service
for its user population. In addition, the OIDC service provides relying parties with
identity information found in the blockchain. It also authenticates users through a
proof-of-possession authentication mechanism. The user provides proof that he is in
possession of a specific private key which is used to register names in the name system.

In NameID, end users register identities and store attributes in the Namecoin [94]
name system. The end user is in complete control over this information and responsible
for the management of attributes. This is done exclusively via blockchain transactions
which bind the user’s public key identity to the attributes. The proof-of-work consensus
model in use by the Namecoin blockchain makes it difficult and economically infeasible
for any third party to edit or delete the respective information. Through this mechanism,
registration of identities and management operations on attributes are completely
decentralized. Figure 3.1 illustrates the architecture of NameID.

Figure 3.1.: The NameID architecture.

Finally, identity attributes in NameID are self-asserted by the user. This means that
there is no third party authority issuing or certifying the users’ statements over himself.
While this does not exclude the possibility of a third party issued attribute to exist inside
NameID, it requires further considerations.

Differentiation The central OIDC service enforces the users’ access control decisions
within the specification. However, it is not possible for the service to effectively enforce
this selective authorization of specific RPs to access identity attributes: Identity attributes
stored in the name system are inherently public and replicated across all participants of
the Namecoin peer-to-peer network. All user identities and attributes are stored in plain
text and are effectively disclosed in a public directory. This renders the access control
decisions that a user makes in the process of an authorization pointless.

30

3.2. Decentralized directories and self-sovereign identity management

As illustrated in Figure 3.1, reading all the information stored in the directory is trivial
for the RP by skipping any interactions with users and the OIDC service. Furthermore,
as we discussed in the background chapter on centralized IdPs, all requests by RPs are
relayed over a single entity: The OIDC IdP service. The IdP constitutes a single point of
failure and is omniscient to all interactions between users and RPs.

To summarize, NameID has two significant drawbacks: First, the data stored in the
blockchain is public information. As such, storing sensitive personal information is not
viable. Second, while the directory service is decentralized, the identity service relies
on a centralized service instance which is needed to enforce access control decisions
made by users. In addition to those inherent drawbacks of the design, the use of the
Namecoin blockchain is expensive both financially and from a resource perspective.
Each transaction, such as the modification of an attribute, incurs costs at the expense
of the user. Transaction fees as well as power consumption and the resulting electricity
bills are significant factors.

In our contributions detailed in Chapter 4, we also propose a secure name system
as directory service. Unlike NameID, we use cryptographic means to protect the data
stored in the name system in order to facilitate decentralized access control. Further,
as we do not rely on a blockchain, we mitigate any resource-intensive and possibly
unsustainable consensus mechanisms.

3.2.2. DecentID

Like NameID, DecentID [47] is an approach to design a decentralized identity and
personal data sharing system through the use of a blockchain. The blockchain in this
case is Ethereum [40]. Instead of using the blockchain like a name system-based directory
service, the authors of DecentID implement procedures for the management of user
identities as smart contracts. Like NameID, DecentID does not directly address the
problem of third party attribute assertions.

Identities in DecentID are represented by a public-private key pair. The public key
must be registered in a global registry which is represented by a smart contract. This
mapping is strikingly similar to the identity namespaces of NameID and is not far off a
decentralized name system itself. The registry is the first of a number of indirections
which eventually form a link from identity to attributes.

Each identity is associated in the ledger with a root identity contract (RIC). Identity
information is shared by the user with RPs by creating shared identity contracts (SICs).
Identities and attributes are accessed through so-called identity locator files (ILFs) and
attribute locator files (ALFs). Both contain metadata and are encrypted using symmetric
keys and stored directly on the blockchain. The actual attribute data, such as an email
address, is stored off-chain in a distributed hash table (DHT). The confidentiality of
attribute data is ensured through traditional symmetric key encryption. Regarding
revocation, a rollover of the symmetric keys which is used to encrypt the attribute data
in combination with a voiding of the respective SIC of the revoked RP is sufficient. Deep
key hierarchies and indirections between the SIC and the actual attribute data ensure

31

Chapter 3. State of the art

that other RPs do not need updates to their respective SICs. Figure 3.2 illustrates the
architecture of DecentID.

Figure 3.2.: The DecentID architecture.

Differentiation In DecentID, analog to NameID, executing smart contracts which modify
the state of an identity incur costs for the user. According to the authors this is intentional
as it mitigates the problem of Sybil identities and squatting. The design is tied to the
underlying Ethereum technology and its smart contract specifications. Further, it relies
heavily on a multi-level symmetric key hierarchy in order to realize access control.

Instead of deep and complex key hierarchies, our approach uses attribute-based en-
cryption (ABE). This allows us to greatly reduce the number of required keys. DecentID
requires one key for every shared attribute with a single RP. Considering that keys are
stored on the blockchain, and that storage on Ethereum is not free, this is a significant
drawback. Finally, it is unclear if it is possible to use DecentID through standardized
protocols such as OIDC as its authors do not propose anything in this direction.

3.2.3. Sovrin

Sovrin [36, 46] is a decentralized, hyperledger-based [59] identity system. It is driven
by the idea of an open, accessible and decentralized system for users to manage their
digital identities. It implements the DID [105] specification and explicitly allows users to
establish pseudonymous identities. It integrates the use of privacy-preserving credentials
which are also used in the context of Idemix [22].

The hyperledger in Sovrin consists of a multi-tier trust model. There are highly trusted
nodes, called “validator nodes” which are in charge of ledger updates. This model allows
hyperledger-based architectures to avoid resource-intensive consensus protocols at the
expense of partial centralization. Users share claims and attributes off-ledger via proxy

32

3.2. Decentralized directories and self-sovereign identity management

applications, called edge applications. Consequently, the privacy issues which arise in
NameID are mitigated at first glance.

Figure 3.3 illustrates attribute sharing in Sovrin.

Figure 3.3.: The Sovrin architecture.

Differentiation Client applications in Sovrin include mobile applications on the users
phone and dedicated cloud services. While the authors of Sovrin claim that such services
are decentralized and peer-to-peer, the hoster of the cloud service is not meant to be
the user. Consequently, this design faces a dilemma we identified initially: Users may
manage and share their data via locally installed software and accept that their data is
not accessible to the RPs if they are offline. Or, users use external service providers in
the form of cloud infrastructure providers that run their proxy edge applications. In
the latter case, availability and privacy in the face of strong attackers are significantly
weakened.

Our approach tries to mitigate the dilemma that Sovrin faces with respect to decen-
tralized sharing of attribute data. We share the ethical motivation and initial, high-level
technical approach of Sovrin. However, our contribution shows that sharing of attribute
data including the disclosure of attribute contents is possible without the user being
online. Further, we show that trust can be established without the use of a distributed
ledger and potentially associated maintenance overhead.

Finally, by using a general-purpose name system as opposed to a dedicated blockchain
network only used for identity management, we are able to benefit from dissemination
synergies due to a wide variety of use cases.

33

Chapter 3. State of the art

3.2.4. uPort

uPort [137] is an Ethereum-based [40] identity system that also implements the Decen-
tralized ID specifications [105]. Ethereum is used to implement various smart contracts
that deal with identity and attribute management as well as attestation of attributes.
Disclosure and sharing of identity attributes is done interactively between users and
relying parties. In uPort, public identity profile data is stored in the Interplanetary File
System (IPFS) [69]. The user binds his public key to a hash link which points to the
public profile data in IPFS in the Ethereum blockchain. The blockchain guarantees that
this link can only be modified by the owner of the respective private key and IPFS data
is always referenced by a hash of the data. While this ensures integrity of the public
profile data, private data which the user wants to selectively disclose must be transferred
interactively between user and RP. According to an older version of the whitepaper [138],
it is envisioned to implement selective disclosure of attributes stored encrypted in IPFS.
However, we assume that the proposed scheme would inevitably lead to issues with
authorization management and access control as a single symmetric key is shared with
all authorized parties. The architecture of uPort is similar to that of Sovrin with the only
difference that identity data is not stored in the ledger, but in the IPFS DHT.

Differentiation uPort is a representative of the blockchain-based self-sovereign identity
systems. Its authors propose an approach which is similar to our contributions in that
it is focused on user managed identity data stored in a decentralized directory. In the
case of uPort, this decentralized directory is IPFS. At the same time, its design includes
third party identity providers which issue user credentials. uPort’s design exhibits a
few weaknesses: While it allows users to store public profile data in IPFS, they must
manage and present private identity attributes interactively to RPs. uPort also requires a
central service to share private identity attributes between user and RP which according
to older specifications [138] does not provide end-to-end encryption between user and
RP. Finally, users bear the bulk of Ethereum-induced transaction costs and must provide
resources for ledger upkeep and storage which is not negligible. In addition to the ledger
storage, users are also required to use IPFS which means they need to provide storage
for two different distributed peer-to-peer infrastructures, albeit IPFS exhibiting a smaller,
manageable footprint.

3.3. Distributed and decentralized trust establishment

In this section, we present state of the art research in trust establishment with a focus
on distributed and decentralized systems. The approaches presented below either ex-
plicitly or implicitly define public key infrastructures (PKIs) and corresponding trust
establishment algorithms and protocols.

In the following, we discuss related works into two areas: First, we present attribute-
based delegation (ABD), a research area which includes older, mature approaches to

34

3.3. Distributed and decentralized trust establishment

alternative PKIs. Second, we take a look at more recent approaches with a focus on
privacy-preserving key transparency protocols.

3.3.1. Attribute-based delegation

In the literature, the complexity and shortcomings of X.509 were identified and a flurry
of alternative approaches proposed [15, 16, 25]. This includes approaches which advocate
for the decentralized management of attributes using attribute-based delegation (ABD).
ABD is a technique to delegate authority over attributes from one entity to another in a
decentralized way. Prior research [14, 81] indicates that ABD is a suitable solution to
model complex, decentralized trust relationships. In the context of access control and
authorization, trust establishment through attribute delegation allows us to eliminate
the need for central trust anchors and it facilitates scalable, decentralized provisioning
of attributes.

The Simple Distributed Security Infrastructure (SDSI) [108] by Rivest et al. is one
example for an ABD system. It was designed in direct response to issues identified in
X.509. Unlike an X.509 PKI, which assumes globally unique identifiers, SDSI follows
the concept of locally scoped identifiers. Local identifiers can be linked to external
domains through delegation of local identifiers. This idea aims to reduce the complexities
introduced by X.509 as the need for cross certification and enforcement of globally unique
identifiers is mitigated.

SDSI attributes can be interpreted as access policies: In SDSI, authorization to access
a resource is obtained when a collection of user attributes is in compliance with a
requested resource security policy. A credential in SDSI consists of an authorization
certificate called auth cert. The authors define A.a → B to denote that a local entity A
issues the attribute a to a subject B. In turn, B itself is able to issue and further delegate
the attribute a. In addition to the attribute delegation itself, SDSI allows to control the
depth of delegation. For example, A is able to limit the number of times an attribute can
be sub-delegated. Delegations in SDSI take the following form:

A bob→B (3.1)

A f riends→A bob (3.2)

A f riends→A bob my f riends (3.3)

B dave→D (3.4)

B carol →C (3.5)

B my f riends→B dave (3.6)

B my f riends→B carol (3.7)

Given the above examples, we can see that unlike X.509 or Domain Name System
(DNS), there are no globally unique identifiers in SDSI such as DNs or FQDNs. Identifiers
must be interpreted from within the local domain they are defined in. In order to discover
the entity or entities identified by A f riends, the authors of SDSI define a chain discovery

35

Chapter 3. State of the art

algorithm [25]. The algorithm translates each delegation into a “rewriting” rule and in
turn treats chain discovery as a term-rewriting problem.

For example, the righthand term in 3.3 is first rewritten using the term in 3.1 into the
new term A f riends→ Bmy f riends. This new term is rewritten using the terms 3.6 and
3.7 into A f riends→ Bdave and A f riends→ Bcarol, respectively. Finally, combining the
terms 3.4 and 3.5 we get the terms A f riends → D and A f riends → C. In combination
with term 3.1, we now successfully resolved the delegation of attribute f riend to the
entities B, C and D. In general, term-rewriting is performed until no more rewriting
rules can be applied. If the attribute is treated as an authorization policy, it might be
sufficient if an attribute that satisfies a policy is found. For example, if we simply want
to know if an entity is friend of A.

However, SDSI relies on the availability of the attribute delegation information prior
to chain discovery. Resolution and distributed storage of attributes and credentials is
considered out of scope in SDSI by its authors. Where X.500 defines Directory Access
Protocol (DAP), no dedicated delivery mechanism for SDSI exists. However, SDSI certifi-
cates can be stored in a special DNS record type [72] which is the same record format
that also supports X.509 and OpenPGP.

An example for a system that uses SDSI as a model for its resolution mechanics is the
GNU Name System (GNS) [142]. The design of GNS is consistent with the concept of
linking local identifiers and is designed as an alternative to the hierarchical DNS similar
to how SDSI is an alternative to the hierarchical X.509.

An attribute delegation approach which is similar to SDSI is proposed by Li et al. [81].
The authors envision an authorization mechanism which is built on the concept of ABD
and supply a trust management language RT0. RT0 allows entities to express different
types of credentials as attributes. In order to model the attribute delegations, they
propose the use of a credential graph which can be traversed using a variety of strategies.
Similar to SDSI and its rewriting algorithm, finding a path in a credential graph from an
attribute to an entity is a way to establish trust in an entity with respect to the attribute.
RT0 implicitly supports SDSI style delegations, since the authors claim that SDSI auth
certs can be translated into RT0 with the exception that the arrows are reversed in the
notations.

At a glance, four types of attribute delegations are defined in RT0:

A.a←B (Type 1)

A.a←B.b (Type 2)

A.a←B.b.a (Type 3)

A.a←
n⋂

i=1

fi (Type 4)

The similarities between RT0 and SDSI become glaringly obvious by putting the
notations side by side and the semantic equivalence of both approaches are evident:
Type 1 delegations are interpreted as “A calls B a”. It directly associates the identifier a
with B within the local domain of A. Type 2 delegations are read as “all entities that

36

3.3. Distributed and decentralized trust establishment

B calls b are called a by A”. Type 3 delegations are used to express that “all entities
that are called a by all entities that B calls b, are also called a by A”. Finally, a type 4
delegation is interpreted as “A calls all entities a that satisfy each fi” with fi being any
right-hand expression of either Type 1, Type 2 or Type 3.

In order to resolve delegations chains, Li et al. propose a chain discovery algorithm
which defines how to build and traverse a credential graph [86]. The algorithm combines
a backward search from attributes to the entities with a forward search from entities to
the issued attributes into a bidirectional search. According to the authors, this approach
is necessary in order to ensure that credential chains can be found even if storage of
credentials is arbitrary. Arbitrary means here that it is possible to store delegations either
at the issuer or subject in distributed storage architectures. However, chain discovery
only succeeds as long as strict and complex constraints on the credential storage are
enforced. Li et al. formalized this set of constraints into a type system which allows users
to ensure what they call “well-typedness” of a RT0 delegation. Unfortunately, especially
in decentralized or even distributed scenarios, entities are unlikely to find a consensus
where to store delegations as delegation information is always local and notoriously
incomplete.

Differentiation The approaches taken by RT0 and SDSI are partial solutions to solve the
problem of making authorization decisions in distributed or decentralized scenarios.
In this work, we show that the existing research in the area of ABD can be used in
combination with a secure resolution mechanism based on name systems. In Chapter 5,
we present a practical ABD authorization system by addressing the issue of delegation
storage and resolution in a name system directory service. Further, we show how ABD
can be combined with ABCs and use it to support trust establishment into attributes
served through the self-sovereign identity system we propose in Chapter 4.

3.3.2. Privacy-preserving key transparency

A central problem in any PKI, is the establishment of trust in mappings between
identifiers and public keys. Existing PKIs address this problem in various different
ways: For example, Pretty Good Privacy (PGP) spans a “web of trust” consisting of
trust relationships established ad-hoc between users. Trust is then calculated through
transitive evaluation of relationships using trust metrics. The X.509 PKI for the Internet
on the other hand requires the use of trust anchors commonly found in trust stores of
operating systems or browsers. Unlike PGP, trust in X.509 is absolute and there is no
metric that supports the continuous gradation of trust. What both PGP and X.509 share
is that key material and mappings are public. This exposes trust relationships between
entities and is a possible privacy concern.

The authors of CONIKS [93] address this concern by providing a privacy-preserving
key verification service. The approach revolves around the idea of user-centric key
transparency. The authors propose a system that does not require a single, centralized
third-party to monitor and author mappings from names to keys, such as from an

37

Chapter 3. State of the art

email address to its associated public key. Rather, CONIKS allows users and services
to participate in a privacy-preserving protocol that allows them to audit providers of
such mappings for non-equivocation. The authors design a data structure which consists
of so-called private indices organized in a Merkle tree. Private indices are built using
verifiable random functions (VRFs) which allow to verify if a specific entry exists withing
the tree. The resulting objects are stored at IdPs and regularly queried by users. While
the system is not designed to mitigate malicious IdPs, it is able to expose those that
modify or withhold information.

The authors of ClaimChain [80] aim to mitigate the need for central IdPs while relying
on the same building blocks as CONIKS. While ClaimClaim also primarily addresses
the key verification use-case through the use of hash chains and cross-referencing, the
authors claim that it could be used for any generic claim type. In order to support key
propagation in fully decentralized settings, the authors propose that users exchange
locally managed, user-specific ClaimChains though gossiping protocols. In this regard,
the authors of ClaimChain follow the trust model of SDSI and Role-based Trust Manage-
ment (RT). Trust evaluation is initiated locally using locally established relationships as
trust anchors. This process continues until a statement regarding a specific key can be
made.

Differentiation CONIKS relies on centralized IdPs which manage and serve key map-
pings. While users are enabled to detect misbehavior of IdPs, COINKS does not prevent
attacks by or on these central services. This issue is partially addressed by ClaimChain,
which accommodates flexible, decentralized data structures for key bindings.

However, ClaimChain does not address chain propagation outside of ad-hoc gossiping
over out-of-band protocols. This is particularly problematic when it comes to offline
access of claims. For example, missing chains are not resolvable through any mechanism
if the authoritative user is offline and cannot be distinguished from expired chains. The
authors of ClaimChain state that in this case, claims could be stored at online services.
However, this would again introduce a centralized component and essentially degrade
back into CONIKS. In Chapter 5, we propose to addresses this issue by building a
transportation layer and respective protocols for offline access of trust relationships
through name systems.

3.4. Summary

In this chapter we discussed relevant related work and the state of the art with respect to
the context of this thesis. We identified shortcomings of existing approaches and research
areas which we address in the remainder of this thesis as part of our contributions.

With respect to the broader scope of our initial research questions we can make the
following observations:

• Self-sovereign identity systems are an effective mitigation of liability risks for IdPs
and RPs alike.

38

3.4. Summary

• Self-sovereign identity systems empower users to take and exercise control over
their personal data.

As part of our literature research, we also identified shortcomings of existing ap-
proaches to decentralized, self-sovereign identity systems: Providing the feature set
and convenience of existing systems and services proves challenging. In particular,
integration of effective, user-centered access control and offline availability of user data
is an open issue. Further, existing approaches struggle with trust establishment in self-
sovereign identity data while maintaining its decentralized, user-centered properties. In
the following two chapters, we present our contributions which address our research
questions while taking into account the shortcomings of the related work presented in
this chapter.

39

CHAPTER 4

Decentralizing self-sovereign personal data
sharing

In this chapter, we present re:claimID: Our approach to decentralized, self-sovereign
personal data sharing. We argue that users must be in charge of assembling attributes
and enforcing access control when selectively sharing them with relying parties. In
our design, attributes may be either self-attested or verified and asserted by trusted
third parties. Our goal is to enable users to reclaim authority and control over their
digital identities in the spirit of informational self-determination. In order to address
the issues of traditional identity management, we avoid relying on a centralized service
for attribute sharing. For re:claimID, we introduce a mechanism that enables users to
provision identity attributes in a way that facilitates non-interactive presentation as well
as selective disclosure in a decentralized fashion.

In the following sections, we define an adversary model and present our design of
re:claimID. We then discuss how the design of a decentralized self-sovereign identity
service is able to satisfy a set of security properties which allow it to withstand attacks
from our adversary. We propose the use of a name system as a distributed identity
directory service. The name system allows relying parties (RPs) to asynchronously access
attributes whenever needed even if the respective user is offline. re:claimID allows users
to retain control over their identities at all times through the use of a decentralized
directory service consisting of user-controlled namespaces. Users are enabled to selec-
tively authorize RPs to access attributes while their authorization decisions are enforced
through a cryptographic access control layer. We test the viability and practicality of our
design on the basis of a prototype implementation on top of the GNU Name System
(GNS) [142, 143]. As part of the implementation, we design an OpenID Connect 1.0
(OIDC) compatibility layer in order to facilitate standardized client implementations.
This enables RPs to integrate re:claimID using off the shelf libraries. Apart from our
final design, we also present derivative approaches that were conceived in the wake of
this research effort which culminated in re:claimID.

The major contribution of this chapter, re:claimID, is based on the publication “re-
claimID: Secure, Self-Sovereign Identities Using Name Systems and Attribute-Based

41

Chapter 4. Decentralizing self-sovereign personal data sharing

Encryption”, published 2018 in the 17th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications (TrustCom) [114]. Earlier foundational
work can be found in the position paper “Managing and Presenting User Attributes over
a Decentralized Secure Name System” published 2016 in the 11h International Workshop
on Data Privacy Management and Security Assurance (DPM) [123]. Finally, we published
accompanying research [57] which includes use case and usability studies in the context
of a proposal to an EU Horizon 2020 contest calling for seamless, privacy-preserving
personal authentication for users [26].

4.1. Adversary model and security goals

In the following, we define the capabilities of an attacker in our adversary model. We take
into account recent events and disclosures around mass surveillance and accompanying
efforts by nation states as well as commercial interests which are potentially harmful
to users’ privacy. In addition, we define the security goals of our system in the form of
desired security properties.

4.1.1. Adversary model

Contemporary attacker models must address the issue of nation-wide manipulation and
surveillance of directory services such as the Domain Name System (DNS) [103, 41].
At the same time, data leaks and the surveillance of global service providers including
social networking services and Identity Provider (IdP)s are a matter of fact today [30, 49,
66].

Hence, our adversary model must include attackers with the ability to collect any data
in transit between all participants. This includes man-on-the-side as well as man-in-the-
middle attacks, but also coercion of service providers into submission of data within the
legal domain of the attacker [91]. We further assume the attacker is able to manipulate a
limited but large number of nodes in the network. However, we assume that the attacker
is not able to break cryptographic primitives that are considered secure by the research
community today.

4.1.2. Security goals

In this section, we discuss security goals we aim to achieve in the context of user attribute
provisioning and sharing while withstanding an adversary as defined above.

Availability: As we assume that a single entity can be coerced or forced to cooperate
by powerful attackers such as rouge nation states, the first measure to ensure availability
in the face of our adversary model is to not rely on a centralized service. This approach
provides higher availability guarantees especially when confronted with powerful at-
tacks as employed by some nation states such as the QUANTUM family of hacking
operations [68].

42

4.1. Adversary model and security goals

In order to address this issue, we propose the use of a decentralized service for
provisioning of user attributes. This service must include functionality which enforces
authorization decisions made by the users. As the basis for a decentralized directory
service, we propose the use of a name system. The user stores attributes in a name
system acting as the main authority over the data. User attributes are stored in a
distributed fashion and can be queried even if the user is not online. It should be noted
that in particular peer-to-peer-based decentralized services suffer from some limitations
in terms of availability: High node churn – e.g. if peer fluctuation is high – can be
detrimental to data availability. This is a problem in our use case, as attributes should
stay accessible to authorized RPs. To address this problem, a reliable name system
with contingency mechanisms such as caching and data replication is required. It is
thus important to take into account the security properties of available name systems
as discussed in Section 2.1.2 for our prototype implementation of re:claimID. Further,
aiming for security properties such as authenticity through the use of cryptography in
distributed systems can often have a detrimental effect on availability. Herzberg et al.
have shown how this is particularly true for DNS and its security extensions [62].

Authenticity: Regarding identity data authenticity, we must distinguish between data
origin authenticity and third party data assertions. In self-sovereign identity systems,
the data origin is always the user. The actual data may be additionally asserted by a third
party. This assertion may be provided out-of-band or implicitly, for example through the
use of cryptographic signatures.

To ensure data origin authenticity, the user manages identity attributes in his names-
pace. The records holding the attributes must be cryptographically signed using a private
key of the user associated with the namespace. When resolving an attribute record, a
RP is able to verify the record signature and with it that this value was stored by the
namespace owner.

In some cases, the RP additionally requires that attributes are asserted by a trusted1

third party. In re:claimID, we do not define the form factor of third party asserted
attribute values. By default, attributes are self-asserted by the user, but the design is
flexible enough to accommodate other formats. In general, the use of attribute-based
credentials (ABCs) is possible – for example in the form of X.509 certificates as attribute
values. Self-issued credentials, such as those defined by OpenID Connect in the sections
on self-issued ID tokens [112] are also feasible. We dedicate Chapter 5 to the challenge of
trust establishment and discuss possible privacy-preserving trust models and credential
systems which complement re:claimID in more detail.

Privacy and Confidentiality: In our adversary model, an attacker is able to coerce
centralized identity service providers into submission of all identity data. In order
to address this fact, our approach must ensure confidentiality of attributes through
the use of end-to-end encryption of user attributes. We propose the use of attribute-
based encryption (ABE) as a flexible, reasonably efficient mechanism to implement this
requirement in re:claimID. The user encrypts attributes before they are stored in the

1trusted by the relying party

43

Chapter 4. Decentralizing self-sovereign personal data sharing

name system and only authorized RPs are given the means to decrypt and read the data.
For this, we design a cryptographic access control layer that enables users to authorize
RPs to access subsets of attributes.

Through the encryption layer, we achieve two goals for re:claimID: First, it ensures
confidentiality of user attributes in the otherwise public namespace of a name system.
Second, it allows users to enforce access control decisions without having to rely on a
trusted service provider. This is realized by having users issue individual decryption
keys to each authorized RP. The use of ABE allows users to create keys where it is
ensured that only the decryption of specific attribute sets is possible. We note that
conventionally, ABE systems require a trusted third party key issuer that is in charge
of issuing and managing decryption keys. However, such a setup would violate our
decentralized design and make it susceptible to our adversary model. Instead, we
propose a user-centered derivation: In re:claimID, every user acts as his own key issuer.
This enables the user to exercise complete and exclusive control over all decryption keys
and authorization decisions. We specifically note here that we consider compromised end-
user devices out of scope. Research in the area of endpoint security can greatly increase
resilience to attacks on devices. However, we consider a successful compromising attack
on a single end-user device to be less impactful than the compromise of a central identity
service. The former only exposes a single user while the latter potentially compromises
the identities and personal data of millions of users.

In terms of privacy, coercion of a centralized IdP into straight up aiding and abetting
in surveillance efforts is also an issue as it results in the attacker to have knowledge
over all interactions between users and RPs. This allows the attacker to learn which
services users are accessing over time. Hence, it is reasonable to ensure that access to user
attributes by authorized parties cannot be trivially monitored by an attacker. We note that
the cryptographic access control layer does not directly mitigate the issue of active and
passive surveillance. However, the issue can be tackled through a security property that
is found in selected name systems called “query and response privacy”. Name systems
such as Namecoin and GNS offer such protections as discussed in Section 2.1.2. We take
a closer look into this aspect as part of our prototype implementation in Section 4.4.1
later in this chapter.

Related to the aspect of attribute value attestations as discussed above is the fact
that users might not be willing to disclose attribute values to RPs. This is a common
use case for privacy-preserving credentials. We discuss possible approaches to present
zero-knowledge credentials non-interactively as part of re:claimID in Chapter 5.

4.2. Towards a decentralized, self-sovereign identity service

We argue that truly self-sovereign identity management cannot be achieved through
centralized IdPs. In order to address our research questions, we design a decentralized,
self-sovereign identity management system which mitigates the identified shortcomings

44

4.2. Towards a decentralized, self-sovereign identity service

of related work as presented in Chapter 3. We divide our approach into two components
we identified in the beginning of this thesis:

First, we present the design of a decentralized directory service. Our approach is to
build this service on top of a decentralized peer-to-peer infrastructure in the form of a
secure name system. Second, we design an attribute sharing mechanism which allows
users to enforce access control on data stored in the directory service. To achieve this,
we propose the use of an cryptographic access control layer.

In the following, we outline the high-level design of the above components which will
serve as the basis for our main contribution: re:claimID.

4.2.1. Identity directory service

Secure name systems allow users to manage their identities and attributes without the
need of a central service. Accordingly, RPs query the name system to retrieve user data.
This approach does not require a trusted third party IdP. In the following, we discuss
how name systems can be used as identity directories and how access control can be
facilitated through cryptographic means.

Name systems as decentralized attribute storage

The integration of identity management with recent secure name systems has several
advantages: As elaborated in Section 2.1, name systems fundamentally are directory
services that are commonly used in the context of address resolution. However, it is in
the nature of directory services that we can use the basic feature set of name systems in
order to build an open identity directory. Depending on the characteristics of the name
system, the resulting service is distributed or even decentralized.

In the following, we discuss a number of constraints and inherent properties of
name systems when used as identity directories. Specifically, we observe the following
equivalences and differences between name systems and traditional identity directories:

Namespaces: Name systems with security properties such as data origin authenticity
allow for a close coupling between namespaces and cryptographic keys. This coupling
allows us to make a connection from a unique cryptographic digital identity in the form
of a public key to the namespace owner. Examples of name systems with respective
properties include Namecoin, GNS as well as DNS Security Extensions (DNSSEC).

Attribute records: Namespaces contain mappings to sets of resource records with well-
defined values associated with them. The semantics of a value are defined through a
record type. In order to use a name system as an identity directory, thus we need to define
record types which allow us to distinguish between identity attribute data and other
records in the directory. As name systems accommodate for future uses and additional
record types, the interpretation of record data itself is left to applications. For example,
an identity record may contain structured data, such as X.509 certificates or simply plain
text. Since we equate namespaces with identities this allows us to define attribute records
with dedicated record types that hold identity information. Within a namespace, all

45

Chapter 4. Decentralizing self-sovereign personal data sharing

attribute records are self-issued attributes of a user: While the values of such attribute
records may also be asserted by a third party, the mapping itself is first and foremost
asserted only by the namespace owner. This conforms with the idea of self-sovereign
identity systems. We consider attribute records as the equivalent to attribute names and
values in other identity systems, regardless of how they are stored and organized.

Open name and identity registration: A core property which influences whether the
service is open to all users is name registration. In order to enable users to manage their
identities in a self-sovereign fashion, name registration must be open to anyone and
ideally possible through technical means only. Ideally, registration in the traditional
sense is not required at all. This disqualifies DNS-style registration mechanisms which
are commonly out-of-band, not to mention often bureaucratic and costly. Especially the
last factor is particularly damning in the case of most Distributed Ledger Technology
(DLT)-based name systems including Namecoin. While users may be willing to cover
financial costs in exchange for privacy and security guarantees, acceptance of such
systems is difficult to evaluate.

Name system security properties

In the following, we discuss how our adversary model influences the choice of name
system according to the respective security properties it can exhibit. We presented
relevant related work in this regard which formalizes security properties of name
systems in Section 2.1.2. Most of the security goals presented in the respective surveys of
the background chapter are relevant in the scope of re:claimID as well. In the following,
we discuss how those properties impact re:claimID.

Protection against Man-in-the-Middle: Protection against Man-in-the-Middle attacks
is commonly achieved through the use of data origin authentication in name systems.
For a self-sovereign, decentralized identity directory service, data origin authentication
is essential as it provides a RP with the assertions that a specific identity attribute is
indeed provided by the user. Integrity of records in a name system is commonly ensured
through the use of digital signatures over the resource records. If the name system
does not provide data origin authentication, the directory service must allow users to
establish secure bindings from identities to attribute records in other ways. If a name
system based directory service implements attribute types which provide data origin
authentication, such a system implicitly retrofits data origin authenticity to the name
system.

Protection against zone walks: In order to achieve this property, the name system
must ensure that an attacker is not able to enumerate all records in a namespace. In
our context, this includes identity attributes. However, identity attribute names such as
“email” are inherently easy to guess as they carry semantic meaning. This implies that
they can be easily enumerated and their existence verified through a simple query. As
such, protection against zone walks is only relevant if we are able to obfuscate attribute
names in some way. Zone confidentiality could be used in order to implement access
control through the use of shared secret names. However, for the design of re:claimID

46

4.2. Towards a decentralized, self-sovereign identity service

we opted to create a cryptographic access control layer which is independent of the
underlying name system in order to make the design name system agnostic.

Protection against client observation: An important security goal for re:claimID is the
protection against client observation through either a passive attacker in the network or
the network operator itself in order to protect the users’ privacy. Query origin anonymity
in combination with query and response privacy can be employed to achieve this goal.
Without this property, it is possible for an attacker to collect metadata that exposes
which user interacts with a given RP. This metadata then allows the attacker to build
usage profiles or follow up using advanced social engineering attacks. Monitoring of
social movements as well as identity attributes is unwanted, as it exposes organizational
structures and trust relationships.

Protection against censorship and denial of service: An insufficiently resilient name
system is, like any service, subject to denial of service attacks. This includes legal attacks
on the structure of the namespace. Consequently, properties such as censorship resistance
and resilience against denial of service attacks are crucial for name systems. In [58], the
authors argue that it in this regard it is important to consider not only the technological
but also the organizational structure of the name system. Hierarchical name systems
are particularly prone to legal attacks which aim to censor certain information in
the namespace. Even DLT-based decentralized systems are potentially prone to such
attacks [89, 51]. Unavailable user data can result in the disruption of data processing at
RPs.

Confidentiality of records: Finally, as name systems are designed to provide name-
record mappings, information which is published unencrypted in the name system is
often considered to be considered public. It is not obvious why this should be the case,
as name systems such as DNS at least try to offer so-called “zone confidentiality”, a
property that protects the namespace owner from attackers that attempt to enumerate
all names and records. Given this property, records may be kept secret to anyone who
does not know of the existence of the name a priori. Unfortunately, in the case of identity
attributes the name to query is usually easy to guess. This becomes evident in the case of
an email address, where the record name would likely simply be “email”. Consequently,
it is our task to protect the confidentiality of attribute record contents through other
means independent of the name system.

On the basis of our discussions in the background chapter, we conclude that name
systems such as GNS and Namecoin are potential candidates which fit into our adversary
model and exhibit the security properties above with respective caveats. Hence, when it
comes to our design of re:claimID, we concur with the analysis by the authors of [58]
that peer-to-peer-based approaches, such as Namecoin or GNS, should be preferred over
semi-centralized, distributed systems such as DNS.

At the same time, both are rather disruptive approaches which do not have the
same level of maturity and pervasiveness as DNS. While we are aware that this can
negatively impact usability and acceptance of a design such as re:claimID, adequate
security guarantees are of paramount importance in this use case. Further, we have

47

Chapter 4. Decentralizing self-sovereign personal data sharing

shown in user studies [57] that usability wise there is no difference between the use of
DNS and GNS.

In our reference implementation of re:claimID, we have settled on the use of GNS and
dive deeper into its design in Section 4.4.1.

4.2.2. Cryptographic access control for attributes

A remaining challenge that we still need to address after we settle on a name system in
order to realize a directory service is how to facilitate access control on user attributes.
The problem we must solve in this context is closely related to the problem of broadcast
encryption [45], which is commonly associated with digital restrictions management [130]
use cases. In a nutshell, we must provide a way for the user to enforce access control
decisions on his data which is published in an open, shared directory: the name system.
Since we cannot prevent access to the directory itself, we require a mechanism that
ensures only qualified, authorized entities are able to read the stored attribute data.

Naively, we may approach this problem through the use of public key cryptography.
For each authorized RP, a user could encrypt the data – in our case user attributes –
with the respective public key. This would mean that if a user decides to share a subset
of attributes with multiple requesting parties, specific ciphertexts for each requesting
party must be published in the directory. More sophisticated approaches in the context
of broadcast encryption include the use of specialized cryptographic approaches such
as those proposed by Kogan et al. [78].

Our approach leverages advancements in the area of pairing-based cryptography
(PBC) [77] which allow the creation of efficient ABE schemes in order to address the
broadcast encryption problem in re:claimID. We consider ABE to be a particularly good
match in our case as it allows us to use attributes for key and access policy creation.

Regarding ABE schemes, there are two distinct variations: Ciphertext-policy ABE
(CP-ABE) and key-policy ABE (KP-ABE). In CP-ABE, a set of attributes is provided
to derive a decryption key. In our case, this could be a set of user attribute keys such
as “email”. In order to encrypt a plaintext, we provide an encryption policy that limits
decryption capability to those decryption keys that are derived from a matching attribute
key set. In KP-ABE it is the other way around. Attributes keys are used to encrypt the
plaintext and the policy is provided to derive an decryption key.

In re:claimID, ABE allows the user to publish encrypted identity attributes in the
directory and thus prevent unauthorized access. In order to authorize an RP, the user
derives an ABE decryption key and transfers it out-of-band to the RP. The RP can use
this key to decrypt a subset of attributes that reside in the directory. At the time of
authorization no additional data such as a ciphertext encrypted specifically for the RP
needs to be be published by the user.

As mentioned above, ABE is commonly realized through the use of PBC such as the
schemes proposed by Bethencourt et al. [12] as well as Agrawal et al. [4]. Unfortunately,
PBC is notoriously expensive in terms of computing power even when compared to
traditional public key cryptography. However, for name systems, we expect the delay

48

4.3. The re:claimID system

introduced by network latency to dwarf the effect heavy cryptographic operations have
on the system overall. We have confirmed this assumption through our experimental
evaluations in Section 4.4.4. The only decision left with respect to ABE that we must
make in the context of re:claimID is between KP-ABE and CP-ABE. Borgh et al. [17,
18] argue that the use of CP-ABE is more intuitive when encrypting a plaintext. The
reason for this is that traditionally encryption keys are issued by a third party: the key
authority. In the case of KP-ABE, this means that the encryption policy is set not by
the encrypting entity, in our case the user, but by the key authority. For the user, it is
then not obvious or transparent who has access to the plaintext. While semantically
equivalent, the usage experience of the two schemes varies significantly when used with
a third party key authority. In our design, which we present in the following sections,
the encrypting entity and the key authority are reduced to a single entity: the user. The
encryption policy is thus always transparent to the encrypting entity.

Consequently, the chosen ABE scheme can actually be considered independent from
our high-level design. We expect that a change in ABE scheme or type that the system
properties do not change and that essentially, it can be considered merely an implemen-
tation detail.

4.3. The re:claimID system

In this section, we present our core contribution of this chapter: The re:claimID system.
We show how it is possible to combine a name system and ABE scheme to create a
decentralized, self-sovereign identity service. Notably, we provide an answer to the
question regarding self-sovereign access control on attributes stored in such a system.
This includes enabling users to grant and revoke access authorizations of other parties
to access their attributes.

Our design provides all typically required functions such as creation, retrieval, updates,
and revocation of user identities and attributes in a decentralized fashion. As illustrated
in Figure 4.1, re:claimID does not rely on any centralized component for attribute sharing
and access control enforcement. The concept of re:claimID can be implemented on top of
any name system, inheriting its security properties. re:claimID features an authorization
layer using ABE on top of the name system to ensure confidentiality and to facilitate
policy-based access control to user attributes.

The design of re:claimID aims to satisfy the following requirements:

• The user must be able to manage one or more identities including attributes. This
must be possible through the use of an open system which prevents third parties
to restrict its usage.

• The user must be able to selectively authorize RPs to access those identities. This
includes fine-grained access to subsets of identity attributes.

49

Chapter 4. Decentralizing self-sovereign personal data sharing

Figure 4.1.: The re:claimID system architecture.

• A RP must be able to request access to identity attributes of an end user. The
attributes must be retrievable without a direct communication channel between
the user and the RP.

In the following, we first define the basic building blocks of our design. Then, we
provide an overview over the design and architecture of re:claimID and a discussion of
high-level protocols and procedures.

4.3.1. Definitions and foundations

In this section, we formalize the two major building blocks of our design: Name systems
and ABE schemes. We give a definition of the relevant procedures and primitives
required for each and present a formal, high-level definition of name systems and
relevant cryptographic schemes.

Cryptography

As discussed above, there are two major categories of ABE: Ciphertext-policy ABE
(CP-ABE) and key-policy ABE (KP-ABE). In the context of our design both variants are
equally suitable. For the sake of brevity and to provide consistency with our reference
implementation, we assume in the following the use of CP-ABE. Further, we provide
drop-in replacement definitions that would come into play for a KP-ABE-based approach
to re:claimID in Appendix B.2.

50

4.3. The re:claimID system

Below, we define the high-level functions and objects for a CP-ABE scheme:

setupABE()→ (msk, pk)

keygenABE(msk,A)→ sk

encABE(pk,M,P)→ CP
decABE(sk, C)→M

(4.1)

In any ABE scheme, the key and attribute authority initially creates a master secret
key msk and a public key pk. This creation is commonly referred to in the literature as
“setup”. Hence, we define the procedure setupABE which yields both msk and pk.

The public key pk is used in conjunction with a policy P to encrypt a plaintext
message M into a ciphertext CCP using the encryption function encABE. In CP-ABE,
P is commonly a boolean expression that specifies what combination of attributes are
required to decrypt CCP using the decryption function decABE. Hence, P is a policy that
is bound to the ciphertext CCP . The decryption key sk is derived from the msk and a set
of attributes A using the keygenABE procedure. In most schemes decryption keys are
referred to as “user keys”.

In addition to the ABE scheme above, we define a simple public key scheme: Let the
private key d and the public key e be a key pair of an asymmetric cryptographic scheme.
The respective encryption and decryption functions are enc and dec, respectively:

keygen()→ (d, e)

enc(e,M)→ C
dec(d, C)→M

(4.2)

Using the above two schemes and key definitions, we define a user identity key set I
as:

I := (mskI , pkI , eI , dI) (4.3)

In the following, we use the identity key set as part of user identities in the relevant
procedures.

Name system

We already established that name systems consist of namespaces that are owned and
controlled by users or legal entities. Further, name systems provide users with a storage
and retrieval mechanism for self-issued attributes. We define a name system to consist
of the following procedures:

create(I)→ NI
seek(eI)→ NI

resolve(NI , name)→ R
publish(NI , name,R)→ N ′I
depublish(NI , name)→ N ′I

(4.4)

51

Chapter 4. Decentralizing self-sovereign personal data sharing

In our design, name systems must establish a mapping between the user identity key
tuple I and the namespace NI . Commonly, this is realized through the use of digital
signatures using public-key cryptography. We define create to be a procedure that
creates a namespace NI in the name system and cryptographically binds it to a user
identity key tuple I . NI represents the state of the namespace and is initially empty. It is
populated with resource records using the publish procedure. This binding ensures that
any resource record R in NI is signed using the private key dI . We define a resource
record R as:

R := (type, payload, ttl) (4.5)

The type of a resource record determines the semantics of the payload. It helps the
resolving entity to interpret the contents of the resource record. For example, a common
type in DNS is “A”, indicating that the payload contains an IP address. The ttl specifies
the duration of validity. This is used by resolvers and caches in the name system to
verify the freshness of the resource record.

The seek procedure maps an identity public key eI to the respective created names-
pace if it exists. We define the procedure publish to add R to the namespace NI . This
allows users and RPs to resolve the record under the specified name using the resolve
procedure. We assume that the resolver verifies the signatures provided with R using
the respective public key eI which is associated with the namespace NI . Finally, in order
to support deletion of a published record R, we define the procedure depublish.

We note that resolution requires both name as well as NI . Name system resolvers
usually query for names inside namespaces. Internal delegation mechanisms in the
name system may trigger the resolver to successively resolve in a number of namespaces:
For example, in DNS a “fully qualified domain name” (FQDN) is resolved by iteratively
trying to find the authoritative namespace for a specific name. This is commonly hidden
from the user but relevant in our design and hence we include it in our definitions.

4.3.2. Overview

In this section, we first identify and formalize the relevant high-level procedures and
objects required in our self-sovereign identity system re:claimID. We define our identity
system to consist of the following procedures:

register()→ U
deregister(U)→ ⊥

add(U , a)→ U ′

update(U , a)→ U ′

remove(U , a)→ U ′

authorize(U , eRP ,AT)→ (U ′, TRP)
revoke(U , T)→ U ′

retrieve(RP , TRP)→ AT

(4.6)

52

4.3. The re:claimID system

The user initially bootstraps the namespace and identity key tuple using the regis-
tration procedure register. Further, we define the procedure deregister which allows
users to delete their identity from the service. From now on, we refer to a re:claimID user
identity as U = (IU ,NU) ← register() and a re:claimID RP as RP = (IRP ,NRP) ←
register().

The add procedure allows a user to store an attribute a for the respective user identity
U in the directory. Correspondingly, the delete procedure removes the attribute from
the directory. We define an identity attribute a as follows:

a := (key, value, version) (4.7)

The key is the attribute identifier. An example for an identity attribute key is “email”.
The attribute further contains a value. A semantically fitting value for the above key
could be “john@doe.com”. The value can contain other, more complex data structures
as well. Besides plain text, attribute-based credentials issued by third parties is another
conceivable option. We discuss possible form factors of privacy-preserving credentials in
Chapter 5. Finally, the attribute also contains a monotonic number version. The version
is crucial for access revocation through re-encryption which we discuss as part of the
respective procedure in the following.

In order to authorize an RP to access a set of attributes A, we define the authorize
procedure. After authorization, the user can revoke access using the revoke procedure.

The result of an authorization procedure is a ticket TRP as well as a modified user
identity U ′ = (IU ,N ′U). A ticket is the proof and reference of a user authorization.
We assume that through an out-of-band protocol, the user transfers the ticket to the
respective authorized RPs. The RP in turn uses the ticket TRP to retrieve the shared
attributes using the “retrieve” procedure. We define a ticket as:

TRP := (eU , eRP ,AT , nT) (4.8)

TRP contains the public key eU of the authorizing identity U as well as eRP . It also
includes the set of attributes AT that U authorized RP to access. In an initial exchange,
the ticket may either contain a full set of attributes including attribute values or only the
attribute keys. However, in order to avoid needlessly introducing complexity, we will
work with the same definition of the set of attributes AT in the ticket as we do with the
set that is used in the authorization procedure. Finally, the ticket nonce nT is found in
TRP . We use nT as a name to store the user key skRP in the namespaceNU . As elaborated
above, we expect the user to transfer TRP in an out-of-band authorization process to
the RP. Within such a process, the user is expected to prove ownership of the private
key corresponding to U . For example, through the use of public-key authentication. We
propose such a mechanism on top of OIDC as part of our implementation in Section 4.4.2.

4.3.3. Registration

The following procedure defines how users and RPs register at the identity service:

53

Chapter 4. Decentralizing self-sovereign personal data sharing

Procedure register
output : User identity U

1 (dI , eI) ← keygen();
2 (mskI , pkI) ← setupABE();
3 IU ← (mskI , pkI , dI , eI);
4 NU ← create(I);
5 return U = (IU ,NU);

In lines 1-2, we set up the ABE scheme and instantiate the identity key tuple. In line
3, the keys are assembled into IU . In line 4, we create a namespace NU for the identity.
Finally, the re:claimID identity U is returned.

4.3.4. Adding and updating attributes

Figure 4.2.: A user adds an identity in re:claimID.

The user adds an attribute to an identity U by creating a mapping between the
attribute key and the attribute value through a resource record R. The user encrypts R
using ABE with a policy P and stores it in the name system. Figure 4.2 illustrates this
process. Respectively, we define the procedure “add/update”.

In line 1, we derive the ABE access policy P for an attribute a = (key, value, version)
from the attribute key and version. This derivation allows us to efficiently revoke ABE
keys by incrementing the version of attributes later. The derivation function could be a
simple concatenation of the two values or even an XOR operation. In our implementation,
we opted for a string concatenation. The semantics of P are that in order to decrypt
CP , a key associated with an attribute representing the attribute key in the respective
version is required.

54

4.3. The re:claimID system

Procedure add/update
input : User attribute a = (key, value, version)

User identity U = (IU ,NU)
output : Updated user identity U ′

1 P ← key⊕ version;
2 (mskU , pkU , eU , dU) ← IU ;
3 CP ← encABE(pkU ,M = value, P);
4 R ← (type =′ ID_ATTR′, CP , ttl = 1h);
5 N ′U ← publish(NU , key, R);
6 U ′ ← (IU ,N ′U);
7 return U ′;

In line 2-3, we encrypt the attribute value with the policy P and the ABE public key
pkU of our re:claimID identity U . The ciphertext CP is then published as a resource
record, modifying the namespace NU with a mapping to the attribute key. The updated
user identity U ′ is returned.

We define the type of R as “ID_ATTR”. The wire format of this resource record can
be found in Appendix B.1 Figure B.1. The record type allows the resolver to distinguish
identity attribute records from other, unrelated records such as IP addresses. In our
design, all attribute resource records must have this type set. Table 4.1 illustrates the
namespace of a user after the addition of attributes.

Name Type Value

email ID_ATTR encABE(pk, “alice@example.com”, “email:0”)
full_name ID_ATTR encABE(pk, “Alice Doe”, “full_name:0”)

dob ID_ATTR encABE(pk, “1.3.1987”, “dob:1”)

Table 4.1.: An example namespace for a user in re:claimID.

We also note here that records in name systems expire through the use of the ttl. In
the above procedure, we explicitly set the ttl to one hour. However, an implementation
of re:claimID must specify an appropriate expiration time. Whether or not a ttl is
appropriate heavily depends on choice of name system. For example, the ttl must be
chosen in a way that allows to efficiently make use of the respective caching mechanism
in the name system.

In order to update an attribute, the user simply adds the updated attribute. Hence,
the update procedure is very similar to the add procedure. The attribute keys and
versions used to encrypt the attribute record remain unchanged. This allows previously
authorized RPs to be able to decrypt the updated record data with their existing keys.
The update only takes effect after the attribute record expires and only then will the
updated value be available to authorized parties. We specifically note here that a call of

55

Chapter 4. Decentralizing self-sovereign personal data sharing

delete before add in the case of an update is problematic: As we will establish in the
following sections, the method we use for access revocation impacts the procedures for
deletion as well. Deletion potentially triggers unnecessary re-authorizations of RPs. This
entails re-encryption of attributes and re-issuance of ABE secret keys which is something
we aim to avoid.

4.3.5. Authorizing access

Figure 4.3.: A user authorizes an RP in re:claimID.

For a RP to be able to access user attributes, the user must first grant this access.
In the following, we discuss the authorize procedure. In our design, granting access
involves the user to derive an ABE key sk. This key allows a RP to resolve any attribute
a ∈ A through the name system from the user namespace NU and decrypt its contents.
Cryptographically, the key sk is associated with all attribute keys in A with the respective
versions.

We expect the user to provide sk to the RP via the name system. The user publishes sk
under a shared secret name. The shared secret name is a random nonce n which the user
generates. The resource record Rsk that is published in the end user identity namespace
contains sk encrypted with the public key eRP of the RP. For this reason, nT is included
in the authorization ticket T . This additional indirection allows the end user to update
sk whenever necessary such as in case of key rotations. Figure 4.3 illustrates how a user
generates sk and stores it in the name system. We define the “authorize” procedure
accordingly.

First, the user derives the ABE key skRP from his master secret key mskU . The key is
derived to the attribute keys in AT which the RP shall be granted access to. Further, we
encrypt the key using the RP public key eRP , resulting in the ciphertext C. As discussed
above, a random nonce nT is generated under which the ciphertext C is published in

56

4.3. The re:claimID system

Procedure authorize
input : User identity U = (IU ,NU)

Requesting party public key eRP
Set of attributes to share AT

output : A ticket TRP and an updated identity U ′

1 (mskU , pkU , eU , dU) ← IU ;
2 skRP ← keygen(mskU , AT);
3 C ← enc(eRP , skRP);
4 nT ←R R;
5 R ← (type =′ ABE_KEY′, C, ttl =′ 1h′);
6 N ′U ← publish(NU , nT , R);
7 TRP ← (eU , eRP ,AT , nT);
8 U ′ ← (IU ,N ′U);
9 return (U ′, TRP);

the user namespace NU . The set of published key records allow the user to keep track of
and modify authorizations. The user public key eU , the RP public key eRP , the nonce
nT and the attributes AT are assembled into a ticket TRP . We note here that having the
attribute set AT seems unnecessary because the RP is supposed to be able to retrieve
AT from the name system. There is a simple reason why we include AT in the ticket:
As the out-of-band transfer of TRP to the RP presumably occurs during an authorization
request, it is reasonable to assume that the RP is in acute need of the attributes. In future
occasions where the RP requires fresh attributes, it must retrieve them from the name
system as it is likely that the interactive session with the user has ended by then.

For the same reasons as discussed above with attribute records, we specify a unique
record type for ABE keys: “ABE_KEY”. The wire format can be found in Appendix B.1
Figure B.3. Table 4.2 illustrates the namespace of a user after an authorization.

Name Type Value

email ID_ATTR encABE(pk, “alice@example.com”, “email:0”)
dob ID_ATTR encABE(pk, “1.3.1987”, “dob:1”)

n ABE_KEY enc(eRP , skemail,dob)

Table 4.2.: An example namespace containing authorization tickets of a user in
re:claimID.

4.3.6. Retrieval

Once authorized, a RP can retrieve a set of attributes by performing lookups in the name
system. However, before resolving attributes the RP must use the nonce nT from the
authorization ticket TRP to retrieve its ABE key skRP . Only then is it possible for the RP

57

Chapter 4. Decentralizing self-sovereign personal data sharing

to decrypt attribute records. The RP can only decrypt attribute records of attributes that
are also contained in TRP . Figure 4.4 illustrates this process. Accordingly, we define the
procedure “retrieve”.

Procedure retrieve
input : Requesting party RP = (IRP ,NRP)

Ticket TRP = (eU , eRP ,AT , nT)
output : Attributes A′T

1 NU ← seek(eU);
2 (type, esk, ttl) ← resolve(NU , nT);
3 (mskRP , pkRP , eRP , dRP) ← IRP ;
4 skRP ← dec(dRP , esk);
5 A′T ← ∅;
6 for all (key, value, version) ∈ AT do
7 (type, evalue, ttl) ← resolve(NU , key);
8 A′T ← A′T ∪ (key, decABE(skRP , evalue), version);
9 end

10 return A′T ;

We note that the for-loop found in this procedure which is used to resolve attribute
records can be executed in parallel. As this includes the network heavy resolve call,
parallelization of this loop can be advantageous depending on the underlying name
system resolution mechanism.

Figure 4.4.: Left: A RP retrieves an ABE key from re:claimID.
Right: A RP retrieves and decrypts attributes from re:claimID.

4.3.7. Revoking access

In re:claimID, revocation of access rights to a set of attributes A is realized by updating
the ABE encryption policy P on the attribute values.

We define revocation as the process to revoke access of a specific RP to a set of user
attributes A in re:claimID. Unfortunately, revocation schemes for ABE such as [98, 95]

58

4.3. The re:claimID system

are often quite complex and inefficient and mitigations such as [83] effectively just
modulate the space-time tradeoffs. This issue is amplified in our case as we also have to
take into account the resulting key redistribution via the name system.

Hence, we want to minimize use of computationally heavy cryptographic revocation
mechanisms as well as unnecessary re-keying. In this context, we point out two charac-
teristics in our design: For one, any re-keying and re-encryption of data is essentially
happening locally on a users machine. Also, revocation is not a time critical issue; If
the access of a RP is revoked, we only have to ensure that access to fresh, potentially
updated data is no longer possible. Such is the nature of any system that enforces access
control but not usage control. Hence, for already published data we can rely on cache
expiration in the name system.

In technical terms, a user revokes access to an attribute a ∈ A record by preventing
its decryption with the ABE key sk already issued to the RP. The user must assume
that attribute values that were accessible to the RP in the past have been retrieved and
possibly stored by the RP locally. Consequently, from the point of revocation on the RP
must be prevented from two things: First, the RP must be unable to retrieve freshness
guarantees regarding the attribute value, i.e. “is this data still correct”. Second, the RP
must be unable to retrieve updates or modifications to the attribute value, i.e. a changed
email address. To achieve those two goals, we propose the use of ABE attribute versions.

Attribute versioning When encrypting an attribute using ABE, instead of just using a
simple attribute key in the policy, we concatenate the attribute key with the version. This
requires us to keep track of attribute versions across revocations.

When revoking access of a RP to an attribute a, we increment the attribute version.
From that time on, all attribute records R that contain the attribute value are encrypted
using the updated attribute version and key combination. This prevents the RP from
using an old sk to decrypt the data.

A problem that arises from this approach is that other RPs that are still authorized to
access attribute a require new keys which reflect the updated attribute versions. Naively,
we could simply setup new ABE key pairs (pk, msk), re-encrypt all attribute record
payloads and issue new keys for all authorized RPs. However, the user only needs to
create new ABE keys for the affected RPs. Instead of initiating a direct communication
channel with all of those RPs, he publishes updated key records under the name nT . It is
important the nT does not change from one key to another when we perform re-keying
so that the RPs may use the same ticket T they were given in the initial authorization to
retrieve and decrypt the user attributes. This limits the group that require updated ABE
keys to those RPs that were authorized to at least one attribute that the revoked RP also
has access to. We define our revoke procedure accordingly.

Alternative 1: Re-bootstrapping

As mentioned above, a naive revocation approach is to re-bootstrap the ABE system.
After creating a fresh key pair (pk, msk) and re-encrypting the attribute values, we

59

Chapter 4. Decentralizing self-sovereign personal data sharing

Procedure revoke
input : User identity U

Ticket TRP = (eU , eRP ,AT , nT)
output : Updated identity U ′

1 U ′ ← U ;
2 for each attribute a = (key, value, version) ∈ AT do
3 a′ ← (key, value, version + 1);
4 U ′ ← update(U ′, a′);
5 end
6 for each ticket Ti 6= TRP issued by U do
7 (eU , eTi ,ATi , nTi) ← Ti;
8 if ∅ 6= ATi ∩AT then
9 AT ∗ ← {a = (key, value, version) | a ∈ ATi };

10 (U ′, T ′i) ← authorize(U ′, eTi , AT ∗);
11 end
12 end
13 return U ′;

republish all attribute records R. All keys that were previously issued by the user and
published in the name system are then void and can no longer be used to decrypt
attributes. We must then replace the RP decryption keys by generating new ABE key
pairs. Of course, we omit generating a new key for the RP for which the user wants to
revoke access.

This approach comes with a few drawbacks: First, it is unlikely that the revoked RP
has access to all attributes. At the same time, it is possible that there are other RPs
which do not have access to attributes that the revoked RP has access to. As we want
to minimize the number of attributes we have to re-encrypt as much as possible, the
approach is detrimental to this goal. Further, we want to avoid recreating keys for RPs
which are completely independent of the revoked RP key in terms of attributes. The
ultimate goal must be to limit the induced updates over the name system that require
RPs to retrieve updated key material. On the other hand, the above approach with
attribute versioning achieves both goals quite well.

Alternative 2: RP-specific attributes

Another alternative is to change the semantics of the key and policy attributes: For
example, by using RP-specific attributes for the ciphertext policy P . We encrypt the
value of an attribute with key “email” using a policy P defined as:

P ← IRP1 ∨ IRP2 ∨ IRP3 (4.9)

60

4.3. The re:claimID system

This example policy allows the RPs IRP1, IRP2 and IRP3 to decrypt the attribute record.
When the user revokes the access of IRP2, the attribute record payload is re-encrypted
using an updated policy P ′:

P ′ ← IRP1 ∨ IRP3 (4.10)

Revocation in this manner limits the number of cryptographic operations to one: the
re-encryption of the attribute record payload. However, a problem emerges when access
to the attribute is granted to a new RP IRP4: When IRP4 requests access to the attribute,
the policy P ′′ must be extended accordingly:

P ′′ ← IRP1 ∨ IRP3 ∨ IRP4 (4.11)

The re-encrypted attribute record is then published in the name system. At this point,
the name system caches still contain the old attribute record encrypted using P ′ or even
P until they expire. In other words: Immediately after authorization through the user,
the RP will most likely be unable to retrieve the correct decryption key and decrypt
the attribute record payload. In our use case the initial authorization is almost always
initiated due to an imminent need for attributes by the RP. Hence, we consider this
approach to be inadequate.

4.3.8. Deletion and update

The remaining operations and procedures on our design are the deletion and update of
attributes. In order to delete an attribute, we must ensure the following:

First, the attribute must be removed from the name system. In most name systems,
this means that the records are simply no longer re-published when they expire. Hence,
the time it takes to delete an attribute from the directory is bound to the ttl of the
respective resource record R.

Second, we must make sure that relying parties that were previously authorized to
access this attribute are prohibited from accessing it in the future. The latter task is
crucial. If it is omitted unwanted side-effects occur when the attribute is re-added at
a later time. Then, RPs authorized in the past may suddenly have retroactive access
to the attribute. To prevent this, the attribute version must be incremented. This is
counterintuitive, as we want to delete the attribute anyway. But, to be able to consistently
enforce access control, we must keep track of all attribute versions including deleted
ones.

We define the remove procedure which ensures the above requirements.
Initially, we depublish the attribute to delete a from the name system. Then, the

attribute version is incremented and a shadow a′ of the attribute is retained but never
published. Finally, we re-authorize all RPs that have been issued tickets which include
the key of the depublished attribute. The re-authorization ensures that the RPs have
access to the same attributes they had access to before with the exception of the now
deleted a.

61

Chapter 4. Decentralizing self-sovereign personal data sharing

Procedure remove
input : User identity U = (IU ,NU)

User attribute a = (key, value, version)
output : Updated identity U ′

1 N ′U ← depublish(NU , key);
2 a′ ← (key,⊥, version + 1);
3 U ′ ← add(U , a′);
4 for each ticket T = (eU , eRP ,AT , nT) issued by U do
5 A′T ← {x | x ∈ AT \ a};
6 (U ′, T ′) ← authorize(U ′, eRP , A′T);
7 end
8 return U ′;

4.3.9. Identity escrow and key management

In self-sovereign identity systems, the user is responsible for the management of private
keys as well as identity attribute data. This includes critical processes usually taken for
granted. Most notably, a reliable identity attribute storage which can be synchronized
across devices.

Further, the fact that identities are basically public/private key pairs, a whole string
of necessary key management aspects fall onto the user to take care of. Synchronization
of keys across devices, recovery and revocation are the three most important processes
required in our design.

On the surface, managing cryptographic keys in trusted execution environments of
devices is an option. However, this severely limits crypto agility and also strongly binds
an identity to a single physical device, a property that is likely counter-intuitive to a
user. Consequently, a simple backup and recovery scheme for identity keys is a better
solution.

In Section 4.4.3, we discuss how identity escrow as well as identity attribute synchro-
nization can be realized as part of our implementation.

4.4. Reference implementation

We implemented our re:claimID prototype as part of the GNUnet peer-to-peer frame-
work2. The client software [141] and core backends3 are available online as Free Software.
This licensing model plays a crucial role in order to achieve our goal of an open, free
identity service which is available to the general public. It is important to mitigate the
threat of commercial re-licensing and ensuring that the source code is available. While

2https://gnunet.org, accessed 19/12/2018
3https://git.gnunet.org/gnunet.git/tree/src/reclaim?id=61625d4834bc7a599446486c9d
16f2451527f989, accessed 04/08/2020

62

4.4. Reference implementation

our high-level design could be implemented in the form of proprietary software, the
resulting product would inevitable not withstand our threat model.

In this section, we initially discuss the architecture and implementation details of our
re:claimID prototype. We present our choice of name system and ABE scheme in order
to elaborate on how they affect the security properties of the prototype. The component
architecture of our implementation is illustrated in Figure 4.5.

Figure 4.5.: The architecture of our re:claimID prototype. The purple base components
are provided by the GNUnet framework.

The architecture consists of various application programming interfaces (APIs) which
can be used to integrate our prototype into applications and systems. The re:claimID
API exposes C and REST APIs which are used by other components. Details on the C
API can be found in the GNUnet source code [120]. On top of the C API, we built a
command-line interface (CLI) for use on the console and headless deployments, a REST
API, an OpenID Connect 1.0 component and the graphical user interface (GUI) which is
also used to guide the user through OIDC protocol flows.

In addition to details on the usage of the above interfaces, we present out-of-band
authorization protocols. This includes implementation details on the OIDC layer which
facilitates standards-compliant integration for RPs in Web use cases and an Android
application for mobile use cases.

Further, we conduct both performance and usability evaluations on our re:claimID pro-
totype. In our performance evaluation, we investigate the resolution times of re:claimID
attributes in our GNS-based directory service while taking expected usage patterns into
account. In this context, we also measured the performance impact of the used ABE
scheme.

Finally, we carry out usability tests for each of the two use cases and the respective
authorization protocols.

63

Chapter 4. Decentralizing self-sovereign personal data sharing

4.4.1. Overview

We build the decentralized directory service of our prototype on the GNS, a distributed
hash table (DHT)-based name system which is part of GNUnet. In the following, we detail
the inner workings of this name system and our ABE access control layer. Additionally,
we discuss how both choices impact the security properties of our implementation.

GNS directory service

Storage of resource records as well as request and response routing in GNS is realized
through the use of a DHT. The DHT used in GNS is called R5N [43] and is designed to
perform particularly well in restricted-route environments with malicious participants.
Through the use of a DHT, GNS circumvents the need of centralized storage and
infrastructure providers which are required in other name systems such as DNS.

According to Zooko’s triangle theory for name systems [132], GNS name-value pairs
are “self-authoritative”: Names are linked together similar to how names are delegated
in the Simple Distributed Security Infrastructure (SDSI) [108] which we have examined
as part of our related work in Section 3.3.1. Like SDSI, GNS implicitly defines a trust
model on top of a public-key infrastructure through the use of attribute delegation. Trust
in GNS must be established out-of-band through a key exchange. Name-record pairs
that are not trusted locally are resolved by traversing a trust path from the user to the
name using SDSI-like delegation chains. Consequently, names in GNS are not globally
valid. Each name is relative to the user that queries it. This is a major deviation from
traditional name systems which provide globally unique names such as DNS and is
essentially what makes GNS a “self-authoritative” naming scheme.

Figure 4.6 illustrates an example of GNS namespaces. Alice refers to Bob’s namespace
as “bob”. To Alice, this is a top-level domain. She can resolve the IP of Bob’s server under
the name “www.bob”. At the same time, Alice refers to Carol as “niece”. She is able
to resolve Carol’s server under the name “website.nice”. Through Carol, Alice is also
able to resolve Bob’s server using the name “www.bobby.nice” which yields the same
result as “www.bob” but follows a different delegation path. This example illustrates
how the names which point to the IP address of Bob’s server are not the same for Alice
and Carol and the names in general are not unique. This is an important differentiator
between GNS and most other name systems which have a strictly hierarchical namespace
organization.

Due to the lack of a strict hierarchy, GNS offers an open registration mechanism.
Creation of a namespace is a simple matter of defining a public-private key pair (P, x).
A namespace is identified by the public key P and records are signed using the private
key x.

In GNS, requests for a name are routed through the network over a number of peers
according to the routing protocol determined by the DHT. In that process, no peer that
observes the query learns what name is requested in which namespace. Similarly, no
peer – not even the peer that is chosen by the DHT replication mechanisms to persist the

64

4.4. Reference implementation

Decentralized
PKI and Name System

ERTCVB

name: Eve
www: 4.3.2.1
...

ASDFGGS

name: Alice
www: 1.2.3.4
bob: ERTCVB
...

DFASFGAS

name: Joe
email: j@d.cn
...

AliceEve

owns

owns

link
Public Key

Namespace

Records

Figure 4.6.: Example scenario of namespace delegations in GNS.

respective records – learns the contents of the record data. The record contents can be
read if the peer knows both the name and the namespace that is queried. This property
is referred to as query privacy in GNS. It is realized through the derivation of a symmetric
encryption key from the name and namespace information:

A record R is encrypted and stored in the DHT as a block BP,l under the DHT key qP,l .
Here, l refers to the name and P to an ECC public key that is bound to a namespace. A
user that owns the namespace generates the block BP,l and the DHT key qP,l as follows:
Let G be the generator in the ECC curve used by GNS where n is the size of the ECC
group, a prime, and n← |G|. x ∈ Zn is the private key corresponding to the public key
P ← xG. Initially, the user derives a private key d from the private key x and a hash
h. The label l of the record and the public key P are hashed into h using a one-way
cryptographic hash function H. The DHT key qP,l is a hash of the public key dG. The
user then encrypts the record data R with a symmetric key derived from P and l using a
hash-based key derivation function HKDF. The resulting ciphertext CR is signed using
the private key d and a cryptographic signing function. BP,l is a tuple consisting of
the encrypted record data CR, a signature SR and the derived public key dG. The user
publishes the block BP,l in the DHT under qP,l .

Equation 4.12 details the creation of a block BP,l .

h← H(l, P)

d← hx mod n

qP,l ← H(dG)

CR ← enc(HKDF(P, l),RP,l)

SR ← sign(d, CR)
BP,l ← (SR, CR, dG)

(4.12)

65

Chapter 4. Decentralizing self-sovereign personal data sharing

In order to retrieve Rp,l , the user must first calculate qP,l . Unlike the namespace owner,
he cannot calculate qP,l using d, as it is a private key. However, qP,l can alternatively be
calculated using P and l:

h← H(l, P)

qP,l ← H(dG) = H(hxG) = H(hP)
(4.13)

The user can decrypt the record data by deriving the symmetric decryption key
HKDF(P, l). Any peer unaware of P and l that encounters the block BP,l is able to verify
the signature using dG ∈ BP,l . Respectively, this enables peers to discard invalid or
corrupt data. Had the signature been directly generated using the private key x, peers
could easily identify the originating namespace as it is bound to the corresponding
public key P. In GNS, the derived key dG does not enable peers to trivially identify the
namespace corresponding to the record data. At the same time, the possibility of the
above mentioned integrity checks is retained.

Similarly, an attacker in the network has a hard time extracting the label l from a
query qP,l without also knowing P. If the attacker observes a query he only has two
options: Either choose a fixed namespace P to attack and try to guess l or choose a
fixed name l and guess the namespace P. In the first case, confirmation attacks against
guessable names such as “www” or “email” are possible. Hence, the difficulty to guess
l depends on the entropy and length of the chosen name. Another way to look at this
property is that given a shared secret label l, a passive attacker is unable to decrypt or
track record queries or record data. In the second case an attack is unfeasible as it would
mean to brute-force the public key. Not the the term “public key” here is misleading.
GNS does not expose private or public keys in the observable traffic of the protocol.
Hence, if a zone public key is not known a priori or discovered through delegation, it
remains confidential.

In combination the above properties are an integral feature of GNS which prevents
leaking namespace contents. Further, it ensure query privacy and the confidentiality of
the records persisted in the DHT.

ABE scheme

We realize the ABE-based cryptographic access control layer using the ABE library
libgabe [119]. It is a fork of the original implementation by Bethencourt et al. [13]. We
chose this implementation because of its general availability. Further, the use of libgabe
allows us to establish an upper bound regarding our performance evaluation results.

Regarding our choice of ABE scheme, one might argue that our re:claimID prototype
would benefit from recent advancements such as FAME [4]. FAME is superior to the
original ABE scheme BSW by Bethencourt et al. [12] in terms of performance. However,
FAME’s advantage only fully takes effect for large, complex policies. This is because
FAME always requires a fixed number of pairing operations. With other approaches, in
particular the BSW CP-ABE scheme, the number of pairings increases significantly with
the complexity of the policy.

66

4.4. Reference implementation

Additionally, there is a difference with respect to key and ciphertext size: The FAME
scheme requires three group elements per attribute. BSW only uses two group elements
per attribute. This results in larger key and ciphertext sizes in the FAME scheme. On the
other hand, FAME uses type-3 pairings, which are more efficient than the type-1 pairings
used in the original [48]. The authors of FAME present an evaluation in [4] which shows
that CP-ABE FAME outperforms BSW. In all three relevant aspects – key generation,
encryption and decryption – FAME is faster. Most notably, decryption times are almost
constant and independent of the attribute count due to the fact that a constant number
of pairings is required for this operation in FAME.

In conclusion, we considered the original ABE scheme to be quite sufficient due to its
maturity and simplicity. If the need for more complex policies including significantly
higher number of attributes arises in re:claimID, schemes such as FAME that exhibit
better performance in such cases can be integrated on demand. This is even possible
without breaking backwards compatibility by introducing a new record type.

Security Properties

With re:claimID, we aim to satisfy the security goals of authenticity, integrity, privacy
and confidentiality of identity data even in the face of our threat and attacker model. In
the following, we explain how the goals are met within our prototype implementation.

Availability: We aim for high availability of the re:claimID service under the defined
threat model for both the user and any RP. re:claimID inherits the security properties
of GNS. In particular, the underlying DHT provides high resilience and censorship-
resistance [43] against attackers which include our adversary. Records are replicated
and stored redundantly in the DHT. No third party can prevent users from creating
identities or managing attributes as long as cryptographic primitives such as record
signatures cannot be broken.

Of course, availability can only be guaranteed by our implementation within the
capabilities and resilience of the DHT. Especially if the peer-to-peer network only
consists of a small number of nodes, a high churn rate can diminish data availability.
Consequently, a stable user base is an important factor in order to ensure GNS record
availability.

Integrity: Integrity of user attributes in our prototype is ensured using the data origin
authentication property of GNS. All records mapped to the same name are aggregated
and signed using the derived private key as detailed above. Blocks published in the
DHT include the corresponding derived public key and signature. Further, the routing
protocol of the DHT features a built-in signature verification in order to avoid replication
and propagation of corrupt data. Each peer that encounters a block forwards and caches4

it only if the provided signature can be verified using the provided public key. While

4Or persists if applicable. Persisting peers are selected through the replication model.

67

Chapter 4. Decentralizing self-sovereign personal data sharing

this allows attackers to store and persist any records he signs himself, it prevents an
attacker from storing a block under a query key that is derived from the public key of
another namespace not under his control. The attacker would need access to the derived
private key of the respective namespace owner or else the provided public key in the
block does not match the key used to derive the query key.

Privacy and Confidentiality: In our prototype, we achieve confidentiality of attribute
data primarily through the use of ABE encryption which is part of the re:claimID design.
Attribute data is exclusively stored in encrypted form.

However, our prototype is implemented on top of the GNS. As elaborated above,
records in GNS are encrypted using a key derived from the query label and namespace
public key. Further, GNS protects attribute enumeration from a passive and active at-
tacker through its use of query privacy and the resulting mitigation of zone enumeration.

Consequently, in our prototype attribute records are effectively encrypted twice. The
second layer of encryption which is provided by GNS is largely ineffective: As user
attribute names presumably are easy to guess, e.g. “email”, deriving the respective
symmetric key is trivial. In Section 4.5, we provide a modification to the re:claimID
design which leverages this property of GNS and allow us to replace to ABE access
control layer with this built-in encryption. The resulting design, however, is no longer
applicable to other name systems as to the best of our knowledge, query and response
privacy is only found in GNS.

4.4.2. Attribute provisioning and sharing

In the following, we present how the CLI is used to perform basic re:claimID operations
in our prototype.

Further, we present two authorization processes we have implemented for our pro-
totype: The first is the OIDC protocol for web use cases. The second is an app based
approach that is particularly suitable in Internet-of-Things (IoT) use cases.

In order for the user to manage identities, identity attributes and authorizations, we
implemented an API, a CLI and a GUI. The GUI is also used in order to facilitate OIDC
protocol flows. Consequently, we present it as part of our sections regarding attribute
sharing.

Managing identities and attributes

In order to add an identity to re:claimID, a CLI which is part of GNUnet is used:

gnunet-identity --create=Alice

This will instantiate a new namespace in the GNS and generate the identity key set
for Alice as defined in the re:claimID procedure register.

After creating an namespace, the user can add attributes to this identity using the
gnunet-reclaim CLI:

68

4.4. Reference implementation

gnunet-reclaim --ego=Alice --add email --value=alice@example.com\
--type=STRING

In this example, Alice adds a new attribute “email”, effectively executing the re:claimID
procedure add. The attribute type is set to “STRING” which indicates that the attribute
value is plain text. As elaborated in the re:claimID design, an attribute value may contain
any kind of structured data including third party attestations. In this example, the
value itself is simply a string representing Alice’s email address. This CLI supports the
other re:claimID procedures required to perform basic operations on attributes such as
enumeration, deletion and update.

Managing authorizations

To authorize a RP to access a set of attributes, the user invokes the gnunet-reclaim
CLI to generate a ticket. For ticket generation, the user must know the RP public key
rpkey and the requested set of attributes. We assume that Alice wants to authorize a RP
to access her email address and full name. She executes the following command which
triggers the re:claimID authorize procedure of our prototype:

gnunet-reclaim --issue=email,full_name --ego=Alice \
--rp=$rpkey

This will yield a re:claimID ticket in a string format. Alice manually transfers the
resulting ticket T to the RP which can in turn process it to retrieve the attribute values.
Let us assume that the identity behind $rpkey is Bob. He executes the following
command which triggers the re:claimID retrieve procedure:

gnunet-reclaim --ego=Bob --consume=T

Bob’s re:claimID client will initiate the re:claimID retrieve procedure including reso-
lution and decryption of Alice’s attributes.

If Alice decides to revoke Bob’s access to the respective attributes, she simply executes:

gnunet-reclaim --ego=Alice --revoke=T

As mentioned in the design in Section 4.3.5, for a user to authorize a RP a ticket T
must be transferred out-of-band. This authorization process must include the obtaining
of user consent. We address available authorization processes in our prototype next.

Authorization over the Web

Every authorization process must include obtaining of user consent. A prime example
of a protocol that facilitates such a process is OpenID Connect 1.0. Especially smaller
websites and services commonly rely on this standardized protocol to outsource identity
management. This includes user authentication and identity attribute management.

69

Chapter 4. Decentralizing self-sovereign personal data sharing

Figure 4.7.: An overview over the re:claimID client as used by end users and RPs.

Our prototype includes a drop-in replacement for “social login” systems built using
OIDC using the feature set provided by our re:claimID implementation. Our aim is
to offer a standards compliant layer on top of re:claimID. The result of this effort is
that our prototype is compliant with the OIDC standard specification which facilitates
integration into websites and services following in a similar fashion as existing IdPs.

In the following, we elaborate on how artifacts and protocol flows in OIDC can be
used to abstract procedures and object of the re:claimID design. Figure 4.7 illustrates the
design of our client implementations and the respective information flows.

Endpoints OIDC is an OAuth 2.0 profile which means it inherits the respective end-
points. OAuth 2.0 defines two REST endpoints: the authorization endpoint and the token
endpoint which are normally served in OIDC by the IdP service. The OIDC specification
additionally defines a third endpoint called userinfo. The user is primarily interacting
with authorization endpoint. On the other hand, the RP is primarily interacting with
the token and userinfo endpoint. In our design, both the user and the RP run their own
instance of our prototype implementation. Each instance serves the above endpoints.
Both user and RP only communicate with their local endpoints, but the behavior is
the same as if it were a single service instance. Because a user may act as an RP and
vice versa, all endpoints are exposed on every local instance, but are used according to
the role requirements as defined in the specifications. This approach of distinguishing
between user and RP facing endpoints that represent a single service realized on top of
the decentralized re:claimID service is illustrated in Figure 4.11.

Grant types OIDC and OAuth 2.0 support a range of grant types. Grant types define
ways in which RPs can prove that they obtained consent from the user. In our prototype,
we exclusively support the “authorization code” grant type which is the recommended

70

4.4. Reference implementation

default according to the specification. While theoretically other grant types are feasible,
this grant type is coincidentally the most suitable for integrating the re:claimID autho-
rization procedure. In particular, this method facilitates the out-of-band exchange of the
authorization ticket T . An example of the authorization code flow is also illustrated as a
swim lane chart in Figure 4.11.

Client registration The client in OIDC is the software component of the RP. A client is
registered at the OIDC IdP. The core OIDC specification does not cover a registration
protocol. In our implementation, registering a client entails registering a namespace
for the RP in GNS and creating a respective public-private key pair. The public key
serves as the client identifier client_id. Upon registration, the client is provided by
the IdP with local credentials for authentication at the RP facing token endpoint. OIDC
client authentication, which is also mandated by the specification, is only relevant
for communication with the local re:claimID instance. The standards mandate the
registration of one or more redirect_uri parameters which the client plans on using
during authorization flows. The user must verify that a given client has registered this
URI. This verification is an important security aspect also documented specifically in the
OAuth 2.0 specification [61, Section 10.6]. Registration of this parameter is done in our
design by adding a special resource record of type “RECLAIM_OIDC_REDIRECT” to
the RP namespace under the empty label. It allows the user to resolve the parameter and
verify that a given authorization request from a client matches the registered redirects.
When the user’s re:claimID OIDC instance receives an authorization request by the RP, it
verifies that the provided redirect URI in the request matches the one published in GNS.
Due to the GNS data origin authenticity guarantees, only the RP is able to publish the
record under the respective namespace identified by the client_id. In addition to the
redirect parameter, the client may also add a record of type “RECLAIM_OIDC_CLIENT”.
This record contains a human readable description of the client that can be displayed to
the user during the authorization flow in order to facilitate consent retrieval. Table 4.3
illustrates the namespace of an RP including the respective OIDC specific entries.

Name Type Value

@ RECLAIM_OIDC_CLIENT “Example Website”
@ RECLAIM_OIDC_REDIRECT https://www.example.com/oidc_cb

www A 1.2.3.4
www BOX TLSA data

Table 4.3.: An example namespace for a RP in re:claimID.

Figure 4.11 illustrates how a user – Alice – manages her attributes using our re:claimID
prototype through a web frontend running on her local machine (1). The user interface
as shown in Figure 4.8 guides the user through this process. Initially, Alice does not
have any identities configured so the first step is to create a new identity. In our

71

Chapter 4. Decentralizing self-sovereign personal data sharing

implementation, the user has the option to create any number of identities and edit
them to their needs.

Figure 4.8.: Initially, the user is asked to add their first identity.

Subsequently, Alice is given the option to provision the identity with attributes. In
Figure 4.9, we can see that if a set of attributes A is requested by a website, the attribute
keys are preallocated in the interface. Any attribute added by the user is encrypted and
published in the directory (1) as defined in the re:claimID design. We assume that Alice
wants to register at a service through its website (2). To initiate the OIDC authorization
flow, the website contains a respective login button. When pressed, the website initiates
an OIDC authorization code flow through the use of a browser redirect to the re:claimID
OIDC endpoint (3a). In the redirect, the service requests access to the user attributes A
which is according to the specification done using URI query parameters. She may at
this point deny authorization and the process ends.

Figure 4.9.: The user is asked to add the requested attributes after adding a new identity.

If Alice consents to the authorization request by selecting an identity from the user
interface (3b), the authorization procedure as defined in Section 4.3.5 is triggered (4).
The result of the re:claimID authorization yields a ticket T . The specification specifies,
that the browser must then be redirected back to the website (5a,5b) along with an
“authorization code” in a URI parameter. We piggyback the ticket T in the OIDC
authorization code.

72

4.4. Reference implementation

Figure 4.10.: The main re:claimID user interface listing all available user identities.

The service then exchanges the code at the OIDC token endpoint according to the
specification (6). Our re:claimID OIDC layer interprets the code and extracts the ticket T .
The ticket is subsequently used to retrieve Alice’s attributes A as defined in Section 4.3.6
(7). The token endpoint returns an access token to the service that can be used to retrieve
the attributes. In OIDC, user attributes are retrieved from the userinfo endpoint. The
endpoint must be accessed using the access token. The resulting response contains the
user attributes A (8). Our implementation caches the ticket T . Using the access token
the RP is able to retrieve up to date user attributes at any time which is the expected
behavior in OIDC.

73

C
hapter

4.
D

ecentralizing
self-sovereign

personaldata
sharing

User agent
Alice

re:claimID of user
OIDC IdP

GNS
Name System

re:claimID of RP
OIDC IdP

Website
OIDC RP

1. Add all a ∈ A

Publish allRa | a ∈ A
store

2. Register at service

3a. Authorization request redirect for AT
3b. Authorization

PublishRskauthorize

5a. T = (U ,RP ,AT , n)

5b. AuthZ redirect, T
6. Token request, T

Resolve n ∈ T
Rsk

Resolve all a ∈ AT retrieve

All Ra | a ∈ AT

8. Access Token t

9. Userinfo request, t

10. Get all a ∈ AT

msc OpenID Connect 1.0 Flow Integration

Figure 4.11.: An OpenID Connect authentication code flow in re:claimID.

74

4.4. Reference implementation

Authorization using mobile applications

In the context of the Internet-of-Things (IoT) sharing authenticated data across different
security domains is an important use case. We propose the use of re:claimID in order to
enable domain-spanning sharing of device data. Traditional approaches to this challenge
often follow the traditional pattern of adding trusted, centralized third parties such as
device vendors or other intermediaries to enable the exchange of data. re:claimID allows
us to propose a more elegant solution to this challenge. We use it to create an inter-
domain infrastructure that allows users and device alike to establish trust relationships
directly between entities and securely exchange information.

Let’s consider the following example: A user acquires a device for his home such
as a smart thermometer for heating. The vendor of this device might provide a value
adding cloud service which allows the user to monitor the sensor output of the device
and interconnect it with other devices. Traditionally, the link between device and vendor
service is fundamental to the operation of the device. If the vendor goes under the device
is more often than not no longer usable.

re:claimID allows us to mitigate those issues. While the vendor may provide an
offering itself, if the device is able to publish and share its data through re:claimID,
any third party service or even the user itself are able to access and process it. In
order to do so, we have designed and implemented an authorization flow using a
mobile application which authorizes an RP to access data published by a smart thing in
re:claimID. Figure 4.12 illustrates the design and authorization flow. The protocol flow
is illustrated in Figure 4.13.

Figure 4.12.: Our re:claimID architecture in an IoT use case.

The smart device is running a re:claimID instance and publishes information, for
example sensor data. A RP serves a website which displays a QR code. The user uses our
re:claimID mobile application in order to scan the QR code (1). The QR code contains

75

Chapter 4. Decentralizing self-sovereign personal data sharing

the information necessary to initiate a re:claimID authorization procedure at the device.
The user implicitly consents to the authorization request by initiating an NFC exchange
with the device in question (2). The device receives the authorization request, and starts
the re:claimID authorize procedure (3). The resulting ticket T is transferred back to the
mobile application (4). The mobile application in turn transfers the ticket to the RP (5).
The RP is now able to retrieve the device data from re:claimID (6,7).

As a result, the user can authorize any re:claimID enabled RP to access the device
data. This includes third party services or services created by the user.

76

4.4.
R

eference
im

plem
entation

App
Alice

re:claimID
Device

GNS
Name System

re:claimID of RP
Server

Website
RP

Publish allRa | a ∈ A
store

1. Scan QR code

2. Authorization request for AT
3. NFC Authorization

PublishRskauthorize

4. T = (U ,RP ,AT , n)

5. Ticket transfer, T
6. Ticket exchange, T

Resolve n ∈ T
Rsk

Resolve all a ∈ AT retrieve

All Ra | a ∈ AT
7. Device data a ∈ AT

msc Mobile App Integration

Figure 4.13.: A QR Code/NFC proximity based authorization for re:claimID.

77

Chapter 4. Decentralizing self-sovereign personal data sharing

4.4.3. Identity escrow

GNS already provides us with a mechanism which allows us to revoke zone keys.
However, it does not define a zone key backup or escrow system. In this section, we
briefly discuss how we envision a user to manage his re:claimID identities with respect
to cryptographic keys and attribute data.

Key revocation

Zone key revocation in GNS works by flooding a pre-computed revocation certificate
through the network. The pre-computation of the certificate includes a signature using
the original private zone key. Consequently, the revocation certificate must be generated
and stored securely out of band before the private zone key is lost.

In order to prevent an adversary from maliciously flooding revocations through
the network, the revocation certificate must include a proof of work. This proof of
work is essentially a nonce POW which concatenated with the revocation certificate
satisfies a specific difficulty constraint. In GNS, the hash over the certificate and the
POW must exhibit a number D of leading zeros. This number D is specified by the
revocation protocol and a valid proof can be verified by any node observing a flooded
key revocation. Hence, malicious flooding of the network with revocation messages is
prevented by having this proof of work requirement in place. Also, in order to effienctly
handle network partitions, GNS implements an efficient set reconciliation protocol for
distributed systems as proposed by Eppstein et al. [39].

We improved upon this revocation protocol of GNS zones as part of our implementa-
tion of identity key revocations in order to address two issues:

First, traditional proof of work schemes require to find a nonce such that a hash
over the nonce is found which exhibits at least D leading zeros. Such calculations
unfortunately have a undesirable statistical property when it comes to practical use of
proofs with a high difficulty: High variance. High variance in proof of work calculations
result in a situation where a proof on average can be calculated within a given time
period on a specific hardware configuration. However, in unlucky cases this calculation
may take significantly longer (or shorter) due to the high variance in the exponential
distribution of results.

Second, the revocation message as implemented in GNS is not limited in terms of
lifetime. A revocation message is valid forever. This has the effect that a proof calculation
amortizes over time, making it basically just a minor hassle that can be stretched over a
long period of time consequently making the selection of an appropriately hard proof
target difficulty D impossible.

Our solution is to address those two issues by:

1. Reducing the statistical variance of the proof calculations by distributing the
difficulty target across a number of proof calculations.

2. Incorporating timestamps and lifetime indicators in the revocation certificate.

78

4.4. Reference implementation

●

●

●

●

●

●

●

0

1,000

2,000

3,000

4,000

5,000

X=32/T=5 X=1/T=10
parameter

T
im

e
[m

s]

●

●

●

●

●

●

0

50,000

100,000

X=32/T=10 X=1/T=15
parameter

T
im

e
[m

s]
Figure 4.14.: Box plots of 100 proof calculations using different parameters.

We propose to reduce the variance in time it takes to calculate the proof of work by
calculating a set of X statistically independent proofs where all proofs combined exhibit
– on average – a difficulty of D.

∑X−1
i=0 (Di)

X
!
> D (4.14)

We experimentally confirmed that such an approach significantly reduces the variance
of proof calculations. The box plots in Figure 4.14 illustrate our results. Our improved
scheme with X = 25 independent proofs fares better than a naive proof of work imple-
mentation in various difficulty settings. The results show that in order to have proof
calculations require the same amount of work, our scheme requires five less zeros in the
average difficulty when compared to traditional calculations.

Regarding the lifetime of a revocation we define that a revocation certificate includes a
timestamp, which denotes the date at which the certificate becomes valid. The certificate
must not be considered valid before this date. The time to life of the revocation is
determined by the average number of zeros which are exceeding the target difficulty D.
For example, with our target difficulty 22 and the actual proof results in an average of
25, then this revocation is valid for 25− 22 = 3 epochs. Hence, the lifetime of a revocation
certificate is implicitly defined through the difficulty of the provided proof and can be
verified by each node as part of the proof validation.

In the current implementation, the target difficulty D is set to 22 leading zeros and a
single epoch is defined as 365 days.

Escrow and data synchronization

Identities consist of both cryptographic keys as well as associated attributes. In order
to facilitate the use of sets of identities between different devices, an escrow and syn-

79

Chapter 4. Decentralizing self-sovereign personal data sharing

chronization mechanism is required. Our current design requires the user to manually
synchronize key material as well as attribute data between devices.

However, in future work we plan to integrate modern key escrow and synchronization
systems such as Taler’s Anastasis [133] and the corresponding data synchronization
service [134]. Both services are still under development and require further research for
use in decentralized use cases. Specifically a suitable conflict-free replicated data type
(CRDT) suitable for re:claimID identities is needed.

4.4.4. Performance evaluations

In order to verify the practicality of our prototype implementation and to identify
possible scalability issues, we carry out performance testing. However, we limit our
performance tests to the attribute retrieval aspect of the re:claimID design. This is due
to the following reasons: First, authorization and deletion of attributes is simply a
matter of cache expiration in GNS. Hence, an evaluation on those aspects is essentially
only a trivial cache expiration verification. Second, we expect attribute retrieval to
always be the most relevant process in performance measurements. An evaluation of an
authorization includes ABE decryption and corresponding computationally intensive
operations. Further, it also allows us to measure retrieval times of attributes across time
and network sizes.

In the following, we test our implementation with regards to the following aspects
related to the authorization process:

• Median time of key retrieval

• Median time of attribute retrieval

• Caching behavior on attribute retrieval

• Performance impact with respect to network size

Test setup

We conduct our evaluations on a virtual host with 32 vCPUs at 2,3 GHz and 32GB of
RAM. In order to determine the time it takes to resolve keys and attributes, we bootstrap
a GNUnet network N . We define a test run to consist of multiple iterations of a single
test. In each run, we repeat one test 10 times. We execute 1000 test runs to increase the
reliability of our data set for a single test run. Further, we want to investigate the impact
of the size of the network. Let n be the network size of N . We run our experiment for
n = 50, n = 100, n = 150 and n = 200, respectively. Before every test run, we bootstrap
N again to ensure that any caches are purged.

A single test consists of the following steps:

1. We randomly choose a user node A ∈ N and a RP node B ∈ N .

2. A and B create identities and exchange the respective public keys.

80

4.4. Reference implementation

3. A adds an attribute a and authorizes B’s access.

4. We simulate an out-of-band transfer of the ticket T from A to B

5. B uses the ticket to. . .

• . . . retrieve the ABE user key skA
• . . . retrieve the attribute a and to decrypt the attribute value.

Each time we repeat the test, we randomly choose a different node B ∈ N . The test
is executed 10 times in every test run. However, A and a stay fixed after the initial test
across a test run. As we do not tear down or re-bootstrap the network between tests, this
allows us to investigate the impact of GNS caching on the authorization process. We
measure the time it takes each node B to resolve the user key and the attribute. Hence,
performance should mainly depend on the topological distance between A and B in
the network. As the routing in the R5N DHT used in GNS in part uses randomized
routing strategies, this introduces some variability that is difficult to control for. Our
experimental setup consists of a clique topology.

Results

In Figure 4.15, we show an overlay of the median attribute retrieval times with respect
to network sizes. The data shows that attribute retrieval performance decreases with the
size of the network. Retrieval times within a test run appear to converge. This effect also
decreases with increasing network size.

In Figure 4.16, the data shows that the time it takes to resolve a user key varies
heavily with a median of around 200 milliseconds. The variance is high throughout all
10 successive tests within a single test run and also across runs. If we take into account
that we cannot expect any cache hits due to the individuality of this query, the observed
data is plausible. The fact that the initial resolution exhibits a particularly high variance
and median retrieval time supports this as well.

Regarding attribute retrieval, we can see in Figure 4.17 that the times also initially
exhibit a high variance. In contrary to the ABE keys, the retrieval times of attributes
within a run decrease. In fact, the retrieval times converge across network sizes down
to less than 100 milliseconds. Similarly, variance decreases within a single test run and
across network sizes. The data set shows the effects of caching in the name system and
how it influences our implementation. We can assume that after the first initial RPs are
authorized by a user to access attributes, resolution times improve greatly. That is, if the
RPs retrieve attributes.

Discussion

The key and attribute retrieval times within a single test run initially exhibit a high
variance. Attribute retrievals that follow the initial test within a single test run are
faster and show increasingly less variance due to GNS caches kicking in. As expected,

81

Chapter 4. Decentralizing self-sovereign personal data sharing

Figure 4.15.: Median attribute retrieval times across all test runs for network sizes of 50,
100, 150, and 200 nodes. [114]

we did not observe this behavior with respect to key retrieval. We further observed
that increasing network size has a negative effect on retrieval times and the respective
variance.

In summary, our evaluation results show that the implementation converges into
a reasonably well performing system when used. Resolution times of around 100
milliseconds are acceptable in cases where user data is retrieved by requesting parties
without user interaction after an initial authorization flow. We assume that an increase in
the number of retrieved attributes does not significantly impact performance as attributes
lookups can be performed in parallel.

We note that key resolution within the attribute retrieval process does not benefit
from caching in our implementation using GNS. This impact is particularly noticeable
in an interactive authorization protocol such as OIDC where the RP is expected to
immediately require the attributes. In this case, we recommend an initial out-of-band
transfer of the key as part of the authorization protocol. For example, by including the
key in the code of an OIDC authorization redirect in addition to the ticket T . This is
also true for other implementations on top of name systems that make heavy use of
caching strategies such as DNS or other delays in record publishing such as consensus
algorithms in Namecoin.

Another case would be key rollovers for example those triggered by user initiated
access revocations. We cannot predict the points in time of the revocation and the next
occasion an RP requires the attributes to align. Suppose the attributes are required for
processing by the RP but the key rollover happened just recently. Consequently, the

82

4.4. Reference implementation

Figure 4.16.: Key retrieval performance of user keys for a network size of 100 nodes. [114]

attribute can no longer be decrypted. To minimize latency in such a scenario, we suggest
that RPs periodically update the ABE key by retrieving it from the name system instead
of only doing so when the next decryption fails.

4.4.5. Usability studies

In the following, we present the experimental designs and results of two usability studies
of our prototype implementation. The first use case is a generic Web-based user data
authorization scenario using our OIDC implementation. The second use case revolves
around IoT device attribute sharing with a Web service and our NFC-based authorization
protocol. The users are surveyed through a standardized System Usability Scale (SUS)
and further questionnaires in order to evaluate key usability indicators. The wide-spread
nature of the SUS score enables us to interpret its results in a way that facilitates a
generalized judgment on the usability of our implementations.

83

Chapter 4. Decentralizing self-sovereign personal data sharing

Figure 4.17.: Attribute resolution performance for a network size of 100 nodes. [114]

Use case 1: Web

For our web based use case, we evaluate our OIDC implementation on top of re:claimID.
The specification of OIDC only covers the technical details of the protocol flow. User
interface aspects are intentionally out of scope in the specification. Hence, user experience
across different OIDC implementations may vary greatly. Our implementation features
a website for identity attribute and authorization management which is the primary
target of evaluation.

To evaluate the user experience, we create a RP website that requests access to user
attributes by initiating an OIDC flow. The test is organized as follows: We prepare a
workstation for the user that is running the RP web page as well as our re:claimID
implementation. The user is provided with a written guidance in order to ensure that
the instructions given to each user do not differ. The contents of the instruction sheets
can be found in Appendix B.3. According to the instructions, the user is pointed to the
RP web page in the browser. Then, we instruct the user to login using the re:claimID
option.

84

4.4. Reference implementation

The re:claimID button initiates the OIDC flow and redirects the user to our re:claimID
OIDC authorization website. Here, the user is notified regarding the attributes which
are requested by the website. Initially, there are no identities configured. The user is
prompted by the user interface to create a new identity and then to add the requested
attributes. In our evaluation, the request is for a full name and email address.

Once the user finished authorizing the RP, the OIDC “code” which represents the
user consent and contains the ticket is transferred to the website. The website uses the
code to retrieve the user attribute and display the success of the exchange with their
local re:claimID OIDC instance. The user is eventually presented by a welcome web
page displaying the personal data that the user has shared with the website.

We aggregated the collected SUS scores of 38 participants that completed the task
into a box plot in Figure 4.18. The collected SUS scores can be found in Appendix B.3.
The data shows, that the median SUS score is above 90 points. This indicates that the
usability of our re:claimID OIDC user interface is above average when compared to
other systems [92]. It is is well above 80,3%, which groups it in the top 10% of all scores
collected by [92].

50

60

70

80

90

100

OpenID Connect over re:claim
Study

S
U

S

Figure 4.18.: SUS scores for the re:claimID web use case. [57]

Out of 42 participants that entered the survey form, we had 27 men, 6 women and 7
who refused to answer. The self-reported age groups of the participants were 7 in 18–24,
19 in 25–34, 7 in 35–44, 6 in 45–54, 1 in 55–64 and none older. In terms of education, 1
reported no degree, 4 reported a high school graduate degree, 3 professional training, 9
Bachelor degrees, 17 Master degrees, and 6 Doctorates.

85

Chapter 4. Decentralizing self-sovereign personal data sharing

Use case 2: IoT

In addition to our web use case, we demonstrate re:claimID as a suitable authentication
and authorization system for the IoT. To do so, we conduct a usability experiment
that involves a user acting as a technician, a device and a web service. The device is a
hardware component which is equipped with a variety of sensors. The web service is
capable of consuming sensor data and process it. In the real world, this service could be
used in predictive maintenance or other data analytics use cases. The data origin in this
use case are the sensors attached to the device. The user is acting as the owner of the
device and is in charge of authorizing RPs to access the data.

In our design, the device is collecting sensor data and publishes it in re:claimID. Hence,
the device is setup with a re:claimID identity. The device is further equipped with a near
field communication (NFC) interface. We use the NFC interface in our authorization
flow as discussed in section 4.4.2. The technician uses a mobile phone which is running
the re:claimID mobile application. For our survey, we created a prototype device as
depicted in figure 4.19. The device is based on a Raspberry Pi 3B. We attached an NFC
shield used for the NFC authorization flow and a BME280 sensor. The sensor is able to
measure temperature and atmospheric pressure.

Figure 4.19.: The prototype re:claimID device used in the usability study. [57]

In our study, the technician is tasked to authorize the web service to access the
sensor data. To do so, the technician first accesses the website of the web service. The
website displays a QR code which contains the authorization request including requested
attributes. The technician is instructed to scan the QR code using the re:claimID app.
Using the re:claimID app, the technician must scan the QR code:

Upon scanning the QR code, the user is presented with information regarding which
attributes the web service requests. In our specific setup, the requested attributes are
temperature, pressure as well as altitude. The user is instructed to consent to the request
by bringing the phone in close proximity to the device.

The mobile application relays the authorization request of the website to the device
and triggers a re:claimID authorization procedure. The device prepares the authorization
ticket and includes it in the response to the mobile application. The mobile application

86

4.4. Reference implementation

Figure 4.20.: The user scans the QR code on the website using the reclaim app.[57]

Figure 4.21.: The user initiates the NFC authorization flow with the device. [57]

relays the ticket to the web service which triggers the web service to process the ticket
and retrieve the attributes from re:claimID. To visualize the result, the website displays
the retrieved sensor data:

To evaluate the usability of the authorization procedure, we asked 35 users of which 32
completed the experiment to rate their experience through a standardized questionnaire
including a SUS. The resulting SUS scores can be found in Appendix B.3. Figure 4.23
shows a box plot of all SUS scores. In this survey, the median SUS score is above 80
points. While this is a lower score than our web based survey, it still indicates that the
usability of our system compared to other systems [92] is well above average. As the
median score is above 80,3% it is positioned in the top 10% of all scores collected in [92].

Out of 34 participants that filled in the survey form, we had 22 men, 6 women and 7
who refused to answer. The self-reported age groups of the participants were 5 in 18–24,
18 in 25–34, 8 in 35–44, 2 in 45–54, 1 in 55–64 and none older. In terms of education, 1
reported a secondary school degree, 4 reported a high school graduate degree, 8 Bachelor
degrees, 18 Master degrees, and 3 Doctorates.

87

Chapter 4. Decentralizing self-sovereign personal data sharing

Figure 4.22.: After a successful authorization, the website is triggered to retrieve and
display the sensor data. [57]

4.4.6. Integration into federated infrastructures

Our prototype can be integrated into existing federated identity ecosystems through the
OIDC protocol. There are two approaches in order to realize such an integration: One
approach is to use existing IdPs as sources of attested identity attributes which are then
shared over re:claimID by the user. In this case, our re:claimID implementation acts as
an OIDC RP of external IdPs.

The other approach is for the user to use re:claimID solely as a management service
for his pseudonymous identities. Here, our prototype functions as the OIDC IdP and
external IdPs are the respective OIDC RPs.

While we have not implemented identity federation in our prototype, we show how it
is theoretically possible to setup above use cases and discuss the implications of each
respective architecture.

re:claimID as downstream Identity Provider

If we configure our implementation as RP of OIDC IdPs in order to realize identity
federation, websites would still interact directly with re:claimID as elaborated in our
original design above. The user’s client then continually retrieves current, attested iden-
tity information from one or more IdPs. However, the assertions are not necessarily
forwarded to the RP and hence it cannot verify that user attributes are actually sourced
at a specific IdP. In general, the OIDC protocol itself does not specify how such as-
sertions are requested by an RP. Consequently, in order to realize this approach the
OIDC specification needs to be extended or modified. However, presentation of claims
retrieved from another party is supported through the “Aggregated” and “Distributed”
claims features found in the OpenID Connect Core Specification [112]. Alternatively, a
completely new authorization protocol which accommodates this requirement must be
designed. Figure 4.24 illustrates this approach.

88

4.4. Reference implementation

60

80

100

re:claim mobile app authorization
Study

S
U

S

Figure 4.23.: SUS scores for the re:claimID IoT authorization study.

Figure 4.24.: re:claimID integrated into an existing OIDC ecosystem as RP.

The more pressing question in this scenario is how the upstream IdP of the user can
be discovered. Presently, two off-the-shelf options exist for this: The OpenID Connect
Discovery Protocol [111] and the id4me system [11]. The OpenID Connect Discovery
relies on so-called “web finger” servers which serve the relevant metadata required to
interact with the IdP. The location of a respective web finger service is derived from the
user identifier, assumed to be an email address or URI.

id4me on the other hand exclusively relies on DNS for IdP discovery. It expects from
the user to own a domain name which can be used as part of the user identifier and as a

89

Chapter 4. Decentralizing self-sovereign personal data sharing

directory for IdP metadata. Management if this metadata and domain name is left to
the end user.

Both OpenID Connect Discovery and id4me make heavy use of OpenID Dynamic
Client Registration [110]. This registers the intermediary IdP as a “public” client. Public
clients in OIDC are clients which can be registered without prior authorization. The
trust model between the upstream IdP and the RP is out of scope for both approaches.
Hence trust between a website and the third party which is asserting attributes of the
user must be established out of band.

re:claimID as upstream Identity Provider

In this case, the re:claimID implementation acts as an upstream IdP for another OIDC
IdP. This downstream OIDC IdP is used by RPs instead of the re:claimID service. The
downstream IdP may authenticate the user and assert attributes as usual, for example
through the use of email verification procedures. The advantage for RPs is that they are
able to choose an IdP in their local trust domain to connect to. The users are required
to interact with different IdP for each website and service, but they are able to use
their re:claimID identities across all services and no data is redundantly stored across a
variety of IdPs. Figure 4.24 illustrates this approach.

Figure 4.25.: re:claimID integrated into an existing OIDC ecosystem as IdP.

Assessment

We consider only the first approach to be compatible with the design goals and security
model of re:claimID. Unfortunately, the OIDC specification does not really accommodate
for federated attribute assertions which is a significant issue in the first use case. Unless
the origin of an attribute is evident to the RP, this federation does not benefit the user or
RP beyond what re:claimID already provides with self-issued attributes.

90

4.5. Alternative approaches

In the second approach, the privacy advantages of re:claimID are partially lost: IdPs
are still able to track user movements across services which are registered to them. If
we assume that RPs are using IdPs in their local infrastructures and trust domains, this
is not an issue. However, if external service providers such as Google and Facebook
are used, user tracking is still a privacy concern and aggregation of user data and the
resulting implications remain unchanged. It is a subtle threat, that such an architecture
may degenerate into something that is strikingly similar to the current situation which
we initially tried to improve upon.

In conclusion, while both approaches are theoretically possible, we expect that any
benefits are far outweighed by the elaborated practical limitations.

4.5. Alternative approaches

Our design of re:claimID presented above is implicitly tailored to be standards-compliant
and name system agnostic. We achieve the standard compliance by having an OIDC
layer. Through the use of ABE and an abstract and simple name system definition,
re:claimID is even name system agnostic.

In this section, we present an alternative approach to re:claimID which culminated in
the final design presented in this chapter. We present a modification to our re:claimID
design which could improve efficiency through a tighter integration with GNS. Both
approaches hinge on two specific security properties of GNS: Query privacy and non-
traversable namespaces.

First, we discuss our original design in which we focused on strong security guarantees
and theoretical soundness at the expense of standards-compliance and generalizability.
We published this work as “Managing and Presenting User Attributes over a Decentral-
ized Secure Name System” in the “Proceedings of the 11th International Workshop on
Data Privacy Management and Security Assurance (DPM)” [123]. In this work, we rely
on properties of GNS in a way that would make it difficult to implement the design
on other name systems. In the following, we discuss this initial design which revolves
around the idea of identity token records and how we improved on this idea in re:claimID.

Second, we present how re:claimID could benefit from a tighter integration with the
GNS and its built-in features. Primarily, our proposed modifications would allow us to
drop the requirement of the ABE encryption layer by replacing it with the less resource
intensive symmetric record encryption scheme of GNS.

4.5.1. Identity token records

Like re:claimID, this approach revolves around the idea of decentralizing identity and
attribute management through the use of a name system directory. It aims to provide
stronger security properties with respect to authorization, availability, and freshness
than existing traditional, centralized IdPs.

91

Chapter 4. Decentralizing self-sovereign personal data sharing

Individual attributes are not published in the name system as resource records. Instead,
when a user decides to share attributes with a RP, the attributes are assembled into a
single record. The sole audience for this record is the respective authorized RP. The
contents of such a record consist of identity tokens, a data structure which holds the
shared attributes.

We exploit the fact that a label in GNS may be treated as a shared secret as discussed
in Section 4.4.1. This allows us to securely exchange information between two entities
via the name system. In our original design, we call this shared secret name a grant. The
grant is an expression of consent by the user and authorization of a RP. It exclusively
allows the RP to retrieve specific records from the name system. The user authorizes a
client through the generation of a ticket which contains the grant. As can be deduced
from its name, a ticket serves the same purpose as the ticket in the design of re:claimID.
However, instead of containing a reference to an ABE key, it contains the grant. The goal
is that only the authorized party is able to retrieve a respective attribute set which is
contained in the identity token.

In addition to the attribute sharing mechanism, we propose an authorization protocol
which allows to authenticate the user. Unlike the standardized OIDC protocol, our
proposal includes an implicit public key authentication of the user. This eliminates the
need of external authentication mechanisms such as a password-based login at an IdP.

In the following, we elaborate on the details of the name system records and the
authorization protocol.

User attributes and identity tokens

The local storage of attributes can be realized through any kind of database. In our
implementation, we use GNS as a local attribute data storage. We define a special
record type ID_ATTR that holds unencrypted identity attribute data. This approach is
similar to re:claimID where we also have attribute records, but in this case records are
not unencrypted using ABE and instead flagged as private in GNS. This prevents the
records from being published into the DHT and consequently they cannot be resolved.

As mentioned above, users create identity tokens in order to share attributes with RPs.
A user issues an identity token for each authorization of a RP. The identity token contains
all the attributes which are requested by the RP. To facilitate the sharing of identity
tokens via GNS, we define a record type ID_TOKEN. The name of an identity token
record under which it is stored is the grant. RPs retrieve identity tokens by querying the
respective grant in the user’s GNS namespace. By design, and analog to ABE decryption
keys in re:claimID, grants must be kept confidential by the user and the RP.

Tickets

We use a ticket T as a container for the grant. In the following, we refer to an RP using
its public key eRP. The user is identified by a public key euser. The user encrypts the

92

4.5. Alternative approaches

grant contained in the ticket in addition to the built-in record encryption of GNS. This
ensures that only the owner of the respective private key dRP is able to read the data.

The encryption is done using static ephemeral elliptic curve Diffie-Hellman (ECDHE) [20].
This allows the user and the RP to establish a shared symmetric encryption key kT
which is derived from the public key eRP and a temporary ephemeral private key dECDHE.
We define the ticket as T ← (p, eECDHE, sT). It consists of the encrypted ticket payload
p, the ephemeral ECDHE public key eECDHE and the cryptographic signature sT . The
signature is generated over p and k using duser, the private key corresponding to euser.
The encrypted payload itself contains an encrypted tuple (l, n, euser). The tuple contains
the grant l, a nonce n and the user public key euser. The nonce is included to prevent
replay attacks as part of the authorization protocol we discuss later. The RP must verify
the authenticity of the ticket by verifying sT . The user generates the ticket T as follows:

kT ← HKDF(ECDH(dECDHE, eRP))

p← enc(kT , (l, n, euser))

sT ← sign(duser, (payload, eECDHE))

T ← (p, eECDHE, sT)

(4.15)

We use the functions and definition from Section 4.3.1. “ECDH” denotes the Diffie-
Hellman key derivation function. In this respect, we note that the following holds:

HKDF(ECDH(dECDHE, eRP)) = HKDF(ECDH(eECDHE, dclient))

This allows the RP to use eECDHE which is contained in T in combination with its private
key to decrypt the payload. Should the RP private key dECDHE become compromised at
any point in time in the future, the payload can only be decrypted if the corresponding
ticket containing eECDHE is also compromised.

Authorization

In the following, we outline an authorization given a RP that requests an attribute set
AT . We define an attribute as a← (key, value) where key is the attribute name and value
the attribute value. Initially, the RP issues an authorization request to access an attribute
set AT ⊆A to the user. The request consists of the following parameters: The requested
attribute names {key|a = (key, value) ∈ AT }, a nonce n and the public key eRP.

In order to approve the authorization request, the user creates an identity token
including the respective attributes. The token includes a representation of the user’s
public key euser as well as expiration information. The user creates a signature over
the token with the private key duser. The token and signature are encrypted using a
symmetric key ktoken. This key is derived using ECDHE from the RP public key eRP and
a new ECDHE private key eECDHE. As with the ticket above, only the authorized RP is
able to decrypt the token. The user stores the ECDHE public key eECDHE along with the

93

Chapter 4. Decentralizing self-sovereign personal data sharing

encrypted token data and signature in a resource record Rgrant and publishes it under
the grant:

ktoken ← HKDF(ECDH(dECDHE, eRP))

X ← enc(ktoken,AT)
Rgrant ← (eECDHE,X)

(4.16)

The user responds to the RP request with a ticket T . Similar to ABE key records
in re:claimID, we reuse the grant in order to allow the RP to asynchronously retrieve
updated tokens at a later time. For performance reasons, as we also discussed in Sec-
tion 4.4.4 with respect to the re:claimID design, it is sensible to send the requested
attribute set along with the ticket in the initial request.

As soon as the RP receives the ticket T = (p, eECDHE, sT), it must verify the signature.
If the signature is valid, the RP decrypts the ticket payload by using the symmetric key
kT . To do so, the RP uses the key eECDHE provided in T and his private key dRP:

kT ← HKDF(ECDH(eECDHE, dRP))

(l, n, euser)← dec(kT , p)
(4.17)

Subsequently, the RP must verify that the nonce n matches the nonce from its autho-
rization request. Then, the RP resolves the token record Rl = (eECDHE,X) from GNS.
To decrypt the token record payload X , the RP calculates the symmetric key ktoken using
the private key dRP and the public ECDHE key eECDHE:

ktoken ← HKDF(ECDH(eECDHE, dRP))

AT ← dec(ktoken,X)
(4.18)

From now on, anytime the RP requires up-to-date attributes it reuses the grant to
retrieve a fresh token from GNS. This assumes that the user regularly updates identity
token records accordingly. On the other hand, if the user revokes access to the token
record by deleting it, resolution will fail and the grant cannot be used any longer.

We implemented the above authorization protocol for a Web use case. Similar to
OIDC, we utilize REST endpoints for token issuance and retrieval. As in re:claimID, this
implementation consists of a user-side issue endpoint and a RP-side token endpoint.
Both endpoints are connected through GNS to exchange tokens.

A user interface guides the user through authorization process. Figure 4.26 gives an
overview over the authorization process. The sources of interface and an example client
are available online [122, 118].

Protocol proof

As we do not use a standardized protocol such as OIDC, we cannot implicitly rely on its
correctness. Hence, we use Casper [88] to verify our authorization protocol. Our model

94

4.5. Alternative approaches

GNS

Client

AuthZ Request1

2

2

Issue
Endpoint

Token
Endpoint

AuthN/AuthZ

AuthZ Response3

Exchange Request4

Exchange Response5

1. A client requests authorization to access iden-
tity attributes and redirects the user agent to
the user interface.

2. The user authorizes the client to access user
attributes by instructing the issue endpoint to
issue a ticket and an identity token.

3. The client receives an authorization response
containing a ticket.

4. The client issues an exchange request and
passes the ticket from the authorization re-
sponse to his own token endpoint.

5. The client endpoint retrieves the token from
GNS and passes it to the client.

Figure 4.26.: The authorization protocol. The client represents a RP.[123]

consists of three actors: the RP client which is the INITIATOR of the protocol, the USER,
and GNS. The source code of the proof can be found in Appendix B.4.

In the proof we assume that the grant in the ticket and the records stored in GNS are
expected to be secrets shared between the user and the RP. We assume that the user
is able to establish trust in the RP public key eRP. The signature s over the encrypted
ticket payload includes the nonce provided by the RP in the attribute request. Hence,
the nonce is essentially a challenge for the user and the authorization response with
signature functions as a proof-of-possession of duser.

We note that the RP is not explicitly authenticated. However, only the owner of dRP is
able to use the ticket and retrieve the payload contents including the grant.

Discussion

When compared to re:claimID, this approach suffers from three issues: The first and
smaller issue arises from the fact that our proposed authorization protocol is not
standards-compliant. This allowed us to formally prove the security of our authorization
protocol without relying on additional security from, for example, the OIDC protocol.
However, it also significantly and arguably detrimentally impacts the integration efforts
for RPs.

The second issue stems from the tight binding to GNS. Unlike re:claimID, this ap-
proach generally not applicable when using other name systems than GNS. Names in
GNS can be used as shared secrets and it ensures that they do not leak to any passive or
active attackers. This is why we can use a shared secret name as the grant.

The third issue results from the randomized labels we use to store identity tokens. As
the target audience for this record is exclusively the RP, any performance benefits which
are usually associated with caching do not come into effect. GNS is a name system that
makes heavy use of caching and relies on it to mitigate performance bottlenecks in the

95

Chapter 4. Decentralizing self-sovereign personal data sharing

DHT. We did not conduct performance evaluations of our prototype implementation,
but we are confident that the system exhibits poor caching behavior.

As a consequence, we designed re:claimID with a standards-compliant OIDC interface
and a name system agnostic, cryptographic authorization layer. Further, in our re:claimID
prototype we took into account the caching properties of GNS and demonstrated its
practicality in our performance evaluations.

4.5.2. Integrated approach

We designed re:claimID in a manner which – in theory – allows it to be implemented on
top of almost any name system with a basic set of security properties. In this section, we
show how re:claimID can be modified by tailoring the concept to a specific name system:
GNS. On this basis, we outline how it is possible to alter the design of re:claimID to
avoid the requirement of an additional cryptographic authorization layer.

Attributes

In this modified approach, the user stores each attribute a ∈ A under randomized names
na. This prohibits attackers from opportunistically resolving the attribute key in the
user namespace NI . The records are encrypted using a key derived from na and the
namespace public key e as discussed earlier in Section 4.4.1.

Authorization

Upon receiving and consenting to an authorization request of a RP, the user creates
a new namespace NI ,RP . The user further adds a delegation from his namespace NI
to NI ,RP via another randomized name nRP. Inside this namespace, the user adds
mappings from the requested attribute keys to the attribute records in NI . Both the
public key of this new namespace and nRP are defined as shared secrets between the
RP and the user. The name nRP is transferred to the RP via the ticket T . It replaces the
nonce n ∈ T of the original re:claimID design.

The RP uses nRP to retrieve its dedicated authorization namespace NI ,RP . Then, the
RP is able to retrieve the na | a ∈ AT from this namespace. This allows the RP to retrieve
the attribute values from the user namespace NI .

Figure 4.27 illustrates an example where two RPs, A and B, are authorized to access
user attributes.

Revocation

The revocation process is similar to the re-encryption of attributes in the original
re:claimID design. In order to revoke access of a RP to a set of attributes, the user must
change the randomized names na in the namespace NI . This renders the references
in the respective authorization namespace of the affected RP invalid. All affected RPs
that also have access to any of the affected attributes need updated information in their

96

4.5. Alternative approaches

Figure 4.27.: Alternative re:claimID design using authorization namespaces in GNS.

respective authorization namespaces. Figure 4.28 shows the namespaces from above
after the access of RP B was revoked.

Figure 4.28.: Access revocation in the alternative re:claimID design.

Discussion

The biggest gain this approach yields is that we no longer need the ABE encryption for
our access control needs. The elliptic curve (EC)-based encryption which is used in GNS
is much less costly than the pairing-based CP-ABE scheme we use in re:claimID. Further,
we no longer use the attribute keys as names for our attribute records. This increases
privacy in so far as it is no longer possible to confirm that an namespace contains a

97

Chapter 4. Decentralizing self-sovereign personal data sharing

certain attribute name. At the same time – unlike our initial approach above – we can
still take advantage of caching in GNS for attribute data.

On the other hand, at the moment this approach limits the choice of name systems to
GNS. The downside is that this integrated approach is neither generic nor universal.

4.6. Summary

In this chapter we addressed research questions 1 and 2 by introducing re:claimID, a
decentralized service for self-sovereign identity management. In order to enable and
empower the user to exercise his right of informational self-determination without
having to compromise this control through the introduction of a trusted third party,
we propose user-managed attributes in name systems. We advocate for the complete
dissolution of a central attribute provisioning and sharing service into a decentralized
query protocol and add privacy-preserving features including a cryptographic access
control mechanism for sensitive attribute data. The above allows us to separate the
IdP responsibilities regarding identity verification and assertion from the management
and sharing of identities. Consequently, the IdP is unburdened from any liability risks
which arise from the responsibility of providing a service which allows provisioning
and sharing of potentially sensitive, private user information.

In order to ensure the practicality of our approach, we present a prototypical im-
plementation of re:claimID based on the name system GNS. Despite the disruptive
underpinnings of the re:claimID design, we show how it can be integrated using stan-
dard protocols. In a series of experiments we evaluated the performance and scalability
of this reference implementation. We extract from the measurements results that our im-
plementation of re:claimID is able to serve small to medium applications with up to a few
hundreds of participants in production. There is room for performance optimizations
such as alternative access control techniques presented in Section 4.5.2. Alternatively,
boosting performance through the use of alternative cryptographic schemes, like in the
lightweight ABE scheme by Yao et al. [147] is another direction of future work.

Another area of future research is the aspect of accumulated contextual metadata
which may be used to link unlinkable pseudonymous identities to a single person. In
order to mitigate such attacks, a holistic, full-stack approach must be taken which takes
into account metadata that is incurred at physical and logical addressing on the Internet
today as well as routing and service discovery. The combination of privacy-focused
technologies such as peer-to-peer overlays and Tor-like routing protocols as well as
secure name systems like GNS are a viable direction to take here.

In addition to further performance improvements, we aim to address the extension
of re:claimID to support privacy-preserving attribute-based credentials. In general,
approaches which allow RPs to establish trust in attributes shared by a user are not
directly addresses by re:claimID. We present our work on this aspect including the use of
succinct non-interactive arguments of knowledge in order to support privacy-preserving
ABCs in the next chapter.

98

CHAPTER 5

Establishing trust in self-sovereign identities

In this chapter, we present our work on trust establishment in decentralized systems.
Our research is directly motivated from the requirements our re:claimID design has
with respect to trusted assertions on user managed identities and attribute data.

In the following, we present two approaches: The first approach revolves around
the decentralized modeling and processing of attribute-based access policies. We use
methods from attribute-based delegation (ABD) in combination with secure name
systems to assert attributes across trust domains.

Further, we present a design of privacy-preserving credentials suitable for decen-
tralized storages such as – but not limited to – re:claimID. We base our approach on
Zero-knowledge Succinct Non-interactive Arguments of Knowledge (zkSNARKs). They
allow users to present privacy-preserving credentials issued by trusted third parties
without having to engage in any interactive presentation protocol with the relying party
(RP). The latter is particularly common for other zero-knowledge privacy credential
systems such as Idemix [22]. Through the use of non-interactive zero-knowledge (NIZK),
RPs are able to retrieve and verify credentials from directory storages, as opposed to
directly from users.

This chapter is partially based on a publication with the title “Practical Decentral-
ized Attribute-Based Delegation Using Secure Name Systems” published 2018 in the
17th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications [113]. The sections regarding NIZK credential system is based on a pub-
lication with the title “ZKlaims: Privacy-preserving Attribute-based Credentials using
Non-interactive Zero-knowledge Techniques” published 2019 in the 16th International
Conference on Security and Cryptography [124].

5.1. Delegation of attributes using name systems

Our goal is to realize the existing concept of ABD into a practically usable, decentralized
authorization system. In this section, we show how name systems inherently provide
the capabilities and mechanisms required for ABD schemes. We base our design on

99

Chapter 5. Establishing trust in self-sovereign identities

an existing ABD scheme and show that it can be implemented efficiently on top of an
existing secure name system.

At a glance, we present the following contributions:

• We show how secure name systems are suitable vehicles in order to implement
ABD.

• We design a practical, decentralized ABD system on top of the secure name system.

• We present a prototypical implementation on top of the GNU Name System (GNS).

As we have already established in Section 2.1.2, certain name systems allow us to
create secure mappings from attributes to resources. The mappings can be publicly
queried by any entity. However, name registration – i.e. the creation of mappings – is
only possible by the respective namespace owner. Further, the fact that name systems
are agnostic towards the interpretation of record values is also relevant in the context of
our approach as it allows us to integrate any delegation expression.

In the following, we argue that name systems are a suitable mechanism for ABD. Let
us consider a delegation in the form A.a← e: In this example, the delegating namespace
owner is A and the delegated attribute is a. The delegation target is defined by an
expression e. An inherent mechanism found in most name systems and namespace
hierarchies is authority delegation. It allows a namespace owner to delegate the authority
over names to other parties. For any regular Domain Name System (DNS) namespace
delegation, e would specify the domain name of another name server, for example
“ns1.example.com”. This name server represents the entity that is given authority over a.

However, in ABD the delegation expression can be more complex than a single entity.
As elaborated in Section 3.3.1, e can consist of various different types of delegations. In
the following, we use the formalization by Li et al. regarding delegation types:

A.a←B (Type 1)

A.a←B.b (Type 2)

A.a←B.b.a (Type 3)

A.a←
n⋂

i=1

fi (Type 4)

A DNS namespace delegation is semantically equivalent to a Type 1 delegation, where
e = B = “ns1.example.com′′. Most name systems inherently provide a storage, resolution
and delegation mechanism for type 1 delegations through dedicated record types such as
“NS” (DNS) or “PKEY” (GNS). Other delegation expressions are uncommon in existing
name systems.

In the remainder of this section, we define a record format for attribute delegation
records which allow us to model any delegation type as a name system record. Further,

100

5.1. Delegation of attributes using name systems

we show how to resolve attribute-based encryption (ABE) delegation chains using a
delegation chain discovery algorithm.

In the following, we first establish a set of security properties our system must provide
before we detail our record types and algorithms. In addition to our ABD scheme, we
outline an access control policy evaluation protocol for our design which allows us
to use ABD in an actual authorization use case. Finally, in order to demonstrate the
viability of our contribution, we present a reference implementation in the context of a
real world scenario.

5.1.1. Security properties

As our approach above makes only general assumptions, basically any name system can
be a suitable vehicle for ABD. However, in practice only those name systems with strong
security guarantees are reasonable choices for an implementation. An insufficiently
resilient name system is subject to a variety of attacks that fatally impair the ABD system.
Before we delve into our design, we discuss the security properties that we aim for:

Authenticity and integrity The primary goal of our system is to ensure that any given
attribute delegation chain is authentic. This implies that we must be able to verify each
delegation A.a ← e in a delegation chain. We already established above that we plan
on using a name system in order to store and retrieve individual delegations. Further,
a delegation in the form A.a ← e can be found in the namespace of an entity A. A
name system which features data origin authenticity, would inherently provide us with
authentic and correct delegations. Most secure name systems such as DNS Security
Extensions (DNSSEC), Namecoin and GNS fit this bill and realize this property through
the use of cryptographic record signatures.

Availability In order to use ABD and the resulting delegation chains to evaluate poli-
cies and make authorization decisions, delegations must be available. If unavailable,
authorization decisions are possibly based on false negatives and access is unjustifiably
denied. On the other hand we can rule out false positives as long as our mechanism
provides authenticity and integrity guarantees of delegations as discussed above. Ideally,
a name system provides availability of records in the face of an attacker as defined in
the re:claimID threat model. Blockchain-based name systems address this by having all
records replicated by all participants. Unfortunately, this mechanic does not necessarily
provide strong availability guarantees: In practice, blockchains are notoriously prone to
even archaic attacks on peer-to-peer networks [89, 51]. DNS-based designs suffer from
the already discussed issues, most importantly the inherent susceptibility to censorship.
We abide by our assessment on record availability in the context of re:claimID where we
settled on GNS. We consider it to be a well-rounded system for an implementation in
order to ensure delegation availability as well due to its resilient underlying distributed
hash table (DHT).

101

Chapter 5. Establishing trust in self-sovereign identities

Confidentiality and privacy Bulk collection and enumeration of attribute delegations
is unwanted, as it is prone to expose organizational trust relationships. Consequently,
this disqualifies name systems that do not consider use cases where mappings and
record values are confidential such as Namecoin or DNS. Neither protect the contents of
resource records or namespaces. The issue with Namecoin can be generalized to any
blockchain-based design that does not have any additional technical mechanisms in
place to provide respective protections. At the same time, DNSSEC suffers from a design
weakness that results in a privacy issue regarding namespace enumeration[10]. While
mitigations exist, they are not yet widely deployed [54]. GNS on the other hand provides
us with namespace privacy and even delegation confidentiality given that the delegate
attribute is a shared secret. This allows us to design an ABD scheme which facilitates
what we call hidden delegations. We give details on the use case and mechanism of hidden
attributes in Section 5.1.4.

5.1.2. Design

In response to our considerations on security properties above, we design and implement
our ABD system on top of GNS. It provides us with the strongest security models under
our threat model. By limiting our design to a name system which exhibits the same
properties as GNS, we take a different route than for re:claimID which we designed to
be name system agnostic. On the other hand, through this choice we gain additional
leeway which allows us to define additional features such as hidden delegation records.
Further, we plan to use the system to support re:claimID attribute assertions. Since we
already settled for GNS in our prototype implementation, introducing yet another name
system would only increase complexity.

We first design a delegation record type which allows us to resolve ABD asserted
attributes. Further, we present a way to combine ABD-asserted attribute-based credentials
which are suitable to be provisioned using re:claimID. By means of a delegation chain
discovery algorithm we facilitate access control and policy evaluation through the use of
ABD.

In the following, we use the name system function definitions from Section 4.3.1.
Further, we use Li’s notation for attribute delegations from Section 3.3.1 which we
reiterated in the beginning of this chapter.

Attribute delegation records

We use the operator← to denote attribute delegations. We define that the issuer and the
delegated attribute are found on the left side of the operator. Accordingly, the delegation
subject expression is found on the right side. In the original design by Li arbitrarily long
delegations on the right-hand side of the expression are not allowed. This limitation is
only imposed to simplify the proposed resolution procedures. We lift this restriction
by imposing issuer-side storage of delegations in our design. Delegations in the form
A.a ← B.b1.[...].bn are valid in our design. Issuer-side storage implies that attribute

102

5.1. Delegation of attributes using name systems

delegations are managed and provisioned by the issuer entity as opposed to the subject.
This is unlike subject-side storage, where the subject is managing and provisioning the
attribute it is delegated. As a result, our design mandates that delegations are always
stored with the namespace owner.

In order to support delegation resolution, we first define the resource record type
“ATTR”. We use this record type to specify attribute delegations in the format as
presented in Section 3.3.1. Given a delegation in the form A.a ← e, we map it into
a namespace as follows: We define an entity as

A := (IA,NA) (5.1)

where IA and NA are an identity and a namespace associated with A as used in
Section 4.3.1, respectively. The delegated attribute a is the name of a record in the
namespace NA ∈ A. The value of the record contains e, a delegation expression that has
the semantics of ABD delegation types.

In order to support all four types of attribute delegations, we define an appropriate
wire format which allows to model any delegation expression e. Specifically, the value
of an “ATTR” record contains a delegation set data structure. The record wire format for
both the record and a delegation set can be found in Appendix B.4. A delegation set
consists of a number of delegation set entries. A single delegation set entry represents
exactly one delegation of type A.a← f . The expression f represents delegation types 1
through 3. Hence, in order to model those types of delegations, a delegation set contains
a single entry.

To model the type 4 delegation, a delegation set contains n entries. Combined, the
n set entries represent a delegation in the form A.a ← ⋂n

i=1 fi. A type 4 delegation
constitutes a logical “AND”. Hence, all expressions fi must be resolvable in order to
complete a delegation and establish its correctness. It is not possible to model a logical
“OR” using a single delegation set. Instead, to model this case we simply specify multiple
delegation set records under the same attribute a.

Algorithm 1 details how a single attribute delegation is published:

Algorithm 1: add/update
input : Attribute a

User identity U = (IU ,NU)
Delegation expression e

1 R ← (type =′ ATTR′, e, ttl = 1h);
2 publish(NI , a,R);

To revoke attribute delegations, the issuer simply removes the mapping from his
namespace. The delegations will remain resolvable until the respective records of the
attribute delegation expire in the name system.

103

Chapter 5. Establishing trust in self-sovereign identities

Credential records

In order to establish delegation chains from delegated attributes to a specific attribute-
based credential (ABC), we differentiate between attribute delegation records and a
credential record. Credential records are backward pointing delegations A.a ← B of
type 1 which typically come at the end of a delegation chain. Unlike attribute delegation
records which we always store in the issuer namespace NA ∈ A, credential records are
stored in the namespace of the subject B.

Subjects are provided with the credential record value in the form of a third party
attested ABC. Such ABCs are issued by authorities such as employers, email providers,
or nation states. We refer to the set of ABCs issued to B as CB. In our design, the user
manages and shares attribute credentials in the form A.a← B as private resource records
in re:claimID. We define the attribute format in Appendix B.5. Revocation of attribute
credentials is performed using traditional means such as having the issuer provide a
signed expiration date along with it. While more sophisticated revocation mechanisms
are conceivable, this is out of scope of our ABE system.

We note that the ABCs could alternatively be represented as type 1 attribute dele-
gations. However, this is disadvantageous as such an approach allows enumeration
of all entities that were issued credentials which match a certain delegated attribute.
From a privacy perspective this is not wanted. Further, we can leverage re:claimID as
a mechanism which allows users to manage and share attributes in a self-sovereign
fashion.

Delegation chain discovery

In order to facilitate the resolution and verification of attribute delegations, we design
a custom resolution algorithm. We assume that any resolution starts with an initial
attribute and a set of target credentials. The resolution algorithm then follows the
delegation chain in accordance with the delegation logic of Role-based Trust Management
(RT) as defined in Section 3.3.1.

The resolution is successful when a delegation chain DA.a,B is found from the issuer
namespace A, over the attribute a to a subject credential subset CA.a ⊆ CB. However,
resolution can only succeed if all attribute delegations d ∈ DA.a,B are resolvable and
B is able to provide the respective set of credentials CA.a. We define the delegation
chain resolution algorithm in the recursive evaluate procedure. We note that an actual
implementation of this procedure should define a discrete recursion depth limit in order
to ensure termination.

Initially, the procedure is called with the start of the delegation chain DA.a,B and a
credential set CB. In lines 1-4. the procedure checks if the given attribute delegation
is already a match against any provided credential in CB. If no match is found, the
attribute delegation record set SR is resolved from the name system in line 5. If the
resolved resource record contains a delegation set with a single entry, the expression e
is of type 1-3, otherwise type 4. In any case, we proceed to evaluate all delegation sets

104

5.1. Delegation of attributes using name systems

Procedure evaluate
input : Issuer A = (IA,NA)

Attribute a
Remainder r = xs ∨∅
Subject B = (IB,NB)

Credential set CA.a ⊆ CB

1 foreach E.e ∈ CA.a do
2 if E = B ∧ e = a then return TRUE; /* Delegation found */
3 ;
4 end
5 SR ← resolve(NA, a);
6 result← FALSE;
7 foreach R ∈ SR do
8 result← FALSE;
9 foreach all e ∈ R do /* Type 4 */

10 switch e do
11 case E do /* Type 1 */
12 if ∅ = r then result← FALSE; /* Invalid path */
13 else
14 result← result ∧ evaluate(E, x, s, B, CA.a);
15 end
16 break;
17 end
18 case E.e do /* Type 2 */
19 result← result ∧ evaluate(E, e, r, B, CA.a);
20 break;
21 end
22 case E.e. f do /* Type 3 */
23 result← result ∧ evaluate(E, e, fr, B, CA.a);
24 break;
25 end
26 end
27 end
28 if TRUE = result then break; /* Found valid delegation */
29 end
30 return result;

105

Chapter 5. Establishing trust in self-sovereign identities

R ∈ SR starting in line 7. If any delegation set can be followed to a credential of B,
the delegation is valid and we can terminate the algorithm. In order to ascertain this
case, for each expression e represented by a delegation set R, we perform SDSI-style
rewriting [25] of the original delegation A.a. We combine SDSI-style rewriting rules and
the backward resolution of a delegation graph in Li’s approach for RT0 as discussed in
Section 3.3.1. As mentioned previously, we enforce the issuer-side storage of attribute
delegations by storing them in the issuer namespace. We can see here that this allows us
to mitigate the otherwise necessary and complex unified approach by Li which is able
to resolve both backward and forward search of the delegation graph. Our procedure
follows the rewrite-resolve-check pattern described in the following text until we can
match a credential against a delegated attribute.

In lines 11-17, we handle the case of a type 1 delegation and must distinguish between
two cases: If the delegation remainder r is not empty, it consists of an attribute chain xs
where x is the first attribute in the chain and s the rest. In this case, we rewrite the initial
delegation attribute A.a to E.x and shorten the remainder to r′ = s by recursively calling
the evaluate procedure. This results in a reduction of the remainder and delegation
expression. If the delegation remainder is empty, we have reached an invalid chain.
We already verified that no credential in CA.a matches A.a ← B. A delegation in the
form A.a← E without a remainder r leaves us with no further options to continue the
delegation chain at this point.

In lines 18-20, we handle type 2 delegations of the form A.a← E.e. We simply rewrite
the delegation attribute by recursively calling the evaluate procedure with E.e as the
delegation attribute and an unmodified remainder r. Hence, the type 2 delegation does
not change the remainder.

When encountering a type 3 delegation A.a← E.e. f , we must add f to the existing
remainder r in lines 22-25. Then, we rewrite the delegation attribute A.a with E.e by
recursively calling the evaluate procedure with a new remainder r′ = f r. The type 3
delegation results in an expansion of the remainder and delegation expression.

In our proposed procedure, type 4 delegations in the form e :=
⋂n

i=1 fi are processed
individually as discussed above. The procedure at that point branches out for every
fi ∈ e. The branches are eventually reduced to a single evaluation result when all paths
have been evaluated.

5.1.3. Access control and policies

Above, we established how attribute delegation chains are resolved and verified given a
set of user credentials. Now, we discuss how the delegation chain discovery algorithm is
used to perform authorization and access control using policies. In order to authorize
subjects to access a resource, we define policies that contain delegated attributes: We
define that an entity V creates an access policy PV ,r that specifies a set of attributes
(an | a ∈ AV) needed to access the resource r. Any subject S is granted access to r if it is
able to present a set of credentials CV .x | x ∈ PV ,r that satisfied the policy PV ,r.

106

5.1. Delegation of attributes using name systems

V validates that for each x ∈ PV ,r, there exists a delegation chain DV .x from V .x to
CV .x. We define that the verifier V is always the issuer for all attributes x ∈ PV ,r. In order
to achieve this functionality, we define the verify procedure.

Procedure verify
input : Issuer V = (IV ,NV)

Policy PV ,r
Subject S = (IS,NS)

Credential set CP
1 result← TRUE;
2 foreach x ∈ PV ,r do
3 result← result ∧ evaluate(V, x, ∅, S, CP);
4 end
5 return result;

However, the verifier cannot know the credentials CS of the subject or which subset
CP = {⋃x∈P CV.x | CV.x ∈ CS} it must provide to satisfy P a priori. Similarly, the subject
may initially not be aware of the contents of P . Even if the contents of P are known to
S, the credential subset CP that matches P must first be identified. To enable this, we
define another procedure: collect. We note that this procedure includes the creation of a
superset of the credentials of a user. This is a highly inefficient but necessary part of the
procedure.

We use the above procedures and integrate them through the following authorization
protocol. Figure 5.1 illustrates the protocol flow. The steps in the protocol are as follows:

(1) The subject S attempts to access the resource r.

(2) V denies the access request and responds with a policy PV ,r.

(3) S uses the procedure collect which yields the credential subset CP ⊆ CS that
satisfies PV ,r.

(4) S accesses the resource r again and adds CP to the request.

(5) V processes the credential set CP using the verify procedure which performs
delegation chain discovery to verify that a delegation chain DV .x | x ∈ PV ,r exist.

(6) V grants S access to r only if all delegation chains can be found.

This process is simple enough to be integrated into standard protocols such as REST
request and the use of respective authorization headers. At the same time it is generalized
in a way which theoretically also allows integration into sophisticated authorization
flows and trust negotiations, for example in the context of User-Managed Access (UMA).

107

Chapter 5. Establishing trust in self-sovereign identities

Procedure collect
input : Issuer V = (IV ,NV)

Policy PV ,r
Subject S = (IS,NS)

Credential set CS

1 CP ← ∅;
2 foreach x ∈ PV ,r do
3 Cmin ← CS;
4 found← FALSE;
5 foreach subset Ci ⊆ CS do
6 if evaluate(V, x, ∅, S, Ci) then
7 found← TRUE;
8 if |Cmin| > |Ci| then Cmin ← Ci;
9 end

10 end
11 if found then CP ← CP ∪ Cmin;
12 end
13 if found then return CP ;
14 else return ∅;

Subject S Verifier V
1. Access resource r

2. Access policy P

3. collect 4. Access resource r with CP

5. verify
6. Resource r

msc ABD authorization flow

Figure 5.1.: ABD authorization protocol.

108

5.1. Delegation of attributes using name systems

5.1.4. Hidden delegations

Since we use GNS as our underlying directory service for attribute delegations, it is
possible to hide attribute delegation records. This is done by leveraging the query privacy
and namespace enumeration protection mechanisms of GNS which we discussed in
Section 4.4.1.

In the following, we discuss how we can use the fact that a name l can be treated as
a shared secret between two parties that want to exchange information via the name
system. Specifically, we use this property in order to allow issuers to hide attribute
delegations. For example, consider a type 2 delegation A.a← B.b. In GNS, the resolution
returning this hidden delegation is only possible if the shared secret attribute a issued
by A is known a priori. Consider the following use case as an example how such a
delegation is useful:

A whistleblower D has co-conspirators Xi. Each is issued a credential Ci of the form:

D.si ← Xi

The attributes si are randomly generated, shared secrets between D and Xi, respectively.
Further, the group uses a whistleblowing service S which allows them to access and
upload files. To this end, D delegates the secret attribute p to the co-conspirator attributes:

D.p← D.s1, D.s2, ...

The attribute D.p is used by S in the access policy P = D.p. When S evaluates the
policy, any attribute query performed in the delegation chain discovery algorithm is
protected. No observer is able to efficiently deduce any party Xi or delegation attribute by
monitoring the network. Through this approach, we facilitate private policy enforcement
using hidden attributes.

5.1.5. Example scenario

Before we go into details on our implementation, we give an example scenario which
is in need of a flexible and decentralized ABD system. Specifically, we integrate our
ABD design in the context of our research in the area of privacy friendly anti-doping
control systems as conceptualized in [125]. The use case allows us to investigate how
an authorization policy and relevant attribute delegations look like in a real world use
case. In short, we aim to improve the anti-doping process by providing a secure and
privacy-preserving service S to athletes and anti-doping organizations.

Motivation

The premise is that doping control officers (DCOs) need to use a service to retrieve
the current location of an athlete in the field in order to conduct unannounced doping
controls. The peculiarity of this use case is found in the organizational authorization
requirements and trust structures. At a glance, the following entities play a role in this
scenario:

109

Chapter 5. Establishing trust in self-sovereign identities

• World Anti-Doping Agency (WADA)

• National anti-doping organizations (NADOs)

• Doping control officers (DCOs)

• Doping control subcontractors

• Doping control system service provider

• Athletes

The organizational relationship between NADOs and WADA is not a strict hierarchy
as one might initially assume. National anti-doping organizations (NADOs) merely
incorporate and adhere to the world anti-doping code which is defined by the World
Anti-Doping Agency (WADA). Every single NADO is responsible for organizing and
executing doping tests for athletes in their respective regional domain.

At the same time, this task is commonly delegated to subcontractors. This loose
organizational structure makes a central management of credentials difficult. We assume
that WADA is neither interested in nor authorized to manage attributes of DCOs from
subcontractors. The same is true for the doping control system service provider. But,
WADA is able to assert that a NADO does adhere to its code.

At this point, one might be tempted to resort to a traditional public key infrastructure
(PKI). WADA could acts as CA NADOs as sub-CAs. NADOs could in turn delegate
attributes to DCOs. By design PKIs such as X.509 are often limited to bind a key to
a subject where the subject is uniquely identified by a globally unique name. Any
participating entity, from WADA to subcontractor and service provider to Athlete, needs
an identity asserted from this PKI. Further, X.509 does not directly address attribute
delegation and resolution. In this construct, issuance and revocation of attributes at
runtime is tedious.

Solution

In order to address the scenario as defined above, we propose the use of ABD-based
access control models. We note, however, that this problem and our proposed solution are
not unique to the above scenario. Any use case in which the organizational structures are
similar to the ones elaborated above, our proposed ABD delegations are viable options
in order to model trust relationships.

In the following, we present a respective setup of delegation chains that reflect the
complex entity relationships:

110

5.1. Delegation of attributes using name systems

S.user ← WADA.nado.dco (5.1)

WADA.nado ← NADA (5.2)

WADA.nado ← USADA (5.3)

NADA.dco ← C1.dco (5.4)

USADA.dco ← USADA.contractor.dco (5.5)

USADA.contractor ← C2 (5.6)

C2.dco ← C2.employee ∩
C2.controller (5.7)

C1.dco ← Alice (5.8)

C2.employee← Bob (5.9)

C2.controller ← Bob (5.10)

The service S delegates the attribute user to WADA.nado.dco. We assume that S uses
this attribute to authorize its users. Essentially, S uses a type 3 delegation to grant any
entity access that is considered a dco by a WADA NADO. For this, S assumes or knows
that WADA delegates the attribute nado to all NADOs.

In this case, example NADOs are the German “Nationale Anti Doping Agentur”
NADA and the “U.S. Anti-Doping Agency” USADA. The NADOs are further assumed
to delegate the attribute dco to their subcontractors using a type 2 delegation. In this
case, NADA delegates the dco attribute to a single contractor C1.

USADA uses a more complex delegation: It uses the attribute contractor to define
all subcontractors currently in use. This allows USADA to dynamically add or remove
contractors without having to modify the delegation logic. For both NADOs, the sub-
contractors may choose to either delegate the dco attribute to an attribute expression
that is more meaningful to the contractor or directly assign it to a user.

What is important is that WADA is not necessarily aware of the attribute delegation in
use by S. Trust relations in this design are purely on a need to know basis. In traditional
PKI approaches, the service S would have to delegate authority over the user attribute
to WADA. In our approach, this is not required as the delegations are always defined
with the issuer and never with the subject.

Figure 5.2 illustrates how namespaces could be organized in order to reflect the above
setup. However, in the figure we omit the namespace of contractor C1 as it is empty.

Figure 5.3 further allows us to illustrate the delegation chain discovery for our scenario:

1. S.user is resolved to a single record with the delegation set entry WADA.nado.dco,
a type 3 delegation.

2. WADA.nado resolves to two records containing one delegation set entry each:
NADA and USADA. The rewritten expressions NADA.dco and USADA.dco are
added to the graph.

3. NADA.dco resolves to a record containing the delegation set entry C1.dco. Bob
does not have a credential to satisfy this delegation.

4. USADA.dco resolves to USADA.contractor.dco. The attribute USADA.contractor
resolves to C2 leading to C2.dco.

111

Chapter 5. Establishing trust in self-sovereign identities

Figure 5.2.: Namespaces in our reference scenario.

5. C2.dco resolves to a single record containing two delegation set entries representing
the type 4 expression C2.employee ∩ C2.controller.

6. Bob has the credential C2.employee that matches the delegation set entry C2.employee.
The graph is backtracked but the delegation set containing C2.controller is not
yet fulfilled. Bob’s credentials are checked against C2.controller and the credential
C2.controller ← Bob satisfies the delegation set in (5).

7. The delegation graph is backtracked further until S.user is reached and the delega-
tion chain is successfully discovered in (8).

5.1.6. Reference implementation

In the following, we present details on our implementation of the ABE design above.
This reference prototype [116] integrates with re:claimID in order to enable users to
manage ABCs. We created a proof-of-concept application [117, 121] which supports the
ABD authorization protocol as specified in our design. In the next sections, we discuss
the details of our implementation.

We define the record types for attribute credentials and attribute delegations for GNS
and we present an application programming interface (API) specification which can be
found in the GNUnet source code [115].

Credential management

In order to enable the management of credentials and delegations, we implement a record
type for attribute credentials “CRED” and for attribute delegations “ATTR” according

112

5.1. Delegation of attributes using name systems

Figure 5.3.: Delegation graph in the reference scenario from S.user to Bob.

to the wire format found in Appendix B.1. To facilitate the creation of user credentials,
we implement a credential component and a respective API as part of GNUnet.

For example, if the issuer is a company A that decides to issue an attribute credential
employee to a subject B, the following command is executed using the gnunet-credential
command-line interface (CLI) tool:

gnunet-credential --issue --ego=A --attribute=employee --subject=B \
--ttl=1y

The command returns a credential encoded in a Base32 string which is valid for one
year. This allows the issuer to transfer the credential to the subject, which in turn stores
it in its local credential wallet. In order to store the credential, the subject uses our CLI
tool gnunet-namestore which is used to manage local namespaces:

gnunet-namestore --add --zone=B --name=test \
--type=CRED --value=DATA

The primary function of the gnunet-namestore CLI tool is to manage local GNS
namespaces. We define our credential wallet as a set of private records of type “CRED”.
Private records are never published in the name system and are consequently not
disclosed to other parties.

Delegation management

In order to create an attribute delegation, we define the use of “ATTR” records. Let us
consider the following example: A web service S needs to define a policy which allows
a group of users to access the service’s resources. Let us further assume, that the service
calls any authorized user “user”. This means that in order for any entity to gain access,
there must be a delegation path from S.user to a respective credential.

113

Chapter 5. Establishing trust in self-sovereign identities

Let us assume there is a company A of which all employees must be able to access
the resources. First, S adds a type 1 attribute delegation S.company ← A using the
gnunet-namestore CLI, effectively delegating the name “company” to A:

gnunet-namestore --add --zone=S --name=company \
--type=ATTR --value=A

S now defines that any entity which is delegated the name “employee” by A is
considered a valid user. Consequently, S uses a type 2 delegation S.user ← A.employee
to delegate the name “user” to any entity A calls “employee”:

gnunet-namestore --add --zone=S --name=user \
--type=ATTR --value="A employee"

Now, the company A consists of various branches. Hence, A delegates the attribute
“employee” to all of its branches using a type 3 delegation A.employee← A.branch.employee:

gnunet-namestore --add --zone=A --name=employee \
--type=ATTR --value="A branch.employee"

This mitigates the need for a central employee repository for A and delegates the
responsibility of employee definitions to the branches.

Finally, S might decide that in addition to a credential which proves that the user is
an employee of A, a service-specific credential “authorized” is needed. Consequently,
S modifies the delegation of “user” using a type 4 delegation S.user ← S.authorized ∩
A.employee:

gnunet-namestore --add --zone=A --name=division \
--type=ATTR --value="S authorized, A employee"

As a result, the namespaces of S and A are populated with the respective ABD resource
records as illustrated in Figure 5.1 and Figure 5.2. We note that delegations of the name
“authorized” are not stored as delegations in the namespace because we can assume that
they are credentials as issued above. We omit the definition of A.branch delegations and
respective employee credential creation for the sake of brevity.

Name Type Value

user ATTR S authorized, A employee

Table 5.1.: An example namespace for a service using attribute delegation records.

Attribute collection and verification

In order to collect credentials which satisfy an attribute as part of an authorization
flow, the CLI utility gnunet-credential is used. Consider the above scenario and in
addition a user B that needs to collect credentials that satisfy the attribute user as defined
by S. In this case, B executes:

114

5.1. Delegation of attributes using name systems

Name Type Value

employee ATTR A branch.employee
branch ATTR B

Table 5.2.: An example namespace for a company using attribute delegation records.

gnunet-credential --collect --ego=B \
--issuer=S --attribute=user

If the delegation chain is resolvable, this call returns a set of credentials CS which
B can present to another party in order to prove that S.user ← B holds. Using this
credential set CS, the other party can verify that claim by executing:

gnunet-credential --verify --issuer=S --attribute=user \
--subject=B --credential=CS

This command returns the delegation chain if it could be found and an error otherwise.

5.1.7. Caching considerations

In this section, we discuss performance implications of the GNS for our ABD system.
Distributed name systems like DNS and GNS make use of query response caching to
improve lookup performance. Responses are cached in the network by servers or nodes
that are not authoritative, i.e. they are not the authorities over the particular records
contained in the response. Caching in name systems is particularly effective for two
reasons: First, many participants query the same, popular names. Second, namespaces
are organized in a delegation hierarchy. This hierarchy is reflecting various cache-levels.

In GNS, the time it takes to resolve a query that is not locally cached depends on
the network topology and replication setting of the DHT. All nodes in the network
cache observed responses. Additionally, client resolvers have local response caches. As
the lookup of a locally cached delegation does not require any network queries its
performance impact is negligible. Hence, the time it takes to query a delegation chain
in our GNS-based ABD system is primarily determined by the performance of the
underlying peer-to-peer overlay; in case of GNS this is the DHT.

Given this observation, we can make use of the response caching mechanisms in our
ABD system: Previously queried delegations are cached locally by the requester and on
intermediate participants in the network which consequently improves resolution times
of all delegation chains that contain a particular cached delegation. As a rule of thumb,
cache hits are more likely for delegations which that are repeatedly resolved.

With respect to our example scenario from Section 5.1.5 consider the resolution of
a delegation chain S.user ← ...← C1.dco corresponding to Alice’s credential C1.dco ←
Alice. In this case, a minimum of five namespace queries are required assuming the
caches are empty. After an initial resolution, we can assume that at least the delegations
in (1), (2), (3) and (4) of our example are cached.

115

Chapter 5. Establishing trust in self-sovereign identities

If we now consider the delegation chain for Bob with credentials C2.employee← Bob
and C2.controller ← Bob, the cached delegation chain from S.user (1) to USADA can be
leveraged. Only the remaining delegations (5), (6) and (7) need resolution.

We can generalize this observation in the following. Given a delegation setup as
follows:

A.a← B.b.c (5.1)

B.b← C, D (5.2)

C.c← E.d (5.3)

D.c← F.d (5.4)

After the resolution of a delegation chain A.a ← ... ← E.d corresponding to a
credential E.d← Alice we can safely assume that (5.1), (5.2) as well as (5.3) are cached.
If the caches were empty, each namespace query induces a network operation with an
duration of tuncached where

tuncached :=
ndelegation

∑
i=0

tquery
i

and tuncached
i is the time it takes to resolve a delegation i from a namespace by performing

a query without caching. ndelegation is the length of the final delegation chain.
If subsequently a delegation chain for another subject with a credential E.d ← Bob is

resolved, we expect resolution times to be faster because the delegation chain is already
cached. The resolution time is estimated to be

tcached :=
ndelegation

∑
i=0

tcached
i

where tcached
i is the time it takes to resolve a delegation from a namespace if the response

is already cached.
Finally, if the delegation chain for a subject F.d ← Eve is resolved, we can leverage

cache hits for the first part of the chain (1), (2) and (3) but expect a cache miss for
(4). Hence, the resolution is expected to take longer than for E.d ← Bob, but it is still
expected to be faster than the initial resolution for E.d← Alice.

By combining the above observations, we expect the time it takes to verify a delegation
chain for any caching name system to be

t :=
ncached

∑
i=0

tcached
i +

nuncached

∑
i=0

tuncached
i

where ndelegation := ncached + nuncached.
In the specific case of GNS, resolvers locally cache all responses. As lookup of a

cached delegation does not require any network operations we define tcached
i ∈ O(1).

Consequently, the time t it takes to query a delegation chain in a GNS-based ABD system
is t := ∑nuncached

i=0 tuncached
i + C where C is a constant factor.

116

5.2. Non-interactive zero-knowledge credentials

In summary, the time complexity of a delegation chain lookup in GNS primarily
depends on the number of uncached delegations. This implies that for users that have
not previously interacted with a verifier, authorization time can be noticeable. However,
once authorized all following authorizations are likely near instantaneous, only requiring
network queries when delegations in the delegation chain expire. Further, we can expect
network performance to increase with a in increase in users and use of the system.
This is a reasonable assumption as DNS resolution of domain names also exhibits this
property.

5.2. Non-interactive zero-knowledge credentials

Above, we presented an approach which allows users and RPs to establish trust in
attributes through the concept of attribute delegations. However, resolution of trust
chains may be unnecessarily complex depending on the actual scenario. For instance,
if the user and RP have a trusted third party Identity Provider (IdP) in common, the
resulting trust chain is trivially short. In such cases, presentation of classical ABCs is
a logical approach which does not require the introduction of unnecessary complexity.
However, the use of classical ABCs such as X.509 certificates reveals potentially sensitive
attribute values such as name, age, or social relationships to the RP while the actual
value might not even be required.

Precisely for this use case, privacy-preserving attribute-based credential (PP-ABC)
systems have been proposed in the past [100, 99, 22]. PP-ABCs are built using mathemat-
ical protocols which allow users to prove statements over attributes. This mitigates the
need for revealing the attribute value itself if the statement is sufficient for the RP. The
most prominent example which is commonly given that applies to this use case is age
verification: The specific date of birth is irrelevant if the RP is only interested in whether
or not the user is above a certain age.

Traditional approaches such as those mentioned above often require the user and the
RP to engage in an interactive proving protocol. This prevents RPs from retrieving and
validating statements if the user is offline. This property is disadvantageous for identity
systems such as re:claimID where centralized directories are replaced by decentralized
peer-to-peer storages. One approach to remedy this issue is to require that proofs of
statements are predefined by the issuer of the ABC. Whenever a RP requests a specific
statement from a user, he must interact with the IdP in order to acquire it.

In our contribution, ZKlaims, we present a design for PP-ABCs which can be presented
non-interactively and at the same time allow users to decide what statements are made
as long as they do not violate the underlying attribute. We achieve this property through
the use of non-interactive zero-knowledge proofs.

The non-interactive property allows us to integrate ZKlaims into re:claimID. Proofs
can be stored and retrieved through its resilient, decentralized delivery mechanism. We
build upon recent advancements in the area of zkSNARKs in order to design NIZK
credentials which we present in the following sections. We further present an evaluation

117

Chapter 5. Establishing trust in self-sovereign identities

of our reference implementation and discuss its performance traits. Finally, we present
our prototypical implementation as part of re:claimID.

5.2.1. Background

zkSNARKs are a theoretical class of proofs which satisfy a specific set of formal prop-
erties in order to realize a NIZK proof. Its origin lies in the research area of verifiable
computation (VC) schemes [102, 56].

There are two actors in any VC scheme: The prover and the validator. In our case,
the prover is the user and the validator is a RP. VC schemes allow users to prove the
correct evaluation of a function given a set of inputs. This facilitates outsourcing of
computations onto a third party, for example because of significant complexity and high
performance requirements. At the same time, the result can be efficiently verified in
order to make sure that the computation was actually performed. Because of this, VC
schemes are optimized towards providing an efficient way to verify computation results.
On the other hand efficiency with respect to the proving processes is commonly not
prioritized.

zkSNARKs [8] were designed as an extension to a specific class of VC schemes in
order to add zero-knowledge properties to the schemes. Popular verifiable computation
schemes which allow to build zkSNARK proofs include Pinoccio and a scheme by Groth
et al. [102, 56].

In zkSNARKs, the verifier of a computation must be able to verify the proof – i.e. the
result of the computation – without a private input called “witness”. This “witness” is
only known to the prover. The verification of a result does not require the private function
input. Hence, the verifier is able to verify a computation result without knowledge of
what was actually the subject of the computation. We generalize the following high-level
primitives of a zkSNARKs scheme:

Setup(ϕ)→ (pk, vk) (5.5)

Prove(pk,~a,~x)→ π (5.6)

Veri f y(vk, π,~x)→ {0, 1} (5.7)

Initially, we must establish a constraint system ϕ. Our constraint system is a set of linear
constraints which are internally translated into arithmetic circuits by the zkSNARKs
scheme. The constraint system is a blueprint that allows us to define the shape of ground
truths. It also allows us to derive the proving key pk and verification key vk through
the use of a setup procedure. The constraint system – and consequently both pk and
vk – are public. They are meant to be published and known by both prover and verifier,
respectively.

For a constraint system to be useful in our use case, it must be constructed in a way that
supports proofs on ABCs. In order to achieve this, we define the setup and construction
of a ZKlaims constraint system construction in the design section. To generate a proof π,
the prover must supply proof input vectors ~x and~a as well as the proving key pk. ~x is the

118

5.2. Non-interactive zero-knowledge credentials

property to prove and~a are private attributes only known to the prover. Hence,~a is the
“witness” to our zkSNARKs scheme. We discuss the contents of the input variables along
with the ZKlaims ABCs later in this section. In order to validate a proof π, the verifier
uses the verification key vk and the public input vector ~x as inputs to the validation
procedure. The verification result is either valid or invalid.

5.2.2. Design

In the following, we present our design of ZKlaims which satisfies the following three
requirements:

Statements on credentials: ZKlaims must allow users to generate proofs on third
party issued credentials. The user must be allowed to freely choose the statement ~x. The
verifier must be able to verify that the statement is true with respect to the third party
issued credential without the knowledge of the actual credential value~a.

Non-interactive presentation: ZKlaims must allow verifiers to prove the correctness
of a statement non-interactively, e.g. without online interaction with the user or the
credential issuer.

Selective disclosure: The user should have the option to selectively disclose credential
values if necessary.

For ZKlaims, in addition to the prover and verifier we define a third actor: The
credential issuer. The issuer is a trusted third party that is issuing ABCs to users which
take the role of provers. The credential contents are private and represent the private
input vector ~a of the proving procedure. The prover is able to make any statement
regarding its issued credentials and create a proof π which asserts that the statement
is valid. The verifier is an entity which requires the prover to prove the validity of a
certain statement. In our use case, this statement is based on a specific ABC. The proof
π is zero-knowledge in that the verifier only learns whether or not the statement on
a credential is valid. The contents of the credential are not disclosed to the verifier.
Figure 5.4 illustrates our scenario including the generation of the keys, a proof and its
verification.

We use this illustration in the following sections to explain the design and usage of
ZKlaims.

Attributes and credentials

First, we define a ZKlaims credential C := (~a,~y, S). We define the input vectors~a and ~y
as bit vectors:

~a :=~a0 | . . . | ~an where ~ai ∈ {0, 1}∗ (5.8)

~y :=~h0 | . . . | ~hn where ~hi = hash(ai) (5.9)

~y represents the private attributes of the statement ~x. ~p and~r are variable and may be
chosen by the prover as part of the proving process. S is a signature over ~y and is created

119

Chapter 5. Establishing trust in self-sovereign identities

Figure 5.4.: Actors and protocol primitives in a ZKlaims use case.

by the issuer. As part of the vector ~y, the issuer must include a salt in order to prevent
trivial brute-force attacks against the hash preimage. The signature is created through
traditional public-key cryptography. This allows a verifier to establish trust from his set
of trusted, third party credential issuers to the credential C and verify its authenticity.

We note that~a contains n + 1 elements but there are only n attributes while the last
element is reserved. This is a design choice for the following reason: We define the last
element ~an to be a unique identifier of the credential. It is a random nonce generated
by the credential issuer when the credential ~y is issued. The nonce ensures that the
credential is unique across subjects even if their attributes~a are the same.

We expect an issuer to provide a mechanism that allows the user to retrieve credentials
C through a secure communication channel. This transfer is out of scope of this work,
but for web-based use cases it can be realized through a traditional TLS channel in
combination with client authentication. Then, the transfer of the credential from the
issuer to the user can be performed through a simple download procedure. The user
then stores the credential in a wallet on a local storage under his control.

Constraint system and keys

As discussed in the background section, we must define the constraint system ϕ. The
entity responsible for creating the constraint system is the credential issuer because it
is the entity which is authoritative over what kinds of attribute credentials it plans to
issue to its users. A ZKlaims constraint system ϕzklaim must be setup so that it enables a
prover to prove statements on credentials in the form C. Figure 5.5 illustrates our circuit
construction.

Constraint systems process input variables in an algebraic circuit and output a boolean
return value. Hence, it is possible to combine multiple constraint systems into one new

120

5.2. Non-interactive zero-knowledge credentials

Figure 5.5.: ZKlaims constraint system ϕzklaim.

constraint system. In our design, we define the linear constraint system ϕzklaim as a
combination of n + 1 sub constraint systems:

ϕzklaim := ϕhashCompare ∧
(

n∧
i=0

ϕi
predCompare

)
(5.10)

The hashCompare constraint allows the prover to verify that the user-provided private
input vector~a matches the credential C contents. The second class of constraint systems
are used to model, prove and verify comparative statements on the private input~a. For
this the issuer must pre-determine the number n of attributes that~a may contain as it
determines the upper bound of sub constraint systems of type ϕpredCompare. As illustrated
in Figure 5.5, each ϕi

predCompare constraint takes exactly one a ∈~a as input whereas the
ϕhashCompare constraint system takes the whole input vector~a. As constraint systems are
rigid in this regard, a change in the number of attributes requires a regeneration of the
constraint system ϕzklaim.

Proving

Using ϕzklaim any entity is able to generate the public proving key pk and verification
key vk using the respective Setup(ϕzklaim) procedure of the zkSNARKs scheme. The
key pk is used by the user in order to prove the validity of statements on his attribute
credentials. Each ϕi

predCompare may be used by the prover to impose a predicate ~pi with

121

Chapter 5. Establishing trust in self-sovereign identities

respect to a reference value ~ri. The hashed attribute references in ~y are combined with
the above into the public proof input vector ~x:

~x := ~y | ~p |~r (5.11)

By default, each ~pi is initialized as a no-op dummy operation which always evaluates
to true. In order to create a statement on an attribute ~ai, the user sets the predicate
~pi to any combination of <, = and > or their respective complements ≮, 6=,≯. This
predicate is used in combination with a reference value ~ri which contains a value that the
corresponding attribute ~ai is to be checked against with the predicate ~pi. As an example,
to create a proof input which is supposed to verify that a user is born before a certain
data, the reference value ~ri for the “data of birth” attribute would be set to a certain
timestamp in the past which reflects the age barrier. The position n of the reference
value is defined by the issuer through the constraint system. The predicate is set to ≮.
Such a proof input ~p allows a user to prove that he is over a certain age.

In general, ~p can be chosen arbitrarily by a prover. However, ϕhashCompare is used to
import the requirement that any prover must be able to provide a witness in the form
of a pre-image to ~y, namely~a. As already mentioned above,~a – and in particular a ∈~a
– serves as a secret that the prover must present in the proving process as part of a
witness to the ϕhashCompare constraint. Hence, only the subject which is in possession of a
credential C from the issuer is able to satisfy the constraint system.

In order to validate a proof π, the prover must apply the public proof input ~x, the
proving key pk as well as the private input vector ~a to satisfy the constraint system
ϕzklaim and generate a proof π. The user generates a proof as follows:

π ← Prove(pk,~a,~x) (5.12)

The user is able to provide the hashes in ~y and the pre-image~a from the credential C
to satisfy the ϕhashCompare constraint system. The public input vector ~x is built using ~y, the
predicate inputs vector ~p and the reference value vector~r which represent the statements
made by the user on the attributes in ~a. We expect that the predicates are defined a
priori, for example, through a negotiation between the verifier and the user. The verifier
can request from the user to provide a specific proof including certain predicates and
thus defines the respective predicate variables ~p and~r.

After the user calculates the proof π, it can be presented to a verifier along with ~x. We
define a ZKlaims context (π,~x, S) which – due to the non-interactive nature of the proof
– can be persisted by the user and non-interactively retrieved and verified by a verifier.

Verification

It is not necessary for a verifier to directly interact with the prover to verify a proof π.
However, upon retrieving the ZKlaims context (π,~x, S) and before the verification of
π, the verifier must verify the signature S over ~y | yi ∈ ~x. Using this information, the
verifier proceeds to retrieve the correct proving key vk from the trusted issuer and uses
it to verify the proof π:

122

5.2. Non-interactive zero-knowledge credentials

0 5 10 15 20

0

20

40

60

Number of payloads

S
ec
on

d
s

Groth
Pinocchio

0 5 10 15 20

0

20

40

60

Number of payloads

S
ec
on

d
s

Groth
Pinocchio

Figure 5.6.: Left: time required to derive verification key vk & proving key pk from the
constraint system ϕzklaim.
Right: time required to create proof π depending on the number of attribute
payloads.

result ∈ {FALSE, TRUE} ← Veri f y(vk, π,~x) (5.13)

The verification function yields TRUE if the user was able to provide inputs to ϕzklaim
that satisfy the underlying constraint systems. It is essential that verifiers check that
the predicate inputs and reference vectors ~p and~r, which are provided by the user as
part of the ZKlaims context, are semantically what they expect them to be. Especially
if the verifier specifically requested a predicate to be proven, such as “age ≥ 18”, the
respective predicate (greater or equal) as well as input variable to check against must be
correctly set.

5.2.3. Example use

In order to illustrate the use of a ZKlaims credential, let us assume that a user must
provide a proof πdob to be of legal age in order to access a website. The website accepts
credentials issued by a local government. Let us further assume that this government
issues credentials Cdob which are prefined to contain a single attribute~a :=~adob, contain-
ing the date of birth of a subject. Issued credentials further include the ~y := ~hdob and
corresponding signature S in order to provide a trusted assertion of the attribute value
to be used in the verification process.

The website requests a proof from its users with a reference value~rdob that contains
the closest date which would pass as a legal age given the current date. Additionally,
the requested ~pdob then would consist of a ≥ predicate. Any user in possession of a Cdob
may calculate πdob as follows:

πdob ← Prove(pk,~adob,~xdob := ~ydob | ~pdob |~rdob) (5.14)

123

Chapter 5. Establishing trust in self-sovereign identities

Figure 5.7.: ZKlaims integration with the reclaimID identity provider.

The user may then provide the proof to the website. The website can verify the proof
and authorize access to users if the verification is successful. It does not learn the actual
date of birth of the user.

5.2.4. Reference implementation

Our reference implementation1 is built on top of the libsnark2 library. zkSNARKs are
based on verifiable computation schemes. While libsnark supports a variety of different
schemes including Pinocchio [102], we use the scheme of Groth [56] which is also readily
available. We settled on Groth because it exhibits better performance than the other
schemes available in libsnark.

Performance and evaluation

We evaluated the performance of ZKlaims for issuing, proving and verification with
respect to the number of attributes in a single credential. Due to technical limitations
imposed by the underlying constraint system we must use fixed size inputs to the con-
straint system. We define a collection of attributes that fits into a single input as a payload.
In our instantiation, we use a payload size of five attributes. In our implementation, a
single payload holds up to five attributes. Our test setup consists of an Intel Core i7
7500U 3.2 GHz with 16 GB of RAM.

In Figure 5.6 we can see that the time it takes to construct the issuer constraint system
increases linearly with the number of attribute payloads in our credential. It takes
roughly 2.5 seconds to build a constraint system that supports five attributes in a single
payload and increases by the same amount for every additional set.

1https://gitlab.com/kiliant/zklaim, accessed 2019/01/08
2https://github.com/scipr-lab/libsnark, accessed 2019/01/08

124

https://gitlab.com/kiliant/zklaim
https://github.com/scipr-lab/libsnark

5.2. Non-interactive zero-knowledge credentials

The time it takes a prover to construct a proof depending on the amount of payloads
defined by the issuer constraint system can be found in Figure 5.6. We can see that
just like the initial construction of the constraint system, proof construction time also
increases linearly with the number of payloads. Creating a proof in the case of a single
payload takes roughly 2.4 seconds and increases by the same amount for every additional
set.

While we evaluated the time it takes the verifier to validate proofs, the results sug-
gest that the impact is negligible: In ZKlaims, proof verification is simply a matter of
evaluating a polynomial function and measured times range below 10 milliseconds. The
issuer constraint system needs to be created only once initially. Proofs need to be con-
structed every time a verifier has a new request regarding the predicates it needs proven.
Once a proof for a combination of predicates exists, it can be stored and presented
non-interactively to any concerned verifier.

In addition to the evaluation of performance, we also take a look at the size of proving
and verification keys as well as proof size dependent on the number of payloads. In
Table 5.3, we find that the minimum size of a proving key is roughly 9 MB. With every
payload – i.e. every set of five attributes – supported by the issuer constraint system,
the proving key increases in size by 40 to 50 MB. At 20 payloads, this results in a 182
MB proving key. Due to this size constraint, issuers should either limit the number of
supported attributes or bootstrap dedicated constraint systems so that a prover is only
required to handle proving keys for attributes actually relevant to them.

At the same time, the verification key takes a minimum of 784 bytes and its size
increases by 700 to 1000 bytes for each additional payload. The space burden thus clearly
lies with the prover. Proofs itself are of constant size at 137 bytes. This is good news with
respect to storage capabilities provided by our name system-based directory service in
re:claimID since 137 bytes are manageable.

Payloads pk in MB vk in bytes Proof in bytes
1 8.65 784
5 43.15 1543

10 86.94 2493 137
15 133.37 3443
20 174.51 4436

Table 5.3.: Key and proof sizes depending on the number of payloads.

Integration

We designed ZKlaims specifically for decentralized identity provider services that require
or support non-interactive presentation of identity attributes. To publish and propagate
ZKlaims objects such as the issuer credential system, verification key and proofs, we use
re:claimID.

125

Chapter 5. Establishing trust in self-sovereign identities

Given the strict size constraints of proving and verification keys, and due to technical
constraints of name systems, we assume that verification keys must be addressed out-
of-band. However, since the authority over the issuer constraint system – and with it
the keys – is the issuer itself and keys can be presumed to rarely change, out-of-band
distribution using traditional means such as web servers is feasible.

On the other hand, distributing credentials and, more importantly, proofs using any of
the above name system-based delivery systems is certainly possible. Users create proofs
and authorize verifiers to retrieve and verify them from the name system in an efficient,
completely decentralized fashion.

In our implementation, the issuer publishes the ZKlaims constraint system φ, the
verification key vk and the proving key pk in re:claimID. This record is published in a
namespace which is owned by the issuer. This allows any prover to retrieve the issuer’s
constraint system and proving key and to verify its integrity and use it as inputs in
proving and verification procedures. It should be noted here that proving keys over 63
kilobyte would not fit into a single record of the GNS directory due to the record size
limit and would have to be split into multiple records.

Figure 5.7 illustrates the integration of ZKlaims with the re:claimID identity provider.
The prover shares the proving context including the proof π, the proof input ~x and the
credential signature S with the verifier over re:claimID. This is done by having the prover
store the proving context as an attribute record in reclaimID. This attribute is shared
with a verifier through an out-of-band authorization protocol such as OpenID Connect.
Our reference implementation can be found online as part of the GNUnet peer-to-peer
framework3.

We note that integration in the OpenID Connect 1.0 (OIDC) flow as supported by
re:claimID is theoretically possible. However, the standard does not cover a way to
request credentials from specific third party identity providers and much less the request
of specific statements or proofs on ABCs. Consequently, while our implementation within
re:claimID supports ZKlaims, the standardized authorization protocol does not. We
consider the integration and possible extension of the OIDC to be out of scope of our
research and merely a necessary standardization effort.

5.3. Summary

In this chapter, we primarily addressed our third research question which revolves
around the challenge of establishing trust in identities which are shared over self-
sovereign identity systems such as re:claimID.

In the first part of this chapter, we show how the general idea of ABDs-based trust
delegation can be used to establish trust in self-sovereign identities. While ABD systems
have been proposed by other authors in the past, practical implementations which
retained its decentralized and distributed nature were missing. Our contribution is

3https://gnunet.org/git/gnunet.git/tree/src/zklaim?h=zklaim, accessed 2019/02/13

126

https://gnunet.org/git/gnunet.git/tree/src/zklaim?h=zklaim

5.3. Summary

the continuation of their work and the transfer into a real-world use case by means of
designing and implementing a practical ABD trust management system.

Our design combines the role-based policy language RT0 for distributed trust estab-
lishment with the decentralized infrastructure of name systems. The system enables the
creation and specification of trust relationships without the need for centralized trust
anchors and policy databases.

We propose a trust chain resolution strategy for name systems which, according to the
theoretical groundwork provided by Li et al. [84], ensures that chains are consistently
resolvable. In a reference scenario, we demonstrate that there is a practical benefit of
a decentralized ABD in real world applications. Further, we show how secure name
systems such as GNS provide a suitable basis for a prototypical implementation.

In future work, we consider enhancing our system with distributed trust negotiation
instead of our basic authorization protocol, such as the one proposed by Li et al [84].
Discovery and selection of trust chains could be delegated to an authorization framework
such as UMA in order to allow RPs to use a standardized protocol for standardized
authorization management. Further, we did not discuss usability aspects of delegated
attribute management systems: Creating policies based on decentralized attributes
requires a priori knowledge or out-of-band discovery of possible delegations. Also, it
would be valuable to understand to what depth attributes are realistically delegated in
practice.

The other contribution to research question three in this chapter is ZKlaims. Given
a trusted IdP between user and RP, we present the design for non-interactive privacy-
preserving credentials based on a non-interactive zero-knowledge protocol. It enables
users to present statements on third party asserted ABCs to RPs without having to
disclose the potentially sensitive information contained in the credentials. We have
shown how zkSNARKs can be leveraged for decentralized identity sharing systems
such as re:claimID. Our performance evaluations of ZKlaims show that its application is
practical and where integrators must account for additional resources.

Regarding the integration of ZKlaims in a protocol such as OIDC we face open
issues regarding spotty standardization. Current specifications do not accommodate
authorization requests by RPs which allow to indicate the type of attribute which is
requested. While we do not see any fundamental problems with designing such a
scheme on top of OIDC, this aspect is out of scope of this work.

In summary, we have presented two approaches to privacy-preserving trust estab-
lishment for decentralized directory services and self-sovereign identity systems. We
achieved our goal to complement re:claimID with respect to third party attribute asser-
tions using approaches which do not degrade the decentralized character of re:claimID.

127

CHAPTER 6

Conclusions

In this thesis we approached the complex topic of decentralized identity management
in order to mitigate the increasing privacy concerns which arose over the past years. We
demonstrated how self-sovereign management and sharing of identities and data by the
user can be separated from authoritative identity assertions issued by Identity Provider
(IdP)s for the user.

Our contributions include an abstract design for a decentralized directory service
architecture on top of secure name systems. In order to allow users to manage and control
access of third parties to identity information stored in the decentralized directory we
proposed the use of attribute-based encryption (ABE). In addition to this novel approach
to identity management, we presented a standard-compliant protocol layer to ease
integration efforts by relying parties (RPs) and limit changes in the user experience. We
implemented a prototype of our design on top of the GNU Name System (GNS) and the
use of off-the-shelf ABE implementations. Our performance and usability evaluations
of our reference implementations show that the system is suitable for deployment in
practice. We demonstrated that the system can be used not only for end user identity
management and attribute sharing, but also for device identities and sensor data in
the Internet-of-Things (IoT). In order to complement our self-sovereign identity system,
we propose a decentralized, attribute-based delegation (ABD) system built on the
same building blocks. It facilitates the implementation of flexible trust models across
trust domains. Additionally, we present a privacy credential system compatible with
decentralized directory services.

In the following, we discuss how and to what degree our contributions address our
initial research questions. Further, we conclude this thesis by giving an overview over
open research questions. Those constitute aspects which we identified in the course of
our research, but did not investigate as they do not directly fall into the scope of this
thesis.

129

Chapter 6. Conclusions

6.1. Contributions to research questions

Our contributions were motivated by the research questions we defined in Chapter 1
of this thesis. We note that while our contributions address the research questions as
elaborated in the following, we do not consider our approaches to be the only possible
solutions the those challenges. We presented the current state of the art in Chapter 3 and
outlined our contributions beyond that. Future research may find alternative answers to
our research questions.

Research Question 1: How can we ensure the users right to informational self-determination
regarding his digital identities? In order to support the user in exercising his right for
informational self-determination, we propose the decentralization of identity provider
services and the separation of identity verification and personal data sharing. We
designed re:claimID in order to address this challenge and to realize a decentralized,
open service for self-sovereign identity management and attribute sharing. We propose
the use of a secure name system as basis for a directory service. This service is open to
all users within the confines of name registration rules imposed by the underlying name
system. Users are further enabled to switch between or dispose of any of their digital
identities. In order to maximize the openness of the system, our re:claimID reference
implementation is built on top of the GNS, which does not impose constraints on name
registration. We put authorization decisions and enforcement thereof on identity data
completely in the user’s hands through the use of a cryptographic access control layer
built using ABE.

Consequently, we maximize the ability of users to exercise their right to informational
self-determination by facilitating self-management of digital identities and personal
data without the requirement of any third party services. This separates the digital
identities of users from commercial interests such as targeted advertisement and reduces
opportunities of data abuse.

Research Question 2: How can we mitigate the liability concerns that arise with the manage-
ment of identity data? By putting the user in charge of identity and attribute manage-
ment trough a decentralized, self-sovereign identity architecture, we enable IdPs to
mitigate liability threats in connection with data protection laws. IdPs no longer have to
worry about providing services which allow RPs to retrieve and users to manage identity
and attribute data. Instead, they can focus on their main purpose: Being authorities with
respect to specific aspects of digital identities.

In use cases where third party asserted credentials are required by RPs, IdPs fill the
important role of verification and attestation of user attributes. Through our contribu-
tions, such assertions can be handed over by the IdP to the user. No longer must IdPs
store all user data permanently in order to provide it through an online service to RPs.

We admit that our approach is prone to destroy current business models of some IdPs
which revolve around data analytics of social movements and monetization of personal

130

6.1. Contributions to research questions

user data. But, it also mitigates the liability risks IdPs are subjected to with respect to
privacy laws and regulations. IdPs are enabled to follow the spirit of data reduction and
data economy. This reduces risks which are commonly associated with unintended user
data disclosure, for example through hackers and data leaks.

Research Question 3: How can trust in identity attributes be established in decentralized,
self-sovereign identity systems? Self-sovereign identity systems, especially those that
support storage and retrieval of identity data asynchronously with RPs, face a challenge:
What if the RP requires external, third party verification of the identity data? We
elaborated above that this is the primary purpose of IdPs. However, in traditional
systems trust establishment was achieved implicitly, by having the IdP itself serve the
asserted data. In self-sovereign identity system, such as the one proposed by us, this
is no longer an option. While existing public key infrastructures (PKIs) can be used to
complement self-sovereign identity systems, their imposed rigid trust models often still
require centralized infrastructure or impose centralized trust hierarchies. We investigated
mechanisms for decentralized trust establishment in order to find efficient and flexible
approaches to this challenge.

We proposed the use of ABD policies which are resolvable via the same decentralized
infrastructure which is used by self-sovereign identity systems. This enables IdPs to
assert not only user identities, but delegate assertions and build assertion chains in
order to build a trust ecosystem which can hypothetically span across all IdPs. At the
same time, RPs are enabled to build access control policies using local authoritative trust
domains and evaluate trust chains to their users.

In addition to ABD trust establishment, we also propose a privacy-preserving creden-
tial system compatible with decentralized directory services. While approaches like ABD
allow us to decentralize trust establishment itself, we also investigated the protection of
personal information through the use of privacy credentials. Privacy credentials make
use of zero-knowledge protocols to enable users to provide credentials without disclos-
ing personal information. The challenge we were faced with is that current protocols
require interaction between user and RP for credential presentation. This is not practical
as the RP may require the credential information at times when the user is offline. As a
result we created attribute-based credentials which can be presented non-interactively
retaining zero-knowledge properties.

131

Chapter 6. Conclusions

6.2. Outlook and future work

In the process of our research, we have identified additional future work which we did
not address as part of this thesis. We do not consider research in the area of self-sovereign
identity systems to be exhausted. The following aspects require further investigation
and respective results would also particularly benefit and complement the contributions
we presented in this work:

Usage control over shared identity data: The first topic is usage control over shared identity
data. While our contributions address questions of access control and authorization, we
left aside any concept of data usage control.

When a user authorizes a RP to access personal information, it is free to do as it
pleases with data including, but not limited to, disclosure, modification and storage.
While we assume the RPs act in their self-interest by not storing this data in order to
mitigate liability risks, we cannot ensure that they actually behave in this way.

This issue could be addressed through non-technical means such as certification
and audits of RPs. Systems for continuous assurance of respective properties facilitate
such approaches through technical means. However, certifications offer no tangible
guarantees for the user. While current privacy laws and regulations also dictate the
limits of personal data processing, technical means in order to enforce them are still in
their infancy. Finding efficient technical solutions to this problem which are applicable
in decentralized architectures such as re:claimID is a relevant and quite challenging area
of research. One direction would be to implement protocols revolving around trusted
computing and remote attestation with trust anchors rooted in computing hardware.

Identity and key recovery mechanisms: The second aspect falls into the area of identity
and key recovery mechanisms. Given the significance of digital identities in all aspects of life
today, the loss of access to them is fatal from the point of view of the user. Self-sovereign
identity systems such as re:claimID or blockchain-based approaches make heavy use of
asymmetric cryptography. The users only wield control over their identities as long as
they are in possession of the respective associated private keys.

Since self-sovereign identity systems cannot rely on trusted cloud storages in order
to implement self-service recovery mechanisms, alternative approaches must be found.
One conceivable approach is to split up key material and persist it in the decentralized
storages in a way which allows only the user to reassemble it. Another approach is using
the social graph of the user and distributing necessary information for identity recovery
on friends’ devices [137]. If the user trusts a number of peers then threshold encryption
schemes as another option. Threshold cryptography itself is already well-researched [32,
76, 55] and is slowly finding its way into key management for decentralized applications
in order to increase resilience and usability [50]. However, usable integration in general
and integration into identity systems in particular are promising areas of future research.

132

6.2. Outlook and future work

In any case, no optimal solution exists at the moment but is required in order to
ensure uninterrupted, smooth operation of a self-sovereign identity system.

Device identity management and sensor data sharing: In Chapter 4, we already briefly
discussed the applicability of re:claimID to the IoT. However, our contribution in this
thesis regarding trust establishment through ABD especially in the context device
enrollment is an interesting research opportunity. Existing efforts regarding device
enrollment in local trust domains such as the IETF BRSKI [104] specifications do not
directly address trust establishment of initial device identities. The applicability of ABD
in order to build truly distributed IoT ecosystems which support the establishment of
trust from device vendors to users is an open question.

Further, our approach to privacy credentials might also be applicable in the IoT context:
In order to improve security in the IoT, there are two conflicting requirements. The first
is that administrators want to know if devices in their networks are running software
which is up to date and do not contain any known vulnerabilities. If they do, then they
need to take precautions such as firmware updates or network quarantine. On the other
hand, mechanisms which allow to ascertain the software versions help attackers to find
applicable exploits easily. As such, device and software are often configured to not make
this information publicly available.

The above requirements are more or less mutually exclusive. However, through the
use of privacy credentials it might be possible to tackle this problem.

133

List of Figures

2.1. Directory services. 8
2.2. Example of a Directory Information Tree (DIT). 9
2.3. A minimal self-managed DID Document [105] 10
2.4. An example Domain Name System (DNS) namespace hierarchy. 12
2.5. A centralized IdP architecture. 16
2.6. A juxtaposition of related entities in the OAuth 2.0 and OpenID Connect

1.0 (OIDC) specifications. 17
2.7. A federated IdP architecture. 18
2.8. A self-sovereign identity architecture with a decentralized directory service. 20
2.9. An architecture combining a decentralized directory service with ad-hoc

attribute sharing. 20
2.10. Trust management categories. [5] . 22

3.1. The NameID architecture. 30
3.2. The DecentID architecture. 32
3.3. The Sovrin architecture. 33

4.1. The re:claimID system architecture. 50
4.2. A user adds an identity in re:claimID. 54
4.3. A user authorizes an RP in re:claimID. 56
4.4. Left: A RP retrieves an ABE key from re:claimID. Right: A RP retrieves

and decrypts attributes from re:claimID. 58
4.5. The architecture of our re:claimID prototype. The purple base components

are provided by the GNUnet framework. 63
4.6. Example scenario of namespace delegations in GNS. 65
4.7. An overview over the re:claimID client as used by end users and RPs. . . 70
4.8. Initially, the user is asked to add their first identity. 72
4.9. The user is asked to add the requested attributes after adding a new identity. 72
4.10. The main re:claimID user interface listing all available user identities. . . 73
4.11. An OpenID Connect authentication code flow in re:claimID. 74
4.12. Our re:claimID architecture in an IoT use case. 75
4.13. A QR Code/NFC proximity based authorization for re:claimID. 77
4.14. Box plots of 100 proof calculations using different parameters. 79

135

List of Figures

4.15. Median attribute retrieval times across all test runs for network sizes of
50, 100, 150, and 200 nodes. [114] . 82

4.16. Key retrieval performance of user keys for a network size of 100 nodes. [114] 83
4.17. Attribute resolution performance for a network size of 100 nodes. [114] . 84
4.18. System Usability Scale (SUS) scores for the re:claimID web use case. [57] 85
4.19. The prototype re:claimID device used in the usability study. [57] 86
4.20. The user scans the QR code on the website using the reclaim app.[57] . . 87
4.21. The user initiates the NFC authorization flow with the device. [57] 87
4.22. After a successful authorization, the website is triggered to retrieve and

display the sensor data. [57] . 88
4.23. SUS scores for the re:claimID IoT authorization study. 89
4.24. re:claimID integrated into an existing OIDC ecosystem as RP. 89
4.25. re:claimID integrated into an existing OIDC ecosystem as IdP. 90
4.26. The authorization protocol. The client represents a RP.[123] 95
4.27. Alternative re:claimID design using authorization namespaces in GNS. . 97
4.28. Access revocation in the alternative re:claimID design. 97

5.1. ABD authorization protocol. 108
5.2. Namespaces in our reference scenario. 112
5.3. Delegation graph in the reference scenario from S.user to Bob. 113
5.4. Actors and protocol primitives in a ZKlaims use case. 120
5.5. ZKlaims constraint system ϕzklaim. 121
5.6. Left: time required to derive verification key vk & proving key pk from the

constraint system ϕzklaim. Right: time required to create proof π depending
on the number of attribute payloads. 123

5.7. ZKlaims integration with the reclaimID identity provider. 124

B.1. Attribute record (Type ID_ATTR) . 143
B.2. ABE master key record (type ABE_MASTER_KEY) 143
B.3. ABE decryption key record (Type ABE_KEY) 143
B.4. Delegation record (type ATTR) . 153
B.5. Delegation set . 153
B.6. Delegation Record (Type CRED) . 153

136

List of Tables

2.1. Name systems security assessment results by Grothoff et al.[58] 14

4.1. An example namespace for a user in re:claimID. 55
4.2. An example namespace containing authorization tickets of a user in

re:claimID. 57
4.3. An example namespace for a RP in re:claimID. 71

5.1. An example namespace for a service using attribute delegation records. . 114
5.2. An example namespace for a company using attribute delegation records. 115
5.3. Key and proof sizes depending on the number of payloads. 125

137

APPENDIX A

Publications in the context of this thesis

In the following we give an overview over and brief descriptions of relevant pub-
lications in the context of this thesis. The contributions are listed in chronological
order.

1. Managing and Presenting User Attributes over a Decentralized Secure Name System Mar-
tin Schanzenbach and Christian Banse. Published in: Proceedings of the 11th International
Workshop on Data Privacy Management and Security Assurance (DPM), Heraklion, Greece,
2016

Relation to thesis In this paper, we investigated how a decentralized name system
could be used to manage and present user attributes. In particular, our goal was to
show how a secure, decentralized service can be realized for a web based authorization
scenario. We discussed possible approaches to such a design and proposed a new web
authorization protocol. We used formal methods to ensure that our proposed protocol
satisfies our security goals and presesented a reference implementation. Lessons learned
and research questions resulting from this work formed the basis of re:claimID which
we presented in detail as part of this thesis.

2. A Brief History of Authorization in Distributed Systems: Information Storage, Data Retrieval
and Trust Evaluation Ava Ahadipour and Martin Schanzenbach. Published in: Proceedings
of the International Conference on Trust, Security and Privacy in Computing and Communica-
tions (TrustCom), Sydney, Australia, 2017

Relation to thesis In the context of our work on decentralized identity services we
achnowledged the need for trust establishment especially in the context of decentralized
systems. As part of our research, we surveyed historical and recent research in this
area and established a categorization scheme which allowed us to identify trust models
which are compatible with decentralized use cases and those that are not. As a result of
this research, we dove deeper into the concepts of ABD which we also propose as part
of our trust establishment sections in this thesis.

139

Appendix A. Publications in the context of this thesis

3. Practical Decentralized Attribute-Based Delegation using Secure Name Systems Martin
Schanzenbach, Christian Banse and Julian Schütte. Published in: Proceedings of the In-
ternational Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom), New York, USA, 2018

Relation to thesis In this paper, we present our design and implementatiton of an
ABD system built on top of a secure name system. Our goal was to find an approach
to trust establishment which supports and extends our re:claimID design and the
attributes shared therein. In this work, we propose a generalizable approach to facilitate
ABD authorization and trust establishment throug the use of secure name systems as
delegation storage and retrieval mechanisms. We formally define how a secure name
system can be used to support such systems and what limitations need to be addressed.
We present a reference implementation on top of the GNS and discuss its applicability in
areal world use case in the context of anti-doping. While we did not give our design or
implementation a specific name, this method of trust establishment is a core contribution
in the context of this thesis and applicable in the context of re:claimID.

4. reclaimID: Secure, Self-Sovereign Identities using Name Systems and Attribute-Based En-
cryption Martin Schanzenbach, Georg Bramm and Julian Schütte. Published in: Proceed-
ings of the International Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), New York, USA, 2018

Relation to thesis This publication contains the core design and evaluation of re:claimID.
Our research builds upon our original deliberations regarding decentralized identity
services elaborated above. In this work, we address our discovered research questions
and various shortcomings of the original approach. In the paper, we present an abstract
design for a decentralized, self-sovereign identity service which is realized on top of a
decentralized directory service. We apply the idea of a name system as decentralized
directory service and enhance existing approaches, including our own initial aproach, in
order to mitigate a variety of shortcomings.

For one, the design aims to be name system agnostic and we present a concrete imple-
mentation in top of the GNS. Further, we present how ABE can used as a cryptographic
access control layer on open, decentralized directory services in order to protect the
users’ privacy and personal data. Along with our research in ABD systems, re:claimID
constitutes another core contribution whithin this thesis and is presented as such in
Chapter 4.

5. ZKlaims: ZKlaims: Privacy-preserving Attribute-based Credentials using Non-interactive
Zero-knowledge Techniques Martin Schanzenbach, Thomas Kilian, Christian Banse and Ju-
lian Schütte. Published in: Proceedings of the 16th International Conference on Security and
Cryptography (SECRYPT 2019)

140

Relation to thesis In this puplication we outline our design for ZKlaims, the non-
interactive zero-knowledge (NIZK) credential system we discuss in Chapter 5. We
proposed the use of Zero-knowledge Succinct Non-interactive Arguments of Knowl-
edge (zkSNARKs) in order to realize privacy credentials which can be presented non-
interactively. Further, we present key performance indicators of this credential system
such as credential size and proving as well as verification speed. Our results in combi-
nation with the non-interactive property of the system allow us to integrate it into our
proposed decentralized self-sovereign directory service re:claimID. Finally, we outline
an integration paths into re:claimID in the paper, but the system is in theory applicable
to any decentralized directory service.

141

APPENDIX B

re:claimID prototype

B.1. Wire formats

0 8 16 24
0 32-Bit Integer (Attribute type)
1 32-Bit Integer (Attribute version)
2 32-Bit Integer (Name lengthn)
3 32-Bit Integer (Value length)
4

DATA (Name)...
4+n-1
4+n

DATA (Value)
...

Figure B.1.: Attribute record (Type ID_ATTR)

0 8 16 24
0

DATA (Serialized ABE master key)
...

Figure B.2.: ABE master key record (type ABE_MASTER_KEY)

0 8 16 24
0

0-terminated string (Attribute list)...
n-1
n

DATA (Serialized ABE key)
...

Figure B.3.: ABE decryption key record (Type ABE_KEY)

143

Appendix B. re:claimID prototype

B.2. Key-Policy ABE Variant

An implementation using KP-ABE would differ just slightly from the CP-ABE version.
We present drop-in replacements for the cryptographic functions as well as the add and
authorize procedures in the following:

setupABE()→ (msk, pk)

keygenABE(msk,P)→ skP
encABE(pk,M,A)→ CA

decABE(skP , CA)→M

Procedure addKPABE
input : User attribute a = (key, value, version)

User identity U = (IU ,NU)
1 A ← key⊕ version;
2 CA ← encABE(pk ∈ IU ,M = value, A);
3 R ← (type =′ ID_ATTR′, CA, ttl = 1h);
4 publish(NI , key, R);

Procedure authorizeKPABE
input : User identity U = (IU ,NU)

requesting party RP = (IRP ,NRP)
Set of attributes A

output: A ticket T
1 P ← ∨

(key,value,version)∈A key⊕ version;
2 skP ← keygen(msk ∈ IU , P);
3 C ← enc(e ∈ IRP , skP);
4 n ←R R;
5 R ← (type =′ ABE_KEY′, C, ttl =′ 1h′);
6 publish(NU , n, R);
7 return T ← (U ,RP ,A, n);

144

B.3. Usability studies

B.3. Usability studies

The following instructions were used in the usability studies conducted in the DASEIN
project [57].

B.3.1. Web study

Results

Table B.1.: SUS results from web study.

Participant q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 SUS Score
p1 5 1 5 1 2 1 5 1 5 4 85.0
p2 5 2 4 1 3 2 5 1 3 1 82.5
p3 5 1 5 1 5 1 5 1 5 1 100.0
p4 5 1 4 1 5 2 5 1 5 1 95.0
p5 Not finished
p6 3 2 5 1 3 1 4 2 5 1 82.5
p7 5 2 5 1 5 3 4 1 4 1 87.5
p8 5 1 5 1 5 1 4 1 5 1 97.5
p9 5 1 5 1 5 1 5 1 5 1 100.0
p10 3 2 4 1 4 3 4 2 4 2 72.5
p11 Not finished
p12 3 4 2 1 4 3 3 3 2 2 52.5
p13 4 1 5 1 5 2 5 1 5 1 95.0
p14 4 2 4 2 4 2 4 2 4 1 77.5
p15 4 1 5 1 4 1 5 1 5 1 95.0
p16 4 1 5 1 4 1 5 1 4 2 90.0
p17 5 1 5 1 5 1 5 2 4 1 95.0
p18 4 1 5 1 4 1 4 1 4 1 90.0
p19 4 1 5 1 5 1 5 1 3 1 92.5
p20 5 1 5 1 5 1 5 1 5 1 100.0
p21 5 1 5 1 4 1 4 1 5 1 95.0
p22 4 2 5 1 4 2 4 1 3 1 82.5
p23 2 1 5 1 5 1 5 3 4 1 85.0
p24 Not finished
p25 4 2 4 1 3 2 5 2 4 1 80.0
p26 4 1 5 1 4 1 5 1 5 1 95.0
p27 5 1 5 1 5 1 5 1 5 1 100.0
p28 5 1 5 1 5 1 5 1 5 1 100.0
p29 4 1 5 1 3 2 5 2 4 1 85.0
p30 5 1 4 1 5 1 4 1 5 1 95.0

145

Appendix B. re:claimID prototype

Table B.1.: SUS results from web study (continued).

p31 2 3 3 3 4 2 3 3 2 3 50.0
p32 4 2 4 1 3 1 4 2 4 2 77.5
p33 3 3 4 1 4 2 3 4 2 2 60.0
p34 5 1 5 1 3 1 5 1 5 1 95.0
p35 4 2 5 1 4 1 5 5 5 1 82.5
p36 4 1 5 1 5 1 5 2 4 1 92.5
p37 4 2 5 1 5 1 5 1 5 1 95.0
p38 5 3 4 1 3 2 3 3 3 2 67.5
p39 5 1 4 1 5 1 5 1 5 1 97.5
p40 3 2 4 2 4 1 5 1 2 1 77.5
p41 5 1 5 1 5 1 4 1 5 1 97.5

Instructions

User Authentication Study

Welcome to our User Authentication Study!

In this study you will use a new innovative decentralized authentication service
“re:claimID”. The service functions just like other popular so-called “Social Logins”
such as “Login with Google” or “Login with Facebook”. It allows you to create profiles
using nicknames (pseudonyms). You can log in and log out and the information of your
profile (attributes) will stay and be provided to the Web site.

However, the underpinnings of the re:claimID service are different from login services
like Google or Facebook in that it is completely under the users – your – control. Your
pseudonymous identities and associated attributes of your profiles are only stored on
your computer. When you choose to authorize a webpage to access your attributes, it
will be encrypted and stored in a decentralized network so the service can access it even
when you are offline:

146

B.3. Usability studies

2. Authorize and transfer key

1. E
ncry

pt and sto
re

3. Resolve and decrypt

Decentralized Storage

User Website

The advantage of using this service is that you do not have to re-enter attributes for
every service. Furthermore, if your attributes ever change, you can change them on
your computer. The updated attributes will then be automatically shared with all of the
services that you previously authorized just like with conventional profiles. Finally, you
can choose to maintain many pseudonyms instead of being tied to one identity.

In this study you must perform such an authorization for our demo webpage at
https://example.io. The webpage will ask you to login and authorize it to access a
specific set of identity attributes: Your full name and email address. To do so, please
follow the steps on the next page.

1. Access https://example.io in your browser

2. Click on “re:claimID” to login. At this point you will be redirected to your local
identity service

3. Click on “Add identity” to add a pseudonym.

4. Enter a username and click “Save”.

5. Before you can use the pseudonym, you need to fill in the attributes requested by
the webpage. The attributes used in this example are “email” and “full_name”.

6. Add an email address for “email”, e.g. “john@doe.com”.

147

https://example.io
https://example.io

Appendix B. re:claimID prototype

7. Add a name for “full_name”, e.g. “John Doe”.

8. Click on “Save”.

9. You may now create additional pseudonyms or attributes.

10. Finally, click “Authorize” to select which pseudonym to use and finish the login.

Your browser should now be redirected back to the webpage https://example.io and
you should be greeted with your entered name and email address.

After completing the experiment, please complete a short survey:

https://surveys.bfh.ch/index.php/617286?lang=en

Thank you for your participation!

148

https://example.io
https://surveys.bfh.ch/index.php/617286?lang=en

B.3. Usability studies

B.3.2. IoT study

B.3.3. Results

Table B.2.: SUS results from IoT study.

Participant q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 SUS Score
p1 4 1 5 1 5 1 4 1 4 1 92.5
p2 4 3 3 1 4 1 4 3 4 3 70.0
p3 5 1 5 1 5 1 5 1 5 1 100.0
p4 4 3 4 4 5 1 5 1 2 2 72.5
p5 Not finished
p6 4 1 4 1 4 2 4 1 4 1 85.0
p7 5 1 3 1 5 2 3 2 4 1 82.5
p8 3 3 5 2 4 1 4 2 2 3 67.5
p9 5 1 5 1 5 1 5 1 5 1 100.0
p10 3 1 2 1 3 1 3 2 2 2 65.0
p11 Not finished
p12 Not finished
p13 3 4 3 1 4 1 5 2 3 4 65.0
p14 4 1 5 1 5 1 5 1 3 1 92.5
p15 2 4 3 3 4 2 3 3 2 4 45.0
p16 3 1 4 1 4 2 4 1 3 1 80.0
p17 2 1 4 1 4 1 5 1 4 1 85.0
p18 4 3 2 2 3 1 3 4 2 4 50.0
p19 5 1 1 2 2 1 2 5 5 1 62.5
p20 3 1 4 2 5 1 5 1 4 1 87.5
p21 Not finished
p22 4 2 4 1 3 1 5 2 4 1 82.5
p23 2 1 4 1 4 1 5 1 3 1 82.5
p24 Not finished
p25 5 1 5 1 5 1 5 1 5 1 100.0
p26 5 1 5 1 4 1 5 1 5 1 97.5
p27 5 1 5 1 5 1 4 1 4 1 95.0
p28 2 1 5 3 5 1 5 1 4 1 85.0
p29 4 1 5 1 4 2 5 1 3 2 85.0
p30 4 1 2 1 1 2 3 2 2 1 62.5
p31 4 1 5 1 3 1 5 1 4 1 90.0
p32 3 2 4 1 3 2 5 4 4 1 72.5
p33 4 2 4 1 5 1 5 3 2 1 80.0
p34 Not finished
p35 5 1 5 1 5 1 5 2 5 1 97.5

149

Appendix B. re:claimID prototype

p36 4 1 4 1 5 1 5 1 5 2 92.5
p37 3 1 4 1 5 1 4 2 3 1 82.5
p38 5 2 5 1 4 2 5 1 4 1 90.0

Instructions

Internet-of-Things Authentication Study

Welcome to our Internet-of-Things (IoT) Authentication Study!
In this study you will use a new innovative decentralized service “re:claim” IoT. It

allows you to securely share access to your Things sensor data. You can authorize a Web
site that requests sensor data by using the re:claim App.

The sensor data of your Thing is encrypted and stored in a decentralized network.
When you choose to authorize a webpage to access the data, the service will be given
the key to decrypt:

2. Authorize and get key

1. E
ncry

pt and sto
re

4. Resolve and decrypt

Decentralized Storage

Sensor Website

3. Transfer key

The advantage of using re:claim IoT is that you do not have to provide direct connec-
tivity to your Thing. Furthermore, if the sensor data ever changes, the updated data will
then be automatically shared with all of the services that you previously authorized.

In this study we want to evaluate the usability of such an authorization process. You
are asked to perform an authorization for our demo webpage. The webpage will ask
you to authorize it to access a specific set of sensor data: Temperature, altitude and
atmospheric pressure. To do so, please follow the steps on the next page.

1. Access http://localhost:4200 in your browser

150

http://localhost:4200

B.4. Security proofs

2. Open the App “re:claim” on your phone.

3. Tap on the “Scan QR Code” to start the authorization process.

4. Scan the QR code displayed on the webpage.

5. Tap on the “re:claim” icon at the right side of the “Sensors Central” item in the
App.

6. Align the displayed icon on the phone with the icon on the sensor AND when
prompted tap the screen.

The webpage should now display receive the authorization and display the sensor data.

After completing the experiment, please complete a short survey:

https://surveys.bfh.ch/index.php/898722?lang=en

Thank you for your participation!

B.4. Security proofs

1 -- Only relevant sections included for brevity.
2 #Processes
3 INITIATOR(I, nc, CSK, CPK, G) knows
4 PK, GNSENC
5 USER(U, grant, CPK, G, data) knows
6 PK, SK(U), GNSENC
7 GNS(G) knows PK, GNSENC
8
9 #Protocol description

10 0. ->I: U
11 1.I->U: nc, I
12 2.U->G: {{data}{CPK}}{GNSENC(grant, PK(U))}
13 % record
14 3.U->I: {nc, grant, PK(U)}{CPK},
15 {{nc, grant, PK(U)}{CPK}}{SK(U)}
16 4.I->G: {grant}{GNSENC(grant, PK(U))}
17 % query
18 5.G->I: record %
19 {{data}{CPK}}{GNSENC(grant, PK(U))}
20

151

https://surveys.bfh.ch/index.php/898722?lang=en

Appendix B. re:claimID prototype

21 #Specification
22 Secret(U, grant, [I])
23 Secret(U, data, [I, G])
24 Agreement(U, I, [G, data])
25
26 #Intruder Information
27 Intruder = Mallory
28 IntruderKnowledge =
29 {Gns, User, Mallory, nonce,
30 PK, SK(Mallory), cpk, GNSENC}

152

B.5. Wire formats

B.5. Wire formats

0 8 16 24
0 32-Bit Integer (Delegation set count)
1

DATA (Delegation set)
...

Figure B.4.: Delegation record (type ATTR)

0 8 16 24
0

256-Bit ECDSA Public Key (Delegation Subject)...
3
4 32-Bit Integer (Attribute count)
5

DATA (Attribute(s))
...

Figure B.5.: Delegation set

0 8 16 24
0

256-Bit ECDSA Public Key (Issuer)...
3
4

256-Bit ECDSA Public Key (Subject)...
7
8

256-Bit ECDSA Signature...
11
12

64-Bit Integer (Expiration Time)
13
14 32-Bit Integer (Attribute Length)
15

DATA (Attribute)
...

Figure B.6.: Delegation Record (Type CRED)

153

Acronyms

ABC attribute-based credential. 25, 27, 37, 43, 98, 104, 112, 117–119, 126, 127

ABD attribute-based delegation. 24, 34–37, 99–103, 108–110, 112, 114–116, 126, 127, 129,
131, 133, 136, 139, 140

ABE attribute-based encryption. 32, 43, 44, 48–51, 54–60, 63, 64, 66–68, 80, 81, 83, 91, 92,
94, 97, 101, 104, 112, 129, 130, 135, 136, 140, 143

AD Microsoft Active Directory. 7

aMAC algebraic MAC. 28, 29

API application programming interface. 63, 68, 112, 113

CA certification authority. 23, 24

CLI command-line interface. 63, 68, 69, 113, 114

DAP Directory Access Protocol. 8–11, 36

DHT distributed hash table. 13, 19, 21, 23, 31, 34, 64–67, 81, 92, 96, 101, 115

DID Decentralized Identifier. 10

DIT Directory Information Tree. 8–11, 135

DLT Distributed Ledger Technology. 46, 47

DNS Domain Name System. 7, 9–13, 24, 35, 36, 42, 43, 46–48, 52, 64, 100–102, 115, 117,
135, Glossary: Domain Name System

DNSSEC DNS Security Extensions. 45, 101, 102

GDPR General Data Protection Regulation. 2, 3

GNS GNU Name System. 12, 13, 36, 41, 44, 45, 47, 48, 63–68, 71, 78, 80–82, 91–98, 100–102,
109, 112, 113, 115–117, 127, 129, 130, 135, 136, 140, Glossary: GNU Name System

155

Acronyms

GUI graphical user interface. 63, 68

IANA Internet Assigned Numbers Authority. 11

ICANN Internet Corporation for Assigned Names and Numbers. 11

IdP Identity Provider. 3–5, 14–21, 26–29, 31, 38, 42, 44, 45, 70, 71, 88–92, 98, 117, 127,
129–131, 136, Glossary: Identity Provider

IoT Internet-of-Things. 75, 83, 86, 129, 133, 135

IPFS Interplanetary File System. 34

ITU International Telecommunication Union. 8

LDAP Lightweight Directory Access Protocol. 7, 8

NIS Network Information Service. 7

NIZK non-interactive zero-knowledge. iii, 27, 99, 117, 118, 141

OIDC OpenID Connect 1.0. 4, 15–18, 25, 26, 28–32, 41, 53, 63, 68, 70–73, 82–85, 88–92,
94–96, 126, 127, 135, 136

PBC pairing-based cryptography. 48

PGP Pretty Good Privacy. 37

PKI public key infrastructure. iii, 9, 21, 23, 24, 34, 35, 37, 110, 111, 131

PP-ABC privacy-preserving attribute-based credential. iii, 26, 27, 117

REST representational state transfer. 18

RP Relying Party. 15–21, 24, 26–34, 38, 41, 43–50, 52, 53, 55–61, 63, 67, 69–71, 73, 75, 76,
80–86, 88–99, 117, 118, 127, 129–132, 135–137, Glossary: Relying Party

RT Role-based Trust Management. 38, 104

SAML Security Assertion Markup Language. 4, 15, 16, 18, 19

SDSI Simple Distributed Security Infrastructure. 24, 35–38, 64

SOAP Simple Object Access Protocol. 18

SSO Single Sign-On. 18, 27

SUS System Usability Scale. 83, 85, 87, 89, 136, Glossary: System Usability Scale

156

Acronyms

TLS Transport Layer Security. 24

UMA User-Managed Access. 107, 127

VC verifiable computation. 118

XML Extensible Markup Language. 18

zkSNARKs Zero-knowledge Succinct Non-interactive Arguments of Knowledge. 99,
117–119, 141

157

Glossary

Domain Name System The most commonly used, hierarchical name system. 7, 35, 42, 100,
135

GNU Name System A secure, decentralized alternative to the Domain Name System. 12,
36, 41, 100, 129

GNUnet An alternative network stack for building secure, decentralized and privacy-
preserving distributed applications.. 113

Identity Provider A service that asserts identity information, handles authentication and
often also features self-service capabilities for users. Example: OpenID Connect
Identity Provider. 3, 14, 26, 42, 117, 129

Relying Party An entity that requests access to resources such as personal data. Example:
A website that requires the user’s email address. 26, 99

System Usability Scale A standardized, popular scoring system for usability studies of
technical systems and their user interfaces.. 83, 136

X.500 A series of standards covering directory services such as (L)DAP. 4, 7–11, 23, 24,
36

X.509 The X.500 certificate format.. 4, 9, 11, 22–24, 35–37, 43, 45, 117

159

Bibliography

[1] A. Abdul-Rahman and S. Hailes. “A distributed trust model”. In: Proceedings of
the 1997 workshop on New security paradigms. ACM. 1998, pp. 48–60.

[2] K. Aberer. “P-Grid: A self-organizing access structure for P2P information sys-
tems”. In: International Conference on Cooperative Information Systems. Springer.
2001, pp. 179–194.

[3] K. Aberer and Z. Despotovic. “Managing trust in a peer-2-peer information
system”. In: Proceedings of the tenth international conference on Information and
knowledge management. ACM. 2001, pp. 310–317.

[4] S. Agrawal and M. Chase. “FAME: fast attribute-based message encryption”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM. 2017, pp. 665–682.

[5] A. Ahadipour and M. Schanzenbach. “A Survey on Authorization in Distributed
Systems: Information Storage, Data Retrieval and Trust Evaluation”. In: 2017 IEEE
Trustcom/BigDataSE/ICESS. Aug. 2017, pp. 1016–1023. doi: 10.1109/Trustcom/
BigDataSE/ICESS.2017.346.

[6] C. Allen, A. Brock, V. Buterin, J. Callas, D. Dorje, C. Lundkvist, P. Kravchenko, J.
Nelson, D. Reed, M. Sabadello, G. Slepak, N. Thorp, and H. T. Wood. Decentralized
Public Key Infrastructure. https://github.com/WebOfTrustInfo/rwot1-sf/
blob/master/final-documents/dpki.pdf, accessed 2019/01/14. Dec. 2015.

[7] D. Artz and Y. Gil. “A survey of trust in computer science and the semantic web”.
In: Web Semantics: Science, Services and Agents on the World Wide Web 5.2 (2007),
pp. 58–71.

[8] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. “SNARKs for C:
Verifying program executions succinctly and in zero knowledge”. In: Advances in
Cryptology–CRYPTO 2013. Springer, 2013, pp. 90–108.

[9] D. Berger. Facebook: Netflix, Spotify, Amazon et al. hatten Zugriff auf persönliche Daten
und private Nachrichten. https://heise.de/-4256069, accessed 2018/12/20.
Dec. 2018.

[10] D. J. Bernstein. DNS database espionage. https://dnscurve.org/espionage2.
html, accessed 2019/02/02. Feb. 2019.

161

https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.346
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.346
https://github.com/WebOfTrustInfo/rwot1-sf/blob/master/final-documents/dpki.pdf
https://github.com/WebOfTrustInfo/rwot1-sf/blob/master/final-documents/dpki.pdf
https://heise.de/-4256069
https://dnscurve.org/espionage2.html
https://dnscurve.org/espionage2.html

Bibliography

[11] V. Bertola and M. Sanz. An Architecture for a Public Identity Infrastructure Based
on DNS and OpenID Connect. https://datatracker.ietf.org/doc/draft-
bertola- dns- openid- pidi- architecture/?include_text=1, accessed
2019/01/18. Jan. 2019.

[12] J. Bethencourt, A. Sahai, and B. Waters. “Ciphertext-policy attribute-based en-
cryption”. In: Security and Privacy, 2007. SP’07. IEEE Symposium on. IEEE. 2007,
pp. 321–334.

[13] J. Bethencourt, A. Sahai, and B. Waters. cpabe – Ciphertext-Policy Attribute-Based
Encryption. http://acsc.cs.utexas.edu/cpabe/, accessed 2019/02/07. Feb.
2019.

[14] M. Blaze, J. Feigenbaum, and J. Lacy. “Decentralized trust management”. In:
Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on. IEEE. 1996,
pp. 164–173.

[15] M. Blaze, J. Feigenbaum, and M. Strauss. “Compliance checking in the pol-
icymaker trust management system”. In: International Conference on Financial
Cryptography. Springer. 1998, pp. 254–274.

[16] M. Blaze and A. D. Keromytis. “The KeyNote trust-management system version
2”. In: (1999).

[17] J. Borgh. Attribute-Based Encryption in Systems with Resource Constrained Devices in
an Information Centric Networking Context. 2016.

[18] J. Borgh, E. Ngai, B. Ohlman, and A. M. Malik. “Employing attribute-based
encryption in systems with resource constrained devices in an information-
centric networking context”. In: Global Internet of Things Summit (GIoTS), 2017.
IEEE. 2017, pp. 1–6.

[19] S. Bortzmeyer. DNS Query Name Minimisation to Improve Privacy. RFC 7816. RFC
Editor, Mar. 2016.

[20] D. Brown. “Standards for efficient cryptography, SEC 1: elliptic curve cryptogra-
phy”. In: Released Standard Version 1 (2009).

[21] O. Bünte. Verimi: Samsung tritt europäischer Login-Allianz bei. https://heise.de/-
4277556, accessed 2019/01/18. Jan. 2019.

[22] J. Camenisch and E. Van Herreweghen. “Design and implementation of the
idemix anonymous credential system”. In: Proceedings of the 9th ACM conference
on Computer and communications security. ACM. 2002, pp. 21–30.

[23] B. Carpenter, F. Baker, and M. Roberts. Memorandum of Understanding Concerning
the Technical Work of the Internet Assigned Numbers Authority. RFC 2860. http:
//www.rfc-editor.org/rfc/rfc2860.txt. RFC Editor, June 2000.

[24] Christian Grothoff, Matthias Wachs, Monika Ermert, and Jacob Appelbaum. “To-
wards Secure Name Resolution on the Internet”. In: NDSS 2017 DNS Privacy
Workshop DPRIV17 ’17, San Diego, CA, USA, Febuary 26, 2017. 2017, p. 20.

162

https://datatracker.ietf.org/doc/draft-bertola-dns-openid-pidi-architecture/?include_text=1
https://datatracker.ietf.org/doc/draft-bertola-dns-openid-pidi-architecture/?include_text=1
http://acsc.cs.utexas.edu/cpabe/
https://heise.de/-4277556
https://heise.de/-4277556
http://www.rfc-editor.org/rfc/rfc2860.txt
http://www.rfc-editor.org/rfc/rfc2860.txt

Bibliography

[25] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. “Cer-
tificate chain discovery in SPKI/SDSI”. In: Journal of Computer security 9.4 (2001),
pp. 285–322.

[26] E. Comission. Online security - Seamless personal authentication (authentication for all).
https://ec.europa.eu/info/funding-tenders/opportunities/portal/
screen/opportunities/topic-details/onlinesecurityprize-01-2017,
accessed 2019/02/02. Jan. 2017.

[27] N. Confessore. Cambridge Analytica and Facebook: The Scandal and the Fallout So Far,
The New York Times. https://www.nytimes.com/2018/04/04/us/politics/
cambridge-analytica-scandal-fallout.html, accessed 2018/12/20. Apr.
2018.

[28] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280. http://www.rfc-editor.org/rfc/rfc5280.txt. RFC Editor, May
2008.

[29] J. D’Onfro. The drag queen who took on Facebook isn’t celebrating her victory yet.
http://www.businessinsider.de/facebook-changes-to-real-name-
policy-2015-12, accessed 2019/02/20. Dec. 2015.

[30] R. Deibert, J. Palfrey, R. Rohozinski, and J. Zittrain. Access contested: security,
identity, and resistance in Asian cyberspace. MIT Press, 2011.

[31] V. Descombes. Puzzling Identities. Harvard University Press, 2016.

[32] Y. G. Desmedt. “Threshold cryptography”. In: European Transactions on Telecom-
munications 5.4 (1994), pp. 449–458.

[33] A. Dey and S. Weis. “PseudoID: Enhancing privacy in federated login”. In: Hot
topics in privacy enhancing technologies (2010), pp. 95–107.

[34] S. Dickinson, D. Gillmor, and T. Reddy. Usage Profiles for DNS over TLS and DNS
over DTLS. RFC 8310. RFC Editor, Mar. 2018.

[35] N. Doering. Sozialpsychologie des Internet: Die Bedeutung des Internet für Kommu-
nikationsprozesse, Identitäten, soziale Beziehungen und Gruppen. Hogrefe, 2003.

[36] P. Dunphy and F. A. Petitcolas. “A first look at identity management schemes on
the blockchain”. In: arXiv preprint arXiv:1801.03294 (2018).

[37] Eduroam. https://www.eduroam.org/, accessed 2020/07/12. July 2020.

[38] C. Ellison et al. “Establishing identity without certification authorities”. In:
USENIX Security Symposium. 1996, pp. 67–76.

[39] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese. “What’s the difference?
Efficient set reconciliation without prior context”. In: ACM SIGCOMM Computer
Communication Review 41.4 (2011), pp. 218–229.

163

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/onlinesecurityprize-01-2017
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/onlinesecurityprize-01-2017
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
https://www.nytimes.com/2018/04/04/us/politics/cambridge-analytica-scandal-fallout.html
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.businessinsider.de/facebook-changes-to-real-name-policy-2015-12
http://www.businessinsider.de/facebook-changes-to-real-name-policy-2015-12
https://www.eduroam.org/

Bibliography

[40] Ethereum. Ethereum. https://www.ethereum.org/, accessed 2017/11/07. Nov.
2017.

[41] Y. Eudes, C. Grothoff, J. Appelbaum, M. Ermert, L. Poitras, and M. Wachs.
“Morecowbell-nouvelles révélations sur les pratiques de la nsa”. In: Le Monde 24
(2015).

[42] D. S. Evans. “The online advertising industry: Economics, evolution, and privacy”.
In: Journal of Economic Perspectives 23.3 (2009), pp. 37–60.

[43] N. S. Evans and C. Grothoff. “R5N: Randomized recursive routing for restricted-
route networks.” In: NSS. 2011, pp. 316–321.

[44] D. Fett, R. Küsters, and G. Schmitz. “Spresso: A secure, privacy-respecting single
sign-on system for the web”. In: Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM. 2015, pp. 1358–1369.

[45] A. Fiat and M. Naor. “Broadcast encryption”. In: Annual International Cryptology
Conference. Springer. 1993, pp. 480–491.

[46] S. Foundation. Sovrin: A Protocol and Token for Self-Sovereign Identity and Decen-
tralized Trust. https://sovrin.org/wp-content/uploads/2018/03/Sovrin-
Protocol-and-Token-White-Paper.pdf, accessed 2019/02/02. Jan. 2018.

[47] S. Friebe, I. Sobik, and M. Zitterbart. “DecentID: Decentralized and Privacy-
Preserving Identity Storage System Using Smart Contracts”. In: 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And Com-
munications/ 12th IEEE International Conference On Big Data Science And Engi-
neering (TrustCom/BigDataSE). Aug. 2018, pp. 37–42. doi: 10.1109/TrustCom/
BigDataSE.2018.00016.

[48] S. D. Galbraith, K. G. Paterson, and N. P. Smart. “Pairings for cryptographers”.
In: Discrete Applied Mathematics 156.16 (2008), pp. 3113–3121.

[49] B. Gellman and L. Poitras. “US, British intelligence mining data from nine US
Internet companies in broad secret program”. In: The Washington Post 6 (2013).

[50] R. Gennaro, S. Goldfeder, and A. Narayanan. “Threshold-optimal DSA/ECDSA
signatures and an application to Bitcoin wallet security”. In: International Con-
ference on Applied Cryptography and Network Security. Springer. 2016, pp. 156–
174.

[51] I. Giechaskiel, C. Cremers, and K. B. Rasmussen. “On Bitcoin Security in the
Presence of Broken Cryptographic Primitives”. In: Computer Security – ESORICS
2016: 21st European Symposium on Research in Computer Security, Heraklion, Greece,
September 26-30, 2016, Proceedings, Part II. Ed. by I. Askoxylakis, S. Ioannidis,
S. Katsikas, and C. Meadows. Cham: Springer International Publishing, 2016,
pp. 201–222. isbn: 978-3-319-45741-3. doi: 10.1007/978-3-319-45741-3_11.

164

https://www.ethereum.org/
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://sovrin.org/wp-content/uploads/2018/03/Sovrin-Protocol-and-Token-White-Paper.pdf
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00016
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00016
https://doi.org/10.1007/978-3-319-45741-3_11

Bibliography

[52] V. Goel and N. Perlroth. Yahoo Says 1 Billion User Accounts Were Hacked. https:
//www.nytimes.com/2016/12/14/technology/yahoo-hack.html, accessed
2019/02/20. Dec. 2016.

[53] P. Gola, R. Schomerus, and C. Klug. BDSG - Bundesdatenschutzgesetz : Kommentar.
8. überarbeitete und ergänzte Auflage. München: Beck, 2005. isbn: 978-3-406-
52152-2.

[54] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv. “NSEC5:
Provably Preventing DNSSEC Zone Enumeration.” In: NDSS. 2015.

[55] M. Green and T. Eisenbarth. “Strength in Numbers: Threshold ECDSA to Protect
Keys in the Cloud.” In: IACR Cryptology ePrint Archive 2015 (2015), p. 1169.

[56] J. Groth. “On the size of pairing-based non-interactive arguments”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2016, pp. 305–326.

[57] C. Grothoff, M. Schanzenbach, A. Laube, E. Benoist, and P. Mainini. “Decen-
tralized Authentication for Self-Sovereign Identities using Name Systems”. In:
847382 (Oct. 2018).

[58] C. Grothoff, M. Wachs, M. Ermert, and J. Appelbaum. “Towards Secure Name
Resolution on the Internet”. In: Computers & Security (2018).

[59] H. W. P. W. Group. An Introduction to Hyperledger. https://www.hyperledger.
org, accessed 2019/02/02. Aug. 2018.

[60] R. Hamirani. The Landscape of Customer Identity: Facebook Dominates, Payment
Providers on the Rise. http://www.gigya.com/blog/the-landscape-of-
customer-identity-q2-2015/, accessed 2016/02/20. July 2015.

[61] D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749. http://www.rfc-
editor.org/rfc/rfc6749.txt. RFC Editor, Oct. 2012.

[62] A. Herzberg and H. Shulman. “Fragmentation Considered Poisonous, or: One-
domain-to-rule-them-all.org”. In: 2013 IEEE Conference on Communications and Net-
work Security (CNS). Oct. 2013, pp. 224–232. doi: 10.1109/CNS.2013.6682711.

[63] P. Hoffman and J. Schlyter. The DNS-Based Authentication of Named Entities (DANE)
Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. http://www.rfc-
editor.org/rfc/rfc6698.txt. RFC Editor, Aug. 2012.

[64] R. Holz, L. Braun, N. Kammenhuber, and G. Carle. “The SSL landscape: a
thorough analysis of the x. 509 PKI using active and passive measurements”.
In: Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference. ACM. 2011, pp. 427–444.

[65] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. Specification
for DNS over Transport Layer Security (TLS). RFC 7858. RFC Editor, May 2016.

[66] L. Hui and M. Rajagopalan. “At Sina Weibo’s censorship hub, China’s Little
Brothers cleanse online chatter”. In: Reuters, September 11 (2013).

165

https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.nytimes.com/2016/12/14/technology/yahoo-hack.html
https://www.hyperledger.org
https://www.hyperledger.org
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.gigya.com/blog/the-landscape-of-customer-identity-q2-2015/
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.rfc-editor.org/rfc/rfc6749.txt
https://doi.org/10.1109/CNS.2013.6682711
http://www.rfc-editor.org/rfc/rfc6698.txt
http://www.rfc-editor.org/rfc/rfc6698.txt

Bibliography

[67] IETF. Public-Key Infrastructure (X.509). https://datatracker.ietf.org/wg/
pkix/charter/, accessed 2019/01/14. Jan. 2019.

[68] T. Intercept. The NSA and GCHQ’s QUANTUMTHEORY Hacking Tactics. https:
//theintercept.com/document/2014/03/12/nsa-gchqs-quantumtheory-
hacking-tactics/, accessed 2017/11/07. Mar. 2014.

[69] IPFS. IPFS. https://ipfs.io/, accessed 2017/11/12. Nov. 2017.

[70] M. Isaakidis, H. Halpin, and G. Danezis. “UnlimitID: Privacy-preserving fed-
erated identity management using algebraic MACs”. In: Proceedings of the 2016
ACM on Workshop on Privacy in the Electronic Society. ACM. 2016, pp. 139–142.

[71] M. Jones and D. Hardt. The OAuth 2.0 Authorization Framework: Bearer Token Usage.
RFC 6750. http://www.rfc-editor.org/rfc/rfc6750.txt. RFC Editor, Oct.
2012.

[72] S. Josefsson. Storing Certificates in the Domain Name System (DNS). RFC 4398. RFC
Editor, Mar. 2006.

[73] S. Kamvar, M. Schlosser, and H. Garcia-Molina. “EignRep: Reputation manage-
ment in P2P networks”. In: Proceedings of the World-Wide Web Conference. 2003.

[74] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. “The eigentrust algorithm
for reputation management in p2p networks”. In: Proceedings of the 12th interna-
tional conference on World Wide Web. ACM. 2003, pp. 640–651.

[75] M. Karppinen. Data is not an asset, it’s a liability. https://www.richie.fi/blog/
data-is-a-liability.html. Sept. 2015.

[76] J. Katz and M. Yung. “Threshold cryptosystems based on factoring”. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information Security.
Springer. 2002, pp. 192–205.

[77] N. Koblitz and A. Menezes. “Pairing-based cryptography at high security levels”.
In: IMA International Conference on Cryptography and Coding. Springer. 2005, pp. 13–
36.

[78] N. Kogan, Y. Shavitt, and A. Wool. “A practical revocation scheme for broadcast
encryption using smartcards”. In: ACM Transactions on Information and System
Security (TISSEC) 9.3 (2006), pp. 325–351.

[79] D. Kraft. NameID. https://nameid.org/. 2017.

[80] B. Kulynych, M. Isaakidis, C. Troncoso, and G. Danezis. “ClaimChain: decentral-
ized public key infrastructure”. In: arXiv preprint arXiv:1707.06279 (2017).

[81] A. J. Lee. Towards practical and secure decentralized attribute-based authorization
systems. ProQuest, 2008.

[82] A. Lenhart. “Adults and social network Web sites. Pew Internet and American
life Project”. In: The Pew Center, Washington DC (2009).

166

https://datatracker.ietf.org/wg/pkix/charter/
https://datatracker.ietf.org/wg/pkix/charter/
https://theintercept.com/document/2014/03/12/nsa-gchqs-quantumtheory-hacking-tactics/
https://theintercept.com/document/2014/03/12/nsa-gchqs-quantumtheory-hacking-tactics/
https://theintercept.com/document/2014/03/12/nsa-gchqs-quantumtheory-hacking-tactics/
https://ipfs.io/
http://www.rfc-editor.org/rfc/rfc6750.txt
https://www.richie.fi/blog/data-is-a-liability.html
https://www.richie.fi/blog/data-is-a-liability.html
https://nameid.org/

Bibliography

[83] A. Lewko, A. Sahai, and B. Waters. “Revocation systems with very small private
keys”. In: 2010 IEEE Symposium on Security and Privacy (SP). IEEE. 2010, pp. 273–
285.

[84] N. Li and J. C. Mitchell. “RT: A role-based trust-management framework”. In:
DARPA Information Survivability Conference and Exposition (DISCEX). 2003, pp. 123–
139.

[85] N. Li and J. C. Mitchell. “RT: A role-based trust-management framework”. In:
DARPA Information Survivability Conference and Exposition, 2003. Proceedings. Vol. 1.
IEEE. 2003, pp. 201–212.

[86] N. Li, W. H. Winsborough, and J. C. Mitchell. “Distributed credential chain
discovery in trust management”. In: Journal of Computer Security 11.1 (2003),
pp. 35–86.

[87] C. N. de l’Informatique et des Libertes (French data protection authority). Decision
no. 2016-007 of January 26, 2016 issuing formal notice to FACEBOOK INC. and
FACEBOOK IRELAND. http://www.cnil.fr/fileadmin/documents/en/
D2016-007_MED_FACEBOOK-INC.-FACEBOOK-IRELAND-EN.pdf. Jan. 2016.

[88] G. Lowe. “Casper: A compiler for the analysis of security protocols”. In: Journal
of computer security 6.1, 2 (1998), pp. 53–84.

[89] A. Maria, Z. Aviv, and V. Laurent. “Hijacking Bitcoin: Routing Attacks on Cryp-
tocurrencies”. In: Security and Privacy (SP), 2017 IEEE Symposium on. IEEE. 2017.

[90] K. Y. McKenna and J. A. Bargh. “Plan 9 from cyberspace: The implications of the
Internet for personality and social psychology”. In: Personality and social psychology
review 4.1 (2000), pp. 57–75.

[91] J. McLaughlin. Federal court lifts National Security Letter gag order; First time in
14 years. https://theintercept.com/2015/09/14/federal-court-fully-
lifts-fbi-gag-order-first-time-14-years/, accessed 2019/02/02. Sept.
2015.

[92] Measuring Usability. https://measuringu.com/sus/. Aug. 2018.

[93] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J. Freedman.
“CONIKS: Bringing Key Transparency to End Users.” In: USENIX Security Sym-
posium. 2015, pp. 383–398.

[94] Namecoin. Namecoin is a decentralized open source information registration and transfer
system based on the Bitcoin cryptocurrency. https://namecoin.info/, accessed
2016/02/23. Feb. 2016.

[95] M. Naor and B. Pinkas. “Efficient trace and revoke schemes”. In: International
Conference on Financial Cryptography. Springer. 2000, pp. 1–20.

[96] A. Narayanan, V. Toubiana, S. Barocas, H. Nissenbaum, and D. Boneh. “A
critical look at decentralized personal data architectures”. In: arXiv preprint
arXiv:1202.4503 (2012).

167

http://www.cnil.fr/fileadmin/documents/en/D2016-007_MED_FACEBOOK-INC.-FACEBOOK-IRELAND-EN.pdf
http://www.cnil.fr/fileadmin/documents/en/D2016-007_MED_FACEBOOK-INC.-FACEBOOK-IRELAND-EN.pdf
https://theintercept.com/2015/09/14/federal-court-fully-lifts-fbi-gag-order-first-time-14-years/
https://theintercept.com/2015/09/14/federal-court-fully-lifts-fbi-gag-order-first-time-14-years/
https://measuringu.com/sus/
https://namecoin.info/

Bibliography

[97] OASIS. Identity Provider Discovery Service Protocol and Profile. https://docs.
oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.
pdf, accessed 2019/01/14. Mar. 2008.

[98] R. Ostrovsky, A. Sahai, and B. Waters. “Attribute-based encryption with non-
monotonic access structures”. In: Proceedings of the 14th ACM conference on Com-
puter and communications security. ACM. 2007, pp. 195–203.

[99] C. Paquin. “U-prove technology overview v1. 1”. In: Microsoft Corporation Draft
Revision 1 (2011).

[100] C. Paquin and G. Zaverucha. U-prove cryptographic specification v1. 1. Tech. rep.
revision 3. Technical report, Microsoft Corporation, 2013.

[101] T. E. Parliament and the council of the European Union. http://data.europa.
eu/eli/reg/2016/679/oj. May 2016.

[102] B. Parno, J. Howell, C. Gentry, and M. Raykova. “Pinocchio: Nearly practical
verifiable computation”. In: Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE. 2013, pp. 238–252.

[103] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and V. Paxson. “Global
measurement of dns manipulation”. In: USENIX Security Symposium. USENIX.
2017, p. 22.

[104] M. Pritikin, M. Richardson, M. Behringer, S. Bjarnason, and K. Watsen. Bootstrap-
ping Remote Secure Key Infrastructures (BRSKI). Internet-Draft draft-ietf-anima-
bootstrapping-keyinfra-19. http://www.ietf.org/internet-drafts/draft-
ietf-anima-bootstrapping-keyinfra-19.txt. IETF Secretariat, Mar. 2019.

[105] D. Reed, M. Sporny, D. Longley, C. Allen, R. Grant, and M. Sabadello. Decen-
tralized Identifiers (DIDs) v0.11. https://w3c- ccg.github.io/did- spec.
2018.

[106] M. Research. U-Prove. https://www.microsoft.com/en- us/research/
project/u-prove/, accessed 2019/02/07. Feb. 2019.

[107] R. L. Rivest and B. Lampson. “SDSI-a simple distributed security infrastructure”.
In: Crypto. 1996.

[108] R. L. Rivest and B. Lampson. “SDSI-a simple distributed security infrastructure”.
In: Crypto. 1996.

[109] A. Sabouri. “On the user acceptance of privacy-preserving attribute-based cre-
dentials – a qualitative study”. In: Data Privacy Management and Security Assurance.
Springer, 2016, pp. 130–145.

[110] N. Sakimura, J. Bradley, and M. B. Jones. OpenID Connect Dynamic Client Reg-
istration 1.0 incorporating errata set 1. https://openid.net/specs/openid-
connect-registration-1_0.html, accessed 2020/02/15. Nov. 2014.

168

https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-idp-discovery.pdf
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
http://www.ietf.org/internet-drafts/draft-ietf-anima-bootstrapping-keyinfra-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-anima-bootstrapping-keyinfra-19.txt
https://w3c-ccg.github.io/did-spec
https://www.microsoft.com/en-us/research/project/u-prove/
https://www.microsoft.com/en-us/research/project/u-prove/
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

Bibliography

[111] N. Sakimura, J. Bradley, M. B. Jones, and E. Jay. OpenID Connect Discovery 1.0
incorporating errata set 1. https://openid.net/specs/openid- connect-
discovery-1_0.html, accessed 2019/01/21. Jan. 2014.

[112] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1. http://openid.net/specs/openid-
connect-core-1_0.html. 2014.

[113] M. Schanzenbach, C. Banse, and J. Schütte. “Practical Decentralized Attribute-
Based Delegation Using Secure Name Systems”. In: 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering (TrustCom/Big-
DataSE). Aug. 2018, pp. 244–251. doi: 10.1109/TrustCom/BigDataSE.2018.
00046.

[114] M. Schanzenbach, G. Bramm, and J. Schütte. “reclaimID: Secure, Self-Sovereign
Identities Using Name Systems and Attribute-Based Encryption”. In: 2018 17th
IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science And Engi-
neering (TrustCom/BigDataSE). Aug. 2018, pp. 946–957. doi: 10.1109/TrustCom/
BigDataSE.2018.00134.

[115] M. Schanzenbach. ABD API in GNUnet. https://git.gnunet.org/gnunet.
git/tree/src/include/gnunet_abd_service.h, accessed 2020/04/04. Apr.
2020.

[116] M. Schanzenbach. ABD implementation in GNUnet. https://gnunet.org/git/
gnunet.git/tree/src/credential, accessed 2019/02/07. Feb. 2019.

[117] M. Schanzenbach. Example implementation of a relying party for ABD. https:
//github.com/schanzen/gnuidentity-example-rp/tree/credential,
accessed 2019/02/07. Feb. 2019.

[118] M. Schanzenbach. Example relying party for re:claimID predecessor. https : / /
github.com/schanzen/gnuidentity-example-rp, accessed 2019/02/07. Feb.
2019.

[119] M. Schanzenbach. Fork of the CP ABE library libbswabe replacing openssl with libgcrypt
and fixing some bugs. https://github.com/schanzen/libgabe, accessed
2019/02/07. Feb. 2019.

[120] M. Schanzenbach. re:claimID API in GNUnet. https://git.gnunet.org/
gnunet.git/tree/src/include/gnunet_reclaim_service.h, accessed
2020/04/04. Apr. 2020.

[121] M. Schanzenbach. User interface for ABD. https://github.com/schanzen/
gnunet-webui/tree/credentials, accessed 2019/02/07. Feb. 2019.

[122] M. Schanzenbach. User interface for re:claimID predecessor. https://github.com/
schanzen/gnunet-webui, accessed 2019/02/07. Feb. 2019.

169

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00046
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00046
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00134
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00134
https://git.gnunet.org/gnunet.git/tree/src/include/gnunet_abd_service.h
https://git.gnunet.org/gnunet.git/tree/src/include/gnunet_abd_service.h
https://gnunet.org/git/gnunet.git/tree/src/credential
https://gnunet.org/git/gnunet.git/tree/src/credential
https://github.com/schanzen/gnuidentity-example-rp/tree/credential
https://github.com/schanzen/gnuidentity-example-rp/tree/credential
https://github.com/schanzen/gnuidentity-example-rp
https://github.com/schanzen/gnuidentity-example-rp
https://github.com/schanzen/libgabe
https://git.gnunet.org/gnunet.git/tree/src/include/gnunet_reclaim_service.h
https://git.gnunet.org/gnunet.git/tree/src/include/gnunet_reclaim_service.h
https://github.com/schanzen/gnunet-webui/tree/credentials
https://github.com/schanzen/gnunet-webui/tree/credentials
https://github.com/schanzen/gnunet-webui
https://github.com/schanzen/gnunet-webui

Bibliography

[123] M. Schanzenbach and C. Banse. “Managing and Presenting User Attributes
over a Decentralized Secure Name System”. In: Data Privacy Management and
Security Assurance - 11th International Workshop, DPM 2016 and 5th International
Workshop, QASA 2016, Heraklion, Crete, Greece, September 26-27, 2016, Proceedings.
2016, pp. 213–220. doi: 10.1007/978-3-319-47072-6_14.

[124] M. Schanzenbach, T. Kilian, J. Schütte, and C. Banse. “ZKlaims: Privacy-preserving
Attribute-based Credentials using Non-interactive Zero-knowledge Techniques”.
In: proceedings of the 16th International Conference on Security and Cryptography
(SECRYPT 2019), part of ICETE. 2019.

[125] M. Schanzenbach and S. Zickau. “Identity and access management in a doping
control use case”. In: Datenschutz und Datensicherheit 41.12 (2017), pp. 724–728.
doi: 10.1007/s11623-017-0867-z.

[126] J. Schmidt. “Weblogs: eine kommunikationssoziologische Studie”. In: (2006).

[127] C. Selvaraj and S. Anand. “A survey on security issues of reputation manage-
ment systems for peer-to-peer networks”. In: Computer Science Review 6.4 (2012),
pp. 145–160.

[128] J. Sermersheim. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC
4511. http://www.rfc-editor.org/rfc/rfc4511.txt. RFC Editor, June
2006.

[129] M. Stiegler. An Introduction to Petname Systems. http://www.skyhunter.com/
marcs/petnames/IntroPetNames.html. June 2010.

[130] J. Sullivan. Digital Restrictions Management and Treacherous Computing. https:
//www.fsf.org/campaigns/drm.html, accessed 2020/07/12. July 2020.

[131] S.-T. Sun and K. Beznosov. “The devil is in the (implementation) details: an
empirical analysis of OAuth SSO systems”. In: Proceedings of the 2012 ACM
conference on Computer and communications security. ACM. 2012, pp. 378–390.

[132] A. Swartz. Squaring the Triangle: Secure, Decentralized, Human-Readable Names.
http://www.aaronsw.com/weblog/squarezooko. Accessed: 2017-10-30. Jan.
2011.

[133] T. Systems. Anastasis. https://docs.taler.net/anastasis.html, accessed
2020/04/04. Apr. 2020.

[134] T. Systems. Backup and Synchronization Service API. https://docs.taler.net/
core/api-sync.html, accessed 2020/04/04. Apr. 2020.

[135] P. Szoldra. The dark web marketplace where you can buy 200 million Yahoo accounts
is under cyberattack. https://www.businessinsider.de/real-deal-market-
ddos-2016-9, accessed 2019/02/20. Sept. 2016.

170

https://doi.org/10.1007/978-3-319-47072-6_14
https://doi.org/10.1007/s11623-017-0867-z
http://www.rfc-editor.org/rfc/rfc4511.txt
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
http://www.skyhunter.com/marcs/petnames/IntroPetNames.html
https://www.fsf.org/campaigns/drm.html
https://www.fsf.org/campaigns/drm.html
http://www.aaronsw.com/weblog/squarezooko
https://docs.taler.net/anastasis.html
https://docs.taler.net/core/api-sync.html
https://docs.taler.net/core/api-sync.html
https://www.businessinsider.de/real-deal-market-ddos-2016-9
https://www.businessinsider.de/real-deal-market-ddos-2016-9

Bibliography

[136] K. Szymielewicz. Your digital identity has three layers, and you can only protect one
of them. https://qz.com/1525661/your-digital-identity-has-three-
layers-and-you-can-only-protect-one-of-them/, accessed 2019/02/02.
Feb. 2019.

[137] uPort. uPort Whitepaper. https://whitepaper.uport.me/uPort_whitepaper_
DRAFT20170221.pdf, accessed 2017/11/12. Nov. 2017.

[138] uPort. uPort Whitepaper. http://blockchainlab.com/pdf/uPort_whitepaper_
DRAFT20161020.pdf, accessed 2017/11/12. Nov. 2017.

[139] B. Van Delft and M. Oostdijk. “A security analysis of OpenID”. In: IFIP Working
Conference on Policies and Research in Identity Management. Springer. 2010, pp. 73–
84.

[140] J. Vanian. Why Data Is The New Oil. http://fortune.com/2016/07/11/data-
oil-brainstorm-tech/, accessed 2019/02/02. July 2016.

[141] Various. The re:claimID project on gitlab. https://gitlab.com/reclaimid,
accessed 2019/02/07. Feb. 2019.

[142] M. Wachs, M. Schanzenbach, and C. Grothoff. “A censorship-resistant, privacy-
enhancing and fully decentralized name system”. In: Cryptology and Network
Security. Springer, 2014, pp. 127–142.

[143] M. Wachs, M. Schanzenbach, and C. Grothoff. “On the feasibility of a censorship
resistant decentralized name system”. In: Foundations and Practice of Security.
Springer, 2014, pp. 19–30.

[144] W. Wijngaards and G. Wiley. Confidential DNS. Internet-Draft draft-wijngaards-
dnsop-confidentialdns-03. http://www.ietf.org/internet-drafts/draft-
wijngaards-dnsop-confidentialdns-03.txt. IETF Secretariat, Mar. 2015.

[145] B. Womack, J. Robertson, and M. Riley. Yahoo Says at Least 500 Million Accounts
Breached in Attack. https://www.bloomberg.com/news/articles/2016-09-
22/yahoo-says-at-least-500-million-accounts-breached-in-hack-
attack, accessed 2019/02/20. Sept. 2016.

[146] P. Wouters. DNS-Based Authentication of Named Entities (DANE) Bindings for
OpenPGP. RFC 7929. RFC Editor, Aug. 2016.

[147] X. Yao, Z. Chen, and Y. Tian. “A lightweight attribute-based encryption scheme
for the Internet of Things”. In: Future Generation Computer Systems 49 (2015),
pp. 104–112.

[148] K. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical Specification
Road Map. RFC 4510. http://www.rfc-editor.org/rfc/rfc4510.txt. RFC
Editor, June 2006.

171

https://qz.com/1525661/your-digital-identity-has-three-layers-and-you-can-only-protect-one-of-them/
https://qz.com/1525661/your-digital-identity-has-three-layers-and-you-can-only-protect-one-of-them/
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
https://whitepaper.uport.me/uPort_whitepaper_DRAFT20170221.pdf
http://blockchainlab.com/pdf/uPort_whitepaper_DRAFT20161020.pdf
http://blockchainlab.com/pdf/uPort_whitepaper_DRAFT20161020.pdf
http://fortune.com/2016/07/11/data-oil-brainstorm-tech/
http://fortune.com/2016/07/11/data-oil-brainstorm-tech/
https://gitlab.com/reclaimid
http://www.ietf.org/internet-drafts/draft-wijngaards-dnsop-confidentialdns-03.txt
http://www.ietf.org/internet-drafts/draft-wijngaards-dnsop-confidentialdns-03.txt
https://www.bloomberg.com/news/articles/2016-09-22/yahoo-says-at-least-500-million-accounts-breached-in-hack-attack
https://www.bloomberg.com/news/articles/2016-09-22/yahoo-says-at-least-500-million-accounts-breached-in-hack-attack
https://www.bloomberg.com/news/articles/2016-09-22/yahoo-says-at-least-500-million-accounts-breached-in-hack-attack
http://www.rfc-editor.org/rfc/rfc4510.txt

	Acknowledgments
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Research questions
	Organization

	Background
	Directory services
	Standards and specifications
	Name systems

	Identity services
	Centralized
	Federated
	Self-sovereign

	Trust management
	Recommendation and reputation-based systems
	Evidence and policy-based systems

	Relevance in the context of this thesis

	State of the art
	Centralized, privacy-preserving identity management
	U-Prove
	Identity Mixer
	SPRESSO
	UnlimitID

	Decentralized directories and self-sovereign identity management
	NameID
	DecentID
	Sovrin
	uPort

	Distributed and decentralized trust establishment
	Attribute-based delegation
	Privacy-preserving key transparency

	Summary

	Decentralizing self-sovereign personal data sharing
	Adversary model and security goals
	Adversary model
	Security goals

	Towards a decentralized, self-sovereign identity service
	Identity directory service
	Cryptographic access control for attributes

	The re:claimID system
	Definitions and foundations
	Overview
	Registration
	Adding and updating attributes
	Authorizing access
	Retrieval
	Revoking access
	Deletion and update
	Identity escrow and key management

	Reference implementation
	Overview
	Attribute provisioning and sharing
	Identity escrow
	Performance evaluations
	Usability studies
	Integration into federated infrastructures

	Alternative approaches
	Identity token records
	Integrated approach

	Summary

	Establishing trust in self-sovereign identities
	Delegation of attributes using name systems
	Security properties
	Design
	Access control and policies
	Hidden delegations
	Example scenario
	Reference implementation
	Caching considerations

	Non-interactive zero-knowledge credentials
	Background
	Design
	Example use
	Reference implementation

	Summary

	Conclusions
	Contributions to research questions
	Outlook and future work

	List of Figures
	List of Tables
	Appendix Publications in the context of this thesis
	Appendix re:claimID prototype
	Wire formats
	Key-Policy ABE Variant
	Usability studies
	Web study
	IoT study
	Results

	Security proofs
	Wire formats

	Acronyms
	Glossary
	Bibliography

