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Abstract

While partial driving automation is already available, conditionally automated driving (CAD)
in commercial vehicles is imminent. The paradigm change of CAD incorporates drivers
leaving the driver-vehicle control loop, but remain fallback-ready users in case of system
limits. This take-over and associated human factors challenges are of crucial interest for
the safety and comfort of CAD and have seen great interest in science and industry. Based
on an extensive literature research on past findings and relevant effects, the research
questions of this thesis were derived. They address the effect of the driver state and the
human-machine interface (HMI) on the take-over performance in CAD.

The empirical basis of this thesis comprises four experiments. The first experiment
offers comprehensive insight about driver state changes caused by prolonged periods
of automated driving. Results showed a strong influence of situational factors, but no
influence of driver state changes on take-over performance. Experiment 2 focused on
state changes caused by the engagement in different non-driving related tasks (NDRTs).
Results allowed a detection of significant driver state changes which did not influence the
take-over performance. Situational effects on take-over performance were revealed again,
confirming the findings from the first experiment.

To allow a deeper understanding of relevant effects in combination with individual differ-
ences of drivers on take-over performance, the data from both experiments were pooled
together in a modeling approach. Mixed models were chosen to quantify idiosyncratic
effects in addition to improve prediction quality of take-over performance with regard to
known effects. Linear mixed models were fitted for the take-over time and the time to colli-
sion, while bi- and multinomial mixed logistic regression was applied for crash probability
and longitudinal and lateral accelerations. Results showed strong situational effects on
take-over performance while state changes, e.g. visual attention, showed limited effects
on driver behavior. Take-over time and braking behavior was highly affected by driver
predispositions while the time to collision and lateral accelerations were hardly influenced
by individual differences in the models.

Based on the findings from Experiments 1 and 2 and the modeling approach, the HMI
was optimized. The third experiment evaluated the possibility of peripheral monitoring
during CAD to improve visual perception and the situation awareness of drivers. Results
showed no significant effects on take-over performance. Findings, that visual NDRTs
during CAD lead to a significant reduction of visual perception and situation awareness
were supported, but the possibility of peripheral monitoring presented no feasible solution.
The fourth experiment provided insights into offering additional visual information on the
reason for the take-over and the system limit during the take-over process. Take-over
performance was unaffected by the optimized HMI whereas the subjective ratings of the
take-over and the HMI benefited significantly. Participants reported significantly higher
values for perceived safety, usability, intention to use and satisfaction compared to a
generic HMI.

Concluding, this thesis provides an empirical comparison of various effects on take-over
performance, including situational parameters, driver state and the HMI. While these
results underline current findings in the literature, the quantification of idiosyncratic effects
utilizing mixed models offers a novel and more comprehensive understanding of human
factors challenges concerning the take-over in CAD.
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Zusammenfassung

Hochautomatisiertes Fahren (HAF), in dem eine Automation die Fahrzeugführung über-
nimmt, sodass sich Fahrer mit anderen, fahrfremden Tätigkeiten (ffT) beschäftigen dürfen,
soll demnächst verfügbar sein. Die Automation kann allerdings Systemgrenzen erreichen,
in denen die Fahrer als Rückfallebene wieder manuell fahren müssen, sie "übernehmen".
Der Paradigmenwechsel, dass Fahrer während aktiver Hoch-Automation im Vergleich
zum teilautomatisierten Fahren nicht mehr überwachen müssen, in Kombination mit der
Übernahme, beinhaltet eine Reihe neuer, ergonomischer Fragestellungen. Die Forschungs-
fragen dieser Arbeit adressieren den Einfluss der Verkehrssituation, des Fahrerzustands
während HAF, des Anzeigekonzepts und den Einfluss von individuellen Unterschieden auf
die Übernahmeleistung an Systemgrenzen.

Zentraler Kern der Arbeit sind vier Fahrsimulationsversuche, in denen Daten zur Be-
antwortung der Forschungsfragen erhoben wurden. Der erste Versuch untersuchte den
Einfluss längerer Automationsdauern und zeigte keinen Einfluss des Fahrerzustands,
aber einen starken Effekt der Situation auf die Übernahmeleistung. Im zweiten Versuch
wurden unterschiedliche ffT untersucht, die ebenfalls keinen Einfluss zeigten, wohingegen
Situationseinflüsse abermals signifikant die Übernahmeleistung beeinflusst haben.

Aufgrund des ähnlichen Versuchsdesigns der ersten beiden Versuche wurden die Daten
für eine kombinierte Modellierung herangezogen. Übernahmezeit, Zeit bis zu einer poten-
ziellen Kollision (time to collision, TTC) und auftretende Beschleunigungen wurden mithilfe
von gemischten Modellen (mixed models) modelliert, die gleichzeitig zu den Einflüssen
von Situation, Fahrerzustand, ffT, etc. die Quantifizierung von individuellen Unterschieden
zwischen Fahrern erlaubten. Der starke Situationseinfluss aus den Versuchen 1 und 2
wurde bestätigt, zudem hat die Verkehrsdichte, das Alter und die visuelle Aufmerksamkeit
einen Einfluss auf ausgewählte Metriken. Die Quantifizierung der individuellen Einflüsse
zeigte einen starken Effekt dahingehend, dass Fahrer individuell unterschiedlich schnell
übernahmen und ein stark individuelles Bremsverhalten zeigten, wohingegen die laterale
Beschleunigung und die TTC kaum individuelle Unterschiede zeigten.

Auf Basis der Modellierungs- und Versuchsergebnisse wurde in Versuch 3 das Anzeige-
konzept optimiert, um Fahrern während aktiver Automation die Möglichkeit der peripheren
Überwachung zu geben. Die Ergebnisse zeigten keine signifikante Verbesserung der
Übernahmeleistung, wobei Fahrer ohne visuelle ffT das größte Situationsbewusstsein
vor der Übernahme aufwiesen. Im vierten Versuch wurden die Fahrer während der Über-
nahme durch die Anzeige der Systemgrenze im Head-Up Display und dem Grund für die
Übernahme unterstützt. Auch hier zeigte sich kein Einfluss auf die Übernahmeleistung,
allerdings schnitt die subjektive Bewertung der Übernahme und des neuartigen Anzei-
gekonzepts deutlich besser ab als das generische Anzeigekonzept aus den Versuchen
1-3. Vor allem das Sicherheitsempfinden, die Zufriedenheit und die Gebrauchstauglichkeit
konnten signifikant verbessert werden.

Die Arbeit liefert einen wichtigen Beitrag zur Bewertung von Einflüssen wie Situation,
Fahrerzustand und des Anzeigekonzepts auf die Übernahme beim HAF und erweitert
damit die bestehende Forschungslandschaft. Die Quantifizierung der individuellen Unter-
schiede zwischen Fahrern und deren Vergleich mit den bestehenden Einflüssen leistet
einen entscheidenden, neuen Beitrag zu einem umfassenden Verständnis der ergonomi-
schen Herausforderungen der Übernahme beim HAF.
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Glossary

AIC Akaike Information Criteria
ANOVA Analysis of Variance
AOI Area of Interest

BASt Bundesanstalt für Straßenwesen
German Federal Highway Research Institute

CAD Conditionally Automated Driving
CID Central Information Display
COP Center of Pressure

DDT Dynamic Driving Task

GG Greenhouse-Geisser-correction
GLM Generalized Linear Model
GLMM Generalized Linear Mixed Model

HGD Horizontal Gaze Dispersion
HMI Human-Machine Interface
HUD Head-Up Display

ICC Intraclass Correlation Coefficient

KSS Karolinska Sleepiness Scale

LRT Likelihood Ratio Test

M Mean
MMLR Multinomial Mixed Logistic Regression
MWWT Mann-Whitney-Wilcoxon Test

NDRA/T Non-driving related activities or tasks

ODD Operational Design Domain
OEDR Object and Event Detection and Response
OLS Ordinary Least Squared (regression)

PAD Partially Automated Driving
PEOIC Percentage Eyes on Instrument Cluster
PEOR Percentage Eyes on Road
PERCLOS Percentage of Eye Closure

REML Restricted Maximum Likelihood Estimation
RtI / TOR Request to Intervene / Take-over request

SA Situation Awareness
SAE Society of Automotive Engineers
SAGAT Situation Awareness Global Assessment Technique
SART Situation Awareness Rating Technique
SD Standard Deviation
SDLP Standard Deviation of Lateral Position
SuRT Surrogate Reference Task
SWT Shapiro-Wilks Test

TOT Take-over time
TTC Time to collision
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1 Introduction

The last years have seen two major trends in automotive research and innovation: electric
cars and automation. While the number of electric cars available to consumers is rising
every year, the development of automated driving in general is more erratic. Assistance
systems like cruise control or parking sensors have been known for decades and were
improved in evolutionary steps. Recently, the constant development of computational
power and sensor technology has promoted a huge step in the development of commercial
vehicle automation (Maurer, Gerdes, Lenz, & Winner, 2016, p. 90).

The Society of Automotive Engineers (SAE) (SAE J3016, 2018) defines six levels of
automated driving, from Level 0 - manual driving to Level 5 - fully automated driving. Cur-
rently, Level 2 systems, or partially automated vehicles are already available to consumers.
Level 3 systems, or conditionally automated vehicles are expected to be offered in the
near future (Hafner, 2020). Consequently, past and current research both from industry
and academia focused on the relevant safety and comfort issues related to the human
factors of conditionally automated driving (CAD).

The six levels of automation must not be understood to represent an ordinal scale
but rather a helpful framework to better distinguish between the levels of automated
driving from a functional point of view. Level 2 systems take-over parts of the dynamic
driving task (DDT) but still require the driver to monitor the system as integrative part
of the driver-vehicle control loop (Bubb, Bengler, Grünen, & Vollrath, 2015, p. 28). CAD
constitutes an automation controlling the DDT while the driver can potentially engage in
non-driving related activities or tasks. He remains a receptive fallback level in case a
system limit is met and the automation issues a request to intervene (RtI) (SAE J3016,
2018). Drivers then have to react to the RtI, reenter the driver-vehicle control loop and
resolve the situation by driving manually. This process is referred to as take-over in CAD.

This take-over process represents a highly safety-relevant transition in addition to
any consequences on liking, perceived comfort, acceptance and trust of the underlying
automation. Therefore, the human factors research on CAD has focused on the take-over
process. Empirical work on factors like the available time budget, traffic density or non-
driving related tasks has already yielded valuable insight into the transitional process from
CAD to manual driving. Any transitions to different levels of automation are possible and
thought upon. The human factors research community especially centered on the transition
from CAD to manual driving to allow a more transparent understanding of maximal human
performance. The driver state in general, its development during automated driving and its
effect on take-over performance still contain key questions on specific topics like prolonged
automation duration or non-driving related tasks (NDRTs).

This thesis focuses on effects from a change in driver state on take-over performance,
using modeling approaches including idiosyncratic effects to predict take-over performance
and enhancing the human-machine interface (HMI) for CAD.

Chapter 2 offers the theoretical framework for the empirical studies. The state of the art
in literature for human factors research on CAD, take-overs and driver state is presented.
The main construct of ideas and their underlying reasoning is based on the literature review
which also allows a critical classification of results. Chapter 3 provides a brief summary
of central findings from the literature review, the derivation of the research questions and
the composition of the empirical studies. Chapter 4 provides the general methodological
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1 Introduction

basis for the studies and allows insight into the experimental setup. Identical parts within
the individual method sections of the experiments are depicted in this section. Chapters
5 and 9, each based on one empirical study, present the individual method, results
and discussion for the underlying research questions. These results have not been pre-
published to this thesis and are analyzed in detail in this work. Chapters 6 and 8 contain
a brief summary of the main findings from two additional experiments, that have been
pre-published to this thesis in Radlmayr, Brüch, Schmidt, Solbeck, and Wehner (2018)
and Radlmayr, Fischer, and Bengler (2019). Chapter 7 focuses on a modeling approach
based on the data from Chapters 5 and 6. Chapter 10 offers limitations to the empirical
work in general and puts the results, conclusions and discussion of all four experiments
in critical perspective to existing research including a summary and an outlook on future
topics and research.

2



2 Take-over performance in conditionally automated
driving

This chapter provides the theoretical basis for this thesis. The relevant literature and
state of the art on take-overs in CAD are presented. Focus is put on the driver state,
its development during automated driving and potential effects on take-overs. Different
effects on take-over performance are summarized and put into perspective to allow a
critical discussion of results from this thesis.

When referring to automated driving in general and CAD in particular, the underlying
definition is taken from the Society of Automotive Engineers (SAE) (SAE J3016, 2018).
From a historical point of view the document is based on the definition of levels of
automation by Gasser and Westhoff (2012). They suggested five levels, from the lowest
one - manual driving to the highest level - full automation. The definition from the SAE
adds one additional level and has the six levels ranging from Level 0 - manual driving or
"No Driving Automation" to Level 5 - "Full Driving Automation". The levels differ in the
categories "Dynamic Driving Task" (DDT), "Dynamic Driving Task Fallback" (DDT Fallback)
and "Operational Design Domain" (ODD). Concerning the DDT, the levels differ in the way
and by whom the longitudinal and lateral control of the vehicle is executed, either being
the automation or the driver. In addition, the "Object and Event Detection and Response"
(OEDR) is either executed by the system or the driver. The DDT Fallback is distinguished
between system or driver. The various combinations of DDT, DDT Fallback and OEDR
are matched with the ODD, where the design domain is either not available (in manual
driving), limited (for Level 1 to 4) or unlimited (in Level 5) (SAE J3016, 2018). Figure 2.1
provides an overview on the six levels of driving automation and the variations of DDT
including fallback, OEDR and ODD. Level 2 systems are already available for customers,
e.g. from Tesla, BMW, Audi, Mercedes-Benz or Volvo. While the DDT is being executed by
the automation, drivers are still responsible for monitoring the environment, traffic and the
system, since the OEDR responsibility lies with them. Drivers must detect system failures
or limits and take over control in case the system fails.

Level 3, CAD introduces a fundamental paradigm change (Lorenz, Hergeth, Ker-
schbaum, Gold, & Radlmayr, 2015). The OEDR is being executed by the system along
with the longitudinal and lateral control. Drivers do not have to monitor or supervise the
system but remain fallback-ready users (SAE J3016, 2018). Concerning the new role
of drivers, they are potentially free to divert their attention to other tasks not related to
driving or monitoring. In case the system encounters a system limit, the receptive user
becomes the driver during fallback, he or she takes over (SAE J3016, 2018). The ODD is
limited and using the system is restricted to e.g. highways or interstates. This leads to
transition processes between the various levels of automation. CAD is the first level in
which drivers are allowed to exit the driver-vehicle control loop (Bubb et al., 2015, p. 28).
Therefore, the transition to lower levels of automated driving proposes new challenges
to the safety and comfort of drivers. The OEDR lies with the system and drivers have to
regain the OEDR responsibility. CAD in general is affecting the drivers’ activity, attention
processes, workload, situation awareness, behavioral adaptions, acceptance and trust
(Navarro, 2018). The transition from CAD to lower levels and the accompanying paradigm
change is of highest interest concerning the successful introduction of Level 3 systems.
Research on factors affecting these take-overs has seen great focus in the last years.

3
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Table 1 - Summary of levels of driving automation 
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Name Narrative definition 

DDT 

DDT 
fallback  ODD  

Sustained 
lateral and 

longitudinal 
vehicle motion 

control 

OEDR 

Driver performs part or all of the DDT     

0 
No Driving 
Automation 

The performance by the driver of the entire DDT, even 
when enhanced by active safety systems. 

Driver Driver Driver n/a 

1 Driver 
Assistance 

The sustained and ODD-specific execution by a 
driving automation system of either the lateral or the 

longitudinal vehicle motion control subtask of the DDT 
(but not both simultaneously) with the expectation that 

the driver performs the remainder of the DDT. 

Driver and 
System 

Driver  Driver  Limited  

2 
Partial 
Driving 

Automation 

The sustained and ODD-specific execution by a driving 
automation system of both the lateral and longitudinal 
vehicle motion control subtasks of the DDT with the 

expectation that the driver completes the OEDR 
subtask and supervises the driving automation system. 

System Driver  Driver Limited 

ADS (“System”) performs the entire DDT (while engaged) 

System System 

 
Fallback-

ready user 
(becomes 
the driver 

during 
fallback) 

Limited 

3 
Conditional 

Driving 
Automation 

The sustained and ODD-specific performance by an 
ADS of the entire DDT with the expectation that the 
DDT fallback-ready user is receptive to ADS-issued 

requests to intervene, as well as to DDT performance-
relevant system failures in other vehicle systems, and 

will respond appropriately. 

4 
High  

Driving 
Automation 

The sustained and ODD-specific performance by an 
ADS of the entire DDT and DDT fallback without any 
expectation that a user will respond to a request to 

intervene. 

System System System Limited 

5 
Full 

Driving 
Automation 

The sustained and unconditional (i.e., not ODD-
specific) performance by an ADS of the entire DDT 

and DDT fallback without any expectation that a user 
will respond to a request to intervene. 

System System System Unlimited 

Downloaded from SAE International by Jonas Radlmayr, Monday, January 14, 2019

Figure 2.1: Overview of the levels of driving automation from SAE J3016 (2018).

Known research and literature is presented and discussed in Chapter 2.2. This spike in
research on take-overs in CAD was accompanied with an abundance of new concepts
and definitions. While the discussion on some of them is ongoing, this section clarifies
which definitions are used throughout this thesis, where they originate from and why they
were chosen to serve as theoretical basis.

• Conditional Driving Automation, conditionally automated driving (CAD)
CAD is referring to a Level 3 system following the definition of levels of automation
of the SAE J3016 (2018). This can be confused with the corresponding level of the
German Federal Highway Research Institute, or Bundesanstalt für Straßenwesen
(BASt), which can be literally translated to highly automated driving (Gasser & West-
hoff, 2012). Following the SAE definition, a High Driving Automation incorporates
the option of the system reaching a minimal risk condition, if an ODD limit is reached
and there is no alternative DDT fallback. This thesis is focusing on Level 3 systems
or CAD, in which a receptive fallback ready user responds to a request to intervene,
performs fallback and resumes DDT performance (SAE J3016, 2018).
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• Take-over process
The transition process in which a driver performs as fallback and resumes the DDT
is labeled to be a take-over (process). A take-over does not necessarily incorporate
a transition from Level 3 to Level 0 without any assistance systems but could
also be understood as transition from Level 3 to either Level 2 or 1. Most of the
research on take-overs focuses on the transition from Level 3 to 0 since the take-over
performance is best assessed without interference from assistance systems (Level
1) or partial driving automation (Level 2, PAD). Most of the literature presented in
Chapter 2.2 on transitions from Level 3 to 0 use the term take-over process, e.g. see
Damböck (2013).

• Request to Intervene (RtI), Take-over request (TOR)
CAD implies drivers to respond to a Request to Intervene (RtI) or take-over request
(SAE J3016, 2018). The term take-over request (TOR) was commonly used in
publications up to 2017, e.g. see Damböck (2013), van den Beukel and van der
Voort (2013), Gold (2016), Kerschbaum (2017). It was succeeded by RtI following a
previous version of SAE J3016 (2018) and Marberger et al. (2017). Both documents
are part of the ongoing revision of the ISO technical report ISO/TR21959-1:2018
which is in line with SAE J3016 (2018). Take-over request is synonymous with RtI.
In this thesis, only RtI is used to comply with the ISO document.

• Take-over situation
The empirical work in this thesis is based on evaluating take-over performance. The
underlying premise requires a situation or scenario in which the transition process
is assessed. The take-over situation is understood to be the testing situation that
incorporates both chronological and spatial limits that define the beginning and
end of a transition from CAD to manual driving. While there are many definitions
on traffic situations or scenarios, there is no common ground in literature on what
precisely is defined as a situation in general (Schneider, 2009).
The take-over situations in this thesis are based on the concept defined by Gold,
Naujoks, Radlmayr, Bellem, and Jarosch (2017). This concept is part of the results
from the German nationally funded research project on cooperative, conditionally
automated driving - Ko-HAF (Kooperatives, hochautomatisiertes Fahren – Ko-HAF ,
2018). A take-over situation is defined, both chronologically and spatially, to start
with the RtI and end with the system limit or reason for the RtI. More details on the
specific situations in this thesis are offered in Chapter 4.

• Take-over performance
Take-over performance is an umbrella term for various metrics quantifying driver
behavior during a take-over. The definition is taken from Gold (2016). The term in-
corporates time aspects, such as the TOT and quality aspects such as accelerations
or the time to collision (TTC). Generally speaking, a better take-over performance
is associated with a reduction of the TOT and accelerations and an increase in the
TTC. At this point, there are no specific thresholds to distinguish between a good or
bad take-over.

• Non-driving related activities or tasks (NDRA/Ts)
Prior to the introduction of CAD, research was focused on distraction (Bengler et
al., 2014). Manual driving was state of the art and the introduction of assistance
systems and new functions of vehicles such as air conditioning control or navigation
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systems raised the question of whether these systems are a distraction from manual
driving (e.g. Baumann, Rösler, & Krems, 2009).
Manual driving is split into three categories (Geiser, 1985). Primary tasks of the
driver consist of navigating, maneuvering and stabilizing the vehicle in addition
with recognizing relevant information from the surroundings. Secondary tasks are
necessary for driving in general, but are independent of the execution of the DDT,
e.g. operating the indicators or wipers. Tertiary tasks are linked to the comfort of
drivers, such as climate control or controlling the radio. The labeling of secondary
and tertiary with respect to the primary driving task raised questions of distraction,
diversion of attention and multi-tasking abilities of drivers. A stringent application of
a common understanding and methodology avoided negative side effects (Bengler
et al., 2014).
Due to the inherent paradigm change of CAD, tasks that were previously labeled
to be tertiary become new - non-driving related - primary tasks. CAD imposes a
paradigm shift from a dual-task paradigm to a sequential-task paradigm (Lorenz
et al., 2015). In order to differentiate new tasks and the new paradigm from the
existing research on distraction, activities or tasks that are being executed during
automated driving are labeled as non-driving related tasks (NDRTs). An overview
on the abundance of new NDRTs during automated driving, known effects and their
operationalization within this thesis’ empirical work is provided in chapters 2.2 and 4.

• Human-machine-interface (HMI)
The term HMI in an automotive context includes all parts available for drivers that
convey information and/or are used for operation of the vehicle (Bubb et al., 2015,
p. 272). Interfaces conveying information to the driver range from visual displays,
to auditory or haptic signals. Control elements used for operation of the vehicle
range from pedals, the steering wheel and any additional sensors, e.g. buttons,
microphones, to additional controls used for engaging in NDRA/Ts (Bubb et al., 2015,
p. 273). Focused on automated driving in general and CAD specifically, research
and development of optimized HMIs is directed towards the full spectrum of HMIs
e.g. conveying haptic information (Petermeijer, 2017) or transforming the steering
wheel (Kerschbaum, 2017).
The experiments in this thesis aim to optimize the visual interaction of drivers with
NDRTs and the display of information during a take-over process. A head-up display
(HUD) is utilized in two experiments in this thesis to optimize the visual interaction
between system and drivers.

The definition of CAD highlights the importance of the take-over concerning the interaction
of drivers with such systems. With the limited ODD of CAD, the transition to manual driving
provides the highest understanding of the underlying human factors and offers the most
leverage of evaluating novel HMI-concepts. The transition from CAD to manual driving is
at the core of the empirical work in this thesis.

The field of research on automated driving in general has given rise to many questions,
such as testing standards, liability details, security concerns or data privacy (Fagnant &
Kockelman, 2015; Maurer et al., 2016). These questions and concerns are inherently
connected to the successful introduction of automated driving. PAD systems are in use
today whereas CAD is understood to be the next system available to users. From a
functional perspective, vehicle control is executed by the automation for level 2 and 3.
From a human factors perspective, the paradigm change of CAD imposes many new
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Figure 2.2: Graphical representation of the take-over process from Marberger et al. (2017).

questions due to drivers exiting and entering the driver-vehicle control loop. The take-over
in CAD is identified to be the crucial element (Gold, 2016). The underlying understanding
of take-overs in this thesis is depicted in Figure 2.2. The process integrates both sequential
and parallel procedures and allows the definition of the driver availability for a take-over.
The take-over mode in Figure 2.2 is disregarded for this thesis to allow a transparent
analysis of the human performance without support or interaction from system inputs.
Control of the DDT is labeled in blue in Figure 2.2. The definition underlines the necessity
to predict the intervention time to allow an accurate understanding of the availability prior
to a take-over and gives reason to the modeling approach in Chapter 7. The definition
for driver availability is presented for the take-over time (TOT) (Marberger et al., 2017).
While the definition allows an understanding and quantification for TOT, an integration of
additional metrics of take-over performance, such as accelerations, can be applied to the
concept of driver availability.

• Driver availability
Driver availability for a take-over is defined as the fraction between time necessary
for a driver intervention and the time budget for a take-over. In case the time
necessary exceeds the time budget, drivers would be unavailable for a take-over.
The definition as fraction allows the quantitative comparison between different levels
of driver availability and is partly based on the general theory of driver behavior from
Fuller (2005).

The take-over process depicted in Figure 2.2 and the assessment of driver reactions
between the RtI and the system limit serve as empirical basis for this thesis. The following
sections also feature results based on different frameworks or models to allow a critical
demarcation of results and conclusions.

General information on driver assistance systems, which for many aspects of CAD form
the basis of methods and approaches, can be found in Winner, Hakuli, Lotz, and Singer
(2015). While the following sections provide an overview of relevant literature concerning
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2.1 Driver models and constructs of driver state

empirical findings, some of the publications originate from specific projects that focused
on human factors challenges of Level 2 and 3 automated driving.

The first research projects on automated driving such as Prometheus (Williams &
Preston, 1987) demonstrated the technical possibilities in general, while focus was not put
on human factors questions or the commercial applicability of such systems. Research
on assistance systems, such as adaptive cruise control, can be understood as research
on automated driving of Level 1 (SAE J3016, 2018). The dissertation from Gold (2016)
provides a very thorough overview on the history of research on automated driving and
the main internationally or nationally funded projects are listed. This paragraph focuses
on projects that have been published or started recently. The project HAVEit (Flemisch et
al., 2010) focused on Level 3 automated driving and affiliated questions such as driver
monitoring and the necessary technology to allow the safe and comfortable introduction
of automated driving. The take-over of human drivers at system limits of the vehicle
automation was not the main focus at the time. The results from HAVEit were regarded
for the selection of the key elements of the generic HMI used in this thesis and the
necessity of using eye-based systems to assess the driver state during automated driving
(Flemisch et al., 2010). The H-mode project and metaphor (H: horse) (Bengler & Flemisch,
2011; Flemisch, Bengler, Bubb, Winner, & Bruder, 2014) focused on optimizing the HMI
between vehicle automation and driver by allowing a continuous arbitration of responsibility
concerning vehicle control between a loose and tight reign. Haptic feedback was used
to support the driver by continuous feedback and automating parts of the DDT without
the option of drivers exiting the driver-vehicle control loop. The H-mode concept showed
great benefits concerning the overall driving performance. The introduction of Level 3 and
the associated possibility of engaging in NDRTs leads to drivers exiting the driver-vehicle
control loop. This paradigm change was not integral part of H-mode and results from
H-Mode are not regarded for this thesis. The project AdaptIVe (Langenberg, Bartels, &
Etemad, 2014) provided human factors recommendations for the introduction of vehicle
automation in general, but targeted functional requirements and decision strategies for
collaborative automation (Kelsch et al., 2017). Collaborative automation differs compared
to the sequential shift between manual and automated driving associated with CAD. The
results from AdaptIVe underlined the need of assessing the driver state in the context
of CAD. The project UR:BAN (Bengler, Drüke, Hoffmann, Manstetten, & Neukum, 2018)
focused on assistance systems in more complex urban environments, giving way to HMI
solutions regarding HUDs and novel display concepts. The results are detailed and
integrated in the iterative development of the optimized HMI in Experiment 4 in Chapter 9.

The results from these projects motivated the project Ko-HAF which provided the
framework and key theoretical understandings of this thesis. Additional driver models and
frameworks of driver behavior are depicted in the next section.

2.1 Driver models and constructs of driver state

Both theoretical and quantitative driver models have been developed in the last decades
to allow a prediction of driving behavior. A comprehensive overview of the fundamental
link between automated driving and associated effects on driver behavior can be found in
Bengler (2015). This includes well-known constructs and theories from the field of human
factors not specifically aimed at automated driving. The models and constructs in this
section differentiate between theoretical frameworks and quantitative models of human
behavior. The review summarizes key models that were regarded in the development of
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the Ko-HAF framework and the principal understanding of driver behavior and modeling.
The Ko-HAF framework serves as theoretical basis for the empirical work in this thesis
and is aimed primarily at CAD.

The model human processor (Card, Moran, & Newell, 1986) explains and quantifies
human performance from an engineering point of view in a dedicated environment. In
the beginning of research on automated driving, the technical possibilities of realizing
self-driving vehicles were of highest interest (Maurer & Dickmanns, 1997), while the
human factors community focused on predicting manual driving performance (Sheridan,
1966). A spike in theoretical frameworks or qualitative links between different aspects of
human behavior was reflected in Michon (1985) and later in Ranney (1994). The focus
of these publications was manual driving and a critical view on proposed psychological
behavior models. A general link between under- and overload conditions concerning
arousal and performance was established by the Yerkes-Dodson law (Yerkes & Dodson,
1908). Both under- and overload conditions were associated with low performance while a
medium arousal was understood to foster optimal performance. The law was generalized
for the field of human factors in Teigen (1994). The connection between arousal and
performance was fundamental basis for the design of experiments in Chapters 5 and 6 and
the derivation of hypotheses concerning prolonged automated driving and the engagement
in NDRTs. The multiple resources theory (Wickens & Liu, 1988) provides valuable insight
into potential resource conflicts during the take-over. During the take-over process, the
reallocation of resources to continue manual driving is competing with the current task
or activity (Wickens, 2008). Depending on the modalities and specific characteristics
of the NDRT such as effort to disengage, any engagement in NDRTs can be assessed
theoretically. Potential effects range from showing negative consequences due to an
overload of modalities up to helping drivers by preventing them from falling asleep due
to underload conditions. Special focus is put on (visual) attention (Wickens & McCarley,
2007). While drivers are part of the driver-vehicle control loop during manual driving,
attentional resources are distributed between the DDT and other, distracting tasks. The
sequential switch between CAD and manual driving in a take-over in a short period of time
accentuates the importance of attention. Misguided attention or attention on details not
necessary for the take-over can greatly influence human performance. The necessity of
monitoring attention as essential part of the driver state during automated driving can be
derived. Following a holistic view on driver state, CAD as specific level of automated driving
calls for driver monitoring (Rauch, Kaussner, Krüger, Boverie, & Flemisch, 2009; Müller &
Bläsig, 2014). While the following models already focus on automated driving, information
on the different challenges of manual driving are typically based on the distinction between
behavior based on skills, rules and knowledge (Rasmussen, 1983).

The framework of situation awareness (SA) (Endsley, 1988) is contemplated specifically.
In CAD, drivers are likely to loose SA when they exit the driver-vehicle control loop and
are "out of the loop" (Kaber & Endsley, 1995). Since the OEDR responsibility lies with
the system and drivers are allowed to engage in NDRTs, driver states including low or
no SA are likely to occur. SA allows an intuitive explanation of take-over performance a
posteriori. Based on the general concept of SA, a prediction of specific metrics of take-over
performance is not feasible. However, the measurement of SA can be utilized by different
methods such as the SAGAT (situation awareness global assessment technique) or the
SART (situation awareness rating technique). The popularity of SA and its utilization within
the research scope of take-overs in CAD is viewed critically in Chapter 8 and discussed
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incorporating the latest thoughts on SA in the context of automated driving (Endsley,
2015a, 2015b).

For specific psychological models of driving automation, Stanton and Young (2000)
propose a model incorporating constructs such as the locus of control, mental workload
or SA, but remain on a qualitative point of view. The necessity of integrating specific
empirical findings in a unified model of driving automation is underlined to improve the
outcome of design processes and the interaction of humans with automated vehicles
(Stanton & Young, 2000). Recent years have seen a steep increase in the suggestion of
both theoretical frameworks and quantitative models. Braunagel, Rosenstiel, and Kasneci
(2017) suggest a model predicting take-over readiness with an accuracy of 79% integrating
the complexity of the situation, the type of NDRT and the number of gazes to the road.
The model provides an automated way of assessing driver readiness for a take-over and
highlights the feasibility of eye-based measures to both assess changes of the driver
state and to predict take-over performance. Inter- and intra-individual differences are not
regarded to further increase prediction quality.

Two frameworks from Heikoop, de Winter, van Arem, and Stanton (2016) and Lu,
Happee, Cabrall, Kyriakidis, and de Winter (2016) focus on the integration of relevant
constructs of driver behavior. The interactions between e.g. attention and workload are
discussed critically and qualitative links are established. The frameworks are not regarded
for this thesis, since they lack the possibility of establishing quantitative relations as well.
The framework developed in Ko-HAF features a theoretical classification of driver state
components relevant to CAD and the take-over process as safety and comfort critical
event. With the definition of driver availability, it also proposes a quantitative relationship
for individual metrics of take-over performance.

The Ko-HAF framework is portrayed in Figure 2.3. Various factors, such as NDRTs,
the RtI or the take-over situation affect the driver state. Key element of the framework
is the transition process between a current and target driver state. The time needed for
this transition process with respect to the available time budget of the situation allows the
quantification of driver availability. Quantifying changes of the current driver state regarding
e.g. the sensory or motoric state and analyzing the effect on take-over performance allows
a precise evaluation of the new role of the driver in CAD. Motivational conditions, driver
training and system experience are taken into account and the framework leads way
to a comprehensive understanding of the take-over process in CAD. A more detailed
summary of the construction and understanding of the concept of driver availability and
the framework can be found in Marberger et al. (2017). In order to comply with the general
wording used in existing literature and the scope of this thesis exceeding the current
definition of driver availability by regarding more metrics than TOT, driver state is used
throughout this thesis. Driver availability for a take-over can be understood to be a specific
level of the general driver state in CAD.

For insight on individual differences in human-automation interaction, this thesis refers
to the integral overview provided by Körber (2018). Additional constructs highly discussed
and researched in the context of CAD such as trust, acceptance and workload go beyond
the scope of this thesis and are not discussed in this literature overview. Well estab-
lished ground truths of human automation interaction, such as the ironies of automation
(Bainbridge, 1983) or challenges of appropriate automation design (Parasuraman & Riley,
1997) are not detailed in the literature overview, but serve as basic knowledge regarding
the design of experiments and critical considerations of results in this thesis.
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Figure 2.3: Framework of relevant factors of the take-over in CAD by Marberger et al.
(2017).

2.2 Effects on take-over performance

This section focuses on publications and findings that put emphasis on various factors
affecting take-over performance. The research questions detailed in Chapter 3 are derived
from the following literature review. The focus on changes of the driver state and the
resulting take-over performance in this thesis aims to answer open questions in the field of
research.

The great increase in research and publications on take-overs in the last years was
deduced in the dissertation from Gold (2016), where a modeling approach for the prediction
of take-over performance was presented. Prediction quality was validated and compared to
existing research from other institutes and companies. Findings emphasize the importance
of considering changes in the driver state by utilizing driver monitoring. The predisposition
of drivers also revealed significant model improvements and should be considered for
future modeling attempts (Gold, 2016). The thesis from Körber (2018) highlights inter-
individual differences in human-automation interaction and emphasizes the need for a
quantitative evaluation of these differences. The comparison with other factors such as
situational or state effects is essential (Berghöfer, Purucker, Naujoks, Wiedemann, &
Marberger, 2018; Körber, 2018) to allow a feasible prioritization of measures to further
optimize the take-over in CAD.

The increase in publications on take-over research also promoted meta-analyses and
summaries of most important findings similar to this chapter. An overview of well-known
effects on take-over performance such as different situations or NDRTs can be found in
de Winter, Happee, Martens, and Stanton (2014) and Happee, Gold, Radlmayr, Hergeth,
and Bengler (2017). The general approach of initial experiments on take-overs in CAD
included comparing manual drivers to drivers taking over in the same situation (Damböck,
2013; Radlmayr, Gold, Lorenz, Farid, & Bengler, 2014; Ito, Takata, & Oosawa, 2016).
Manual drivers show faster reaction times since they never exit the driver-vehicle control
loop. Concerning quality measures such as TTCs or accelerations, minor differences,
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highly dependent on the specific situation, can be observed. The take-over performance
in general resembles maneuvers from manual drivers concerning quality measures. Car-
ryover effects can be observed (Skottke, Debus, Wang, & Huestegge, 2014), but remain
small compared to situational influences.

The majority of publications focused on finding differences between groups or conditions
when assessing take-over performance. Modeling approaches to predict behavior were
not limited to Gold (2016), but can be found in e.g. Zeeb, Buchner, and Schrauf (2015)
as well. Results underline the feasibility of predicting take-over performance to allow a
potential future, integrated assessment of drivers being a fallback ready option or not.
Results show, that motor readiness can be carried out reflexively, whereas cognitive
processing of the take-over is impaired by e.g. drivers engaging in NDRTs (Zeeb, Buchner,
& Schrauf, 2016).

Great focus is put on time aspects of the take-over process to not only find differences
between effects but also to determine a maximal time in which participants can take-over
safely. Studies on finding the minimal TOT were considering time budgets between four
to eight seconds (Damböck, 2013; Gold, 2016) whereas more recent studies suggest a
time budget of ten seconds or more for a complete take-over (Wan & Wu, 2018). Reaction
times can be accelerated to a minor extent with smaller time budgets (Gold, 2016),
but key element of the TOT is understanding the take-over situation before regaining
manual control (McDonald et al., 2019). This also includes coping with effects from
repeated take-overs, changing levels of automation and the driving environment calling for
models accumulating all these effects (McDonald et al., 2019). Age, potentially increasing
reaction times of the take-over, showed no effect for time aspects but led to stronger
brake maneuvers compared to young drivers (Körber, Gold, Lechner, & Bengler, 2016a).
Middle-aged drivers, selected due to their increased experience in manual driving on a
daily and annually basis, showed faster reactions compared to younger drivers (Wright,
Samuel, Borowsky, Zilberstein, & Fisher, 2016).

The process of regaining an understanding of the take-over situation, re-entering the
driver-vehicle control loop and driving manually requires a high amount of visual attention.
The visual behavior prior to and during the take-over process is of utmost importance for
the successful execution of the take-over process (Louw, 2017; Vlakveld, van Nes, de
Bruin, Vissers, & van der Kroft, 2018). Eye-tracking is of high interest to allow a detailed
understanding of effects on the take-over process and to allow a future modeling attempt
of take-over performance (McDonald et al., 2019).

A comprehensive overview on determinants of TOT can be found in Zhang, de Winter,
Varotto, Happee, and Martens (2019). The meta-analysis focused on factors influencing
the TOT. Results revealed that the following factors can shorten the TOT: a high urgency
of the situation, not using a handheld device, not performing a visual NDRT, having
experienced another take-over scenario before in the experiment, and experiencing an
auditory or vibrotactile RtI as compared to a visual-only RtI or no RtI. A familiarization with
CAD based on measurements of seating position, glances off the road, NDRT engagement
and self-reports can be achieved after ten minutes and is correlated with gender and
previous experience with advanced driver assistance systems (Omozik, Yang, Kuntermann,
Hergeth, & Bengler, 2019).

In conclusion, effects on the take-over performance were found for situational factors,
different NDRTs, the RtI or the HMI in general and the driver state. Individual differences
that can be assessed using e.g. eye-tracking and predispositions such as age, gender and
previous experience should be regarded for a modeling approach. The following sections
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detail the listed factors and broaden the literature review to allow a specific derivation of
research questions. Overall literature findings were regarded for the design of experiments
of the four studies in Chapters 5, 6, 8 and 9 and the modeling of take-over performance in
Chapter 7.

2.2.1 The take-over situation

Every take-over is associated with a specific traffic situation in which drivers have to regain
control. While the system limit accounting for the RtI is typically static, the take-over
situation is dynamic. The definition and classification of take-over situations used in this
work is based on Gold et al. (2017) and is addressed in more detail in Chapter 4.

Situational factors affecting take-over performance have been reported for almost all
experiments regarding different situations. Time budget was addressed by Damböck,
Farid, Tönert, and Bengler (2012) and Gold, Damböck, Lorenz, and Bengler (2013) and
future experiments incorporating these findings. The first time budget that was reported
to be sufficient for potentially all situations was published to be ten seconds (Melcher,
Rauh, Diederichs, Widlroither, & Bauer, 2015). More recent publications on take-over
performance in different situations consistently reported that environmental factors and
the level of automation are the most prevalent factors (R. C. Gonçalves, Quaresma,
& Rodrigues, 2017). While the time budget highly affects the situational criticality by
moderating the time available for a take-over, traffic density was also identified to exert a
substantial effect on take-over performance. This effect has been also reported for manual
driving (Baldwin & Coyne, 2003) and significantly increases TOT and worsens quality
measures in CAD (Radlmayr et al., 2014; Gold, Körber, Lechner, & Bengler, 2016). A
general increase in criticality of take-over situations can lead to a decrease in TOT to a
minor extent (Roche & Brandenburg, 2018), but is accompanied with worse take-over
quality (Gold, 2016). Varying traffic conditions in CAD led to behavioral changes with
drivers directing more attention to the road while experiencing higher traffic densities
(Jamson, Merat, Carsten, & Lai, 2013). This effect has to be discussed critically since
drivers do not have to monitor in CAD but are allowed to engage in NDRTs.

More recent research focused on the time needed to recollect a detailed depiction of
surrounding traffic in take-over situations and reported seven to twelve seconds to be
sufficient for a spatial representation of the situation (Lu, Coster, & de Winter, 2017). In
conclusion, the effect of situational factors on take-over performance such as time budget
or traffic density appears to be of highest magnitude compared to other factors. Different
take-over situations should be considered to allow a more comprehensive understanding
of resulting take-over performance measures.

2.2.2 Non-driving related tasks

The abundance of potential NDRTs drivers might engage in during CAD, highlights the
complexity and scope of answering research questions on effects from different NDRTs on
take-over performance. NDRTs are at the core of the paradigm change between Level 2
and Level 3 automation (Lorenz et al., 2015). The DDT is executed by the automation and
the engagement in NDRTs represents a major gain in time utilization for drivers. Drivers
are allowed to engage into a variety of activities or tasks and show an interest in doing
so (Pfleging, Rang, & Broy, 2016). Drivers are both interested in activities known from
manual driving, e.g. listening to music and NDRTs only available in CAD, e.g. writing
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text messages or browsing the Internet (Pfleging et al., 2016). This section offers a small
overview on recent findings.

Drivers in CAD are not obliged to engage in NDRTs but are free to monitor the automa-
tion or the surroundings or simply not engage in any specific activity or task at all. In
case drivers take up the possibility, an engagement in NDRTs leads to more challenges
when regaining manual control during a take-over (Louw, Merat, & Jamson, 2015; Bueno
et al., 2016). These results focus on the effect of NDRTs on take-over performance
compared to no engagement in NDRTs for short periods of automated driving. Recent
studies revealed a more complex structure of effects, sometimes failing to find clear and
systematic differences between experiments (Jarosch, Gold, et al., 2019).

Engagement in NDRTs can be instructed for manipulation purposes in lab conditions but
voluntary engagement, prompting motivational aspects, showed no impairment on take-
over performance (H. Clark & Feng, 2017). While Radlmayr et al. (2014) showed similar
take-over performance comparing a visual-motoric and a cognitive task, participants in
Gold, Berisha, and Bengler (2015) showed degraded performance for visual-motoric tasks
in well practiced and known situations. In both experiments, participants were instructed
to engage in NDRTs and results show the interaction between the effect of situational
factors and NDRTs. In cognitive demanding situations, cognitive NDRTs show the same
decrement on take-over performance compared to visual-motoric tasks. In well-practiced
and less cognitively demanding situations, only visual-motoric NDRTs show negative
effects on the take-over performance (Gold et al., 2015).

Concerning specific properties of NDRTs, occupation of one or both hands (Naujoks,
Purucker, Wiedemann, & Marberger, 2019) and the steps needed to disengage from the
NDRT (J. Gonçalves & Bengler, 2016) exert a negative effect on take-over performance
by increasing TOT and worsening specific take-over quality metrics, such as lateral
accelerations. Hand-held devices, which occupy the hands and need to be put away
before a manual intervention are frequently identified to increase TOT. Situations that
are less critical increase the magnitude of this effect (Jarosch, Gold, et al., 2019). A
longer engagement in NDRTs or more experience with NDRTs in vehicles capable of
CAD could foster additional problems, such as new postures leading to a decrement
of take-over performance (Yang, Klinkner, & Bengler, 2019). NDRTs motivating "out of
driving" postures show a critical prospect of affecting take-over performance because
drivers have to relocate themselves (Jarosch, Gold, et al., 2019).

The most critical aspect of NDRTs affecting take-overs ties into the perception of the
RtI. During CAD, drivers are fallback-ready users that need to take-over in case a system
limit is met (SAE J3016, 2018). NDRTs preventing the perception of the RtI can cause
severe delays or complete omissions of the take-over (Jarosch, Gold, et al., 2019).

Self-regulation, both for NDRTs and take-overs exerts beneficial effects on take-over
performance by decreasing TOT and improving take-over quality (Ko & Ji, 2018; Eriksson
& Stanton, 2017). These findings link to research on the effect of prolonged durations of
automated driving and associated problems, such as vigilance decrements or an increase
in drowsiness. Section 2.2.3 focuses on known effects from an increase of drowsiness,
while this section highlights positive aspects of engaging in NDRTs to counter drowsiness
or vigilance decrements during CAD. Drivers engaging in reading or watching videos
are less likely to exhibit behaviors indicative of drowsiness compared to monitoring the
automation (Miller et al., 2015). Studies associated with Ko-HAF revealed the potential of
NDRTs to counter an onset of drowsiness or fatigue (Jarosch, Kuhnt, Paradies, & Bengler,
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2017). Driver drowsiness can be managed up to a certain extent by offering a targeted
use of different NDRTs (Weinbeer, Muhr, & Bengler, 2019).

The most prominent findings from literature in addition with recent results from empirical
studies were accumulated in key messages in the project Ko-HAF (Kooperatives, hochau-
tomatisiertes Fahren – Ko-HAF , 2018). The following attributes of NDRTs were found to
increase TOT compared to not engaging in NDRTs

• Holding an object (e.g. a mobile device) in one/both hands
Manual interaction (one/both hands) with mobile electronic devices

• Unusually strong rotations (>90°) of the torso

• Increased effort or multiple steps needed to fully disengage from a NDRT

whereas the following attributes showed no consistent effects:

• Visual or visual-motoric tasks (e.g. watching video, reading, texting) without occupa-
tion of one/both hands

• Cognitively demanding NDRTs affecting the cognitive transition

Generally, strong inter-individual differences were found concerning how NDRTs affect the
driver state and the magnitude of associated effects depends on methodological issues
like testing environment and situations, e.g. identical NDRTs lead to significantly different
results if investigated in less critical and urgent situations in real traffic compared to driving
simulators (Jarosch, Gold, et al., 2019).

They key messages from Ko-HAF on NDRTs include specific recommendations con-
cerning research:

• Natural behavior, self regulation and motivational aspects of NDRTs must be consid-
ered in the experimental design.

• A safety assessment of NDRTs with respect to their effects on take-over performance
can only be carried out taking into account the details/parameters/aspects of the
test scenario (e.g. the available time budget).

• A „NDRT lockout“ simultaneously with the RtI can speed up the driver response to
the RtI. A lockout is a system-initiated interruption of the NDRT performed on the
vehicle-integrated infotainment system or on connected portable devices with an
additional presentation of the RtI on the respective screen.

In addition to showing moderate benefits for take-over behavior, a NDRT lockout is highly
accepted by drivers (Wandtner, Schömig, & Schmidt, 2018).

Concerning a classification and utilization of NDRTs for their application in research
based on previous findings, two major characteristics of NDRTs can be differentiated.
Realistic NDRTs can be evaluated to directly quantify the effect from specific NDRTs on
take-over performance. Standardized NDRTs with a focus on specific parameters, such
as modality or steps to en-/disengage, can be utilized to deduce more general findings.
Ko-HAF classified and ordered various NDRTs to allow an easy decision making process
in the design of experiments on NDRTs and their effect on take-overs (Kooperatives,
hochautomatisiertes Fahren – Ko-HAF , 2018). The resulting catalog of NDRTs (Naujoks,

15



2.2 Effects on take-over performance

Purucker, & Neukum, 2017) served as basis for the decision to integrate only standardized
NDRTs in the experiments described in this thesis.

Concluding the overview on NDRTs, standardized NDRTs were deemed more feasible
to allow an assessment of driver state changes - due to NDRTs - and their effects on take-
over performance. The research questions in this thesis also focused on the interaction of
NDRTs with respective take-over situations and most relevant issues linked to attention. A
more detailed look on the standardized tasks used in this thesis is provided in Chapter 4.

2.2.3 Sleepiness, drowsiness, fatigue and vigilance

The effects from sleepiness, drowsiness and fatigue are regarded due to their potentially
significant role in CAD. Drivers could use the time during active CAD to relax or daydream
promoting vigilance decrements or an onset of drowsiness. The conclusion on NDRTs
revealed that engaging in NDRTs can have positive effects on driver state regarding the
arousal level by countering an onset of drowsiness. Thus, prolonged, monotonous periods
of CAD or the desire from drivers to rest is likely leading to an increase of drowsiness
causing drivers potentially falling asleep.

Prior to the summary of relevant findings in literature, the definition of terms is addressed.
While the terms sleepiness, drowsiness and fatigue are often used simultaneously in rele-
vant literature on CAD, past definitions distinguish between the terms. A comprehensive
overview of different definitions, associated effects, relevant findings and most recent
research can be found in Radlmayr, Feldhütter, et al. (2018). The definition of these
terms is based on Johns (2000) and Johns (2007) and distinguishes drowsiness and
sleepiness from fatigue. Drowsiness describes the interval between being awake and
asleep and is synonymous with sleepiness (Johns, 2007). Fatigue represents changes
of the driver state stemming from prolonged engagement in strenuous tasks or activities.
Fatigue can be relieved by rest, whereas drowsiness can be mitigated by sleep (Radlmayr,
Feldhütter, et al., 2018). This is in contrast to e.g. May and Baldwin (2009), where fatigue
contains both task-related fatigue and sleep-related fatigue where the latter represents
drowsiness/sleepiness in Johns (2007). For this thesis, only the term drowsiness is
used to address driver state changes originating from prolonged, monotonous periods of
automated driving or underload conditions.

While visual attention in CAD was identified to be of high interest for the analysis of the
take-over process in Section 2.2 and is analyzed in the empirical studies in this thesis,
vigilance is not regarded. Vigilance is synonymous with sustained attention and describes
a state of readiness to detect and to react to stimuli, which appear at random and seldom
intervals for an extended time (Körber, Schneider, & Zimmermann, 2015). The sustained
ability to focus on a specific task is typically researched for long, monotonous periods
of manual driving or PAD. Drivers in PAD are required to monitor the automation and
the traffic situation at all times and vigilance decrements play a crucial role in evaluating
the success of monitoring. The paradigm change for CAD does not require drivers
to monitor the system and a specific focus on vigilance is not regarded in this thesis.
Potential effects from prolonged, monotonous automated driving are understood to cause
an increase in drowsiness, since drivers are not trying to monitor the automation unless
instructed otherwise. Potential problems from vigilance decrements as first step towards
an onset and development of drowsiness are regarded in Körber, Cingel, Zimmermann,
and Bengler (2015). For further information on attention and vigilance in general, and
vigilance as potential preliminary state prior to becoming drowsy, Kahneman (1973),
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Warm, Parasuraman, and Matthews (2008) and Parasuraman and Manzey (2010) are
recommended.

Research on the effects from drowsiness on manual driving has been conducted for
decades but typically relied on assessing driver inputs, such as the steering behavior
(Daza et al., 2011). The results from analyzing driver inputs provide an accurate estimation
of drowsiness levels but are not feasible for evaluating drowsiness in CAD. The disengage-
ment of drivers from the DDT during active CAD inherently requires new methods that
are not relying on driver inputs. Future application of drowsiness detection in vehicles
featuring CAD should be non-intrusive.

Throughout the literature, a prolonged duration of automated driving is associated
with an increase in drowsiness (J. Gonçalves, Happee, & Bengler, 2016). One hour of
CAD compared to ten minutes of CAD led to significantly increased levels of drowsiness
(Bourrelly et al., 2019). Empirical studies evaluated the development of drowsiness by
either considering fixed-time approaches or issuing the RtI dependent on a specific level
of drowsiness. Fixed-time approaches showed no increase in TOT but reported small
changes in quality aspects of the take-over, such as higher lateral accelerations or a larger
amount of participants braking to a full stop (J. Gonçalves et al., 2016; Feldhütter, Gold,
Schneider, & Bengler, 2016). High individual differences in the onset and development
of drowsiness led to approaches integrating a fixed level of drowsiness before the RtI
was issued, independent of the time it took participants to develop that level (Radlmayr,
Feldhütter, et al., 2018).

Resulting take-over performances after a fixed level of drowsiness did not show consis-
tent significant changes concerning TOT (Weinbeer et al., 2017), but revealed contradicting
findings. Minor changes concerning quality aspects of take-over performance were re-
ported (Kreuzmair, Gold, & Meyer, 2017; Feldhütter, Kroll, & Bengler, 2018) in addition to
no effects on both time and quality aspects (J. Schmidt, Stolzmann, & Karrer-Gauß, 2016;
J. Schmidt, Dreißig, Stolzmann, & Rötting, 2017). The interpretation of overall results
exposed high individual differences in the development of drowsiness with little to no effect
on take-over performance (Radlmayr, Feldhütter, et al., 2018). Regardless, extreme levels
of drowsiness should be abstained to avoid critical take-over performances in more critical
situations (Radlmayr, Feldhütter, et al., 2018).

Typical time budgets (five to ten seconds) associated with CAD prohibit a safe wake-up
process in case drivers fall asleep. A high level of drowsiness was identified as state
prior to falling asleep. Thus, strategies to counter higher levels of drowsiness were also
evaluated. Thermal stimulation to adjust the drowsiness level of drivers during automated
driving was revealed as feasible counter measure (E. Schmidt, Ochs, Decke, & Bullinger,
2017). Weinbeer, Bill, Baur, and Bengler (2018) showed that a targeted suggestion to
engage in NDRTs to postpone the further development of drowsiness was most widely
supported.

The development of drowsiness can be moderated by the introduction of NDRTs. NDRTs
either exert beneficial effects on drivers or lead to the development of fatigue due to ex-
cessive engagement in NDRTs. Various empirical studies analyzed the combination of
NDRTs, their effect on drowsiness and potential consequences on the take-over perfor-
mance (Naujoks, Höfling, Purucker, & Zeeb, 2018; Jarosch, Bellem, & Bengler, 2019;
Jarosch & Bengler, 2019). In case the NDRTs were monotonous and strenuous, results
did not show differences for the TOT but minor effects on quality aspects such as a larger
amount of drivers braking to a full stop.
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Including the key findings from Ko-HAF, it can be concluded that during CAD, drowsiness
can develop or be induced quickly but might be subject to volatile changes. Drivers show
strong inter- and intra-individual differences in the development of drowsiness. An increase
of drowsiness under monotonous conditions could already be detected during shorter,
uninterrupted automated drives (20 to 30 minutes). Under these conditions no significant
effect on TOT and quality could be detected. Also, in longer, uninterrupted automated
drives (up to 90 minutes) clear and consistent effects on take-over behavior could not be
found (Kooperatives, hochautomatisiertes Fahren – Ko-HAF , 2018). Nonetheless, the
assessment of drowsiness in CAD is of high interest to avoid the unacceptable state of
sleeping drivers and to allow the precise utilization of methods countering higher levels of
drowsiness as preliminary stage.

2.2.4 The human-machine interface

The HMI during automated driving and for the take-over process includes all elements
transporting information between the vehicle and the driver (Bubb et al., 2015, p. 272).
Hence, an optimization or targeted development of the HMI for CAD shows great potential
to affect the driver state and take-over performance. The following overview on effects
from different HMIs focuses on the take-over process. Both safety and comfort aspects of
CAD highly depend on the appropriate design of the HMI.

Research and development on suitable HMIs for CAD or automated driving in general
has seen a steep increase from both academia and car manufacturers in recent years
(Kerschbaum, 2017). The RtI is fundamentally linked to perception and the possibility to
convey information on the pending take-over situation. A visual display of the RtI at a
moment when drivers are engaged in visual NDRTs on different screens could result in
perception problems potentially leading to slower reactions or missed take-overs. Since
CAD implies drivers to be fallback-ready, perception issues are critical.

Roche, Somieski, and Brandenburg (2019) found auditory RtIs leading to smaller TOTs
and higher TTCs compared to visual-auditory RtI in combination with an improvement
in experience for only auditory RtI. It was argued, that the visual component of a RtI
could compete with the take-over situation itself for visual attention. Contrary, the key
messages from Ko-HAF recommend the RtI to be multi-modal in order to unequivocally
convey the necessity for taking over vehicle control (Kooperatives, hochautomatisiertes
Fahren – Ko-HAF , 2018). In addition, the enrichment of generic HMIs by including speech
outputs shortened "information processing"-reaction times, e.g. termination of NDRTs
whereas "allocation of attention"-reaction times, e.g. first glance ahead, did not show
significant effects (Forster, Naujoks, Neukum, & Huestegge, 2017). Subjective ratings
favored additional speech output (Forster et al., 2017).

The potential to convey additional, semantic information using a haptic interface in the
seat was examined by Petermeijer, de Winter, and Bengler (2015), Petermeijer (2017)
and Cohen-Lazry and Katzman (2018). While various patterns and vibrations were
analyzed concerning their effect on take-over performance, results showed the biggest
influence on the perception of the RtI. Conveying more complex information, such as
spatial direction information did not result in better take-over performance (Petermeijer,
2017). Perception of the RtI benefited from adding an additional modality compared to the
typical visual-auditory HMIs (Petermeijer, 2017).

Most of the publications regarded the physical workplace of the driver to be static.
Kerschbaum, Lorenz, and Bengler (2014) evaluated the decoupling of the steering wheel
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with additional work on a transforming steering wheel (Kerschbaum, Lorenz, & Bengler,
2015). Results showed that the decoupling or transformation of the steering wheel was
rated usable (Kerschbaum et al., 2015). A physically transforming driver workplace
facilitates the changing role of the driver in CAD without introducing new challenges for
the safety-critical take-over process (Kerschbaum, 2017; Borojeni, Wallbaum, Heuten, &
Boll, 2017).

A key improvement of HMIs for CAD targeted the provision of additional information, typ-
ically utilizing visual displays. The supplementary information leads to a more elaborated
RtI design integrating not only a shortly timed stimulus but multiple steps of re-integrating
the driver in the driver-vehicle control loop. A multi-step RtI was shown to increase drivers’
situational awareness (Epple, Roche, & Brandenburg, 2018) and accelerate the disen-
gagement from NDRTs and by this the TOT (Kooperatives, hochautomatisiertes Fahren –
Ko-HAF , 2018).

During CAD, drivers request information on the system status and the transparency and
comprehensibility of system actions (Beggiato et al., 2015). The range of information den-
sity and utilized methods ranges from incorporating contact-analogue HUDs augmenting
the take-over situation in the windshield (Lorenz, Kerschbaum, & Schumann, 2014) to
using ambient displays to communicate the system status (Borojeni, Chuang, Heuten, &
Boll, 2016; Yang, Karakaya, Dominioni, Kawabe, & Bengler, 2018). While the technical
application of augmented reality HUDs is still in the future, results showed that supporting
the decision making process by suggesting potential corridors for manual driving during
the take-over in the HUD is beneficial concerning the reaction type (Lorenz et al., 2014;
Eriksson et al., 2019).

Research on newly developed HMIs for CAD also revealed an overall strong effect of the
specific take-over situation at hand which should be considered to adapt the RtI accordingly
(Bazilinskyy, Petermeijer, Petrovych, Dodou, & de Winter, 2018). Priming drivers with
an appropriate maneuver (steering vs. braking) depending on the take-over situation, in
case the information is available, decreased TOTs and increased TTCs (Borojeni, Weber,
Heuten, & Boll, 2018). Using multi-modal solutions including haptic feedback via the
steering wheel for a cooperative take-over underlined the feasibility of priming drivers for
different situations (Kalb, Streit, & Bengler, 2018). Relying on the availability of information
on upcoming situations in addition with a measurement of driver state, Winkler, Kazazi,
and Vollrath (2018) suggested to adapt the warning strategy to both the situation as well
as to the driver state.

A cooperative, multi-modal interaction concept targeted at developing the take-over pro-
cess towards cooperative interaction revealed profits not only for the human-machine inter-
action within the vehicle but also the interaction between different road users (Zimmermann
& Bengler, 2013). Motivating cooperative interaction between road-user by introducing
time and a new currency improved the efficiency of the traffic system (Zimmermann &
Bengler, 2013). Tactical level input (touchscreen, gesture, and haptic interfaces enabling
bilateral driver-vehicle interaction) could reduce driver workload, reaction times, and im-
prove driver behavior in addition to be highly preferred by drivers over a manual take-over
(Manawadu et al., 2018).

Most of the published findings are based on the assumption of drivers being either
instructed carefully or having had the chance to familiarize themselves with the system
and thus the HMI. While a prior familiarization with RtIs showed positive effects on both
take-over performance and trust in automation (Hergeth, Lorenz, & Krems, 2017), this
cannot be assumed for all future applications of CAD. Users not knowing how to operate
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the driving automation system are likely to refer to a trial and error basis to establish
experience. In order to attenuate detrimental effects observed in first contact human-
automation interaction, the HMI has to be designed carefully to both support first contact
and experienced users (Forster, Hergeth, Naujoks, Krems, & Keinath, 2019).

Concluding this section, general requirements for newly developed HMIs for CAD can
be derived. The take-over process as key element of CAD regarding safety and comfort
aspects should rely on a transparent, coordinated protocol (J. Clark, Stanton, & Revell,
2017). Information during CAD and the take-over, including the RtI, should be conveyed
to drivers in a clearly perceptible, multi-modal way (Kooperatives, hochautomatisiertes
Fahren – Ko-HAF , 2018). If available, continuous assistance prior, during and after the
take-over can help with increasing safety and comfort margins of CAD (J. Clark et al.,
2017). While these requirements are a first step towards a unification of HMI requirements,
the future application of CAD in commercially available vehicles calls for a verification
process and guidelines globally accepted to promote a successful introduction. A process
for vehicle HMI verification including empirical results demonstrated the necessity for
verified guidelines to aid the development of new HMIs for CAD (Naujoks, Wiedemann,
Schömig, Hergeth, & Keinath, 2019; Forster, Hergeth, Naujoks, Krems, & Keinath, 2020).

2.3 Quantifying the driver state

The findings summarized in the previous sections allow a comprehensive understanding of
most relevant effects on the driver state during automated driving and the take-over in CAD.
This section details the most important methods and measures to quantify changes of
the driver state. An extensive and thorough analysis and review of driver state monitoring
system in the context of CAD are offered in J. Gonçalves and Bengler (2015), Cabrall et al.
(2016) and Hecht et al. (2019). It can be derived that any future driver state monitoring
technology must consist of non-intrusive systems and methods. Physiological measures,
such as the skin conductivity or using an EEG can be used for a more detailed look or
validation of other methods and measures but are not applicable in future vehicles.

The most prominent method to detect driver state changes, e.g. an onset of drowsiness,
is eye-tracking (Chang & Chen, 2014). While head-based solutions typically offer a higher
quality of tracking, these solutions are not qualified for future use in commercial vehicles
(Radlmayr, Feldhütter, et al., 2018). Both pupil and eye-lid based measures are used to
quantify changes in the arousal level of drivers. Eye-lid-based metrics were found to be
most valid for detecting drowsiness (Radlmayr, Feldhütter, et al., 2018).

Eye-tracking systems are highly depended on the quality of tracking to allow a detailed
and precise analysis. While all manufacturers of eye-tracking systems claim high numbers
of successful tracking, hands-on experience in simulators and real driving environments
showed typical tracking rates to range between 70% - 90%. The ISO-Norm 15007 (ISO/TS
15007, 2014) provides recommendations to calibrate and use eye-tracking systems to
ensure tracking quality and identifies tracking rates above 85% to be of good quality and
tracking rates of 95% to be excellent.

Applications of eye-tracking to detect driver state changes can be found in Feldhütter,
Feierle, Kalb, and Bengler (2018) where a data fusion approach incorporates both eye-
and head-tracking to detect drowsiness in the context of CAD. High validity and sensitivity
rates give way to using a data fusion approach to improve the detection of relevant state
changes. Challenges arise from a parallel engagement in NDRTs or posture adjustment
in the seat due to the eyes shifting out of an optimal tracking area or space (Feldhütter,
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Hecht, Kalb, & Bengler, 2018). The percentage of eye closure in a specific time period
(PERCLOS) (Dinges & Grace, 1998) was found to be highly reliable and often used to
assess drowsiness (Darshana, Fernando, Jayawardena, Wickramanayake, & DeSilva,
2014). Most of the published papers on PERCLOS report additional measures to support
PERCLOS, such as mouth shape and head position (Qiong, Jingyu, Mingwu, & Yujie,
2006), head movement as moderate indicator (E. Schmidt, Decke, & Rasshofer, 2016) or
blinks and saccades (Schleicher, Galley, Briest, & Galley, 2008).

An optimal detection of drowsiness can be achieved by combining six eye-tracking
parameters, percent eye closure (PERCLOS), eye closure duration, blink frequency,
nodding frequency, face position, and fixed gaze (Bergasa, Nuevo, Sotelo, Barea, & Lopez,
2006). In addition, blink latency and gaze variability were reported to be valid measures for
increased workload, e.g. due to the introduction of NDRTs. These findings were regarded
to measure the driver state during automated driving to allow a thorough assessment of
changes arising from e.g. prolonged durations of automated driving or the engagement in
NDRTs.

While drivers could have their eyes closed due to a variety of reasons, validation
methods such as self- or expert ratings of eye-based measures were utilized to allow an
understanding if drivers were actually drowsy. The feasibility of determining a ground truth
to assess driver state changes, especially concerning drowsiness, was demonstrated
applying an expert rating (Weinbeer et al., 2018). The Karolinska sleepiness scale (KSS)
as self reported measurement of drowsiness was also used to validate objective measures
of drowsiness (Barua, Ahmed, Ahlström, & Begum, 2019).

Seat pressure mats were identified as a potential new, non-intrusive method to assess
driver state changes. While the application of seat pressure mats is common in assessing
seating comfort (Ulherr, 2019), driver state changes in the seat due to movement or
posture changes due to the engagement in NDRTs are not assessed so far. Zilberg, Xu,
Burton, Karrar, and Lal (2009) reported the seat movement magnitude to increase the
detection of drowsiness in combination with using an intrusive method such as an EEG.

In summary, the most promising method of assessing driver state changes, including the
onset of drowsiness or the allocation of attention, is eye-tracking. To allow an exhaustive
assessment of driver state changes and their effect on take-over performance, additional
sensors or a data fusion approach should be applied.
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3 Research questions, contribution and structure of this
thesis

The literature review in Chapter 2 provides a comprehensive overview and allows the
identification of research gaps. The main conclusions from the literature review are
repeated here to give way to the derivation of research questions.

The paradigm change of CAD in combination with a limited ODD incorporates the
necessity to analyze and understand the development of the driver state. The driver state
can be argued to change significantly since drivers temporarily leave the driver-vehicle
control loop. While this new development is of high interest, key questions arise from the
drivers being the fallback in case of a take-over. Both the engagement in NDRTs and the
possibility of prolonged periods of active CAD could affect the arousal of drivers and thus,
the take-over performance. The following research questions ensue:

1. How do prolonged periods of monotonous, automated driving affect the driver state?

2. How do different NDRTs affect the driver state?

These questions are targeted at periods of active CAD. The literature review also revealed
significant effects on human performance from different take-over situations depending
on their overall criticality or complexity. Potential effects on take-over performance from
changes in the driver state should be matched with take-overs in different situations to
allow a comprehensive understanding of underlying processes. This gives way to the next
research questions:

3. How do potential driver state changes affect the take-over performance?

4. How does the effect from driver state changes on take-over performance compare
to the effect of different situations?

Findings from previous modeling efforts revealed significant model improvements by
considering the predisposition and inter-individual changes of drivers. Several recorded
take-overs together with data from driver monitoring should be considered to answer the
next research question:

5. How do effects from e.g. driver state changes, situational factors and NDRTs on take-
over performance compare to the effect of predisposition and individual differences
of drivers?

The aforementioned research questions are addressed in two experiments and a suc-
ceeding modeling approach in Chapters 5, 6 and 7. Based on these findings and the
literature review in Chapter 2, the need for an optimization of the HMI for CAD is derived
to increase safety and comfort margins of the take-over. Visual attention and addressing
the strong effect of different take-over situations are at the center of derived research
questions utilizing the HUD:

6. How can the HMI for CAD and the take-over be optimized by enabling the possibility
of peripheral monitoring while engaging in NDRTs during CAD?
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7. How can the HMI be optimized by offering additional information on the specific
situation during the take-over process?
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Chapters 10, 11

Discussion, Summary and Outlook

Figure 3.1: Overview of the structure of this thesis. Comprehensive chapters, empirical
work on the effect of driver state changes and the experiments on the optimization of the
HMI are colored differently to allow a better understanding. The modeling of take-over
performance is based on data from Experiments 1 and 2.

The research questions six and seven are addressed in two experiments in Chapters 8 and
9. Figure 3.1 provides an overview of the structure of this thesis incorporating the empirical
effort consisting of 4 experiments and the modeling approach. The research questions are
addressed in individual depth in the respective experiments and the modeling approach
and are specified in more detail below. The empirical work can be divided in two major
areas of CAD. Experiments 1 and 2 and the modeling approach aim at driver state
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changes and potential effects on take-over performance. Experiments 3 and 4 target the
optimization of the HMI to improve the take-over process.

Chapter 5

D
ri

v
e

r 
S

ta
te

Experiment 1: Effect of prolonged duration of CAD

RQ1 How do prolonged periods of monotonous, automated driving affect the 

driver state?
a) Is there a difference in the progression of driver states due to different traffic 

densities during automated driving?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?
a) How does the take-over performance compare to manual drivers experiencing 

identical situations?

Chapter 6

D
ri

v
e

r 
S

ta
te

Experiment 2: Effect of NDRTs

Pre-published in Radlmayr, Fischer, and Bengler (2019).

RQ2 How do different NDRTs affect the driver state?
a) Is there a difference in the engagement in NDRTs depending on the 

instruction?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?

Chapter 7

D
ri

v
e

r 
S

ta
te Modeling of take-over performance with linear, mixed effect models

RQ5 How do effects from e.g. driver state changes, situational factors and NDRTs 

on takeover performance compare to the effect of predisposition and 

individual differences of drivers?

Chapter 5

D
ri

v
e

r 
S

ta
te

Experiment 1: Effect of prolonged duration of CAD

RQ1 How do prolonged periods of monotonous, automated driving affect the 

driver state?
a) Is there a difference in the progression of driver states due to different traffic 

densities during automated driving?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?
a) How does the take-over performance compare to manual drivers experiencing 

identical situations?

Chapter 6

D
ri

v
e

r 
S

ta
te

Experiment 2: Effect of NDRTs

Pre-published in Radlmayr, Fischer, and Bengler (2019).

RQ2 How do different NDRTs affect the driver state?
a) Is there a difference in the engagement in NDRTs depending on the 

instruction?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?

Chapter 7

D
ri

v
e

r 
S

ta
te Modeling of take-over performance with linear, mixed effect models

RQ5 How do effects from e.g. driver state changes, situational factors and NDRTs 

on takeover performance compare to the effect of predisposition and 

individual differences of drivers?

Chapter 5

D
ri

v
e

r 
S

ta
te

Experiment 1: Effect of prolonged duration of CAD

RQ1 How do prolonged periods of monotonous, automated driving affect the 

driver state?
a) Is there a difference in the progression of driver states due to different traffic 

densities during automated driving?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?
a) How does the take-over performance compare to manual drivers experiencing 

identical situations?

Chapter 6

D
ri

v
e

r 
S

ta
te

Experiment 2: Effect of NDRTs

Pre-published in Radlmayr, Fischer, and Bengler (2019).

RQ2 How do different NDRTs affect the driver state?
a) Is there a difference in the engagement in NDRTs depending on the 

instruction?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?

Chapter 7

D
ri

v
e

r 
S

ta
te Modeling of take-over performance with mixed effect models

RQ5 How do effects from e.g. driver state changes, situational factors and NDRTs 

on take-over performance compare to the effect of predisposition and 

individual differences of drivers?

Figure 3.2: Overview of Experiments 1 and 2 and the modeling approach focusing on
driver state changes and their affect on take-over performance.

A quantitative measurement of driver state changes is essential to allow an empirically
based insight into the underlying human factor problems. Based on the literature review,
driver monitoring systems with delimitation to e.g. an expert rating of driver state changes
are chosen for all four experiments. Eye-tracking provides the most inside into relevant
driver state changes and was utilized in all experiments. Seat pressure mats are used in
Experiments 1 and 2 as novel method of assessing driver state changes hypothesized to
both detect changes in activity from prolonged durations of CAD as well as an engagement
in NDRTs. The boxes provide information on the link between the general research
questions RQ1-7 in this thesis and their specific differentiation in the experiments and
chapters. The individual chapters on the four experiments differ in length and depth.
Experiments 2 and 4 have been pre-published to this thesis. In comparison to a full
depiction of the individual method, results and discussion for Experiments 1 and 3 in
Chapters 5 and 9, Chapters 6 and 8 on Experiments 2 and 4 only provide a brief summary.
For additional details on Experiment 2, refer to Radlmayr, Fischer, and Bengler (2019).
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3 Research questions, contribution and structure of this thesis

Chapter 8
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Experiment 3: Effect of peripheral monitoring during CAD

Pre-published in Radlmayr, Brüch, et al. (2018).

RQ6 How can the HMI for CAD and the take-over be optimized by enabling the 

possibility of peripheral monitoring while engaging in NDRTs during CAD?
a) Does the situation awareness of drivers differ during CAD depending on the 

possibility of peripheral monitoring?

b) Does the potential effect of situation awareness differences affect the take-over 

performance?

Chapter 9
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Experiment 4: Optimization of the HMI for the take-over

RQ7 How can the HMI be optimized by offering additional information on the 

specific situation during the take-over process?
a) Does offering additional information in the HUD during the take-over affect the 

take-over performance?

b) How does the effect from additional information compare to the effect of 

different situations?

Chapter 8
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Experiment 3: Effect of peripheral monitoring during CAD

Pre-published in Radlmayr, Brüch, et al. (2018).

RQ6 How can the HMI for CAD and the take-over be optimized by enabling the 

possibility of peripheral monitoring while engaging in NDRTs during CAD?
a) Does the situation awareness of drivers differ during CAD depending on the 

possibility of peripheral monitoring?

b) Does the potential effect of situation awareness differences affect the take-over 

performance?

Chapter 9
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Experiment 4: Optimization of the HMI for the take-over

RQ7 How can the HMI be optimized by offering additional information on the 

specific situation during the take-over process?
a) Does offering additional information in the HUD during the take-over affect the 

take-over performance?

b) How does the effect from additional information compare to the effect of 

different situations?

Figure 3.3: Overview of Experiments 3 and 4 focusing on the optimization of the HMI for
CAD and take-over process.

Experiment 4 is portrayed in detail in Radlmayr, Brüch, et al. (2018). The modeling
approach in Chapter 7 is based on data from Experiments 1 and 2 and is also described
in full detail in thesis.

The main contribution of this work consists of providing empirically based and criti-
cally discussed answers to the research questions, helping to fill the research gap on
fundamental human factors of CAD.
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4 General method

This chapter provides the general method that was kept identical throughout all four
experiments. The experiments were all conducted in the static simulator of the Chair of
Ergonomics at the Technical University of Munich, sharing key elements concerning the
design of experiments. General principles of this work concerning the analysis of data
and assessment of results are also provided.

Most of the younger participants were students at the TUM. The overall sample featured
very few foreign participants, showing a homogeneous distribution regarding nationality
with mainly German participants.

4.1 Experimental Setup

The setup in the static simulator was based on methodological assumptions discussed and
developed in the project Ko-HAF (Kooperatives, hochautomatisiertes Fahren – Ko-HAF ,
2018). Generic requirements for the HMI utilized for the take-over in CAD were based on
the following features (Kooperatives, hochautomatisiertes Fahren – Ko-HAF , 2018):

• Transparent and continuous display of system state consisting of, at least, the states
"Not available", "Available", "Active", and "Request to intervene".

• In case the system state consisted of an urgent, pressing and/or short-term display
RtI, the display must be multi-modal to allow better perception.

• The multi modality should consist of e.g. a visual and acoustic signal, or voice output,
while a haptic signal in the seat was considered optional.

• The display of the system states should allow highest priority for the RtI in case e.g.
the display is used for featuring NDRTs.

Figures 4.1 and 4.2 depict the HMI including different system states and the RtI with a
red steering wheel with two hands and a red text. This HMI was used as basis in all four

Figure 4.1: The generic HMI for system states including the RtI was derived from Ko-HAF
(Kooperatives, hochautomatisiertes Fahren – Ko-HAF , 2018). The RtI is represented by a
red steering wheel.
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4.1 Experimental Setup

Figure 4.2: The icons show the different system states, "off", "available", and "active" of
the generic HMI.

experiments while the experiments focusing on optimizing the HMI in Chapters 8 and 9
went beyond these generic requirements.

The take-over situations, their design and reasoning was based on the taxonomy from
Gold et al. (2017). They can be distinguished in four categories, urgency, predictability,
criticality and complexity of driver response. Each category can feature three levels, low,
medium and high, shown in Table 4.1. Depending on the specific research focus, various
combinations are recommended, as considered in Figure 4.2.

Table 4.1: Taxonomy for classifying and designing take-over situations for CAD (Gold et al.,
2017). Depending on the specific research focus, different combinations of the categories
were recommended.

Factors Low (1) Medium (2) High (3)

Urgency High time budget Medium time budget Small time budget
Predictability Near-term detection

of the system limit
Predictable, but
occurrence
dependent on
situational conditions.

Known from
backend, map, V2V-
communication.

Criticality Low safety risk Increased safety risk High safety risk
Driver
Response

Low complexity (e.g.
stabilizing)

Medium complexity
(e.g. steering)

High complexity (e.g.
lane change)

The design of the take-over situations in all four experiments relied on the taxonomy
and adjusted the overall criticality accordingly. The situation "crash site" in Experiments
1 and 2 was chosen to focus on the maximal human performance in take-overs, while
the situation "curve in heavy rain" in Experiment 4 targeted an analysis of results from
optimizing the HMI.

Table 4.2: Recommendations for the combinations of the categories (Gold et al., 2017).

Research Focus Urgency Predictability Criticality Driver
Response

Maximal Driver
Performance

3 1 3 2-3

Mode Awareness /
HMI

1-3 1-3 1-3 1-3

Driver Comfort 1-2 3 1 1-3
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4.2 Measures

Figure 4.3: The figures show, from left to right, the simulator and the vehicle mockup,
the three cameras of the eye-tracker SmartEye and the seat pressure mats and their
implementation in the vehicle. Figures with friendly permission by Fabian Marco Fischer.

While other taxonomies for take-over situations have been proposed recently (e.g.
McCall et al., 2018), these were not considered in this thesis.

The static simulator used for all experiments featured a BMW 6-series convertible with
various projectors, allowing a 180 ◦ field of view horizontally, rear-view mirrors for drivers
and a high immersion. The simulation was implemented with the software SILAB. The
eye-tracking system consisted of a fixed-based, three camera-setup eye-tracker from
SmartEye. Infrared flashes were utilized to better identify eye and facial features. The seat
pressure mats from XSensor allowed a resolution of 12,7 mm and were used independent
for both seat and backrest area. Figure 4.3 shows the mock-up from the outside and the
interior with the eye-tracking system and the seat pressure mats.

4.2 Measures

The phrasing of take-over performance is taken from Gold (2016) and integrates both time
aspects, such as reaction times and quality aspects, such as maximal accelerations or the
TTC.

Some measures from previous research on take-over performance are not considered.
The reaction time to the first glance away from a visual NDRT and subsequent reactions
times not including TOT, e.g. time until the hands reach the steering wheel or the feet
reach the pedals, will not be utilized in this thesis. These reaction times are likely to
follow standard stimulus-response patterns after the RtI (Gold, 2016). The modeling of
the "first-glance-away-from-a-NDRT-reaction time" showed mean values of .47 s with a
standard deviation (SD) of .11 s and the intercept to be the best predictor (Gold, 2016).
Consequently, focus is put on the TOT because it contains both the stimulus-reaction
patterns and the cognitive process of re-entering the driver-vehicle control loop offering
the most relevant insight concerning driver reactions during the take-over process.

The measures used for assessing state changes including eye-tracking, e.g. PERCLOS
and blink frequency, and the measures to evaluate take-over performance, e.g. TOT, TTC
and accelerations are based on a broad foundation of past research detailed in Chapter 2.
Information on the individual combinations of measures for every experiment including
measures that were disregarded due to e.g. technical problems or not meeting tracking
quality thresholds, is found in the individual chapters.
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4.2 Measures

Seat pressure mats

Seat pressure mats have typically been used for assessing seating comfort or discomfort,
providing a variety of measures related to pressure, such as average pressure or peak
pressure. In this thesis, the seat pressure mats were utilized as new way of assessing
driver state changes. Two measures were identified to be most feasible in assessing
potential state changes during automated driving. The contact area for both the seat and
the backrest can be analyzed to quantify posture changes, especially regarding the upper
torso. It was hypothesized that when drivers would e.g. engage in NDRTs located in
the center console, visual attention in addition to their posture would change, potentially
showing in the contact area in the backrest. Contrary, drivers relaxing during longer,
monotonous periods of automated driving could show an increase in the contact area due
to more contact with the seat needed to support a more relaxed posture. These effects in
general are understood as motoric state changes following the framework in Figure 2.3.

The experiments 1 and 2 in Chapters 5 and Chapter 6 are aimed at quantifying the link
between state changes measured using the seat pressure mats and take-over performance.
The center of pressure (COP) is used to assess the activity of drivers both in the seat
and the backrest. While the COP can be calculated for each sampling frame representing
a spatial measure, changes in the COP represent drivers’ activity. Murata, Koriyama,
and Hayami (2012) provided a way of utilizing these changes of the COP. Equation 4.1
shows the equation used to calculate the COP for every sampling point where xi is the
x-coordinate at time x and xi-1 is the same coordinate one time step earlier, y respectively.
The ∆COP value represents the change in activity for drivers between every time step.
Mean values were calculated for a period of one minute, and can be understood to
represent the activity of drivers in the seat and backrest during that time. Changes in the
driver state due to longer periods of automated driving can be evaluated by assessing the
difference between e.g. the first and last minute of automated driving prior to a take-over.

∆COP =
√

(xi − xi−1)2 + (yi − yi−1)2 (4.1)

No absolute values but only the change between two periods is regarded to account for
the general unrest individual drivers are showing during active CAD. The second minute
(in contrast to the first) was considered to avoid data noise due to effects from settling into
the seat right after activating the automated driving system.

Integrative measures of take-over performance – TOPS, TOC

The detailed assessment of take-over performance including various reaction times and
quality measures motivated the introduction of new, more holistic metrics. Naujoks,
Wiedemann, Schömig, Jarosch, and Gold (2018) suggested a rating of controllability
based on the expert rating of videos of human and vehicle behavior during a take-over.
While the assessment of controllability of take-overs must be considered concerning
the future application of CAD, the rating was not considered in this thesis. Radlmayr,
Ratter, et al. (2019) suggested the integration of different individual measures into three
new parameters resulting in the take-over performance score (TOPS). The parameters
representing the three most relevant assessments of take-overs are namely a vehicle
guidance parameter, a mental processing parameter and a subjective rating parameter.
The parameters allow the integration of a changing number of individual metrics, making it
a more comprehensive evaluation of take-over performance. Further empirical validation
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4.3 Results

of the TOPS is required before a substitution of the well-known individual measures seems
feasible.

4.3 Results

Data handling, plotting and statistical analysis is carried out using the program R (R
Core Team, 2018). For one- or two-sided statistical testing such as t-tests or an analysis
of variance (ANOVA), the p-value is set to p=.05 throughout. Significant results are
represented by a star (*) in the individual plot figures, where one star represents p < .05,
two stars (**) represent p < .01 and three stars (***) represent p < .001.

A Shapiro-Wilks Test (SWT) is conducted to check if the sample represents a normally
distributed population in the individual experiments. In case the SWT shows a significant
result, Salkind (2010) show a high robustness of the ANOVA concerning a violation of the
normal distribution for medium to large sample sizes (see also central limit theorem). This
is the case for all the experiments in this thesis. Consequently, an ANOVA is carried out
despite significant results from a SWT, in order to avoid losing insight of interaction effects.
Results of the SWTs are reported regardless to allow an understanding of the magnitude
of the effect.

Levene-tests are conducted in combination with a F-max test to evaluate the homogene-
ity of variance for the between factor. In case of significant results from the Levene-test,
the p-value was adjusted in case the F-max-test showed a ratio larger than ten between
the smallest and largest group variance and group size ratios are below four (Bühner &
Ziegler, 2009, p. 518). This is not the case throughout this thesis.

Concerning sphericity, a Mauchly-test is applied and in case it showed significant results,
the Greenhouse-Geisser-correction was used. Results of the ANOVA will indicate if the
Greenhouse-Geisser-correction was used and are adjusted directly.

For the correction of pairwise comparisons following significant ANOVA results, the
Holm-Bonferroni correction was used instead of the Bonferroni correction, since the Holm-
Bonferroni correction is uniformly more powerful compared to the classical method (Holm,
1979; Singmann, 2017). Regarding significant results for the interaction effect vs. the
main effects in mixed design ANOVAs, the procedure suggested by Bortz and Döring
(2016, p. 714) was contemplated for the discussion in Chapters 5 and 9. In case the
ANOVA yielded a significant result for the interaction of the factors, both main effects
were considered for ordinal interactions, only one main effect was considered for a hybrid
interaction and no main effects were considered for disordinal interactions. The type of
interaction was determined by analyzing the estimated means in the respective plot figures
in the appendix. Both interaction and main effect results were reported regardless of
significance.
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5 The effects of prolonged conditionally automated
driving on driver state and take-over performance

The first experiment1 was conducted to provide answers to the research questions 1,
3 and 4, see Figure 5.1. Chapter 2 conveyed a comprehensive overview of effects on
take-over performance. Important effects such as traffic density or the time budget were
already researched and allow a first understanding of situational factors. In addition, the
existence of a growing number of data sets on take-overs motivated modeling efforts.
Following the conclusions based on these models, evidence was revealed that these
models benefit from considering data from driver monitoring (Gold, 2016). A large majority
of empirical studies focused on the limit of maximal human performance as fallback in a
take-over by e.g. amending external factors, such as situation criticality. NDRTs were part
of the scope of the scientific studies and focused on the resulting take-over performance
without including a thorough understanding of prior driver state changes. The more recent
years have seen a large increase in studies focusing on driver state changes. Typically,
studies focused either on NDRTs or the effects of drowsiness with this experiment focusing
on drowsiness as consequence of prolonged CAD. The connection between prolonged
driving both for manual and CAD and a progression of drowsiness was well researched in
the last years.

Concerning the duration of CAD, a fixed-time design of experiments was implemented
to reduce experimental variance. Results from research on manual driving showed a
greater increase of drowsiness in more monotonous road environments compared to more
frequented ones (Thiffault & Bergeron, 2003). It was hypothesized, that the progression
of the driver state is depending on the traffic surroundings, more precisely the number
of additional vehicles. Following the well-known results of traffic density on take-over
performance (see Chapter 2.2.1), traffic density could also moderate other effects in
take-over situations. Thus, driver state changes should be analyzed in take-over situations
differing in their situational criticality.

In manual driving, a period of 30 minutes of driving would not see similar effects of
duration since drivers would be in the loop. Concerning CAD and known effects from an
onset of drowsiness (see Chapter 2.2.3), 30 minutes of automated driving without the
possibility to engage in NDRTs was hypothesized to be sufficient to motivate a progression
of drowsiness.

Concluding, Experiment 1 focused on the effect of prolonged CAD on the take-over
performance in different situations. To allow a more comprehensive understanding of the
driver state changes, the traffic density varied in this experiment. Results from manual
drivers experiencing identical situations served as basis for the classification of absolute
values concerning e.g. accelerations or TTCs. To allow an assessment of driver state
changes, eye-tracking and seat pressure mats were used to quantify these changes during
CAD while well-known metrics of take-over performance were used to asses reaction
times and the quality of the take-over.

1The experiment was designed and conducted with the assistance of Lisa Scherer as part of her master’s
thesis (Scherer, 2016)
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5.2 Method

Chapter 5
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Experiment 1: Effect of prolonged duration of CAD

RQ1 How do prolonged periods of monotonous, automated driving affect the 

driver state?
a) Is there a difference in the progression of driver states due to different traffic 

densities during automated driving?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?
a) How does the take-over performance compare to manual drivers experiencing 

identical situations?

Chapter 6
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Experiment 2: Effect of NDRTs

Pre-published in Radlmayr, Fischer, and Bengler (2019).

RQ2 How do different NDRTs affect the driver state?
a) Is there a difference in the engagement in NDRTs depending on the 

instruction?

RQ3 How do potential driver state changes affect the take-over performance?

RQ4 How does the effect from driver state changes on take-over performance 

compare to the effect of different situations?

Chapter 7
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te Modeling of take-over performance with linear, mixed effect models

RQ5 How do effects from e.g. driver state changes, situational factors and NDRTs 

on takeover performance compare to the effect of predisposition and 

individual differences of drivers?

Figure 5.1: Research questions of Experiment 1.

5.1 Research questions

The main research questions were motivated by the lack of a detailed look on changing
driver states during prolonged CAD in addition with understanding these effects in different
situations. The literature overview portrayed in Chapter 2 served as reasoning narrowing
down the research questions, see Figure 5.1. The derivation of null and alternative
hypotheses was based on these research questions to allow the analysis of results using
inferential statistics. Serving as example, the first alternative hypotheses is presented here.
Analysis of results is based implicitly on underlying pairs of hypotheses throughout this
chapter. Concerning the first research question, the alternative hypothesis is deduced:
H11: The driver state shows changes between 5 and 30 minutes of CAD.
Acceptance or rejection of the hypotheses was always based on the outcome of the
corresponding statistical analysis. Based on the derivation of the exemplary H11, the
research questions, 1, 3 and 4 were all translated into pairs of hypotheses but are not
detailed here.

5.2 Method

Sample

A total of 60 participants took part in the experiment. Due to technical issues, the data of
three participants had to be excluded from analysis. The remaining 57 participants (35
males and 22 females) were between 19 and 70 years old, with an average age of 32.8
years (SD: 13.2 years) and a median of 28 years. All participants held a regular driver’s
license with an average time of possession of 14.8 years (SD = 12.8 years). Fifteen
participants reported to have experienced CAD in a simulator setup at least once.Twenty-
one participants reported to have impaired vision, which was either corrected by glasses
or contact lenses.

Experimental Setup

The experiment was conducted in the static driving simulator of the Chair of Ergonomics
of the Technical University of Munich. The design of the experiment consisted of a mixed,
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5.2 Method

incomplete setup which featured four independent variables. Table 5.1 shows the four
factors, their levels and their integration into the experimental setup.

Table 5.1: Overview of the four independent variables and the way they were incorporated
in the design of experiment.

Factor Levels Design

Level of Automation 2 (manual driving, CAD) Between subjects factor
Traffic Density 2 (0 and 20 vehicles/km) Between subjects factor
Type of situation 3 (crash site, construction

site, interstate crossing)
Within subjects factor

Duration of CAD 2 (5 and 30 minutes) Within subjects factor

The level of automation was split into two levels, manual driving and CAD. While the
manual drivers represent the baseline concerning absolute values, there were a total of
three groups: one with no automation and two featuring CAD. In addition to the between
subjects factor Level of Automation, different traffic density conditions were introduced
to the groups. While the manual drivers experienced 20 vehicles per kilometer, the two
CAD-groups differed concerning their traffic density. One group featured 20 vehicles per
kilometer randomly placed by the simulation software throughout the track, while the other
CAD-group had no additional traffic throughout the simulation. This was implemented to
analyze potential differences in participants’ state during CAD. It was hypothesized, that
30 minutes of CAD without the possibility of engaging in NDRTs would lead to underload,
potentially including an onset of drowsiness. The development of the driver state without
a NDRT could be different, if drivers would use the possibility of monitoring surrounding
traffic in the 20 vehicles/km-group. The analysis in the result section consequently split
the group comparison accordingly. For the effect of Level of Automation, the manual group
was only compared to the CAD group with surrounding traffic (20 vehicles/km). For the
effect of Traffic Density, only the two CAD groups were compared.

The two within subjects factors Type of Situation and Duration of CAD were interlinked
and can be understood by considering the procedure of the experiment. After an interval of
CAD (5 or 30 minutes long), the take-over takes place in a specific situation (crash site or
construction site or interstate crossing). Consequently, by having participants experience
each of the three situations once, the duration of CAD prior to each take-over was defined
to be 5 minutes twice and 30 minutes once. This kept the duration of the overall experiment
to a reasonable interval and allowed a group comparison between take-overs after 5 and
30 minutes. The sequence of both the take-over situations and the duration of CAD was
permuted to avoid sequence effects. Table 5.2 shows the combination of the two between
subjects factors into the incomplete group setup. In addition to the between subjects
factors, the design of experiment included two within subjects factors, Type of Take-over
Situation and Duration of CAD. Participants experienced every situation only once, to
account for a total of three take-overs per participant. Every take-over was preceded by a
period of CAD, either being 5 or 30 minutes long. Figure 5.2 shows the incomplete design
of experiments including all four independent variables.

Prior to every experimental drive, participants had the chance to familiarize themselves
with the simulator dynamics including an exemplary take-over. The track was setup to
be a stretch of German interstate with three lanes, with the familiarization drive lasting
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5.2 Method

Table 5.2: The combination of the two independent variables "automation level" and "traffic
density" and their aggregation into the three groups.

Groups Automation level Traffic density

CAD0 CAD 0 vehicles/km
CAD20 CAD 20 vehicles/km
Manual20 Manual 20 vehicles/km

Group CAD0

• 0 veh./km

• CAD

Group CAD20

• 20 veh./km

• CAD

Group Manual20

• 20 veh./km

• Manual drivers

Between Factor: Traffic Density 

Between Factor: Level of Automation

Within Factor: Situation

Within Factor: Duration

5A / 30 5A / 5B / 30 5B / 30

Crash St. / 

Construction St. /

Interstate Cross.

Crash St. / 

Construction St. /

Interstate Cross.

Crash St. / 

Construction St. /

Interstate Cross.

Figure 5.2: Overview of the design of experiments, including all independent variables and
their interaction. The analysis of results including several ANOVAs for each metric is a
result of the possible combinations of between and within subjects factors.

approximately 10 kilometers. The manual group with no CAD available were instructed
to follow a target lane specified throughout the experiment by the operator via intercom
to ensure that participants in this group were experiencing the "take-over" situations
identical to the groups with CAD. A RtI was presented in the manual group as well and
was explained as additional warning assistance in dangerous situations for manual drivers.
The experimental track was approximately 83 kilometers long and lasted 42 minutes. The
maximal automation speed was set to 120 km/h. The automation was programmed to
execute lane changes by itself. Only very few were executed in the CAD group without
additional traffic and more were executed according to the traffic situation in the group
with additional traffic. Both CAD groups featured oncoming traffic on the other side of the
median strip. All take-over situations featured a time budget of seven seconds, translating
into 233 meters of distance from the moment the RtI was issued to the system limit.
The RtI was part of the generic HMI, as displayed in the general method in Chapter 4.
Perception of the system limits prior to the RtI was not possible due to the track layout.
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5.2 Method

Figure 5.3: The three take-over situations, the construction site, the interstate crossing
and the crash site (left to right). The figures show the take-over situation only few meters
prior to the system limit.

The display was always active and showed the status of the automation. Following the
classification of Gold et al. (2017), the three situations were designed to differ in their
overall criticality. The crash site featured the highest criticality, the interstate crossing was
set to represent a medium overall criticality and the construction site was the least critical
take-over situation. In the interstate crossing, participants were instructed to conduct a
lane change via the intercom using a computer-generated voice starting at the time of
the RtI. The auditory message lasted two seconds, technically shortening the available
time budget of the situation. Considering the literature and typical TOTs (Gold, 2016),
the auditory message was classified to not be relevant concerning reaction times. An
auditory message is not interfering with the main modality of manual driving (visual) in
addition to being perceived in the very beginning of the take-over process, typically before
a conscious reaction would be issued by drivers (mean TOTs (Gold, 2016)). Figure 5.3
provides an overview of the three take-over situations right before the system limit is met.

Measures

The static simulator and the software SILAB allowed the acquisition of all relevant vehicle
dynamics in 120 Hz. This includes a fully simulated dynamics model of the ego vehicle,
for example providing accelerations and chassis movement. Eye-tracking was used to
evaluate the driver state throughout the experiment. Prior to analysis, a data error was
discovered for the measurement of the eye-lid opening value due to a casting error while
sending the data to the combined data storage. The original data was recovered by
conducting several new measurements of eye-lid opening data and comparing them to
the correct values prior and after sending them. Throughout the scale of values of eye-lid
opening, the correct values were retracted.

Seat pressure mats were also implemented in the vehicle mockup, allowing the mea-
surement of pressures in seat and backrest. Video cameras were used to record the
interior of the vehicle to allow a comprehensive view on participants, since the eye-tracker
was focused on the head area. Figure 4.3 shows the simulator setup including eye-tracker
and seat pressure mats. Table 5.3 gives an overview of the measures used in this work.
The list differentiates between measures for assessing the driver state during CAD prior to
a take-over and the measures for take-over performance. The assessment of take-over
performance is limited to the interval from the RtI until drivers had solved the situation by
passing the system limit.
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Table 5.3: Summary of dependent variables used for assessing the driver state and the
take-over performance.

Driver state during CAD Take-over performance

Eye-Tracking

• Standard deviation of the horizontal
gaze position (horizontal gaze
dispersion, HGD) (per minute) [m]

• Percentage eyes on road (PEOR)
(per minute) [%]

• Percentage of eyes closed
(PERCLOS) (per minute) [%]

• Average blink duration
(per minute) [s]

• Average blink frequency (per
minute) [Hz]

Time aspects

• Minimal time to the first deliberate
action / take-over time (steering
wheel >2 ◦ or brake pedal >10 % or
deactivation of automation by
button) (TOT) [s]

Seat pressure mats

• Changes in the center of pressure
(COP) between second and last
minute of CAD [%]

• Changes in the contact area
between second and last minute of
CAD [%]

Quality aspects

• Number of crashes [n]

• Minimal (negative) longitudinal
acceleration [m/s2]

• Maximal lateral acceleration
(absolute value) [m/s2]

• Minimal time to collision (TTC) [s]

Subjective ratings from participants

• Criticality of situation [ ]

• Complexity of situation [ ]

• Urgency of situation [ ]

• Comfort of the take-over (only CAD
groups) [ ]

The SD of the horizontal gaze position represents the tracking activity of drivers in
the horizontal direction. The SD increases, if drivers increase the frequency of looking
left and right. This measure is also known as the horizontal gaze dispersion (HGD) and
represents the visual tracking activity. The groups differed in their traffic density in addition
with intervals of CAD lasting unevenly between 5 or 30 minutes without the possibility
to engage in NDRTs. The HGD was analyzed to assess the visual tracking behavior of
drivers during CAD.

For the calculation of the percentage of closed eyes during a one minute time interval
(PERCLOS), the maximal value of the eye-lid opening was set to the maximal value during
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the first minute of CAD at the beginning of the experimental drive. Following the definition
from Wierwille and Ellsworth (1994), the PERCLOS represents the number of frames
within one minute were the eye-lids were between 80 %-100 % closed, with regard to the
obtained maximal value of the eye-lid opening for each participant. With reference to the
literature review on measures that capture an onset or progression of drowsiness (Chapter
2.3), PERCLOS can be understood to be the most prominent measure for drowsiness.

In addition to the PERCLOS, the blink duration can also be analyzed to assess an onset
or progression of drowsiness caused by a prolonged duration of CAD. Corresponding to
an increase in blink duration associated with an onset of drowsiness, the blink frequency
decreases respectively for drowsy drivers (Dinges & Mallis, 1998).

Due to technical issues with the eye-tracking system, data were disregarded for analysis
if the recording froze longer than one second without recovering afterwards. This was the
case for three participants.

Procedure

Participants took approximately 75 minutes to pass the experiment. They were greeted at
the simulator and started with a thorough introduction of the hardware, the sensors and the
procedure after which participants signed a consent form. They filled out a demographic
questionnaire after which they received a group-specific additional introduction depending
if they would experience manual driving or CAD. In the following familiarization drive,
participants could experience the simulator itself, vehicle dynamics and exemplary take-
overs in the CAD-groups. Drivers in the manual group could experience the operator
instructing the target lane in manual driving. They would also experience the take-over
situation including the RtI which was explained as additional emergency assistance system
prewarning drivers of critical situations. Before the experimental drive started, the eye-
tracker and the seat pressure mats were calibrated. The experimental drive started and
ended at a rest area. Participants were asked by the operator to activate the automation
right after leaving the rest area and after every take-over after passing the system limit
and answering the subjective rating questions via the intercom. After the experiment,
participation was rewarded with 30 C.

5.3 Results

The analysis of data was conducted following the process described in Chapter 4.3. Since
the experimental setup consisted of an incomplete design, the analysis of the take-over
performance metrics, subjective ratings and driver state metrics could not be conducted
using only one statistical test for each dependent variable but had to be conducted
step-wise.

Concerning the two between factors, Traffic Density and Level of Automation, two
individual ANOVAs were conducted. The level of automation was analyzed comparing the
group Manual20 with the group CAD20, since both groups featured a traffic density of
20 vehicles/km. The group CAD0 did not experience any traffic during the experimental
drive and could not be compared to the manual drivers. For the effect of traffic density,
both CAD-groups were compared since they did not differ in their level of automation but
featured different traffic densities.

In addition, the setup featured two within factors, Situation and Duration. The factor
Duration technically consisted of two levels, differentiating between 5 and 30 minutes of

39



5.3 Results

CAD. A duration of 5 minutes after 30 minutes of CAD greatly differs from 5 minutes right
at the beginning of the experiment concerning potential effects of prolonged CAD. The
duration of either 5 or 30 minutes was therefore differentiated in three levels, 5A, 5B and 30
minutes. The 5-minute duration 5B did not necessarily happen after a 30 minute duration
but was labeled as the second time participants experienced 5 minutes of CAD. A potential
effect of prolonged CAD could also manifest in the total time of CAD, either being 5 or 30
minutes before the first take-over, 10 or 35 minutes before the second take-over and 40
minutes before the third take-over. To account for the potential effect of total time of CAD,
the analysis for the CAD groups featured an additional, surrogate within subjects factor,
the trial number. The two factors Duration and Situation were not permuted completely
since participants would have to experience a total of nine take-overs but experienced a
total of three. Therefore, the analysis of within factors consisted of three mixed-design
ANOVAs, one for the factor situation, one for duration of CAD and one for trial. Combined
with the split between the two between factors, this resulted in a total of five mixed-design
ANOVAs for each dependent variable. Results are depicted in tables to allow a good
overview of corresponding results. In case specific metrics did not allow an analysis of
e.g. level of automation, the corresponding ANOVAs were not calculated. This is the case
for all metrics focusing on effects connected to CAD without the additional comparison to
manual drivers and is indicated in the respective sections. Analysis of the factor situation
is unreasonable for the driver state metrics, since the analysis focused on time intervals
prior to the respective situations. For some metrics, the analysis of the surrogate factor
trial was deemed unreasonable and is also indicated. Figure 5.4 provides an overview
of all potential 5 ANOVAs per metric and the reasoning behind the step-wise analysis. A
full analysis of potential interactions between all four independent variables was deemed
less relevant for this individual experiment, but can be found in the modeling approach in
Chapter 7.
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Between Factor: Traffic Density 

Between Factor: Level of Automation

Within Factor: Situation

Within Factor: Duration

Surrogate Within Factor: Trial

1st Situation 2nd Sit. 3rd Sit.

Figure 5.4: Overview of the step-wise analysis of metrics, including all potential five mixed-
design ANOVAs, regarding both one between and one within factor. In case an ANOVA is
disregarded for specific metrics, it is indicated in the respective section.

5.3.1 Measures of take-over performance

Crash rate

Two groups featured surrounding traffic in the take-over situations in addition with the
crash site representing a system limit that required a full stop and/or a lane change in
the take-over to avoid an accident involving the ego vehicle. Analysis of the crash rate
can only be assessed for 54 participants, since the video data of three participants were
not recorded due to technical issues. Out of a total of 162 take-overs including the group
with manual drivers, six crashes were recorded. For the crash site situation only one
accident into the left guard railing was recorded while one additional participant stopped
in the middle of the left and middle lane, potentially presenting a hazardous obstruction for
following vehicles. One participant in the interstate crossing collided into a vehicle on the
right lane. In construction site, four participants collided with a simulated vehicle executing
a lane change maneuver from the right lane to the middle lane, while an additional four
participants executed a lane change maneuver to the left lane to avoid colliding into the
simulated vehicle cutting into the ego lane. Due to the low numbers of total crashes, no
statistical analysis was conducted.

Take-over time

The TOT was not analyzed for the manual drivers since they did not take-over, resulting
in a total of three ANOVAs for TOT. The individual group means and SDs can be found
in Table 5.4. Table A.1 shows the results from the SWTs, the Levene-tests and the Fmax-
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Table 5.4: Overview of the group and situation means and (SDs) in seconds for the TOT
for the different situations and durations.

Within factor CAD0 CAD20 Manual20

TOT [s]

Crash site M = 1.93 (.52) M = 1.83 (.73) -
Construction site M = 2.60 (1.60) M = 2.18 (1.16) -
Interstate Crossing M = 1.40 (.64) M = 1.91 (.80) -
5A M = 1.76 (.97) M = 2.00 (1.05) -
5B M = 1.95 (1.20) M = 1.99 (.97) -
30 M = 2.23 (1.23) M = 1.93 (.74) -

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●● ●
●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

0

2

4

6

CAD0 CAD20

Groups [ ]

T
a
k
e
−

o
ve

r 
ti
m

e
 [
 s

 ]

Situation [ ] ● ● ●Construction Site Crash Site Interstate Crossing

Take−over Time

*

***

***

Figure 5.5: Plot of the TOT. Manual drivers were not analyzed since they did not take-over.
nCAD0 = 60, nCAD20 = 57.

tests. Significant results were found for the factor situation and the interaction between
traffic density and situation (Table 5.5). The data are plotted in Figure 5.5. Pairwise
comparisons (Holm-Bonferroni corrected) revealed that the situation Construction Site
differed significantly from the Crash Site (p = .01) and the Interstate Crossing (p < .001)
by showing the highest TOTs. The pairwise comparisons (Holm-Bonferroni corrected)
for the interaction revealed significantly higher TOTs (p < .001) in the Construction Site
compared to the Interstate Crossing in case there is no additional traffic. The estimated
means were plotted in Figure A.1 and underlined the results. No other significant results
were discovered.

Time to collision

The TTC was analyzed as a measure of take-over quality. For the crash site, a collision
with the vehicles blocking the lane was possible and the TTC represented the shortest
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Table 5.5: Results from the ANOVAs conducted for TOT. If sphericity was violated, a
Greenhouse-Geisser-correction was implemented and is indicated by (GG) succeeding
the test statistic.

Factor combination Main effect 1
(between)

Main effect 2
(within)

Interaction 1 x 2

Take-over time

Traffic density (1)
and situation (2)

F (1, 37) = .00,
p = .98, η2 < .01

F (1.68, 62.18) =
= 8.58, (GG),
p = .001, η2 = .09

F (1.68, 62.18) =
= 3.35, (GG)
p = .05, η2 = .04

Traffic density (1)
and duration (2)

F (1, 36) = .08,
p = .78, η2 < .01

F (1.96, 70.56) =
= .81, (GG),
p = .45, η2 = .01

F (1.96, 70.56) =
= 1.27, (GG)
p = .29, η2 = .02

Traffic density (1)
and trial (2)

F (1, 37) = .00,
p = .98, η2 < .01

F (1.93, 71.37) =
= .01, (GG),
p = .99, η2 < .01

F (1.93, 71.37) =
= 1.14, (GG)
p = .32, η2 = .02

distance towards the obstacle right before the ego vehicle would steer clear of a potential
collision divided by the current velocity. Technically, analysis of the TTC was restricted
to the crash site since the construction site and the interstate crossing did not feature
obstacles. In case participants would not take-over, in the construction site they would only
gradually drift towards the side of the track and in the interstate crossing they would miss
the appropriate exit. In order to compare situation, duration and group differences based
on a more comprehensive data set, the TTC was also calculated for the construction site
and the interstate crossing. In the construction site, the TTC represented the distance at
the point where participants had taken over by deliberately steering, braking/accelerating
or pushing the button to deactivate the automation divided by their current vehicle velocity.
The point in time was identical to the time-budget minus the TOT. Consequently, the TTC
was not analyzed for manual drivers in the construction site since no take-over took place.
For the interstate crossing participants had to execute a lane change maneuver to take
the appropriate exit. The distance from the moment participants steered clear of their
original lane divided by their current velocity was utilized to calculate the minimal TTC
in the interstate crossing. The calculation of TTC-values for the construction site (CAD
groups) and the interstate crossing (all groups) was deemed reasonable in sight of the
modeling approach depicted in Chapter 7. The TTC-values always represent the minimal
TTC. Smaller values of the TTC represents a more critical take-over quality. Results from
the Shapiro-Wilk-, Levene- and Fmax-tests can be found in Table A.4. All five ANOVAs were
conducted for the TTC. For the ANOVA on the automation level as between factor and the
situations as within factor, only the crash site and the interstate crossing were considered
for analysis. The group means and SDs can be found in Table 5.6. Key findings are
listed to allow a more comprehensive understanding of accumulated results from the five
ANOVAs (Table 5.7).

• Main effects

– The first ANOVA considered the automation level as between factor and situa-
tion as within factor, in this case consisting only of the crash site and interstate
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Table 5.6: Overview of the group and situation means (SDs) in seconds for the TTC for the
different situations and durations of CAD. Manual drivers in the construction site were not
regarded since no surrogate TTC could be calculated.

Within factor CAD0 CAD20 Manual20

Minimal TTC [s]

Crash site M = 2.27 (.87) M = 1.29 (.49) M = 1.68 (.53)
Construction site M = 2.58 (2.20) M = 3.97 (1.13) -
Interstate crossing M = 3.87 (1.16) M = 2.10 (.98) M = 3.63 (1.46)
5A M = 2.53 (1.50) M = 2.64 (1.22) M = 2.80 (1.59)
5B M = 3.05 (1.67) M = 2.15 (1.55) M = 3.05 (1.69)
30 M = 3.17 (1.79) M = 2.62 (1.59) M = 2.12 (.96)
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Figure 5.6: Plot of the minimal TTC between the RtI and the system limit. nCAD0 = 60,
nCAD20 = 55, nManual20 = 36.
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crossing. Results showed highly significant results for both main factors and
significant results for their interaction.

– Manual drivers showed significantly larger TTCs compared to participants
taking over in the CAD20-group.

– The second ANOVA of the factors Traffic Density and Situation considered
all three situations. The factor Situation and the interaction between Traffic
Density and Situation showed highly significant results. Pairwise comparisons
(Holm-Bonferroni-corrected) for the main effect Situation revealed the crash
site to show significantly smaller TTCs compared to the construction site (p <
.001) and the interstate crossing (p < .001).

– The main effect of Traffic Density either showed a tendency for significant
effects or significant results for the main effect with the CAD20 group showing
smaller TTCs compared to the CAD0 group.

• Interaction effects

– The interaction between Automation Level and Situation showed the situation
differences especially in the manual group, as well as in the CAD0 group and
the CAD20 group.

– Concerning the interaction effect between Traffic Density and Situation, pairwise
comparisons (Holm-Bonferroni-corrected) were also conducted as follow-up
tests. The between factor Traffic Density showed significant differences for
the situation construction site (p < .01) and for the interstate crossing (p <
.001). Contrary to the construction site, where the group without traffic (CAD0)
revealed lower TTCs, the same group, CAD0, revealed higher TTCs compared
to the group CAD20 in the interstate crossing.

– Concerning situational differences, in the CAD0-group, the interstate crossing
showed significantly higher TTCs compared to the construction site (p = .02)
and the crash site (p < .01).

– In the CAD20-group the construction site showed significantly higher times to
collision compared to the crash site (p < .001) and the interstate crossing (p <
.001).

Plots of the estimated means for the TTC clarifying the significant results can be found in
Figure A.5. The ANOVA for automation level and duration led to an unbalanced design for
the mixed ANOVA and was not analyzed. For the effect of prolonged CAD, only the ANOVA
for Traffic Density and Duration was considered (Table 5.7). Results underlined significant
differences for the factor Traffic Density, but not for the duration and the interaction.
Results for Traffic Density and Trial (Table 5.7) showed a tendency for Traffic Density, but
no significant results for Trial and the interaction between them.

Longitudinal acceleration

Concerning also the quality of the take-over, the longitudinal acceleration was analyzed.
Values represent the maximal negative accelerations during the take-over. This can also
be understood to represent the maximal brake acceleration. Following the Fmax-test in
Table A.2, the p-value was not adjusted. For the longitudinal acceleration, all possible five
ANOVAs were conducted. The group means and SDs can be found in Table 5.8 and the
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Table 5.7: Results from the ANOVAs conducted for the TTC. If sphericity was violated, a
Greenhouse-Geisser-correction was implemented and is indicated by (GG) succeeding
the test statistic.

Factor combination Main effect 1 Main effect 2 Interaction 1 x 2

Min. time to collision

Automation level
(1) and situation (2)

F (1, 33) = 20.35,
p < .001, η2 = .21

F (1, 33) = 31.90
p < .001, η2 = .35

F (1, 33) = 5.55
p = .02, η2 = .09

Traffic density (1)
and situation (2)

F (1, 35) = 3.42
p = .07, η2 = .03

F (1.69, 58.99) =
= 13.81, (GG),
p < .001, η2 = .22

F (1.69, 58.99) =
= 15.24, (GG),
p < .001, η2 = .23

Automation level
(1) and duration (2)

- - -

Traffic density (1)
and duration (2)

F (1, 34) = 4.53
p = .04, η2 = .02

F (1.99, 67.80) =
= .54, (GG),
p = .59, η2 = .01

F (1.99, 67.80) =
= .66, (GG),
p = .52, η2 = .02

Traffic density (1)
and trial (2)

F (1, 35) = 3.42
p = .07, η2 = .02

F (1.97, 68.88) =
= 1.84, (GG),
p = .17, η2 = .04

F (1.97, 68.88) =
= .17, (GG),
p = .84, η2 < .01

Table 5.8: Overview of the group and situation means and (SDs) for the longitudinal
acceleration in meters per seconds squared for the different situations and durations of
CAD.

Within factor CAD0 CAD20 Manual20

Longitudinal acceleration [m/s2]

Crash site M = -3.85 (3.40) M = -3.87 (3.59) M = -4.68 (3.82)
Construction site M = -3.03 (3.17) M = -6.47 (2.21) M = -4.94 (3.06)
Interstate crossing M = -6.46 (1.72) M = -6.48 (2.32) M = -7.15 (1.90)
5A M = -4.01 (3.25) M = -5.72 (3.02) M = -5.53 (3.01)
5B M = -4.09 (3.16) M = -5.32 (3.20) M = -6.20 (2.88)
30 M = -5.24 (3.12) M = -5.77 (2.90) M = -5.09 (3.66)
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Table 5.9: Results from the ANOVAs conducted for the longitudinal acceleration. If spheric-
ity was violated, a Greenhouse-Geisser-correction was implemented and is indicated by
(GG) succeeding the test statistic.

Factor combination Main effect 1
(between)

Main effect 2
(within)

Interaction 1 x 2

Longitudinal acceleration

Automation level
(1) and situation (2)

F (1, 34) = .00,
p = .96, η2 < .01

F (1.67, 56.87) =
= 9.59, (GG),
p < .001, η2 = .11

F (1.67, 56.87) =
= 3.19, (GG),
p = .06, η2 = .04

Traffic density (1)
and situation (2)

F (1, 37) = 3.36,
p = .07, η2 = .04

F (1.80, 66.55) =
= 11.26, (GG),
p < .001, η2 = .13

F (1.80, 66.55) =
= 6.26, (GG),
p < .01, η2 = .08

Automation level
(1) and duration (2)

F (1, 34) = .00,
p = .96, η2 < .01

F (1.88, 64.00) =
= .07, (GG),
p = .92, η2 < .01

F (1.88, 64.00) =
= .67, (GG),
p = .51, η2 = .01

Traffic density (1)
and duration (2)

F (1, 36) = 2.69,
p = .11, η2 = .04

F (1.93, 69.49) =
= 1.05, (GG),
p = .35, η2 = .02

F (1.93, 69.49) =
= .53, (GG),
p = .59, η2 < .01

Traffic density (1)
and trial (2)

F (1, 37) = 3.36,
p = .07, η2 = .04

F (1.92, 71.06) =
= 1.95, (GG),
p = .13, η2 = .03

F (1.92, 71.06) =
= .02, (GG),
p = .97, η2 < .01

data including significant findings are visualized in Figure 5.7. The following list provides
an overview on most important findings from all the ANOVAs. Details on the test statistics
can be found in Table 5.9.

• Main effects

– The factor Situation showed highly significant results with a tendency for the
interaction. Pairwise comparisons (Holm-Bonferroni-corrected) for the factor
situation revealed a significant difference between all three situations (crash vs.
construction p = .04, crash vs. crossing p < .001, construction vs. crossing p
= .05). The interstate crossing showed the most severe brake accelerations,
followed by the construction site and the crash site.

– The factor Traffic Density showed a tendency for significant results, with the
group CAD20 showing a tendency towards more severe brake reactions.

• Interaction effects

– Pairwise comparisons (Holm-Bonferroni-corrected) were conducted for the
tendency of a significant interaction effect, showing a significant difference
between the situation crash site and the construction site (p = .01) and the
crash site and the interstate crossing (p = .01). Participants braked significantly
less in the crash site compared to the other situations in the group CAD20.

– The interaction between traffic density and situation showed significant results.
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Figure 5.7: Plot of the most negative values of the longitudinal acceleration between the
RtI and the system limit representing the maximal brake acceleration. nCAD0 = 60, nCAD20

= 57, nManual20 = 53.

– The between factor Traffic Density showed significant differences (p < .01)
only in the construction site with the CAD20 group showing more severe brake
reactions.

– In the CAD0-group, the interstate crossing showed significantly more severe
brake reactions compared to the crash site (p = .02) and the construction site
(p < .001).

– In the CAD20-group the crash site showed significantly less severe brake
accelerations compared to the construction site (p = .02) and the interstate
crossing (p < .01).

Figure A.2 shows the main and interaction effects for the situations following the results
from Table 5.9. The overall effect of time was analyzed with an additional mixed-design
with the factor trial number as within factor. Results did not show any additional significant
effects (Table 5.9). The second set of ANOVAs analyzed the effect of prolonged CAD in
combination with the level of automation and the traffic density according to the analysis
of situation differences. No significant results were found for Level of Automation, Duration
and their interaction. The ANOVA considering the factors Traffic Density and Duration also
revealed no significant results for both main effects and their interaction.

Lateral acceleration

In addition to the longitudinal acceleration, the maximal lateral acceleration between RtI
and system limit was analyzed as measure of take-over quality. In case participants
stabilized the vehicle in lane or conducted a lane change, higher values of the lateral
acceleration represent more dynamic maneuvers. Following the significant Levene-test
and the follow-up Fmax-test in Table A.3, the p-value was not adjusted. According to the
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Table 5.10: Overview of the group and situation means (SDs) for the lateral acceleration in
meters per seconds squared for the different situations and durations of CAD.

Within factor CAD0 CAD20 Manual20

Max. lateral acceleration [m/s2]

Crash site M = 3.55 (.82) M = 4.67 (1.42) M = 4.06 (1.51)
Construction site M = 1.52 (1.47) M = 1.57 (1.68) M = 1.90 (1.53)
Interstate crossing M = 1.73 (.77) M = 2.65 (1.84) M = 1.82 (.72)
5A M = 2.21 (1.27) M = 2.97 (2.00) M = 2.29 (1.56)
5B M = 2.53 (1.54) M = 2.87 (1.99) M = 2.65 (1.41)
30 M = 2.08 (1.42) M = 3.05 (2.34) M = 2.87 (1.99)
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Figure 5.8: Plot of the maximal lateral acceleration between the RtI and the system limit.
nCAD0 = 60, nCAD20 = 57, nManual20 = 53.

analysis of the longitudinal acceleration, all five ANOVAs were also conducted for the lateral
acceleration. The group means and SDs can be found in Table 5.10. Significant results
were found for the main effects traffic density and situation. No significant interaction
results were revealed throughout all ANOVAs. The key findings are listed in the following
while details on the test statistics can be found in Table 5.11.

• The ANOVA with the factors Automation Level and Situation revealed a significant
result for the factor Situation. Pairwise comparisons (Holm-Bonferroni-corrected) for
the factor Situation revealed a significant difference between the crash site and the
two other situation (crash vs. construction p < .001, crash vs. crossing p < .001).
The crash site showed significantly higher lateral accelerations compared to the
other situations (see Figure 5.8 and the corresponding plot of estimated means in
Figures A.3 and A.4).
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Table 5.11: Results from the ANOVAs conducted for the lateral acceleration. If sphericity
was violated, a Greenhouse-Geisser-correction was implemented and is indicated by (GG)
succeeding the test statistic.

Factor combination Main effect 1
(between)

Main effect 2
(within)

Interaction 1 x 2

Max. lateral acceleration

Automation level
(1) and situation (2)

F (1, 34) = 1.54,
p = .22, η2 = .02

F (1.88, 63.96) =
= 37.99, (GG),
p < .001, η2 = .37

F (1.88, 63.96) =
= 2.21, (GG),
p = .12, η2 = .03

Traffic density (1)
and situation (2)

F (1, 37) = 5.66,
p = .02, η2 = .06

F (1.96, 72.65) =
= 42.85, (GG),
p < .001, η2 = .39

F (1.96, 72.65) =
= 1.93, (GG),
p = .15, η2 = .03

Automation level
(1) and duration (2)

F (1, 34) = 1.54,
p = .22, η2 = .02

F (1.82, 62.00) =
= .08, (GG),
p = .91, η2 < .01

F (1.82, 62.00) =
= .10, (GG),
p = .89, η2 < .01

Traffic density (1)
and duration (2)

F (1, 36) = 5.26,
p = .03, η2 = .04

F (1.75, 62.94) =
= .08, (GG),
p = .90, η2 < .01

F (1.75, 62.94) =
= .32, (GG),
p = .70, η2 < .01

Traffic density (1)
and trial (2)

F (1, 37) = 5.66,
p = .02, η2 = .04

F (1.88, 69.54) =
= .18, (GG),
p = .82, η2 < .01

F (1.88, 69.54) =
= 1.16, (GG),
p = .32, η2 = .02

• The second ANOVA was conducted with the traffic density as between factor and
the situation as within factor. Significant results were revealed for both main factors,
Traffic Density and Situation but not for their interaction.

• The group with traffic CAD20 showed significantly higher lateral accelerations com-
pared to the group with no traffic (Table 5.10).

• Concerning the significant results for situation, pairwise comparisons (Holm-Bon-
ferroni-corrected) were conducted. Results underlined the pairwise comparisons
of the first ANOVA and showed that all three situations were significantly different.
The crash site showed significantly higher lateral accelerations compared to the
construction site (p < .001) and the interstate crossing (p < .001). In addition, the
interstate crossing showed significantly higher lateral accelerations compared to the
construction site (p = .03).

• No significant results were found for the factors Level of Automation, Duration and
the surrogate factor Trial.

5.3.2 Subjective ratings of the take-overs

The subjective ratings of the take-overs after each situation were analyzed analogue to the
objective measures to allow an assessment of potential interactions between the factors.
The factor Duration was not analyzed since participants were asked to rate how they
perceived the most recent take-over in the corresponding situation. They were not given
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Table 5.12: Overview of the group and situation means (SDs) for the subjective ratings for
the different situations.

Within factor CAD0 CAD20 Manual20

Subjective criticality [ ]

Crash site M = .95 (2.50) M = 2.37 (1.61) M = 2.72 (2.02)
Construction site M = -2.25 (2.17) M = -.84 (2.14) M = -.39 (3.31)
Interstate crossing M = -1.95 (2.11) M = -.95 (3.41) M = -.06 (2.69)

Subjective complexity [ ]

Crash site M = -.75 (2.20) M = .84 (1.46) M = 1.28 (2.11)
Construction site M = -2.65 (1.63) M = -1.37 (1.92) M = -.78 (2.86)
Interstate crossing M = -2.00 (2.03) M = -.21 (2.51) M = -.39 (2.64)

Subjective comfort [ ]

Crash site M = 1.40 (2.62) M = .26 (2.92) -
Construction site M = 2.40 (2.16) M = 1.16 (2.83) -
Interstate crossing M = 1.45 (2.95) M = .37 (3.27) -

Subjective time budget [ ]

Crash site M = .85 (2.72) M = -.89 (2.13) M = .61 (2.85)
Construction site M = 1.75 (2.27) M = 1.84 (2.01) M = 1.94 (3.23)
Interstate crossing M = .60 (2.91) M = -.79 (3.38) M = -.72 (2.47)

a specific reference to also regard the interval of CAD prior to the take-over. Before the
analysis of ANOVAs, normal distribution and the homogeneity of variance for the groups
were assessed and regarded for the discussion of results. Results can be found in Table
A.5. The individual group means and SDs of the subjective ratings can be found in Table
5.12. The analysis amounted to two ANOVAs per subjective rating, one for the between
factor Automation Level and one for the between factor Traffic Density, both in combination
with the within factor Situation. Results from the analysis can be found in Table 5.13 and
the key findings are summarized in lists.

Subjective criticality

• The first ANOVA showed highly significant results for the factor Situation, but not for
the Automation Level and the interaction.

• The follow-up pairwise comparisons (Holm-Bonferroni-corrected) revealed that the
situation crash site was rated significantly more critical in comparison with the
construction site (p < .001) and the interstate crossing (p < .001) (Figure 5.9).

• The second ANOVA for subjective criticality showed significant results for both
main effects, Traffic Density and Situation. The CAD20 group rated the situations
significantly more critical in comparison to the CAD0 group. For the factor situation,
pairwise comparisons (Holm-Bonferroni-corrected) corroborated the results from the
first ANOVA.
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Table 5.13: Results from the ANOVAs conducted for the subjective ratings. If sphericity
was violated, a Greenhouse-Geisser-correction was implemented and is indicated by (GG)
succeeding the test statistic.

Factor combination Main effect 1 Main effect 2 Interaction 1 x 2

Subjective criticality

Automation level
(1) and situation (2)

F (1, 35) = 1.03,
p = .32, η2 = .01

F (1.98, 69.17) =
= 20.10, (GG),
p < .001, η2 = .25

F (1.98, 69.17) =
= .13, (GG),
p = .88, η2 < .01

Traffic density (1)
and situation (2)

F (1, 37) = 5.67,
p = .02, η2 = .07

F (1.84, 68.06) =
= 29.89, (GG),
p < .001, η2 = .29

F (1.84, 68.06) =
= .13, (GG),
p = .87, η2 < .01

Subjective complexity

Automation level
(1) and situation (2)

F (1, 35) = .36,
p = .55, η2 < .01

F (1.85, 64.84) =
= 8.93, (GG),
p < .001, η2 = .14

F (1.85, 64.84) =
= .32, (GG),
p = .71, η2 < .01

Traffic density (1)
and situation (2)

F (1, 37) = 12.68,
p = .001, η2 = .14

F (1.96, 72.68) =
= 13.18, (GG),
p < .001, η2 = .16

F (1.96, 72.68) =
= .20, (GG),
p = .81, η2 < .01

Subjective comfort

Traffic density (1)
and situation (2)

F (1, 37) = 2.47,
p = .12, η2 = .04

F (1.93, 71.35) =
= 2.72, (GG),
p = .07, η2 = .02

F (1.93, 71.35) =
= .02, (GG),
p = .98, η2 < .01

Subjective time budget

Automation level
(1) and situation (2)

F (1, 34) = .82,
p = .37, η2 = .01

F (1.92, 65.35) =
= 11.82, (GG),
p < .001, η2 = .15

F (1.92, 65.35) =
= 1.22, (GG),
p = .30, η2 = .02

Traffic density (1)
and situation (2)

F (1, 37) = 2.36,
p = .13, η2 = .04

F (1.61, 59.45) =
= 11.55, (GG),
p < .001, η2 = .11

F (1.61, 59.45) =
= 2.39, (GG),
p = .11, η2 = .02
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Figure 5.9: Plot of the ratings of the perceived subjective criticality of the take-overs. nCAD0

= 60, nCAD20 = 57, nManual20 = 54.

Subjective complexity

• Results for the subjective complexity also showed a significant difference (Holm-
Bonferroni-corrected) between the crash site and the construction site (p <.001)
and the crash site and the interstate crossing (p = .02) with the crash being rated
more complex (Figure 5.10). The factor Automation Level and the interaction did not
reveal significant results.

• The second ANOVA confirmed the results for the factor Situation with the crash
site receiving the rating to be the most complex situation in comparison with the
construction site (p < .001) and the interstate crossing (p = .01). The interstate
crossing was rated significantly more complex compared to the construction site (p
= .03) (Figure 5.10). All pairwise comparisons were Holm-Bonferroni-corrected.

• The factor Traffic Density also showed highly significant results with the group CAD20
rating the situations to be more complex compared to the CAD0 group (Figure 5.10).
The interaction between both factors did not show significant results.

The subjective comfort was only assessed for the groups with CAD since the manual
drivers did not experience a take-over whereas the subjective criticality, complexity and
time budget addressed the experienced situation and not explicitly the take-over.

Subjective comfort

• Results for the subjective comfort of the take-over showed a tendency for the factor
Situation and no significant results for Traffic and the interaction between them
(Figure 5.11). No follow-up tests were conducted.
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Figure 5.10: Plot of the ratings of the perceived subjective complexity of the take-overs.
nCAD0 = 60, nCAD20 = 57, nManual20 = 54.
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Figure 5.11: Plot of the ratings of perceived subjective comfort of the take-over. nCAD0 =
60, nCAD20 = 57.
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Figure 5.12: Plot of the ratings of the perceived time budget of the take-overs. nCAD0 = 60,
nCAD20 = 57, nManual20 = 53.

Subjective time budget

• Results for the subjective time budget revealed a significant result for the factor
Situation but no significant effects for Automation Level and the interaction (Figure
5.12). Pairwise comparisons (Holm-Bonferroni-corrected) revealed that participants
rated the construction site to exert significantly less time pressure compared to the
crash site (p = .001) and the interstate crossing (p < .001).

• The second ANOVA also showed significant results for the factor Situation but not for
the Traffic Density and the interaction. The pairwise comparisons (Holm-Bonferroni-
corrected) underlined the significant findings from the first ANOVA.

5.3.3 State changes during CAD – Eye-Tracking

The results from the tests on normal distribution and homogeneity of variance for all
eye-tracking measures can be found in Table A.6 and are regarded for the discussion
of results. Individual group means and SDs are listed in Table 5.14. The respective key
findings for the individual eye-tracking measures are listed according to the procedure for
the subjective ratings. The data for the HGD are visualized in Figure 5.13.

HGD

• The first ANOVA for the HGD featured the factors Group and Duration and showed
no significant results for both factors and their interaction.

• The second ANOVA featured the factors Group and Trial number accordingly and
also did not show any significant results for both factors and their interaction (Table
5.15).
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Table 5.14: Overview of the group and situation means (SDs) for the state changes
assessed with eye-tracking during CAD.

Groups 5A 5B 30

HGD [m]

CAD0 M = .16 (.07) M = .18 (.04) M = .15 (.06)
CAD20 M = .18 (.08) M = .18 (.04) M = .19 (.05)

PEOR [%]

CAD0 M = 74.93 (14.77) M = 71.63 (17.03) M = 69.44 (22.09)
CAD20 M = 73.99 (20.73) M = 75.81 (16.54) M = 70.03 (20.46)

PERCLOS [%]

CAD0 M = 4.52 (5.25) M = 8.05 (9.76) M = 14.86 (27.74)
CAD20 M = 6.79 (12.96) M = 12.68 (27.76) M = 14.06 (24.99)

Blink duration [s]

CAD0 M = .35 (.07) M = .35 (.09) M = .38 (.08)
CAD20 M = .38 (.08) M = .36 (.05) M = .37 (.07)

Blink frequency [Hz]

CAD0 M = .30 (.23) M = .31 (.25) M = .25 (.19)
CAD20 M = .24 (.18) M = .21 (.13) M = .21 (.15)
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Figure 5.13: Plot of the SD of the horizontal gaze position representing the HGD for the
last minute before the respective take-overs, nCAD0 = 55, nCAD20 = 53.
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Figure 5.14: Plot of the percentage eyes on road (PEOR) for the last minute before the
respective take-overs, nCAD0 = 55, nCAD20 = 53.

Since the HGD mainly represents a measure of activity, the percentage eyes on road
(PEOR) during the last minute before a respective take-over were also analyzed to allow a
more comprehensive understanding of drivers visual behavior. The data for the HGD are
plotted in Figure 5.14.

PEOR

• Analysis for the PEOR consisted of two ANOVAs, one with the factors Group and
Duration and one with the factors Group and Trial number. The first ANOVA showed
no significant results for both main effects and their interaction, nor did the second
ANOVA (Table 5.15).

The data for PERCLOS are visualized in Figure 5.15.

PERCLOS

• A mixed-design ANOVA was calculated for analysis of the PERCLOS. Results
showed a tendency for significant results for the factor Duration but not for the factor
Group and the interaction.

• Due to the p-value of .06, pairwise comparisons (Holm-Bonferroni-corrected) were
conducted and showed a significant difference for the PERCLOS values of the
last minute of the automated drive between the first 5-minute drive (5A) and the
30-minute automated drive (p = .04) (Figure 5.15). The PERCLOS-values were
significantly higher following the pairwise comparisons at the end of the 30-minute
drive compared to the first 5 minutes (5A), but not compared to the second 5-minute
drive (5B).
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Table 5.15: Results of the ANOVAs conducted for the state changes assessed with eye-
tracking. The values represent the corresponding driver state in the last minute before
a respective take-over. If sphericity was violated, a Greenhouse-Geisser-correction was
implemented and is indicated by (GG) succeeding the test statistic.

Factor combination Main effect 1 Main effect 2 Interaction 1 x 2

HGD

Group (1) and
duration (2)

F (1, 33) = 1.07,
p = .31, η2 = .02

F (1.76, 58.24) =
= 1.12, (GG),
p = .33, η2 = .01

F (1.76, 58.24) =
= 1.01, (GG),
p = .36, η2 = .01

Group (1) and
trial (2)

F (1, 33) = 1.07,
p = .31, η2 = .02

F (1.96, 64.66) =
= .30, (GG),
p = .74, η2 < .01

F (1.96, 64.66) =
= 1.13, (GG),
p = .33, η2 = .01

PEOR

Group (1) and
duration (2)

F (1, 33) = .23,
p = .63, η2 < .01

F (1.70, 56.19) =
= 1.64, (GG),
p = .21, η2 = .02

F (1.70, 56.19) =
= .12, (GG),
p = .86, η2 < .01

Group (1) and
trial (2)

F (1, 33) = .23,
p = .63, η2 < .01

F (1.63, 53.63) =
= .29, (GG),
p = .70, η2 < .01

F (1.63, 53.63) =
= 1.45, (GG),
p = .24, η2 = .01

PERCLOS

Group (1) and
duration (2)

F (1, 32) = .15,
p = .70, η2 < .01

F (1.59, 50.94) =
= 3.17, (GG),
p = .06, η2 = .03

F (1.59, 50.94) =
= .45, (GG),
p = .59, η2 < .01

Group (1) and
trial (2)

F (1, 32) = .15,
p = .70, η2 < .01

F (1.28, 41.08) =
= 4.17, (GG),
p = .04, η2 = .04

F (1.28, 41.08) =
= .04, (GG),
p = .89, η2 < .01

Blink duration

Group (1) and
duration (2)

F (1, 32) = .31,
p = .58, η2 < .01

F (1.87, 59.81) =
= .68, (GG),
p = .50, η2 = .01

F (1.87, 59.81) =
= 1.18, (GG),
p = .31, η2 = .02

Group (1) and
trial (2)

F (1, 32) = .31,
p = .58, η2 < .01

F (1.80, 57.54) =
= 1.35, (GG),
p = .27, η2 = .02

F (1.80, 57.54) =
= .06, (GG),
p = .93, η2 < .01

Blink frequency

Group (1) and
duration (2)

F (1, 32) = .70,
p = .41, η2 = .02

F (1.88, 60.12) =
= 1.65, (GG),
p = .20, η2 < .01

F (1.88, 60.12) =
= .73, (GG),
p = .48, η2 < .01

Group (1) and
trial (2)

F (1, 32) = .70,
p = .41, η2 = .02

F (1.89, 60.46) =
= .36, (GG),
p = .69, η2 < .01

F (1.89, 60.46) =
= .42, (GG),
p = .65, η2 < .01
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Figure 5.15: Plot of the PERCLOS values for the last minute before the respective take-
overs, nCAD0 = 53, nCAD20 = 53.

• The second ANOVA analyzed the PERCLOS values of the last minute before a take-
over with regard to the Trial of the take-overs. Results showed significant results
for Trial Number, but not for Group and their interaction. Pairwise comparisons
(Holm-Bonferroni-corrected) revealed a significant difference between PERCLOS
values right before the first take-over and the third/last take-over (p = .02) (Table
5.15)

The blink duration was analyzed concerning the absolute values for the last minute prior
to the respective take-overs for the individual groups and the different durations of CAD.
The data for blink duration is plotted in Figure 5.16.

Blink duration

• The ANOVA for the factors Group and Duration did not reveal any significant results
for both main factors and their interaction (Table 5.15).

• In addition to the analysis of previous eye-tracking measures, a second ANOVA was
conducted with the factors Group and trial number to allow a detailed look on the
overall effect of time. Results did not show any significant results for both factors
and their interaction (Table 5.15).

Corresponding to an increase in blink duration, the blink frequency decreases respectively
for drowsy drivers and was also analyzed. The data for blink frequency were plotted in
Figure 5.17.

Blink frequency

• Both ANOVAs showed no significant results for the factors Group and Duration, the
factors Group and Trial Number and their corresponding interactions (Table 5.15).
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Figure 5.16: Plot of the blink duration for the last minute before the respective take-overs,
nCAD0 = 55, nCAD20 = 52.
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Figure 5.18: Plot of the changes of the COP in the seat between the second minute and
last minute of the respective CAD durations, nCAD0 = 57, nCAD20 = 54.

5.3.4 State changes during CAD – Seat pressure mats

The analysis of the center of pressure (COP) was conducted for the seat and back rest
and follows the general approach of calculating the COP and respective changes depicted
in Chapter 4.3. Results on the data distribution and homogeneity of variance can be found
in Table A.7 and will be regarded in the discussion of the results. The individual group
means and SDs can be found in Table 5.16 and the key findings are summarized in lists.

COP – seat

• With regard to the previous analysis of measures, an ANOVA was conducted with
the factors Group and Duration. Results showed no significant results for the
factor Group and the interaction, but highly significant results for the factor Duration.
Pairwise comparisons (Holm-Bonferroni-corrected) were conducted and showed
significant differences between the 30-minute automated drive and the first 5-minute
drive (p < .01) and the second 5-minute drive (p < .001), but no significant differences
between the two 5-minute drives (Figure 5.18). The changes of the COP in the
seat became significantly larger in the 30-minute automated drive compared to the
5-minute drives.

• A second ANOVA was conducted to assess the overall effect of time, utilizing the
factors Group and Trial number. Results showed no significant results for the factors
Group, Trial Number and their interaction.

Corresponding to the changes of the COP in the seat, the changes of the COP in the
backrest were also assessed. The plotted data can be seen in Figure 5.19.

COP – backrest
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Table 5.16: Overview of the group and situation means (SDs) for the state changes
assessed with the seat pressure mats during CAD.

Groups 5A 5B 30

COP – seat [%]

CAD0 M = 6.40 (14.38) M = 1.08 (15.68) M = 17.75 (27.34)
CAD20 M = 5.88 (11.62) M = 3.44 (11.37) M = 21.79 (26.06)

COP – backrest [%]

CAD0 M = .57 (13.68) M = 6.24 (15.55) M = 15.95 (27.41)
CAD20 M = -.46 (10.13) M = 1.32 (13.07) M = 17.02 (33.00)

Contact area – seat [%]

CAD0 M = 17.70 (88.75) M = -8.35 (59.98) M = -5.21 (63.90)
CAD20 M = 8.89 (37.12) M = 19.60 (88.59) M = 26.84 (93.74)

Contact area – backrest [%]

CAD0 M = 2.13 (76.04) M = -6.40 (86.71) M = 54.08 (139.31)
CAD20 M = 31.69 (66.30) M = 22.08 (123.16) M = 52.84 (101.98)

• The first ANOVA showed significant results for the factor Duration but not for the factor
Group and their interaction. Succeeding pairwise comparisons (Holm-Bonferroni-
corrected) between the different durations revealed significant differences between
the 30-minute automated drive with the 5A-drive (p < .001) and the 5B-drive (p < .01)
but not between the two 5-minute drives. The changes of the COP in the backrest
were significantly larger for 30 minutes of CAD compared to 5 minutes of CAD.

• The second ANOVA with factors Group and Trial number showed no significant
results for both main factors and their interaction.

The activity of participants in the seat and backrest was additionally assessed by looking
at the changes of the contact area following the depiction in Chapter 4.3. The activity
of drivers during CAD was analyzed utilizing the change of the variance of the contact
between the second and last minute of the different CAD durations. Data were checked
concerning the distribution and homogeneity of variance and results can be found in Table
A.7. The group means and SDs are in Table 5.16. In a first step, the changes of the
contact area of the seat were analyzed. The corresponding data are plotted in Figure 5.20
and the key findings are listed.

Contact Area – seat

• The first ANOVA featured the factors Group and Duration and showed no significant
results for both factors and their interaction nor did the second ANOVA with the
factors Group and Trial number (Table 5.17).

The changes of the variance of the contact area in the backrest were also analyzed. Figure
5.21 shows the plotted data.
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Figure 5.19: Plot of the changes of the COP in the backrest between the second minute
and last minute of the respective CAD durations, nCAD0 = 57, nCAD20 = 54.
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Figure 5.20: Plot of the changes of the variance of the contact area in the seat between
the second minute and last minute of the respective CAD durations, nCAD0 = 53, nCAD20 =
52.
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Table 5.17: Results from the ANOVAs conducted for the state changes recorded in the
seat pressure mats. The values represent the corresponding driver state between the
second and last minute of the respective automated drive durations. If sphericity was
violated, a Greenhouse-Geisser-correction was implemented and is indicated by (GG)
succeeding the test statistic.

Factor combination Main effect 1 Main effect 2 Interaction 1 x 2

COP – seat

Group (1) and
duration (2)

F (1, 35) = .28,
p = .60, η2 < .01

F (1.67, 58.52) =
= 8.95, (GG),
p < .001, η2 = .14

F (1.67, 58.52) =
= .14, (GG),
p = .83, η2 < .01

Group (1) and
trial (2)

F (1, 35) = .28,
p = .60, η2 < .01

F (1.92, 67.29) =
= 2.72, (GG),
p = .08, η2 = .05

F (1.92, 67.29) =
= .16, (GG),
p = .85, η2 < .01

COP – backrest

Group (1) and
duration (2)

F (1, 35) = .12,
p = .73, η2 < .01

F (1.54, 53.82) =
= 8.25, (GG),
p < .01, η2 = .11

F (1.54, 53.82) =
= .26, (GG),
p = .72, η2 < .01

Group (1) and
trial (2)

F (1, 35) = .12,
p = .73, η2 < .01

F (1.90, 66.36) =
= .47, (GG),
p = .62, η2 < .01

F (1.90, 66.36) =
= 2.52, (GG),
p = .09, η2 = .04

Contact area – seat

Group (1) and
duration (2)

F (1, 29) = .51,
p = .48, η2 < .01

F (1.97, 57.26) =
= .77, (GG),
p = .46, η2 = .02

F (1.97, 57.26) =
= 1.20, (GG),
p = .31, η2 = .03

Group (1) and
trial (2)

F (1, 29) = .51,
p = .48, η2 < .01

F (1.77, 51.40) =
= .67, (GG),
p = .50, η2 = .02

F (1.77, 51.40) =
= .86, (GG),
p = .42, η2 = .02

Contact area – backrest

Group (1) and
duration (2)

F (1, 31) = .58,
p = .45, η2 < .01

F (1.98, 61.43) =
= 2.13, (GG),
p = .13, η2 = .04

F (1.98, 61.43) =
= .55, (GG),
p = .58, η2 = .01

Group (1) and
trial (2)

F (1, 31) = .58,
p = .45, η2 < .01

F (1.89, 58.67) =
= 2.00, (GG),
p = .15, η2 = .04

F (1.89, 58.67) =
= .11, (GG),
p = .89, η2 < .01
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Figure 5.21: Plot of the changes of the variance of the contact area in the backrest between
the second minute and last minute of the respective CAD durations, nCAD0 = 53, nCAD20 =
53.

Contact Area – backrest

• The first ANOVA assessed the factors Group and Duration and showed no significant
results for both factors and their interaction nor did the second ANOVA (Table 5.17).

5.4 Discussion

Data from this experiment provide a broad empirical foundation for the assessment of
prolonged CAD on the driver state, the take-over performance in different situations and the
subjective rating of take-overs. In addition, manual drivers experiencing these situations
allow a comparison of take-over behavior to the current status quo concerning various
measures.

Overall, the data from this experiment featured predominantly non-normal distributions,
potentially impeding the clear analysis of underlying effects. Homogeneity of Variance
was not violated in a way leading to an adjustment of the p-value. Significant interaction
results from various ANOVAs underline the feasibility of assessing the data with ANOVAs
regardless of the non-normal distributions. The quality aspects of take-over performance,
e.g. accelerations and the TTC showed highly significant interaction results, shedding light
on the need for a differentiated analysis of underlying effects.

The discussion is aligned with the research questions in Figure 5.1 and provides answers
based on the empirical findings that are put in critical perspective to the literature findings
discussed in chapter 2. The first research question RQ1 focused on the effect of prolonged,
monotonous CAD on the driver state and if the progression is dependent on different traffic
densities. Results of driver state measures from both eye-tracking and the seat pressure
mats showed no significant results for the HGD, PEOR and blink duration and frequency.
However PERCLOS, as most prominent measure concerning drowsiness (see Chapter
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2.2.3), revealed both small effects for duration and trial. Participants were significantly
more drowsy after 30 minutes of CAD compared to 5 minutes of CAD, but only if the
5-minute-interval came before the 30-minute-interval. With regard to the significant results
concerning trial, prolonged, monotonous CAD (30 to 40 minutes) led to a minor onset of
drowsiness. This effect did not affect the visual tracking behavior (HGD, PEOR) but was
also visible in the seat pressure mats. Compared to the respective first minutes of CAD,
participants showed more unrest before the take-over in the 30-minute-interval. While this
could link to the onset of drowsiness, it can also be argued that prolonged CAD leads
to an increase in seating discomfort which is met by shifting positions more often. Both
the seat and the backrest showed significant differences between the 30-minute interval
and both 5A- and 5B-intervals, relining the argument, that the seat pressure mats did not
capture the onset of drowsiness, but a different effect, potentially linked to seating comfort.
Since there were no significant differences between the two five-minute intervals in all
measures of driver state, the action of taking over appears to temporarily increase the
level of arousal.

In line with literature findings, showing increased drowsiness after prolonged CAD
(J. Gonçalves et al., 2016; Vogelpohl, Kühn, Hummel, & Vollrath, 2018; Bourrelly et al.,
2019), PERCLOS can be recommended as favorable measure for drowsiness. Seat
pressure mats are able to capture a potential additional effect from prolonged CAD, but
should not be argued as resilient measure for e.g. drowsiness. Future work could more
heavily rely on a design of experiment featuring a fixed level of drowsiness rather than a
fixed time prior to the take-over to magnify effects from increased drowsiness. While this
provides chances concerning the effect of drowsiness, potential other effects, apparent in
this case in the seat pressure mats, would not be regarded. Thus, future work should rather
focus on capturing all relevant changes of the driver state compared to a content-related
narrow but bloated effort centering on drowsiness.

In contrast to the results for prolonged CAD, none of the eye-tracking and seat pressure
mats measures showed significant results for the effect of traffic density. Based on this
work, traffic density does not affect the progression of the driver state in CAD. Since
NDRTs are allowed, direct visual attention on the traffic situation during active CAD seems
unlikely in future use cases.

The research question RQ3 addressed the effect of potential driver state changes on
the take-over performance. No significant effects were apparent for duration and trial
for TOT, TTC, and longitudinal and lateral accelerations. While minor state changes
were visible, RQ3 and the question of how these affect take-over performance must be
dismissed on the grounds of not seeing any effect on take-over performance. The small
magnitude of detectable state changes could be the reason for the findings while they
underline publications not showing effects from increased drowsiness (J. Schmidt et al.,
2016, 2017). Taking into account publications showing minor changes concerning quality
aspects of take-over performance (Kreuzmair et al., 2017; Feldhütter, Kroll, & Bengler,
2018), a reasonable explanation for the dismissal of RQ3 is tying into RQ4 and the effect
of different situations. Throughout results of TOT, TTC and accelerations, highly significant
differences between traffic density and the take-over situations were found. The magnitude
of effects from different situations can be interpreted as to overshadow state changes. The
start of a take-over situation with issuing a RtI appears to level the changes originating
from prolonged CAD. Following the framework in Figure 2.3 (Marberger et al., 2017),
both motoric state changes (COP) as well as arousal level changes (PERCLOS) were
compensated by participants in the driver state transition process before intervention.
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Contrary, the requirements of the take-over scenario must be regarded in great detail.
The variety of interaction and main effects is interpreted based on the process depicted
in Chapter 4.3. With regard to the overall criticality rating of the situations following the
methodology presented in Chapter 4.1, the construction site represents the situation with
the lowest overall criticality, especially without additional traffic in the CAD0-group.

Up to a certain limit set by the time budget and moderating parameters such as traffic
density or the complexity of the necessary driver reaction, a higher situational criticality
motivated faster reactions in the interstate crossing. This effect is mitigated by adding
further urgency or criticality to the point were TOTs cannot be reduced but the quality
parameters of the take-over decrease drastically in highly critical and complex situations.
Considering the effect sizes, different situations appear to affect the TOT in a small to
moderate way, in line with the literature (Gold, 2016; Roche & Brandenburg, 2018).

The interaction results between traffic density and situation showed large effect sizes,
corroborating the delicate design of take-over situations: in the less critical construction
site, no traffic led to smaller TTC-values, since participants took more time to take-over,
whereas additional traffic promoted more critical reactions in the interstate crossing and
the crash site. Results from the longitudinal acceleration underline this interpretation, by
also showing significant interaction results. Participants greatly differed in their braking
behavior depending on the traffic density in otherwise identical situations. The results
from the lateral acceleration do not show significant interaction results, but show highly
significant differences between the situations and traffic density.

An overall criticality assessment of take-over behavior based on TTC and accelerations
is highly dependent on the traffic situation at hand. Large effect sizes in combination with
a highly significant effect of traffic density call for a critical view on issuing a RtI simply
based on detecting a system limit. While CAD implies fallback-ready users in any situation
(SAE J3016, 2018), the empirical evidence suggests to gather basic information a priori
on the specific take-over situation to allow a feasible prediction of take-over performance.

Results for the subjective criticality, complexity and time budget underline the findings
from the objective take-over performance, showing highly significant situational differences
with large effect sizes in addition to an effect of traffic density. Surprisingly, while partici-
pants rated the situations and the traffic density differently, the subjective comfort of the
take-over showed no significant difference but a high variance. Participants either had an
individually different understanding of take-over comfort or rated the comfort of a take-over
independent of the criticality, complexity and the subjective time budget. A full assessment
of the applicability of CAD must include objective measures as well as subjective ratings.
The data from this experiment support the conclusion that drivers in CAD are both able to
and willing to act as fallback ready users looking at objective and subjective measures of
take-over performance.

In comparison to manual drivers experiencing identical situations, drivers taking over
only revealed significantly lower TTCs, but no significant differences for longitudinal and
lateral accelerations. While lower TTCs represent more critical maneuvers, no significant
differences for the accelerations put this reading in perspective. CAD requires driver to
react to the RtI and take-over, having less time to execute similar maneuvers compared
to manual drivers being in the loop, leading to smaller TTCs. Thus, take-overs should
not be labeled to be more critical than manual driver reactions due to a lack of indication
concerning acceleration results. More likely, TOT by definition reduces the time available
for the interaction in a take-over, leading to the TTC results. Including literature findings,
the take-over performance in CAD is similar to maneuvers from manual drivers (Skottke
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et al., 2014). Effects for the TTC are attributed to less time in the situation compared to
manual drivers, but remain small compared to situational influences found in this work and
literature findings (Skottke et al., 2014).

5.5 Summary and conclusion

Concluding, different take-over situations, interlinked with an effect of traffic density, are
unequivocally affecting both TOT and take-over quality measures. While these effects
are corroborated by the subjective rating from participants, they show large effect sizes
and are in line with previous research. Effects from prolonged periods of CAD can be
seen analyzing specific measures such as PERCLOS or the changes in the COP in this
work. These changes in the driver state show small effect sizes and are not manifested by
assessing additional measures such as blink duration or blink frequency. More importantly,
this experiment did not show any effects of prolonged CAD on take-over performance
whereas large situational differences are apparent. The effect of CAD assessed in take-
over situations and compared to manual driving did not show differences in measures of
take-over performance with the exception of the TTC.

Future research should address which state changes possess the possibility of affecting
take-over performance while allowing a reasonable assessment of take-over behavior in
overall less critical situations. In addition, individual differences were not regarded in this
analysis but incorporate a deeper insight in relevant effects on take-over performance
(Radlmayr, Feldhütter, et al., 2018).
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6 The effects of non-driving related tasks on driver state
and take-over performance

This experiment1 focused on the effects of different NDRTs on the development of the
driver state and the ensuing effects on take-over performance in different situations. The
experiment was pre-published to this thesis at the 20th Congress of the International
Ergonomics Association (IEA) in Florence (Radlmayr, Fischer, & Bengler, 2019). This
chapter provides a comprehensive overview of the experiment and the most important
findings and is taken in parts from the publication. For a more detailed depiction refer to
Radlmayr, Fischer, and Bengler (2019).

Various effects from different NDRTs on take-over performance have already been
studied (see Chapter 2.2.2). Radlmayr et al. (2014) found similar effects on take-over
performance between the visual surrogate reference task (SuRT) and the cognitive n-back
task with an overall higher number of crashes for the SuRT in the most critical situation.
Based on the literature review, the research questions depicted in Figure 6.1 were derived
and aim to analyze the development of the driver state depending on different NDRTs
in more detail. Analogue to Experiment 1, potential changes are assessed in different
take-over situations and allow an assessment of the effect of standardized NDRTs in
addition with taking into account a variable instruction of participants. In this experiment,
a total of three different NDRTs, the SuRT, the n-back task and a motoric task, a shape
sorter ball hidden from view in a fabric bag were evaluated. The tasks were chosen to
represent standardized tasks applying to specific modalities and their potential interaction
with take-overs following the multiple resource theory (Wickens & Liu, 1988). The SuRT
represents a mainly visual and motoric tasks (ISO/TS 14198, 2012). The n-back task
represents the cognitive task (Kirchner, 1958) which was also validated as working memory
measure (Jaeggi, Buschkuehl, Perrig, & Meier, 2010). The shape sorter ball representing
a mainly motoric task is based on work from Gold et al. (2015). Figure 6.2 shows the
SuRT as implemented in the car and the shaper sorter ball that was hidden in a bag
during the experiment. The instruction to engage in a specific task was either instructed or
participants could chose freely to engage in one of the three tasks or not engage in one of
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Figure 6.1: Summary of the research questions for Experiment 2.

1The experiment was designed and conducted with the assistance of Fabian Marco Fischer as part of
his master’s thesis (Fischer, 2016).
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6 The effects of non-driving related tasks on driver state and take-over performance

Figure 6.2: The left figure shows the SuRT in the center console of the vehicle. The right
figure shows the shape-sorter ball that was put into a fabric bag with openings during the
experiment to only allow manual (and not visual) interaction during the task. Figures with
friendly permission by Fabian Marco Fischer.

the tasks at all. Take-over performance was evaluated in two different take-over situations
known from Chapter 4 differing in their overall criticality. The crash site represented a
critical situation and the construction site represented medium overall criticality. The
design of experiment consisted of a mixed design, with the factor Type of NDRT (no,
SuRT, n-back task, motoric task) being a between factor, leading to three groups with the
within-factors Instruction (instructed, free) and Situation (crash site, construction site). To
counterbalance the procedure, participants experienced both situations twice, leading to a
total of four take-overs per participant. The factors were all permuted to avoid learning
effects.

Fifty-tree participants were part of the experiment in the static simulator at the Chair
of Ergonomics at the Technical University of Munich. For more details on the general
experimental setup refer to Chapter 4. For data acquisition of driver state changes, an
eye-tracker and seat pressure mats were used. Most important dependent variables to
assess driver state were PEOR, standard deviation of the horizontal gaze position (HGD),
blink frequency and changes in the COP and contact area in the seat and backrest. To
analyze take-over performance, TOT, TTC, standard deviation of lateral position (SDLP),
longitudinal and lateral accelerations and subjective ratings were evaluated.

"Results show that the use of eye-tracking and seat-pressure mats allows the
detection of changes in driver availability to some extent. The HGD cannot be
used to differentiate between different modalities, but allows the detection of
engagement into a NDRT in general. Blink frequency also shows significant
changes between the NDRTs but also the situations. This either shows the
influence of the track or more likely the large individual differences between
participants. The significant results for the blink frequency should be viewed
critically. Participants react significantly faster in the crash site situation,
which can be attributed to the higher overall criticality of the "crash site"
compared to the “construction site” adding to a perceived urgency (Gold, 2016).
The higher criticality is punctuated by results of the TTC, the accelerations
and the subjective ratings of the two situations. The lateral accelerations
are within expectation, since the construction site does not feature a lane
change maneuver. Results from the free behavior should be viewed critically,
since standardized NDRTs were offered but no realistic tasks or activities.
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Nonetheless it can be concluded that participants take up on the offer of
engaging into NDRTs in conditionally automated driving.

Results from this experiment are in line with previous findings but offer an
additional, more detailed assessment of changes of driver [state] during auto-
mated driving. Concluding, different modalities of NDRTs do not seem to effect
take-over performance in a critical way. Contrary, the influence of different
take-over situations is revealed and is consistent with findings from the overall
scope of research. Eye-tracking and seat pressure mats offer a promising way
of assessing changes in driver [state] even though, in this experiment, they
did not result in changes of the take-over performance accordingly" (Radlmayr,
Fischer, & Bengler, 2019).

Results from Experiment 1 (Chapter 5) and the findings from this experiment both
showed a highly significant effect of different take-over situations on take-over performance.
While eye-tracking and seat pressure mats allowed the detection of driver state changes
during CAD in both experiments, no significant effect on take-over performance was
detected. Individual predispositions and differences concerning the development of the
driver state during CAD were not regarded in both experiments but hypothesized to effect
results as well. In addition to publications strongly suggesting to incorporate individual
differences and predispositions in a comprehensive understanding of relevant effects
on take-over performance (Gold, 2016), data from Experiment 1 and 2 are utilized for a
combined modeling approach in Chapter 7.
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7 Modeling of take-over performance

Results from Chapters 5 and 6 represent the empirical basis for answers and conclusions
in reference to changes in the driver state and potential consequences for the take-over
performance. The chapters feature either a detailed analysis of results or the summary of
findings depicted in the corresponding publication (Radlmayr, Fischer, & Bengler, 2019).
Both experiments were conducted during the same period of time and in identical settings
concerning the simulator. The experimenters took turns in accompanying participants
for both Experiment 1 and 2. Based on recommendations from literature (Chapter 2) to
include individual differences and the predisposition of drivers, the research question RQ5
was derived (Figure 7.1), aiming for a quantitative insight and comparison between all
potential factors affecting take-over performance. Regarding the settings of Experiment
1 and 2, a joint modeling approach appeared to be a promising method. The modeling
approach in this chapter is partly based on the approach from Gold (2016), for which the
data from many experiments were aggregated using multiple linear and logistic regression.
In addition, Gold (2016) concludes that a

"[...] mixed-effect regression revealed a large variance induced by the drivers
and significant model improvements under consideration of the drivers’ predis-
position. This contribution of the driver could and should be considered as a
predictor, but is only available for drivers with several recorded take-overs or
retrievable by driver monitoring."

The final model equations in Gold (2016) are focused on providing a reasonable prediction
of TOT and quality aspects regardless of drivers’ predisposition and current driver state.
While the modeling presents a huge leap concerning the comprehensive understanding
of take-over performance, the selection of empirical data from Experiment 1 and 2 was
influenced by the conclusion from the modeling approach. More specifically, drivers’
predisposition and measurement of the driver state were included in both experiments.
In the modeling approach presented in this chapter, both predisposition measures and
state changes as predictors were included to allow a better enlightenment of variance
in the outcome variable. The mixed-model approach includes fixed and random effects.
The selection of the models, the iterative process and final models and conclusions are
detailed in this chapter. The modeling approach itself is based on tutorials from Singmann
and Kellen (2017) and Winter (2013) using the packages lme4 (Bates, Mächler, Bolker, &
Walker, 2015), afex (Singmann, Bolker, Westfall, & Aust, 2019) and ordinal (Christensen,
2019) in R (R Core Team, 2018).
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Figure 7.1: Research Question RQ5 that is addressed in the modeling approach.
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7.1 Introduction, motivation and method

The take-over is of highest interest concerning the safety and comfort of CAD. Research
and corresponding results in the last years have led to a broad understanding of various
effects influencing the take-over process, see Chapter 2 and the empirical work in this
thesis. A logical step is the integration of various effects into a model allowing the
prediction of take-over performance. The example of Gold (2016) underlines the feasibility
of predicting take-over performance. The integration of these models into real vehicles
could lead way to the comprehensive understanding of all major effects giving way to a
sound assessment whether - in fact - a driver is ready as fallback level prior to a take-over
or not. The empirical data from Experiments 1 an 2 could serve for an additional modeling
approach increasing the prediction quality by integrating information on the individual
drivers and their state. This is advised by Gold (2016) in order to increase the amount
of variance in the outcome parameters (measures of take-over performance) which is
accounted for by the chosen model.

Based on the data from the two experiments in this work and the depicted advance in
Gold (2016), the approach in this chapter is differing. Concerning the amount of data and
the chosen predictors, a validation based on published results from other researchers
does not seem feasible because the sensors on driver state are not commonly integrated
in take-over research. While eye-tracking data can be found in some of the published
work and could technically be utilized to validate the existing model, the seat pressure
mats represent a new way of assessing activity prior to a take-over in experiments on
CAD. Therefore, an alternative validation of the models in this work could be achieved
by applying a data-split and using e.g. 70/30 percent of data to build and then validate
the model. Regarding Figure 7.2 and the number of all potential predictors (19) in this

Figure 7.2: Rule of thumb on how big the sample size should be depending on the number
of predictors and the expected effect sizes taken from Field et al. (2012).

work (see Table 7.2), with the current set of data points an identification of medium effects
seems feasible. Reducing the available data points to allow a validation of the models by
splitting the data would consequently decrease the number of identifiable medium effects
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and is not regarded in this modeling approach. In addition to the reflections on validating
the models, the underlining focus of the modeling approach must be considered: while the
resulting models from this chapter are not necessarily ideal for a future integration into
real vehicles, considering the sensors used to assess the driver state, a comparison of
hierarchical-build models allows a fundamental insight into whether the driver state and
individual dispositions should be regarded in CAD or not. If non-mixed models allow fairly
similar prediction qualities of take-over performance compared to models including these
measures, future applications benefit from the quantitative comparison.

In this thesis, a step-wise modeling approach shedding light on the individual contribution
of each predictor was chosen. In order to allow a understanding of the modeling approach
presented here, the following section briefly introduces the group of models utilized.

Linear mixed effect models

A general introduction to multiple linear regression and the resulting fixed-effects models
will not be provided here. Gold (2016) provide a thorough explanation of the main
reasoning, most important key figures and their application in the field of predicting take-
over performance. This chapter will provide a brief introduction to mixed effect models
as applied in the following modeling approach. The introduction to linear mixed effect
models here is partly based on the tutorial from Winter (2013) and relies strongly on the
tutorial from Singmann and Kellen (2017) since the provided approach is focused on the
field of experimental psychology. The example centers on linear mixed models, while the
multinomial mixed logistic models utilized for prediction of categorical longitudinal and
lateral accelerations follow the same reasoning.

The main reason for choosing mixed effect models in this approach are listed.

1. Both single and multiple regression depend - among other conditions - on the
assumption that the underlying data are independent and the errors are identically
distributed (Singmann & Kellen, 2017). This can be summarized to represent
individual data points regarded for regression modeling to originate from only one
participant. In case of repeated-measures designs this assumptions is violated since
one participant provides more than one data point, in this case take-over. This holds
true for both the data from Experiment 1 (three take-overs from one participant) and
Experiment 2 (four take-overs from one participant). Consequently, linear multiple
regression would not suffice to capture the underlying effects in a modeling approach
whereas linear mixed effect models provide the necessary structure to allow the
definition of additional random effects such as, e.g. the driver. While linear multiple
regression provides good robustness towards violations of other assumptions, e.g.
assumption of variance homogeneity, it is not robust concerning the assumption of
independent data (Singmann & Kellen, 2017).

2. Linear, mixed effect models can handle missing or partly missing data entries, e.g.
by applying partial pooling. Due to the tracking quality of the eye-tracker, some
entries from Experiments 1 and 2 feature incomplete entries. While these entries
could not be considered for linear, multiple regression, they are used in the following
mixed effects’ approach.

3. The increase in computational power in the last years has provided the resources
needed to more easily compute linear mixed effect models and yielded the intro-
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duction of respective packages in R, such as lme4 (Bates et al., 2015) or afex
(Singmann et al., 2019).

Concerning a general equation of multiple regression, a multiple linear regression can be
expressed as

yn,i = β0 + β1x1,i + ...+ βnxn,i + εn,i (7.1)

In equation 7.1, the outcome y is modeled for the ith participant, β0 represents the grand
mean or intercept, and β1 to βn represent the coefficients of the individual predictors
x1 through xn. Utilizing known effects, a simple example is provided to allow a more
comprehensive understanding of the final mixed effect models with regard to take-overs in
CAD.

Suppose, the outcome y representing the TOT is being modeled using one predictor,
traffic density (x and corresponding coefficient β1). A final equation would yield β0 and β1

as results. β0 representing the intercept would represent the value of TOTs in seconds
that represents the mean of TOTs found in the underlying data set, e.g. 2.5 seconds.
Depending on β1, which in this example would correspond to the influence of traffic density
and will be assumed to be 1, "one increase" in traffic density (e.g. from no traffic to 20
vehicles/km), the TOT would increase by 1 second, resulting in 3.5 seconds. The linear
model provides a linear link between the outcome "TOT", the intercept and the influence
of traffic density. The term ε is representing any form of variance observed in the data
that cannot be explained by the linear link that was defined to consist of the intercept and
the traffic density. This very basic example provides the basis for a linear mixed effect
model representing a simple linear fixed effect model. TOT is modeled using the fixed
effect traffic density.

Suppose, the data on which the model was build upon do not come from independent
participants but every participant would experience four take-overs in total that were all
considered in the model. Naturally, one participant could be generally faster than another
participant a - currently not considered random - effect, that would increase variance in
the outcome TOT, which could not be explained by the linear link. The difference between
individual participants that is adding to the error term εn,i in the fixed effect model can be
modeled using random intercepts. These random intercepts reduce the variance stemming
from a difference in general "quickness of take-over" captured by the error term by adding
a random effect, S0. The equation including the random intercept would result to

yn,i = β0 + S0,i + β1x1,i + ...+ βnxn,i + εn,i (7.2)

where, following the explanation from Singmann and Kellen (2017), the term S0,i "corre-
sponds to the idiosyncratic effect associated to participant i". Concerning the example
of TOTs being modeled by traffic density, the intercept or grand mean β0 is now being
adjusted by an additional, individual "grand mean" for every participant, representing their
individual "quickness of take-over". The correction of the intercept β0 by the random
intercepts for every participant is based upon one participant contributing four take-overs
to the data pool. In case the data points were independent, the definition of a random
intercept per participant would not be possible.

Staying with the basic example, the influence of traffic density in the fixed effect model
7.1 has the same value for all participants. For every "increase" in traffic density, e.g. by
one, the TOT would increase by one second (β1 was identified to be 1 in this example)
leading to a take-over time of 3.5 seconds. Similar to the random intercepts representing
a difference in "general quickness", a mixed effect model also incorporates random
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Figure 7.3: Examples of random intercepts and random slopes modified from Winter
(2019).

slopes which represent individual differences with regard to the influence of traffic density.
Corresponding to the example, some participants might react to an increase in traffic
density more severe than other participants. In the fixed effect model, β1 is the same for
all participants, representing the slope of the line modeling the effect of traffic density on
TOT. Random slopes allow the introduction of individually different slopes representing
the individual "severity of TOT-changes with regard to different traffic densities". In case
participants would actually react differently to the same change in traffic density, a random
slope term would allow a quantification of this effect resulting in the following equation

yn,i = β0 + S0,i + (β1 + S1,i)x1,i + ...+ (βn + Sn,i)xn,i + εn,i (7.3)

Notice, that for every fixed effect xn, a corresponding random slope Sn can be defined. The
resulting model in equation 7.3 now represents a mixed effect model including fixed effects,
random intercepts for individual participants and random slopes for individual participants.
Figure 7.3 provides an additional example with a total of 14 data points or take-overs per
participant. The bold line in each of the sub-figures represents an estimate of the TOT
from a linear regression model. In case a mixed model with varying intercepts is used,
the dotted line in the sub-figures in the upper half represents the individual intercepts
for Participants 1-3 or their individual "general quickness" of taking-over. Notice, that
participant 3 is not speeding up but becoming slower. Adding varying slopes accounts
for individual reactions to - in this case - the "effect of take-overs" in general. To account
for individual reactions to an exposure of more than one take-over, varying slopes are
introduced.

Concerning the pooling of data from Experiments 1 and 2, different structures of mixed
effect models could be possible. Regarding the explanations from Singmann and Kellen
(2017) and Winter (2013), different "items", in this work represented by take-over situations,
could also account for random effects on the outcome. While the reasoning to incorporate
these effects explicitly in the proposed mixed model is sound, they are not regarded
in this approach: Different items accounting for variance in the outcome with regard to
modeling take-over performance in CAD represent different take-over situations in which
participants have to take-over. If participants would experience some of the take-overs
in the construction site and some of the take-overs in the crash site, the manipulation of

77



7.1 Introduction, motivation and method

different situations presented more than once can be understood to incorporate a new,
random effect caused by the specific situations picked from the population of all situations.
While this effect is present in the data from Experiment 2 (Chapter 6), participants in
Experiment 1 experienced a total of three situations which all differed: one crash site,
one construction site and one interstate crossing. In order to quantify the random effect
of situations in the mixed model, the data from Experiment 1 does not qualify, since the
situations only appeared once and not twice as in Experiment 2. Following the reasoning
of detectable effects and their corresponding effect sizes depending on the number of
predictors and data points (Figure 7.2), the data from these two experiments need to be
pooled together for a feasible modeling approach allowing a detection of medium effects.
Consequently, the random effect structure (case (b) in Figure 7.4, items can be understood
to represent situations) arising from different situations in the data pool from Experiment
2 is not regarded in this work. Case (c) in Figure 7.4 describes nested random effects,
that represent "participants from different encroaching groups/experiments" (Singmann
& Kellen, 2017). Since the pooled data in this work is originating from two different
experiments, consideration of nested random effects could be feasible. However, both
data sets were recorded during the same period of time, in the same simulator and both
experimenters supported the other procedure and vice versa. The reasoning to suspect a
nested random effect is highly unlikely and is not regarded in this work. Concerning the
advice from Barr, Levy, Scheepers, and Tily (2013) to "keep it maximal" concerning the
random effects structure, after thorough consideration of possible random effects, only the
effect of several take-overs per participant is accounted for in the model. The resulting

Figure 7.4: Examples of different structures of mixed effect models taken from Singmann
and Kellen (2017).

modeling approach can be summarized to consist of mixed effect models incorporating a
single random effect (participants, see case (a) in Figure 7.4). This single random effect
incorporates random intercepts and random slopes for every participant and their potential
correlation. Fixed effects are included in the modeling approach in an iterative process
described in the following chapters.
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Assumptions

Concerning the assumptions related to mixed models, the following list details the consid-
erations of the approach conducted in this work.

• Assumption of independence
A key assumption concerning multiple regression in general is the assumption of
independent data, e.g. that all cases or data points considered in the modeling
approach are independent. This assumption would be violated by the fact that
participants experience more than one take-over. The resulting random effect is
precisely the reason this modeling approach consists of mixed effect models. The
models can deal with the violation of independence by quantifying the introduced
random effect by providing random intercepts, slopes and their potential correlation.

• Assumption of multicollinearity
Large degrees of multicollinearity should be avoided in order to meet the assumption
of non-correlated predictors. For continuous predictors both various publications and
guidelines on detection and thresholds (Mason & Perreault, 1991; Dormann et al.,
2013) as well as potential "remedies" e.g. centering the data (Field et al., 2012) exist.
In this approach, models are built and compared to one another. This incorporates
testing for multicollinearity by providing the expected correlation of the regression
coefficients of all predictor pairs (Baayen, 2008). Due to the bottom-up process of this
modeling approach (detailed later in this section), predictors are dropped for the final
modeling approach if their inherent contribution to the model shows non-significant
results. While this approach is discussed critically in the discussion, it avoids a
full check of all predictors concerning multicollinearity. To allow a comprehensive
understanding of all potential associations between predictors, this section provides
an analysis of multicollinearity between all predictors later on.

• Assumption of homoscedasticity
A violation of this assumption indicating heteroscedasticity will be checked by as-
sessing the residual plots of the fitted models. In case the plot gives way to suspect
heteroscedasticity, results from the model have to be discussed critically concerning
potential reasons for the violation.

• Assumption of no/low effect of influential points
Typical ways of analyzing the effect from influential points in multiple regression
consist of considering the DFBetas or the Cook’s distance (Field et al., 2012). While
these methods suffice for multiple regression, the calculation of these parameters
for linear mixed effect models is considerably more complex. Nieuwenhuis, Te
Grotenhuis, and Pelzer (2012) provide a solution based on built models from lme4
that calculates both DFBeta-values and the Cook’s distance to identify outliers and
influential data points. The influence()-function from the corresponding package
also allows an estimation of both parameters for the group levels defined by the
introduction of single or nested random effects. A detailed description of the package
and the calculation is provided in Nieuwenhuis et al. (2012) and serves as basis for
the calculation of the Cook’s distance in this work. The cutoff value of the Cook’s
distance is calculated by 4/n = .048, n = number of group levels (e.g. participants
in this work) following the rule of thumb from Nieuwenhuis et al. (2012). A plot
is provided for identification of influential data points/participants and results are
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regarded in the discussion of the final models rather than dropping outliers by
default. In addition to the Cook’s distance and the DFBeta-values, the influence.ME-
package also provides the change in percent concerning the parameter estimation
with/without all/the identified points:

"For each higher level group, the percentage of change is calculated as
the absolute difference between the parameter estimate both including
and excluding the higher-level unit, divided by the parameter estimate of
the complete model and multiplied by 100 %. A percentage of change is
returned for each parameter separately, for each of the higher-level units
under investigation" (Nieuwenhuis et al., 2012).

This value is referred to as "change with/without (in this work) participant" and will
be added to analyze potential influential points.

• Assumption of quantitative and categorical variable types
Concerning the definition of fixed effect predictors, linear mixed effect models in ac-
cordance with multiple regression rely on either unbound quantitative or categorical
predictors with only two levels. In case a categorical predictor exceeds two levels (in
this case e.g. type of NDRT), this issue needs to be solved using dummy coding,
e.g. see the example of the rating of tasks regarding their manual and cognitive
load proposed in Gold (2016). This is solved automatically in R when a categorical
predictor with more than two levels is detected and is not addressed here.

• Assumption of normally distributed residuals
Following the reasoning from Winter (2013) and Gelman and Hill (2006), multiple
regression in general and linear mixed effect models accordingly show very high
robustness towards non-normal distributions of residuals. Typically, this is analyzed
by inspecting histograms of the residual distribution or Q-Q plots but is not be
considered in this approach.

• Linearity of the outcome, e.g. modeling a linear relationship
The premise of using linear mixed effect models always constitutes a linear relation-
ship between the outcome and potential predictors. In case reasonable doubt exists
that the relationship shows a non-linear nature, additional methods of modeling
can be used, such as logistic modeling or generalized mixed models. While an
introduction to the latter is not given here, the modeling of crash probability and longi-
tudinal acceleration in Gold (2016) suggests that a linear mixed model is not feasible
for both these outcomes in this work. The crash probability was modeled using a
binomial mixed modeling approach, while the longitudinal and lateral acceleration
were modeled using multinomial mixed linear regression modeling.

Sample, predictors and outcome variables

Multiple regression relies on complete data sets to allow a modeling approach. In case
mixed models are utilized, non-complete data can be regarded for the modeling, increasing
the amount of total information available for the modeling.

The data set for this modeling approach consists of data from Experiment 1 and 2. A total
of 299 data entries were regarded for the modeling approach, with 243 cases consisting of
complete entries. Main reason for incomplete data entries can be identified by considering
the predictors used for the final models. While trait-measures, such as sex, age or driving
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experience were available for all participants due to demographic questionnaires, the
inclusion of state measures from eye-tracking and seat pressure mats introduced the
number of incomplete entries. Seat pressure mats proved to be a reliable source of
driver activity in the seat with almost no issues of data loss during the experiment. The
eye-tracking data was cut to periods of one minute or 10 seconds to allow an assessment
of both absolute values in the last minute/10 seconds prior to the take-over as well as
changes manifesting during the period of automated driving. Before the final output, the
eye-tracking data was checked for freezes or data inconsistencies such as values of below
70 % for the reported detection rate. In case freezes or data inconsistencies were detected,
the affected period of one minute/10 seconds was disregarded for analysis.

The sample of 299 entries consisted of 84 participants, with 33 females and 51 males,
with a combined mean age of 31.41 years (SD = 13.58 years), and a range of 171 to 73
years of age.

A list of outcome variables is provided in Table 7.1 including the potential range of values
and the actual range of the data to allow an assessment of boundary issues. In addition,
the predictors from the final model equations without the actual equation from Gold (2016)
are provided including the predictors that are regarded in this work. In case predictors
from Gold (2016) were disregarded, the underlying reasoning is provided in the following
list.

Table 7.1: List of outcome variables considered in this modeling approach including their
potential range of values and the actual range found in the data. In addition, any predictors
from the final model equations from Gold (2016), that were also considered in this modeling
approach, are provided.

Name Potential
range

Actual range Considered
predictors in (Gold,
2016)

Considered
predictors in this
modeling
approach

Take-over time
(TOT) [s]

0 – 7 .60 – 6.18 Time-budget, lane,
traffic density,
repetition, age

traffic density,
age

Lateral
acceleration
[m/s2]

0 – 10,
unilateral

.15 – 8.42 Time-budget, lane,
traffic density,
repetition, age

traffic density,
age

Minimal
longitudinal
acceleration
[m/s2]

-10 – 0 -10.23 – 0 Time-budget, traffic
density, load

traffic density,
NDRT
(representing
load)

Time to
collision
(TTC) [s]

0 – 7 .19 – 6.22 Time-budget, lane,
traffic density,
repetition, load,
age

traffic density,
NDRT
(representing
load), age

Probability of
crash [ ]

0, 1 0, 1 Lane, traffic
density, repetition

traffic density

1Accompanied driving is legal by the age of 17 in Germany. In this case of participating in the experiment
in a driving simulator, no legal guardian was present.
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• Gaze reaction time
In this modeling approach, the gaze reaction time is not considered: Only some
participants engaged in a visually demanding NDRT. In case participants did not
engage in NDRTs or their visual attention was on the road regardless of the NDRT,
no gaze reaction time is available. In addition, following the modeling approach by
Gold (2016), gaze reaction times were best accounted for by the intercept. This
represents participants reacting quickly to the salient stimulus of the RtI without
incorporating more complex cognitive processes in comparison to the TOT.

• Take-over time (TOT)
The time budget was set to seven seconds throughout both experiments, rendering
the predictor not feasible since no variance was introduced. The same reasoning
applies to lane. All participants were on the middle lane when the RtI was issued.
Repetition was not considered since the model consisted of a mixed model approach,
incorporating more than one take-over per participant through considering the
random effect participant.

• Probability of brake reaction
The prediction quality significantly improved by splitting between drivers which
reacted by either braking or steering in Gold (2016). While the feasibility of this
approach is observed, following Figure 7.2, the data set did not allow splitting the
data and this outcome was not regarded in this work.

• Lateral acceleration
Analogue to the reasoning for TOT, the predictors time budget and lane were not
considered as predictors for the maximal lateral acceleration. The predictor repetition
was accounted for by the random effect of the linear model.

• Minimal longitudinal acceleration
The final modeling approach from Gold (2016) showed that the prediction quality
increased when the longitudinal acceleration is not modeled on a continuous interval
scale but the probability of either an absolute small [<3.5 m/s2], medium [3.5 m/s2

– 7.0 m/s2] or large [>7.0 m/s2] acceleration is modeled. The modeling approach
in this work started with a linear mixed effect model, since the outcome variable
does not necessarily has to be normally distributed (Field et al., 2012). In addition,
the distinction in participants reacting by braking or steering could be nested within
them and is accounted for by the random structure of the mixed model approach.
Concerning the predictor load, the NDRTs and no engagement in NDRTs were
represented by "load" in Gold (2016). In this work, the NDRTs and no engagement
are modeled as factorial predictor since R uses dummy modeling in the background
to account for factorial predictors with more than two levels. Time-budget was not
accounted for since all take-overs featured a time budget of seven seconds.

• Time to collision (TTC)
The TTC in this work is modeled including traffic density, load and age, excluding
the other predictors as explained above. Concerning the range, the theoretical
value of zero represents a crash with the obstacle for the crash situation. The crash
probability is modeled separately, so TTC values of zero are excluded from the
analysis of the TTC for all situations. In case participants came to a full stop after the
RtI before the system limit, the TTC would reach infinite values before the calculation
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rendered void results due to the division by zero (TTC = distance to system limit
divided by current velocity). While these values are not feasible since the minimal
TTC is of interest, the division by zero was accounted for in the processing of data.
For velocities of <1 km/h the TTC is not calculated and could not be regarded for
minimal TTC for this modeling approach.

• Probability of a crash
The crash probability was modeled in accordance to Gold (2016) using the traffic
density. Lane and repetition were not regarded due to the explanation above.

The modeling approach in this work is focused on comparing various predictors concerning
their contribution to allow a prediction of the outcome measures provided in Table 7.1. The
predictors used in the modeling approach from Gold (2016) serve as starting reference for
the approach in this work and can be found in the far right column of Table 7.1.

The main addition in this approach consists of inclusion of additional predictors, such
as participants’ traits (driving experience or annual mileage) and driver state changes
measured using eye-tracking and seat pressure mats. These include e.g. PEOR or
changes of the COP from the seat pressure mats. Table 7.2 provides an overview of the
predictors that are regarded in the modeling approach in this work. Driver state changes
are also assessed in % between the second and the last minute before the RtI. The
second minute (and not the first) is utilized to allow an identical length of the considered
interval and to avoid including "settling into automated driving mode"-effects. Data were
cut moving backwards from the point of time of the RtI.

Table 7.2: List of predictor variables initially considered in this modeling approach including
their range found in the data.

Name Range Assessed interval

Random effects

Participant/Nr. [ ] 3 or 4 take-overs To account for multiple take-overs per
participant, the random effect "nr" is
introduced.

Fixed effects

Traits

Sex [ ] male or female No other sexes were provided by participants,
the factor is considered to be exhaustive.

Age [years] 17 – 73 Modeled both linear and as 2nd-degree
polynom, regarding results from (Gold, 2016).

Possession of
valid driver’s
license [years]

0 – 56 Dropped for the final approach due to a
strong correlation with age.

Kilometers per
year [km/year]

Categorical: <5k,
5k – 10k, 10k –
20k, >20k

The levels represent small, medium, large
and very large mileage per year.

Subjective driving
style [ ]

Likert-scale:
-2 – 2

-2 represents a subjectively defensive driving
style, 2 represents a sporty
driving style.
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Situational factors

Traffic density
[vehicles/km]

Categorical:
0 or 20

Traffic density during CAD and the take-over
situation.

Situation [ ] Categorical:
crash site,
construction site,
interstate
crossing

To account for more variance in the outcome2,
apart from traffic density, situation is also
considered.

State changes

Type of NDRT [ ] Categorical: no,
SuRT, n-back,
motoric

While some participants were instructed to
engage in NDRTs and others could choose
freely, the type of NDRT represents the
engagement in a task right before the RtI was
issued. Duration of engagement prior to the
RtI is not considered as predictor since most
intervals lasted no longer than one minute,
both for instructed and free engagement.

HGD (SD of horiz.
gaze position) [m]

.02 – .3 The value per participant represent the mean
HGD during the last minute prior to the RtI as
measure of the horizontal tracking activity.

Changes of the
HGD [%]

-90.82 – 166.59 Changes of the driver state were evaluated by
assessing the difference in % of the HGD
between the second minute of automated
driving and the last minute before the RtI.

PEOR [%] .07 – 99.90 Values represent the total PEOR during the
last minute before the RtI.

Changes of
PEOR [%]

-99.90 – 356.27 The difference in PEOR between the second
and last minute before the RtI.

PEOR(10s) [%] 0 – 100 The values represent the PEOR in the 10
second interval before the RtI to allow a better
understanding of visual attention.

Blink duration [s] .10 – .62 The mean blink duration during the last
minute before the RtI.

Changes of blink
duration [%]

-63.75 – 101.72 The difference in blink duration between the
second and last minute of automated driving
prior to the RtI.

Blink
frequency [Hz]

.02 – 1.42 The mean blink frequency during the last
minute before the RtI.

Changes of the
blink
frequency [%]

-100.00 – 400.00 Changes in blink frequency between the
second and last minute before the RtI.

2Gold (2016) revealed significant influences from situational predictors, such as time budget or lane. In
this work, these were not varied, so they cannot be used as predictors. To allow a more comprehensive
understanding of both situational and driver state predictors, the categorical predictor situation is introduced.
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Changes in the
center of
pressure (COP)
for the seat [%]

-56.55 – 80.64 The mean difference of the COP in the seat
between the second and last minute of
automated driving before the RtI. This
represents an in/decrease in activity in the
seat.

Changes in COP
for the
backrest [%]

-33.35 – 116.55 The mean difference of the COP in the
backrest between the second and last minute
of automated driving before the RtI. This
represents an in/decrease in activity in the
backrest accordingly.

Prior to the detailed depiction of the modeling approach in Section 7.1 including a check
for multicollinearity for the final model, all potential predictors listed in Table 7.2 were
checked for potential associations. While continuous/numeric predictors can be tested for
multicollinearity using standard procedures like Pearson’s or Spearman’s correlation or
evaluating the variance inflation factor (VIF, (Montgomery & Peck, 1992)), these options
are not available for categorical predictors. The final model uses dummy coding to allow
an appraisal of multicollinearity which is not sufficient for a detailed understanding of the
various associations between predictors.

Since the list of predictors also features categorical ones such as situation or type of
NDRT, these associations should be assessed. A total of three combinations is possible:
continuous vs. continuous, continuous vs. categorical and categorical vs. categorical.
The following list addresses the method of checking for either a correlation or general
association between all possible combinations of predictors and is based on a procedure
from Brandl (2019).

• Continuous vs. continuous predictor
A Spearman’s correlation is calculated to determine if multicollinearity can be de-
tected. Results greater than 0.7 are discussed critically following a general rule of
thumb (Mason & Perreault, 1991).

• Categorical vs. categorical predictor
Two nominal predictors can be evaluated concerning their association using Cramer’s
V (Cramér, 1999) which is based on Pearson’s chi-squared statistic and allows an
assessment of association between two nominal predictors. The result from Cramer’s
V test can be understood as the effect size for a chi-square test of association and
is bias corrected to allow a comparison to the other association results (Mangiafico,
2016). The threshold is also set to 0.7 based on the correlations.

• Continuous vs. categorical predictor
The relationship between any categorical and continuous variable can be assessed
utilizing a one-way ANOVA. While the ANOVA only yields results on significant
differences between levels of the categorical variable in the continuous one, it
provides a fit for the individual group means. Comparing the fitted values with the
observed data (in this case the continuous predictor), eta can be derived, providing
a measure of association between the categorical and the continuous predictor
(Correlation between a nominal (IV) and a continuous (DV) variable, 2014). The
threshold is also set to 0.7 to allow a comparison based on an identical threshold
between all three associations.
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The full results can be found in Table B.1. A very high correlation was found between the
predictors age and years of possessing a driver’s license. This can be attributed to the fact
that almost all participants received their driver’s license at the age of 18, accounting for
the correlation. Based on the results, it can be assumed that age represents both years
living in addition to holding a driver’s license. Thus, only age was kept as predictor for the
modeling approach, while the other one was dropped.

In addition, type of NDRT showed a strong association with PEOR, both for 10 seconds
and the last minute prior to the RtI. Since the NDRTs were either visual, cognitive, motoric
or none at all, they are linked to the visual attention before the RtI. While the predictors
appear to capture similar information, PEOR only links to visual attention, while the type of
NDRT includes potential information if participants might have been looking but "failed to
see" due to a high involvement in the cognitive or motoric NDRT. The categorical predictor
NDRT also incorporates a limited combination with other predictors since Experiment 1
featured no NDRTs. Insufficient permutation of predictors can lead to strong associations
(Gold, 2016) accounting for the results.

Following newer insights into multicollinearity and potentially related problems (Vanhove,
2019), correlated or associated predictors do not necessarily have to be dropped or
substituted. Regarding statistical consequences, multicollinearity affects the estimates of
regression coefficients. Coefficients that are influenced tend to vary more from sample to
sample than estimates of regression coefficients that are not affected by multicollinearity
(Vanhove, 2019). Regardless, multicollinearity does not bias the coefficient estimates
since on average, the estimated coefficients equal the parameter’s true value (Vanhove,
2019). Taking these findings into account, individual contributions of associated predictors
might not yield significant results, but the prior identification helps in understanding and
discussing results and is regarded in the discussion of the modeling approach.

Regarding the underlying research question of the modeling approach which is not
aimed at providing model coefficients ready to be implemented but rather a comparison of
potential effects, both PEOR predictors as well as type of NDRT were assessed.

A high correlation was also revealed between the PEOR in the last minute and the last
10 seconds together with a high correlation between the PEOR in the last minute and the
change of the PEOR. The correlation between the absolute values of the PEOR can be
accounted for by participants most likely not changing their behavior frequently within the
last minute before the RtI. In case participants were engaged in the visual NDRT, this was
likely true for both 10 seconds and the last minute before the take-over. In addition with
all other conditions (no NDRT, cognitive, motoric) providing no visual stimuli except the
environment outside of the vehicle and thus a limited introduction of variance in the PEOR
values, the correlation is regarded to be non-critical concerning the modeling approach.
Following the same reasoning based on Vanhove (2019), the insight into which duration of
PEOR could be sufficient for effects in take-over performance, all three predictors were
regarded for the modeling approach.

Procedure

This chapter provides an overview on how the modeling approach in R is conducted.
Concerning the random-effects-structure of the model, the "maximal" model should be

considered starting any hierarchical approach (Barr et al., 2013). The mixed-function
of afex is built upon the lmer -function building a linear mixed effect model incorporating
the fixed and random effects specified. In addition, it allows the comparisons of the
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contribution of both fixed and random factors by comparing the underlying models with
and without all fixed and random factors. If the lmer -function of lme4 was used to directly
fit a model, Singmann and Kellen (2017) point out that this approach

"[...] is associated with the problems already noted above. First, lmer does not
provide p-values so that one needs to perform an additional inferential step.
Second, the default contrast codes in R are such that model with categorical
covariates (i.e., factors) produce parameter estimates that do not accurately
represent lower-order effects (e.g., main effects) if higher-order effects (i.e.,
interactions) are present. This latter fact is the reason that some people
recommend to transform factors into numerical covariates by hand. R contains
coding schemes that are orthogonal and do not have this problem. The easiest
way to change the coding globally is via the afex function set-sum-contrasts."

In addition, orthogonal sum-to-zero contrasts are often a more reasonable default than
treatment contrasts for experimental designs (Singmann & Kellen, 2017). The afex-
package provides the possibility to assess p-values by using orthogonal sum-to-zero
contrasts in the default setting and calculates them for the terms/factors in the mixed
model using the following methods (if not specified, the "Kenward-Roger-method" is used
as default): Kenward-Roger, Satterthwaite, Likelihood Ratio Test (LRT) or parametric
bootstrap (Singmann & Kellen, 2017). In this work, the models are always fitted using a
restricted maximum likelihood estimation (REML), since the Kenward-Roger approximation
requires the model to be fitted with REML (Singmann & Kellen, 2017). For more information
on a detailed description of the process refer to page 29 of Singmann and Kellen (2017).
Thus, a "maximal" model in this work would incorporate all fixed and random effects
specified in Table 7.2. The mixed-function of afex would then

"fit[s] an encompassing model with all parameters and one reduced model cor-
responding to each of the model terms in which the parameters corresponding
to the term are withhold from the full model (all fits are performed with lmer()).
[...] After estimating all necessary models the p-values are calculated with the
corresponding method" (Singmann & Kellen, 2017).

However, this approach yielded various errors and convergence problems of the under-
lying algorithm when the fist maximal model for TOT was defined in this work. While
Singmann and Kellen (2017) provide possible explanations and solutions to this problem,
the approach in this work deviated due to the random-effects-structure: Table 7.2 provides
a list of all 18 fixed effects for which - technically - the maximal model would account for
the accompanying random effects, including random intercepts, random slopes and their
corresponding correlation for each of the 18 fixed factors. Including more than one fixed
effect into the maximal model and specifying the accompanying random effects would
therefore be impossible to analyze if convergence problems were detected. Consequently,
the approach in this work consisted of a "bottom-up"-approach, where the maximal model
was built only including one fixed effect including the maximal random effects structure for
this fixed effect (intercepts, slopes and their correlation).

In case convergence problems were encountered, the random-effects-structure is re-
duced by first ignoring a potential correlation between random intercepts and random
slopes. If convergence problems persisted, random slopes were ignored. In case con-
vergence problems were still reported, the underlying data structure does not benefit
from specifying random effects and the random effect for this fixed factor was ignored
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completely. By defining only one fixed effect and the accompanying random structure for
this fixed effect, the mixed-function naturally provided the p-value for this fixed effect in
comparison to the model including only the grand intercept. In case the p-value did not
reveal significant results for the said fixed effect, it was not included for further modeling
building. In addition, the Akaike information criteria (AIC) was always assessed to compare
the specific models since R2 always rises by including more (fixed) predictors while the
AIC penalizes additional predictors. In case the AIC would decrease, the model fit was
assessed to be better (Akaike, 1974). The Pseudo-R2 calculated for individual models
represents the amount of variance explained by the model fit and would be 1 for a perfect
fit. In addition, the root mean square error (RMSE) is reported to allow an understanding
of the fit in units of the outcome.

The following example for TOT illustrates the approach from this work and is taken from
the analysis found later. To illustrate the specific process in R, the R-specific formula
annotation will be used.

1. TOT is modeled starting with the first fixed effect "sex" and the accompanying
full random effect structure including random intercepts, random slopes and their
correlation for all take-overs from one participant, identified by his/her number "nr":

tot ~ sex + (sex|nr)

Note: (sex|nr) expands to (1 + sex|nr).

2. Convergence problems were reported, indicating that the random-effects structure
is too complex for the actual underlying data.

3. First step of reducing the random-effect structure: ignoring the correlation between
random intercepts and random slopes:

tot ~ sex + (sex||nr)

Note: (sex||nr) expands to ((0 + sex|nr) + (1|nr)) and represents random
intercepts and random slopes for participants (nr), but not the correlation between
them.

4. Results still yielded convergence problems, and the random-effects structure was
reduced to only random intercepts:

tot ~ sex + (1|nr)

5. Results showed no issues concerning convergence and the model was identified to
represent the maximal random structure concerning the fixed effect "sex".

6. Comparing the fixed effects, in this case the influence of "sex" on TOT in comparison
to modeling TOT by just the grand intercept (of all participants), the p-value of
.82 (mixed-model-ANOVA-table: F(1, 80.65) = .05, type-3-tests, Kenward-Roger-
method) suggests, that "sex" explains a non-significant amount of variance in TOT.

7. Any additional models for TOT will not incorporate the fixed factor "sex".

8. This process was carried out for all remaining fixed effects and their accompanying
random effects structure. In case a fixed effect showed significant results, it was
incorporated in the following models.
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Figure 7.5: Histogram and density plot of the take-over time distribution. The linear mixed
modeling approach incorporating random effects was based on visual examination of this
plot.

7.2 Results

7.2.1 Modeling of take-over time

TOT was modeled as described in the process aforementioned. The distribution of the
data set was plotted in Figure 7.5.

Table 7.3: Hierarchical approach for TOT. In case only random intercepts were supported,
random slopes and the correlation between random slopes and random intercepts showed
convergence problems. If only random intercepts and random slopes were supported,
their correlation showed convergence issues.

Fixed effect Maximal random-effect
structure supported by the
data (no convergence
problems)

Contribution of fixed effect
(compared to model without
it, Kenward-Roger-method)

Traits

Sex Random intercepts: (1|nr) F (1, 80.65) = .05, p = .82
Age (linear) Random intercepts: (1|nr) F (1, 80.11) = 8.34, p = .005
For the following models, "age" (linear) is always considered as fixed effect, but
is not reported again for the individual model comparisons which include models
with/without "age" also.

Mileage per year Random intercepts: (1|nr) F (1, 78.14) = .08, p = .97
Subjective driving style Random intercepts: (1|nr) F (1, 78.76) = .19, p = .66

Situational factors

Traffic density Random intercepts: (1|nr) F (1, 97.29) = 1.88, p = .17
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Situation Random intercepts: (1|nr) F (2, 240.50) = 25.49,
p < .001

For the following models, situation is always considered as fixed effect, but is not
reported again for the individual model comparisons which include models
with/without situation also.

State changes

Type of NDRT Random intercepts: (1|nr) F (3, 267.71) = 1.23, p = .30
HGD (last minute prior
to RtI), (n = 287)

Random intercepts and
slopes:
(hgd(lastmin)||nr)

F (1, 186.69) = .04, p = .83

Change of the HGD, (n
= 274)

Random intercepts, slopes
and their correlation:
(hgd(lastmin2 perc)|nr)

F (1, 43.26) = .04, p = .84

PEOR (last minute), (n =
282)

Random intercepts: (1|nr) F (1, 270.94) = 2.88, p = .09

Change of the PEOR, (n
= 269)

Random intercepts: (1|nr) F (1, 253.09) = .26, p = .61

PEOR (10 seconds) Random intercepts: (1|nr) F (1, 290.45) = 4.58, p = .03
For the following models, PEOR(10s before RtI) is always considered as fixed
effect, but is not reported again for the individual model comparisons which
include models with/without PEOR(10s before RtI) also.

Blink duration, (n = 263) Random intercepts: (1|nr) F (1, 256.93) = .19, p = .66
Change of the blink
duration, (n = 250)

Random intercepts: (1|nr) F (1, 226.86) = .18, p = .67

Blink frequency, (n =
263)

Random intercepts, random
slopes and their correlation:
(blink

frequency(lastmin)|nr)

F (1, 32.83) = 1.38, p = .25

Change of the blink
frequency, (n = 251)

Random intercepts: (1|nr) F (1, 244.43) = .01, p = .94

Change of the COP in
the seat

Random intercepts and
random slopes:
(copseat(changes)||nr)

F (1, 46.12) = 1.41, p = .24

Change of the COP in
the backrest

Random intercepts and
random slopes:
(copback(changes)||nr)

F (1, 36.88) = .02, p = .90

The following paragraph focuses on the significant results from the modeling approach
for TOT.

Age shows significant results, modeled with a linear term. The underlying data for Age
only supports random intercepts without showing convergence problems when fitting the
model. The predictor Situation shows a highly significant contribution to the model, in line
with individual results from Experiments 1 and 2. The data structure supports random
intercepts for the factor Situation. While the predictor PEOR during the last minute before
a RtI shows a tendency for significant findings, the PEOR in the last 10 seconds reveals
a significant effect. In addition, the individual data from participants supports random
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Figure 7.6: Plot of the residuals over the fitted values of the final model for the TOT. The
distribution is not suggesting heteroscedasticity with few potential outliers. The assumption
of homoscedasticity is not violated following this plot.

intercepts, translating to participants "starting" at different individual levels of "take-over
quickness" depending on their visual attention right before a RtI.

Based on the hierarchical approach depicted in Table 7.3, which shows the process
from top to bottom, the final model for TOT was derived. Concerning the assumptions,
the residuals plotted over the fitted values in Figure 7.6 do not show clear signs of
heteroscedasticity. Concerning the adjusted Cooks’ distances plotted in Figure B.1, four
participants (id nr. 19, 25, 30 and 40) are identified as influential. Visual analysis of the
DFBeta-values and the changes in percent with/without specific participants is conducted
using the plots in Figures B.2 and B.3. The DFBeta-cutoff value is set to 2/

√
n with n

equals the number of higher level units following Nieuwenhuis et al. (2012) and David,
Kuh, and Welsch (1980). For the TOT model, the DFBeta-value results in 2/

√
84 = .22.

Analyzing the plots in Figure B.2, the four influential participants nr. 19, 25, 30 and 40
show DFBeta-values above the threshold. To identify the final model fit, an identical model
excluding participant nr. 19, 25, 30 and 40 is fitted to allow a comparison. The final model
description can be found in Table 7.4. In addition to the model description, the correlation
matrix of the fixed effect is also reported in Table 7.5. Results show, that there is no issue
with multicollinearity between the fixed effects as discussed in the list of assumptions.
Age shows a strong correlation with the intercept. Plotting the final results of a mixed
model approach cannot be done as straight forward as plots from linear regression since
the random effects can introduce random intercepts and slopes. The individual fixed
effects were plotted over the actual observations, including the 95th-confidence interval
and the distribution visualized as rug-plot on the axis of the plots in case of continuous
predictors. For the fitted model of TOT, plots result in showing the individual contribution
of age, the situations and PEOR(10s) in Figures 7.7, 7.8 and 7.9. The plots are based
on the fitted model including all participants. The reduced model was fitted to allow a
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Table 7.4: Model description of final model for TOT. The values for the fitted model
without the influential points are reported in brackets. The model was fitted on 296 (283)
observations.

Model fit
AIC Pseudo-R2 (fixed effects) Pseudo-R2 (total) RMSE

775.48
(677.94)

R2 = .17, (.19) (fixed
effects)

R2 = .32, (.41) (total) .73 (.62)

Fixed effects
Factor Estimate Std. error t-value df p-value

Intercept 3.18, (3.18) .18, (.18) 17.31,
(17.56)

121.02,
(111.59)

<.001,
(<.001)

Age -.01, (-.01) .00, (.00) -2.91,
(-3.23)

77.31,
(73.64)

<.001,
(<.001)

Crash site -.59, (-.58) .10, (.09) -5.98,
(-6.78)

208.35,
(199.10)

<.001,
(<.001)

Interstate
crossing

-.78, (-.65) .16, (.14) -4.89,
(-4.51)

255.83,
(238.95)

<.001,
(<.001)

PEOR (10s) -.003, (-.30) .14, (.13) -2.16,
(-2.34)

290.42,
(276.46)

.03, (.02)

Random effects
Group Parameter # Groups Std.

Deviation
ICC

Participant nr. Intercept 84 (80) .37, (.41) .18, (.26)
Residual – – .79, (.68) –

Table 7.5: Correlation matrix of fixed effects. Note, that for linear mixed effect models,
this matrix is "an approximate correlation of the estimator of the fixed effects" Baayen
(2009). The significant fixed predictors in combination with results from the initial check
on multicollinearity are deemed non-correlated whereas age shows a correlation with the
intercept.

Intercept Age Sit. crash site Sit. int.
crossing

Age -.80
Sit. crash site -.22 -.01
Sit. int. crossing -.06 -.05 .32
PEOR(10s) -.46 .06 -.09 -.19
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Figure 7.7: Plot of the fitted model for the fixed effect age only. The original data are also
plotted.

better discussion of results. The final model plot in Figure 7.10 shows the fitted models for
individual participants and represents a visualization of the random intercepts.

The hierarchical modeling approach revealed that for TOT and this data set, the global
intercept is a good predictor. The fixed factor Age revealed a significant but small influence
on TOT in negative direction. Older participants show reduced TOTs, but to a minor
degree. The categorical factor Situation shows highly significant results. In Table 7.4, the
construction site served as basis since it is alphabetically the first level. Compared to
the construction site, both the crash site and the interstate crossing lead to significantly
lower TOTs. In addition, the PEOR in the last 10 seconds before the RtI shows significant
results. Participants with a higher amount of PEOR show faster TOTs. Comparing the
extreme values of 0 PEOR or no visual attention on the road to 100 PEOR, participants
would speed up .3 seconds. Concerning the random intercepts supported by the data
and identified by the model, comparison of the standard deviations in Table 7.4 show
that the amount of unexplained variance in the data ("residual") is still twice as high as
the amount of variance explained by the random intercepts. In addition to the intraclass
correlation coefficient3 (ICC) and the comparison of calculated pseudo-R2 between fixed
effects only and total (Table 7.4), the introduction of random effects significantly improves
the prediction quality. Regardless, the final fitted linear mixed model remains unable to
predict TOT sufficiently by only accounting for a third of variance explained by the model
(R2(total) = .32). Results in brackets represent the model without the outliers and show an
improvement, especially for the random effects. Checking the individual contribution of the
outliers Nr. 19, 25, 30 and 40 both in Figure 7.10 and the raw data, Nr. 25, 30, 40 show
one take-over with a TOT of approximately six seconds each, most likely accounting for
the critical Cook’s distance. Participant 19 revealed the lowest TOT with no visual attention
in the interstate crossing, leading to the identification as outlier. Overall, outliers should

3Measure to show how much of the overall variance in the outcome (TOT) is accounted for by introduction
of the random effects. If the ICC is close to zero, a simpler model without random effects should be fitted.
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Figure 7.8: Plot of the fitted model for the fixed effect situation only. The original data are
also plotted.
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Figure 7.9: Plot of the fitted model for the fixed effect PEOR(10s) only. The original data
are also plotted. Data are slightly jittered to allow better plotting, interval is 0 – 100.
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Figure 7.10: Plot of the fitted mixed models for the individual participants.

not be excluded from the modeling approach by default but analyzed in more detail to gain
better insight into why these values were observed. In this case, no additional reasoning
seems feasible to account for the extreme values of TOT.

A thorough discussion of the results and the limitations can be found in Section 7.3.

7.2.2 Modeling of crashes

Overall, nine crashes were recorded in the data set. Since the outcome crash can either
occur or not occur, a linear mixed model approach including a continuous outcome must
not be utilized. Following the example from Gold (2016), crash was modeled incorporating
its binomial distribution. Typically, the approach would consist of a logistic regression which
is a member of the class of generalized linear models (GLMs), but cannot incorporate
mixed effects. As detailed in the introduction to this chapter, multiple take-overs from
one participant violate the assumption of independence in addition with the research
questions addressing the contribution of individual participants. Therefore, crash was
modeled using generalized linear mixed models (GLMMs) that are able to incorporate the
binomial distribution and a random effects structure. These models are also incorporated
in the afex-package, are built using the lme4-package and the procedure is identical to
linear mixed models. In order to determine the maximal random structure supported by the
underlying data and to avoid a complicated search in case convergence issues became
obvious in a model comparison with all fixed effects, the final GLMMs were built in the
same hierarchical process as described for TOT. Fixed effects were added step by step to
determine the maximal random structure supported by the data. Afterwards, the model
was fitted for the fixed effects under consideration. The fixed effect was kept in case it
shows significant results following the χ2-test conducted for model comparisons. Results
are depicted in Table 7.6. The model comparisons were conducted using a likelihood
ratio test (LRT) because GLMMs can not be compared using the Kenward-Roger- or other
methods (Singmann & Kellen, 2017).
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Table 7.6: Hierarchical approach for crash. In case only random intercepts are supported,
random slopes and the correlation between them showed convergence problems. If only
random intercepts and random slopes are supported, their correlation showed conver-
gence issues. Observations n = 299, unless specified otherwise due to missing data from
the eye-tracker.

Fixed effect Maximal random-effect
structure supported by the
data (no convergence
problems)

Contribution of fixed effect
(compared to model without
it, likelihood ratio test)

Traits

Sex Random intercepts: (1|nr) χ2(1) = .13, p = .72
Age (linear) Random intercepts: (1|nr) χ2(1) = .00, p = .98
Mileage per year Random intercepts: (1|nr) χ2(1) = .07, p = .99
Subjective driving style Random intercepts and

slopes: (subj. driving

style||nr)

χ2(1) = .10, p = .75

Situational factors

Traffic density Random intercepts: (1|nr) χ2(1) = .18, p = .67
Situation Random intercepts: (1|nr) χ2(1) = 5.01, p = .08
Situation shows only a tendency for significant effects, but is analyzed
regardless. For the following models, Situation is considered as fixed effect, but
is not reported again for the individual model comparisons which include models
with/without "Situation" also.

State changes

Type of NDRT The GLMM shows convergence issues for all random
effect structures and Type of NDRT is dropped from
further analysis.

HGD (last minute prior
to RtI), (n = 290)

Random intercepts: (1|nr) χ2(1) = .51, p = .48

Change of the HGD,
(n = 276)

Random intercepts: (1|nr) χ2(1) = .19, p = .66

PEOR (last minute),
(n = 285)

The GLMM shows convergence issues for all random
effect structures and PEOR(last minute) is dropped
from further analysis.

Change of the PEOR,
(n = 271)

Random intercepts: (1|nr) χ2(1) = .00, p = .97

PEOR (10 seconds) Random intercepts: (1|nr) χ2(1) = .05, p = .83
Blink duration,
(n = 266)

Random intercepts: (1|nr) χ2(1) = .07, p = .80

Change of the blink
duration, (n = 252)

Random intercepts: (1|nr) χ2(1) = .35, p = .56

Blink frequency,
(n = 266)

Random intercepts: (1|nr) χ2(1) = .72, p = .40

Change of the blink
frequency, (n = 253)

Random intercepts: (1|nr) χ2(1) = .11, p = .74
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Change of the COP in
the seat

Random intercepts: (1|nr) χ2(1) = .21, p = .65

Change of the COP in
the backrest

Random intercepts: (1|nr) χ2(1) = 1.13, p = .29

No fixed factor shows significant results in the model comparisons as depicted in Table
7.6. A tendency is observed for the factor Situation. The results represent the crashes
happened due to either random reasons or reasons not accounted for by the set of factors
specified in this approach. While this conclusion seems unsatisfactory for any modeling
approach, it can be explained by inspecting the total number of crashes with respect to the
observations. Only nine crashes were identified in total, compared to 290 no-crash events.
The number of no crashes is disproportionately outweighing the number of crashes by
a ratio of approximately 32 to one. In light of this ratio, understanding the occurrence of
crashes for the design of experiments in this work, any kind of GLM or GLMM is unlikely
to identify the underlying reasoning for crashes.

The factor situation shows a tendency likely due to 5 out of 9 crashes happening in the
crash site. Contrary, two participants accounted for a total of 6 crashes rendering any
additional analysis void.

7.2.3 Modeling of time to collision

The TTC was modeled following the same way as TOT. The distribution of the data set was
plotted in Figure 7.11. During the hierarchical process, two fixed effects (Traffic density
and Type of NDRT) showed highly significant results when comparing the linear mixed
models, but introduction led to convergence issues when fitting the model for both factors
independent of the random structure. This is addressed after the final linear mixed model
is introduced by an alternative linear modeling approach not incorporating random effects.
Thus, the final mixed model does not include the fixed factors Traffic density and Type of
NDRT.

Table 7.7: Hierarchical approach for TTC. In case only random intercepts are supported,
random slopes and the correlation between them showed convergence problems. If only
random intercepts and random slopes are supported, their correlation showed conver-
gence issues. Observations n = 299, unless specified otherwise due to missing data from
the eye-tracker.

Fixed effect Maximal random-effect
structure supported by the
data (no convergence
problems)

Contribution of fixed effect
(compared to model without
it, Kenward-Roger-method)

Traits

Sex Random intercepts: (1|nr) F (1, 80.14) = 1.75, p = .19
Age (quadratic) - F (2, 77.97) = 3.81, p = .03
For the following models, Age is always considered as fixed effect, but is not
reported again for the individual model comparisons which include models
with/without "Age(quadratic)" also.

Mileage per year Random intercepts: (1|nr) F (3, 75.47) = 1.35, p = .27
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Subjective driving style Random intercepts, random
slopes and their interaction:
(subj. driving

style|nr)

F (1, 41.15) = 2.54, p = .12

Situational factors
Traffic density No random effects structure

supported.
F (1, 110.83) = 51.61,
p < .001

Fitting the model including Traffic density always yielded convergence issues
and produced a singular fit when the fixed effect Traffic including random
intercepts was introduced. The fixed effect yielded highly significant results and
is considered in an alternative, linear model approach for future discussion. To
avoid mixing/missing convergence issues for the random effects structure of
other fixed effects, traffic is set back.

Situation Random intercepts, random
slopes and their interaction:
(situation|nr)

F (2, 56.28) = 42.87,
p < .001

For the following models, Situation is always considered as fixed effect, but is not
reported again for the individual model comparisons which include models
with/without "Situation" also.

State changes

Type of NDRT No random effects structure
supported.

F (3, 243.44) = 9.50,
p < .001

Fitting the model including the factor Type of NDRT always yielded convergence
issues and produced a singular fit when the fixed effect including random
intercepts was introduced. The fixed effect yielded highly significant results and
is considered in an alternative, linear model approach for future discussion. To
avoid mixing/missing convergence issues for the random effects structure of
other fixed effects, Type of NDRT is set back.

HGD (last minute prior
to RtI), (n = 290)

Random intercepts: (1|nr) F (1, 228.08) = .12, p = .73

Change of the HGD,
(n = 276)

Random intercepts: (1|nr) F (1, 249.39) = .62, p = .43

PEOR (last minute),
(n = 285)

Random intercepts: (1|nr) F (1, 236.90) = 9.51,
p = .002

For the following models, PEOR (last min.) is always considered as fixed effect,
but will not be reported again for the individual model comparisons which include
models with/without "PEOR(lastmin)" also.

Change of the PEOR,
(n = 271)

Random intercepts: (1|nr) F (1, 254.21) = .68, p = .41

PEOR(10s)
(n = 271)

Random intercepts: (1|nr) F (1, 251.52) = .35, p = .56

Due to the high correlation between PEOR(lastmin) and PEOR(10s) (see Table
B.1), an additional model was fitted only including PEOR(10s) and temporarily
dropping PEOR(lastmin). The model also shows significant results for
PEOR(10s).
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PEOR(10s w.o.
PEOR(lastmin))
(n = 271)

Random intercepts: (1|nr) F (1, 245.35) = 6.12, p = .01

Blink duration, (n = 266) Random intercepts: (1|nr) F (1, 249.08) = 1.73, p = .19
Change of the blink
duration,
(n = 252)

Random intercepts: (1|nr) F (1, 229.35) = .08, p = .78

Blink frequency,
(n = 266)

Random intercepts (1|nr) F (1, 157.13) = 2.30, p = .13

Change of the blink
frequency, (n = 252)

Random intercepts: (1|nr) F (1, 229.71) = 1.04, p = .31

Change of the COP in
the seat, (n = 285)

Random intercepts and
random slopes:
(copseat(changes)||nr)

F (1, 39.48) = .008, p = .98

Change of the COP in
the backrest, (n = 285)

Random intercepts: (1|nr) F (1, 269.68) = .23, p = .64

Table 7.7 provides the hierarchical process from top to bottom. Age modeled as
quadratic term shows significant results with younger and older participants producing
lower TTCs compared to - few - middle-aged participants. Only random intercepts are
supported by the underlying data.

Traffic density and the factor Situation show highly significant results. The factor Situation
was kept for the ongoing modeling approach while Traffic density was dropped temporarily.
The Type of NDRT shows highly significant results as well but also introduced convergence
issues to the model fitting and was dropped for the final mixed model.

The PEOR during the last minute of automated driving prior to a RtI shows significant
results including random intercepts. A reduced model without the PEOR(lastmin) but con-
sidering the PEOR(10s) revealed significant results, underlining the correlation between
PEOR(lastmin) and PEOR(10s). Combined results put emphasis on the significant effect
of visual attention and the resulting criticality of a take-over displayed by the TTC. More
PEOR lead to higher TTCs representing less critical take-overs.

No other factors could be identified to significantly account for variance in the outcome
TTC and the final mixed model was fitted including Age, Situation and PEOR(lastmin)
incorporating random intercepts as the maximal random effect structure supported by the
underlying data.

Concerning the assumptions addressed at the beginning of this chapter, the residuals
of the final model were plotted over the estimated values in Figure 7.12. Visual inspection
does not reveal an obvious indication of heteroscedasticity, even though a slight trend
towards larger spread residuals for higher values of estimated TTC is observed. Influential
points are identified by examining the Cook’s distance for the nested groups/participants.
Results are plotted in Figure B.4. Participants with IDs 10, 21 and 24 are influential
points. Regarding the DFBetas for all factors individually in Figure B.5 and the percentage
in change in Figure B.6 with/without the influential participants, all three exert a large
influence on the model fit. To better understand the magnitude of these influential points,
an additional linear mixed model was fitted without these points and compared to the
original model. The final model equations can be found in Table 7.8. The original data
together with the fitted model separated for each fixed effect are plotted in Figures 7.13,
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Figure 7.11: Histogram and density plot of the time to collision distribution. The linear
mixed modeling approach incorporating random effects is based on visual examination of
this plot.
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Figure 7.12: Plot of the residuals over the fitted values of the final model for the TTC. The
distribution is not suggesting heteroscedasticity and the assumption of homoscedasticity
is not violated.
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Table 7.8: Model description of final model for TTC. The values for the fitted model without
participants 10, 21 and 24 are reported in brackets. The model was fitted on 278 (269)
observations.

Model fit
AIC Pseudo-R2 (fixed effects) Pseudo-R2 (total) RMSE

830.56
(770.56)

R2=.25, (.25) (fixed
effects)

R2=.29, (.26) (total) .97 (.93)

Fixed effects
Factor Estimate Std. error t-value df p-value

Intercept 1.96, (1.88) .14, (.14) 13.51,
(13.89)

204.70,
(194.73)

<.001,
(<.001)

Age .32, (.29) 1.11, (1.00) .29, (.29) 67.67,
(65.44)

.77, (.77)

Age
(quadratic)

-2.39,
(-1.37)

1.12, (1.01) -2.14,
(-1.36)

71.91,
(68.98)

.04, (.18)

Crash site -.74, (-.70) .09, (.09) -8.35,
(-8.14)

219.94,
(217.94)

<.001,
(<.001)

Interstate
crossing

.20, (.22) .09, (.09) 2.18, (2.46) 228.40,
(226.44)

.03, (.01)

PEOR
(lastmin)

.01, (.01) .00, (.00) 3.11, (3.31) 230.49,
(210.12)

.002,
(<.001)

Random effects
Group Parameter # Groups Std.

Deviation
ICC

Participant nr. Intercept 84 (81) .24, (.14) .05, (.02)
Residual – – 1.00, (.95) –

Table 7.9: Correlation matrix of fixed effects for TTC. Note, that for linear mixed effect
models, this matrix is "an approximate correlation of the estimator of the fixed effects"
Baayen (2009).

Intercept Age Age
(quadr.)

Sit. crash Sit.
crossing

Age -.05
Age (quadr.) -.02 .00
Sit. crash site -.23 .04 -.09
Sit. int. crossing -.26 .03 -.10 -.03
PEOR -.85 .04 .07 .04 .11
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Figure 7.13: Plot of the fitted model for the fixed effect Age modeled as quadratic term.
The original data are also plotted. All participants were included.

7.14 and 7.15. The final model is plotted in Figure 7.16 and shows the effect of Traffic,
since only participants Nr. 1-34 could experience no traffic density, likely leading to higher
TTCs.

Regarding the results for the random effects in Table 7.8, where the mixed model shows
an ICC of .05 and the reduced model shows an ICC of .02, fitting a linear regression model
without a random effects structure seems more feasible. The random intercepts account
for some of the variance stemming from outliers or barely account for any variance at all.
The approach of fitting a linear mixed model can be regarded to be too complex for the
underlying data in this approach.

To allow a more comprehensive understanding of all relevant effects, Table 7.10 shows
the results of an alternative linear model using ordinary least squared (OLS) regression
including predictors Traffic density and Type of NDRT without random effects. The adjusted
R2 is higher compared to the best linear mixed model fit and underlines the conclusion that
the introduction of random effects for TTC is cumbersome for this data set. Concluding,
the individual results from the linear regression show that situational factors play the most
important role in predicting TTC as measure of criticality in a take-over. Both Situation
and Traffic density show highly significant contributions to the model. A tendency for
significant results can be observed regarding the Type of NDRT, with no engagement in
NDRTs leading to higher TTCs. The PEOR(lastmin) significantly influences the TTC, with
a higher amount of visual attention towards the road leading to less critical take-overs.
No additional analysis or plotting was executed for the linear regression model since this
modeling approach focuses on mixed models.
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Figure 7.14: Plot of the fitted model for the fixed effect Situation only. The original data are
also plotted. All participants were included.
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Figure 7.15: Plot of the fitted model for the fixed effect PEOR(lastmin) only. The original
data are also plotted. All participants were included.
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Figure 7.16: Plot of the fitted mixed models for the individual participants showing the
random effects structure. The effect of Traffic (not considered in the model due to con-
vergence issues) is apparent, since only participants Nr. 1-34 could experience no traffic
density, likely leading to higher TTCs.

Table 7.10: Model description of the linear model for TTC without random effects. The
model was fitted on 278 observations using OLS regression.

Model fit
R2 = .36 RMSE = .94

Fixed effects
Factor Estimate Std. error t-value p-value

Intercept 2.44 .26 9.22 <.001
Age (quadratic) -.82 1.04 -.79 .43
Crash site -.62 .09 -6.95 <.001
Interstate crossing .35 .09 3.86 <.001
PEOR(lastmin) .01 .00 2.15 .03
Traffic density -.04 .01 -4.61 <.001
N-back -.18 .15 -1.19 .23
No task .22 .12 1.82 .07
Motoric -.21 .12 -1.71 .09
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7.2.4 Modeling of longitudinal acceleration

For the modeling of the minimal longitudinal acceleration, the same procedure as described
for TOT and TTC was initially applied. The hierarchical process fitting linear mixed models
and comparing them using the mixed-function from the afex-package (Singmann et al.,
2019) led to convergence issues throughout for the first couple of fixed effects. Reducing
the order of the random effects structure to only considering random intercepts did
not solve the convergence issues. The distribution of the data was plotted in Figure
7.17 and revealed a highly non-normal distribution of data. A log-transformation for the
outcome longitudinal acceleration also led to convergence problems throughout when
considering only random intercepts. Examining the interval between -10 m/s2 and -5 m/s2

the distribution of values shows a visually identifiable normal distribution, in combination
with an "almost-zero"-inflated peak of values between 0 m/s2 and -1 m/s2. Following a
broader approach on data modeling and guidelines from Zuur and Ieno (2016), zero-
inflated distributions in general can be modeled using a variety of models, such as
generalized linear mixed models (GLMMs) incorporating e.g. a gamma distribution. The
afex-package incorporates the possibility of fitting GLMMs in the same way as described
for linear mixed models that were fitted for TOT and TTC, see modeling of crash probability.
An approach fitting GLMMs using a gamma distribution also failed due to convergence
issues when only random intercepts were considered. Regarding the plotted distribution
in Figure 7.17, this can be comprehended, since the distribution shows a drop in density
right after longitudinal acceleration close to zero, defying the general assumptions of a
gamma distribution. Based on the results and conclusion from Gold (2016), the distribution
can be accounted for by generally splitting participants’ reaction behavior into braking
or non-braking. The "almost-zero"-inflated distribution shows the drag moment from the
vehicle after the RtI when the automation was deactivated, amounting to values of up to
-.64 m/s2. Participants who did not brake but reacted by only steering led to the skewed
distribution concerning the minimal longitudinal acceleration. Participants who did brake
showed a rather normal distribution around approximately -7 m/s2. While the data set and
the attempted model fit allow a detection of medium but not small effects (see Figure 7.2),
splitting the data following Gold (2016) would decrease potential effect sizes.

Based on the distribution at hand and the model fitting attempts with the full data set
leading to only convergence issues, a data split was evaluated on a qualitative analysis of
data and the following assumptions:

1. Focus of the modeling approach is to compare the influence of different fixed effects
including the idiosyncratic random effects from non-independent data.

2. Data of minimal longitudinal acceleration were split into braking or non-braking
participants by distinguishing values above/below .64 m/s2.

3. While a prior decision in "braking or no braking" can be modeled following the
example of Gold (2016), the split data set in this work would be fitted for braking
participants regardless of the binomial model fit.

The reduced data set for the longitudinal acceleration after the split consisted of 219
observations. The number of participants was reduced to 81. Out of the original 84
participants, three participants did not brake in any of the take-over situations but always
reacted to the RtI by executing a steering maneuver. Consequently, the vast majority
of participants did not always use either one maneuver to solve the take-over situation
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Figure 7.17: Histogram and density plot of the min. long. acceleration distribution.

but typically combined a braking and a steering maneuver. In addition with the solution
from Gold (2016) where the final modeling approach consisted of a multinomial logistic
regression, a potential solution for this data set consists of a multinomial mixed logistic
regression (MMLR).

While there are no packages in R tying into the procedure of afex including model
comparisons for MMLR, the package ordinal (Christensen, 2019) allows the fitting of
individual MMLR models. The feasibility of adding random effects is assessed by checking
each model output, specifically the reported gradient and the Hessian index as indication
of successful fitting. Adaptive Laplace approximation is used to numerically provide
maximum likelihood estimates for individual model parameters, i.e. fixed and random
effects (Christensen, 2019). In addition, an optimization is executed by ordinal to obtain the
model fit including the random effects. If the optimization of estimated random effects from
the Laplace Approximation is successful, the gradient shows results close to zero while
the Hessian index should stay below a threshold of approximately 105. The results after
approximation also provide information on the variance-covariance matrix of parameters
and report warnings in case of ill-defined matrices. Concerning the specific procedure
and peculiarities of fitting MMLR models and including knowledge on the automated
model comparisons as described for TOT, TTC and crash, the following procedure is
implemented.

1. A basic MMLR model is determined, with no fixed effects (fitting a single global
intercept) and random intercepts (since the random effects are of interest, no
comparison with non-mixed multinomial logistic regression is calculated).

a_long(categorical) ~ 1 + (1|nr)

2. A new MMLR model is fitted, including a specific fixed effect, e.g. Age. In a first step,
the maximal random effects structure4 is considered.

4Note: For MMLR models, the ordinal-package can only comply with a maximal random effects structure
of random intercepts and random slopes. A potential correlation between them cannot be fitted and is not
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a_long(categorical) ~ age + (age||nr)

3. In case a warning concerning an ill-defined variance-covariance matrix is issued, or
the gradient does not show values close to zero, or the Hessian index is exceeding
105, the fitted model is determined to not be supported by the underlying data
concerning the random effects structure.

4. In that case, the random effects structure is reduced to random intercepts only and
the model is refitted.

a_long(categorical) ~ age + (1|nr)

5. If reported warnings or issues persist, the model for the specific fixed effect (in this
case Age) does not support any random effects and the fixed effect is dropped from
further analysis. In case too many fixed effects are dropped due to convergence
issues, including random effects to the modeling approach does not seem feasible.

6. However, in case the model shows a converging fit, it is compared to the basic MMLR
model (without any fixed effects, including random intercepts) using a likelihood ratio
test (LRT). In case the provided p-value is below .05, the fixed effect is determined
to significantly improve the model fit by accounting for variance in the outcome and
is kept for the next step. In case the LRT reveals non-significant results, the fixed
effect is dropped due to the new model not significantly accounting for variance in
the outcome.

7. The procedure is executed for all fixed effects analogue to the modeling approaches
of TOT, TTC and crash.

The following table depicts the results from the model comparisons with the respective
fixed effects compared to the basic MMLR model.

Table 7.11: Hierarchical approach for minimal longitudinal acceleration. In case only ran-
dom intercepts are supported, random slopes show convergence problems. Observations
n = 299, unless specified otherwise due to missing data from the eye-tracker.

Fixed effect Maximal random-effect
structure supported by the
data (no convergence
problems)

Contribution of fixed effect
(compared to model without
it, likelihood ratio test.)

Traits

Sex Random intercepts: (1|nr) χ2(1) = 1.24, p = .27
Age (qudaratic) Random intercepts: (1|nr) χ2(2) = 3.57, p = .17
Mileage per year Random intercepts: (1|nr) χ2(3) = 4.37, p = .22
Subjective driving style Random intercepts and

slopes: (subj. driving

style||nr)

χ2(3) = 2.97, p = .40

Situational factors

considered. Regarding the maximal random structure supported by the data following results from modeling
TOT and TTC, this is evaluated as not critical.
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Traffic density Random intercepts and
slopes: (traffic||nr)

χ2(1) = .57, p = .45

Situation Random intercepts and
slopes: (situation||nr)

χ2(7) = 72.36, p < .001

Situation shows highly significant effects. For the following models, Situation is
always considered as fixed effect, but is not reported again for the individual
model comparisons which include models with/without Situation also.

State changes

Type of NDRT Random intercepts and
slopes: (ndrt||nr)

χ2(13) = 6.34, p = .93

HGD (last minute prior
to RtI), (n = 290)

Random intercepts and
slopes:
(HGD(lastmin)||nr)

χ2(4) = 2.66, p = .62

Change of the HGD,
(n = 276)

Random intercepts: (1|nr) χ2(1) = .33, p = .56

PEOR (last minute),
(n = 285)

Random intercepts: (1|nr) χ2(1) = .00, p = .95

Change of the PEOR,
(n = 271)

Random intercepts: (1|nr) χ2(1) = .19, p = .66

PEOR (10 seconds) Random intercepts: (1|nr) χ2(1) = 2.00, p = .16
Blink duration,
(n = 266)

Random intercepts: (1|nr) χ2(1) = .28, p = .60

Change of the blink
duration, (n = 252)

Random intercepts: (1|nr) χ2(1) = .01, p = .94

Blink frequency,
(n = 266)

Random intercepts and
random slopes: (blink
frequency(lastmin)||nr)

χ2(4) = .02, p = .99

Change of the blink
frequency, (n = 253)

Random intercepts: (1|nr) χ2(1) = .08, p = .77

Change of the COP in
the seat

Random intercepts: (1|nr) χ2(1) = .09, p = .77

Change of the COP in
the backrest

Random intercepts: (1|nr) χ2(4) = .31, p = .99

The results in Table 7.11 show highly significant results for the situation, including
random intercepts and random slopes. For the crash site, participants braked stronger
in comparison to the construction site and the interstate crossing whilst showing strong
individual differences both concerning their idiosyncratic braking behavior (random inter-
cepts) and their change in behavior depending on the situation at hand (random slopes).
The estimated probabilities of the longitudinal accelerations are plotted in Figure 7.18
and underline the results. The final model is described in Table 7.12. Comparing both
the Pseudo-R2 for fixed effects only and the full model and the ICC, the random effects
explain half of the variance in the outcome. Participants tend to either brake or not brake,
depending on their individual disposition. This is moderated to a small degree by the
situation, while the high variance of random effects for the crash site can be understood as
to motivate some participants to brake, while others do not brake in the crash site. Overall,
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7.2 Results

Table 7.12: Model description of the final model for categorical longitudinal accelera-
tion. A multinomial logistic mixed model was fitted using Laplace approximation on 299
observations.

Model fit
AIC Pseudo-R2 (fixed effects) Pseudo-R2 (total)

559.75 R2 = .17 (fixed effects) R2 = .67 (total)

Fixed effects
Factor Estimate Std. error z-value p-value

Crash site -2.59 .61 -4.28 <.001
Interstate
crossing

-.02 .43 -.04 .97

Random effects
ICC = .60

Group Parameter # Groups Variance Std. Deviation

Participant nr. Intercept 84 1.13 1.06
Participant nr. Crash Site 84 6.43 2.54
Participant nr. Interstate

Crossing
84 .58 .76
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Figure 7.18: Plot of the fitted model split for the effect situation including 95% confidence
interval.
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the crash site promotes low longitudinal acceleration whereas participants tend to brake
stronger in the construction site and the interstate crossing. Regardless, the individual
tendency to brake in a take-over or not is highly dependent on the specific participant
at hand. The final model accounts for two thirds of the total variance in the outcome,
providing a much better prediction quality compared to TOT and TTC. No state changes
showed significant contributions to the final model, adding to the exceptional influence of
individual dispositions concerning braking behavior.

7.2.5 Modeling of lateral acceleration

The modeling of the lateral acceleration initially followed the depicted process for TOT
and TTC with regard to (Gold, 2016). The histogram and density plot depicted in Figure
7.19 showed a highly skewed "almost-zero"-inflated distribution. From visual examination,
the maximal lateral accelerations are not normally distributed. This can be attributed
to the take-over situations applied in the experiments. In Experiment 1, one out of
three situations consisted of the construction site. In Experiment 2, two out of four
take-overs were in the construction site. Thus, a substantial number of take-overs were
experienced in a situation that did not require a lane change after taking over. Lateral
accelerations of close to zero could represent the number of participants exerting only small
accelerations when stabilizing the vehicle. Following the hierarchical process, analogue
to the initial process concerning the longitudinal accelerations, the introduction of only
random intercepts showed consistent convergence issues fitting linear mixed models. To
avoid these convergence issues, the process was also adapted to incorporate the fitting of
GLMMs with a gamma distribution, showing more similarity to the distribution in Figure
7.19. The specification of random intercepts also led to convergence issues throughout.
A log-transformation of the outcome in addition with incorporating a gamma-distributed
GLMM modeling approach also showed convergence issues. The steps described were
chosen to both generate fitting models including a random effects structure and allow an
easy-to-interpret solution.
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Figure 7.19: Histogram and density plot of the max. lat. acceleration distribution.
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While the distribution of the longitudinal accelerations called for a MMLR approach more
clearly, the persisting convergence issues led to a split of lateral acceleration into three
groups, low, medium and strong accelerations. MMLR models were fitted for the lateral
accelerations utilizing the same approach as depicted for the longitudinal ones.

Table 7.13: Hierarchical approach for maximal lateral acceleration. In case only random
intercepts are supported, random slopes show convergence problems. Observations n =
299, unless specified otherwise due to missing data from the eye-tracker.

Fixed effect Maximal random-effect
structure supported by the
data (no convergence
problems)

Contribution of fixed effect
(compared to model without
it, likelihood ratio test)

Traits

Sex Random intercepts and
slopes: (sex||nr)

χ2(4) = 2.95, p = .57

Age (qudaratic) Random intercepts and
slopes: (age||nr)

χ2(8) = 6.62, p = .58

Mileage per year Random intercepts and
slopes:
(km(peryear)||nr)

χ2(13) = 3.18, p = .99

Subjective driving style Random intercepts and
slopes: (subj. driving

style||nr)

χ2(4) = .81, p = .94

Situational factors

Traffic density Random intercepts and
slopes: (traffic||nr)

χ2(4) = 15.06, p < .01

Traffic shows significant effects. For the following models, Traffic is always
considered as fixed effect, but is not reported again for the individual model
comparisons which include models with/without Traffic also.

Situation Random intercepts:
(1||nr)

χ2(2) = 165.15, p < .001

Situation shows highly significant effects. For the following models, Situation is
always considered as fixed effect, but is not reported again for the individual
model comparisons which include models with/without Situation also.

State changes

Type of NDRT Random intercepts: (1|nr) χ2(3) = 3.42, p = .33
HGD (last minute prior
to RtI), (n = 290)

Random intercepts: (1|nr) χ2(1) = .22, p = .64

Change of the HGD – –
Fitting the model including the change of the HGD always yielded convergence
issues and produced a singular fit when the fixed effect HGD(change) including
random intercepts was introduced. The fixed effect yielded no results for
estimated coefficients and was dropped.

PEOR (last minute),
(n = 285)

Random intercepts: (1|nr) χ2(1) = 2.21, p = .14
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Change of the PEOR – –
Fitting the model including the change of the PEOR always yielded convergence
issues and produced Hessian indices exceeding the threshold when the fixed
effect PEOR(change) including random intercepts was introduced. The fixed
effect yielded no results for estimated coefficients and was dropped.

PEOR (10 seconds) – –
Fitting the model including the PEOR in the last ten seconds before the RtI
always yielded convergence issues and produced Hessian indices exceeding the
threshold when the fixed effect PEOR(10s) including random intercepts was
introduced. The fixed effect yielded no results for estimated coefficients and was
dropped.

Blink duration,
(n = 266)

Random intercepts and
slopes:
(blinkdur(lastmin)||nr)

χ2(4) = 1.49, p = .83

Change of the blink
duration, (n = 252)

Random intercepts and
slopes:
(blinkdur(change)||nr)

χ2(4) = 1.06, p = .90

Blink frequency,
(n = 266)

Random intercepts and
random slopes: (blink
frequency(lastmin)||nr)

χ2(4) = 1.34, p = .85

Change of the blink
frequency, (n = 253)

Random intercepts: (1|nr) χ2(1) = .34, p = .56

Change of the COP in
the seat

– –

Fitting the model including the change of the COP in the seat always yielded
convergence issues and produced Hessian indices exceeding the threshold
when the fixed effect COP(seat) including random intercepts was introduced.
The fixed effect yielded no results for estimated coefficients and was dropped.

Change of the COP in
the backrest

Random intercepts: (1|nr) χ2(1) = 3.16, p = .08

Results can be found in Table 7.14 and show highly significant results for the predictors
situation and traffic density. Strong lateral accelerations are unlikely in all situations, while
the crash site promotes higher lateral accelerations compared to the construction site
and the interstate crossing. Traffic in comparison to no traffic motivates higher lateral
accelerations but to a much smaller extent compared to different situations. Contrary to
the longitudinal accelerations, the lateral accelerations showed a much smaller Pseudo-R2

for the random effects, underlined by a small ICC. Random intercepts and slopes were
supported, but lateral accelerations show little dependence on idiosyncratic effects of
different participants. During the modeling process, four fixed effects, after traffic and
situation was accounted for, including random effects, showed convergence problems
throughout and were dropped. Analogue to the modeling process of TTC, the results hint
to a modeling approach without random effects. Figure 7.20 shows the effect of the fixed
effects traffic and situation.
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Table 7.14: Model description of the final model for categorical lateral acceleration. A multi-
nomial mixed logistic model was fitted using Laplace approximation on 299 observations.

Model fit
AIC Pseudo-R2 (fixed effects) Pseudo-R2 (total)

288.03 R2 = .56 (fixed effects) R2 = .61 (total)

Fixed effects
Factor Estimate Std. error z-value p-value

Traffic .09 .03 3.21 .001
Crash site 4.23 .57 7.45 <.001
Interstate
crossing

1.25 .64 1.95 .05

Random effects
ICC = .09

Group Parameter # Groups Variance Std. Deviation

Participant nr. Intercept 84 .61 .78
Participant nr. Traffic 84 .01 .07
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7.3 Discussion

The results from the modeling approach provide valuable insight into the influence of
specific fixed and random effects on both time and quality aspects of take-over performance
combining the data from Experiments 1 and 2.

The introduction of random effects allows the quantification of idiosyncratic effects from
individual participants and shows large differences between metrics. The prediction of
categorical brake accelerations and the TOT benefited whereas the TTC and categorical
lateral accelerations hint towards modeling approaches without random effects.

Interpreting the random effects, the TOT seems to be influenced by the individual
quickness of taking over. Participants tend to take-over faster or slower while the individual
quickness is not influenced differently by fixed effects (no random slopes). The effect of
these random intercepts remains small compared to the remaining residuals and fixed
effects such as different situations, which show the most dominant effect on TOT. A
potential explanation could lie in regarding participants to either act more spontaneous
or not, or participants comprehending the situations faster than others. Regardless
of underlying reasons, the individual differences between participants are important to
consider in safety relevant questions, since the maximal human performance concerning
TOT is dependent on both fixed and random effects. While the final model for TOT falls
short of improving prediction quality compared to Gold (2016), it quantifies the importance
of including random effects for TOT.

The braking behavior is highly affected by the individual disposition of participants,
accounting for half of the total variance in the outcome. In addition, random slopes showed
a significant model contribution. This translates into a deeply routed tendency to brake
strong or brake little, moderated differently depending on the specific take-over situation
for individual participants. Braking decreases the dynamic of the vehicle and thus of
the take-over situation, an effect utilized in automated brake applications in take-overs
(Gold, Lorenz, & Bengler, 2014). Linking the results for TTC and brake acceleration, the
highly significant contribution of random effects does not seem to lead to less critical
TTCs. The TTC model does not benefit from the introduction of random effects. In
addition, participants that do not brake due to their internal tendency to do so, are not
necessarily compensating by stronger steering maneuvers. While low braking is highly
probable in the crash site and strong braking can bee seen in the construction site and the
interstate crossing due to individual dispositions, the effect of lateral accelerations from
steering is strongly linked to the situation and the traffic density but not to random effects.
The reasoning behind these differential findings is likely found in the take-over situation
design. The need for steering is clearly comprehensible based on surrounding traffic and
the situation, whereas braking was rather motivated by individual risk classification or
disposition.

Future modeling attempts should include a larger number of take-overs per participant
to better estimate the random effects structure. The significant contribution of random
effects in this chapter is based on either 3 or 4 take-overs per participants, presumably
revealing medium to strong effects. Random effects should ideally be estimated based
on at least 10-20 observations (Meteyard & Davies, 2019) to allow a better estimation,
potentially revealing additional medium or small individual differences. While both random
intercepts for TOT and random slopes for the brake accelerations were found to represent
the underlying random effects structure for this data set, this should not be considered to
actually represent the maximal supported random structure.
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The chosen hierarchical process, consisting of a step-wise forward process, is contrary
to most common practice advice from Singmann and Kellen (2017) or Meteyard and
Davies (2019). The process was chosen to pinpoint convergence issues stemming from
the introduction of more complex random structures such as random slopes associated
with specific fixed effects. The drawback of this approach is potentially missing fixed
effects added too early to the model comparisons. Future research on predicting take-
over performance should include the findings on the maximal supported random effects
structure from this work, but start with the maximal number of fixed effects rather than
considering a step-wise forward method.

The TTC as measure of criticality shows no improvement from introducing random
effects. Concluding the random effects, an assessment of take-over performance based
on TTC alone would seem to show dominant situational effects such as traffic density or
different situations, regardless of individual differences in take-over behavior concerning
reaction time and decision on maneuver type (lateral acceleration). While a comprehensive
understanding of take-over performance should include random effects, overall findings
concerning situational effects are in line with literature findings (Gold, 2016; Lu et al., 2017;
Zhang et al., 2019) indicating that the specific take-over situation is of highest interest to
determine human behavior in a take-over.

Concerning all other fixed effects, only age and PEOR show significant contributions
in the TOT and TTC models. The effect of age was expected (Gold, 2016), but remains
small in comparison to situational effects, also in line with findings from literature (Körber,
Gold, Lechner, & Bengler, 2016b). The group of participants consisted of mainly younger
drivers, reducing a meaningful interpretation of age. In addition, while older participants
show smaller TOTs, they seem to take longer to choose and execute a reaction following
smaller TTCs.

More importantly, out of all "driver state fixed effects", only a high PEOR decreases TOT
and increases TTC, leading to less critical reactions. The findings highlight the paradox
of humans acting as fall-back in CAD: visual attention towards the road is beneficial
concerning a take-over, while CAD incorporates the engagement in - often visual - NDRTs.
Cognitive NDRTs can have similar effects on take-over performance in critical situations
(Radlmayr et al., 2014), but visually demanding NDRTs negatively effect take-over perfor-
mance in well-known situations (Gold et al., 2015) . Since the PEOR shows a significant
influence in combination with the possibility of participants "looking but failed to see"
(Helton & Warm, 2008), a potential consideration of mixed effects for TTC based on a
larger number of take-overs per participants could reveal additional results: a tendency for
significant TTC model contributions linking the type of NDRT with the TTC as criticality
measure of take-overs could pave the way to a broader understanding.

Overall, the amount of variance accounted for by the final models in this work fell short
from improving prediction quality compared to Gold (2016). While the combination of
fewer data points and a large number of evaluated predictors can be attributed to this,
the final models from this approach are deemed not feasible for potential use in future
product applications. Prediction of crash probability, as most severe measure of take-over
quality, did not lead to a feasible model fit due to nine crashes being disproportionately
outweighed by 1:32 in relation to all recorded take-overs. These results affirm the impor-
tance of addressing specific research questions in the spectrum between maximal human
performance in highly critical situations and addressing human factors questions in more
frequent, less-critical take-overs.
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7.4 Summary and conclusion

This chapter offers a first look on quantifiable idiosyncratic effects from individual par-
ticipants in predicting take-overs but the evaluated random effects are not exhaustive
considering both outcomes and predictors in take-over research. Closing with a look on
the research question of the modeling approach in Figure 7.1, it can be concluded that
situational factors must be addressed in any approach to shape and improve human reac-
tions in a take-over. Individual differences of drivers should be accounted for concerning
the prediction of TOT and brake accelerations, whereas TTCs and lateral accelerations
seem unaffected of individual differences, at least for this data set.

The findings concerning visual attention being beneficial for both time and quality
aspects of the take-over performance in addition with the dominant effect of the take-
over situation motivates the focus of Experiments 3 and 4. Experiment 3 focuses on
the possibility of providing peripheral monitoring of the traffic scenery while participants
where engaged in a visual NDRT. Experiment 4 underlines the importance of fostering
the take-over by providing additional information on the specific take-over situation at
hand. While Experiment 3 in Chapter 8 focuses more on the safety relevant aspect of
visual attention during CAD, Experiment 4 in Chapter 9 addresses comfort-related aspects
during the take-over process.
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8 Peripheral monitoring of traffic in conditionally
automated driving

The experiment1 assessed the potential benefits of peripheral monitoring of traffic on take-
over performance by moving the location of a visual NDRT to the head-up display (HUD).
The experiment was pre-published to this thesis at the Human Factors and Ergonomics
Society (HFES) 62nd International Annual Meeting in Philadelphia (Radlmayr, Brüch, et
al., 2018). This chapter provides a comprehensive overview of the experiment including
main results and conclusions and is taken in part from the publication. For additional
details refer to Radlmayr, Brüch, et al. (2018). Based on the results from Experiments 1
and 2 and the modeling approach in Chapter 8, this experiment focuses on the general
conflict of aims in CAD. Drivers can engage in visually demanding NDRTs even though
driver performance (TOT and TTC) in take-overs benefits from visual attention still focused
on the surrounding traffic providing sufficient situation awareness (SA).

"We hypothesized that drivers engaging in visually demanding NDRTs have
the potential – to a certain extent – to still perceive information peripherally.
The previous studies on take-over situations offered visual NDRTs displayed
in the center console, making it highly unlikely to perceive surrounding traffic
peripherally or at all. By moving the NDRT to the head-up display, we could
simulate the engagement of drivers in a visual task in addition to allowing
peripheral monitoring of traffic" (Radlmayr, Brüch, et al., 2018).

Analysis of SA during automated driving and of the take-over performance should reveal
if take-overs benefit from peripheral monitoring. A semi-transparent balloon game in the
HUD operationalized the visually engaging NDRT including the possibility of peripheral
monitoring. The SuRT was assessed to be less feasible for operationalization as visual
task in the HUD since the overall number of objects in the display of the SuRT (see Figure
6.2) would presumably clutter the HUD. An expert usability study of the balloon game prior
to the main experiment underlined the feasibility of the game. Participants who could not
monitor the surroundings were driving through simulated heavy fog that only allowed sight

Chapter 8

H
M
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Experiment 3: Effect of peripheral monitoring during CAD

Pre-published in Radlmayr, Brüch, et al. (2018).

RQ6 How can the HMI for CAD and the take-over be optimized by enabling the 

possibility of peripheral monitoring while engaging in NDRTs during CAD?
a) Does the situation awareness of drivers differ during CAD depending on the 

possibility of peripheral monitoring?

b) Does the potential effect of situation awareness differences affect the take-over 

performance?

Chapter 9
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Experiment 4: Optimization of the HMI for the take-over

RQ7 How can the HMI be optimized by offering additional information on the 

specific situation during the take-over process?
a) Does offering additional information in the HUD during the take-over affect the 

take-over performance?

b) How does the effect from additional information compare to the effect of 

different situations?

Figure 8.1: Main research question of Experiment 3.

1The experiment was designed and conducted with the assistance of Karin Brüch, Kathrin Schmidt,
Christine Solbeck and Tristan Wehner as part of their student project (Brüch, Schmidt, Solbeck, & Wehner,
2017).
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up to 10-15 meters. A third group was set to act as baseline without any NDRT and no
fog, representing the possibility to monitor surroundings freely. The resulting between-
subject design with one factor and three levels (no monitoring, peripheral monitoring,
free monitoring) included 57 participants. The take-over situation was a construction site,
known from Chapter 4, including a lane change and no additional traffic. Following the
taxonomy from Gold et al. (2017), the overall criticality of the take-over situation can be
classified to be low to medium. During automated driving, eye-tracking and the situation
awareness global assessment technique (SAGAT) (Endsley & Garland, 2000; Franz et
al., 2015) were used to measure SA. Take-over performance was analyzed using time
and quality aspects identical to measures in Experiments 1 and 2. SA during the take-
over process was measured using the situation awareness rating technique (SART) and
eye-tracking. Measures of SA are chosen to differentiate between visual attention likely
implicating perception of the surroundings, and a potential "looking but failed to see" effect
(Helton & Warm, 2008) when monitoring peripherally. While PEOR could not be utilized
due to overlapping areas of interest in the HUD for the NDRT and the road scenery, the
HGD is used to allow an assessment of tracking behavior.

"Results show that the free monitoring group, representing the no NDRT-
condition had the highest situation awareness in the SAGAT. This is backed up
by the results from the [horizontal gaze dispersion] (HGD). Participants who
were not engaged in a visually demanding NDRT would use their attentional
resources to scan the surroundings more often and more effectively. Con-
sequently, they have a higher situation awareness. Regarding the take-over
performance metrics, this additional situation awareness does not translate
into better or faster reactions by drivers. Results from the analysis of blink
frequency during the automated drive show that the game was visually de-
manding and was feasible as NDRT with the possibility of monitoring peripher-
ally. Findings show that eye-tracking metrics like [the] HGD can be used to
indirectly measure drivers’ SA if direct measures such as SAGAT or SART are
not applicable" (Radlmayr, Brüch, et al., 2018).

Significantly lower longitudinal accelerations for the no monitoring group were observed.
This can be justified by the design of the take-over scenario:

"The heavy fog cleared very quickly just prior to the request to intervene
(RtI). Right after, the RtI was presented and participants had to regain man-
ual control and execute a lane change maneuver. The combination of the
clearing fog and the RtI led to a shock reaction. Comparing the longitudinal
acceleration with the take-over times, the no monitoring group did not react
faster but initially braked harder compared to the other groups. Participants
in free and peripheral monitoring groups solved the situation by building up
enough situation awareness after the RtI to execute the lane change with little
braking. It can be concluded that the very low longitudinal accelerations for no
monitoring are mainly due to the initial shock reaction and do not represent
differences due to prior monitoring effects" (Radlmayr, Brüch, et al., 2018).

This reasoning is underlined by qualitative analysis of the raw eye-tracking videos
including the head-box. It can be concluded that visual NDRTs during automated driving
degrade drivers’ situation awareness as expected. Peripheral monitoring by displaying
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the NDRT in the HUD cannot compensate this loss of SA. The differences in SA during
automated driving did not lead to differences or a degradation of take-over performance.

"Drivers were still able to build up the necessary situation awareness for a
successful take-over. This implicates, that peripheral monitoring in condition-
ally automated driving is not necessarily recommendable because it does not
result in better take-overs. Even with visual NDRTs in the head-up display,
take-over performance was not degraded much compared to free monitoring"
(Radlmayr, Brüch, et al., 2018).

It can be argued that the drivers in the free monitoring group did not actually use their
attentional resources to monitor since their mean blink frequency was approximately the
same compared to people not engaged in any (visually engaging) task (Bentivoglio et
al., 1997). In addition, the methods used to measure situation awareness, SAGAT and
SART, cannot be understood to measure the "same SA" (Endsley, 1998; van den Beukel &
van der Voort, 2014). Further insight into the effect of different levels of situation awareness
on take-over performance could benefit from using advanced methods to measure SA
(Sirkin, Martelaro, Johns, & Ju, 2017) and should be pursued in future research.

Regarding the research questions in Figure 8.1, an optimization of the HMI by providing
a different location of display for visual NDRTs was not successful. Experiment 4 focuses
on supporting drivers during the take-over itself by providing additional information on the
most dominant effect on take-over performance, the situation at hand.
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9 Design and evaluation of an optimized
human-machine interface for the take-over

The fourth experiment1 aims at optimizing the HMI during the take-over process based on
results from Experiments 1, 2 and the modeling approach.

So far, the experiments in this thesis focused on the maximal human performance of
drivers as fallback level in CAD. Considering the subjective ratings of the take-overs in
chapters 5 and 6, it becomes apparent that drivers can experience take-overs as overall
inconvenient. Perceived criticality and complexity of the situations in combination with
feeling time pressure result in an overall low subjective rating score for some of the take-
overs. The focus on the limit of human capability to act as fallback in CAD results in highly
critical and complex take-over situations. Following the taxonomy of take-over situations
from Gold et al. (2017), different research emphasis require different situations. In addition
to the situations , the HMI conveying the RtI in Chapters 5, 6, and 8 consists of the generic
HMI requirement depicted in Chapter 4.

In order to make CAD appealing and comfortable for drivers, the role of the HMI
negotiating the take-over process must be considered. Chapter 2.2.4 provides an overview
of known effects on take-over performance and subjective ratings from drivers in the
context of CAD. While the provided literature reveals the importance of considering the
HMI for take-overs in CAD, the HUD in combination with contact-analogue information is
rarely used. Lorenz et al. (2014) compared a red to a green carpet during the take-over
to convey semantic information on possible corridors for drivers. The concept of the red
carpet had some drivers braking to a full stop in comparison to no one braking to a full
stop with the green carpet. No differences concerning the reaction times were found. In
addition, analysis of the trajectory revealed better results for proposed corridors indicated
by the green carpet (Lorenz et al., 2014).

Eriksson et al. (2019) used a carpet to help with the decision making process during
take-overs. An improvement in correct decisions (brake or lane change maneuver) was
found for the carpet or arrow interface (Eriksson et al., 2019). Regarding the differences
in predicting longitudinal and lateral accelerations concerning individual contributions
(random effects) in Chapters 7.2.4 and 7.2.5, additional visual information is hypothesized
to help drivers in take-over situations. Future cooperative systems were identified to
require multimodal and [situation] adaptive HMIs (Walch et al., 2017). Following the
significant differences in take-over performance due to different take-over situations, an
augmented and adaptive HMI placed in the HUD should be beneficial for the subjective
rating of experienced take-overs in general. This is supported by results from Prasch and
Tretter (2016) who found that a posteriori explanations for a take-over are beneficial for the
psychological needs of drivers. Most importantly, a potentially degraded feeling of security
caused by a take-over without obvious reasons can be mended by providing the reason
for the take-over (Körber, Prasch, & Bengler, 2018).

Based on the aforementioned reasoning, this experiment is designed to develop and
evaluate a HMI that supports drivers during a take-over process by providing the reason for
the take-over and additional information on the exact location of the system limit and the

1The experiment was designed and conducted with the assistance of Sarah Werner as part of her
Master’s thesis (Werner, 2018)
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Chapter 8

H
M

I

Experiment 3: Effect of peripheral monitoring during CAD

Pre-published in Radlmayr, Brüch, et al. (2018).

RQ6 How can the HMI for CAD and the take-over be optimized by enabling the 

possibility of peripheral monitoring while engaging in NDRTs during CAD?
a) Does the situation awareness of drivers differ during CAD depending on the 

possibility of peripheral monitoring?

b) Does the potential effect of situation awareness differences affect the take-over 

performance?

Chapter 9

H
M

I
Experiment 4: Optimization of the HMI for the take-over

RQ7 How can the HMI be optimized by offering additional information on the 

specific situation during the take-over process?
a) Does offering additional information in the HUD during the take-over affect the 

take-over performance?

b) How does the effect from additional information compare to the effect of 

different situations?

Figure 9.1: Research questions of Experiment 4 focusing on optimized the HMI during the
take-over process.

remaining distance towards it. Focus is put on the subjective assessment of the take-overs
with and without the HMI and the subjective rating of the HMI concerning usability, intention
of use, perceived safety and purchase intention.

9.1 Research questions

The hypothesis’ for the experiment are derived from the main research questions and
are not listed explicitly here. Figure 9.1 provides an overview on the underlying research
questions derived from the literature review and results from previous experiments and
the modeling approach.

9.2 Method

Sample

43 participants took part in the experiment. Due to technical issues with the eye-tracking
system, three had to be excluded from analysis. The remaining 40 participants (25 males
and 15 females) were between 21 and 75 years old, with a mean age of 30.7 years (SD
= 13.0) and a median of 26 years. All participants held a regular driver’s license with a
mean time of possession of 13.3 years (SD = 12.1). Twenty-two participants reported to
have experienced CAD in a simulator setup at least once. Fifteen participants reported to
have impaired vision which was either corrected by glasses or contact lenses.

Experimental Setup

The experiment was also conducted in the static driving simulator of the Chair of Er-
gonomics of the Technical University of Munich. The design of experiment consisted of a
mixed setup which featured two independent variables. Table 9.1 shows the two factors,
their levels and the integration into the experimental setup. The within subjects factor Ob-
viousness of the RtI was split into two levels, low and high obviousness. High obviousness
was represented by the construction site, which was already used in Chapters 5, 6 and 8.
It was hypothesized that a moving construction site is not likely to be integrated into a high
precision map of the track and thus represents a sudden new situation for the automation
that is only known from the onboard sensors. While the caution sign vehicle to the right
might be classified correctly by advanced onboard systems, the exact position of potential
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Table 9.1: Overview of the two independent variables and the resulting mixed design of
experiment.

Factor Levels Design

Visual support in the
take-over situation

Two (No display in the HUD,
HMI in the HUD)

Between subjects factor

Obviousness of the RtI Two (situation with high
obviousness (construction
site) and with low obviousness
(tight curve in heavy rain))

Within subjects factor

hazards is unknown to the system due to the moving character of the situation. A plausible
consequence would be the issue of a RtI. For drivers experiencing the situation, the clearly
visible caution sign vehicle represents the main reason for a fast understanding of the
reason for the RtI. Thus, the obviousness of the situation and the RtI is high for drivers.

A narrow curve in heavy rain represents the low obviousness condition. In dry conditions,
a conditionally automated vehicle can be expected to handle the situation easily. Following
the results from the project PEGASUS (Mazzega & Schöner, 2017), sudden changes in
the friction between road and vehicle and bad weather conditions are system limits for
CAD that would result in issuing a RtI. The combination of a – for interstate conditions –
rather narrow curve together with the onset of heavy rain is the reason for the RtI in the
situation depicted in Figure 9.3. While the automation can rely on its onboard sensors
to accurately depict the friction between road and vehicle, rain and curves in general
do not represent system limits. Drivers experiencing such a system could not easily
predict the reason for the RtI since they have no precise understanding of the necessary
requirements of the automation. A RtI in this situation represents a low obviousness of the
RtI. Concerning the taxonomy of take-over situations (Gold et al., 2017), both situations
generally consist of low criticality.

The factor visual support in the take-over situation was split into two levels concerning
the visual display of information in the HUD. One group did not receive any visual display
in the HUD. The other group received additional information in the HUD by the display
of the road sign representing the reason for the RtI and the remaining distance to the
system limit which was represented by two contact-analogue arrows, on either side of
the road. Figures 9.2 and 9.3 show the two situations for the group with the additional
HMI. The group without the additional information did not have anything displayed in the
HUD. The RtI consisted of the acoustic double beep as described in Chapters 4 and the
generic HMI in both groups. The development of the optimized HMI in the HUD was
result of an iterative process. Concerning the modality, augmented, visual information
provides the best possibility of presenting additional semantics concerning speed of
perception and density of information without cluttering. The underlying conflict of limited
resources of drivers that are already occupied with regaining SA and taking over needs
to be considered as well: Additional information should not lead to a deterioration of the
take-over performance. The literature provided at the beginning of this chapter and in
Chapter 2.2.4 emphasized the feasibility of using augmented visual information.

Concerning the location of the additional information, the HUD was chosen due to the
major benefit of being in line with the primary line of sight of participants taking over. Gold
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Figure 9.2: The construction site with the additional HMI at the moment of the RtI (left)
and 33 meters away from the system limit (right) viewed through the windshield.

Figure 9.3: The narrow curve in heavy rain with the additional HMI at the moment of the
RtI (left) and 33 meters away from the system limit (right).

(2016) showed that participants that are engaged in a visual NDRT would react to a RtI and
direct their line of sight towards the road. If information such as the RtI was presented in
the instrument cluster or the central information display (CID), participants would alternate
their gazes between the road and these displays. Using a HUD, participants benefit from a
reduced number of glances away from the road during the take-over process. In addition,
Bubb et al. (2015, p. 412) recommended using the HUD to display information that could
be directly related to the surroundings, e.g. the stopping distance, rather than showing
vehicle-related internal information. In addition, a HUD reduces the number of glances
away from the road and the reaction times in response to unexpected traffic incidents
(Kiefer, 1998). Overall, the benefits of a HUD for displaying additional information during
the take-over process are considerable.

The additional information consists of 2D parts that are stationary with respect to the
HUD, like the traffic sign and the remaining distance. The system limit is highlighted
using contact-analogue arrows on either side of the road. Such technology is currently
researched and not available in current vehicles. Nevertheless, the contact-analogue
arrows were a result of the underlying iterative design process and presented the best
option to highlight the system limit. Several publications show the necessity to adequately
inform drivers about system limits in general (Martens & van den Beukel, 2013), reasons
for system behavior and resulting actions in critical situations (Koo et al., 2015) and the
benefits from addressing psychological needs of drivers (Prasch & Tretter, 2016). The
chosen information is based on these publications and the iterative design process. The
HMI guidelines from the projects UR:BAN (Bengler et al., 2018, p. 75) and AdaptIVe
(Kelsch et al., 2017) were considered in designing the HMI and were used as theoretical
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Figure 9.4: The general guidelines concerning visual displays for vehicles from the project
UR:BAN (Bengler et al., 2018) were considered in designing the HMI. An expert review
throughout the iterative design process was conducted along these guidelines.

Figure 9.5: The first and second draft of the proposed HMI that was discarded during the
iterative design process.

basis for the design process. The guidelines from UR:BAN are shown in Figure 9.4.
Concerning the iterative design process, a first draft suggested highlighting the surrounding
vehicles, that are relevant for the take-over process in addition with providing a corridor
in which the vehicle could be operated manually. However, a precise definition on which
vehicles are relevant for the take-over process could not be reached. If an automation is
advanced enough to provide semantic information on safe trajectories for manual drivers, it
could be argued that such a system could solve the situation by itself. The first draft can be
seen in Figure 9.5. The second draft already contained the display of the distance and the
traffic sign. The system limit was visualized using a contact-analogue, semi-transparent
bar that slightly hovered above the road, see 9.5. In a pretest with four HMI experts from
the Chair of Ergonomics, it became apparent, that the bar would motivate braking to a full
stop due to its resemblance with stop bars. Thus, the system limit was visualized using
two arrows on either side of the road as can be seen in the final HMI.

The experimental setup, i.e. the automation, data logging and the eye-tracking system,
was identical to the setup described in Chapter 4. Time budget was set to be seven sec-
onds for both situations. The NDRT was the visual-motoric SuRT known from Experiments
1 and 2.

Measures

For data acquisition, the simulator with the simulation software SILAB allowed a tracking
frequency of 120 Hz for all relevant vehicle dynamics. Both situations did not feature
an obstacle and no additional traffic in the take-over, rendering an analysis of the TTC
not practical. The SmartEye eye-tracking system with three cameras was used. For the
analysis of the eye-tracking data, the ISO standard ISO/TS 15007 (2014) for filtering eye-
tracking data which requires a 70 % detection rate was taken into account. In comparison
with the detected areas of interest (AOIs) in SmartEye, data points which did not feature
any recognized AOI were excluded from the data stream. Reasons for a non-recognition
of any AOIs could be either due to closed eyes or the eye-tracker losing the current gaze.
Since the experiment did not feature sleeping participants, the threshold-value of 70 %
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would include many data points where the eye-tracker did not feature valid gaze tracking
with a very high probability. In case the data stream per participant featured less than
70 % detected AOIs, affected participants were excluded from analysis. This led to group
sizes of 17 for the group with HUD and 16 participants for the group with no HUD. After
excluding participants from the analysis, which did not meet the 70 %-detection criteria, the
overall mean of detected AOIs during the take-overs for all participants and both situations
amounted to 89.9 %.

In this experiment, no seat pressure mats were used since the research focus was not
on the development of the driver state during automated driving and its consequences on
a take-over but rather on the benefit of an optimized HMI during the take-over. The HMI
is analyzed using a set of questionnaires to allow evaluation of e.g. safety and usability
aspects. Concerning the subjective rating of the situation, in addition to evaluating the
subjective criticality, complexity and time budget, the obviousness of the reason for the
RtI is analyzed. The usefulness and satisfaction of the HMI is rated with a customized
questionnaire based on van der Laan, Heino, and de Waard (1997) that was translated
and provided2 by the Europe Chapter of the Human Factors and Ergonomics Society
(HFES). The safety is assessed using five items, each to agree or disagree with on a five-
point-Likert-scale, e.g. "The HMI can help lowering the crash risk" or "The HMI increases
traffic safety." The safety questionnaire was adapted from Arndt (2011). The efficiency as
part of usability is analyzed using two questions from Arndt (2011) concerning mistakes
made by the HMI and if the information provided by the HMI is insufficient for drivers.
Three questions based on Arndt (2011) focused on drivers’ intentions of using the system
in their vehicle, together with a question if drivers would buy such a system, also based
on Arndt (2011). Three additional questions focused on drivers’ willingness to engage in
NDRTs during automated driving in general and if drivers wished to be informed on the
reason for the RtI. The last question consisted of a multiple choice question asking which
items of the additional HMI (arrows, traffic sign, distance, nothing additional and further
items) were perceived.

Table 9.2 is providing an overview of the metrics that were recorded and analyzed.

Procedure

Participation in the experiment took a total of approximately 35 minutes and was rewarded
with five euros. The experiment started with an introduction including the main focus of
the experiment accompanied by a consent form. A demographic questionnaire captured
relevant data for description of the sample after which participants were introduced to the
simulator and the data acquisition including the eye-tracker. Participants were given a
detailed instruction on the automation and the engagement into the NDRT. For the HMI
group, the additional HMI was explained in the HUD. After calibration of the eye-tracker,
participants could experience the vehicle dynamics in the simulator in manual driving mode,
the automation and an exemplary take-over process and – for the group with additional
HMI – the additional HMI during the take-over. The track of the experiment was 12.7
kilometers long and lasted approximately eight minutes. After each take-over situation,
the questionnaires were presented via the intercom. After the final situation, participants
were asked to park the vehicle in a rest area before the simulation was deactivated and
participants answered the last questionnaire.

2http://www.hfes-europe.org/accept/accept_de.htm
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Table 9.2: Summary of dependent variables used for assessing the take-over performance
and the additional HMI.

Take-over performance and
eye-tracking

Subjective ratings

Time aspects

• Minimal time to the first deliberate
action (steering wheel >2 ◦ or brake
pedal >10 % or deactivation of
automation by button) (take-over
time, TOT) [s]

Subjective rating of the situation

• Criticality of situation [ ]

• Complexity of situation [ ]

• Time budget of situation [ ]

• Obviousness of reason for RtI [ ]

Quality aspects

• Type of first reaction [ ]

• Minimal (negative) and maximal
longitudinal acceleration [m/s2]

• Maximal lateral acceleration
(non-directional) [m/s2]

• Standard deviation of the lateral
position (SDLP) [m]

Subjective rating of the HMI

• Usefulness and satisfaction,
semantic differential with nine pairs
of adjectives [ ]

• Perceived safety, five items [ ]

• Efficiency as part of usability, two
items [ ]

• Intention to use the HMI in an own
vehicle, four items [ ]

• Willingness to engage in NDRTs [ ]

• Wish to be informed on the reason
for the RtI [ ]

Eye-Tracking

• Percentage eyes on road
(PEOR) [%]

• Percentage eyes on Instrument
Cluster (PEOIC) [%]

Perceived elements of the HMI

• Perception of the items of the HMI,
multiple choice question [ ]
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9.3 Results

Analysis was conducted following the process depicted in Chapter 4.3. Concerning the
values for longitudinal acceleration, a problem during data handling was revealed. The
usual thresholds used for deactivation of the automation by steering (>2 ◦ steering wheel
angle) or braking/accelerating (10 % pedal stroke) could be used to accurately analyze TOT
and maximal lateral acceleration. Concerning the automation status, an internal simulation
error did not deactivate the longitudinal component of the automation. Thus, values for
the SDLP and the lateral acceleration consist of human input, whereas values for the
longitudinal acceleration and velocity consist of superposed values from both automation
and drivers. Since only few participants deactivated the automation by steering or pressing
the button, the longitudinal part of the automation superposed by potential braking or
accelerating inputs from drivers remained active during the take-over process for 77,5 %
of participants. Consequently, the data and analysis for longitudinal acceleration was
discarded. All other measures can be used for analysis of the take-over performance.
Potential alterations of driver behavior during the take-over due to the parallel influence of
manual and automation inputs can be argued. The superposed values of the longitudinal
acceleration revealed mean values between -1 m/s2 – 1 m/s2 with very few outliers for
the negative longitudinal acceleration reaching up to -8 m/s2. Likely, participants which
were braking hard can be identified from the data with the great majority of participants
hardly braking at all. Both situations did not feature an obstacle or required braking prior
to a potential lane change maneuver in order to reduce vehicle dynamics. While the
superposed values for longitudinal acceleration cannot be used for analysis, the overall
validity of the take-over performance data was assessed to be high.

9.3.1 Measures of take-over performance and eye-tracking results

Prior to the analysis of the TOT, the first reaction to the RtI (steering, braking or deactivating
the automation using the button on the steering wheel) was assessed. Out of a total of 80
take-overs, nine participants did not take-over at all in the interval between RtI and system
limit. In the construction site, the vehicle drifts out of lane since the situation does not
feature any curve. The tight curve in heavy rain representing the other system limit starts
right after the designated system limit. Participants not taking over in between the RtI and
the system limit drift out of lane gradually. Even though the take-over in the familiarization
drive consisted of a critical situation including an obstacle and the RtI was instructed
clearly, nine participants did not take-over. After the system limit, they were asked to
reactivate the automation in order to answer the questionnaires via intercom. The data
from these nine participants were disregarded from analysis of take-over performance
but not from analysis of eye-tracking data and the subjective ratings of both situation and
subjective rating of the HMI. In case participants conducted a lane change maneuver in
either take-over situation, data for the SDLP were discarded from analysis. Out of the total
of 80 take-overs, in six cases a lane change was conducted.

Figure 9.6 shows the first type of reaction in response to the RtI for both groups and
situations. Fisher’s exact test does not reveal significant results (p = .154). Only few
participants initially braked, with most participants initially steering or accelerating.

Analysis of results and prior tests concerning distribution and homogeneity of variance
were conducted as depicted in Chapter 4.3. Since the within-factor only featured two
levels, the requirement of sphericity was always met. Table C.1 shows an overview of the
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No HUD With HUD

No reaction Braking Accelerating Steering No reaction Braking Accelerating Steering

0
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Situation [ ] Construction Site Tight Curve with Rain

Type of reaction

Figure 9.6: First reactions to the RtI for both groups and situations. nNo HUD = 20, nWith HUD

= 20.

test results and the test statistics which are regarded for the evaluation of the research
questions and the discussion of results. Data for the analysis of TOTs can be found
in Figure 9.7. The ANOVA revealed no significant effects for the factor HUD, the factor
Situation and the interaction between both groups (Table 9.4). For the analysis of the max-
imal lateral acceleration, the data were not differentiated between participants conducting
a lane change or staying within their lane. In case a lane change was conducted, the
maximal acceleration represents the absolute value. The ANOVA showed no significant
effects for both factors and the interaction. Figure 9.8 shows the boxplot of the maximal
lateral accelerations.

The standard deviation of lateral position was analyzed as measure of the quality of
lateral control in the take-over. An ANOVA revealed no significant effects for both factors
and their interaction (Table 9.4). The p-value for the factor HUD represents a tendency
for the group with no additional HUD showing higher values for the SDLP. The data were
visualized in Figure 9.9.

Concerning the AOIs for analysis, the percentage of eyes on road (PEOR) and the
percentage of eyes on the instrument cluster (PEOIC) were regarded. For the PEOR, all
glances through the windshield were regarded as "eyes on road". The ANOVA showed
significant effects for the factor HUD, for the factor Situation and for the interaction HUD x
Situation (Figure 9.10). The group with no additional HMI in the HUD showed significantly
less PEOR during the take-over in the tight curve with heavy rain. The ANOVA for the
PEOIC revealed a significant effect for the factor HUD but no significant effects for Situation
and the interaction HUD x Situation (Figure 9.10). Results revealed that the group with no
HUD had significantly more PEOIC compared to the group with HUD. Group means and
SDs are listed in Table 9.3 while test statistics can be found in Table 9.4.
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Table 9.3: Overview of the group and situation means (SD) for the objective take-over
performance and eye-tracking data.

Depen-
dent
Variable

No HUD,
construction site

No HUD,
tight curve

HUD,
construction site

HUD,
tight curve

TOT [s]

TOT M = 3.38 (1.62) M = 3.23 (1.47) M = 2.95 (1.13) M = 3.64 (1.72)

Maximal lateral acceleration [m/s2]

Lat. accel. M = .73 (.51) M = .85 (.56) M = .58 (.65) M = .86 (.86)

SDLP [m]

SDLP M = .12 (.093) M = .10 (.076) M = .082 (.047) M = .089 (.048)

PEOR [%]

PEOR M = 74.76
(10.00)

M = 65.99 (9.90) M = 77.94 (9.85) M = 77.53 (7.55)

PEOIC [%]

PEOIC M = 9.04 (7.23) M = 12.76
(10.05)

M = 5.16 (5.49) M = 5.67 (8.97)

Table 9.4: Results from the ANOVAs conducted for the objective take-over performance
and eye-tracking measures.

Dependent
Variable

Factor HUD,
between groups

Factor Situation,
within groups

Interaction HUD x
situation

TOT F (1, 31) = .00,
p = .94, η2 < .01

F (1, 31) = 1.76,
p = .19, η2 = .02

F (1, 31) = 1.70,
p = .20, η2 = .02

Lateral
acceleration

F (1, 38) = .47,
p = .65, η2 < .01

F (1, 38) = .39,
p = .16, η2 = .02

F (1, 38) = .39,
p = .56, η2 < .01

SDLP F (1, 32) = 3.31,
p = .08, η2 = .05

F (1, 32) = .43,
p = .52, η2 < .01

F (1, 32) = .12,
p = .74, η2 < .01

PEOR F (1, 31) = 6.88,
p = .01, η2 = .14

F (1, 31) = 7.62,
p = .01, η2 = .06

F (1, 31) = 6.34,
p = .02, η2 = .05

PEOIC F (1, 31) = 5.08,
p = .03, η2 = .11

F (1, 31) = 2.17,
p = .15, η2 = .02

F (1, 31) = 1.25,
p = .27, η2 = .01
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Figure 9.7: TOTs for both groups and situations. nNo HUD = 38, nWith HUD = 33.
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Figure 9.8: Maximal lateral acceleration for both groups and situations. nNo HUD = 40,
nWith HUD = 40.
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(PEOIC) for both groups and situations. nNo HUD = 32, nWith HUD = 34.
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9.3.2 Subjective ratings of the take-overs and the HMI

The analysis of the subjective ratings was conducted identically to the objective take-over
performance and eye-tracking metrics. Data were checked for normal distribution and
homogeneity of variance. Results can be found in Table C.2 and were regarded for
the discussion of results. Table 9.5 shows the group means and SDs for the subjective
ratings. Results for the perceived criticality showed that the construction site was assessed
significantly more critical than the tight curve (Table 9.6). Values close to zero represent
very uncritical ratings whereas values close to ten represent a critical subjective rating. The
plotted data in Figure 9.11 show the significantly more critical ratings for the construction
site. The factor HUD and the interaction between the groups and the situations did not
show significant effects.

Analysis for the perceived complexity of the take-overs showed similar results with a
significant effect for the factor Situation. The construction site was rated significantly more
complex than the tight curve (Table 9.6). The factor HUD and the interaction did not show
significant effects.

The perceived time budget was also analyzed with an ANOVA. Prior to analysis, the
rating scale was turned around to allow a joined plot in Figure 9.11. Values close to zero
represent participants felt that they had enough time in the take-over situation. Values
close to ten would represent a subjectively high time pressure. The ANOVA showed
significant effects for the factor Situation and the interaction between the groups and the
situations (Table 9.6). The factor HUD showed no significant results. Participants rated
the perceived time budget significantly lower (higher time pressure) for the construction
site for the group with no HUD.
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Figure 9.11: Subjective ratings of the perceived criticality, complexity and time budget for
both groups and situations. nNo HUD = 40, nWith HUD = 40.

The obviousness of the reason for the take-over was ascertained after each situation.
Results (Table 9.6) show that both the factor HUD and the factor Situation showed highly
significant results. Referring to the group means (Table 9.5), the group with HUD reported
a much higher obviousness of the reason for the take-over compared to the group with
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9.3 Results

Table 9.5: Overview of the group means (SDs) for the subjective ratings of the take-over
situations.

Depen-
dent
Variable

No HUD,
construction site

No HUD,
tight curve

HUD,
construction site

HUD,
tight curve

Criticality [ ]

Criticality M = 4.30 (2.72) M = 2.50 (2.26) M = 3.45 (1.82) M = 2.75 (1.48)

Complexity [ ]

Com-
plexity

M = 3.90 (2.53) M = 2.55 (2.14) M = 2.90 (1.37) M = 2.75 (1.80)

Time Budget [ ]

Time
Budget

M = 4.10 (2.47) M = 2.30 (2.18) M = 2.85 (2.11) M = 2.60 (2.26)

Obviousness [ ]

Obvious-
ness

M = 3.85 (1.42) M = 2.00 (1.17) M = 4.55 (0.69) M = 3.55 (1.32)

Table 9.6: Results from the ANOVAs conducted for the subjective ratings.

Dependent
Variable

Factor HUD,
between groups

Factor Situation,
within

Interaction HUD x
situation

Criticality F (1, 38) = .35,
p = .56, η2 < .01

F (1, 38) = 8.21,
p < .01, η2 = .08

F (1, 38) = 1.59,
p = .22, η2 = .02

Complexity F (1, 38) = .61,
p = .44, η2 = .01

F (1, 38) = 4.05,
p = .05, η2 = .04

F (1, 38) = 2.59,
p = .12, η2 = .02

Time Budget F (1, 38) = .55,
p = .46, η2 = .01

F (1, 38) = 10.58,
p < .01, η2 = .05

F (1, 38) = 6.05,
p = .02, η2 = .03

Obviousness F (1, 38) = 15.23,
p < .001, η2 = .19

F (1, 38) = 35.66,
p < .001, η2 = .28

F (1, 38) = 3.17,
p = .08, η2 = .03
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9.3 Results

Table 9.7: Overview of the group and situation means (SDs) for the subjective ratings of
the HMI in general after each situation.

Depen-
dent
Variable

No HUD,
construction site

No HUD,
tight curve

HUD,
construction site

HUD,
tight curve

Usefulness [ ]

Useful-
ness

M = -.15 (1.27) M = -.25 (1.16) M = 1.00 (.86) M = .70 (.73)

Satisfaction [ ]

Satisfac-
tion

M = -.20 (1.06) M = -.55 (1.19) M = .65 (.76) M = .45 (.60)

no HUD. The tight curve showed significantly lower values for the obviousness. The
interaction between the two factors showed a tendency for significant effects. Figure
9.12 underlines the results from the ANOVA. The HMI was also analyzed concerning
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Figure 9.12: Obviousness of the reason for the take-over. nNo HUD = 40, nWith HUD = 40.

the subjective usefulness and satisfaction. An ANOVA revealed that the usefulness was
rated significantly higher for the group with the additional HMI (Table 9.8). The factor
Situation and the interaction between both factors showed no significant results. Results for
satisfaction showed that the group with additional HUD rated the satisfaction significantly
higher compared to the group with no HUD (Table 9.8) in addition to the construction site
rated higher. Group means and SDs for both metrics can be found in Table 9.7 and are
visualized in Figure 9.13.

After the experimental drive, participants filled out a final questionnaire on the overall
rating of the HMI. The perceived safety (total of five items), the perceived efficiency as
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9.3 Results

Table 9.8: Results from the ANOVAs conducted for the subjective ratings of the HMI in
general.

Dependent
Variable

Factor HUD,
between groups

Factor Situation,
within groups

Interaction HUD x
situation

Usefulness F (1, 38) = 13.62,
p < .001, η2 < .22

F (1, 38) = 1.60,
p = .21, η2 = .01

F (1, 38) = .40,
p = .53, η2 = .002

Satisfaction F (1, 38) = 11.87,
p = .001, η2 < .21

F (1, 38) = 5.29,
p = .03, η2 = .02

F (1, 38) = .39,
p = .53, η2 = .002
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Figure 9.13: Subjective ratings of perceived usefulness and satisfaction of the HMI for
both groups and situations. nNo HUD = 40, nWith HUD = 40.

part of the usability (total of two items) and the intention to use the HMI in an own vehicle
(four items) were assessed on a five-point Likert-scale. Since the factor Situation was
not regarded in the final questionnaire, only the factor HUD was analyzed using non-
parametric tests in case of non-normal distributions. Table C.4 shows the test for normal
distribution and homogeneity of variance for the three measures. Since the requirements
for parametric tests were not met, Mann-Whitney-Wilcoxon tests (MWWT) were conducted.
The results from the MWWTs showed highly significant effects for the perceived safety, the
usability and the intention to use the HMI (Table 9.10). The plots in Figure 9.14 and the
group means and SDs in Table 9.9 show that the group with the additional HUD reported
significantly higher or better values for safety, usability and the intention to use.

As part of the final questionnaire, participants were asked if they could imagine engaging
in NDRTs during CAD. In both groups, more than 75 % of participants answered the
questions affirmative. The group with no additional HMI was asked if they would like
to be informed about the reason for the take-over and more than 80 % of participants
answered with "yes". The group with the additional HMI was asked which of the items
in the additional HMI were perceived during the take-over. For all elements, the traffic
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9.3 Results

Table 9.9: Overview of the group means (SDs) for the subjective ratings of the HMI in the
final questionnaire.

Dependent Variable No HUD HUD

Safety [ ] M = 2.73 (.86) M = 4.06 (.56)
Usability [ ] M = 2.83 (1.17) M = 3.90 (.72)
Intention to use [ ] M = 2.25 (1.09) M = 3.48 (.79)

Table 9.10: Results from the Mann-Whitney-Wilcoxon test (MWWT) conducted for the
subjective ratings of the HMI after the experimental drive.

Dependent Variable Factor HUD, between groups

Safety W = 43.5, p < .001, η2 = .45
Usability W = 93.0, p < .01, η2 = .21
Intention to use W = 76.0, p < .001, η2 = .28
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9.4 Discussion

sign representing the reason of the take-over, the distance towards the system limit and
the arrows on each side of the road, more than 70 % of participants reported to have
perceived all elements of the additional HMI. The traffic sign was perceived by 90 % of
participants, representing the highest percentage of the three elements.

9.4 Discussion

Regarding the research questions in Figure 9.1, no significant differences were found
for all measures of take-over performance. This can be attributed in part to the situation
design, since both take-over situations consisted of an overall low criticality (Gold et al.,
2017). While results from Experiments 1 and 2 and the modeling approach showed great
situational differences, the findings in this chapter underline the prominent role of the
situation in general: for overall non-critical situations, take-over performance is well within
limits of known take-over performance values, showing no significant differences between
similar situations concerning criticality.

In addition, take-over performance was unaffected by the introduction of the optimized
HMI. While no significant improvement could be achieved, the additional information in
the HUD did not overload participants during the take-over process. The eye-tracking
measures showed significant improvements for the group with HMI, especially for the tight
curve with rain. The significant interaction result for PEOR can be interpreted to show
participants especially directing their visual attention towards the road in unclear take-over
situations. The significant eye-tracking result did not affect the take-over performance, but
including the significant contribution of PEOR for TOT and TTC in the modeling approach,
adding visual information in the HUD is advised based on these findings. The eye-tracking
behavior was only analyzed during the take-over, but gives way to solutions supporting
drivers also before the take-over with semantic information in the HUD: in case participants
choose to - temporarily - not direct their visual attention towards NDRTs, the optimized
HMI could be beneficial.

Results also indicate that the manipulation of the obviousness was successful. Partic-
ipants that encountered a take-over without an obvious reason for the RtI checked the
instrument cluster more frequently. Results for the PEOIC for the group with no additional
HUD showed significantly more glances towards the instrument cluster compared to the
group with HUD. This indicates that participants are interested in understanding the reason
for the take-over and in case of low obviousness would refer to the displays in the vehicle.
If the information is presented in the instrument cluster or additional screens in the center
console, the number of glances towards these displays increases.

Contrary to the results for the objective take-over performance, the subjective ratings
of the take-over situations revealed significant situational differences. While TOT, lateral
accelerations and SDLP indicate similar reactions in both situations, participants rated the
construction site to be significantly more critical, complex, obvious and exerting higher time
pressure, the latter only in the group with no additional HMI. A lack of reference of overall
situational criticality in addition with an obvious reason for the RtI in the construction site
could have led to these contradictory findings. A sense of not understanding the reason
for the RtI together with no visible other objects or vehicles might have promoted the
non-critical rating of the tight curve. The tendency of significant results for the interaction
of obviousness shows that the HUD is likely to be beneficial in the less obvious situation
tight curve and corroborates this conclusion. Overall, the additional information in the
HUD sufficiently explains the reason for the RtI and is understood by participants. The
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9.5 Summary and conclusion

interaction for the perceived time budget shows that the additional information in the HUD
is actually leading to less perceived time pressure in the take-over even though participants
are perceiving more information in general. Results indicate that the iterative design and
development process resulted in an optimized HMI especially beneficial in situations that
lack support due to the generic HMI.

Results for usefulness and satisfaction can be tied to the significantly lower obviousness
of the situation: if participants had to take over but did not know the reason for it, the
subjective satisfaction of the respective HMI could be lower because participants were
missing substantial information for the less obvious situation. The analysis of the con-
cluding questions after the experimental drive shows, that the additional information in
the HUD was rated significantly better for all three aspects perceived safety, usability and
intention to use revealing large effect sizes in comparison to small effects concerning the
aforementioned subjective rating results. The findings are in line with literature presented
in Chapter 2.2.4. The optimized HMI is more transparent regarding system limits and
reasons for a RtI, satisfying general driver demands (Beggiato et al., 2015; J. Clark et al.,
2017). The design of the take-over situations only showed effects in the subjective ratings,
but a stronger effect of the optimized HMI inherently adapting to more critical situations
can be hypothesized (Bazilinskyy et al., 2018). Any additional information should ideally
be presented in the HUD since results from this work showed no deterioration of the
take-over performance but significantly better ratings from drivers.

Concerning general limitations of this work, the data showed mostly non-normal dis-
tributions and the homogeneity of variance was violated in some cases. In combination
with a skewed age distribution, the findings should not be generalized. A validation of
results with older participants is recommended, since the technology of CAD will first
be available in more expensive upper class vehicles, that are less likely purchased by
younger drivers. Future work should include recently developed guidelines and verification
work for HMIs designed for CAD (Naujoks, Wiedemann, et al., 2019), to avoid a wide
raft of repeatedly optimized HMIs impeding a swift learning process throughout different
platforms and commercial applications.

9.5 Summary and conclusion

Concluding, a generic HMI can be sufficient for perceiving a RtI but is lacking information
necessary for not just a safe but also comfortable take-over process for participants. While
the take-over performance was neither positively nor negatively affected by the additional
information in the HUD, the subjective ratings from participants strongly benefited. In
addition, results from eye-tracking showed that drivers with a HUD show less glances at
in-vehicle displays, maximizing the time that could be utilized for visually perceiving the
situation in a take-over. Most importantly, the findings from the subjective ratings highlight
the necessity of sufficiently informing drivers about the reason for a take-over and aiding
them in the take-over process. Drivers taking up their responsibility as fallback in case of
a system limit are of utmost importance for the long-term success of CAD. Consequently,
optimizing the take-over process should not only consider safety-related questions but
focus on enhancing the overall experience of take-overs as well. This experiment provides
empirical evidence that an optimization of the HMI by adding information in the HUD is
perceived more useful, satisfactory, safer, usable and more likely to be appraised positively
by drivers. The findings should be regarded for the ongoing research and development of
HMIs for CAD.
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10 General discussion

The individual results from Experiments 1-4 and the modeling approach were discussed
in the individual chapters. This section discusses the overall results and limitations.

10.1 Limitations

The individual results are based on a well-established methodology concerning the design
of experiments depicted in Chapter 4, but limitations apply regarding the validity and
generalization of conclusions.

All results are based on samples of mainly German participants including few inter-
national students. Most conclusions potentially hold for Europe, but cultural differences
were not regarded and should be addressed in future research since e.g. automotive HMI
usability is influenced by cultural differences (Khan & Williams, 2014). In addition, traffic,
past experiences and underlying traits likely differ between countries, potentially exerting
effects on a variety of findings.

Most of the younger participants in all four experiments were students enrolled at the
Technical University of Munich, typically at the Department of Mechanical Engineering.
Absolute values of subjective ratings concerning the liking of CAD, the take-over or topics
related to automated driving in general came from people with a higher technical affinity
compared to the population and limits generalization of findings. The overall sample
included a broader variety of participants as well, but findings presumably include a
positive bias concerning CAD. This can also be understood to soften potential issues
from experiencing newly developed technical system in addition with familiarization drives
prior to every experimental drive. Moreover, the modeling approach from Gold (2016) is
based on a similar group of participants. The comparison and validation of the models in
Gold (2016) with results incorporating more heterogeneous samples showed reasonable
prediction quality and give no cause to suspect low validity due to the sample in this work.
Therefore, the lopsided distribution of the sample is not regarded to exert significant effects
on the results in this thesis.

The experiments and the modeling approach allowed valuable insight with the empirical
basis consisting of data gathered in the static simulator of the Chair of Ergonomics at
the Technical University of Munich. The findings were not compared to real driving
experiments and must be discussed critically. The Hawthorne-effect, giving reason to
believe participants behave differently when knowing they are in an experiment, was
shown to not affect the validity of driving simulator studies (Adair, 1984). Comparing
manual driver reaction times in simulator and real driving environments showed statistical
equivalence for important driver reaction metrics (McGehee, Mazzae, & Baldwin, 2000).
More recent findings on the development of fatigue in manual driving, showed that fatigue
can be equally studied in real and simulated driving environments (Philip et al., 2005).
Latest research on comparing simulator with on-road findings in the context of automated
driving indicates a high relative validity of driving simulators (Eriksson, Banks, & Stanton,
2017). Regarding the static nature of the employed driving simulator, absolute values of
take-over quality, especially concerning accelerations and TTC must be regarded with
care, while relative comparisons are dependable. TOT as measure of reaction time is
regarded to be a valid measure concerning the transition from CAD to manual, but should
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10.2 Levels of automated driving

be validated in on-road driving tests. Most importantly, Wizard-of-Oz studies found a
comparable onset and development of drowsiness in combination with similar reaction
times for simulated and real driving environments for CAD (Jarosch, Paradies, Feiner,
& Bengler, 2019). The derivation of comparable take-over performance effects, at least
concerning relative differences after both shorter and longer intervals of CAD seems
reasonable. Concluding, analysis of effects from the individual experiments in addition
with the relative comparison of different effects from the modeling approach is of high
value for the overall conclusion of this thesis.

10.2 Levels of automated driving

The field of take-overs in CAD has seen a tremendous effort in past years to understand
and design the inherent transitions between different levels of automation. The funda-
mental taxonomy used in this thesis and the current status quo in the field of research
distinguishes between six levels of automated driving (SAE J3016, 2018).

Research on this taxonomy has yielded a critical view on the definition of CAD (Inagaki
& Sheridan, 2018) and conflicting evidence that these six levels of automation do not
necessarily meet the mental model of laymen (Homans, Radlmayr, & Bengler, 2019). The
interaction between automated systems and drivers cardinally relies on their understanding,
i.e. their mental model of the functions and capabilities of a particular system or level of
automation (Sullivan, Flannagan, Pradhan, & Bao, 2016). Empirical work on drivers rating
different functions concerning their level of automation showed that "in several instances,
the functionality implied by automation terms did not match the technical definitions of the
terms and/or the actual capabilities of the automated vehicle functions currently described
by the terms" (Nees, 2018). This is in line with findings from Homans et al. (2019), which
shed light on the fact that the levels of automation are feasible for the expert community
but do not seem to represent the mental model of the majority of non-expert drivers.
Contrary to the six levels of automated driving in the taxonomy, results showed a better
representation of participants’ mental model existing only of three levels. The differentiated
distinction for Level 1 - assisted driving - to Level 4 - highly automated driving in the SAE
taxonomy is merged into one level between manual driving and "robot vehicles" (Homans
et al., 2019). A comparable study utilizing a different method for assessing the mental
model of drivers also found a better depiction of levels of automated driving consisting
of three levels and not six (Zacherl, Radlmayr, & Bengler, 2020). Other publications call
for only two levels (driving vs. riding) (Seppelt et al., 2019), but the mismatch between
the understanding of non-expert drivers and the expert taxonomy could harbor potential
problems and should be addressed. While the overall dynamic of the topic of automated
driving is calling for immediate answers, a more critical view on underlying assumptions is
recommended. Human factors research on automated driving should be wary of evaluating
and designing systems based on a taxonomy derived from a technical point of view but
focus on actual user needs and expectations for vehicle automation.

Regarding a contraction of the various effects on take-over performance looking at
situational effects only in perspective with the taxonomy, no limits concerning traffic
situations are specified. The ODD allows a classification of functions and resulting
responsibilities of drivers between levels of automation, but falls short of considering
human factors issues of the take-over in CAD. Following the results from Experiments 1, 2
and the modeling approach, the fundamental conflict of interest concerning take-overs in
CAD is highlighted again. While drivers show interest in CAD over PAD (Madigan, Louw,
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& Merat, 2018) and the engagement in NDRTs, they are required to take-over in situations
that cannot be managed by the automation but apparently play the most dominant role
on the take-over performance themselves. Compared to the performance of manual
drivers, more time and assistance might be required to reach the performance of manual
driving in complex situations (Vogelpohl, Kühn, Hummel, Gehlert, & Vollrath, 2018). Taking
long-term effects into account, participants could experience very few critical situations,
adapting to take-overs being uncritical transitions and potentially losing the ability to be
the fallback in critical situations. Or, participants could often be the fallback in critical
situations, rather calling for the addition of minimal risk maneuvers (level 4) compared to
CAD following the crash rate in Experiments 1 and 2.

A future framework or taxonomy including CAD as level of automated driving should
integrate a critical view on situational effects to allow a successful introduction of CAD.

10.3 Summary

Research on take-over performance in the last years has provided a very valuable bench-
mark for findings and results of this work. The results from Experiments 1-4 and the
modeling approach are generally in line with findings depicted in the literature overview in
Chapter 2.

The TOT in CAD is highly influenced by the factor situation. Depending on the criticality
and complexity of the specific situation, the TOT showed significant differences. More
importantly, a period of prolonged automated diving - in this case 30 minutes - showed no
significant changes concerning the TOT. All quality aspects of the take-over in addition
with the subjective ratings were also unaffected comparing 5 and 30 minutes of automated
driving without any NDRTs. Contrary, the highly significant effect of situation on take-over
performance was also reported for accelerations, TTC and subjective ratings. Considering
the measures of driver state comparing 5 and 30 minutes, significant differences were
found for PERCLOS as measure of drowsiness and the changes of the COP in the seat
and backrest. While appropriate measures reliably detect changes in the driver state,
these do not result in different take-over performances. Regarding the results for NDRTs, a
very similar conclusion can be drawn. "The influence of different criticality of the take-over
situations is revealed and is consisted with findings from the overall scope of research.
Eye-tracking and seat pressure mats offer a promising way of assessing changes in driver
availability even though, in this experiment, they did not result in changes of the take-over
performance accordingly" (Radlmayr, Fischer, & Bengler, 2019).

The joint modeling approach underlined the findings. TOT is highly affected by the
factor situation, moderated by PEOR and age to a minor degree and significant amounts
of variance were accounted for by the random effects structure. The highly significant
influence of situation can be observed for the TTC and the accelerations alike, including
the traffic density for TTC and lateral accelerations. In addition, PEOR influences the
TOT and TTC, in part motivating the research questions of Experiments 3 and 4. Most
importantly, the introduction of a random effects structure based on three or four take-
overs per participants revealed differentiated findings concerning individual differences.
TOT depends on the idiosyncratic, individual character of the drivers almost doubling the
Pseudo-R2 value of the model fit with/without random effects. In addition, the tendency to
brake is highly dependent on individual participants, while the TTC and lateral accelerations
show little to no effect from idiosyncratic effects in this work.

143



10.4 Future work and recommendations

Future modeling of take-over performance should include random effects structures
based on more take-overs to allow a better understanding of individual differences regard-
ing limits of human performance for safety relevant take-overs. Aspects benefiting from
more complex modeling approaches fostering a safety-relevant prediction quality include
perceptual motor-skills (Mole et al., 2019) and guided transitions in case safety-relevant
stages of re-entering manual control are missed (Vogelpohl & Vollrath, 2019).

Based on the significant results for PEOR and the conflict between engaging in NDRTs
and visual attention being key to situation awareness, a possible solution was evaluated
looking at peripheral monitoring. A visual NDRT was moved to the head-up display to allow
peripheral monitoring of the surrounding traffic situation. While monitoring requests could
increase the perception and understanding of the situation even during automated driving,
they are in direct opposition of the definition of CAD where visual NDRTs are allowed. The
possibility of peripheral monitoring was hypothesized to offer a potential solution to this
conflict of interest. Results showed that situation awareness was degraded by engaging in
a visual NDRT. The possibility of peripheral monitoring could not compensate this loss
of situation awareness. Similar to Experiments 1 and 2, these differences in situation
awareness did not lead to differences in take-over performance.

Regarding Experiment 4 on optimizing the HMI for a take-over, no differences in take-
over performance were recorded again. Contrary, subjective ratings, such as usefulness,
satisfaction, perceived safety and usability greatly benefited from introducing more infor-
mation during the take-over compared to a generic HMI. In addition, the PEOR rate during
the take-over was significantly higher for the group with the head-up display compared to
the group with the generic HMI.

10.4 Future work and recommendations

Concluding, the overall findings suggest that take-over performance is highly depended on
the specific situation at hand while state changes exert no or limited effects following the
empirical basis of this work. Experiment 4 opened the door to recommending a stronger
focus on the experience of a take-over for drivers in contrast to considering maximal
human performance when drivers are the fallback. This would call for a stronger focus
on e.g. interruption management to increase acceptance of automated driving (Naujoks,
Wiedemann, & Schömig, 2017; Vogelpohl, Gehlmann, & Vollrath, 2019), adjusting trust in
automation to avoid over-reliance (Radlmayr, Weinbeer, Löber, Farid, & Bengler, 2018;
Körber, Baseler, & Bengler, 2018) or contemplating imperfect automation to reduce
mental and physical demands (de Winter, Stanton, Price, & Mistry, 2016). The remaining
challenge of drivers being fallback in situations too demanding for the automation must
be addressed by various methods. Multi-stage concepts including pre-alerts have shown
clear support of driver self-regulation and achieved high usability and acceptance ratings
(Wandtner, 2018). The feedback of automation uncertainty and system states revealed an
improvement of human-automation interaction (Beller, Heesen, & Vollrath, 2013) following
fundamental guidelines from Norman (1990).

An application of CAD in real vehicles and the specific function characteristic should
incorporate a situation recognition system. The technical challenges of detecting a system
limit and issuing a RtI with time budgets relevant for feasible take-overs in CAD are highly
demanding. Regardless, the dominant effect of the situation on the take-over performance
in combination with findings from optimizing the HMI based on additional situational
information calls for a function differentiating between situations. In case a situation
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reflects a system limit but is likely too critical and complex for drivers taking over, issuing a
RtI seems unreasonable. While the implementation of compulsory minimal risk maneuvers
denotes Level 4 systems, CAD systems should feature risk reducing maneuvers in highly
critical situations. Overall, CAD features great benefits for drivers gaining time to engage
in NDRTs of their choice in case the automation is available. The majority of take-overs is
presumably in uncritical situations, allowing drivers to successfully assume their role as
fallback. Nonetheless, the overlap between situations too critical for the automation and
drivers must be regarded prior to the future application of CAD systems.

In addition, appropriate training of drivers concerning their changing and new role
in automated vehicles provided benefits regarding performance optimal trust (Payre,
Cestac, Dang, Vienne, & Delhomme, 2017; Forster, Hergeth, Naujoks, Beggiato, et al.,
2019). Limitations concerning the underlying taxonomy and the definition of CAD can
be addressed by a suitable training process. System-experienced drivers need to be
considered for future application of CAD integrating long-term effects in the development
process to avoid over-estimating first-exposure-effects (Stapel, Mullakkal-Babu, & Happee,
2019). The introduction of future technologies such as augmented reality in displays
showed improvements in this work and in Langlois and Soualmi (2016). Underlying
principle in this thesis was the deactivation of system support during a take-over to clearly
analyze maximal human performance. Following the take-over process depicted in Figure
2.2, support of the driver during the take-over process is possible until manual control is
firmly established. Potential applications should incorporate basic interaction principles for
cooperative human-machine systems (Bengler, Zimmermann, Bortot, Kienle, & Damböck,
2012). Cooperative driving, understood as arbitrated, mutual control of the DDT by both
the human and the automation has shown great potential concerning human factors’
issues of transitioning between different levels of automation and manual driving (Fisher,
Lohrenz, Moore, Nadler, & Pollard, 2016). While results suggest that drivers prefer shared
control when an intervention is necessary (Mok, Johns, Gowda, Sibi, & Ju, 2016) and if
they are primed timely (Kalb et al., 2018), the paradigm of cooperative control is not within
the scope of this thesis.

Concluding the limitations and a critical discussion of findings, the consequences from
an introduction of CAD on human performance need to be carefully considered to avoid
seeing higher stages or levels of vehicle automation as universally beneficial, which is not
the case (Onnasch, Wickens, Li, & Manzey, 2014). In contrast to high hopes in research
and industry concerning the introduction of CAD, great caution should be exercised when
assuming that drivers can "take-over" in case complex automated vehicles brake down
(Kyriakidis et al., 2019).

10.5 Key messages

The thesis provides a thorough analysis of existing literature on CAD. Based on the
derivation of research questions and their evaluation in four experiments and a modeling
approach, effects on take-over performance regarding driver state changes and the
optimization of the HMI were assessed and critically discussed. The seven most relevant
key messages derived from this work are listed here.

This thesis offers the quantification of effects on take-over performance such as situ-
ational aspects and driver state. While these findings are embedded in a wide range of
results from literature, for the first time, the individual, idiosyncratic contribution of drivers
on measures such as TOT, TTC and accelerations is quantified as well. Based on the
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findings, the HMI for the take-over in CAD is optimized. Results call for a stronger focus
on non-safety related aspects of human factors of CAD to foster a successful introduction
in the near future.

1. State changes due to the paradigm change of CAD, engagement in NDRTs and
longer periods of automated driving can be quantified using eye-tracking and seat
pressure mats but have a minor or no effect on take-over performance.

2. Nonetheless, the driver state should be assessed in CAD to avoid precluded state
changes like falling asleep and to detect preliminary stages of these such as high
levels of drowsiness.

3. Time and quality aspects of take-over performance are highly depended on the
specific situation in which the transition is experienced.

4. This is in line with the general consensus in the literature and the take-over situation
can be considered to be of supreme importance in the assessment of safety and
comfort of the take-over.

5. Individual differences between drivers exert substantial effects on TOT and braking
behavior and should be regarded for the design and evaluation of CAD.

6. Due to the dominant effect of the take-over situation, drivers need to be supported
by providing additional information on the situation at hand prior and during the
transition process.

7. Focus should be put on maximizing the experience and subjective ratings of the take-
over rather than addressing the limits of human performance which are inherently
dependent on the specific situation.
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A Appendix for Chapter 5 "The effects of prolonged
conditionally automated driving on driver state and
take-over performance"
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Figure A.1: Plot of the point estimates for TOT revealing the significant effect for traffic
density and situation and their interaction.
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Figure A.2: Plot of the point estimates for the longitudinal acceleration revealing the
significant effect for situation and the interaction effects.
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A Appendix for Chapter 5 "The effects of prolonged conditionally automated driving on
driver state and take-over performance"

Table A.1: Overview of test results on normal distribution and homogeneity of variance for
the TOT.

Measure Shapiro-Wilk Levene Fmax

Take-over time

Groups CAD0: W = .859, p < .001,
CAD20: W = .962, p = .07

F (1, 115) = .19,
p = .67

-

Situations Crash: W = .960, p = .06,
Construction: W = .892, p < .001,
Crossing: W = .954, p = .03

- (within) -

Durations 5A: W = .903, p < .001,
5B: W = .904, p < .001,
30: W = .908, p < .001

- (within) -

Table A.2: Overview of test results on normal distribution and homogeneity of variance for
the longitudinal accelerations.

Measure Shapiro-Wilk Levene Fmax

Longitudinal acceleration

Groups CAD0: W = .783, p < .001, CAD20:
W = .792, p < .001, Manual:
W = .816, p < .001

F (2, 167) =
.55, p = .58

-

Situations Crash: W = .810, p < .001,
Construction: W = .777, p < .001,
Crossing: W = .714, p < .001

- (within) -

Durations 5A: W = .822, p < .001, 5B:
W = .803, p < .001, 30:
W = .795, p < .001

- (within) -

Table A.3: Overview of test results on normal distribution and homogeneity of variance for
the lateral accelerations.

Measure Shapiro-Wilk Levene Fmax

Lateral acceleration

Groups CAD0: W = .956, p = .03, CAD20:
W = .942, p < .01, Manual:
W = .921, p < .01

F (2, 167) =
5.92, p < .01

2.2

Situations Crash: W = .939, p < .01, Construction:
W = .837, p < .001, Crossing:
W = .781, p < .001

- (within) -

Durations 5A: W = .951, p = .02, 5B:
W = .952, p = .03, 30:
W = .907, p < .001

- (within) -
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Figure A.3: Plot of the point estimates for the lateral acceleration revealing the significant
effect for situation and the factor traffic density in the right plot.
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Figure A.4: Plot of the point estimates for the lateral acceleration revealing the significant
effect for traffic density.

Table A.4: Overview of test results on normal distribution and homogeneity of variance for
the TTC.

Measure Shapiro-Wilk Levene Fmax

Lateral acceleration

Groups CAD0: W = .972, p = .18, CAD20:
W = .906, p < .001, Manual:
W = .899, p < .01

F (2, 148) =
.71, p = .49

-

Situations Crash: W = .926, p = .002,
Construction: W = .942, p = .05,
Crossing: W = .962, p = .08

- (within) -

Durations 5A: W = .935, p = .008, 5B:
W = .928, p = .005, 30:
W = .964, p = .14

- (within) -
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driver state and take-over performance"

Table A.5: Overview of test results on normal distribution and homogeneity of variance for
the subjective ratings.

Measure Shapiro-Wilk Levene Fmax

Subjective criticality

Groups CAD0: W = .947, p = .01, CAD20:
W = .957, p = .04, Manual:
W = .931, p < .01

F (2, 168) =
.43, p = .65

-

Situations Crash: W = .924, p < .01, Construction:
W = .943, p < .01, Crossing:
W = .937, p < .01

- (within) -

Subjective complexity

Groups CAD0: W = .955, p = .03, CAD20:
W = .973, p = .23, Manual:
W = .967, p = .14

F (2, 168) =
2.04, p = .13

-

Situations Crash: W = .968, p = .14, Construction:
W = .948, p = .02, Crossing:
W = .962, p = .07

- (within) -

Subjective comfort

Groups CAD0: W = .919, p < .001, CAD20:
W = .928, p < .01, Manual: -

F (1, 115) =
1.12, p = .29

-

Situations Crash: W = .934, p = .02, Construction:
W = .923, p = .01, Crossing:
W = .924, p = .01

- (within) -

Subjective time budget

Groups CAD0: W = .920, p < .001, CAD20:
W = .949, p = .02, Manual:
W = .916, p = .001

F (2, 167) =
.60, p = .55

-

Situations Crash: W = .953, p = .03, Construction:
W = .924, p = .002, Crossing:
W = .915, p < .001

- (within) -
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Table A.6: Overview of test results on normal distribution and homogeneity of variance for
the eye-tracking measures during automated driving.

Measure Shapiro-Wilk Levene Fmax

HGD

Groups CAD0: W = .954, p = .04, CAD20:
W = .986, p = .79

F (1, 106) =
.07, p = .79

-

Duration 5A: W = .959, p = .18, 5B:
W = .954, p = .15, 30:
W = .975, p = .58

- (within) -

PEOR

Groups CAD0: W = .906, p < .001, CAD20:
W = .780, p < .001

F (1, 106) =
.20, p = .65

-

Duration 5A: W = .887, p = .001, 5B:
W = .773, p < .001, 30:
W = .870, p < .001

- (within) -

PERCLOS

Groups CAD0: W = .512, p < .001, CAD20:
W = .533, p < .001

F (1, 104) =
.65, p = .42

-

Duration 5A: W = .565, p < .001, 5B:
W = .513, p < .001, 30:
W = .592, p < .001

- (within) -

Blink duration

Groups CAD0: W = .880, p < .001, CAD20:
W = .927, p < .01

F (1, 105) =
.01, p = .93

-

Duration 5A: W = .879, p < .001, 5B:
W = .948, p = .10, 30:
W = .872, p < .001

- (within) -

Blink frequency

Groups CAD0: W = .868, p < .001, CAD20:
W = .917, p < .01

F (1, 105) =
1.48, p = .23

-

Duration 5A: W = .881, p < .001, 5B:
W = .844, p < .001, 30:
W = .897, p < .01

- (within) -
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Figure A.5: Plot of the point estimates for the TTC revealing the significant effects for
situation and the factor traffic density in the right plot.

Table A.7: Overview of test results on normal distribution and homogeneity of variance for
the measures from the seat pressure mats.

Measure Shapiro-Wilk Levene Fmax

COP – seat

Groups CAD0: W = .885, p < .001, CAD20:
W = .783, p < .001

F (1, 109) =
.22, p = .64

-

Duration 5A: W = .867, p < .001, 5B:
W = .746, p < .001, 30:
W = .941, p = .05

- (within) -

COP – backrest

Groups CAD0: W = .932, p < .01, CAD20:
W = .727, p < .001

F (1, 109) =
.15, p = .70

-

Duration 5A: W = .977, p = .62, 5B:
W = .901, p < .01, 30:
W = .893, p < .01

- (within) -

Contact area – seat

Groups CAD0: W = .898, p < .001, CAD20:
W = .718, p < .001

F (1, 103) =
.49, p = .49

-

Duration 5A: W = .851, p < .001, 5B:
W = .802, p < .001, 30:
W = .785, p < .001

- (within) -

Contact area – backrest

Groups CAD0: W = .858, p < .001, CAD20:
W = .816, p < .001

F (1, 104) =
.94, p = .33

-

Duration 5A: W = .929, p = .02, 5B:
W = .779, p < .001, 30:
W = .875, p < .001

- (within) -
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Table B.1: Results from checking all predictors for multicollinearity. The string "lastmin"
was abbreviated to "lm". Significant associations are colored.

Predictor Predictor Ass. Type Obs.
pairs

age sex 0.15 ANOVA 299
years_driving sex 0.16 ANOVA 299
km_peryear sex 0.28 Cramer’s V 299
subj_drivingstyle sex 0.22 ANOVA 299
situation sex 0.00 Cramer’s V 299
ndrt sex 0.11 Cramer’s V 299
instruction sex 0.00 Cramer’s V 299
traffic sex 0.03 ANOVA 299
hgd_lm sex 0.02 ANOVA 290
hgd_lm2_perc sex 0.06 ANOVA 276
peor_lm sex 0.13 ANOVA 285
peor_10s sex 0.07 ANOVA 299
peor_lm2_perc sex 0.02 ANOVA 271
blinkdur_lm sex 0.20 ANOVA 266
blinkdur_lm2_perc sex 0.11 ANOVA 252
blinkfrequ_lm sex 0.10 ANOVA 266
blinkfrequ_lm2_perc sex 0.05 ANOVA 253
copseat_lm2_perc sex 0.02 ANOVA 299
copback_lm2_perc sex 0.02 ANOVA 299

years_driving age 0.96 Corr. 299
km_peryear age 0.46 ANOVA 299
subj_drivingstyle age -0.20 Corr. 299
situation age 0.04 ANOVA 299
ndrt age 0.08 ANOVA 299
instruction age 0.04 ANOVA 299
traffic age -0.20 Corr. 299
hgd_lm age 0.17 Corr. 290
hgd_lm2_perc age 0.15 Corr. 276
peor_lm age 0.02 Corr. 285
peor_10s age 0.06 Corr. 299
peor_lm2_perc age -0.04 Corr. 271
blinkdur_lm age -0.03 Corr. 266
blinkdur_lm2_perc age -0.11 Corr. 252
blinkfrequ_lm age -0.21 Corr. 266
blinkfrequ_lm2_perc age -0.12 Corr. 253
copseat_lm2_perc age -0.03 Corr. 299
copback_lm2_perc age 0.01 Corr. 299

km_peryear years_driving 0.46 ANOVA 299
subj_drivingstyle years_driving -0.18 Corr. 299
situation years_driving 0.03 ANOVA 299
ndrt years_driving 0.07 ANOVA 299
instruction years_driving 0.03 ANOVA 299
traffic years_driving -0.13 Corr. 299
hgd_lm years_driving 0.18 Corr. 290
hgd_lm2_perc years_driving 0.13 Corr. 276
peor_lm years_driving 0.01 Corr. 285
peor_10s years_driving 0.04 Corr. 299
peor_lm2_perc years_driving -0.02 Corr. 271
blinkdur_lm years_driving -0.03 Corr. 266
blinkdur_lm2_perc years_driving -0.08 Corr. 252
blinkfrequ_lm years_driving -0.22 Corr. 266
blinkfrequ_lm2_perc years_driving -0.13 Corr. 253
copseat_lm2_perc years_driving -0.02 Corr. 299
copback_lm2_perc years_driving -0.00 Corr. 299

subj_drivingstyle km_peryear 0.29 ANOVA 299
situation km_peryear 0.00 Cramer’s V 299
ndrt km_peryear 0.06 Cramer’s V 299
instruction km_peryear 0.03 Cramer’s V 299
traffic km_peryear 0.16 ANOVA 299
hgd_lm km_peryear 0.07 ANOVA 290
hgd_lm2_perc km_peryear 0.15 ANOVA 276
peor_lm km_peryear 0.12 ANOVA 285
peor_10s km_peryear 0.15 ANOVA 299
peor_lm2_perc km_peryear 0.09 ANOVA 271
blinkdur_lm km_peryear 0.17 ANOVA 266
blinkdur_lm2_perc km_peryear 0.15 ANOVA 252
blinkfrequ_lm km_peryear 0.28 ANOVA 266
blinkfrequ_lm2_perc km_peryear 0.12 ANOVA 253
copseat_lm2_perc km_peryear 0.08 ANOVA 299
copback_lm2_perc km_peryear 0.14 ANOVA 299

situation subj_drivingstyle 0.10 ANOVA 299
ndrt subj_drivingstyle 0.19 ANOVA 299
instruction subj_drivingstyle 0.10 ANOVA 299
traffic subj_drivingstyle 0.02 Corr. 299
hgd_lm subj_drivingstyle -0.01 Corr. 290
hgd_lm2_perc subj_drivingstyle -0.07 Corr. 276
peor_lm subj_drivingstyle -0.13 Corr. 285
peor_10s subj_drivingstyle -0.09 Corr. 299
peor_lm2_perc subj_drivingstyle -0.04 Corr. 271
blinkdur_lm subj_drivingstyle 0.04 Corr. 266
blinkdur_lm2_perc subj_drivingstyle 0.04 Corr. 252
blinkfrequ_lm subj_drivingstyle -0.06 Corr. 266
blinkfrequ_lm2_perc subj_drivingstyle -0.05 Corr. 253
copseat_lm2_perc subj_drivingstyle -0.12 Corr. 299
copback_lm2_perc subj_drivingstyle -0.08 Corr. 299

ndrt situation 0.28 Cramer’s V 299
instruction situation 0.24 Cramer’s V 299
traffic situation 0.31 ANOVA 299
hgd_lm situation 0.19 ANOVA 290
hgd_lm2_perc situation 0.16 ANOVA 276
peor_lm situation 0.15 ANOVA 285
peor_10s situation 0.21 ANOVA 299
peor_lm2_perc situation 0.12 ANOVA 271
blinkdur_lm situation 0.14 ANOVA 266
blinkdur_lm2_perc situation 0.09 ANOVA 252
blinkfrequ_lm situation 0.04 ANOVA 266
blinkfrequ_lm2_perc situation 0.05 ANOVA 253
copseat_lm2_perc situation 0.18 ANOVA 299
copback_lm2_perc situation 0.08 ANOVA 299

instruction ndrt 0.32 Cramer’s V 299
traffic ndrt 0.54 ANOVA 299
hgd_lm ndrt 0.34 ANOVA 290
hgd_lm2_perc ndrt 0.23 ANOVA 276
peor_lm ndrt 0.82 ANOVA 285
peor_10s ndrt 0.79 ANOVA 299
peor_lm2_perc ndrt 0.63 ANOVA 271
blinkdur_lm ndrt 0.28 ANOVA 266
blinkdur_lm2_perc ndrt 0.20 ANOVA 252
blinkfrequ_lm ndrt 0.57 ANOVA 266
blinkfrequ_lm2_perc ndrt 0.56 ANOVA 253
copseat_lm2_perc ndrt 0.25 ANOVA 299
copback_lm2_perc ndrt 0.13 ANOVA 299

traffic instruction 0.33 ANOVA 299
hgd_lm instruction 0.11 ANOVA 290
hgd_lm2_perc instruction 0.01 ANOVA 276
peor_lm instruction 0.17 ANOVA 285
peor_10s instruction 0.22 ANOVA 299
peor_lm2_perc instruction 0.03 ANOVA 271
blinkdur_lm instruction 0.09 ANOVA 266
blinkdur_lm2_perc instruction 0.01 ANOVA 252
blinkfrequ_lm instruction 0.07 ANOVA 266
blinkfrequ_lm2_perc instruction 0.00 ANOVA 253
copseat_lm2_perc instruction 0.06 ANOVA 299
copback_lm2_perc instruction 0.12 ANOVA 299

hgd_lm traffic -0.08 Corr. 290
hgd_lm2_perc traffic -0.03 Corr. 276
peor_lm traffic -0.17 Corr. 285
peor_10s traffic -0.21 Corr. 299
peor_lm2_perc traffic -0.17 Corr. 271
blinkdur_lm traffic -0.08 Corr. 266
blinkdur_lm2_perc traffic 0.06 Corr. 252
blinkfrequ_lm traffic 0.02 Corr. 266
blinkfrequ_lm2_perc traffic -0.03 Corr. 253
copseat_lm2_perc traffic -0.08 Corr. 299
copback_lm2_perc traffic -0.09 Corr. 299

hgd_lm2_perc hgd_lm 0.68 Corr. 276
peor_lm hgd_lm -0.36 Corr. 285
peor_10s hgd_lm -0.25 Corr. 290
peor_lm2_perc hgd_lm -0.18 Corr. 271
blinkdur_lm hgd_lm -0.18 Corr. 266
blinkdur_lm2_perc hgd_lm -0.14 Corr. 252
blinkfrequ_lm hgd_lm -0.06 Corr. 266
blinkfrequ_lm2_perc hgd_lm -0.11 Corr. 252
copseat_lm2_perc hgd_lm 0.05 Corr. 290
copback_lm2_perc hgd_lm -0.05 Corr. 290
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peor_lm hgd_lm2_perc -0.37 Corr. 271
peor_10s hgd_lm2_perc -0.23 Corr. 276
peor_lm2_perc hgd_lm2_perc -0.39 Corr. 271
blinkdur_lm hgd_lm2_perc -0.16 Corr. 254
blinkdur_lm2_perc hgd_lm2_perc -0.17 Corr. 252
blinkfrequ_lm hgd_lm2_perc -0.07 Corr. 254
blinkfrequ_lm2_perc hgd_lm2_perc -0.16 Corr. 252
copseat_lm2_perc hgd_lm2_perc 0.07 Corr. 276
copback_lm2_perc hgd_lm2_perc 0.01 Corr. 276

peor_10s peor_lm 0.83 Corr. 285
peor_lm2_perc peor_lm 0.75 Corr. 271
blinkdur_lm peor_lm 0.32 Corr. 266
blinkdur_lm2_perc peor_lm 0.18 Corr. 252
blinkfrequ_lm peor_lm 0.35 Corr. 266
blinkfrequ_lm2_perc peor_lm 0.40 Corr. 252
copseat_lm2_perc peor_lm 0.07 Corr. 285
copback_lm2_perc peor_lm 0.02 Corr. 285

peor_lm2_perc peor_10s 0.67 Corr. 271
blinkdur_lm peor_10s 0.30 Corr. 266
blinkdur_lm2_perc peor_10s 0.15 Corr. 252
blinkfrequ_lm peor_10s 0.28 Corr. 266
blinkfrequ_lm2_perc peor_10s 0.37 Corr. 253
copseat_lm2_perc peor_10s 0.11 Corr. 299
copback_lm2_perc peor_10s 0.05 Corr. 299

blinkdur_lm peor_lm2_perc 0.19 Corr. 254
blinkdur_lm2_perc peor_lm2_perc 0.11 Corr. 252
blinkfrequ_lm peor_lm2_perc 0.41 Corr. 254
blinkfrequ_lm2_perc peor_lm2_perc 0.54 Corr. 252
copseat_lm2_perc peor_lm2_perc 0.08 Corr. 271
copback_lm2_perc peor_lm2_perc 0.03 Corr. 271

blinkdur_lm2_perc blinkdur_lm 0.69 Corr. 252
blinkfrequ_lm blinkdur_lm 0.15 Corr. 266
blinkfrequ_lm2_perc blinkdur_lm 0.19 Corr. 252
copseat_lm2_perc blinkdur_lm -0.04 Corr. 266
copback_lm2_perc blinkdur_lm 0.10 Corr. 266

blinkfrequ_lm blinkdur_lm2_perc 0.18 Corr. 252
blinkfrequ_lm2_perc blinkdur_lm2_perc 0.20 Corr. 252
copseat_lm2_perc blinkdur_lm2_perc -0.10 Corr. 252
copback_lm2_perc blinkdur_lm2_perc 0.04 Corr. 252

blinkfrequ_lm2_perc blinkfrequ_lm 0.69 Corr. 252
copseat_lm2_perc blinkfrequ_lm 0.03 Corr. 266
copback_lm2_perc blinkfrequ_lm -0.02 Corr. 266

copseat_lm2_perc blinkfrequ_lm2_perc 0.14 Corr. 253
copback_lm2_perc blinkfrequ_lm2_perc 0.02 Corr. 253

copback_lm2_perc copseat_lm2_perc -0.08 Corr. 299
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Cook's distance for participants for TOT
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Figure B.1: Plot of the Cook’s distances for the final model of the TOT. Participants 19, 25,
30 and 40 were identified as influential points.
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DFBeta−values for participants for TOT
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Figure B.2: Plot of the DFBetas for the TOT.
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Changes with/without participant in % for TOT
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Figure B.3: Plot of the "percentage of change [...] as the absolute difference between the
parameter estimate both including and excluding the higher-level unit" (Nieuwenhuis et al.,
2012) for the TOT. The higher level unit in this work is the individual participant.
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TTC − Cook's distance for participants
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Figure B.4: Plot of the Cook’s distances for the final model of the TTC. Participants 10, 21
and 24 were identified as influential points.
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TTC − DFBeta−values for participants
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Figure B.5: Plot of the DFBetas for the TTC.
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TTC − Changes with/without participant in %
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Figure B.6: Plot of "the percentage of change [...] as the absolute difference between the
parameter estimate both including and excluding the higher-level unit" (Nieuwenhuis et al.,
2012) for the TTC. The higher level unit in this work is the individual participant.
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Table C.1: Overview of test results on normal distribution and homogeneity of variance for
the objective take-over performance and the eye-tracking data.

Dependent
Variable

Shapiro-Wilk Levene Fmax

Take-over time
(TOT)

No HUD: W = .936, p = .03, With HUD:
W = .934, p = .05, Construction Site:
W = .948, p = .01, Tight Curve:
W = .932, p = .03

F (1, 69) =
.06, p = .81

-

Lateral
acceleration

No HUD: W = .947, p = .06, With HUD:
W = .854, p < .01, Construction Site:
W = .918, p < .01, Tight Curve:
W = .908, p < .01

F (1, 78) =
2.10, p = .15

-

Standard
deviation of
lateral position
(SDLP)

No HUD: W = .595, p < .001, With
HUD: W = .479, p < .001, Construction
Site: W = .514, p < .001, Tight Curve:
W = .566, p < .001

F (1, 72) =
2.55, p = .11

-

Percentage
eyes on road
(PEOR)

No HUD: W = .967, p = .42, With HUD:
W = .957, p = .19, Construction Site:
W = .973, p = .56, Tight Curve:
W = .956, p = .19

F (1, 64) =
.47, p = .49

-

Percentage
eyes on
instrument
cluster (PEOIC)

No HUD: W = .926, p = .03, With HUD:
W = .718, p < .01, Construction Site:
W = .890, p < .01, Tight Curve:
W = .832, p < .01

F (1, 64) =
2.74, p = .10

-
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Table C.2: Overview of test results on normal distribution and homogeneity of variance for
the subjective ratings of the take-over situations.

Dependent
Variable

Shapiro-Wilk Levene Fmax

Criticality No HUD: W = .819, p < .001, With HUD:
W = .846, p < .001, Construction Site:
W = .890, p < .001, Tight Curve:
W = .745, p < .001

F (1, 78) =
4.60, p = .04

2.5

Complexity No HUD: W = .840, p < .001, With HUD:
W = .880, p < .001, Construction Site:
W = .880, p < .001, Tight Curve:
W = .808, p < .001

F (1, 78) =
3.50, p = .07

-

Time Budget No HUD: W = .816, p < .001, With HUD:
W = .767, p < .001, Construction Site:
W = .858, p < .001, Tight Curve:
W = .691, p < .001

F (1, 78) =
1.16, p = .28

-

Obviousness No HUD: W = .840, p < .001, With HUD:
W = .781, p < .001, Construction Site:
W = .690, p < .001, Tight Curve:
W = .872, p < .001

F (1, 78) =
12.62, p <
.001

1.9

Table C.3: Overview of test results on normal distribution and homogeneity of variance for
the subjective ratings of the HMI after each situation.

Dependent
Variable

Shapiro-Wilk Levene Fmax

Usefulness No HUD: W = .875, p < .001, With HUD:
W = .855, p < .001, Construction Site:
W = .895, p < .01, Tight Curve:
W = .879, p < .001

F (1, 78) =
5.65, p = .02

2.2

Satisfaction No HUD: W = .905, p < .01, With HUD:
W = .732, p < .001, Construction Site:
W = .874, p < .001, Tight Curve:
W = .898, p < .01

F (1, 78) =
3.90, p = .05

-
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Table C.4: Overview of test results on normal distribution and homogeneity of variance for
the subjective ratings of the HMI in the final questionnaire.

Dependent
Variable

Shapiro-Wilk Levene Fmax

Safety No HUD: W = .930, p = .16, With HUD:
W = .933, p = .17

F (1, 38) =
5.34, p = .03

2.3

Usability No HUD: W = .933, p = .17, With HUD:
W = .895, p = .03

F (1, 38) =
5.87, p = .02

2.7

Intention to
use

No HUD: W = .909, p = .06, With HUD:
W = .916, p = .08

F (1, 38) =
4.49, p = .04

1.9
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