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Abstract—Generating realistic motion in a motion-based
(dynamic) driving simulator is challenging due to the limited
workspace of the motion system of the simulator compared
to the motion range of the simulated vehicle. Motion Cueing
Algorithms (MCAs) render accelerations by controlling the
motion system of the simulators to provide the driver with a
realistic driving experience. Commonly used methods such as
Classical Washout-based MCA (CW-MCA) typically achieves
suboptimal results due to scaling and filtering, which results
in an inefficient usage of the workspace. The Model Predictive
Control-based MCA (MPC-MCA) has been shown to achieve
superior results and more efficient workspace use. However,
it’s performance is in practice constrained due to the com-
putationally expensive operations and the requirement of an
accurate prediction of future vehicle states. Finally, the Optimal
Control (OC) has been shown to provide optimal cueing in
an open-loop setup wherein the precalculated control signals
are re-played to the driver. However, OC cannot be used in
real-time with the driver-in-the-loop. Our work introduces a
novel Neural Network-based MCA (NN-MCA), which is trained
to imitate the behavior of the OC. After training, the NN-
MCA provides an approximated model of the OC, which can
run in real-time with the driver in-the-loop, while achieving
similar quality. The experiments demonstrate the potential of
this approach through objective evaluations of the generated
motion-cues on the simulator model and the real simulator. A
demonstration video for the performance comparison of the
CW-MCA, Optimal-Control-based MCA (OC-MCA) and our
proposed method is available at http://go.tum.de/708350.

Index Terms—Neural Networks, Imitation Learning, Optimal
Control, Motion Cueing Algorithms, Driving Simulators

I. INTRODUCTION

Driving simulators have become an important part of the
product development cycle in the automotive industry. They
enable more cost-effective and shorter development processes
[1], [2], and provide safe, reproducible, and controlled envi-
ronments to assess, for example, the comfort of the driver
by conducting subjective experiments [3], [4]. Regarding
the benefits of the simulators, the automotive industry is
increasingly concentrating on replacing real vehicle studies
with driving simulations especially for validating the perfor-

mance of Advanced Driver Assistance Systems (ADAS) and
autonomous driving prototypes. In order to ensure the validity
of the driving simulator studies, the quality of the driving ex-
perience is of the utmost importance. In dynamic simulators,
the driving experience can be improved by reproducing the
virtual vehicle motion in the physical world by means of a
motion system.

However, reproducing the virtual motion with the simu-
lator’s motion system exactly (“one-to-one”) is in practice
impossible due to the constrained workspace of the motion
system, compared to the motion range of the simulated
vehicle, with which the driver can easily achieve high-
amplitude and long-lasting accelerations. Especially, in the
case of the long-lasting accelerations, only a limited amount
of the whole motion is reproducible, since workspace limits
can be exceeded in a couple of seconds. In order to achieve
realistic motion in driving simulators, control strategies called
Motion Cueing Algorithms (MCAs) were developed.

One of the most common strategies for motion-cueing is
the so-called washout-based MCA, such as Classical Washout
(CW) which has been used in flight simulators and later
in driving simulators [5]–[7]. This technique is based on
scaling and filtering the vehicle accelerations while applying
a washout filter which creates an active “pull” towards the
center of the workspace in order to avoid reaching the
workspace limits. The main advantage of this strategy is
the real-time capability and intuitive nature of tuning due
to its simple design, where each tuning parameter has a
physical interpretation. However, the main disadvantages are
a relatively low quality of motion cueing, inefficient use of
workspace due to scaling and filtering of inputs, and not
considering the workspace limits in the algorithm explicitly.

Dagdelen et.al. [8] proposed to use Model Predictive
Control (MPC) for motion-cueing in driving simulators. The
MPC iteratively minimizes the error between the future
predicted motion of the virtual vehicle and the simulator
while considering the constraints of the workspace. The
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optimizer solves the problem for N steps (also called “pre-
diction horizon”) and applies the M steps of the resulting
control sequence (also called “control horizon”). The main
advantages of MPC-based MCA (MPC-MCA) are that the
workspace limits and the future state of the simulator are
considered in the optimization. However, since the method is
computationally expensive, the method has to be constrained
or simplified in order to ensure real-time performance. Addi-
tionally, the method requires an accurate prediction of future
vehicle states which may not be available at run-time.

MCAs can also be used in an open-loop setup, where the
route is driven in advance, and the control commands for
the simulator are calculated offline accordingly. Afterward,
the calculated motions and the recorded vehicle motion in
the environment are replayed to the “driver” in the simu-
lator, which is now a passive observer. Since no real-time
interaction between the driver and the virtual environment is
possible, this setup is commonly used in studies that involve
autonomous vehicles. In case of MPC-MCA, the prediction
and control horizon can be selected as the length of the entire
trajectory since the whole trajectory of the driver is known a
priori. As a consequence, the problem turns into an Optimal
Control (OC) problem with constraints. The optimization
parameters can be tuned in advance in order to obtain the
best possible (optimal) motion-cueing while aiming to use
the maximum amount of the workspace. However, since
the objective function of OC specifically requires the entire
trajectory of the vehicle motion in advance, it cannot be used
for a driver-in-the-loop setup, where the driver is actively
involved in the driving task.

In the current work, we propose a novel approach to
motion cueing by utilizing a Neural Network-based MCA
(NN-MCA) which imitates an Optimal-Control-based MCA
(OC-MCA). Hence, the NN-MCA offers a real-time imple-
mentation of an OC-MCA, which would otherwise not be
able to operate in a driver-in-the-loop setup. In order to obtain
the NN-MCA the following procedure was followed: first, a
variety of maneuvers are collected from multiple drivers in
a static simulator. Then the optimal control signals (motion-
cues) for a 6-Degrees of Freedom (DoF) dynamic simulator
(Fig. 1a) are calculated offline by using the OC-MCA as
described above. Based on these results, the NN-MCA is
trained to map driver accelerations to optimal control signals
calculated by the OC-MCA. We showed that by learning
from OC, the resulting NN-MCA generates control signals
which are near-optimal for the whole trajectory. After the
training phase, NN-MCA can be used as a stand-alone MCA,
basically providing a real-time implementation of the OC-
MCA. Hence, the NN-MCA can function in a driver-in-the-
loop setup with a similar performance as the OC.

II. RELATED WORK

To the best of our knowledge, few works have been
published on the use of machine learning techniques in the
context of motion cueing. Mohammadi et.al. [10] showed that
the MPC-MCA can be improved by including a prediction
of the driver’s future accelerations. In order to approximate

(a) (b)

Fig. 1. (a) The dynamic simulator including the hexapod motion system
manufactured by Cruden [9] used in our work. (b) Illustration of the used
dynamic simulator with the inertial coordinate system F I of the simulator
and the body-fixed coordinate system FD (driver’s coordinate frame) in the
real world.

the driver’s behavior, a Recurrent Neural Network (RNN)
was trained with several driving maneuvers generated in
a virtual environment. Instead of using a constant future
reference, the trained RNN model provides MPC with the
future reference trajectories. Compared to a MPC-MCA with
constant reference, their approach reduces the Root Mean
Squared Error (RMSE) of sensation about 35% for a test
trajectory.

Rengifo et.al. [11] proposed to use a continuous-time
RNN, in order to solve the optimization problem of a
MPC-MCA by replacing the standard QP-Solver. Using this
method, a faster computation was achieved without a signifi-
cant performance drop. However, the resulting algorithm was
still constrained by the limitations of MPC.

Outside the field of motion cueing, there are a few ex-
amples where an MPC controller was imitated using deep
learning methods. Drgoňa et.al. [12] showed that a MPC
can be approximated by a neural network for the control
of heating, cooling, ventilation and air-conditioning systems
in buildings. Since the MPC requires extensive hardware and
software, a neural network-based MPC was deployed to low-
level hardware with real-time capability. Furthermore, Pan
et.al. [13] demonstrated a similar technique by imitating the
MPC in order to perform high-speed off-road autonomous
driving with AutoRally car [14]. However, our contribution
differs substantially from mentioned prior methods where
[12], [13] focused on learning from the MPC with a short
horizon for stability, the OC-MCA used in our work considers
the full trajectory as prediction horizon, in order to achieve
control signals which are optimal for the whole trajectory.
We solved the problem of accumulating error, which is a
known problem in supervised learning techniques for control
tasks [15], [16], by training the neural network for predicting
not only the acceleration commands for the simulator but
the full next state of the simulator. In order to reduce the
possible inconsistency between the network’s outputs we also
introduced an additional cost.

III. PRELIMINARIES

In this section we introduce the human motion perception,
motion cueing in driving simulators in general and the OC-
MCA in detail, which the NN-MCA was trained to imitate.
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A. Human Motion Perception

Human motion perception has a number of limitations that
can be exploited in motion cueing. One of these limitations
is that, in the absence of reliable visual information, the
vestibular system cannot differentiate between translation
and rotation. Since, instead of the effective inertial force,
the vestibular system detects the forces (so called specific
forces), which are the result of the superposition of the
gravitation and additional accelerations acting on the human
head [17]–[19]. The perceptional ambiguity is exploited when
we use slow rotations to provide the illusion of sustained
acceleration. Instead of accelerating the simulator we slowly
tilt the simulator. This is called tilt-coordination. Fig. 2
illustrates an example use of the tilt-coordination, where the
longitudinal acceleration and pitching of head position result
in the same resulting force detected by the vestibular system.
Subsequently, the same ambiguous specific force for both
cases is obtained. Similarly, the same ambiguous specific
force is generated when a lateral acceleration or a roll angle
is present.

Fig. 2. The illustration of specific forces acting on human body under
longitudinal acceleration (left) and rotation by angle an angle θ about y-axis
(right) (adapted from [17]).

Another limitation of the perceptual system is that there is
a certain threshold below which motions are not or not often
perceived. We can use these perceptual thresholds to move
the simulator without the driver feeling this motion. This,
for example, is used in tilt-coordination (using sub-threshold
rotations) [20] and prepositioning (using sub-threshold accel-
erations) [21], [22] to position the simulator to better utilize
the available workspace. In our work, we used thresholds for
the longitudinal, lateral and vertical specific forces (sFx,y,z)
of 0.17, 0.17 and 0.28m/s2 according to [18]. The threshold
values for the angular velocities around the corresponding
axes (ωx,y,z) are selected as 2.04 ◦/s for each DoF according
to [23].

B. Motion Cueing in Driving Simulators

In a typical driving simulator setup, the driver navigates a
virtual vehicle in a virtual environment by using the external
hardware such as steering wheel, gas and brake pedal. A
dynamic vehicle model calculates the motion of the simulated
vehicle corresponding to the driver commands, and - based
on these motions - the MCA generates the control signals
for the motion system of the simulator with respect to

the accelerations or specific forces of the vehicle model.
Finally, the driver receives visual, vestibular, and auditory
cues corresponding his/her virtual motion, which aim to
provide a realistic driving experience.

The goal of the MCA is to reproduce the specific forces,
which are generated in the virtual environment, in the phys-
ical world while convincing the driver for a real driving
experience. However, generating realistic motion cues is
especially challenging due to the limited workspace of the
motion system of the simulator. Even large simulators will
not be able to reproduce the vehicle motion exactly (“one-
to-one”) as that would require a motion space that is as large
as the space the simulated vehicle is moving in. Therefore,
a MCA adjusts the accelerations from the driving vehicle
model by considering the human perception of motion, and
at the same time, it applies strategies for using the workspace
efficiently. Since the MCA determines the physical motion
of the simulator, in the literature, it often takes only the
vestibular perception into account.

C. Optimal Control based Motion Cueing Algorithm

Optimal Control (OC) deals with finding the control strat-
egy for a dynamical system based on minimizing a cost
function under some system constraints [24]. In the context
of motion cueing, the cost function defines the error between
the virtual and the simulator’s motion by using the state-space
model of the simulator. Additionally, the simulator states and
control signals can also be penalized in order to regulate the
simulator’s motion and workspace usage. The problem of
OC-MCA for 6-DoF dynamic simulator can be written by
means of following basic formulation:

argmin
x1,x2,...xN

u1,u2,...uN

N∑
k=0

‖rk − rref,k‖Q + ‖xk‖R + ‖uk‖P

(1a)
subject to xk+1 = Axk +Buk (1b)

rk =
[
F (xk,uk) xφ,k xθ,k xψ,k

]T
(1c)

xact,k = G(xk) (1d)
xlow ≤ xk ≤ xup (1e)
xact,low ≤ xact,k ≤ xact,up (1f)

where x is an augmented state vector including the position
and velocity of the moving platform for each DoF defined
in the inertial coordinate system in the real world (see
Fig. 1b). The control signal u contains the acceleration
of the moving platform. The dynamic behaviour of the
moving platform is described by the system matrices A
and B and is often implemented as an ideal simulator by
using the double integrator model. The reference signal rref
includes the specific forces, angular velocities and angular
position of the simulated vehicle in the (vehicle) body-
fixed coordinate system in the virtual world. Similarly, r
describes the specific forces, angular velocities and angular
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position of the simulator in body-fixed coordinate system
(driver’s coordinate frame) in the real world. The function
F (·) applies necessary coordinate system transformations in
order to obtain the specific forces and angular velocities in
driver’s coordinate frame. The box constraints of simulator’s
workspace as well as the actuator limitations are denoted as
xlow,up and xact,low,up. To calculate the actuators’ length we
used inverse kinematics of the simulator which is denoted by
the function G(·). The operator ‖x‖T computes xTTx for
given weighting matrix T . For our application, we used the
diagonal weighting matrices Q, R, and P , and their weights
are determined by domain experts.

IV. DATA COLLECTION

In order to train a neural network for imitating the OC-
MCA, we created a training dataset by conducting data
collection sessions with a static simulator (i.e., a simulator
without motion base). For our driving scenario, we selected
a model of a real route near Munich in Germany, which
was also investigated in multiple other studies [25]–[27] (see
Fig. 3). The route includes some sections, such as country
roads, a roundabout and a combination of multiple left and
right turns. These various features yielded a “rich” set of
training data, which enabled the NN-MCA to learn the input-
output mappings for a large range of motions.

Fig. 3. The route that the participants are asked to follow. The driving
direction is either A → B or B → A. The road height profiles are color-
coded from blue to red, which corresponds to lowest and highest altitudes,
respectively.

A total number of 25 participants drove the route four
times, by starting twice at point A and twice at point B. By
doing so, the variability in the training data was increased.
The participants were asked to drive the given route while
exhibiting natural driving behavior, i.e., paying attention to
the traffic rules and other traffic participants like cars and
trucks. The sections (I), (III) and (V) are two-lane country
roads. The section (III) and (V) are relatively flat whereas the
section (III) has several hills. Section (II) contains a small
town including a roundabout. A city limit sign (implying a
speed limit of 50 km/h) was placed before the participants
entered the town. Section (IV) contains two sharp turns where
the speed limit was 80 km/h.

During the data collection sessions the motion of the
simulated vehicle (dynamic vehicle model) was recorded.
The specific forces, angular velocities and angular position of
the simulated vehicle were calculated and stored in a dataset
XD. Using OC-MCA, as described above, optimized motion

cueing data was generated from the trajectories in XD and
the results were stored in a second data set XS . The XS
contains the acceleration commands ut for time t, as well as
the platform’s position and velocity xt for each DoF.

V. NEURAL NETWORK BASED MOTION CUEING
ALGORITHM

According to the universal approximation theorem, a neu-
ral network with at least one hidden layer can approximate
a large variety of functions f(·), input-output-mappings, by
choosing appropriate parameters, such as activation functions,
number of neurons in hidden layers and number of hidden
layers [28], [29]. From a mathematical point of view the
underlying function to approximate could be also a controller,
which can be then achieved by training the network in a
supervised manner on the dataset.

In context of motion cueing, the task is to find a mapping
from the driver’s motion in the virtual world to a control
command for the simulator in the real world, which satisfies
the driver’s perception of motion. In order to achieve the
best possible motion cueing, we trained a neural network
to approximate the results obtained by the OC-MCA. In
other words: given the driver’s motion xDt ∈ XD in the
virtual world, the trained model will generate similar control
commands uSt ∈ XS as OC-MCA (in order to avoid any
confusion, we use superscript S for the signals from XS).
Since xDt does not provide any information about the current
state of the simulator, we also provided the network with
position and velocity states xSt as an input in order to obtain
awareness for the workspace, which results in a model similar
to an autoregressive network with the exogenous inputs [30].

In the literature, deep-learning-related robot control tasks
are typically handled by learning to control at the level
of joint torque or joint velocities [31], [32]. However, the
controller of the simulator requires position, velocity, and
acceleration commands, which are then internally fused to
generate actuator commands. Depending on the type of
MCA, this can be done in various ways. In classical MCAs,
acceleration commands uSt are integrated in order to obtain
next velocity and position xSt+1, whereas in the case of the
optimization-based MCAs proposed in the current paper, the
optimization calculates all three signals directly while using
the state-space model of the simulator. Therefore, the neural
networks can be trained to generate either only the target
accelerations uSt which are then integrated, or all target
signals (xSt+1, uSt ) in an “end-to-end” fashion. Empirically,
we observed that only generating accelerations results in poor
performance in the test phase due to the error accumulation,
and so the NN-MCA was configured to predict uSt and xSt+1

of XS in an “end-to-end” fashion.
However, since the trained NN-MCA also learns integra-

tion operations internally, an inconsistency between outputs
may occur in this approach due to the noisy estimator char-
acteristic of the neural networks. The inconsistency may give
rise to unpredictable control behavior during the test phase
with the real simulator. In order to reduce the inconsistency,
an additional cost was introduced to the network for training.
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The final cost function extended with the inconsistency cost
is given as:

cost =
∑
i

(xSt+1,i − x̂St+1,i)
2 +

∑
i

(uSt,i − ûSt,i)
2

+ α
∑
i

(x̃St+1,i − x̂St+1,i)
2 (2)

The first two terms of the cost are the regression loss
(mean squared error), and the third term corresponds to
the proposed inconsistency cost. During the training, an
additional simulator state x̃St+1 is obtained from the generated
acceleration ûSt and current state of the simulator xSt by
using the state-space model. The new state x̃St+1 corresponds
to the next simulator state which would be achieved when
only using generated accelerations ûSt . The squared error
between x̃St and x̂St is similar to an additional cost on
predicted terms corresponding to the position and velocity
from the dataset. Additionally, the introduced cost penalizes
the inconsistency between the predicted outputs, rather than
imposing a penalty according to the dataset. The term α
regulates the weight of the inconsistency cost.

In order to obtain generalizable neural networks, a large
data set is required for training. Obtaining such a data set
through human-in-the-loop recording sessions in the simula-
tor is costly. Instead, in order to obtain good generalization, a
reasonable amount of random noise may be injected into the
inputs of the network [33]. In fact, noise injection can also be
interpreted as a form of data augmentation where the dataset
extends artificially. In the test phase, even though small
perturbations may exist in the simulator’s current state, the
NN-MCA should predict a similar control signal according
to the xDt . Thus, Gaussian noise is introduced to the inputs
of the network, which corresponds to xSt . Additionally,
injecting noise on xSt practically results in the neural network
giving more weight on learning the relationship between
driver’s motion and next simulator state rather than learning a
sequence of consecutive simulator states. Fig. 4 illustrates the
resulting NN-MCA with the inconsistency cost (2), wherein
the double integrator is used for the state-space model as in
(1).

We divided the collected dataset randomly into training
and test sets with a ratio of 90/10. The NN-MCA is only
trained with the training set. The test set is unknown to the
neural network during training and is only used to evaluate
the final performance of the NN-MCA in our experiments.
For the training, we used a mini-batch size of 512, and the
ADAM optimizer with the default recommended parameters
provided in [34]. The maximum number of training epochs
was set to 200, and the validation score was monitored
to save the weights of the neural network each time the
validation score increases. In general, we observed that the
validation score stopped increasing after 150 epochs. For
hyperparameter search, we used the grid-search method. The
final best performing model is a fully connected network
with two hidden layers with 64 neurons and hyperbolic
tangent activation function. The output layer has the linear

Fig. 4. Illustration of proposed NN-MCA during training. In the test
phase, only the neural network part is used to generate (predicted) control
commands (x̂S

t+1, ûS
t ) for given driver’s motion xD

t in the virtual world and
simulator’s current state xS

t in the real world. The operator ⊕ corresponds
to the vector concatenation of both inputs.

activation. We observed the best performance with Gaussian
noise of N (0, 2.0) and inconsistency weight of α = 5.0.
We also observed that increasing inconsistency weight in-
creased stability by up to a factor of 10. Additionally,
for better generalization performance, we also experimented
with dropout regularization [35]. However, empirically we
observed no benefit of using dropout. Since both dropout
and noise injection are regularization methods against over-
fitting, increasing the noise injection reduces the need for
dropout.

VI. EXPERIMENTS

Before testing the NN-MCA on the real driving simulator,
we first evaluated the performance of our method on an
emulator (i.e., a software model) of the simulator. For this
purpose, we used eMoveRT Controller Software from E2M
Technologies to emulate a model of the 6-DoF hexapod
motion system (see Fig. 1a). The emulator includes both
the forward and inverse kinematic models of the simulator
and has nearly identical performance and control logic as the
real simulator. In the test phase, the NN-MCA receives the
motion data of the simulated vehicle xDt from the dataset
and simulator’s state xSt from the simulator (or emulator).
The NN-MCA predicts the control command (x̂St+1, ûSt ),
and sends these to the simulator (or emulator), and receives
the next xDt+1 and xSt+1.

In order to analyse the results from human perception
point of view, we also calculated the specific forces and
angular velocities of the simulator (or emulator) during the
simulation. Since the aim is to generate a simulator motion
as close as possible to the motion of the virtual vehicle, we
calculated the Root Mean Squared Error RMSE between the
specific forces and angular velocities of the simulated vehicle
and the simulator (or emulator). For this metric, a lower value
represents better cueing quality. The RMSE is preferred over
other metrics, since the resulting error has the same units
as the perception thresholds. Additionally, we applied the
same evaluation methods for two additional MCAs: first, a
Classical Washout-based MCA (CW-MCA) which is tuned
for this route and, second, the OC-MCA. This allowed us to
compare the performance of the NN-MCA with two relevant
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Fig. 5. The root mean squared error of the Classical Washout (CW), Optimal Control (OC), and proposed Neural Network (NN) based MCA in the test
set for each DoF. The perception thresholds for each DoF are shown with red dashed lines.

Fig. 6. The specific forces sF and angular velocities ω of the simulated vehicle and the ones achieved by the Classical Washout (CW), Optimal Control
(OC), and proposed Neural Network (NN) based MCA for an arbitrary trial from the test dataset

benchmarks: a commonly used MCA and a reference MCA
which exhibits close-to-optimal cueing behavior (the “best-
case-scenario”).

Fig. 5 shows the results of the CW-MCA, OC-MCA and
NN-MCA for the entire test data. As one can see, the NN-
MCA has similar performance as the OC-MCA for each DoF
and outperforms the CW-MCA in sFx,y with up to 4x better
performance. For sFz , ωy and ωz the CW-MCA shows a
(slightly) lower RMSE (i.e., better performance) than the
other MCAs. This can be explained by the fact that both OC-
MCA and NN-MCA use these DoFs to produce or correct for
cueing effects such as tilt-coordination to illicit illusions of
sustained accelerations (see Sec. III-A). Note that the RMSE
of both NN-MCA and OC-MCA are close to or below the
perception threshold showing that the cueing errors in these
DoFs are not or barely perceptible.

In order to highlight the performance of the NN-MCA,
the results for an arbitrary trial from the test dataset is
displayed in Fig. 6, where the participant drove the route
A→B (see Fig. 3). Compared to the CW-MCA, the NN-
MCA can generate more accurate specific forces with high

absolute amplitudes for sFx,y . The CW-MCA can realize
only small amplitudes due to the linear filtering and scaling
, which need to be tuned such that the strongest motion
still fits inside the simulator’s motion space. As a result,
the CW-MCA cueing has a typical “flat” characteristic.
These effects can especially be observed for longitudinal
dynamics in sections (I) and (V) and for lateral dynamics
in sections (II) and (IV). Similar to OC-MCA, the NN-MCA
applies relatively high rotational rates ωx,y to accomplish
generating demanded sFy,x with high absolute amplitudes
through tilt-coordination. In order to have more realistic
specific forces in x and y directions, the OC-MCA and NN-
MCA regularly generate angular velocities which have higher
absolute amplitudes than the vehicle model. This results in
relatively high (poor) RMSE values in these DoFs, but they
also result in additional sustained specific forces in x- and y-
direction. And, even though the rates are higher, they are still
below or around the perceptual threshold. Moreover, the sFz
direction includes noise such as road irregularities; therefore
it is harder to achieve good performance for this DoF. Since
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Fig. 7. The Pearson correlation r between the specific forces sF (top) and angular velocities ω (bottom) while testing with emulator and simulator using
NN-MCA. The human perception limits are shown with red dashed lines, and the imperceptible region is colored as green, where the deviation between
two tests is imperceptible. The percentage of the data points lie in this region and are denoted with Pip. Sample colors indicate the density of the region,
whereas yellow corresponds to high density.

the specific forces in longitudinal and lateral plane are of
more interest for motion feeling, tuning the NN-MCA for
z-direction is deferred to future work.

In addition to the comparison with CW-MCA, it is impor-
tant to note that the behavior and performance of the NN-
MCA are close to that of the OC-MCA. The NN-MCA can
mimic the control behaviour of the OC-MCA through the
entire trajectory for each DoF with limited complexity and
real-time capability. Even though the NN-MCA is not trained
for the selected trajectory, our proposed method achieved
a significantly good approximation of the OC-MCA and
showed good generalization capabilities. On the contrary to
the OC-MCA, the trained NN-MCA does not require the
future vehicle states and high computational effort. During
our tests with NN-MCA, the complete control cycle runs ap-
proximately in 100 Hz on Intel® Core™ i5-8365U processor,
which satisfies the required 100 Hz operational speed of the
motion system for the real-time control.

In addition to the analysis described above, the NN-MCA
results were also tested on the real simulator (Fig. 1) by using
the same offline data for the simulated vehicle. During the
real simulator tests, the NN-MCA demonstrated a real-time
and significantly close performance to OC-MCA. Indeed, we
observed no major differences compared to the evaluations
on the emulator. For a performance comparison of the CW-
MCA, OC-MCA and our proposed method (NN-MCA), a
demonstration video of an arbitrary trajectory from the test
data is available at http://go.tum.de/708350.

In order to assess the difference between the emulator and
simulator, we also evaluated the correlation of the resulting
sF and ω using the emulator and simulator with respect to
human perceptual thresholds. Fig. 7 shows the correlation and
joint distribution of the emulator and simulator experiments.
The perceptual thresholds from Sec. III-A for each DoF are
displayed with a dashed red line. Furthermore, perceptible
and imperceptible stimuli regions are colored red and green,
respectively. For the data points lying between thresholds,
the difference between the emulator and simulator is not
noticeable by the vestibular perception system. The results
show that 97% − 99% of the specific forces generated by
NN-MCA lies between perception limits, which means, the
performance difference on emulator and simulator for these
specific forces are not perceivable by the driver. Similarly,
the imperceivable difference for the the angular velocities

is 95% − 100%. The performance difference between the
emulator and simulator can be explained by both the model
error of the emulator and the inconsistency of the NN-MCA.
Even though NN-MCA is penalized with an inconsistency
cost during training, it may still generate signals which
are not consistent. However, this does not affect the final
performance of the NN-MCA significantly.

VII. CONCLUSION AND FUTURE WORK

We presented a novel Motion Cueing Algorithm (MCA),
using a neural network to imitate Optimal-Control-based
MCA (OC-MCA), which provides optimal cueing, but cannot
run with a driver-in-the-loop due to the offline nature of
the algorithm. After training, neural network realizes an
approximated OC-MCA which can run with a driver-in-
the-loop. We also applied a Gaussian noise injection, as a
data augmentation technique, to achieve robust control even
for small perturbations of the simulator in the test phase.
Furthermore, we trained our proposed model in an “end-to-
end” fashion, where the neural network learns not only the
control signals, but the full next state of the simulator. The
end-to-end method provided more stable results on a dataset
with a limited sample size as that was used in this work. We
also introduced a second cost term for neural network training
to reduce the inconsistencies between the neural network’s
outputs, which may be caused by learning the full next state
of the simulator. Finally, through analysis of the model of the
simulator (emulator) and real simulator, we showed that, the
resulting Neural Network-based MCA (NN-MCA) outper-
forms a commonly used and well tuned Classical Washout-
based MCA (CW-MCA), both in overall performance, as in
realizing complex driving maneuvers, which our experiments
contain. Through the entire trajectory, NN-MCA achieved
relatively close performance to the OC-MCA. The NN-MCA
also demonstrated significant performance and generalization
capabilities for the trajectories, which the network was not
trained with. That makes our method not only superior to a
commonly used technique (CW-MCA), but also a real-time
representation of an OC-MCA, which provides the optimal
cueing but cannot work in real-time with driver-in-the-loop.

Even though the NN-MCA approach proposed here re-
quires a data set obtained from human drivers, the results
shown here indicate that this data set can be obtained in a
static simulator. Since operating a static simulator is typically
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less costly than a dynamic simulator, the effort required to
obtain this dataset remains within reasonable boundaries.
Furthermore, since the optimal motion-cues are generated
offline, the cost function of OC-MCA can be tuned offline
with respect to the desired performance, which is less time
consuming compared to the tuning of an online MCA.
Theoretically, the performance of NN-MCA is limited by the
performance of OC-MCA, which can vary based on tuning
parameters. As a future work, we recommend evaluating
performance of the NN-MCA using OC-MCAs with different
settings.

Further future work includes the generation of a large
training dataset with more variability to evaluate whether that
improves performance and generalizability. Also, the data
set could be generated by autonomous agents in the virtual
environment, which can perform driving maneuvers similar
to the human driver. Furthermore, generative models such
as Generative Adversarial Networks [36] might be used to
generate realistic artificial data. Finally, future studies could
explore model-free Reinforcement Learning (RL) techniques.
The RL might provide the pre-trained NN-MCAs with much
higher and stable performance by learning through explo-
ration.
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[29] B. C. Csáji, “Approximation with artificial neural networks,” Faculty
of Sciences, Etvs Lornd University, Hungary, vol. 24, p. 48, 2001.

[30] X. Ren, A. B. Rad, P. Chan, and W. L. Lo, “Identification and control
of continuous-time nonlinear systems via dynamic neural networks,”
IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 478–
486, 2003.

[31] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[32] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE international conference on robotics and automation
(ICRA). IEEE, 2017, pp. 3389–3396.

[33] C. M. Bishop, “Training with noise is equivalent to tikhonov regular-
ization,” Neural Computation, vol. 7, no. 1, pp. 108–116, 1995.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[36] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” 2014.

2125

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on May 19,2022 at 07:16:10 UTC from IEEE Xplore.  Restrictions apply. 


