Radar-based 2D Car Detection Using Deep Neural Networks

Maria Dreher!, Emeg Ercelik!, Timo Binziger?, and Alois Knoll!

Abstract— A crucial part of safe navigation of autonomous
vehicles is the robust detection of surrounding objects. While
there are numerous approaches covering object detection in im-
ages or LiDAR point clouds, this paper addresses the problem
of object detection in radar data. For this purpose, the fully
convolutional neural network YOLOV3 is adapted to operate
on sparse radar point clouds. In order to apply convolutions,
the point cloud is transformed into a grid-like structure.
The impact of this representation transformation is shown by
comparison with a network based on Frustum PointNets, which
directly processes point cloud data. The presented networks
are trained and evaluated on the public nuScenes dataset.
While experiments show that the point cloud-based network
outperforms the grid-based approach in detection accuracy, the
latter has a significantly faster inference time neglecting the grid
conversion which is crucial for applications like autonomous
driving.

I. INTRODUCTION

In autonomous driving, the accurate detection of surround-
ing objects is a crucial prerequisite in order to perform
safe navigation [18]. However, relying on a single type of
sensor for safety-critical tasks is not sufficient as each of the
sensing technologies currently available has its drawbacks
and weaknesses. Thus, multimodality is required to achieve
safe and robust navigation [25].

While there are numerous methods performing camera
[3] [26] or LiDAR-based [17] [27] object detection, object
detection in radar data has not been thoroughly addressed
in the literature so far. In addition to being nearly weather
independent, it is a fairly cheap, robust and easily deployable
sensor that can measure velocities of targets directly. While
modern automotive radar sensors generate multiple reflec-
tions per object, the resulting point cloud is extremely sparse
[2] [1]. Especially compared to LiDAR data, the number of
received reflections per object is very low making it difficult
to accurately infer the surrounding environment. Addition-
ally, typical automotive radar sensors have a small vertical
field of view (FOV), thus they collect little information about
the height of objects. Figure 1 shows an exemplary radar
point cloud in contrast to LiDAR data, demonstrating the
problem of sparsity.

This paper examines algorithms to detect two-dimensional
objects given a sparse and noisy radar point cloud. For this
purpose, the fully convolutional neural network YOLOV3 [3],
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(a) Radar Point Cloud (b) LiDAR Point Cloud

Fig. 1: Two-dimensional Radar point cloud in (a) is much
sparser compared to the three-dimensional LiDAR point
cloud in (b). From [18].

which was originally designed for image object detection, is
adapted to operate on radar data. This state-of-the-art net-
work is a fast and reliable one-stage object detector (running
at up to 45 FPS at 51.5 mAP), a crucial characteristic for
safety-critical applications as autonomous driving. In order to
apply convolutions, the radar point cloud is transformed into
a grid-like structure. To the best of the authors’ knowledge,
this paper is the first work evaluating object detection in
only radar data using CNNs. To observe the impact of
this representation transformation, the proposed algorithm is
compared to another, point cloud-based approach performing
object detection in radar data. This closely related work
presented in [1] is based on Frustum PointNets [19], a
two-stage network architecture which processes point clouds
directly.

While most publications focusing on radar sensors
recorded their own, simplified dataset under controlled con-
ditions [1] [5] [6], this paper provides results on the publicly
available nuScenes dataset [18]. The approach presented in
[1] is replicated and trained with nuScenes data as well to
enable direct comparison.

II. RELATED WORK

In contrast to other typical automotive sensors, radar
provides important features like the velocity of detected
objects in almost all weather conditions. However, the data
is typically noisier compared to LiDAR point clouds and
especially the captured position values can be inaccurate.
This leads to reflections measured next to the actual object
instead of representing the object’s precise location [1].
Further, reflections can occur not only at contour points
but also at not directly visible parts of objects [12]. For
instance, the radar signal can be deflected at the ground
and reflected at the bottom of a vehicle. The radar cross
section (RCS) information depends on the material of the
reflecting target and thus provides valuable information about
the object. However, the RCS value is highly affected by
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the orientation of the object resulting in a wide range of
intensity values from the same kind of object [28]. Despite
the described challenges, recent improvements in range and
angular resolution of modern radar systems make the sensor
a valuable source for the detection of surrounding objects [1].
This section first reviews object classification and bounding
box estimation in radar data as two individual problems and
then presents a recently published approach combining both
tasks and performing object detection using a single radar
sensor. Finally, recent studies of radar fusion are included
for completeness.

A. Object Classification

Inspired by recent advances in image classification, [4] [6]
[5] apply convolutional neural networks (CNN) to classify
static objects in occupancy grids, created from accumulated
radar data. While the network in [4] assigns class labels to
objects, [6] demonstrates that semantic knowledge can be
gained from radar measurements. However, CNNs require
huge amount of data to train a generalized model. Feature-
based classification, on the other hand, achieves good perfor-
mance with much less data. Therefore, the CNN presented
in [4] is combined with a random forest classifier in [5] to
improve results. The combined classifier outperforms both
individual classification methods. [10] and [11] perform
solely feature-based classification focused on moving ob-
jects. They define specific velocity and range profiles for
pedestrians and vehicles and extract features based on their
echo signal characteristics. A support vector machine is then
used to classify the extracted features. While feature-based
approaches achieve great results, the performance of these
algorithms depends on the extraction of relevant features
which can be difficult.

B. Object Localization

Bounding box estimation is mostly done by iteratively
rotating and adjusting a rectangular [8] or L-shaped [12]
model to fit clustered radar reflections. These algorithms are
simple and show great results in most cases. However, their
performance highly depends on the results of the clustering
algorithm. Thus, [9] proposes a template fitting approach
as an alternative to oriented bounding box algorithms. In
scenarios where only one side of the vehicle is visible to
the radar, the template matching approach outperforms the
oriented bounding box algorithms while achieving similar
performance in standard cases.

C. Object Detection

While there are several publications in the literature cov-
ering either object classification [6] [7] or bounding box
estimation [8] [9] in radar data, the approach presented in [1]
is — to the authors’ knowledge — the only work combining
both and applying object detection relying solely on radar
point clouds. While their two-stage network architecture
based on Frustum PointNets [19] shows the great potential
of radar sensors for object detection, the presented results
are obtained using a severely simplified scenario with only

one object in every radar measurement. As described in [1],
the data was recorded on a test track and the object of
interest was always the same, single target vehicle. Since
the recorded dataset was not published, their results cannot
be reproduced nor directly compared. Further, they do not
provide results in terms of the commonly used mean average
precision (mAP) metric.

D. Radar Fusion

The release of nuScenes [18] — the first public dataset
providing synchronized radar, LIiDAR, and camera measure-
ments — has encouraged the fusion of radar with camera
data for 2D object detection as complementary information
for images. In [29], a CNN-based camera-radar fusion is
proposed to detect 2D objects on the image plane. The
inclusion of distance and RCS channels of the accumulated
radar data improves results slightly; however, only the fusion
of filtered radar points using ground-truth labels provides
a promising improvement of the mAP, even though it is
not possible to use without ground-truth labels. In [31],
authors fuse camera and radar (depth, lateral and longitudinal
velocities) data using CNNs for multi-task learning of 2D
object detection on the image plane and semantic segmen-
tation. The fusion network improves results comparing to
the camera-only network, however, the multi-task framework
decreases the accuracy for 2D object detection comparing
to the single-task fusion network. [30] proposes a radar-
based proposal algorithm to improve object proposals with
sparse radar data for 2D object detection. From the range and
range-rate information of the radar sensor, authors generate
anchor boxes around all radar points, which are used as
proposals for the Fast RCNN architecture. This improves
speed and accuracy of detection comparing to the Selective
Search algorithm for generating object proposals. However,
a comparison with CNN-based proposal networks is not
provided. In [34] authors compare fusion of camera with
radar and fusion of camera with LiDAR on 3D detection
using a small dataset. As a result, they find out that the
radar combination provides better results than the LiDAR
combination. However, the reasons might be having more
radar points per frame than provided in one frame of the
public nuScenes dataset as well as having less LIDAR points
per frame comparing to nuScenes.

In summary, the approaches described above do not ade-
quately address the problem of object detection in real-world
scenarios solely based on radar sensors. Thus, in this work
a new approach to process radar data with CNNs for Bird’s
Eye View (BEV) object detection is introduced. Furthermore,
a comparison with a point cloud-based network, based on the
public nuScenes dataset, is presented.

III. METHOD

This section presents two approaches for object detection
in radar data. While the first algorithm transforms the radar
data into a grid representation in order to apply CNN-based
2D object detection in BEV, the second approach based on
the work in [1] predicts objects directly from point clouds.
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We define the radar point cloud P = {p;|i =1,..., N} as
a set of NV five-dimensional points. Each reflection point
pi = (z,y,0,vs,vy) provides - and y-coordinates, the radar
cross section o as well as the z- and y-components v, and
v, of the ego-motion compensated radial velocity v. These
components are referred to as x- and y-velocities in further
sections.

To preserve the shape information in the BEV, the pre-
sented object detection algorithms predict oriented bounding
boxes, instead of axis-aligned, parameterized by their center
position x and y, height h and width w, yaw angle 6 as well
as a class.

A. Grid-based Object Detection

In contrast to images where the data lies on a regular
grid, point clouds are irregular in terms of their density.
In addition, being defined as unordered sets, point clouds
are invariant to permutations of their elements [13]. This, in
particular, makes convolutions as used for image object de-
tection inadequate for point clouds: While images implicitly
provide spatial information through their grid-like structure,
the position of points in a point cloud is an explicit feature
associated with each point.

However, motivated by the outstanding performance of
CNN-based image object detection algorithms, 3D point
clouds are typically transformed into grid-like structures in
order to apply convolutions. Mostly, this is done either by
projection to a 2D image plane [14] [15] or quantization into
a 3D voxel grid [16] [17] [15]. As the poor elevation infor-
mation of the radar measurements is neglected in this work,
the two-dimensional point cloud can be easily transformed
into a 2D BEV grid representation by quantization.

1) Input Representation: The representation transforma-
tion of the radar point cloud into a grid with a fixed height
I, width I, and cell size s is illustrated in Figure 2. Using a
BEV representation, the ego-vehicle is located in the center
and oriented towards the top of the grid. The radar reflections
in the point cloud are transformed into grid cells according
to their x- and y-position. Reflections exceeding the fixed
grid size are discarded. Instead of RGB color information
as provided in images, the three channels of the input grid
are set to the points’ RCS value (o) as well as the velocity
values in z- and in y-dimension. Cells where no point was
mapped to are set to zero in all three channels.

The original implementation of YOLOv3 [3] operates
on squared images by resizing the input. In automotive
scenarios, when represented in BEV with the vehicle located
in the center, the height of the grid will most commonly be
larger than its width due to the shape of a road. In addition,
resizing the input grid distorts the spatial locations of the few
reflection points provided by the radar. Padding, on the other
hand, adds even more empty cells to the already sparse grid.
Thus, the network presented in this paper operates directly
on rectangular sized inputs of shape I}, x I,, without resizing
to a square format.

2) Network Architecture: We adapt the architecture of the
fully convolutional network YOLOv3 [3] for 2D object de-

Input Width Iy
-—
(0,0) _column

Input Height I

Fig. 2: Radar point cloud in ego vehicle coordinates (left) is
transformed to a two-dimensional grid representation (right).
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Fig. 3: Overview of input and output grid.

tection in radar data. The object detection system divides the
input into an Oy, x O,, output grid. Caused by the rectangular
input grid and in contrast to the original implementation, the
output grid of our network is not of square size. Each grid
cell in the output grid predicts B bounding boxes with the
x- and y-positions of the center, height A and width w as
well as yaw angle 6 of each box. The orientation estimation
is not included in the original YOLOV3 architecture but is
essential to preserve the correct shape of objects in the BEV.
Furthermore, the network outputs k class probabilities for
every box and an additional objectness score which describes
how confident the network is that there is an object located
in the cell. The final shape of the resulting output grid equals
to Op X Oy x B X (6 + k). The input and output grid and
their corresponding channels are illustrated in Figure 3.

3) Learning and Inference: We regress the position and
size of bounding boxes as described in [3]. The additional
yaw angle 6 is normalized to range from —1 to 1 and then
predicted directly. To ensure values in this range, the hyper-
bolic tangent activation function is applied to the predicted
yaw angle. Finally, we optimize the following multi-part loss
function:
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The first term calculates the loss for the five bounding
box parameters using the sum of squared error where %;; are
ground-truth values and *;; are the predictions. The indices
indicate the grid cell position ¢ and the anchor box j. As
the prediction of box parameters should be only penalized
if there is a ground-truth object assigned, the summed error
term is masked using 1?;7] . This parameter equals to 1 when
there is a ground-truth object in cell ¢ and anchor box j is
the anchor that has the highest intersection over union (IoU)
with it. It is zero otherwise. The weight );; penalizes errors
in small boxes more than in large ones. The second part of
the loss function determines the objectness loss. Following
[3], the loss is calculated using the binary cross-entropy.
Further, the last term of the loss function describes the
classification loss. While the network predicts class scores
for k classes, the classification loss is still obtained using
the binary cross-entropy with a sigmoid activation function.
Hence, the binary cross-entropy loss is calculated for each
class. This enables multilabel classification, i.e. an object can
have several classes (e.g. truck and vehicle). Following [3],
no softmax function is used.

B. Point Cloud-based Object Detection

A representation transformation of unordered point clouds
into a regular grid makes convolutional operations applicable
to the data but leads to redundant computations especially for
sparse radar point clouds. Instead, the network described in
this section based on [1] directly operates on point clouds
and thereby preserves the actual information provided by the
radar sensor without adding unnecessary data.

1) Input Representation: To reduce the search space and
efficiently propose regions of interest the point cloud is
divided into several patches as described in [1]. A patch
with a fixed length and width is created around each radar
reflection in the point cloud. As illustrated in Figure 4, the
size of the patch is chosen such that it covers the whole
object. This approach generates multiple proposals for the
same object as well as clutter patches, i.e. patches where no
object is located inside. Following [19] and [1], the patches
are normalized to a center view as illustrated in Figure
5b. The patch is rotated such that the x-axis points in the
direction of the radar reflection which was used to create the
patch improving the rotation-invariance of the algorithm. The
origin of this coordinate system is still at the position of the
ego vehicle. Finally, the center view normalized patch data
is used as input for the network. To ensure a fixed number of
input points, the radar reflections within a patch are sampled
to n points.

2) Network Architecture: The network architecture is sim-
ilar to the v/ model proposed in [1] which is based on
[13]. As illustrated in Figure 6, the object detection system
consists of four different networks. First, a classification
network assigns a class to every patch. The predicted class
is either one of k£ — 1 object classes or class clutter, i.e.
there is no object inside the patch. The network uses a multi-
layer perceptron to extract features of n points and generates
global features by max pooling them. Based on the global

Fig. 4: Generation of regions of interest. A patch is created
around every radar reflection (orange). Points located inside
the patch are used as input data.
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Fig. 5: Coordinate systems. (a) Ego vehicle. (b) Rotation to
center view. (c) Translation to local mask coordinate system
(origin is centroid of masked points). (d) Object coordinate
system (origin is center predicted by T-Net).

information, fully connected layers are used to determine the
class of the patch. The classification network finally outputs
k class scores for every patch.

If classified as an object class (i.e. not clutter) the seg-
mentation network determines which points in the patch
are part of the object by predicting a two-dimensional
mask. The specific class of the object, however, was already
predicted by the classification network. The segmentation
network combines both previously extracted local and global
features to predict scores indicating whether a point is an
object or a clutter reflection. After segmentation, the points
classified as object are masked and the masked points are
then normalized to improve translational invariance of the
algorithm. As illustrated in Figure 5Sc this is achieved by
a transformation into a local coordinate system which has
its origin at the centroid of the masked points. To ensure a
fixed number of input points for the bounding box estimation
network, the object points are sampled to m points per object
patch. Further, a preprocessing transformer network (T-Net)
as described in [19] estimates the center given only spatial
information (z and y-coordinates) of the m masked object
points. The object points are then transformed into an object
coordinate system according to the predicted center (see
Figure 5d). Finally, a box regression PointNet similar to the
one proposed in [19] predicts amodal 2D bounding boxes,
i.e. boxes that comprise the entire object even if the radar
sensor captures only part of it.

As in [19], the box size as well as the yaw angle is
predicted following a hybrid classification and regression ap-
proach. Using N, pre-defined size templates (anchor boxes),
the network classifies the size of the box as one of the defined
categories yielding N, class scores. For each size category
residuals are additionally predicted creating another 2 X Ny
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Fig. 6: Overview of the object detection system. While clas-
sification and segmentation use the five-dimensional points,
only spatial information (z and y-coordinates) is exploited
for box center prediction by T-Net and bounding box esti-
mation. Colors of patches indicate the coordinate system in
accordance to Figure 5.

values (one for each dimension). The assigned size template
class combined with the estimated residuals in z- and y-
dimensions result in the actual predicted box size. A similar
approach is used to predict the yaw angle. A full rotation of
2m is divided in N,, equally split bins. Then, both class scores
and angle residuals are predicted. Together with the center
prediction this makes a total number of 243 X N, +2 x N,
output values for the bounding box estimation network.

3) Learning and Inference: Following [1], the multi-task
loss function described in Equation 2 is used to optimize all
four networks involved simultaneously while training.

L= )\clchls + /\segLseg + /\box (Lcl—reg + LcQ—reg (2)
+ Lyfcls + Lyfreg + Lsfcls + Lsfreg + )\CLC)

L¢is describes the loss for patch classification and L4
for instance segmentation. Further, Lci_req and Leo_req
represent the loss for center regression of T-Net and the
box estimation network, respectively. The terms L, _.;, and
Ly_req denote both the classification and regression loss
for yaw angle estimation, while L;_.;; and L,_,4 are for
size estimation. As in [1], softmax with cross-entropy loss is
used to obtain the loss for all classification and segmentation
tasks and smooth-/; (huber) loss is used for regression. The
individual loss terms are weighted by the A parameters.
Following [1], Apor is set to zero for patches classified
as clutter. Thus, only for patches where the classification
network recognized an object a bounding box is estimated.

While the previously described loss terms completely
parameterize the 2D bounding box, learning is not optimized
for the IoU metric due to the separate loss terms for center,
size and yaw angle. As explained in [19], in cases where
the network predicts center and size accurately but fails in
angle estimation, the prediction will be bad in terms of IoU
solely due to the angle error. To counteract this, a novel
regularization loss called corner loss L. which was proposed

in [19] is used to jointly optimize the three terms. It is defined
as the sum of the distances between the four corners of a
predicted box and the ground truth box.

IV. EXPERIMENTS & RESULTS
A. Metrics

Intersection over union (IoU) is a common metric to
evaluate bounding box predictions which can be easily calcu-
lated for axis-aligned boxes. To avoid complex intersection
calculations due to the orientation, we use the angle-related
IoU presented in [20] to compare two boxes A and B (see
Equation 3). We first calculate the conventional IoU for B
and /1, where A is defined to have the same parameters as
A except for its orientation. The yaw angle of A equals
0p. Secondly, the obtained IoU value is multiplied with the
cosine of the angular difference of the two boxes A and B.

area(AN B)
area(AU B)

A box’ angle-related IoU with the ground-truth as well
as its class probability determines whether the predicted
bounding box is correct. Only if both values pass a defined
threshold, the prediction is considered frue positive in further
precision and recall calculations. Lastly, the interpolated
mAP defined in the Pascal VOC Development Kit [21] is
obtained to evaluate the detection performance.

ArIOU(A,B) = |cos(04 —05)] (3)

B. Dataset & Training

While there are several publicly available autonomous
driving datasets [22] [23] [24] providing camera images
and LiDAR measurements, the recently published nuScenes
dataset [18] is the first public dataset providing radar point
clouds and thus creates a common basis for further research
on object detection in radar data.

The dataset consists of 1000 scenes recorded in Boston
and Singapore, each of a duration of 20s. Annotations are
provided for keyframes which are sampled from each scene
at 2Hz resulting in ~ 40 labeled samples per scene. The
complete set of scenes is divided into 850 training and vali-
dation scenes and 150 testing scenes. However, annotations
are only published for the training and validation data.

For thorough evaluation of the presented methods, we only
use the annotated training and validation dataset. The 850
scenes are split into train, val and test with respect to the
recording location in order to avoid overfitting to the static
environment. We use 467 scenes from “Boston Seaport” and
85 scenes from ”’Singapore Holland Village” for training, 115
scenes from ”’Singapore Queenstown” for validation and 183
scenes from “Singapore One North” for test.

The nuScenes dataset provides an individual point cloud
for each of the five radars expressed in a local sensor
coordinate system. We fuse these individual measurements
into one global point cloud comprising information about the
complete environment of the vehicle. The global radar point
cloud is expressed in ego vehicle coordinates which has its
origin at the midpoint of the rear vehicle axle [18].
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Fig. 7: Exemplary detail view of a moving object in (a)
accumulated and (b) non-accumulated radar data. The object
is moving in the indicated direction. While in (b) object
reflections are located only inside the bounding box, the
accumulated data in (a) leads to a trace of reflections behind
the object.

TABLE I: 23 nuScenes categories are grouped into five
classes.

Class Name nuScenes Categories

Pedestrian human.  (7), animal
Object moveable_object.x (4), bycicle_rack
Two-Wheeler motorcycle, bicycle
Car car, emergency . (2)

Truck truck, trailer, bus.* (2), construction

The unlabeled radar measurements between annotated
keyframes can be used to accumulate the radar data over
time in order to create a denser point cloud. On average, there
are six additional measurements between two keyframes in
the nuScenes dataset. For accumulation, the data captured
between the previous keyframe and the current keyframe is
fused into one point cloud. However, accumulation distorts
the shape of moving objects impeding accurate bounding
box estimation. An example showing a moving object in
both accumulated and non-accumulated radar data is shown
in Figure 7. Both variants are examined in this paper.

The radar data was recorded with 77GHz long range
radar sensors which can measure within a distance of 250m.
However, due to the highly crowded city scenarios in which
the nuScenes data was acquired, this long range cannot
be exploited as well as it could be for highway scenes.
Especially reflections captured by the radars on the sides of
the vehicle are often limited in range due to large buildings
along the road. Thus, in this paper only points which do not
exceed a distance of ~ 20m from the vehicle in y-direction
are included in the fused point cloud. In z-direction only
points within a distance of ~ 40m contribute to the final
point cloud in order to focus on objects in the immediate
environment.

nuScenes provides annotations for objects of 23 different
categories which are combined to five distinct classes in this
paper. All newly defined classes are described in Table I.
Subcategories belonging to the same main category are indi-
cated by » followed by the number of categories comprised
in the main category. For example, both bus.bendy and
bus.rigid are in the main category bus.

We augment the dataset by shifting z- and y-coordinates of
radar reflections randomly and uniformly following [1]. The
ego-motion compensated velocities v,, and v,, are perturbed
using random Gaussian noise with zero mean and a standard
deviation of 0.2. Gaussian noise with zero mean and a
standard deviation of 1 is applied to perturb the RCS values.

Additionally, the point clouds are flipped along the z-axis
in the BEV with a probability of 0.5. For the grid-based
algorithm, the complete fused radar point cloud is flipped.
For the point cloud-based detection, the individual patches
are flipped before transforming into center view. In addition
to the position of radar reflections, this does also affect the
velocity values.

We use a grid cell size of 0.3m for the grid-based object
detection. The selection is a trade-off between minimizing
the number of empty cells and avoiding several reflections
to fall into the same cell to prevent information loss as ex-
isting information in a grid cell is overwritten when another
reflection is mapped to that specific cell. In accordance to the
previously described maximum distance of reflections from
the ego vehicle of 40m in x and 20m in y-direction, the input
grid is set to be of size 256 x 128 x 3. To decrease the number
of empty cells, the occupied grid cells are expanded by
setting the same channel values in all eight neighboring cells.
Thus, instead of updating only the cell where a reflection falls
into, the surrounding cells are stocked with information as
well. This is beneficial for convolutional operations due to
the reduction of multiplications with zero and significantly
increases the fraction of occupied cells in the grid.

As a counterpart to the cell size in the grid-based network,
the size of patches used as input for the point cloud-based
architecture has to be fixed before training. While it is stated
in [1] that a patch should comprise the complete object, the
concrete width and height values that were used to obtain the
presented results are not specified. We set the patch size to
8m x 8m as 98.66% of boxes in the dataset have a width and
height of less than 4m. This ensures that the patch comprises
the complete box even if the radar reflection in the center of
the patch is located at the boundary of the object.

Following [3], we use the concept of anchor boxes and
generate B = 9 box priors. The anchor boxes are generated
using the k-means algorithm. Note that only height and width
of the boxes are considered for anchor box generation. For
better comparison, we also use nine anchor boxes for the
point cloud-based approach, i.e. Ny = 9. From [1], the
number of points per patch n and masked patch m for the
training are chosen as 48 and 32, respectively. Further, the
full rotation of 27 is divided into N, = 12 equally split bins
for residual-based yaw angle estimation following [19].

C. Evaluation

We evaluate the grid-based (III-A) and the point cloud-
based (III-B) networks with four different sets of data. As
in Table II, ”Entire dataset” contains all the class members,
”Only vehicles” indicates that only vehicle class members are
included for training and validation. ”Only moving vehicles”
means considering vehicle classes labeled as moving in the
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TABLE II: Detection results as mean Average Precision
(mAP) with grid-based and point cloud-based networks on
different data subsets.

mAP (with ToU 0.3)
Grid-based [ Point cloud-based

Data Subset

Entire dataset 0.03 % 15.30 %

Only vehicles 4.19 % 16.28 %
Only moving vehicles 7.87 % 16.21 %
Only moving vehicles

(Accumulated) 2.65 % 13.38 %

TABLE III: Detection results with varying number of points
in ground-truth boxes

Min. # of samples with
# of points mAP (0.3 IoU) at least one object
> 8 0.0% 2457 (11%)
>6 0.0% 4550 (20%)
>4 0.0% 9553 (43%)
>2 7.87% 16076 (72%)

dataset. The last row of the table with ”Accumulated” tag
means accumulating the radar points over the frames between
two successive keyframes. For the evaluation, only ground-
truth boxes, enlarged with a 0.3m tolerance region, with at
least two radar points are taken into account.

The grid-based network cannot learn to distinguish be-
tween five different classes with a almost zero mAP (Table
II). YOLOv3-based CNNs are known to struggle detecting
very small objects in images [32]. Due to the sparse and
noisy radar data, small objects and pedestrians are not
represented in the feature maps of BEV to be detected.
On the other hand, the point cloud-based network performs
well on the entire dataset, and its performance is better for
the vehicles. It predicts bounding boxes based on individual
points, which prevents the network from the loss of features
for small objects. Accumulating radar reflections over time
reduces performances of both networks as seen in the last
row of the Table II. A possible reason is that accumulated
reflections become unrelated with the considered object
through time as seen in Figure 7. Accumulating smaller
number of frames in addition to the object velocity com-
pensation might be helpful for the representation problem of
accumulated data and for the sparsity of the radar reflections.

We also consider training the grid-based network using
ground-truth boxes with varying number of radar reflections.
In Table III, we show that increasing minimum number
of reflections in a ground-truth box decreases number of
samples that the network can be trained with. Therefore, we
only see a meaningful result when the network is trained
with ground-truth boxes with at least 2 points.

Similarly, we vary the minimum number of radar reflec-
tions in vehicle and clutter patches for the point cloud-based
network (Table IV). In the first row, we only include vehicle
patches with at least 8 reflections and clutter patches with at
least 20. As a result 92% of the patches are assigned to the
vehicle class and the rest are clutter patches. Even though

TABLE IV: Detection results with varying number of points
in vehicle and clutter patches

Min. # of .
Vehicle/Clutter | mAP (0.3 Touy | * of Vehicle

. Patches

Points

>87>20 15.81% 16043 (92%)
>6/>16 19.61% 33014 (76%)
>4/>12 18.59% 74946 (57%)
>2/>8 16.21% 114135 (30%)

increasing minimum reflections per object improves the point
cloud-based network’s detection performance, no learning is
achieved for the grid-based network as seen in Tables III
and IV. Setting four or more reflections per ground-truth
object as minimum causes a highly imbalanced dataset (Table
III last column), which results in overfitting. In contrast,
the data is oppositely imbalanced for the point cloud-based
algorithm. As shown in Table IV, there are more object
than clutter patches. While this initially has a positive effect
on the detection results, the performance drops again when
the imbalance becomes too high (i.e. 92% positive patches).
Further, the problem of sparsity can be observed here: Only
1472 patches hold more than 20 reflections. It is important
to keep in mind that a patch covers an area of 64m?2.

The grid-based network regresses the orientation directly
from input, whereas the point cloud-based network uses 12
equally split bins. The mean-squared error (MSE) between
the estimated yaw angles and the ground-truth angles are
calculated only considering the correctly detected objects as
12.04 for the direct and 7.57 for the residual regression.
The residual orientation estimation shows a smaller error
compared to the direct regression of the yaw angle. While
these values surely depend on the overall performance of the
object detector, the direct regression of the yaw angle has in
fact a major disadvantage due to the singularities [33]. This
means that even though 7 and —7 values are similar, they
are too different for a neural network for regression.

The grid-based and point cloud-based networks run with
6.27 and 0.27 frames per second respectively, measured with-
out run-time optimization on a NVIDIA Quadro GV100GL.
Despite the considerably better detection results, the one-
stage grid-based algorithm is significantly faster than the
two-stage point cloud-based detector. However, the inference
time on point cloud-based network highly depends on the
number of patch proposals.

V. CONCLUSION

Object detection using radar is a challenging problem,
especially in an urban environment with dense traffic and
fast changing situations [12] [18], though its importance with
robust measurements in changing weather and illumination
conditions. Therefore, we aimed to analyze how much radar
can contribute to inferring object shapes and locations in
the BEV in this study. We adapted the fully-convolutional
neural network YOLOV3 to operate on sparse and noisy radar
data. In addition, we replicated a point cloud-based network
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to have a comparison on the public nuScenes dataset. The
point cloud-based network achieves a 19.61% mAP on
nuScenes, whereas the YOLOv3-based network only reaches
7.87% mAP. The evaluation of the proposed object detection
algorithms approves that the representation transformation
of the point cloud into a grid has a large impact on the
detection results. The highly imbalanced ratio between empty
and occupied cells in the grid amplifies the overfitting of the
network.

In conclusion, results of this study demonstrate the general
potential of neural networks to perform object detection in
radar data. Given the extremely challenging conditions of
dense city traffic situations, especially the point cloud-based
network achieves a decent detection performance. In this
work only existing neural networks are adapted to radar
data, but no new models are introduced, which is subject to
further research. Also, the network could be extended using
3D convolutions or long short-term memory layers to take
the temporal dimension of the radar data into account.
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