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Abstract

This work focuses on the study of several computational challenges arising when trimmed surfaces are
directly employed for the isogeometric analysis of Kirchhoff-Love shells. To cope with these issues
and to resolve mechanical and/or geometrical features of interest, we exploit the local refinement
capabilities of hierarchical B-Splines. In particular, we show numerically that local refinement is
suited to effectively impose Dirichlet-type boundary conditions in a weak sense, where this easily
allows to overcome the issue of over-constraining of trimmed elements. Moreover, we highlight how
refinement can alleviate the spurious coupling stemming from disjoint supports of basis functions
in the presence of “small” trimmed geometrical features such as thin holes. These phenomena are
particularly pronounced in surface models defined by complex trimming patterns and with details at
different scales, where we show through several numerical examples the benefits and computational
efficiency of the proposed methodology.

1 Introduction

The standard procedure in computational engineering is, starting from a geometric Computer Aided
Design (CAD) model, to produce a proper mesh suitable to perform a finite element analysis. It is well
known that for complex geometries, the meshing process is cumbersome and highly time-consuming
[14]. Furthermore, the created mesh is in most cases only an approximation of the real design, which
can deteriorate the accuracy of the solution. To overcome these issues, IsoGeometric Analysis (IGA)
was introduced in the first pioneering work [32] in 2005. The pivotal idea in IGA is to exploit the same
mathematical entities used in CAD for the geometry description, for instance B-Splines and Non-
Uniform Rational B-Splines (NURBS), as basis functions for the analysis. Additionally, employing
smooth functions like B-splines or variations thereof as a basis for the solution field has shown
excellent properties in many mathematical and engineering applications. For a detailed review of the
method and its applications and mathematical foundations, the reader is referred to [1, 14, 15, 32].
Moreover, it has been shown that for many applications the higher global continuity achievable with
B-Splines yields a better accuracy per degree-of-freedom and, more importantly in the scope of this
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work, it allows to discretize higher-order variational problems in their primal form, e.g. Kirchhoff-
Love plates and shells or Cahn-Hilliard problems [25, 34–36, 40, 47].
However, there are still several open questions that need to be addressed for IGA to become

competitive for industrial applications. Indeed, the gap between geometric design and numerical
analysis is yet to be fully closed and a general methodology capable of handling trimming, dirty
geometries and volumetric mesh generation currently represents a thriving area of research, see for
instance [3, 41, 44, 50, 56].
Nevertheless, a significant amount of work has been performed for the analysis of trimmed surfaces

in the context of dimensionally-reduced formulations such as plates and shells, where the analysis
makes use directly of the surface representation, hence greatly simplifying the interoperability with
CAD. The reader is referred to the pioneering works [8, 52, 53] and [10, 28] for more insights.
An additional challenge comes from the tensor product nature of B-splines which poses severe limi-

tations to local refinement. Indeed, it is common in practice to require higher discretization accuracy
in selected areas where small geometric features or localized mechanical responses play an important
role in the analysis. In standard h-refinement of B-splines, the refinement propagates throughout the
entire patch, yielding a loss of locality. Several methods have been proposed to overcome this draw-
back, such as hierarchical B-Splines (HB) [21, 26, 37] and their recent variant denoted by truncated
hierarchical B-Splines (THB) [23, 24], T-Splines [6], LR-Splines [18]. Also the inverse operation of
refinement (known as coarsening), which plays an important role for computational efficiency, proves
to be a non-trivial task and sparked research, see for instance [9, 22, 43].
In this work we demonstrate the importance of local refinement in the isogeometric analysis of

trimmed thin-walled structures where the refinement capabilities are achieved thanks to hierarchical
B-Splines. The latter is an important feature, since it allows to efficiently capture localized traits of
the solution. Furthermore, we show that local refinement improves the accuracy of the imposition of
(weak) penalty boundary conditions on complex trimmed boundaries and mitigates the effect of over-
constraining the solution space. Moreover, we tackle the issue of the spurious coupling introduced
in the solution field arising when “small” (compared to the element size) features are present in the
geometry (e.g. thin holes), where again the use of local refinement proves to be an effective remedy.
The focus is also put on how the proposed combination of methods brings one step closer the

integration between boundary representation (B-Rep)-based design and shell analysis, namely tack-
ling the open question of how to properly treat trimmed surfaces. Instead of producing conforming
T-Spline meshes [10, 42], we shift the effort to accurately integrate trimmed elements. This topic has
already been analyzed in [8, 28, 50], and we use a similar methodology for the creation of boundary-
conforming integration cells. In particular, we employ a technique similar to what is proposed in
[28]. Indeed, for this task, we extend the Finite Cell Method (FCM) to the analysis of thin struc-
tures, developing the ideas first introduced in [46] and applying the boundary-conforming adaptive
integration scheme described in [38, 39] to trimmed surfaces, where the main difference with respect
to [28] lies in the decomposition algorithm for complex trimming scenarios. We characterize the Fi-
nite Cell Method as an immersed method, which makes use of high-order shape functions. FCM has
been successfully applied in combination with high-order polynomials, such as Lagrange or integrated
Legendre, to several practical problems of linear and non-linear elasticity, thermo-elasticity [57], tran-
sient elastodynamics [20], biomechanical applications [48], elasto-plasticity [2], contact mechanics [7].
Moreover, it has been shown that this method works well also in combination with B-Splines and
variants thereof [50]. For a detailed review of the method, the reader is referred to [19, 45, 51] and
references therein.
Then, based on the work [16], we show how local refinement can be easily implemented into the

proposed workflow by combining hierarchical B-Splines together with FCM. Moreover, we highlight
how the use of refinement alleviates several issues stemming from trimming. Finally, starting from
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geometrical information exported from the CAD software Rhinoceros1 in STEP format [33], we show
through several numerical examples the robustness and wide range of applicability of the presented
methodology, highlighting its generality and flexibility.
This work is structured as follows. Section 2 summarizes the methods which constitute the frame-

work, namely hierarchical B-Splines to allow for local refinement, the Kirchhoff-Love shell formulation
for the analysis of thin structures, and the Finite Cell Method for handling trimming in an immersed
sense. Then, in Section 3 we highlight by means of several examples the advantages of using local
refinement to resolve localized features of the solution and of the geometry, and to weakly impose
boundary conditions of Dirichlet-type. In Section 4 we present various numerical results on complex
designs. Finally, in Section 5 we draw some conclusions.

2 Methods

In the following section, all methods that have been combined in the presented framework are briefly
summarized. As previously described, all these methods are already well established in the literature;
nevertheless, they are brought together for the first time within the same numerical framework in
the present work. This leads to a general and powerful tool for the isogeometric analysis of trimmed
surfaces.

2.1 Hierarchical B-Splines

In this subsection, the concept of hierarchical B-Spline basis HB, firstly introduced in [37, 55],
is presented following the notation in [16]. This allows to build a basis that is locally refined and
therefore to overcome the limitations intrinsic to the tensor-product nature of B-Splines and NURBS.
Let V 0 ⊂ V 1 ⊂ · · · ⊂ V N be a sequence of nested spaces of splines defined on a rectangular

parametric domain Ω̂. Each space V l, l = 0, . . . , N is spanned by the B-spline basis Bl of degree p
defined on the grid Ql, associated to level l. Similarly, we can define a hierarchy of subdomains up
to depth N as ΩN :=

{
Ω0, Ω1, . . . ,ΩN

}
if the following holds:

Ω̂ = Ω0 ⊃ Ω1 ⊃ . . . ⊃ ΩN−1 ⊃ ΩN = ∅ .

Let us now define the hierarchical B-Spline basisHB. Given a sequence of nested spaces
{
V l

}
l=0,...,N

,

their corresponding B-Spline bases
{
Bl
}
l=0,...,N

and a hierarchy of subdomains ΩN , we characterize
HB in a recursive fashion as:

HB0 =B0

HBl+1 =
{
b ∈ HBl | supp b 6⊂ Ωl+1

}
∪{

b ∈ Bl+1 | supp b ⊂ Ωl+1
}
, l = 0, . . . , N − 2 .

It was proven in [55] that this set of B-Splines is composed of linearly independent functions. At this
point, let us define the discrete space Xh as follows:

Xh = span {b ◦ S−1| b ∈ HB} ,

where S denotes the B-Spline parametrization of the surface.

Remark 1 The construction of HB can be generalized to trimmed geometries (see [4, 31]), and it
was proven in [30, Section 4.5] that they retain their linear independence and therefore they form a

1www.rhino3d.com
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suitable basis for the analysis on trimmed domains.

2.2 Kirchhoff-Love shells

In this work, we make use of the rotation-free Kirchhoff-Love shell element. In the following sub-
section, the formulation is briefly introduced, following closely the derivation in [12, 34]. We remark
that to obtain a rotation-free formulation for the Kirchhoff-Love problem at least global C1-continuity
of the basis is required, which is readily achievable using, e.g., (hierarchical) B-Splines of maximum
continuity and degree p > 1.

2.2.1 The weak form of the problem

Applying standard variational calculus, the weak form of the Kirchhoff-Love problem reads [12, 34]:

Find u ∈ V such that

a(u,v) = F (v) ∀v ∈ V , (1)

where, for ease of notation and without loss of generality, we assume the fully clamped case and
therefore V = H2

0 (Ω). We remark that when different boundary conditions are prescribed a corre-
sponding different space V should be taken into account [11]. Then, the linear and bilinear forms
read:

a(u,v) =

∫
Ω
ε(v) : n(u) dΩ+

∫
Ω
κ(v) : m(u) dΩ

F (v) =

∫
Ω
v · b dΩ ,

where ε, κ denote the membrane and bending strain tensors, respectively, and n, m are their
energetically conjugate stress resultants, and b represents the external body load. For a detailed
review of the Kirchhoff-Love formulation, we refer to [34].
Using the classical Bubnov-Galerkin approach, we can write the following discrete weak formulation
of (1):

Find uh ∈ Vh ⊂ V such that

a(uh,vh) = F (vh) ∀vh ∈ Vh . (2)

We remind the reader that in general the choice of discrete space Vh ⊂ Xh depends on the boundary
conditions of the problem at hand. Moreover, we recall that due to the requirements on the discrete
admissible space for the displacement field, the basis functions must be at least C1 continuous globally
such that the bending operators κ and m are well-defined.

2.3 Trimming

In the next subsection, it is shown how the numerical challenges stemming from trimmed geometries
can be directly tackled by using an immersed method, such as the Finite Cell Method (FCM).
In particular, an adaptive integration technique that resolves trimming at the integration level is
presented, based on the work of [46] and in the spirit of what proposed in [8, 28] in the framework
of isogeometric trimmed shells.
Let us characterize trimming as a basic boolean operation, which allows for an easy description of

complex geometries and constitutes a standard in most commercial CAD softwares. Albeit its simple
conceptual definition, trimming poses severe limitations to the interoperability between CAD and the
analysis, where we refer to the review article [44]. Indeed, when we perform a trimming operation in a
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CAD software, the visualization of the resulting surface is modified but its underlying mathematical
description remains unchanged. This means that if we utilize directly the basis functions defined
by the geometry, they are not conforming to the physical boundary. This concept resembles the
methodology employed in the so-called immersed or embedded domain methods.

2.3.1 The FCM formulation of the Kirchhoff-Love problem

Employing the FCM fundamental idea of an embedded domain approach, let us extend the physical
domain Ωphy by a fictitious part, denoted by Ωfict, such that Ω = Ωphy ∪ Ωfict with Ωphy ∩ Ωfict = ∅.
Note that since Ω can be chosen arbitrarily, simple shapes are obviously advantageous since they
can be trivially discretized with a Cartesian grid. Furthermore, note that with the introduction of a
fictitious domain, we no longer have a mesh conforming to the physical boundary. Indeed, as typical
of immersed methods, Dirichlet-type boundary conditions are usually enforced in a weak sense. In
this work, we consider weak constraints applied by means of the penalty method [5]. In particular,
a weak displacement and rotational boundary condition terms are added and the weak form of the
discrete Kirchhoff-Love problem (2) can be reformulated as:

Find uh ∈ Vh such that

aα(uh,vh) + bdisp,k(ukh, v
k
h) + brot(uh,vh) = Fα(vh) ∀vh ∈ Vh , (3)

where:

aα(uh,vh) =

∫
Ω
α ε(vh) : n(uh) dΩ+

∫
Ω
ακ(vh) : m(uh) dΩ

bdisp,k(ukh, v
k
h) =

∫
Γ
gk

βdisp(ukh − gk) vkh dΓ

brot(uh,vh) =

∫
Γθ

βrotd ·Φ(vh)Φ(uh) · d dΓ

Fα(vh) =

∫
Ω
α vh · b dΩ

α(x) =

{
1 if x ∈ Ωphy

0 if x ∈ Ωfict ,

where α(x) acts as a domain indicator and k sums over the displacement components. Note that
in practice, the value of α inside Ωfict is chosen to be numerically small, such that extremely ill-
conditioned element stiffness matrices are avoided for those cells that are partly lying in Ωfict, denoted
in the following as cut cells. Then, Φ(·) denotes the angle between the normal to the surface in its
reference and deformed configuration, namely Φ(·) = a3 −A3, and d represents the normal (lying
in the plane tangent to the surface) to the constrained boundary Γθ. For a detailed review, we refer
to [27, 29]. Moreover, gk denotes the prescribed displacement on Γgk and βdisp, βrot ∈ R are the
displacement and rotational penalty parameters, respectively. Typically, they are scaled with the
material parameters and element size [54], where following [29] we use

βdisp = β̄
Et

h(1− ν2)

βrot = β̄
Et3

12h(1− ν2)
,

where E, ν, t, and h are the Young modulus, the Poisson ratio, the thickness, and the element
size, respectively, while β̄ is a user-defined parameter. For non-uniform refinement, h is heuristically
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chosen as the smallest element size.

Remark 2 It is worth noting that for surfaces we do not directly apply the FCM methodology to
the space Ω ⊂ R3. Instead for simplicity and robustness, following [46] and similar to [8, 28], the
trimming curves are either directly exported in the parametric space of the surface or are pulled back
to the parametric image of Ω, previously denoted by Ω̂ ⊂ R2. Then, the same FCM rationale is
applied in the parameter space of the shell. Hence, the treatment of trimmed surfaces in the physical
space is tackled directly in the parameter space at the integration level.

Remark 3 We highlight that we do not restrict our analysis to the case where boundary conditions
are applied only weakly. Indeed, with a slight abuse of notation, we denote with Vh ⊂ Xh the finite
dimensional space that satisfies the strong Dirichlet boundary conditions of the problem, applied to
the conforming part of the boundary ∂Ω ∩ ∂Ωphy.

2.3.2 Smart tree integration for trimmed elements

The domain indicator function α introduces a discontinuity in the integrals of the weak form (3)
for those cells that are trimmed. As a consequence, the challenges arising from the generation of
conforming meshes are shifted towards the accurate and efficient computation of these integrals. A
method that has been successfully used is the so-called smart tree scheme, firstly introduced in [38].
This method falls into the category of boundary-conforming integration methods. Indeed, exploiting
geometric information from the B-Rep model, the algorithm is able to decompose cut elements
into boundary conforming integration cells, therefore yielding a highly accurate integration with a
significant reduction of the number of Gauss points, for instance compared to space tree schemes.
The information needed by the algorithm can be extracted directly from CAD softwares or can be
obtained numerically by performing the pull-back of the physical trimming curves. For a detailed
review of the method for two- and three-dimensional applications the reader is referred to [38, 39].
We utilize this algorithm for the creation of boundary-conforming integration meshes for those

elements that are trimmed. The method is able to treat complex surfaces where sharp features and
kinks are present and, in the scope pf this work, we extend it to handle directly B-Rep models from
Rhinoceros.
In Algorithm 1, we summarize the smart tree algorithm (on a single cut cell) specialized to trimmed

shells. In the following we assume that the trimming curves given as an input are defined in the
parameter space of the surface.
If the decomposition can be performed, Algorithm 1 always yields a set of quadrilaterals and

triangles, otherwise for too complex trimming patterns the fallback strategies exploits the space tree-
based integration. In particular, after each space tree step, the intersections between the integration
cells and the trimming curves are recursively simplified up to the point where either the decomposition
can be performed or the routine stops at a user-defined maximum depth of the space tree. Therefore,
the robustness of the algorithm is enhanced and an accurate integration is guaranteed for arbitrary
geometries.
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Algorithm 1 Smart tree integration cells creation

1: procedure Create integration cell (trimming curves, element sub-domain ε̃, k)
2: if k < kmax then
3: Find intersections between trimming curves and element boundary ∂ ε̃
4: if decomposition can be performed then
5: Split cell into quadrilateral and triangular integration sub-domains {Ωi}
6: return {Ωi}
7: else
8: Perform quad-tree step and create 4 uniform rectangular sub-cells
9: Σ = ∅

10: for each sub-cell do
11: Σ̂ = Create integration cell (trimming curves, sub-cell, k+1)
12: Σ = Σ ∪ Σ̂
13: end for
14: return Σ
15: end if
16: else
17: return ε̃
18: end if
19: end procedure

3 Motivation to local refinement

In this section, we motivate the use of local refinement for the analysis of trimmed geometries with
the following arguments:

• removal of unphysical coupling between the sides of a thin hole.
• increased accuracy close to trimming boundaries subject to weak constraints;
• efficient approximation of localized deformations;

3.1 Thin holes

In case trimming curves define holes that are “thin” compared to the geometry knot spans, it can
happen that the support of a basis function intersected with the physical domain Ωphy is disconnected
and composed of several disjoint sub-domains. As an example, the support of a function with two
disjoint physical sub-domains is depicted in red in Figure 1b. This creates an unphysical coupling
between the two sides of the hole, that generally results in an inaccurate mechanical response. These
spurious effects become particularly severe when the local behavior of the structure is strongly deter-
mined by the geometry of the hole, as it is often the case for complex models. For instance, consider
the setup illustrated in Figure 1a, where the geometry is modeled via a trimmed NURBS surface of
degree p = 2, which is exported from Rhinoceros together with a set of 32 trimming curves. It is
worth remarking the complexity of the geometry at hand, which presents several thin sharp features
and kinks in its description. For the analysis, homogeneous Dirichlet boundary conditions on the
displacement are applied to the outer boundary of the violin via the penalty method, as described
above, and a line load F = (0, 0,−100)> is applied to the reentrant tip of the f-hole, such that the
tip is pulled upwards. A direct analysis on the coarse geometry yields an unphysical response, where
the maximum displacement is attained towards the center of the geometry (see Figure 1c obtained
by setting β̄ = 10), instead of the reentrant tip, as expected from engineering intuition.
In order to mitigate this issue, local refinement can be used to substitute functions with large

support by functions with smaller support. In particular, the removal of the unphysical coupling

7



is obtained when no support is composed of disjoint physical parts. To this end, let us consider
the refinement procedure presented in Algorithm 2. We introduce a marking parameter γ, which
represents the extension of the refinement area in the proximity of a given trimming curve. Note

Algorithm 2 Refinement towards trimming curves

1: procedure Refine (elements E , level l, max level lmax, Γgk , γ)
2: for l = 1 . . . lmax do
3: for each active element εl

î
of level l cut by Γgk do

4: for each active element εli of level l do

5: if ‖i− î‖∞ ≤ γ then
6: mark εli for refinement
7: end if
8: end for
9: end for

10: refine marked elements
11: update E
12: end for
13: end procedure

that for γ = p or higher, only functions of the finest level have support on the trimming curve.
By direct comparison between the size of the finest knot spans and the size of the hole, one can
obtain the value for lmax that removes the unphysical coupling. For the current example we obtain a
decoupling value lmax = 5 and a qualitatively correct response is observed in Figure 1d for γ = p = 2,
where the maximum deflection occurs at the reentrant tip. In Figure 2a, the displacement at point
A (marked with a blue dot in Figure 1b) is shown, where the latter point of interest is located at
one of the geometrical kinks of the trimmed boundary. Note the sudden improvement in accuracy
of the solution obtained for lmax = 5, while smaller choices of the maximum refinement level yield
inaccurate results, since the spurious coupling is still present in the corresponding HB bases. Then,
in Figure 2a, we compare the convergence behavior of the solution obtained by local refinement to the
tensor product refinement constructed by Algorithm 2 with γ = 0 and to a standard uniform tensor-
product refinement, obtained by recursively bisecting every knot span. The meshes corresponding
to local and tensor-product refinements for lmax = 5 are depicted in Figures 3a and 3b, respectively.
In Figure 2b we observe that all strategies converge towards a reference value for the displacement
obtained from an overkill solution, where local refinement achieves a level of accuracy comparable to
uniform refinement with substantially less degrees-of-freedom (DOFs).

Remark 4 To cope with the spurious coupling described above, we show the potential of the error
estimator introduced in [13] to solve the issue by means of a simple example. We employ the geometry
and problem setup depicted in Figure 4a, where a thin, elongated hole is trimmed away from a square
plate. The displacement is set to zero on the external boundary of the geometry and the plate is sub-
jected to a vertical point load F = (0, 0,−1)> at the center of the structure. A reference displacement
ũz at point B (marked with a blue dot in Figure 4a) has been obtained from an overkill solution on a
uniformly-refined mesh with 199 509 DOFs. The convergence plot presented in Figure 4b confirms the
importance of eliminating the unphysical coupling between the sides of thin holes. Moreover, the use
of an error-driven strategy turns out to be an effective remedy, where the efficiency of the method is
shown in Figures 4c and 4d, where the solution obtained on the initial coarse mesh and after k = 14
iterations of the adaptive algorithm are graphically compared. Although these preliminary results are
promising, further research is needed and currently under development.
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E = 105

ν = 0.0, t = 2
F = (0, 0,−100)

(a) Applied boundary conditions: homogeneous
Dirichlet (red wire) and distributed load (arrows).

A

(b) Example of basis function support covering both
sides of a thin hole (p = 2 and maximum continu-
ity).

(c) Spurious and unphysical solution obtained from a
direct analysis on the CAD model.

(d) Local refinement around the trimming curve re-
moves the unphysical coupling.

Figure 1: Example problem on a complex trimmed geometry that shows the unphysical coupling
occurring at the sides of thin holes.

3.2 Weak constraints

When imposing boundary conditions weakly on arbitrarily-shaped trimming curve, it can happen
that the finite element space is not capable of both accurately satisfy the weak boundary conditions
and approximate the numerical solution in the proximity of the trimming boundary. For compli-
cated geometry and/or high penalty parameters βdisp and βrot (without excessively deteriorating the
conditioning of the system matrix), some elements will be over-constrained.
To illustrate this effect we consider the setup depicted in Figure 5a, where a uniformly distributed

vertical load F = (0, 0,−100)> is applied on the top surface, while zero displacement is enforced with
a penalty term (β̄ = 106) on the internal curves, which feature kinks and areas of high curvature.
In Figures 5b and 5c it can be observed that the displacement and stress are artificially low on the
elements cut by the trimming curve, and they spuriously follow the element boundaries. We remark
that this effect is more pronounced in the proximity of complex trimming patterns.
Given a fixed mesh, it is in general desirable to balance the error in the application of boundary

conditions and in the solution approximation. We refer to [17] for a discussion in the context of
the Nietsche’s method. However, in case it is not practical, or it is not known a priori how to
optimally choose β, mesh refinement can be employed to potentially improve accuracy in both interior
and boundary terms by enlarging the finite element space and intersecting the curve with smaller
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(a) Convergence plot of the numerical solution at point
A, note the sudden change for lmax = 5.
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(b) Comparison of the number of DOFs as a function
of the refinement parameter lmax.

Figure 2: Convergence graphs for the violin example subjected to a line load.

(a) Locally refined mesh. (b) Local tensor-product mesh.

Figure 3: Meshes obtained by local and local tensor-product refinements by setting lmax = 5.
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convergence when the unphysical coupling is re-
solved.

(c) Solution uz obtained on the coarse mesh, hierarchi-
cal B-Splines of degree p = 3.

(d) Solution uz obtained at iteration k = 14, hierarchi-
cal B-Splines of degree p = 3.

Figure 4: Square plate with a thin hole example.
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elements, generally yielding simpler intersections. By doing this, small geometric features induced
by the trimming curves can be selectively resolved. For instance, in Figures 5d and 5e the solution
and Von Mises stress distribution obtained with γ = p = 2 and lmax = 5 is shown. This example
qualitatively demonstrates the capability of local refinement to reduce the over-constraining effects
linked to the weak imposition of Dirichlet-type boundary conditions.
We compare the resultant Von Mises stresses for different meshes in Figure 6. Figure 6b shows

the solution obtained with a uniform mesh of 38 607 DOFs. The mesh is chosen to have a number of
DOFs similar to the locally refined mesh in Figures 5e and 6a, which has 36 225 DOFs. As a reference,
Figure 6c shows the solution obtained by an overkill mesh with 4 026 378 DOFs. The locally refined
mesh does not have artificially low stress on the constrain curve, similarly to the overkill solution.

3.3 Localized deformations

The example given in Figure 1 produces a localized deformation (see Figure 1d) which needs to be
properly resolved. We highlight once more that the local refinement strategy employed to remove the
unphysical coupling already gives an approximation that is comparable to uniform refinement, but
with a considerable reduction in DOFs, where we refer to Figures 2a and 2b, respectively. In Table 1,
the energy and z-displacement (at point A) errors are shown with respect to the following reference
values Ẽ ≈ 0.2211, ũz ≈ 7.268 · 10−3. These values were obtained with an overkill solution on a
uniformly refined mesh of level lmax = 5. This numerical experiment confirms that local refinement
accurately and efficiently captures both local quantities (such as the solution at point A) and global
quantities (the energy of the system) compared to tensor product refinement, where in this particular
example ∼ 5 times less DOFs are required to achieve a comparable level of accuracy.

num. DOFs energy error (1− Eh

Ẽ
)% z-displ. error at pt. A (1− uh

z
ũz
)%

tensor product ref. 193 359 2.07% 1.72%

local ref. 37 215 2.88% 2.29%

Table 1: Comparison of the error in the energy norm and error in the z-displacement at point A
against the number of DOFs for tensor product and local refinements.
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E = 105

ν = 0.0, t = 2
F = (0, 0,−100)

(a) Boundary conditions: clamped (red wire) and dis-
tributed load (arrows).

(b) Displacement magnitude (logarithmic scale) on un-
refined mesh.

(c) Von Mises stress on unrefined mesh.

(d) Displacement magnitude (logarithmic scale) on a
locally refined mesh.

(e) Von Mises stress on a locally refined mesh.

Figure 5: Example of a violin subjected to gravity load.
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(a) Von Mises on a locally refined mesh as in Figure 5e. (b) Von Mises on a uniformly refined mesh such that
the number of DOFs is similar to Figure 6a.

(c) Von Mises on a overkill mesh.

Figure 6: Comparison of Von Mises stresses around the f-holes for different meshes.
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4 Numerical Examples

In this section, several examples that show the applicability of the proposed workflow to the locally-
refined analysis of trimmed surfaces are presented. All the geometries used in the following examples
have been created in the commercial CAD software Rhinoceros and exported in the STEP file format
[33]. The parsing of the geometry files and the computations have been performed within the in-house
code AdHoC++, exploiting the OpenCascade library for geometric support [49].

4.1 A first trimmed example with adaptive local refinement

The first example deals with a geometry created by the intersection of two cylinders. The description
of the geometry has been taken from an example presented in [10], where we remark that the two
trimmed holes are symmetric with respect to the diagonal of the cylinder, see Figure 7. We apply
simply supported boundary conditions to the two big circular ends. Furthermore, the structure is
subjected to a unit point load in the middle directed to the negative z-direction, F = (0, 0,−1)>.
The material parameters are chosen as E = 5 · 107 and ν = 0.0 for the Young modulus and Poisson
ratio, respectively. The shell thickness is set equal to 0.1. In order to steer an adaptive simulation,
the L∞-norm of the numerical gradient has been used as a simple indicator for refining the mesh. In
particular, we utilize a method similar to the so-called maximum strategy for marking elements for
refinement. Let γ ∈ (0, 1) be a user-defined threshold, all elements such that

||∇uh(ε)||L∞(ε) > γ max
ε

||∇uh(ε)||L∞(ε)

are marked for refinement, where ∇uh(ε) denotes the numerical gradient restricted to element ε. In
addition, we always refine elements adjacent to the supports. Despite the simplicity of this error
indicator, numerical experiments show that it behaves well in driving an adaptive simulation for the
problem at hand, as presented in Figure 8 where we can see that the refinement correctly captures
the main characteristics of the solution.
Moreover, for this example we study the convergence of the internal energy and z-displacement

under the point load on a series of refined meshes. The reference solution has been obtained from an
overkill on a uniformly-refined mesh with 2 603 682 DOFs, p = 3, and the results plotted against the
number of DOFs are presented in Figure 9. Additionally, let us define the displacement magnitude
as:

‖uh‖2 =
√
u2x + u2y + u2z .

The corresponding contour plot is shown in Figure 8c.
Finally, we show the integration cells obtained from our reparametrization tool in the proximity

of one of the trimming curves, see Figure 8b. It can be observed that the smart tree integration
algorithm performs robustly even when trimmed elements belonging to different levels of the hierarchy
are present. We also remark that local refinement simplifies the intersections between the trimming
curve and the elements, generally yielding fewer complex cases to be handled.

4.2 From CAD to analysis of an “engineering” structure

The next example concerns the simulation of a simplified model, depicted in Figure 10a, of the rooftop
of the Rolex Learning Center, the campus library at the École Polytechnique Fédérale de Lausanne
(see Figure 10b). Here, we aim at showing the capabilities of the proposed numerical framework for
the analysis of complex structures of architectural relevance.
The geometry is modeled as a trimmed NURBS surface of degree p = 3 composed of 20× 20 knot

spans. A planar map of the building has been used to trace all the major structural holes. Then, 150
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(a) Geometry definition in Rhino. (b) Trimming boolean operation.

Figure 7: Geometry specifications and representation of the trimming operation in Rhino used to
create the two trimmed holes, defined as the intersection between two cylinders.

(a) Hierarchical mesh. (b) Reparametrized integration cells (red edges).

(c) Displacement magnitude. (d) Von Mises stress.

Figure 8: Mesh, displacement magnitude and Von Mises stress obtained after 6 iterations of the
adaptive loop, marking parameter γ = 0.2. Solution obtained with hierarchical B-Splines
of degree p = 3.
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(a) Error in the z-displacement under the point load.
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(b) Error measured in the energy norm.

Figure 9: Convergence of the error in displacement and energy obtained with hierarchical B-Splines
of degree p = 3 and marking parameter γ = 0.2.

cylinders representing the pillars have been placed in a 15×10 Cartesian fashion into the model (those
falling outside of the physical domain have been discarded). Their intersection with the surface is
used to impose homogeneous Dirichlet boundary conditions on the displacement, therefore modeling
the static behavior of the supports. Let us remark the fact that this simplification in the design may
not correspond to the actual placement of the pillars. Additionally, we remark that we are aware of
the limitation of this model, but in the scope of this work it is used as an illustrative example for
the wide range of applicability of the proposed simulation tool, spanning from complex geometrical
models to architectural designs. Finally, the material parameters are chosen as E = 40 · 109, ν = 0.15
and t = 0.2 for the Young modulus, Poisson ratio, and thickness of the shell, respectively.
The roof is subjected to its self-weight, set to F = (0, 0,−2 · 103)>, and in Figure 10c the displace-

ment magnitude field is depicted, where k = 5 levels of hierarchical refinement are used to resolve
the boundary conditions given by the pillars and the trimming curves. A close-up of the solution
in the vicinity of a trimming curve for a coarse uniform tensor-product mesh and a locally refined
mesh is depicted in Figure 11. We note a substantial reduction of over-constraining of the solution
field close to the pillars in the locally refined case. On one hand, this example clearly motivates local
refinement, which is needed to resolve the small scale of the problem (the pillars) while consider-
ably reducing the computational cost. On the other hand, it shows how all the relevant information
needed to impose boundary conditions can be taken directly from the CAD model, in the spirit of a
full design-through-analysis workflow.
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(a) CAD model (b) Aerial photo (source: Wikipedia)

(c) Displacement magnitude.

Figure 10: Geometric model, actual building and solution of the Rolex Learning Center subject to
its self-weight. For the solution hierarchical B-Splines of degree p = 3 and k = 5 levels of
refinement have been used. The geometry contains 150 pillars modeled as the intersection
between the untrimmed surface and cylinders directly in Rhinoceros.
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(a) Displacement plot on a coarse mesh. (b) Displacement plot on locally refined mesh.

(c) Displacement plot on a coarse mesh (logarithmic
scale).

(d) Displacement plot on a locally refined mesh (loga-
rithmic scale).

Figure 11: Zoom on the solution in the proximity of a trimming curve for the Rolex Learning Center
example. Note how weakly imposed boundary conditions and geometric features are
efficiently resolved by local refinement.
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5 Conclusions

In this contribution, we have underlined several of the detrimental effects stemming from trimming
of complex B-Rep surfaces in the scope of isogeometric analysis. In particular, we have highlighted
the issues related to the weak imposition of Dirichlet-type boundary conditions and to the presence
of thin holes in the context of trimmed geometries. Moreover, we have numerically shown how local
refinement can efficiently mitigate and eventually eliminate the spurious effects of over-constraining
of the solution space in the proximity of weakly constrained trimming curves. Furthermore, we
have presented a simple algorithmic way to remove the unphysical coupling of basis functions across
“small” geometrical features. Finally, we have tested the proposed analysis pipeline on surfaces with
complex features and details defined at different scales, demonstrating the flexibility and vast range
of applicability of the combined methods.
To conclude, the proposed workflow aims at reducing the gap between design and analysis by

efficiently bringing together several methodologies to tackle problems defined on complex trimmed
geometries, for which local refinement is a necessary ingredient. This was achieved by exploiting the
properties of hierarchical B-Splines. We have also shed some light on the detrimental effects linked
to thin geometrical features and to over-constraining of elements due to weak imposition of boundary
conditions, where again local refinement has shown its potential as a simple and effective remedy.
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[31] K. Höllig, J. Hörner, and A. Hoffacker. Finite Element Analysis with B-Splines: Weighted and
Isogeometric Methods. In J.-D. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche, M.-L.
Mazure, and L. Schumaker, editors, Curves and Surfaces, pages 330–350, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[32] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and
Engineering, 194(39–41):4135–4195, October 2005.

[33] ISO 10303-11:1994. Industrial automation systems and integration – Product data representation
and exchange. Standard, International Organization for Standardization, Geneva, CH, March
1994.

[34] J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with
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