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Abstract— We propose a model-based reinforcement learning
algorithm for biped walking in which the robot learns to
appropriately place the swing leg. This decision is based on
a learned model of the Poincare map of the periodic walking
pattern. The model maps from a state at the middle of a step
and foot placement to a state at next middle of a step. We
also modify the desired walking cycle frequency based on online
measurements. We present simulation results, and are currently
implementing this approach on an actual biped robot.

I. INTRODUCTION

Our long-term goal is to understand how humans learn
biped locomotion and adapt their locomotion pattern. In this
paper, we propose and explore the feasibility of a candidate
learning algorithm for biped walking. Our algorithm has two
elements, learning appropriate foot placement, and estimating
appropriate walking cycle timing. We are using model-based
reinforcement learning, where we learn a model of a Poincare
map and then choose control actions based on a computed
value function. Alternative approaches applying reinforcement
learning to biped locomotion include [1], [13], [2].

An important issue in applying our approach is matching
the desired walking cycle timing to the natural dynamics of
the biped. In this study, we use phase oscillators to estimate
appropriate walking cycle timing [19], [14], [15].

To evaluate our proposed method, we use simulated 3 link
and 5 link biped robots (Figs. 1 and 2). Physical parameters of
the 3 link simulated robot are in table I. Physical parameters
of the 5 link simulated robot in table II are selected to model
an actual biped robot fixed to a boom that keeps the robot
in the sagittal plane (Fig. 2). Our bipeds have a short torso
and point or round feet without ankle joints. For these bipeds,
controlling biped walking trajectories with the popular ZMP
approach [20], [8], [22], [12] is difficult or not possible, and
thus an alternative method for controller design must be used.

In section II-A, we introduce an estimation method of
natural biped walking timing by using the measured walking
period and an adaptive phase resetting method. In section III,
we introduce our reinforcement learning method for biped
walking. The robot learns appropriate foot placement through
trial and error. In section IV-B, we propose using the esti-
mation method for natural biped walking timing to assist the

learned controller. In section IV-C, we analyze the stability of
the learned controller.

Fig. 1. Three link robot model

Fig. 2. Five link biped robot

TABLE I

PHYSICAL PARAMETERS OF THE THREE LINK ROBOT MODEL

trunk leg
mass [kg] 2.0 0.8
length [m] 0.01 0.4

inertia [kg · m2] 0.0001 0.01

II. ESTIMATION OF NATURAL BIPED WALKING TIMING

In order for our foot placement algorithm to place the
foot at the appropriate time, we must estimate the natural
biped walking period, or equivalently, frequency. This timing
changes, for example, when walking down slopes. Our goal
is to adapt the walking cycle timing to the dynamics of the
robot and environment.



TABLE II

PHYSICAL PARAMETERS OF THE FIVE LINK ROBOT MODEL

trunk thigh shin
mass [kg] 2.0 0.64 0.15
length [m] 0.01 0.2 0.2

inertia (×10−4 [kg · m2]) 1.0 6.9 1.4

A. Estimation method

We derive the target walking frequency ω ∗ from the walking
period T which is measured from an actual half-cycle period
(one foot fall to another):

ω∗ =
π

T
(1)

The update rule for the walking frequency is

ω̂n+1 = ω̂n + Kω(ω∗ − ω̂n), (2)

where Kω is the frequency adaptation gain, and ωn is the
estimated frequency after n steps. An interesting feature of this
method is that the simple averaging (low-pass filtering) method
(Eq. 2) can estimate appropriate timing of the walking cycle
for the given robot dynamics. This method was also adopted
in [14], [15].

Several studies suggest that phase resetting is effective to
match walking cycle timing to the natural dynamics of the
biped [19], [24], [14], [15]. Here we propose an adaptive phase
resetting method. Phase φ is reset when the swing leg touches
the ground:

φ̄ ← φ̄ + Kφ(φ− φ̄) (3)

φ ← φ̄, (4)

where φ̄ is the average phase, and Kφ is the phase adaptation
gain.

B. A simple example of timing estimation

We use the simulated three link biped robot (Fig. 1) to
demonstrate the timing estimation method. A target biped
walking trajectory is generated using sinusoidal functions with
amplitude a = 10◦ and a simple controller is designed to
follow the target trajectories for each leg:

τl = k(a sin φ− θl)− bθ̇l (5)

τr = k(−a sin φ− θr)− bθ̇r, (6)

where τl denotes the left hip torque, τr denotes the right hip
torque, k = 5.0 is a position gain, b = 0.1 is a velocity gain,
and θl and θr are left and right hip joint angles. Estimated
phase φ is given by φ = ω̂nt, where t is the current time.

For comparison, we apply this controller to the simulated
robot without using the timing estimation method, so ω̂ is
fixed and φ increases linearly with time (The walking period
was set to T = 0.63sec and frequency ω̂ = 10rad/sec). The
initial average phase was set to φ̄ = 1.0 for the right leg and
φ̄ = π + 1.0 for the left leg, the frequency adaptation gain
was set to Kω = 0.3, and the phase adaptation gain was set
to Kφ = 0.3.

With an initial condition which has a body velocity of
0.2m/s, the simulated 3 link robot walked stably on a 1.0◦

downward slope (Fig. 3(Top)). However, the robot could not
walk stably on a 4.0◦ downward slope (Fig. 3(Bottom)). When
we used the online estimate of ω̂ and the adaptive phase
resetting method, the robot walked stably on the two test
slopes: 1.0◦ downward slope (Fig. 4(Top)) and 4.0◦ downward
slope (Fig. 4(Bottom)). In figure 5, we show the estimated
walking frequency.

Fig. 3. Biped walking pattern without timing adaptation: (Top) 1.0◦
downward slope, (Bottom) 4.0◦ downward slope

Fig. 4. Biped walking pattern with timing adaptation: (Top) 1.0◦ downward
slope, (Bottom) 4.0◦ downward slope
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Fig. 5. Estimated walking frequency

III. MODEL-BASED REINFORCEMENT LEARNING FOR

BIPED LOCOMOTION

To walk stably we need to control the placement as well
as the timing of the next step. Here, we propose a learning
method to acquire a stabilizing controller.



A. Model-based reinforcement learning

We use a model-based reinforcement learning frame-
work [4], [17]. Reinforcement learning requires a source
of reward. We learn a Poincare map of the effect of foot
placement, and then learn a corresponding value function for
states at phase φ = 1

2π and φ = 3
2π (Fig. 6), where we define

phase φ = 0 as the right foot touchdown.
1) Learning the Poincare map of biped walking: We learn

a model that predicts the state of the biped a half cycle
ahead, based on the current state and the foot placement at
touch down. We are predicting the location of the system in
a Poincare section at phase φ = 3π

2 based on the system’s
location in a Poincare section at phase φ = π

2 . We use the
same model to predict the location at phase φ = π

2 based on
the location at phase φ = 3π

2 (Fig. 6). Because the state of the
robot drastically changes at foot touchdown (φ = 0, π), we
select the phases φ = π

2 and φ = 3π
2 as Poincare sections. We

approximate this Poincare map using a function approximator
with a parameter vector wm,

x̂ 3π
2

= f̂ (xπ
2
,uπ

2
;wm), (7)

where the input state is defined as x = (d, ḋ). d denotes the
horizontal distance between the stance foot position and the
body position (Fig. 7). Here, we use the hip position as the
body position because the center of mass is almost at the same
position as the hip position (Fig. 2). The action of the robot
u = θact is the target knee joint angle of the swing leg which
determines the foot placement (Fig. 7).

2) Representation of biped walking trajectories and the
low-level controller: One cycle of biped walking is repre-
sented by four via-points for each joint (Fig. 6). The output
of a current policy θact is used to specify via-points (Table
III). We interpolated trajectories between target postures by
using the minimum jerk criteria [6], [21] except for pushing
off at the stance knee joint. For pushing off at the stance knee,
we instantaneously change the desired joint angle to deliver a
pushoff to a fixed target to accelerate the motion.

Zero desired velocity and acceleration are specified at each
via-point. To follow the generated target trajectories, the torque
output at each joint is given by a PD servo controller:

τj = k(θd
j (φ) − θj)− bθ̇j , (8)

where θd
j (φ) is the target joint angle for j-th joint (j = 1 · · · 4),

position gain k is set to k = 2.0 except for the knee joint of
the stance leg (we used k = 8.0 for the knee joint of the stance
leg), and the velocity gain b is set to b = 0.05. Table III shows
the target postures.

3) Rewards: The robot gets a reward if it successfully
continues walking and gets punishment (negative reward) if
it falls down. On each transition from phase φ = 1

2π (or
φ = 3

2π) to phase φ = 3
2π (or φ = 1

2π), the robot gets a
reward of 0.1 if the height of the body remains above 0.35m
during the past half cycle. If the height of the body goes below
0.35m, the robot is given a negative reward (-1) and the trial
is terminated.

TABLE III

TARGET POSTURES AT EACH PHASE φ : θact IS PROVIDED BY THE OUTPUT

OF CURRENT POLICY. THE UNIT FOR NUMBERS IN THIS TABLE IS DEGREES

right hip right knee left hip left knee
φ = 0 −10.0 θact 10.0 0.0

φ = 0.5π θact 60.0
φ = 0.7π 10.0 −10.0

φ = π 10.0 0.0 −10.0 θact

φ = 1.5π 60.0 θact

φ = 1.7π −10.0 10.0

Fig. 6. Biped walking trajectory using four via-points: we update parameters
and select actions at Poincare sections on phase φ = π

2
and φ = 3π

2
. L:left

leg, R:right leg

4) Learning the value function: In a reinforcement learning
framework, the learner tries to create a controller which
maximizes expected total return. Here, we define the value
function for the policy µ

V µ(x(t)) = E[r(t + 1) + γr(t + 2) + γ2r(t + 3) + ...], (9)

where r(t) is the reward at time t, and γ (0 ≤ γ ≤ 1) is
the discount factor1. In this framework, we evaluate the value
function only at φ(t) = π

2 and φ(t) = 3
2π. Thus, we consider

our learning framework as model-based reinforcement learning
for a semi-Markov decision process (SMDP) [18]. We used a
function approximator with a parameter vector w v to estimate
the value function:

V̂ (t) = V̂ (x(t);wv). (10)

By considering the deviation from equation (9), we can define
the temporal difference error (TD-error) [17], [18]:

δ(t) =
tT∑

k=t+1

γk−t−1r(k) + γtT −tV̂ (tT )− V̂ (t), (11)

where tT is the time when φ(tT ) = 1
2π or φ(tT ) = 3

2π. The
update rule for the value function can be derived as

V̂ (x(t))← V̂ (x(t)) + βδ(t), (12)

where β = 0.2 is a learning rate. The parameter vector wv is
updated by equation (19).

1We followed the definition of the value function in [17]



Fig. 7. (left) Input state, (right) Output of the controller

5) Learning a policy for biped locomotion: We use a
stochastic policy to generate exploratory action. The policy
is represented by a probabilistic model:

µ(u(t)|x(t)) =
1√
2πσ

exp
(
− (u(t)−A(x(t);wa))2

2σ2

)
,

(13)
where A(x(t);wa) denotes the mean of the model, which
is represented by a function approximator, where w a is a
parameter vector. We changed the variance σ according to the
trial as σ = 100−Ntrial

100 + 0.1 for Ntrial ≤ 100 and σ = 0.1
for Ntrial > 100, where Ntrial denotes the number of trials.
The output of the policy is

u(t) = A(x(t);wa) + σn(t), (14)

where n(t) ∼ N(0, 1). N(0, 1) indicate a normal distribution
which has mean 0 and variance 1.

We derive the update rule for a policy by using the value
function and the estimated Poincare map.

1) Derive the gradient of the value function ∂V
∂x at the

current state x(tT ).
2) Derive the gradient of the dynamics model ∂f

∂u at
the previous state x(t) and the nominal action u =
A(x(t);wa).

3) Update the policy µ:

A(x;wa)← A(x;wa) + α
∂V (x)

∂x
∂f(x,u)

∂u
, (15)

where α = 0.2 is the learning rate. The parameter vector wa

is updated by equation (19). We can consider the output u(t)
is an option in the SMDP [18] initiated in state x(t) at time
t when φ(t) = 1

2π (or φ = 3
2π), and it terminates at time tT

when φ = 3
2π (or φ = 1

2π).
6) Function approximator: We used Receptive Field

Weighted Regression(RFWR) [16] as the function approxi-
mator for the policy, the value function and the estimated
dynamics model. Here, we approximate the target function
g(x) with

ĝ(x) =
∑Nb

k=1 ak(x)hk(x)∑Nb

k=1 ak(x)
, (16)

hk(x) = wT
k x̃k, (17)

ak(x) = exp
(
−1

2
(x− ck)T Dk(x− ck)

)
, (18)

where ck is the center of the k-th basis function, Dk is the
distance metric of the k-th basis function, Nb is the number of
basis functions, and x̃k = ((x − ck)T , 1)T is the augmented
state. The update rule for the parameter w is given by:

∆wk = akPkx̃k(g(x)− hk(x)), (19)

where

Pk ← 1
λ

(
Pk − Pkx̃kx̃T

k Pk
ak

λ + x̃T
k Pkx̃k

)
, (20)

and λ = 0.999 is the forgetting factor.
We align basis functions ak(x) at even intervals in each

dimension of input space x = (d, ḋ) (Fig. 7) [−0.2(m) ≤
d ≤ 0.2(m) and −1.0(m/s) ≤ ḋ ≤ 1.0(m/s)]. We used
400(=20×20) basis functions for approximating the policy and
the value function. We also align 20 basis functions at even
intervals in the output space −0.7(rad) ≤ θact ≤ 0.7(rad)
(Fig. 7). We used 8000(=20 × 20 × 20) basis functions for
approximating the Poincare map. We set the distance metric
Dk to Dk = diag{2256, 90} for the policy and the value
function, and Dk = diag{2256, 90, 185} for the Poincare
map. The centers of the basis functions ck and the distance
metrics of the basis functions Dk are fixed during learning.

IV. RESULTS

A. Learning foot placement

We applied the proposed method to the 5 link simulated
robot (Fig. 2). We used a manually generated initial step to
get the pattern started. We set the walking period to T =
0.79sec (ω = 8.0[rad/sec]).

A trial terminated after 50 steps or after the robot fell down.
Figure 8(Top) shows the walking pattern before learning, and
Figure 8(Middle) shows the walking pattern after 30 trials.
Target knee joint angles for the swing leg were varied because
of exploratory behavior (Fig. 8(Middle)).

Figure 10 shows the accumulated reward at each trial. We
defined a successful trial when the robot achieved 50 steps.
A stable biped walking controller was acquired after 80 trials
(averaged over 5 experiments). The shape of the value function
is shown in Fig. 11. The maximum value of the value function
is located at positive d (around d = 0.05(m)) and negative ḋ
(around ḋ = −0.5(m/sec)).

Figure 9 shows joint angle trajectories of stable biped
walking after learning. Note that the robot added energy to
its initially slow walk by choosing θact appropriately which
affects both foot placement and the subsequent pushoff. The
acquired walking pattern is shown in Fig. 8(Bottom).

B. Estimation of biped walking period

The estimated phase of the cycle φ plays an important
role in this controller. It is essential that the controller phase
matches the dynamics of the mechanical system. We applied
our timing estimation method described in section II-A to the
learned biped controller. The initial average phase was set to
φ̄ = 1.0 for the left leg and φ̄ = π + 1.0 for the right leg, the
frequency adaptation gain was set to Kω = 0.3, and the phase
adaptation gain was set to Kφ = 0.3.



Fig. 8. Acquired biped walking pattern: (Top)Before learning, (Middle)After
30 trials, (Bottom)After learning

We evaluated the combined method on a 1.0◦ downward
slope. The simulated robot with the acquired controller in
previous section could not walk stably on the downward slope
(Fig. 12(Top)). However, when we used the online estimate of
the walking period and the adaptive phase resetting method
with the learned controller, the robot walked stably on the
1.0◦ downward slope (Fig. 12(Bottom)).

C. Stability analysis of the acquired policy

We analyzed the stability of the acquired policy in terms
of the Poincare map, mapping from a Poincare section at
phase φ = π

2 to phase φ = 3π
2 (Fig. 6). We estimated the

Jacobian matrix of the Poincare map at the Poincare sections,
and checked if |λi(J)| < 1 or not, where λi (i = 1, 2)
are the eigenvalues[3], [7]. Because we used differentiable
functions as function approximators, we can estimate the
Jacobian matrix J based on:

J =
df
dx

=
∂f
∂x

+
∂f
∂u

∂u(x)
∂x

. (21)

Figure 13 shows the average eigenvalues at each trial. The
eigenvalues decreased as the learning proceeded, and became
stable, i.e. |λi(J)| < 1.

V. DISCUSSION

In this study, we used swing leg knee angle θact to decide
foot placement because the lower leg has smaller mass and
tracking the target joint angle at the knee is easier than using
the hip joint. However, using hip joints or using different
variables for the output of the policy are interesting topics for
future work. We also are considering using captured data of
a human walking pattern [23] as a nominal trajectory instead
of using a hand-designed walking pattern. We are currently
applying the proposed approach to the physical biped robot.
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Fig. 9. Joint angle trajectories after learning
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Fig. 10. Accumulated reward at each trial: Results of five experiments

In previous work, we have proposed a trajectory opti-
mization method for biped locomotion [10], [11] based on
differential dynamic programming [5], [9]. We are consider-
ing combining this trajectory optimization method with the
proposed reinforcement learning method.
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