
Robotics and Autonomous Systems 47 (2004) 163–169

Learning tasks from observation and practice

Darrin C. Bentivegnaa,b,∗, Christopher G. Atkesona,c, Gordon Chenga
a ATR Computational Neuroscience Laboratories, Department of Humanoid Robotics and

Computational Neuroscience, Kyoto, Japan
b Georgia Institute of Technology, College of Computing, Atlanta, GA, USA

c Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, USA

Abstract

This paper presents a framework that gives robots the ability to initially learn a task behavior from observing others. The
framework includes a method for the robots to increase performance while operating in the task environment. We demonstrate
this approach applied to air hockey and the marble maze task. Our robots initially learn to perform the tasks using learning
from observation, and then increase their performance through practice.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Learning from observation; Movement primitives; Imitation; Locally weighted learning; Action recognition

1. Introduction

We are exploring how primitives, small units of
behavior, can speed up robot learning and enable
robots to learn difficult dynamic tasks in reasonable
amounts of time. In this paper, we describe work on
learning from observation and learning from practice
in air hockey and on a tilt maze task. This paper
discusses our research strategy, results, and open
issues.

Primitives are units of behavior above the level of
motor or muscle commands. There have been many
proposals for such units of behavior in neuroscience,
psychology, robotics, artificial intelligence, and ma-
chine learning[1–5].

We have used two tasks to develop our thinking, air
hockey and marble maze,Figs. 1 and 2. We have de-
veloped versions of these games to be played by simu-

∗ Corresponding author.
E-mail address: darrin@atr.co.jp (D.C. Bentivegna).

lated agents and by robots. Although hardware imple-
mentations necessarily include real-world effects, we
can collect useful training data from the simulations
without the cost of running the full robot setups, and
can perform more repeatable and controllable experi-
ments in simulation.

In the air hockey task a player tries to hit the puck
into the opponent’s goal and also tries to prevent the
puck from entering their own goal. In the marble maze
task, a player tilts a maze to roll a marble to a goal,
avoiding hazards such as holes. The manually defined
library of primitives for the air hockey task is:

• Straight Shot. A player hits the puck and the puck
hits a wall and then goes toward the opponent’s goal
without hitting a wall.

• Bank Shot. A player hits the puck and the puck hits
a wall and then goes toward the opponent’s goal.

• Defend Goal. A player moves to a position to pre-
vent the puck from entering their goal area.

• Slow Puck. A player hits a slow moving puck that
is within their reach.

0921-8890/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2004.03.010



164 D.C. Bentivegna et al. / Robotics and Autonomous Systems 47 (2004) 163–169

Fig. 1. The software air hockey game on the left and air hockey
playing with a humanoid robot on the right.

Fig. 2. Software and hardware marble maze environments.

• Idle. A player rests their paddle while the puck is
on the opponent’s side.

The manually defined library of primitives for the mar-
ble maze task is (Fig. 3):

• Roll To Corner. The marble rolls along a wall and
stops in a corner.

• Roll Off Wall. The ball marble rolls along a wall
and then rolls off the end.

• Guide. The marble rolls without touching a wall.
• Roll From Wall. The marble rolls on a wall and then

rolls away from it.
• Leave Corner. The marble is captured in a corner

and then the board is positioned in preparation to
move the marble from the corner location.

In both hardware and simulation versions of these
tasks object positions can be recorded as a human
plays the game. The hardware air hockey task has been

Roll Off WallRoll To Corner 

Guide Roll From Wall

Leave Corner

Fig. 3. Primitives being explored in the tilt maze environment.

created using a humanoid robot,Fig. 1. The humanoid
robot has 30 degrees of freedom and is 190 cm tall and
weighs 85 kg. It is hydraulically actuated and attached
to a stable pedestal at the hips. The robot is placed at
one end of the table and plays the game using one arm.
It views the position of the objects using cameras that
are on pan-tilt mechanisms on the humanoid’s head.
The hardware maze has two motors that control the tilt
of the board. A human can control the motors using
knobs that are connected to encoders. The computer
receives the encoder signals and creates the proper
motor commands. A level sensor is connected to the
board and is used to initially level the board. After it is
level, its orientation is measured using two encoders.
The real-world agents are equipped with a vision sys-
tem which estimates the position of the objects in the
environment at 60 Hz[6].

2. Our framework

Our behavioral framework,Fig. 4, has three main
parts when operating in the environment using ob-
served information processed by the primitive recog-
nition module[7]. The first part,primitive selection, is
a classifier that uses the current location in state space
to choose a behavioral primitive to execute. Execu-
tion of the current primitive may be terminated when
a new primitive type is selected, after a specified time
interval, or when the current primitive indicates com-
pletion. For tasks that have a set sequence of actions,
such as dancing, primitive selection can be done by
specifying the sequence of primitives to be performed
[8,9]. Tung and Kak[10] show how a planning sys-
tem can be used to specify the primitive execution
sequence in an environment where objects are not
moving during training and there is a high probability

Fig. 4. Our framework.



D.C. Bentivegna et al. / Robotics and Autonomous Systems 47 (2004) 163–169 165

of successful performance of the primitives. Robots
operating in a similar static environment have learned
a primitive execution sequence from observed data
[11]. We are interested in dynamic tasks where primi-
tive execution sometimes fails, other agents interfere,
and a fixed sequence of primitives is not adequate.

The second part of our framework,sub-goal gener-
ation, is a module that specifies a goal of performing
the behavioral primitive chosen. For theRoll Off Wall
primitive, for example, this module specifies the ve-
locity at which the marble will roll off the wall and
the tilt of the board at the end of the primitive exe-
cution. The third part of our framework,action gen-
eration, specifies the actuator commands to achieve a
behavioral sub-goal.

In learning from only observation, the robot’s goal
is to behave like the teacher. No knowledge of higher
level goals or how to improve its performance au-
tonomously is needed. In order to learn from practice,
there must be additional domain knowledge that pro-
vides information needed to evaluate progress towards
task objectives. The learning from execution module
contains that knowledge and provides feedback to the
other modules so their behavior can be changed.

3. Choosing primitives, generating sub-goals, and
performing the action

It is the responsibility of the primitive selection
module,Fig. 4, to choose the primitive type, based on
the current state and prior observations of primitives
that have been executed. In our implementation, dur-
ing training the context or state in which the human
has performed each primitive is extracted from the ob-
served data, and during execution is used by a nearest
neighbor lookup process to find the most appropriate
primitive type as follows.

A database is created from the observed data that
contains states of the environment and correspond-
ing primitive types. A lookup is performed on this
database to find the states that are closest to the query
state. The distance of each data point from the query

point is computed asd(x, q) =
√∑

j wj · (xj − qj)2,

wherex andq are the locations of the data point and
the query point in state space, and the vectorw allows
each dimension to be weighted differently. A query to

the database is the current state of the environment. In
the marble maze task for example, the query consist
of the marble’s position and velocity, and board tilt
angles (Mx, My, Mx, My, Bx, By).

A pure nearest neighbor lookup scheme would use
the closest point to select the primitive type. The
data point also contains the observed outcome of the
human’s performance of that primitive, which can be
used as the desired sub-goal. An alternate approach
is to use several nearby points, and implement some
sort of voting scheme. The primitive type (a discrete
choice) can be chosen by selecting the primitive type
that occurs most often within the closestN data points,
for example. We are currently selecting the primitive
type indicated by the nearest data point.

3.1. Computing the desired sub-goal

Once the primitive type has been chosen the
sub-goal can be computed. It is important to first
choose the primitive type because the sub-goals of
different primitive types cannot be combined. For
example, it would not make sense to use the sub-goal
of the Roll Off Wall primitive with theRoll Into Cor-
ner primitive. The Roll Into Corner primitive will
be expecting a corner for the marble to land in as a
sub-goal location and theRoll Off Wall primitive will
be specifying a sub-goal location at the end of a wall.

The algorithm used in the primitive selection mod-
ule identifies multiple data points that are in the vicin-
ity of the current state and their distance to the query
point. The closest data point also contains the observed
outcome of the human’s performance of that primitive.
This information can be used as the desired sub-goal.
A more robust approach is to use then closest points
that indicate the selected primitive type to compute
the sub-goal.

The outcomes of the returned points are used to
compute the sub-goal using a locally weighted learn-
ing (LWL) model [12]. A kernel function,K(d) =
exp−αd2

, uses the distanced, as shown in the pre-
vious section, to compute the weight of each data
point. α defines the range over which generalization
is performed[12] discusses the effect ofα and the
use of other kernel functions on the weighting of the
data points. The output components needed at the
query point are computed using the equationy(q) =∑

yiK(d(xi, q))/
∑

K(d(xi, q)) wherei ranges from



166 D.C. Bentivegna et al. / Robotics and Autonomous Systems 47 (2004) 163–169

1 to n, the number of closest data points of the same
type. If n is chosen as 1, it will have the effect of per-
forming the action indicated by the data point closest
to the query point. The values of the vectorw andα

are set globally and were chosen by trial and error.
The methods being used for primitive type selection

and sub-goal generation require all the data points
to be visited. Because the agents operate in dynamic
environments they must make decisions quickly.
By having the sub-goal generation module reuse
the information computed by the primitive selection
module helps to minimize the time needed to make
decisions.

3.2. Performing the primitive

The action generation modules contain a policy to
control the robot. There is a separate action genera-
tion module for each type of primitive. These modules
can use any algorithm that provides the needed actu-
ator commands to obtain the desired sub-goal. Vari-
ous methods have been explored including idealized
models based on physics, neural networks, and kernel
regression techniques[12].

The policy used within the action generation module
can be local and general. This will allow the module
to be used at multiple locations within the task domain
and, if properly formatted, can also be used in simi-
lar domains. The environment state and the policy’s
specified actions must be transformed as needed. In-
formation needed by the action generation modules
is broken into small units that encode environment or
action outcome information.

4. Practising to increase performance

There are many things these robots can learn while
they are performing the task. The learning from prac-
tice module contains the information needed to evalu-
ate the performance of the agents towards completing
the task. This information is used to update primitive
selection, and sub-goal and action generation. A tough
question is where the task criterion comes from. Ide-
ally, it should be learned from observation. The learner
should infer the intent of the teacher. This is very dif-
ficult, and we defer addressing this question by man-
ually specifying a task criterion.

If the learning problem is structured appropriately,
the agents can increase their knowledge of the envi-
ronment. This knowledge can be used by the agent
to update its action generation modules to increase its
performance of the individual primitives. The agents
can also learn about the effectiveness of choosing par-
ticular actions.

5. Discussion and results

Agents were created to operate in the testing en-
vironments using the ‘Learning from Observation us-
ing Primitives’ framework. After the agents observe a
human perform the task they performed the task us-
ing only the observed information. Therefore they did
not learn beyond what was observed and the policy
used by each module remained fixed. These agents
followed four basic steps: (1) observe the state of the
environment; (2) decide what primitive to perform;
(3) compute the parameters to use with the selected
primitive type; (4) perform the primitive until it has
terminated. Steps 2 through 4 use the information
obtained from observing the human. The agent’s in-
tention is to act as the human did, or as the human
would, for the observed state. But if the agent incor-
rectly predicts the human’s action, or cannot correctly
perform the chosen action, it has no way of know-
ing if the outcome is desirable for completing the
task.

The agents are then given the ability to increase
there performance while practising. The air hockey
agent is given the ability to learn about the envi-
ronment from observing its own performance. This
knowledge is used in the action generation modules
to increase it performance at making shots. The tilt
maze agents have the ability to change their primi-
tive selection and sub-goal generation behavior using
the information provided by the learning from execu-
tion module. This section presents the results of these
agents operating in the testing environments with and
without learning from practice.

5.1. Model learning in air hockey

While watching a human play simulated air hockey
for approximately ten minutes, an agent observed 44
straight shots and 108 bank shots. This information



D.C. Bentivegna et al. / Robotics and Autonomous Systems 47 (2004) 163–169 167

Fig. 5. Absolute error in reaching the target location during 500
straight shots made by the agent in the air hockey simulator.

was used to create environment models that are used
by the action generation modules of theBank Shot and
Straight Shot primitives.

The solid line inFig. 5shows the result of the agent
making 500 straight shots in the simulator. This fig-
ure plots the average absolute error in hitting the tar-
get location, the distance between the target location
and the location where the puck actually hit the back
wall. The values plotted are the running average of
five shots. The dotted line at the bottom of the graph
shows the results of the agent performing the action
using an exact model of the simulator. The error in
the exact model is due to the noise introduced into the
simulator and this is effectively the best the agent can
perform.

For the first 200 shots the agent is using models
created from observing the human’s shots. The width
of the goal is 20 cm and fromFig. 5it can be seen that
if the agent was targeting the center of the goal it would
be in range to enter the goal most of the time. But by
comparing this agent to the perfect agent, it appears it
can perform better than this. One way to increase its
performance is to have it observe the human making
more shots. But this can be time consuming as it took
over ten minutes to see only 152 shots. A better way
is to have the agent observe its own behavior and add
that information to the model.

After making 200 straight shots using the models
learned from observing the human, the agent then ob-
served 100 of its own shots while practising (shots
201–300 inFig. 5). Whenever the agent observes its
own shot it calculates the parameters in the same way
as if it were observing a human. This information is
then immediately given to the models.Fig. 5 shows
the result of using these newly trained models for the
shots from 301 to 500.

5.2. Learning primitive selection and sub-goal
generation in the marble maze task

After observing three games played by a human,
the hardware marble maze agent played ten consecu-
tive games. During those games the marble falls into
holes six times and completed the maze four times.
The agent in the software environment also observed
the human perform the task three times. If this agent
falls into a hole or gets stuck, it is penalized 10 s and
play continues just past the failure point. The human
performed the task in the simulator and completed
the maze in 23.3, 30.3, and 32.7 s, never fell into a
hole and was never penalized for not making progress.
The top solid line on the graph inFig. 6 shows the
performance of the agent during 30 trials in the sim-
ulation environment using the observed information.
Each trial consist of playing three consecutive games
and the graph shows the running average time to com-
plete the three games. The skilled human’s average
of 28.77 s is shown by the bottom solid line in the
graph.

The same agents are now given the ability to change
their primitive selection and sub-goal generation pol-
icy while operating in the environment. The hardware
agent completed ten consecutive games without falling
into a hole after it practised for 30 games. The dashed
line on the graph inFig. 6 shows the performance of
the software agent playing the game with the ability
to update its primitive and parameter selection policy.
Again the graph shows 30 trials with each trial being
the average of three games. This agent immediately
decreased the time it takes to complete the maze and

Fig. 6. Performance in the software marble maze. Top solid line:
agent using only observed information; dashed line: agent also
learning while practising; bottom solid line: average time of the
three observed games performed by the human.



168 D.C. Bentivegna et al. / Robotics and Autonomous Systems 47 (2004) 163–169

its performance is as good or better than that of the
observed human’s average of 28.77 s.

6. Conclusions

Choosing actions to perform when operating in dy-
namic environments, such as the environments de-
scribed in this paper, is a difficult task. Because the
state space is large and continuous, expecting to learn
entirely from random actions is not realistic. An initial
policy can be created using knowledge of primitive
actions performed in the environment and information
obtained from observing others. Within our research
we find that the performance of the initial policy is
quite high but there is still room for improvement.
This initial policy provides a very good starting point
from which to practice to further increase competence
at the task.

Our learning from observation using primitives
framework described inSection 2provides flexibility
in conducting research in learning from observing
others. The framework uses the observed data in a
systematic way, and provides the ability to learn while
practising. The organization of the data allows lookups
to be performed using LWL techniques. Agents using
our framework have learned an initial policy to use in
the marble maze and air hockey tasks. The agents go
on to increase performance while practising the task.

Acknowledgements

Support for all authors was provided by ATR Com-
putational Neuroscience Laboratories, Department of
Humanoid Robotics and Computational Neuroscience,
and the Communications Research Laboratory (CRL).
It was also supported in part by the National Science
Foundation Award IIS-9711770.

References

[1] R.A. Brooks, A robust layered control system for a mobile
robot, IEEE Journal of Robotics and Automation RA-2 (1)
(1986) 14–23.

[2] R.C. Arkin, Behavior-based Robotics, MIT Press, Cambridge,
MA, 1998.

[3] R.A. Schmidt, Motor Learning and Control, Human Kinetics
Publishers, Champaign, IL, 1988.

[4] S.J. Russell, P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice-Hall, 1995.

[5] A. Barto, S. Mahadevan, Recent advances in hierarchical
reinforcement learning, Discrete Event Systems 13 (2003)
41–77.

[6] D.C. Bentivegna, A. Ude, C.G. Atkeson, G. Cheng,
Humanoid robot learning and game playing using pc-based
vision, in: Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Switzerland,
2002.

[7] D.C. Bentivegna, C.G. Atkeson, A framework for learning
from observation using primitives, in: Proceedings of the
RoboCup 2002 International Symposium, Fukuoka, Japan,
2002.

[8] J.K. Hodgins, W.L. Wooten, D.C. Brogan, J.F. O’Brien,
Animating human athletics, Computer Graphics 29, Annual
Conference Series, 1995, pp. 71–78.

[9] M.J. Mataric, M. Williamson, J. Demiris, A. Mohan,
Behavior-based primitives for articulated control, in:
Proceedings of the Fifth International Conference on
Simulation of Adaptive Behavior (SAB-98), MIT Press, 1998,
pp. 165–170.

[10] C. Tung, A. Kak, Automatic learning of assembly tasks
using a dataglove system, in: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
vol. 1, 1995.

[11] Y. Kuniyoshi, M. Inaba, H. Inoue, Learning by watching:
extracting reusable task knowledge from visual observation
of human performance, IEEE Transactions on Robotics and
Automation 10 (1994) 799–822.

[12] C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted
learning, Artificial Intelligence Review 11 (1997) 11–
73.

Darrin C. Bentivegna is a graduate stu-
dent in the College of Computing at
Georgia Institute of Technology and an
Intern Researcher in the Department of
Humanoid Robotics and Computational
Neuroscience at the ATR Computational
Neuroscience Laboratories. He received
his MS degree in Space Systems from
Florida Institute of Technology. Darrin
served in the US Navy for 15 years in

the Fleet Ballistic Missile Submarine community. His primary re-
search interest is in understanding methods that can give robots
human-like intelligence and abilities.



D.C. Bentivegna et al. / Robotics and Autonomous Systems 47 (2004) 163–169 169

Chris G. Atkeson is an Associate Pro-
fessor in the Robotics Institute and
Human–Computer Interaction Institute at
CMU. He received the MS degree in Ap-
plied Mathematics (Computer Science)
from Harvard University and the PhD
degree in Brain and Cognitive Science
from MIT. Chris joined the MIT faculty
in 1986, moved to the Georgia Institute
of Technology College of Computing in

1994, and moved to CMU in 2000.

Gordon Cheng is currently a senior
research scientist and head of the De-
partment of Humanoid Robotics and
Computational Neuroscience, Compu-
tational Neuroscience Laboratories of
ATR International. He was a Center of
Excellence (COE) and a Science and
Technology Agency (STA) Research Fel-
low; both fellowships were taken while
working in the Humanoid Interaction

Laboratory, Intelligent Systems Division at the Electrotechnical
Laboratory (ETL), Japan. Before coming to Japan he conducted
his PhD study at the Department of Systems Engineering, The
Australian National University, Australia.


	Learning tasks from observation and practice
	Introduction
	Our framework
	Choosing primitives, generating sub-goals, and performing the action
	Computing the desired sub-goal
	Performing the primitive

	Practising to increase performance
	Discussion and results
	Model learning in air hockey
	Learning primitive selection and sub-goal generation in the marble maze task

	Conclusions
	Acknowledgements
	References


