
Unconstrained Real-time Markerless Hand Tracking
for Humanoid Interaction

Thomas Gumpp‡, Pedram Azad∗, Kai Welke‡∗, Erhan Oztop†‡, Rüdiger Dillmann∗, Gordon Cheng‡†
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Abstract— Markerless hand tracking of humans can be applied
to a broad range of applications, in robotics, animation and
natural human-computer interaction. Traditional motion capture
and tracking methods involve the usage of devices such as a
data glove, or marker points that are fixed and calibrated on the
object to perform tracking. Markerless tracking is free from such
needs, and therefore allows for more freedom in movement and
spontaneous interaction. In this paper, we analyze how a hand
tracking system, which reliably tracks arbitrary hand movements
can be implemented. We explored a model based approach that
uses particle filters for tracking. In this study we also determine
the degree to which the inherent parallel properties of particle
filter can be exploited to achieve the goal of real-time tracking.
We present the effectiveness of the tracking system via the real-
time control of a 20 degrees of freedom dextrous robotic hand.

I. INTRODUCTION

For any robot that is designed to interact in a natural manner

with humans, an unconstrained hand-tracker is necessary.

Abilities that a humanoid can exhibit using a markerless hand

tracker range from skill learning, imitation to cooperative

human interaction, such as handling and exchanging objects

with humans via hand-eye coordination, and enable compre-

hension of gestures. Humans can also use this system to direct

the attention of a robot by pointing. A hand tracker system

presented in this article addresses the necessities of these tasks.

II. STATE OF THE ART

Marker-based and glove-based hand-trackers have been

thoroughly investigated (for a survey, see [1]). These tech-

niques usually lead to good tracking results. For our appli-

cation, the robot should be able to track any random hand

in a natural environment, therefore it cannot rely on any

preparations such as fixed markers. For this reason, we opt

for a markerless solution.

Markerless hand tracking is usually based on the inter-

pretation of a video input stream. The grabbed frames are

searched for cues. Common cues are the outline of the hand,

which can be found by applying an edge-filter on the input

frame. Another cue is the visible area of a hand, which can be

extracted by filtering skin color. The tracker’s estimated hand

configuration is compared to cues in the input image to get

a probability for a defined gesture. Either a posture database

or a projected model of a 3D hand model is used to compare

against the cues.

Recognition of predefined hand postures is solved by sys-

tems that usually use a posture database. One example is

the appearance based gesture recognition [2] using Hidden

Markov Models to detect gestures in a sign language database

(see [3] for a review of similar systems).

More closely in line with our own objectives are multi-

degrees of freedom hand-trackers, which have recently been

reviewed thoroughly by Erol in [4]. The review presents recent

developments in this field distinguished by three categories:

Single Frame Estimators, Single- and Multiple Hypotheses

Estimators.

A. Single Frame Estimators

The first class contains single frame pose estimators that do

not rely on prior knowledge from former frames. One possible

solution is global search over a set of templates labeled with

the kinematic parameters. In [5], these templates are generated

using a 3D model, and stored in a tree structure. To detect

a pose, the tree is traversed without prior knowledge. Being

independent from former frames, these systems do not have

to recover from tracking errors in a former frame, resulting

in a robust behavior. Building up a template database limits

the system’s capability of expression to a discrete subset of

postures, which contradicts our goal of unconstrained tracking.

Global search is computationally very expensive. Using a

continuous joint space to track is not feasible for a real-time

system. Tracking over multiple frames could result in a system

that uses less resources, as only local search is performed in

configuration space.

B. Single Hypothesis Estimators

The second category contains hand trackers that use a

single hypothesis carried over from former estimations as prior

knowledge. The most common approach for fitting a model to

cues extracted from the image is to use standard optimization

techniques. In [6], the error based on joint links and finger

tips was minimized using Newton’s method. Silhouette-based
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error measures were minimized using Nelder Mead Simplex

method in [7].

In [8], a divide and conquer approach was proposed. First,

the overall motion of the hand was estimated, followed by the

estimation of the joint angles. This procedure was iteratively

applied until convergence. Kalman Filtering has also been used

to solve the single hypothesis tracking problem. In [9], the

Unscented Kalman Filter (UKF) was used for hand tracking.

As these systems rely on gradient search, there is always the

danger of reaching only a local minimum without finding the

global minima over the tracking error landscape.

C. Multiple Hypotheses Estimators

Opposed to single hypotheses trackers, multiple hypotheses

trackers try to keep multiple pose estimations while tracking a

sequence. This increases the chance of reaching the global

minima. This idea is best implemented by the Bayesian

filtering framework that keeps a probability distribution of the

states up to the current frame. One prominent technique that

implements a recursive Bayesian filter is Particle Filter.

Particle filtering is also known as the Condensation algo-

rithm introduced by Michael Isard and Andrew Blake [10].

The Condensation algorithm was designed to track curves in

clutter. Kalman filtering is not suitable for this task, since

it is based on Gaussian densities which are not capable of

simultaneously representing alternative hypotheses.

A particle is a pair (sn , πn), where sn is the configu-

ration vector of particle n, and πn is the probability of this

configuration. For hand trackers, each particle consists of a

configuration vector and its probability, and each value in the

configuration vector represents an angle or a translation of the

kinematic hand model. The vector’s dimension is therefore

equal to the number of DOF of the hand kinematic. πn

is calculated by rating the state of sn. This can be done

by evaluating different cues like visible areas or edges in

video frames. The probability distribution is modeled by a

set S = (s1, π1), . . . , (sN , πN ) of particles.

The main steps for each iteration of the Particle Filter are

sampling the set of particles St from the last iteration set

St−1, rate each sn to get its probability πn and compute a

weighted mean smean. smean represents the currently assumed

estimation for the hand position and posture (see [11] for an

application to finger pose tracking).

Although these methods are computationally more expen-

sive than single hypotheses trackers, we decided to use a

particle filter for tracking. The computational costs can be ac-

counted for with balanced parallel execution, as the additional

cost comes in the form of independent probability calculations.

In Section III, we discuss requirements for implementing

Hand-Tracking on a Humanoid. In Section IV, we will present

our particle filter based hand tracker. We propose a novel

way to deal with self occlusion of an articulated hand model

using a Z-Buffer method. We also propose a search space

decomposition method to improve tracking performance. In

Section V, we will show tracking results, and conclude the

paper in Section VI.

III. IMPLEMENTING HUMANOID HAND-TRACKING

A. Unconstrained Tracking

Gesture recognition systems that learn views of gestures are

an example of a specialised hand tracker.

Such a system, like [2], can perform well in its domain, but

is not designed to track arbitrary hand configurations, which

humanoid robots necessitate since interacting with humans

must take place without artificially introduced limitations.

Our approach is extracting an unbiased representation of the

tracked hand configurations, that enables the behavior module

of our humanoid to react to and to interpret hand movements.

It can be used as a basis for various tasks with different

requirements such as imitation, direction of attention and

estimation of intention, hand eye coordination, and gesture

recognition.

To achieve this goal, we have chosen a model-based ap-

proach using a model similar to [12]. By using a 3D model as

a means of configuration representation, we are not limited to

a fixed set of hand postures. Shimada [13] uses a 3D model to

build a labeled database of hand posture templates, which are

then used for tracking. The result of this approach is primarily

a hand pose, with discrete kinematic parameters attached. In

contrast, we directly project our 3D model into the scene, so

we know the exact kinematic parameters in a continuous joint

angle range. Using a database is generally computationally

cheaper, however it requires substantial memory and search

time in return for less computation. There are several advan-

tages in using a model directly. We can alter its structural

parameters dynamically or completely exchange the model to

adjust to different hands. We are also free to change projection

details on-the-fly, especially important for humanoid robotic

heads (see [14]), where foveal and wide angle camera systems

with different projection characteristics are used. In contrast, a

template based system would need a seperate database for each

camera. Additionally, the degrees of freedom of the model can

be adjusted for different tasks. Since all postures are generated

on the fly, this system does not suffer from the curse of

dimensionality that leads to exponential memory requirements

for a posture database.

B. Real-time Requirements

One of the conclusions of [4] was the scarcity of real-time

3D hand-trackers. We need to create a real-time system as we

have to interact with our environment and with people, so it is

not acceptable to introduce long delays in the tracking process.

Our goal is to build a real-time tracking system, to establish

a natural means of communication for robots and humans.

With this requirement in mind, the particle filter system

seems promising. It can scale very well as it is easily par-

allelised in a way that minimizes necessary communication

between distributed system parts. Exploiting this property,

we were able to implement a distributed particle filter on

the base of the Distributed Vision Cluster, proposed in [15].

Like in [13] the computationally most expensive task is to

calculate the probability πn for each particle. We chose a
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Fig. 2. (a) Structure of our Hand Model(Figure taken from [4]), and (b) 3D
Hand Model

similar configuration as [13], with one computer used to

manage tracking and for grabbing and preprocessing images,

and several cluster nodes to compute probability functions

(see, Figure 5).

One application that needs real-time is imitation. We used

the Gifu Robotic Hand III (Dainichi Co. Ltd., Japan) to imitate

hand postures. To achieve this goal, we convert the estimated

angles of our tracker system to the joint angles of the Gifu

Hand. See Figure 1 for results.

IV. THE MARKERLESS TRACKER SYSTEM

A. Image Acquisition and Preprocessing

In our system, we use a calibrated stereo camera system

with small intra-ocular distance, as it can be found in a

humanoid head. We have chosen stereo cameras, because two

viewpoints of the hand lead to a better positioning in 3D space,

as an error in depth estimation might be negligible in one view,

but visible in the second view.

After grabbing the stereo image, we use skin color detection

in HSV space to generate a binary map for skin-color area in

the image, which we also use to rate the skin area cue. Then

we use this mask to cut all uninteresting parts of the image,

and apply an edge filter in the resulting area of the original

image to obtain a hand edge image.

B. 3D Hand Model

Although the human hand has 22 DOF, we have chosen

to limit the degree of freedom in our kinematic hand model

to one degree of freedom per finger for flexing, to decrease

complexity. As observed by [4], we set θDIP = 2
3θPIP for

each finger. Additionally, our tracker assumes θPIP = θMCP ,

to decrease the dimensionality of search-space. The overall

model consists of six degrees of freedom for hand orientation

and position, and two degrees of freedom for each finger. In the

current version of our system, the thumb is fixed in a standard

position. So the configuration vector sn of each particle has

the dimension 14.

We use a 3D hand model (see, Figure 2) which only consists

of conic sections. This model can be projected very fast into

frames for cue detection, but is still precise enough to track

hand and finger motion.

Fig. 3. Z-buffer. The depth information is displayed via the intensity of
edges and areas.

Fig. 4. 3D Model Projection. The left image shows the extracted skin color
image Φa, and the right image shows the extracted edges in Φe.

C. Tackling Self Occlusion

Deutscher proposed a method to rate image cues [16]. He

directly rated each projected body part in the images. In order

to avoid searching for self occluded parts of the hand model

projection, we modified his method. We are proposing a z-

buffer approach to only search for visible, not occluded cues.

The idea of z-buffering is to draw occluded objects so

that objects that are further away get drawn earlier and are

overwritten by the nearer occluding objects. To be able to

use z-buffering to correctly project our 3D hand model, we

need an ordered list of finger parts sorted by their distance

to the projection plane. Because this projection plane is not

the same in a stereo camera system, we need to create a

separate z-buffer for each camera. To project the 3D hand

model element, we use the inverse of the calibration matrix of

each camera. As an approximation, we compare the centre

of gravity of each finger, transformed into the coordinate

system of the viewpoint. We then sort the finger parts starting

from the biggest z coordinate, which is now perpendicular to

the projection plane. After generating the list, we draw each

element of the fingers according to the list’s order in a buffer

thereby coding the finger part, and whether it represents an

edge or an area cue. By doing this, we are overwriting self-

occluded cue indexes with those from overlapping fingers, as

both will write to the same position in the buffer.

We then take a buffer as illustrated in Figure 3, where

for each pixel we know whether we expect an edge, area,

or nothing. These projections are finally used for comparison

with the preprocessed images.
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Fig. 1. Imitation sequence using the Gifu Robotic Hand

D. Rating Configuration Probability

We rate each particle’s configuration based on edge and

area cues found in the preprocessed frames. To compute edge

probability πe
n and area probability πa

n of each particle n, we

use

μa
n =

∑
Φa[i],∀i ∈ Πa

n (1)

μm
n = |Πa

n| − μa
n (2)

πa
n =

max((μa
n − μm

n ), 0)
|Φa| (3)

πe
n =

∑
Φe[i]2

|Πe
n| ∗ MaxIntensity2

∀i ∈ Πe
n (4)

where Φa is the the binary skin mask, μa
n and μm

n contain

actually found and missing skin area pixels for the particle

n, Φe is the mask-cut gradient image and Πa/e
n contains all

area/edge in the z-buffer for particle n.

We also detect collisions between fingers by computing the

shortest distance between two finger parts. If this distance

is shorter than the sum of the radii, we assume a collision

occurred and punish this state in the probability function via

πcoll
n . Each particle’s probability πn is then computed using

πn = e−λ(1−(ω[0]πe
n+ω[1]πa

n+ω[2]πcoll
n )) (5)

By setting λ, we are able to choose the input range of the

exponential function. In order to get a probability in the range

of [e−λ, 1], all weights ω[i] are determined experimentally and

normalized to a sum of 1. Also, all πn are normalized to have

a sum of 1. Then, we are able to compute a weighted mean

of all particles P to estimate the current hand configuration

smean.

smean =
N∑

n=0

πn · sn (6)

E. Partitioning Search Space in Resampling
For the next iteration of the particle filter, we have to resam-

ple our set of particles. Basically, we use factored resampling

of the old particle set, as described by Isard [10]. Using this

approach, we could realize hand-tracking, but not tracking

of individual fingers. We encountered the problem that a

particle whose hand orientation configuration is misaligned

will degrade the rating of the finger tracking, because it might

compare a finger in the model to a neighboring finger in the

image.
To improve performance, we propose to divide our particle

set into two disjunct sets. The first set is used to track the

posture of the hand given the current finger configuration, so

we assign the mean finger configuration from the last iteration

to this particle set. Posture is resampled from all particles

considering their weight. The second set is used to track the

fingers at the last known hand posture. For this, the mean hand

posture of the last iteration is assigned to all particles of this

set. Finger configuration is then resampled from all particles.

After resampling, both sets are merged.
Using this approach, we get the benefit of concentrating

particles in the last known position to search for finger

configuration in the second set, thereby practically reducing

dimensionality of the search space by six degrees of freedom.

At the same time, we search for the new hand posture using the

last known finger configuration using the first set. Assigning

the means to the particles was done this way to preserve the

particle filter’s property to express multiple hypothesis.

F. Distributed Real-time Tracking
Particle Filters are well suited for parallelisation on clusters,

because the computationally expensive rating of each particle

is independent from all other particles. Nevertheless, commu-

nication is necessary to spread the particles onto all cluster

nodes, and to gather the corresponding probabilities. In our

case, we also have to distribute the preprocessed images.
Our cluster nodes are interconnected via standard Gigabit

ethernet. We used broadcasts to minimize the necessary traffic
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Fig. 5. Structure of the distributed Particle Filter. Each Pu stands for a
separate cluster node.

Fig. 6. Scaling of our tracking system.

for sending images. To implement the distributed particle filter,

we use the Distributed Vision Cluster proposed by [15]. By

starting multiple rating threads on each node, we can also

profit from multi processor and multi core systems. We found

that interleaving the rating of stereo images to only one

image for each iteration of the particle filter almost doubles

performance. For all our tests and benchmarks, we used an

empirically determined number of 3000 particles. Using more

particles did not improve tracking considerably, and using

less than 2000 particles considerably degraded the result. The

Distributed Vision Cluster [15] enabled the particle filter to

scale with a speedup of 6.84 using 9 Cluster Nodes, that is an

efficiency of 76.1%. We were able to reach 10.2 FPS. For our

measurements, our Clusternodes used dual 2.16 Ghz CPUs. A

performance measure can be seen in Figure 6.

V. RESULTS

Evaluating the tracking performance of complex articulate

objects is a challenging task, due to the facts that usually one

can not easily obtain a ground truth of video sequences. For

hand tracking, one also cannot easily use a more accurate

method like a data glove or markers, as it changes the

appearance of the hand. In our studies we have elected to

conduct our evaluations in twofold: First, we use natural video

to prove that our tracker works with real-world images by

tracking the transition between postures. To show the tracker’s

performance, we generated artificial video sequences with

known ground truth to evaluate the tracking error of the

system.

Fig. 7. Tracked Sequence

1 2 3 4 5

1 - 2 0 7 3

2 6 - 0 12 3

3 6 5 - 0 7

4 1 9 1 - 4

5 9 0 5 13 -

TABLE I

FRAMES REQUIRED FOR CONVERGENCE

A. Natural Video Sequence

We selected 5 hand postures, and tracked the transition

between each pair. We noted the number of frames necessary

until the tracker converged completely to the correct posture,

after the transition ended. For an example transition see Figure

7. The capture rate of all videos was 30 fps.

In Table I, we outlined the required number of frames

from posture[column] to posture[row] transitions. The average

number of required frames to converge is 4.65. The converged

finger configuration was always correct, even with a slight

palm offset.

Fig. 8. Tracking sequence for the synthetic hand stereo projection (frame
150 to 400). First row shows the input for the area cue, the second row the
input for the edge cue.
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Fig. 9. Comparison of estimated values and ground truth for the two DOF
of the index finger’s MCP.

Fig. 10. Error graph showing the mean squared error for θMCP , and for
the posture of the hand (tracked angles are in radians).

B. Synthetic Video Sequence

In our second experiment, we use synthetic videos, that have

been created by projecting a stereo animation sequence of the

3D hand model (Figure 8). From the sequences presented,

we can derive the ground truth of each sequence, therefore, a

comparison of the tracked kinematic parameters with ground

truth are made. Figure 9 shows that the index finger is tracked

over 400 frames. In Figure 10, the posture error of the hand

can be seen for this sequence. The squared mean error of all

fingers for tracking θMCP reached only as highest 0.06 at

frame 300.

VI. CONCLUSION

In this paper, we presented a markerless hand and finger

tracking system using particle filters. We proposed a new z-

buffer based method to correctly rate cues of articulate self-

occluding objects like a human hand. To be able to track

fingers accurately, we improved performance by proposing

a particle resampling method to partition the search space.

Implementation was conducted using a distributed particle

filter on a PC-cluster, enabling us to achieve tracking results

at high frame-rates. The effectiveness of the tracking system

is demonstrated with the real-time control of a 20 degrees of

freedom dextrous robot hand.

The current tracking system could greatly benefit from

the combination of a full-body human tracker [17]. The arm

posture could be utilised to obtain the position of the wrist,

thus greatly reduce the search space for hand orientation. This

forms part of our future work.
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