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Abstract— Interaction between humans involves a plethora of
sensory information, both in the form of explicit communication
as well as more subtle unconsciously perceived signals. In order
to enable natural human-robot interaction, robots will have to
acquire the skills to detect and meaningfully integrate informa-
tion from multiple modalities. In this article, we focus on sound
localization in the context of a multi-sensory humanoid robot
that combines audio and video information to yield natural and
intuitive responses to human behavior, such as directed eye-head
movements towards natural stimuli. We highlight four common
sound source localization algorithms and compare their perfor-
mance and advantages for real-time interaction. We also briefly
introduce an integrated distributed control framework called
DVC, where additional modalities such as speech recognition,
visual tracking, or object recognition can easily be integrated.
We further describe the way the sound localization module has
been integrated in our humanoid robot, CB.

I. INTRODUCTION

Human-robot interaction is a significant area of interest in
robotics which has attracted a wide variety of studies in recent
years. Most of these projects focused on particular aspects
such as speech recognition [1], visual tracking and foveation
[2], object recognition [3], learning through manipulation [4],
or imitation learning [5] as isolated, independent problems
rather than interconnected components of a highly integrated
control architecture. Given that communication between hu-
mans is typically a multimodal process that simultaneously
uses verbal and non-verbal cues to convey meaning, sim-
ilar multimodal perceptual abilities would greatly enhance
the ability of a robot to interact with humans. With the
goal to attain flexible human-robot interaction, we propose
a comparison of four common acoustic source localization
algorithms. We discuss how robust human speaker localization
in noisy environments can be achieved in real-time by using
multimodal information fusion to drive gaze shifts and focus
of attention of a humanoid robot on auditory events.

For sound source localization, the error in direction is about
8-10 degrees in humans [6], which is too coarse to separate
sound streams from a mixture of sounds. In visual processing,
there are other problems such as narrow visual field of an
ordinary camera or visual occlusions. Thus each modality has
its own weaknesses, but they can be overcome by integrating
the visual and auditory information to take advantage of the
best of both worlds [7]. Additionally, integration of visual
information in speech recognition (for example lip-reading)

can greatly improve the performance of speech understanding
(see [8] for an extensive overview on this topic).

Recently improved human-computer interfaces combining
several sensory modalities have started to appear [9]–[14].
Unfortunately, most of these multimodal systems are based
on post-perceptual integration, where modalities are treated
as individual systems and only their output is merged in the
final step making them too rigid to deal with complex human
behavior. In humans and animals, behavioral and physiological
evidence suggests that information merging happens also at
earlier levels and that unimodal sensory information process-
ing can be strongly biased by other sensory modalities [15].
The response enhancement during multi-sensory activation is
supported by recent functional imaging (fMRI) [16]. This close
link between perceptual systems may well be a key to human-
like perceptual flexibility.

Fig. 1. The humanoid robot CB used in our experiments, orients his head
to face human speaker based on acoustic signals. Copyright ATR. The robot
was developed by SARCOS for NiCT.

Our research investigates efficient ways to combine acoustic
and visual information for robust interaction by using biolog-
ically inspired models of attention shift and motor control.
However, this paper will focus only on the sound localiza-
tion problem and what properties are desired for multimodal
integration (the actual integration mechanism is detailed in
[17]). This will enable speech recognition systems to separate
talkers from each other and from environmental sounds. We
will briefly present the general architecture of the perceptual
system we are developing for the Humanoid Robot CB [18]
(shown in Fig. 1), featuring sensory (audio-visual) integration,



bottom-up salience detection, top-down attentional feature
modulation, and reflexive gaze shifting.

II. SOUND LOCALIZATION FOR MULTIMODAL
INTERACTION

In this article, the term localization refers only to the
estimation of the Direction of Arrival α (DOA) of a sound,
and not the actual position of the acoustic source. Jeffress
proposed in his so-called Duplex Theory [19] that two primary
cues are mainly used for sound localization – Interaural Time
Difference (ITD) and Interaural Level Difference (ILD) – and
their combination can lead to robust DOA estimation using
the whole audible frequency spectrum. For a sound wave
that strikes a spherical head of radius r from a direction
specified by the azimuth angle α, the difference in the length
of the straight-line path to the two ears is 2r sin(α), which
corresponds to a time difference of 2r sin(α)/c, where c is
the speed of sound (approx. 334 m/s).

At low frequencies the wavelength of the sound is much
larger than the head diameter, so the phase difference between
the signals can be estimated with no ambiguity, but for high
frequencies there can be several cycles of shift, leading to
ambiguity for the ITD. This ambiguity can be resolved by
using the ILD. Incident sound waves are diffracted by the head,
resulting in a significant difference in the sound pressure on
the two ears – the ILD, which is highly frequency dependent.
At low frequencies (below about 1.5 kHz), there is hardly
any difference in sound pressure at the two ears, but at high
frequencies above about 1.5 kHz (where there is ambiguity
in the ITD measure) the difference in pressure is sufficient to
lateralize a sound signal.

Unfortunately, the relationship between a source signal and
the pressure developed at the ear drums is not only difficult
to model analytically because of the complexity of the head
geometry and range of wavelengths to consider, but also
varies according to the azimuth, elevation, range of the source,
and the environment itself. These effects can be captured in
the so-called Head-Related Transfer Function (HRTF), which
can be used to localize sound sources in 3D with only two
ears. So far, most of our knowledge of HRTFs has come
from direct experimental measurements in anechoic room
with microphones inserted in the ears of subjects. Several
approaches where HRTF are used for localization have been
proposed (e.g., [13]), but these methods are not efficient in
real-world environments. A model of visuo-motor learning
based on visual feedback in the barn owl has been proposed
in [20], but uses only a single camera and localization is
limited to the horizontal plane. A more effective model that
learns sensory-motor coordination of auditory-evoked reflexes
is proposed in [21], however the focus in the present paper is
on simple auditory perception methods suited for multimodal
processing, rather than elaborate models of self-calibration and
motor response learning. An extensive review of models for
auditory perception based on time delay estimation is given
in [6]. Recent interesting results on biologically plausible
models of auditory perception using biological spiking neural
networks are proposed in [22], [23].

When choosing an appropriate auditory sound localization
method however one needs to consider not only performance
and accuracy, but also the computational and hardware cost.
In a multimodal system, such as a humanoid robot, this
cost-benefit analysis must include other modalities, such as

Fig. 2. The global architecture of our model. Different spatial maps for every
modality are combined in the Superior Colliculus model, with possible high-
level top-bottom biasing influence. The Superior Colliculus model computes
a desired gaze shift that is transmitted to the Cerebellum model, where the
gaze shift is transformed into the actual low-level motor commands for both
eyes and neck movement.

vision, which are inherently better suited for fine localization
performance. Furthermore, active audio and visual perception
in robots should involve dynamic exploratory reorientation of
sensors to improve the quality of the perceived. To achieve
real-time performance and have a responsive and flexible
system that can quickly tune to changes in the environment, we
will follow the general organization of an integrated control
architecture proposed in [7]. Within this context, very high
resolution sound localization may therefore be a waste of
resources.

III. METHODS

Following a brief description of the humanoid robot CB
and its multimodal perception architecture, we present four
models we have implemented in Matlab and compare their
performance on the same stereo input signal recorded with
the robot.

A. Humanoid robot CB

CB stands for Computational Brain, and refers to an
elaborate humanoid robot developed by SARCOS [18]. CB
possesses 50 degrees of freedom (DOF), and the head has 7
DOF (eyes pan and tilt independently, and roll/pitch/yaw for
the neck) and is similar in performance with a human head.

The microphones are located on the head of our humanoid
robot as illustrated in Fig. 2, positioned 17.6 cm apart. Su-
percardioid microphones Shure MX184BP, pre-amplified by
a STICK-ON STM-2 low-noise pre-amp with variable gain,
have been used for these experiments. The signals used in
the Matlab analysis were recorded directly from the robot
microphones in 16 bits wave format. The microphones were
connected to the line-in input port of a sound card on a desk-
top computer, where sampling was done using the standard
Microsoft API in a software module which is a component of
our complete control system, as described in the next section.

The different sensory inputs are decomposed into several
parallel streams, each corresponding to one type of visual



or auditory feature. Similar to the bottom-up visual salience
model from Itti and Koch [24], these features are used to
generate spatial maps that encode areas of interest. These
maps are combined to generate a global saliency map that
emphasizes locations that stand out from their surrounding.
The global saliency map is used as an input to a winner-
take-all neural network which is used to compute the most
salient area. While this approach is purely bottom-up, top-
down effects can be introduced by biasing the weights when
combining the conspicuity maps or by introducing lateral
inhibition when computing local feature maps. In order to
achieve real-time operation of the complete visual and acoustic
attention system a distributed architecture is essential. For this
reason, the whole system has been implemented on a cluster
of heterogeneous computers using the DVC framework [25],
[26].

B. Signals preprocessing

The recorded signals are filtered using a band-pass filter
in the range of human hearing (from pilot experiments we
found that good results are obtained when using as lower
cutoff f1

pass = 1000 Hz, and upper cutoff f2
pass = 2000

Hz) to remove unwanted noise. Blocks of 256 samples are
continuously fetched from the hardware and a simple sound
detection algorithm is used to detect when acoustic activity
takes place. Initially, a statistical model of the power spectrum
E in a limited frequency range of background noise is esti-
mated (assuming E follows a normal distribution N(µ, σ2)),
and the energy in this frequency range is monitored until it
reaches a detection threshold (E ≥ µ + βσ, β = 3). Once
the threshold is reached, the detected block of audio data is
fed to the actual localization module which is described in the
following section.

C. Acoustic localization

A multitude of methods exist for accurate acoustic source
localization, some of them using very elaborate models of
the environment or of the signals. The interested reader is
invited to consult [27] for a systematic overview of the
state-of-the-art of time-delay estimation techniques. For our
purpose, however, complex optimal localization techniques are
too computationally expensive. We therefore compare simple
localization models and identify properties required to obtain
robust human-robot interaction.

1) Generalized Cross-correlation (GCC): The most
straightforward method to estimate the time-delay between
two signals xl and xr is the cross-correlation (CC), which
consists of summing the signals for every possible delay
between two microphones, and then select the delay for which
the sum is maximal as an estimate of the time delay. This
procedure is very sensitive to noise and reverberations, thus
should be discarded for localization in real environments. A
more efficient and generic method to estimate the time delay
is the Generalized Cross-correlation (GCC) that is defined as
follows:

Rl,r(τ) =
∫ ∞

−∞
Xl(ω)X∗

r (ω) expjωτ dω

where X is the Fourier transform of the signal x, and X∗

denotes the conjugate of the Fourier transform. The GCC is
a more robust method than direct CC that is based on pre-
filtering the input signals so as to take into account that a

finite time window of observation is used in reality, and that
multiple sound sources or echoes may be present [20]. The
problem with this simple method, is that correlation between
samples is usually large so peaks can be quite wide, resulting
in lower precision in the final result.

2) GCC with Phase Transform (PHAT): The manifestation
of interfering signals is easier to detect in the frequency
domain, and an alternative approach for DOA estimation
considers the signals xl and xr in the frequency domain to
remove signal interference in the real life situations. To extract
DOA from frequency domain using GCC, we compute the
inverse Fourier Transform of the signal cross-power spectrum
scaled by a weighting function. One instance of GCC weight-
ing function is the Cross-power Spectrum Phase, also called
the Phase Transform (PHAT). This weighting places equal
importance on each frequency band. By dividing the spectrum
by its magnitude it de-emphasizes portions of the spectrum that
are suspected to be corrupt. This process results in a constant
energy concentrated over all frequencies so that the correct
DOA can be found by high coherence between the two signals.
Experiments have shown PHAT to be very robust to noise and
reverberation. PHAT is defined as follows

Rl,r(τ) =
∫ ∞

−∞
G(ω)Xl(ω)X∗

r (ω) expjωτ dω

where G(ω) is a weighting factor as described earlier, and
in the case of PHAT weighting it is computed as follows:

GPHAT (ω) =
1

|Xl(ω)X∗
r (ω)|

Other weighting factors can also be used and are presented
in [28]. The problem with PHAT is when interferences are
dominant over the signal (resulting in a low signal-to-noise
ratio), PHAT results for DOA estimation will be unreliable.
Due to room reverberations and environmental noise a num-
ber of undesired local maxima can be found in the GCC
function. To emphasize the GCC value at the true DOA
value different weighting functions have been investigated.
For real environments the Phase Transform (PHAT) technique
has shown best performance and is applied by most DOA
estimation algorithms. Given that we are mainly interested
in localizing speech, one should aim to detect voice in the
spectrum, and the weight function should emphasize regions
that are likely to contain voice components. The idea behind
this technique is that when no single frequency dominates, the
effects of reverberation cancel out when averaged over many
frequencies.

3) Moddemeijer Information theoretic delay criterion
(MODD): The main weakness of frequency-domain imple-
mentations of delay estimators (e.g., GCC) lies in the difficulty
to correctly estimate the spectrum of short signals. To counter
this problem, Moddemeijer [29] developed a time-domain
implementation of an advanced delay estimation that uses
information theory to maximize the probability of source
location using mutual information measures between binaural
signals. A detailed mathematical explanation of this method
can be found in [23]. The main advantage of the method is
the proven unambiguity of the criterion.

4) Cochlear filtering (COCH): An alternative method for
time delay estimation is to use a model of cochlear filtering
on the input signals before a cross-correlation, and we used
a modified version of the cross-correlation model found in



Fig. 3. Correlation of a simulated signal using a gammatone filter-bank.
White areas represent high activity and correlation. One can see the number
of side lobes increase with the frequency. Top: Correlation for different delays
and frequencies. Bottom: Value of the activity summed over all frequencies.

Akeroyd’s Binaural Toolbox [30]. At first, the signal of each
microphone is filtered using a gamma-tone filter-bank (we used
ERB filter-bank from [31]) that decomposes the signal into
several streams having different frequency sensibilities, similar
to the frequency transformation performed by the cochlea.
For each of these streams a cross-correlation is performed
resulting in a bi-dimensional coincidence detection map that
shows the correlation of the binaural signals for different
frequency ranges and time delays (see Figure 3). In theory
the performance should be superior to the other approaches
discussed in this paper as high coherence for a specific delay
should be visible in the coincidence detector - at least for wide-
band signals. The proposed filter-bank, based upon Lyon’s
cochlear model [32], is composed of 50 gamma-tone filters
distributed between 700 Hz and 2000 Hz.

IV. EXPERIMENTS

We performed several tests to compare the results obtained
by these four common approaches to binaural time delay
estimation with various noise conditions. The present study
was conducted using high quality sound samples extracted
from the RWCP Sound Scene Database in Real Acoustic
Environment. Four sentences - two in Japanese, and two in
English - by different speakers were used (duration between
3 and 5 seconds). These samples were played through a
loudspeaker located at -30◦ in front of the robot. The resulting
sound stimuli were recorded using the microphones mounted
on the head of the robot. The robot is located in a room with
a large amount of background noise due to cooling fans. We
ran 3 series of tests with various amount/types of background
noise to analyze how the sound localization methods perform
in case of noisy situations. For the three experiments the
background was composed of, no added noise (only room
noise at 62.9dB), added electronic music (total noise of 76dB),
and added white noise (total noise of 79dB), respectively.

A. Simulation

To ensure the correctness of our methods, we compared
GCC, PHAT, MODD, and COCH in a simulation where
the binaural signal is obtained by copying the signal from

Fig. 4. Results of the DOA estimation with simulated signals for a spoken
sentence located at -30◦. From top to bottom: cross correlation (GCC), gener-
alized cross correlation with phase transform weighting (PHAT), Moddemeijer
information theoretical approach (MODD), and cochlear filtering (COCH).

one microphone to the channel of the other microphone and
shifting it by a fixed number of samples. For all our tests and
methods, the fixed delay was consistently estimated correctly.
This result, however can not be extrapolated to real-world
situations for two reasons 1) the signals in both channels
are perfectly identical, which is hardly the case in a real
experiment, and 2) an artificial delay assumes that all the
background noise and reverberations emanate from the same
direction as the signal itself, thus do not affect the DOA
estimation procedure. Time delay estimation of a simulated
(artificial delay = -12 samples) binaural signal can be seen in
Figure 4.

It is interesting to point out that even in simulation, sec-
ondary lobes can be seen in the correlation graph, especially
for GCC and PHAT (see Figure 4), which can lead to am-
biguity in delay estimation. However, MODD gives a single
thin peak, suggesting a higher spatial discrimination resolution
than the other approaches.

B. Robot implementation

The input data was based on the same recordings as in the
simulation experiment, but the actual left and right channels
were used instead of replacing one of the channels with a
shifted version of the signal from the other channel. In these
experiments, the performance was significantly lower than in
the simulation, probably due to the high amount of noise in
the experiment room.

During our experiments, the background noise was coming
from the left side of the robot due to a gigantic compressor.
When the noise was played from the speaker on the left
(from the same direction as the background noise), localization
was close to the exact direction for all methods in all noise
conditions (CCF: µ = −35.1◦, σ = 3.7◦; PHAT: µ =
−33.4◦, σ = 1.2◦; MODD:µ = −33.8◦, σ = 0.6◦; COCH:
µ = −36.7◦, σ = 2.6◦), and performance was even most
stable in the white noise added case. From our results we
noticed that the results in the generalized cross-correlation had
the highest variation, even for the same noise condition. PHAT
had the closest prediction to the actual angle, while MODD
was less close but was the most stable algorithm.



Fig. 5. Results of the DOA estimation with real signals, for a spoken sentence
located at -30◦. From top to bottom: cross correlation (GCC), generalized
cross correlation with phase transform weighting (PHAT), Moddemeijer
information theoretical approach (MODD), and cochlear filtering (COCH).
All four methods yield the correct angle, but COCH and PHAT have quite
large secondary lobes that can lead to ambiguous results. On the other hand,
MODD performs the best, having the smallest secondary lobe and the thinnest
main peak.

In the cochlear filtering method, coincidence detectors are
run over several frequencies to improve the chances of correct
localization. If the signal is wide band and the signal-to-
noise ratio is greater than one (SNR ≥ 1), then this approach
works very well, and is able to localize the sound accurately.
However, the method becomes unstable when the signal is
narrow band, while the noise is wide band (as is the case with
speech). In the absence of a top-down attention system that
dynamically selects which frequency bands to attend to, the
cochlear model suffers from an internal conflict between signal
localization (from the frequency bands that contain signal
information) and noise localization (from the other bands).

Since most human speech signals are located between 1-
3 kHz, our tests have shown that systematic and accurate
localization is obtained in low noise environments, when a
band-pass filter is used on the signals that filter out signals
not located within this frequency band.

V. DISCUSSION

We have implemented and compared the performance of
four common algorithms to determine the Direction Of Arrival
(DOA) of sound signals in noisy environments.

From our results we noticed that the generalized cross-
correlation (GCC) had the highest variation, GCC with Phase
Transform (PHAT) had the greatest accuracy, while Mod-
demeijer Information theoretic delay criterion (MODD) was
most reliably precise. The Cochlear filtering (COCH) was
handicapped by the lack of dynamic top-down frequency band
selection and consequently did not perform quite as well as
the other methods.

PHAT performs extremely well in reverberant environments,
but is very sensitive to noise, given that the spectrum is
flattened, therefore is not a very appropriate candidate for our
purpose. In spite of MODD’s high reliability, this method may
not be the most desirable for humanoid robots because it can
not easily integrate top-down modulation. MODD does not
deal with the frequency domain, nor does it use biologically

plausible mechanisms to infer source location. Given that our
work deals with attention, it is desirable to have a simple
mechanism to introduce top-down selectivity in both audio and
visual perception. This is one of the strengths of a cochlear
filter model in which frequency bands can be differently mod-
ulated according to interest [33]. Attention based frequency-
band modulation is in fact required for good DOA performance
in wide band noise with the COCH model.

When audio signals are the only information that can be
used to track an acoustic source, efficient methods that rely
on spatially distributed microphone arrays (e.g., [34]) are
needed to achieve accurate results. However, such applications
require dedicated hardware, optimized for acoustic localiza-
tion, and due to the high computational costs associated with
such complex algorithms, real-time processing can hardly be
obtained. For human-robot interaction, where robustness in
performance can be obtained through multimodal integration,
it is preferable to use only two microphones associated with
simple localization techniques.

All frequency domain based Interaural Time Delay (ITD)
methods produce secondary peaks that can confuse the DOA
estimation. These secondary peaks are caused by the aliasing
that occurs for signals with a frequency higher than 1.5 kHz.
As suggested by Jeffress [19], Interaural Level Differences
ILD could be used as an initial coarse estimate of the spatial
areas the signals could be in, and this information can be used
to emphasize the activity in the spatial map at the locations
where the source is more likely to be present. Unfortunately
the current design of the CB robot head is not well suited for
this.

Extensive studies of the sound localization apparatus of
the barn owl [35] revealed the mechanism that permit these
animals to locate sounds with great accuracy. In addition to the
learning of orientation behavior and accurate tuning of motor
response, the structural properties of the head and facial feather
were found to be of vital importance. This suggest that two
ears, augmented with pinnae-like reflectors, can be sufficient
for robust sound localization, and that one should use a similar
physical model when it comes to designing acoustic processing
models.

One might be tempted to add winner-take all (WTA) pro-
cessing to the output cross-correlator in order to amplify the
highest peaks and level out all secondary peaks, as has been
done in [23]. When using an audio-visual system, such as a
humanoid robot, this should be avoided since this would hinder
the cross-modal facilitation of stimulus localization. In a multi-
modal system each separate modality provides only part of
the total percept. The initial feed-forward processing should
therefore retain as much information as possible to allow for
percept changes due to multi-modal information correlation.

When using audio-visual response enhancement, one can
significantly improve the probability of locating the most
salient location in the environment. In addition, a flexible fu-
sion scheme can ensure rapid gaze shift even towards locations
not in the visual scene, followed by visual re-foveation. We
are now in the process of implementing such multi-modal
interaction to produce reflex-gaze shifts towards multi-modal
stimuli. The Superior Colliculus module in our robot receives
two basic types of inputs, bottom-up excitatory inputs from
the sensory processing modules (currently consisting of the
visual and auditory systems) and top-down inputs (inhibitory
& excitatory) from higher cognitive processing modules. The



inhibitory top-down inputs mediate spatial attention and gen-
eral sensitivity while the excitatory inputs drive deliberate
cognitive controlled top-down gaze shifts. The output of the
SC module is a desired gaze shift signal.

In complex systems such as humanoid robots one of the rea-
sons for requiring top-down modulation of auditory sensitivity
is motor noise. Motor noise is complex and often irregular
because of the quantity and nature of actuators that may be
involved in the head and body movement. A filtering scheme
that dynamically suppresses motor noise is required so that the
audition system can perform in real-time, with high respon-
siveness, avoiding the need for a ”stop-perceive-act” cycle. The
addition of an extra motor-noise recording system however
requires additional hardware and computational complexity.
Our next target is to integrate in our top-down selection a
scheme that de-emphasize the frequency bands where motor
noise is likely to be present.

In this paper, we highlighted four common sound source
localization algorithms and compared their advantages for real-
time interaction in the context of a multi-sensory humanoid
robot. From our results we noticed that the generalized cross-
correlation (GCC) had the highest variation, GCC with Phase
Transform (PHAT) had the greatest accuracy, while Mod-
demeijer Information theoretic delay criterion (MODD) was
most reliably precise. The Cochlear filtering (COCH) was
handicapped by the lack of dynamic top-down frequency band
selection and consequently did not perform quite as well as the
other methods though performance was still adequate under
reasonable SNRs. When considering integration with signals
from other modalities and attention mechanism, COCH should
be considered as a primary candidate since this method is most
suited for top-down modulation.
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