
Proceedings of IEEE-RAS/RSJ International Conference on Humanoid Robots (Humanoids 2004)
November 10-12, 2004, Los Angeles, California, USA

A FULL BODY HUMAN MOTION CAPTURE SYSTEM USING PARTICLE

FILTERING AND ON-THE-FLY EDGE DETECTION

PEDRAM AZAD 1,2

azad@ira.uka.de

ALEŠ UDE 2,3,4
aude@atr.jp

RÜDIGER DILLMANN 1

dillmann@ira.uka.de

GORDON CHENG 2,3
gordon@atr.jp

1 IRF, Universität Karlsruhe
Haid-und-Neu-Strasse 7, D-76131 Karlsruhe, Germany

2 Department of Humanoid Robotics and Computational Neuroscience, ATR CNS

2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan

3 ICORP Computational Brain Project, Japan Science and Technology Agency
2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan

4 Jozef Stefan Institute, Department of Automatics, Biocybernetics and Robotics

Jamova 39, 1000 Ljubljana, Slovenia

In this paper we present a full body human motion capture system based on particle filtering operating on
monocular image sequences. Distinguishing our approach from others is that edge detection is not carried
out globally on the whole picture in a preprocess manner, but is done locally on-the-fly during the
calculation of the likelihood function. This approach is effective and flexible at the same time, allowing the
use of various edge detection algorithms with only small modifications. Another special feature of our
system is a highly optimized occlusion test based on a fast point-in-triangle test. Our system has been
designed carefully with respect to serve as a basis for various research activities in the near future, including
the incorporation of stereo vision. A general framework architecture for particle filters and an extension for
appliance to edge tracking has been developed with which it is possible to test a whole range of search space
decomposition variants with minimum implementation effort.

Keywords: Human Motion Capture; Particle Filter; On-The-Fly Edge Detection; Fast Occlusion Test.

1. Introduction

Markerless human motion capture based on image sequences is a challenge. The general
problem definition is to find the correct configuration of the 3D human model for each image.
The main difficulty lies in the fact that the search space increases exponentially with the
number of Degrees Of Freedom (DOF) of the human model. A realistic model of the human
body usually has at least 25 DOF, the model used in our system has 28 DOF.

While marker-based human motion capture is the proper technique for application in the
animation industry due to its higher accuracy, the idea of a markerless human motion capture
system is that it can be applied without any additional arrangements. An ideal markerless
human motion capture system can be applied in any environment with sufficient lighting
conditions.

A good overview of visual tracking can be found in [1] and [2]. In [3] a human motion
capture system is presented which can capture human motion using three fixed positioned
cameras in the corners of a room and achieves very good results. A multi-view approach is
presented in [4]. In [5] and [6] systems are presented using monocular image sequences only
and therefore lack the ability to capture full 3D motion. In [7] a constant angle of view of the
subject is assumed, which greatly restricts the resulting trackers generality [3].

Our aim is to create a system for application on an active head for a (moving) humanoid
robot, allowing the use of a stereo camera system only in which the two cameras are
positioned at a comparatively small distance. In this paper, we want to present a basic system
running with one camera, with several special features included such as on-the-fly edge
detection, a highly optimized occlusion test and the ability to track through the elbow
singularity. On-the-fly edge detection guarantees that during the search for edge features
always the full information provided by both the input picture and the current configuration of
the human model is applied. As will be shown this advantage comes at no significant
additional computational cost.

This system is currently serving as a solid basis for various research projects on a human
motion capture system to be implemented on the active head of a humanoid robot. In
particular, the incorporation of stereo vision and runtime optimizations is current work in
progress.

2. Particle Filters

Our system uses a Bayesian framework called particle filtering to capture human motion
from monocular image sequences. Particle filtering is also known as the Condensation
algorithm introduced by Michael Isard and Andrew Blake [8]. The Condensation algorithm
was designed to track curves in clutter where Kalman filtering fails in general, since it is
based on Gaussian densities which are not capable of representing simultaneous alternative
hypotheses.

However the ability of the Condensation algorithm to cope with clutter is achieved at a high
computational cost. The probability distribution is modeled by a set of finite particles. Each
particle is a pair

 (sn, πn) (1)

where si represents one configuration vector of the model’s configuration space and πi the
probability associated with it. The dimension of configuration space is equal to the number of
DOF of the object model. The probability function is then modeled as a set of a constant
number of particles N:

 S = { (s1, π1), …, (sN, πN) } . (2)

Particle filtering is an iterative process operating on this set, thus the set of particles after each
iteration k is denoted as:

 Sk = { (sk,1, πk,1), …, (sk,N, πk,N) } . (3)

The general algorithm consists of four steps in each iteration:

(i) Preprocess data
(ii) Predict new configurations
(iii) Apply Bayesian rules
(iv) Estimation of the current configuration

The first step consists of preprocessing the input data. In a system for tracking curves this
would usually be the application of an edge detection algorithm.

In the second step the new set of configurations (particles with no probability assigned) is
predicted by incorporation of the underlying dynamic model and adding Gaussian noise to the
configurations of the particles of the last generation. The particles of the last generation used
for this purpose are picked proportional to their probability, which can be efficiently solved
by binary subdivision.

In the third step, the new set of particles is formed by assigning probabilities to the new set of
configurations. This is done by applying Bayesian rules and in particular evaluating a central
likelihood function p(z|s) for each new base si predicted, where z denotes the output of step
one. More precisely p(z|s) calculates the likelihood that s is the proper configuration to a
given measurement z. The estimation of the current configuration in the final step is usually
done by calculating the mean configuration of the probability distribution formed by the new
set of particles.

3. Particle Filtering in a Human Motion Capture System

In this section we describe how particle filters are commonly used in a human motion capture
system. The components of the particle filter which are application dependent are:

• Model of the object of interest
• Likelihood function

These components will be described in the following for the specific use in a human motion
capture system.

3.1. Human model

A common human model, as used in our system, on which the calculations are based can be
seen in figure 1. The modeled body parts consist of the head, torso, upper arm, forearm, thigh
and lower leg.

Fig. 1: 3D human model

Hands and feet are not modeled; elbows and knees are modeled as hinge joints. Thus the total
number of DOF is 28:

• Basic rotation and translation: 6
• Joint for moving the upper body: 3
• Head: 3
• Shoulder Joints: 3 + 3
• Elbow joints: 1 + 1
• Hip Joints: 3 + 3
• Knee Joints: 1 + 1

3.1.1. Modeling body parts

Each body part is modeled as a section of a cone. Such a section is described by four
parameters H, W, L and R, as illustrated in figure 2. H and W specify the radii of the base
ellipse, L specifies the length of the section and R the ratio, thus the upper ellipse is described
by h = RH, w = RW.

Fig. 2: 2D visualization of a section of a cone

3.1.2. Projecting the contour

In order to compare one configuration of the human model to a given image i.e. evaluating
the likelihood function p(z|s), the contour of the human model has to be projected into the
image with respect to the position of the camera. As described in [9] the occluding contour of
each section is formed by two segments and can be calculated as follows.

A section of a cone is defined in the 3D world coordinate system by its origin c, the
orientation of the model coordinate system defined by the unit vectors n, u1 and u2, and the
parameters H, W, L and R which have been introduced in 3.1.1 (compare figures 2 and 3). All
points on the surface of this section are defined by the equation:

 θθθ sin)(cos)(),(21 uun tWtHtctP +++= (4)

with

��

�
��

� +−⋅= 1
)1(

)(
L

tR
HtH and

��

�
��

� +−⋅= 1
)1(

)(
L

tR
WtW . (5)

Fig. 3: 3D visualization of a section of a cone

To obtain the two point pairs A1, A2 and B1, B2 which define the two segments of interest, the
following equation has to be solved:

 0sin
)1(

])[(sin])[(cos])[(21 =−⋅−−⋅−+⋅−+ θθθ
L
RH

W
H

H nvcuvcuvc . (6)

Substituting with

2

2

1
1

cos
g
g

+
−=θ ;

21
2

sin
g
g

+
=θ ;

2
tan

θ=g (7)

leads to the following equation of degree two:

 01
)(

1
])[(

1
])[(

2
1

2
2 =−

⋅−

−⋅−−⋅−
− gL

R
WHg

uvc

nvcuvc
 . (8)

By defining

1

2

)(

1
])[(

1
])[(

:
uvc

nvcuvc

−

−⋅−−⋅−
= L

R
WHr (9)

the two solutions g1 and g2 are specified as

 12

2
1 +±= rrg . (10)

Since both the position and the orientation of the camera relative to the base coordinate
system of the human model are already taken into account by the configuration vector (base
translation and rotation), therefore extrinsic calibration of the camera is not needed. Thus, the
vector v can be set to the zero vector 0. By doing this, the extrinsic calibration of the camera
can be understood as part of the starting condition, i.e. an initial value for the configuration
vector, which is discussed in section 3.3.

Using equation (10) the solutions g1 and g2 lead to the two angles θ1 and θ2 which can be used
together with equation (4) to obtain the four points of interest A1, A2 and B1, B2. In the special
case of c⋅u1 = 0, θ1 and θ2 are set to the values θ1 = π and θ2 = 0. For obtaining the contour of
the section defined by H, W, L and R the parameter t has to be set to t1 = 0 for the points A1,
B1 and to t2 = L for the points A2, B2. The 3D points A1, A2, B1, B2 are transformed into the
image plane using the intrinsic parameters of the calibrated camera.

3.1.3. Kinematic model

For the implementation of the kinematic model basically any common technique known in
robotics can be used such as 3×3 rotation matrices and three component translation vectors as
it is the case in our implementation, 4×4 transformation matrices operating on homogenuous
coordiantes or unit quaternions.

3.1.4. Dynamic model

Commonly used dynamic models are first order or second order models. The model is a
stochastic differential equation in discrete time, which is in the first order case

 ttt BA �xx +=+1 (11)

where A defines the deterministic component of the model and ωωωωt is a vector of independent
standard normal random variables scaled by the diagonal matrix B so that BBT is the process
noise covariance. A second order model is obtained by replacing xt, A and B by

��
�

	

�

�

+1t

t

x
x ,

��
�

	

�

�

10

0
AA

I and
��
�

	

�

�

B0
00 (12)

where I is the identity matrix. [10]

3.2. Likelihood function

Given the projected edges of the human model and the edge image computed from the current
input image, a likelihood function p(z|s) is to be defined to calculate the likelihood that the
configuration leading to the set of projected edges is the proper configuration i.e. matching
the edge image the most.

The basic technique is to go through the projected edges and search at fixed distances ∆ for
high-contrast features perpendicular to the edge within a fixed search distance δ i.e. finding
edge pixels in the generated edge image as illustrated in figure 4 [8], [3].

Fig. 4: Illustration of the search for edges

In [3], Deutscher proposes to use a gradient based edge detector, threshold the result to
eliminate spurious edges followed by the application of a Gaussian smoothing mask to
produce a pixel map, in which the value of each pixel is related to its proximity to an edge.

The likelihood is calculated on the base of the Sum of Squared Differences (SSD). For
convenience of notation, it is assumed that all edges are contained in one contiguous spline
with M discretizations observed. dm denotes the distance at which an edge feature was found
for the mth point and µ denotes a constant maximum error which is applied in case no edge
feature could be found. The likelihood function can then be formulated as:

�
�

�
�
�−∝ �

=

M

m
mdf

M 1
2),(

2
1

exp)|p(µ
σ

sz (13)

where f(ν, µ) = min(ν2, µ2) . [8]

3.3. Starting condition

The starting condition for the particle filter is usually set manually. Automatically finding an
initial state can be regarded as a separate research theme. One possibility would be to use skin
color maps for finding the hands and the head as done in [11], which are sufficient for the
determination of an initial configuration for an upright standing person. Using a user friendly
Graphical User Interface (GUI) with scale controls one can find an initial state which is good
enough easily, as done in our system. The particle set is initialized by assigning this initial
configuration to each particle with the probability 1/N.

4. Special Features

In this section, we want to show details of our implementation, in particular the likelihood
function with an integrated on-the-fly edge detector. Other features include a fast occlusion
test and a two state model for handling elbow singularity.

4.1. On-the-fly edge detection

As described in section 3.2 the general approach for a likelihood function is to operate on an
edge image generated in a preprocess step from the input image. This approach has several
drawbacks:

• The use of common gradient based edge detection masks on the whole image such as
the Sobel or the Laplace operator either consider edges in only one fixed direction or
allow any direction, whereas in the outlined human motion capture system each
projected edge has exactly one specific search direction of interest.

• Higher level edge detection algorithms such as the Canny edge detector in general
produce lines of one pixel width, which makes the test for a specific pixel being part
of an edge complicated respectively inefficient.

• In general, preprocessing the image with standard techniques neglects any
information provided by the human model.

The generation of pixel maps as described in section 3.2 [3] solves the second problem
mentioned, since the test for one pixel being part of an edge can be realized with one
operation. However no information provided by the human model is used. Our approach is to
incorporate the gradient calculation into the walk through the projected edges of the human
model in the likelihood function. By doing this the information provided by the human model
can be used extensively, since the gradient can always be calculated perpendicular to each
projected edge.

4.1.1. Algorithm

The combined algorithm for the walk through a projected edge and the edge detection is
presented as Pseudo code.

GoThroughLine(x1, y1, x2, y2)
begin
 ssd := 0;
 l := sqrt((x2 - x1)2 + (y1 - y2)2);
 (nx, ny) := ((y1 - y2) / l, (x2 - x1) / l);

 M := �l / ∆� + 1;
 (dx, dy) := ((x2 - x1) / M, (y2 - y1) / M);
 (ox, oy) := (x1, y1);

 for m = 0 TO M do
 (p1x, p1y) := (ox - δ⋅nx, oy - δ⋅ny)
 (p2x, p2y) := (ox + δ⋅nx, oy + δ⋅ny);

 if IsNotInPicture(p1x, p1y, p2x, p2y) then

ssd := ssd + C1;
 else if IsOccluded(ox, oy) then
 ssd := ssd + C2;
 else
 (px, py) := (p1x, p1y);

 N := 2⋅δ + 1;
 j0 := -1;
 g0 := G_MIN;

 for n = 1 TO N do
 i1 := image[round(py) ⋅ WIDTH + round(px)];
 i2 := image[round(py + ny) ⋅ WIDTH + round(px + nx)];
 g := |i1 – i2|;

 if (g > g0) then
 j0 := j;
 g0 := g;
 endif

 (px, py) := (px, py) + (nx, ny);
 endfor

 if (j0 = -1) then
 ssd := ssd + C3;
 else
 ssd := ssd + |j0 – δ|2;
 endif
 endif

 (ox, oy) := (ox, oy) + (dx, dy);
 endfor

 return ssd / M2;
end

All the constants for return values have to be assigned very carefully; in fact even non
constant return values, e.g. depending on the last iteration of the particle filter, should to be
considered. In the current implementation C1 = 0, C2 = δ2 and C3 = (δ + 5)2. According to
section 3.2, the constant δ defines the maximum search distance in each direction and is
currently set to 15, ∆ defines the constant distance between observed points of a projected
edge and is currently set to 5. The threshold for the minimum gradient is set to G_MIN = 12.
The constant WIDTH defines the image width.

It has to be pointed out that usually the value ssd is returned, whereas in our implementation
ssd/M2 is returned. This modification assigns a higher likelihood to long visible edges to
avoid very short visible edges since in such configuration the probability cannot be reliable.
For this implementation the value σ2 in equation (13) is set to 0.0025. Although this approach
achieves very good results, a more sophisticated approach for this problem will be
implemented in the future.

4.1.2. Flexibility

Our approach is effective – since it searches for edge features perpendicular to the edge – and
flexible at the same time, allowing with only small variations the implementation of various
edge detection strategies. In the algorithm shown in section 4.1.1 the biggest gradient within
the search region is picked, if it is bigger than a pre-defined threshold. Another strategy is to
pick the nearest gradient bigger than a threshold within the search region. Also combinations
of both strategies should be considered, which can all be applied to the full information
contained in the original picture.

4.1.3. Efficiency considerations

Compared to the application of a 3×3 edge detection mask on the whole image this technique
comes at no or only few extra cost. Assuming an image resolution of 640×480, at least
640⋅480⋅9 ≈ 2.8⋅106 basic operations are needed for calculation of the edge image. With a
total length of approximately 1500 pixels for all projected edges, ∆=5 and δ=15, 30⋅(1500/5)N
≈ 9⋅103N additional basic operations are needed, where N is the number of particles. Thus, for
N = 307 computational cost can be considered as approximately equal, for fewer particles on-
the-fly detection is even faster.

In fact these considerations are of theoretic nature, in practice one also has to consider the
additional cost caused by the two nested loops over the whole image, which are needed for
the convolution with the edge detection mask. In contrast, in our implementation the gradient
calculation is incorporated into the walk through of the projected edges, which has to be

performed in any case, and therefore no extra cost for loops is caused. Measurements have
shown that in fact on-the-fly edge detection is only slower by a factor of 1.4 for a large
number of particles. Thus one can conclude that our on-the-fly edge detection approach does
not differ significantly in terms of efficiency.

4.2. Dynamic model

Currently a very simple but yet effective implementation of the dynamic model is applied. In
the prediction step for each new configuration i, being calculated on the base of a particle j
from the last generation, the weighted difference between the two previous mean
configurations is added to the components, in addition to the Gaussian noise:

 �ssss BA kkjkik +−+= −−−)(21,1, (14)

where sk,n denotes the configuration of the nth particle after the kth iteration as introduced in
section 2. The components of the diagonal square matrix A are currently all set to the same
constant value:

�
�
� =

=
otherwise0

 if7.0 ji
ijα . (15)

The components of the diagonal square matrix B are currently set to values between 0.01 and
0.06 for rotational and to 3.0 for translational components. Each component of the vector ωωωω is
calculated with the Gaussian random number generator algorithm from [12].

4.3. Fast occlusion test

When using the term occlusion, one has to distinguish between occluded and occluding
points. While occluded points cannot be seen in the image under any circumstance, occluding
points only cause problems when the occluded and occluding body part are of the same color.
Since this is often the case, e.g. the arms of a person wearing a solid colored long sleeved
shirt occluding the body, we currently treat both cases in the same way. Thus the occlusion
test can be based on a point in polygon test applied on the projection of the edges of the
human model into 2D space.

The basic implementation sums the angles between consecutive edge vectors and compares
the result to 360°, which needs to evaluate the square root and the inverse cosine function
from the Floating Point Unit (FPU), and is therefore slow. Our implementation is based on a
fast point in triangle test for the 3D case, which uses FPU multiplications only, as described
in [13]. The algorithm presented in [13] will be shown as Pseudo code, where p is the point to
be tested and a, b and c define the three corners of the triangle.

SameSide(p1, p2, a, b)
begin
 cp1 := (b – a) × (p1 - a);
 cp2 := (b – a) × (p2 - a);
 return cp1 ⋅ cp2 >= 0;
end

PointInTriangle(p, a, b, c)
begin
 return SameSide(p, a, b, c) AND
 SameSide(p, b, a, c) AND
 SameSide(p, c, a, b);
end

In the 2D case (z = 0) the function SameSide can be optimized even further:

SameSide2D(p1, p2, a, b)
begin
 ba0 := b.x – a.x;
 ba1 := b.y – a.y;

 cp1 := ba0 ⋅ (p1.y – a.y) - ba1 ⋅ (p1.x – a.x);
 cp2 := ba0 ⋅ (p2.y – a.y) - ba1 ⋅ (p2.x – a.x);

 cp1 ⋅ cp2 >= 0;
end

PointInTriangle2D(p, a, b, c)
begin
 return SameSide2D(p, a, b, c) AND
 SameSide2D(p, b, a, c) AND
 SameSide2D(p, c, a, b);
end

The final point in quadrangle test IsOccluded which is applied in our occlusion test for
each observed point of each projected edge is then:

IsOccluded(p, a1, a2, b1, b2)
begin
 return PointInPoly2D(p, a1, a2, b1) OR PointInPoly2D(p, b1, b2, a1);

end

Depending on which body part the currently processed projected edge belongs to, this test has
to be performed only on a specific subset of all body parts, e.g. the head does not have to be
tested for occlusion with the lower legs.

4.4. Tracking through the elbow singularity

The elbow singularity is a kinematic singularity of the human model which occurs when the
angle of the elbow joint θe is near zero [14]. In this case it is practically impossible to
determine the correct rotational component θs of the shoulder joint around the axis of the
upper arm. Problems arise when the elbow singularity is left and a wrong value for θs has
been assumed, then the distance between the last θs and the value in the new correct
configuration is potentially too far.

One solution is to apply the idea of automatic model-switching as described in [15], where
two dynamic models are used to track a bouncing ball. We define for each elbow joint two
states depending on the angle: is θe smaller than a threshold ϕ then state one is applied
otherwise state two. The only difference between these two states is the amount of noise
added to θs in the prediction step. A higher amount of noise in the state of the elbow
singularity permits to find the correct configuration even at a far distance for θs when the
singularity is left. With s denoting the component of the configuration vector specifying θs
respectively the corresponding index, and e denoting the component specifying θe, this two-
state model can be rewritten, according to equation (14), as follows:

��

�
�
�

+−⋅+
<+−⋅+

=
−−−

−−−−

otherwise)(
 ifˆ)(

21,1

,121,1
,

sskkssjk

jkskkssjk
ik sss

esss
s

ωβα
ϕωβα . (16)

Currently 4.0ˆ =β (radians) and ϕ = 0.2 (radians).

5. Software Architecture

We have chosen a modular software architecture implemented with Object Oriented
Programming (OOP). Using fixed interfaces, which have been designed carefully, allows the
change of specific parts of the implementation by simply replacing the corresponding module,
e.g. replacing the video capture module for the use of a different driver. For ongoing research
in the area of search space decomposition and in particular dynamic search space
decomposition we have implemented a Framework architecture for particle filters using
Template Methods according to the design patterns described in [16], including an extension
for human motion capture. This architecture is illustrated as a class diagram in figure 5.

Fig. 5: UML class diagram of the framework architecture implemented for particle filters.

6. System Setup

6.1. Hardware setup

The software has been developed and tested on an Intel Pentium 4, 2.8 GHz CPU with 1 GB
RAM. The camera used was a Pulnix TMC 6700-CL (Progressive Scan).

6.2. Software Environment

The software has been implemented in C++. For image capturing the Open Computer Vision
Library from Intel (OpenCV) has been used, which provides a very clean and comfortable
interface to images and capturing devices – including AVI-files. The OpenCV library is also
used for camera calibration. The 3D visualization has been implemented with the OpenGL
library. The GUI has been implemented with Tcl/Tk.

7. Results

In our experiments, we activated all DOF except the legs and the joint for moving the upper
body, resulting in 17 DOF. The video was captured at 60 Hz and a resolution of 640×480
with 24 bits per pixel RGB. All computations were applied to the corresponding grayscale
image. To cope with the varying width of the torso over time, depending on the position of
the arms due to loose clothing, we modeled the width of the torso for each side as a linear
function (at a fixed interval) of the elbow’s position of the same side. The number of particles

used was 250, which resulted in a processing rate of 3.0 Hz. Screenshots from this experiment
are shown in figures 6-9.

Fig. 6/7: 2D and 3D visualization at frame 0, the initial configuration has been roughly chosen. White dots identify
occluded points, black dots identify found edge points and gray dots identify observed points from the projected edge
for which no edge feature could be detected.

Fig. 8/9: 2D and 3D visualization at frame 30, the human motion tracker has found the correct configuration and is
performing very well. White dots identify occluded points, black dots identify found edge points and gray dots
identify observed points from the projected edge for which no edge feature could be detected.

In figure 10 the average SSD error per observed point over all projected edges is illustrated
for the video sequence which was subject to figures 6-9. The correct configuration was found
after 20 frames and was not lost at any time. Starting at frame 20, a standard deviation of ≈6.3
and an average error of ≈83 are observed, mainly caused by loosely fit clothing.

0

50

100

150

200

250

300

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244 253 262 271 280 289 298

Frame Number

A
ve

ra
ge

 (S
S

D
) E

rr
or

 /
P

ix
el

Fig. 10: Average SSD error for a video sequence of 300 frames captured at 60 Hz with 250 particles used.

8. Conclusion and Future Work

The motivation of our work is to create a full body human motion capture system for
application on an active head. The input information for such a system is restricted on the
images of a stereo camera system only, with the two cameras being positioned at a
comparatively small distance. To our best knowledge, research activities for an optimized
system – in terms of effectiveness and efficiency – for this specific application are new.
Because a realistic human model has at least 25 DOF and thus the size of the configuration
space is immense, all available information has to be included into the calculation process for
a successful tracking.

Our basic system, among other features including an on-the-fly edge detector approach and a
fast occlusion test, has been finished and successfully tested. A modular software architecture
and a framework architecture for particle filters, including an extension for human motion
capture, which is currently used for research on dynamic search space decomposition, has
been presented. With the use of a single camera and as few as 250 particles, simple planar
movements, body, arm and head movement resulting in a 17-dimensional search space could
be tracked reliably. However using only one camera, significant depth information cannot be
acquired reliably and accurately enough, thus not allowing the tracking of full 3D motion.

Also the incorporation of 3D information into the likelihood function can potentially decrease
the effective search space and thus diminish the number of particles needed. Therefore we
have started research on the incorporation of stereo vision. Our strategy is to combine all
additional information provided by a stereo camera system i.e. using state-of-the-art
correlation and disparity maps, extending the likelihood function for application on both
images and incorporating the human model for solving the correspondence problem, resulting
in an algorithm without search. However the great challenge and purpose of our work will be
to make the most of a system limited to the use of a stereo camera system only.

Our current work in progress is also in the area of runtime optimizations to tackle the high
dimensional search space. Currently a highly optimized likelihood function is being
developed, which can achieve a two to three fold speedup. We also want to use the benefits
from the theory on partitioned sampling [1] and annealed particle filtering [3], serving as a
general approach for dealing with high dimensional search spaces. Our final goal is to attain a
real-time human motion capture system for application on an active head of a humanoid
robot.

References

1. J. MacCormick and M. Isard, Partitioned sampling, articulated objects, and interface-
quality hand tracking, in European Conf. Computer Vision (ECCV) (Dublin, Ireland,
2000), pp. 3--19.

2. J. MacCormick, Probabilistic models and stochastic algorithms for visual tracking, PhD

thesis, University of Oxford, UK, 2000.

3. J. Deutscher, A. Blake and I. Reid – Articulated Body Motion Capture by Annealed

Particle Filtering, in Conf. Computer Vision and Pattern Recognition (CVPR) (Hilton
Head, USA, 2000), pp 2126--2133.

4. D. Gavrila and L. Davis, 3-D model-based tracking of humans in action: a multi-view

approach, in Conf. Computer Vision and Pattern Recognition (CVPR) (San Francisco,
USA, 1996), pp. 73--80.

5. H. Sidenbladh, Probabilistic Tracking and Reconstruction of 3D Human Motion in

Monocular Video Sequences, PhD Thesis, Royal Institute of Technolog, Stockholm,
Sweden, 2001.

6. S. Wachter and H.-H. Nagel – Tracking Persons in Monocular Image Sequences,

Computer Vision and Image Understanding, 74(3), pp. 174--192 (1999).

7. C. Bregler and J. Malik, Tracking people with twists and exponential maps, in Conf.

Computer Vision and Pattern Recognition (CVPR) (Santa Barbara, USA, 1998), pp. 8--
15.

8. M. Isard and A. Blake, Condensation – conditional density propagation for visual

tracking, International Journal of Computer Vision, 29(1), pp. 5--28 (1998).

9. J. Foley, A. van Dam, S. Feiner and J. Hughes – Computer Graphics: Principles and

Practice, 2nd edn. (Addison Wesley, 1990).

10. M. Isard and A. Blake, Contour tracking by stochastic propagation of conditional density,

in European Conf. Computer Vision (ECCV) (Cambridge, UK, 1996), pp. 343--356.

11. K. Nickel and R. Stiefelhagen, Real-Time Person Tracking and Pointing Gesture

Recognition for Human-Robot Interaction, Int. Workshop on Human-Computer
Interaction (HCI) in conjunction with European Conf. Computer Vision (ECCV) (Prague,
Czech Republic, 2004), pp. 28--38.

12. W. Press, S. Teukolsky, W. Vetterling and B. Flannery – Numerical Recipes in C: The

Art of Scientific Computing, 2nd edn. (Cambridge University Press, 1992), pp. 288--290.

13. http://www.blackpawn.com/texts/pointinpoly/default.html, Point in triangle test.

14. J. Deutscher, B. North, B. Bascle and A. Blake, Tracking through singularities and

discontinuities by random sampling, in Int. Conf. Computer Vision (ICCV) (Kerkyra,
Greece, 1999), pp. 1144--1149.

15. M. Isard and A. Blake, A mixed-state Condensation tracker with automatic model-

switching, in Int. Conf. Computer Vision (ICCV) (Bombay, India, 1998), pp. 107--112.

16. E. Gamma, R. Helm, R. Johnson and J. Vlissides – Design Patterns – Elements of

Reusable Object-Oriented Software (Addison Wesley, 1995).

