Mixed-Reality Testing of Multi-Vehicle
Coordination in an Automated Valet
Parking Environment

Maximilian Kneissl **** Sebastian vom Dorff *****
Adam Molin* Maxime Denniel ** Tong Duy Son **
Nicolas Ochoa Lleras* Hasan Esen* Sandra Hirche ***

* Corporate REID, DENSO Automotive Deutschland GmbH, Freisinger
Str. 21-23, 85386 Eching, Germany (e-mail:
{m.kneissl,s.vomdorff,a.molin,h.esen} @denso-auto.de)

** Siemens PLM Software, 8001 Leuven, Belgium (e-mail:
son.tong@siemens.com,)

** Institute for Information- oriented Control, Technische Universitdt
Miinchen, Arcisstr. 21, 80290 Miinchen, Germany (e-mail:
hirche@tum.de)

*** Department of Computing Science, Carl von Ossietzky Universitdt
Oldenburg, Oldenburg, Germany

Abstract: The development of highly automated driving functions requires rigorous testing
to demonstrate the safety and functionality of the automated vehicle. One open question is
how to perform such tests to sufficiently prove the vehicle’s capabilities. Designing a proper
testing platform is particularly important for multi-vehicle scenarios, because test setups with
actual real vehicles are not scalable. This paper proposes a mixed-reality testing framework
which seamlessly combines virtual and real testing. The authors conducted a mixed-reality
experiment of an automated valet parking (AVP) scenario, where virtual vehicles interact with a
real vehicle-in-the-loop system in a simulated world. The experiment was developed to evaluate
the algorithmic design of a distributed control scheme for an AVP system. Comparing the
mixed-reality results to those of a pure virtual simulation allowed the authors to demonstrate
the robustness of the algorithmic design against certain disturbances, while also revealing which
parts of the system were sufficiently or inadequately modeled during the development process.

Keywords: Mixed-reality, Simulation, Interactive Vehicle Control, Automated Valet Parking,

AVP, Virtual Test

1. INTRODUCTION

The development of automated driving has gained interest
in both academia and industry in recent years. Advanced
driver assistant systems such as emergency braking or
adaptive cruise control are already commercially available,
and they are becoming more sophisticated and connected
with every new release. However, available systems re-
quire a human driver to interact in critical or unknown
situations. The next step is to develop systems where no
human driver is required. The SAE (Society of Automo-
tive Engineers) levels classify the degree of automation of
cars (see SAE (2016)). With respect to the classification
Level 4, vehicles can act autonomously in certain oper-
ational design domains (ODD), i.e. pre-defined environ-
ments and scenarios. Automated valet parking (AVP) is

* This work has been conducted within the ENABLE-S3 project
that has received funding from the ECSEL Joint Undertaking
under grant agreement No 692455. This joint undertaking receives
support from the European Union’s HORIZON 2020 research and
innovation programme and Austria, Denmark, Germany, Finland,
Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium,
France, Netherlands, United Kingdom, Slovakia, Norway.

expected to be one of the first commercially available Level
4 automated driving functions (ERTRAC (2017)), as for
parking environments a clear ODD can be specified. In
AVP a vehicle can be left at a drop-off zone in front of a
parking lot, where the system takes the vehicle over from
the human driver and automatically guides it to its parking
bay. After a user-request the vehicle can navigate back to
a pick-up zone, where the driver takes over control again.
Figure 1 illustrates an AVP scenario.

A major challenge of such highly automated systems is
to guarantee their safe and reliable functionality. It is
known that pure test driving is unfeasible to provide this
guarantee (Kalra and Paddock (2016)). Therefore, test-
ing during the development process plays an increasingly
important role. Stellet et al. (2015) and Huang et al.
(2016) provide an overview of different testing methods for
autonomous driving. One target is to move a large portion
of the required test effort to virtual testing in high-fidelity
simulation environments. This enables an increased test
speed and the ability to specifically test critical situations.
Significant efforts towards virtual test-platforms and the
automation of the tests were conducted, for example, in

(©2020 the authors. This work has been accepted to IFAC for publication under a Creative Commons Licence CC-BY-NC-ND

DROP-OFF
ZONE '

/" PICK-UP _

Fig. 1. Automated valet parking scenario.

the PEGASUS and the ENABLE-S3 projects (PEGASUS
(2016),ENABLE-S3 (2016)). Son et al. (2019) and Son
et al. (2018) describe a setup of high-fidelity simulation en-
vironments for automated driving. They use co-simulation
methods to test planning and control algorithms.

A benefit of automated vehicles is their possibility to
communicate and share intentions with other surrounding
vehicles or infrastructure systems. By such cooperative
behaviors traffic efficiency can be improved in terms of
energy consumption and time wastage. The ability to test
the functionality of multi-vehicle scenarios is a further
strength of virtual test-platforms. However, the final goal
is to additionally validate developed systems on real ve-
hicle hardware. In multi-vehicle scenarios this is too time
consuming and costly with actual real vehicles. A first step
can be testing in a miniature vehicle setup (Fok et al.
(2012)).

To go one step further towards reality we propose the
extension of a virtual test-platform for multi-vehicle simu-
lation with a real vehicle, which replaces one of the virtual
vehicles. An essential point is the modular integration of
the components into the simulation framework. This is
important to enable exchange of modules and therefore
contribute to future seamless test-platforms. With the
resulting mixed-reality tests one can draw conclusions on
the correctness of models and algorithmic behavior incor-
porating a real vehicle. Furthermore, it enables validation
of the multi-vehicle behavior with reasonable time and cost
effort. A similar idea for a single vehicle is proposed by
Zotka et al. (2018) in the field of sensor data augmentation,
where real-world lidar data is augmented with virtual
objects, such as pedestrians. Furthermore, Quinlan et al.
(2010) present a multi-vehicle mixed-reality test to verify
their autonomous intersection crossing protocol using one
real vehicle and virtual opponents.

The authors developed a distributed and coordinated con-
trol methodology for multi-vehicle scenarios integrated
into a virtual AVP test environment. The applied dis-
tributed model predictive control (MPC) algorithms were
extended to obtain any-time guaranteed feasible and safe
longitudinal coordinated solutions (Kneissl et al. (2019)).
In this paper we additionally propose a path planning
strategy integrated in the mixed-reality test-platform,

which, together with the control coordination, ensures
collision avoidance in the parking area.

Different path planning techniques have been presented
in the literature (Paden et al. (2016)). Considering the
specific parking implementation challenges in this work,
we have developed a local vehicle path planning based on
Hybrid A* graph search (Dolgov et al. (2008)).

The paper presents two main contributions. First, the
demonstration of a fully integrated mixed-reality platform
for testing AVP functions in a multi-vehicle setup. The
used methodology allows a transition from purely vir-
tual testing to ViL (vehicle-in-the-loop) testing in a short
amount of time. Moreover, it represents a cost and time
efficient way of validating multi-vehicle systems. Vehicles
are virtually simulated in a high-fidelity simulation en-
vironment and controlled by a distributed system. One
of the vehicles participating in the AVP is a real vehicle
that interacts with the other virtual agents in the en-
vironment. Second, we introduce the applied algorithms
which ensure a safe-by-design coordination of multiple au-
tonomous vehicles in parking environments, while enabling
a distributed and optimized computation of the planning
and control functions. Therefore, we integrated multiple
components in an AVP system, which are, mapping, sens-
ing and localization, global planning, local vehicle path
planning and longitudinal/lateral control.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the virtual test architecture and describes
the real vehicle’s setup and its integration into the test-
platform. In Section 3 we introduce the path planning
strategy, and distributed control methodology for multi-
vehicle coordination, as well as the applied sensing and
localization methods for the real vehicle. Experimental
tests are presented in Section 4 and the paper is concluded
in Section 5.

2. MIXED-REALITY ARCHITECTURE

This section introduces the virtual test-platform for AVP
in the following Section 2.1, and the extension of it with
the real test vehicle in Section 2.2.

2.1 Virtual Automated Valet Parking Architecture

The AVP test-platform, illustrated in Fig. 2, consists
of a high-fidelity simulation environment (left side) and
the system-under-test (SUT) on the center and right.
The simulation environment uses a map of the respective
parking area provided in the OpenDRIVE map format
(Dupuis et al. (2010)). The driving simulator Vires VID
is used to simulate the dynamic behavior and visualize
the movements in the given map environment. The SUT
is the complete AVP system. It consists of a central
unit, the parking area management (PAM) system, and
local vehicle planning and control systems. The PAM
system is an infrastructure unit located at the parking
area and vehicles exchange information with it via vehicle-
to-infrastructure (V2I) communication. Tasks of the PAM
are distinguished between mission planning, path planning,
and control coordination. The mission planner is aware of
the parking lot situation and decides on the goal position,
i.e. designated parking bay or exit gate, once it receives a

Parking Area
Management (PAM)

High-fidelity
Simulation

Real
Vehicle

imulation
Environment

1
Vehicle
Dynamics
) {
[Tnterface Distributed Vehicle Control
""""""""" 1‘ ROS |

Fig. 2. Mixed-reality test architecture.

vehicle’s request to park or return to the pick-up zone. The
functionalities of path planning, control coordination, as
well as the local planning and control units are introduced
in Sections 3.1 and 3.2. Blocks are implemented in C++
and Python and communicate via a ROS middleware with
each other. The high-fidelity simulation is also interfaced
to the ROS system. Note that the whole system is tested
on a simulation PC and thus the V2I communication
is subject of the simulation as well, rather than real
communication channels.

2.2 Vehicle Demonstrator Integration

In the following section we will provide an overview of the
real vehicle integration into the test set-up.

Hardware In order to provide a base platform for the
real world vehicle an Audi A4 B9 station wagon was used.
The series production car base eases the requirements of
complying with road regulations and certification. The
vehicle was not intrinsically modified but all modifications
have been implemented as piggy-back modules attached
to the baseline vehicle. All required low level functions
are already available, embodied by electric power steering
(EPS), brake actuation by the electronic stability program
(ESP), acceleration through the adaptive cruise control
(ACC) and body control functions such as indicator- and
brake lights by the respective electronic control units
(ECUs). Parking brake and drive mode selector are also
realized in a ”by-wire” implementation, offering a simple
hijacking of the corresponding analog signal lines. The
vehicle setup is illustrated in Fig. 3.

The communication and handling of signals between the
virtual simulation world and the real vehicle is provided
by a set-up consisting of two FlexRay (FR) controllers, a
CAN-Bus development unit, and a dSPACE MicroAuto-
Box IT (MABXII), which is again connected to a network
router. The router interfaces the planning phase from the
virtual reality with the actors in the real world. It also acts
as entry point to access the in-vehicle infrastructure from
external devices e.g. for monitoring and debugging. The
car-PC simulates the virtual environment and executes the

TTTTTTTTTIRETTTTTTTTT TN Analog
: i Vehicle CAN__ | isignals
FlexRay EPS FlexRay ACC CAN-Log
4 i 4 i Private CAN HE
Router 4 :
. LIDAR —.- Simulation PC— - ~)—-— MABXII
2 IEthernet 3

External access

Fig. 3. Schematic network diagram of the SUT and vehicle
integration.

planning for the vehicle’s trajectory. In order to precisely
localize the vehicle in the parking environment a LIDAR
delivers positioning data to the car-PC.

The communication topology is split into different levels.
Starting from the vehicle, FR, CAN and analog lines
are connected to a switching box. These relay controlled
connections can be interrupted by an emergency switch
which cuts all connections immediately and sends an
analog command to set the parking brake as last action.
From the switching box, two FR devices are connected
to the FR bus and the CAN bus, one for controlling the
lateral movement via the electric power steering (EPS) and
one to control the longitudinal movement via the adaptive
cruise control (ACC). Furthermore, a CAN-Log device is
attached to the vehicle. It can access the CAN bus and
provides D/A-converters to control body and auxiliary
functions such as the indicator lights, brake light, gear
selection, and parking brake. The FR signals are internally
mapped to a private CAN protocol to preserve the secrecy
of the FR bus. Serving as next bus level on the topology,
the CAN-Log and the MABXII are also connected to this
private CAN. The MABXII acts as translator between the
vehicle interfaces and the simulation PC via an ethernet
connection. Since the access to the vehicle is a mere
manipulation of existing ECU signals, it uses the same
safety functions as the series production car. Every signal
can be overridden by the driver’s commands in the same
way as a driver would counter an unwanted behavior of
the factory-installed assistance systems.

In order to satisfy the increased demands on the power
supply of the set-up, an auxiliary battery was built into
the car, providing 1.2 kWh of energy on 12 V DC or 230 V
AC level. It is coupled to the vehicle’s power circuit and
can be charged by the alternator, as well as by an external
230 V AC supply. The AC/DC converter system works bi-
directionally, therefore also being able to charge a depleted
12V car battery due to frequent start-stop operations.
In order to provide sufficient cooling to the hardware an
additional air conditioning (A/C) unit has been installed
under the trunk floor. It is supplied by the vehicle’s A/C
coolant circuit.

Software The software to operate the vehicle is built
to mimic a ROS node as a simulated car in the virtual
world. Therefore, a ROS bridge handles the communica-
tion between the simulation PC and the MABXII. This
is performed by sending UDP packages to exchange data.
Within the MABXII these values are read and converted
to the control parameters of the vehicle. Since the control
parameters are unique to the specific vehicle, the transla-
tion is done as abstract as possible in the toolchain. This
enables the ROS bridge to be reused for other test vehicles
in the future. As the operation of the simulated vehicles is
simplified in comparison to a real car, the MABXII takes
over several macro functions. While simulated vehicles
react directly to certain signals such as the acceleration,
the MABXII has to conduct more complex actions for the
real car, e.g. the corresponding drive mode selection. To
catch potentially flawed input data, all input values are
limited in their range. All signals provide the option to
be switched to a manual control option, which enables
manipulating values for monitoring and calibration from
an external PC.

3. ALGORITHMIC DESIGN

In this section we introduce the applied algorithms of
the mixed-reality test-platform. First, the semi-structured
path planning for parking environments is introduced.
Second, the local vehicle planning and control methods
are defined. Third, we describe the sensing and localization
method for the real vehicle.

3.1 Semi-structured Pathplanning

Infrastructure-supported Planning After receiving the
initial and goal pose of the automated vehicle, the path-
planning module at the PAM first computes the short-
est path based on the lane network topology (top left
Fig. 2) that is stored by the infrastructure. This topology
encodes drivable lanes including their length, direction,
and their interconnection with each other. The obtained
abstract shortest path results in a sequence of lanes and
intersections. These are then refined into an occupancy
grip map that encodes the assigned drivable area of the
automated vehicle (black area right Fig. 6). It is computed
by taking into account the geometric data of the lanes and
intersections. The drivable area for the automated vehicle
is potentially enlarged at intersections by incorporating
the conflict zone (cz) area (cf. Section 3.2) at intersections
(1a Fig. 6) and at the vicinity of the parking bay (1b Fig. 6)
to facilitate parking maneuvers. The obtained occupancy
grid map (OGM) is then forwarded to the local planning
module in the vehicle.

Local Vehicle Planning In order to drive the car from its
starting position to the goal parking spot, a path linking
those two positions needs to be computed. The path needs
to be drivable, collision free, and easy to be followed by
the car controller.

The conventional A* search algorithm connects two points
in an OGM, without colliding and in the shortest way by
linking together center of cells. The Hybrid A* algorithm is
an extension of A* algorithm to deal with non-holonomic
behavior and continuous path generation. The algorithm

utilizes a given OGM describing the environment together
with start and goal point coordinates, i.e. (zs,ys,0s) and
(xg,Yg,04), respectively. First, the planner inflates the
provided OGM (i.e. shrinks the drivable corridor) to take
the vehicle’s dimension into account. Next, it searches
through the map by extending the current node using
possible steering angles until the final point is reached.
The algorithm is guided by multiple costs, cost;(n), and a
heuristic, h(n), in order to obtain desirable path quality
and fast exploration. The costs include computed cost
from the start to the current node and multiple driving
objectives such as path length, steering, and directional
gear selection. The heuristic is used to drive the search
towards the goal. The algorithm takes into account non-
holonomic behavior of the vehicle so that the vehicle steers
to the goal with a proper heading. Consequently, the
hybrid A* algorithm selects the next node to expand by
solving the following problem

min (h(n) + Z costi(n)) ,Vn € OpenSet, (1)

where OpenSet is the set of candidates nodes in the
drivable area of the OGM. Moreover, h and cost; are their
heuristic and costs values, respectively. As can be seen,
there is a compromise between the heuristic and the cost
in expanding the node, resulting in the quality and the
computation time of the path. The cost parameters can be
tuned to promote or prevent some behaviors. For instance,
increasing the cost of reverse gear will make the planner
more likely to use a forward gear to drive to the goal.

Fig. 4 and Fig. 5 demonstrate validation results of the
developed path planning algorithm from 1000 different
starting positions to a defined target parking goal. The
validation is conducted via a co-simulation of Siemens
Simcenter Amesim and Prescan software. Notice that the
goal coordinate and parking type (parallel parking) are the
same in both cases, however, the orientation of the starting
point is opposite: the vehicle starts heading to east/right
side in Fig. 4 and to west/left side in Fig. 5. The results
show that the success rate is 100% in the first case, and
99.3% in the second case. In case of failure, the vehicle can
try to drive forward or reverse a short distance so that it
can find another (feasible) starting point to complete the
task.

3.2 Vehicle Coordination Control

The vehicles are coordinated within the parking area via
a cooperative trajectory generation method. Therefore,
tasks are distributed between the control coordination
block on the PAM system and the local vehicle control
systems. The coordination procedure receives the paths
from the path planning units. Thus, each vehicle knows
its own path and the PAM stores all paths of vehicles
in the parking area. Given this information each vehicle
tracks its path. Due to the low speed operation within
parking environments, the longitudinal and lateral path-
tracking problem can be separated. The longitudinal move-
ment (acceleration) is computed with a model predictive
control (MPC) law, while a velocity-based gain-scheduling
LQR law is applied for the lateral tracking (steering).
Local longitudinal predictions resulting from the MPC are
shared with the PAM coordination unit. It decides on the

Fig. 4. Validation of the path planner for parallel parking:
all starting position are heading east, goal position is
heading east (100% success), and an example of the
generated path (bottom).

Fig. 5. Validation of the path planner for parallel parking:
all starting position are heading west, goal position is
heading east (99.3% success - failed cases are the red
dots).

crossing order of all vehicles at potential conflict zones
(czs), such as intersections and maneuvering zones, in
the parking area and forwards the prediction information
to the relevant vehicles. Predictions received from other
vehicles are incorporated in their own local MPC problems
in the form of safety-distance constraints. This procedure
results in collision-free local vehicle trajectories and an
overall smooth coordination.

Longitudinal Vehicle Control In the following, we state
the applied MPC and LQR problems including their mod-
els for a single vehicle. By superscripts lg and It we dis-
tinguish between longitudinal and lateral models, respec-
tively. The continuous-time longitudinal motion model is
given by

d 0-1 0 d 0
vl=10 0 1 <v>+ 0| u, (2)
a 00 -1/ \a 1
——
Lo Als xtf Bl

where states d is the distance to the vehicle’s goal position,
v its velocity, and a its acceleration. The control input
u represents the vehicle’s jerk, and 7 is a time constant.
For simplicity of notation, we skip the time dependency of
states and the input in the above model. (2) is discretized
using a tustin method with a sampling time T'9 and the
MPC problem is formulated as

v (xlg(t), u(t)) = (3a)
M M—-1
min D M+ k[E) = 2 1D + Y ut+ k[
k=1 k=0
s.t.
29t + k+ 1)t) = A92'9(t + k|t) + B'9u(t + k)
Vk € Ip.p—1 (3b)

Umin S ’U(t + k|t) S VUmaz
Amin S a(t + k|t) S Amazx
c(d(t+ k[t)) > d,

Vk eli.y (30)
Vk eli.y (3d)
Vk eliy. (36)

Thereby, M is the prediction horizon, notation (t + klt)
refers to a predicted vector value (¢t + k) computed at
a discrete time step t, xngef = (0,vp¢7,0)T is a reference
vector, which is constant for the prediction horizon, and
Urey is a reference velocity, Q'Y € R3*3 is a positive semi-
definite diagonal matrix applied in the weighted 2—norm of
the state tracking, and similar for the input with R € R,
U = (u(t),u(t+1),...,ut+M—-1)) € RM is the op-
timization vector, Umin, UVmaz, @min, and Gmqe. are con-
straints on the velocity and acceleration state, respectively,
Iy.ps defines the set {1,..., M}. Finally, ¢ (d(t + k|t)) > ds
describes a safety distance constraint, with ¢ (d(t + k|t))
being a transformation of the local distance state d w.r.t.
a dependent vehicle’s position (entrance of the path into
a cz). This information is computed in the PAM control
coordination procedure and shared with the local vehicle.
Problem (3) is a quadratic program (QP) and can be
computed efficiently by suitable solvers. After the compu-
tation, the trajectory x'9(t + klt), k € 1.5z, is shared with
the PAM and U(1) is applied to the local vehicle. Then,
problem (3) is recomputed in the next sampling time step
T! in a receding horizon fashion.

Lateral Vehicle Control Next the lateral motion is mod-

eled with
die 0 v 0 die 0
e | = (00 1 e |+ O |5, (@
o) \ootifpred) \w)\
T Al zlf BY

where dj, is the lateral distance error between the vehicle’s
center of gravity and the reference path, 6. is the heading
angle error, v the yaw rate, Cy and C, the cornering
stiffness of the front and the rear axle, respectively, J,
is the momentum of inertia around the yaw axis, and
ly and I, are the distances from the center of gravity to
the front and rear axle, respectively. The control input &
represents the steering angle. Similar as above, model (2)
is discretized using a sampling time 7'*. This enables us
to compute Linear-quadratic-regulator (LQR) gains, G €
R'*3, with MATLAB’s DLQR command, using diagonal
and positive semi-definite weighting matrices Q!9 € R3*3
and R € R. The resulting control law for the lateral
tracking is thus given by

§ = G(v)z! (5)

‘c

where G(v) is computed for different values of v € {v,, vy }.

3.8 Sensing and Localization

While for virtual vehicles the ground truth position is
available, the localization algorithm for the real vehicle
is based on an Extended Kalman Filter (EKF, Thrun
et al. (2005)) that fuses odometry measurements with
LIDAR data. The odometry information consists of vehicle
speed and steering angle, captured from the real vehicle’s
CAN bus. These values are used as inputs for a kinematic
bicycle model, which is integrated numerically to produce
an estimate of the vehicle’s position and orientation on the
driving plane, at 40Hz. This step is usually called model
update. The kinematic bicycle is considered accurate for
low velocity applications, which is the case in the parking
lot. Since the model’s differential equations are non-linear,
they are locally linearized for each execution of the Kalman
filter’s model update.

Even if the bicycle model is accurate enough and the
odometry data is reliable, the model updates tend to
drift as time advances. Therefore, LIDAR data is used to
correct the position estimate, a step commonly referred
to as measurement update. The SICK NAV245 LIDAR
sensor performs a 2-D scan and produces a list of detected
landmarks, which have been previously mapped, at a
rate of 25Hz. The constellation of detected landmarks is
compared to the pre-existing map to deduce what position
and orientation of the vehicle would produce the observed
constellation. Finally, the EKF uses a weighted average
between the two estimates (model-based and landmark-
based) to produce the corrected localization estimate of
the vehicle in the parking lot.

The parking lot was fitted with 8 landmarks, ensuring that
at least 3 of them are always within the field of view (FOV)
of the sensor during the tests (Fig. 6). The landmarks are
made of highly reflective material that allows the NAV245
to pick them out among other objects and produce an
accurate location estimate for each landmark. The map of
landmarks was created by placing the sensor, stationary,
at a level position from which all landmarks were visible
within its FOV. Repeated measurements of the landmark
locations were used to produce the ground truth estimate
of their locations in the map.

4. EXPERIMENTAL TESTING

The experiments were conducted using the virtual model
of a parking garage (bottom plot of Fig. 6) with three
vehicles driving in the parking area, namely v1, va, and vs.
The test scenario and start positions are illustrated in
Fig. 6. Vehicle vi’s goal is to park in the empty bay
marked by the yellow box, while the other vehicles’ routes
are illustrated by the green paths in the figure. We find
three resulting conflict zones (czs) in the scenario, i.e. two
intersections and one maneuvering zone, which are used
by the coordination procedure to ensure safe movement of
the vehicles.

Table 1 summarizes the model parameters used for the
experiments.

Table 1. Control parameters.

Longitudinal Lateral
Param. Value Param. Value
Tl 0.1s Tl 0.01s
T 0.8s Cy 81kN/rad
M 50 C 104kN/rad
Uref 1.4m/s J. 581kgm?
ds 1.8m lf 1.1m
(Vmin, Vmaz) (0m/s,3m/s) lr 1.7m
(@min, @maz) (—4m/s?,1m/s?) {va,vp} {Ilm/s,2m/s}
Qs diag(8, 6, 30) QM diag(100, 10, 1)
Rl9 30 Rt 400

1: Conflict Zones

la: Intersections

1b: Maneuvering

2: Designated bay

3: Landmarks

4: Mixed-reality data
) 4a: Localized pose

\ 4b: Perception

Fig. 6. Mixed-reality test scenario.
4.1 Virtual Testing

In the first experiment we conduct a pure virtual simu-
lation of the above introduced scenario. This means the
dynamics of all three vehicles are modeled by the virtual
simulator. The coordination procedure decides a crossing
order such that the right intersection in Fig. 6 is first
crossed by vy and then by vo, while v crosses the left
intersection after vs. For vi; we apply the semi-structured
path planning algorithm introduced in Section 3.1. Here
we restrict the planner to forward parking maneuvers
only (without reversing) as the main validation target is
the functionality of the coordination procedure. A path
planning result for v; is illustrated by the purple lane
in the top right plot of Fig. 6 and in more detail in the
left plot of Fig. 9. Furthermore, the control signals and
vehicle measurements of v, are plotted in the left plots of
Fig. 7 for the acceleration control command and measured
velocity, as well as the steering commands. In the top left
plot of Fig. 7 we recognize a slightly noisy acceleration
signal, which vanishes after 28s. This is where the inter-
vehicle coupling is disbanded as vehicle vy has crossed the
last intersection shared with other vehicles on its route.
The noisy acceleration signal is expected as a result of the

virtual

mixed-reality

commanded acceleration
& 2 — measured velocity S 12
o A T~
e e e S | B e T
£
-5 1 7 i 11
=28
> 8 0 [T/ A . o i d v -0
Q
< L L L L L L
30 40 10 20 30 40
0.4 \ : \ : 0.4
—~ commaned steering angle 1
g o2l T e measured steering angle '\‘v 102
2 1 i \ 16
a0 0 | - i 4
0 —0.2 F 1-0.2
= 7 L \‘ -
& —04 1 g v 404
—0. s s s s s C s 06
0.6 10 20 30 40 10 20 30 40
time (s) time (s)

Fig. 7. Longitudinal and lateral vehicle signals of vehicle v; for virtual simulation (left) vs. mixed-reality testing (right)
in scenario of Fig. 6. Top plots: acceleration control signals and resulting velocity; bottom plots: steering angle
control input and actual applied steering signal for the real-vehicle case.

virtual | pef. path mixed-reality
interSection’ crossin 30 30
v (| T T | measured pos
9 10r ‘“\V1 — V2 1 q o
58 o PR Tz
” o 6F 15 = ~
1 Q = ¢
25 4 12 520 120 §
=R = £ =
5% 7] g g
2T ol | 815 115 &
) >
£10- V110 £
2 \ 2
o 10 J &0 50
o 5 15
=& 8 1E
g &
T @ 6 b]]] I | | I .
ol oy 5 10 15 20 2 5 10 15 20 25
25 4 13 lobal iti lobal iti
E< g global x-position (m) global x-position (m)
-5 2r 15
[%] < . . .
= ok] Fig. 9. Planned reference path (solid) and actual tracking
L position (dashed) for vehicle v; of the scenario in
time (s) Fig. 6. Left: virtual simulation; right: mixed-reality

Fig. 8. Relative inter-vehicle distances for virtual simu-
lation (top) and mixed-reality simulation (bottom)
w.r.t. the entrance of the left intersection area in Fig.
6, as well as crossing times of vehicles through that
intersection area.

noisy inter-distance measurements (compare Fig. 8). The
lateral path-tracking performance is shown in the left plot
of Fig. 9. Finally, in the top plot of Fig. 8 we investigate the
relative vehicle distance of vi and vy with respect to the
entrance of the left intersection area (Fig. 6). Furthermore,
this figure indicates the crossing intervals of the respective
vehicles in the left intersection area. After a vehicle has
left a common intersection area, the interaction with its
following neighbor vehicle is cut, if vehicles continue on
different lanes after the intersection.

simulation.

4.2 Mized-reality Testing

In the second experiment, two vehicles are simulated as
purely virtual (vo and vs), while one vehicle is a real
test vehicle (v1). This real vehicle is operating in a real-
world parking lot which has similar dimensions to parts
of the virtual model. By applying a self-localization, the
real vehicle’s poses can be projected into the virtual
model, where the movements are displayed using a virtual
twin of the real-vehicle. Start and goal positions are the
same as described above. The control signals and vehicle
measurements of the real vehicle vy are plotted on the
right of Fig. 7 for the acceleration control command and
measured velocity, as well as the commanded and actual
applied steering commands in the bottom right of Fig. 7.
The lateral path-tracking performance for the real vehicle
is shown on the right of Fig. 9. The bottom plot of Fig.

8 shows the relative vehicle distance of vi and vy for the
mixed-reality test.

We find that the longitudinal acceleration signal in Fig. 7
has a higher fluctuation compared to its virtual counter-
part. The reason is an induced time-delay from opening
and closing the vehicle’s clutch, which occur at the tested
reference speed. However, this also illustrates the capabil-
ity of the distributed coordination system to react to such
disturbances, as the other vehicles in the scenario react
accordingly (cf. Fig. 8). Additionally, the right plot of Fig.
9 shows a gap between the path reference and the actual
tracked path, which results from a non modeled heading-
rate limitation of the real vehicle’s steering controller. This
is visualized in the end of the bottom right plot of Fig. 7.

In summary, we find that the distributed control system
is able to robustly compensate for non-modeled distur-
bances. At the same time, the mixed-reality testing setup
provides a powerful environment to quickly judge the re-
quired accuracy of virtual models by comparing them to
the real-world results.

5. CONCLUSION

In this paper we presented the results from an experiment
of a mixed-reality multi-vehicle simulation in automated
valet parking (AVP) environment. Thereby, virtual vehi-
cles in a high fidelity simulation environment are coop-
eratively coordinated together with a real vehicle partic-
ipating in the scenario by mapping its behavior into the
virtual world. The applied algorithms for path planning
and vehicle control have been introduced. They are based
on hybrid A* planning, as well as MPC and LQR, respec-
tively. Evaluation shows the robustness of the distributed
vehicle coordination control and a suitable way for model
fidelity checking.

Ongoing work includes consideration of time-delay models
for the vehicle controllers. Furthermore, the incorporation
of uncertainties in the operational domain, such as pedes-
trians, will be considered in future work.

REFERENCES

Dolgov, D., Thrun, S., Montemerlo, M., and Diebel, J.
(2008). Practical search techniques in path planning
for autonomous driving. In First International Sympo-
sium on Search Techniques in Artificial Intelligence and
Robotics. AAAL

Dupuis, M., Strobl, M., and Grezlikowski, H. (2010).
Opendrive 2010 and beyond-status and future of the
de facto standard for the description of road networks.
In Driving Simulation Conference Europe, 231-242.

ENABLE-S3 (2016). Enable-s3 project.
https://www.enable-s3.eu/. Accessed: 2019-08-12.

ERTRAC (2017). Ertrac roadmap automated driv-
ing. https://www.ertrac.org/index.php?page=ertrac-
roadmap. Accessed: 2019-10-18.

Fok, C.L., Hanna, M., Gee, S., Au, T.C., Stone, P., Julien,
C., and Vishwanath, S. (2012). A platform for eval-
uating autonomous intersection management policies.
In 2012 IEEE/ACM Third International Conference on
Cyber-Physical Systems, 87-96.

Huang, W., Wang, K., Lv, Y., and Zhu, F. (2016).
Autonomous vehicles testing methods review. In

2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), 163-168.

Kalra, N. and Paddock, S.M. (2016). Driving to safety:
How many miles of driving would it take to demonstrate
autonomous vehicle reliability? Transportation Research
Part A: Policy and Practice, 94, 182-193.

Kneissl, M., Molin, A., Esen, H., and Hirche, S. (2019). A
one-step feasible negotiation algorithm for distributed
trajectory generation of autonomous vehicles. In 58h
IEEE Conference on Decision and Control (CDC).

Paden, B., Cap, M., Yong, S.Z., Yershov, D., and Frazzoli,
E. (2016). A survey of motion planning and control
techniques for self-driving urban vehicles. IEEE Trans-
actions on Intelligent Vehicles, 1(1), 33-55.

PEGASUS (2016). Pegasus
https://www.pegasusprojekt.de/en/home.
2019-08-12.

Quinlan, M., Au, T.C., Zhu, J., Stiurca, N., and Stone,
P. (2010). Bringing simulation to life: A mixed reality
autonomous intersection. In 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
6083-6088.

SAE, T. (2016). Definitions for terms related to driving
automation systems for on-road motor vehicles. SAE
Standard J3016.

Son, T.D., Bhave, A., and Van der Auweraer, H. (2019).
Simulation-based testing framework for autonomous
driving development. In 2019 IEEE International Con-
ference on. Mechatronics (ICM), volume 1, 576-583.

Son, T.D., Hubrechts, J., Awatsu, L., Bhave, A., and
Van der Auweraer, H. (2018). A simulation-based
testing and validation framework for adas development.
In 2018 7th Transport Research Arena TRA.

Stellet, J.E., Zofka, M.R., Schumacher, J., Schamm, T.,
Niewels, F., and Zollner, J.M. (2015). Testing of ad-
vanced driver assistance towards automated driving: A
survey and taxonomy on existing approaches and open
questions. In 2015 IEEFE 18th International Conference
on Intelligent Transportation Systems, 1455-1462.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
robotics. MIT press.

Zofka, M.R., Essinger, M., Fleck, T., Kohlhaas, R., and
Zollner, J.M. (2018). The sleepwalker framework: Veri-
fication and validation of autonomous vehicles by mixed
reality lidar stimulation. In 2018 IEEE International
Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 151-157.

project.
Accessed:

