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A B S T R A C T

In light of the tremendous advances in the fields of unmanned aerial vehicles
(UAVs) and imaging sensors in recent years, UAV-photogrammetry has become an
essential part of remote sensing methodology. Being more than an alternative to
conventional image acquisition platforms, UAV-photogrammetry has revealed novel
possibilities and explored a variety of application fields, including the generation of
high-quality 3D building models which are of growing importance in the area of 3D
city modeling and civil engineering. Nevertheless, practical utilization of UAVs for
the task of 3D modeling is still accompanied by various cumbersome activities, such
as manual flight planning, deployment of ground control points (GCPs) and manual
registration of disconnected 3D models. To this end, this thesis aims to address
key challenges in the process of using UAVs for photogrammetric applications and
proposes several methods for advancing the state-of-the-art in different stages of
UAV-based photogrammetry. Focusing on 3D modeling of buildings, this thesis
contributes methods for an automation of the reconstruction process ranging from
(i) an accurate image-based multi-modal geo-referencing of acquired images, (ii) an
automatic and semantic-aware 3D UAV image acquisition flight planning, (iii) an
automatic alignment between individual 3D reconstructions of interior and exterior
building models and (iv) a comprehensive investigation of current deep learning-
based methods for the task of single-image depth estimation (SIDE), which could
contribute to certain areas of image-based 3D building reconstruction. Based on the
results of several real-world experiments, the proposed image matching method
achieves pixel-level registration accuracies between UAV and multi-modal remote
sensing imagery despite significant geometric, radiometric and temporal differences.
The model-based 3D path planning method allows for acquiring close-range multi-
view stereo-capable image sequences in tightly built-up environments that cover
the entire building in a demanded resolution. By incorporating semantic cues into
the path generation process, the resulting trajectories are by far more desirable in
terms of flight safety by respecting pre-defined restricted and hazardous airspaces
such as adjacent buildings or roads. The alignment of individual image-based indoor
and outdoor building models is addressed by matching insufficiently overlapping
geometric structures, which are shared in both models using 3D line segments as
geometric features. A wide variety of experiments on different buildings have verified
an accurate registration in centimeter-level accuracy. A comprehensive assessment
of current SIDE methods with novel evaluation metrics on a high-quality RGB-
D dataset reveals their current suitability for potential practical application fields
and emphasizes remaining challenges in this research field. Backed by thorough
experimental evaluations confirming the validity of the proposed methods, this
thesis marks a step towards an automated, fast, accurate and safe use of UAV
photogrammetry.

iii



iv



Z U S A M M E N FA S S U N G

Angesichts der enormen Fortschritte auf den Gebieten der unbemannten Luftfahr-
zeuge (UAVs) und bildgebenden Sensoren ist die UAV-Photogrammetrie zu einem
wesentlichen Bestandteil der Fernerkundungsmethodik geworden. Dabei ist sie
weit mehr als nur eine Alternative zu herkömmlichen Bildaufnahmeplattformen,
sondern stellt vor allem ihr Potential für neue Anwendungsmöglichkeiten unter Be-
weis, darunter die Erstellung hochwertiger 3D-Gebäudemodelle, die im Bereich der
3D-Stadtmodellierung und des Bauwesens von zunehmender Bedeutung sind. Den-
noch wird die praktische Nutzung von UAVs für die Aufgabe der 3D-Modellierung
weiterhin von verschiedenen aufwändigen Aktivitäten begleitet, wie z.B. einer ma-
nuellen Flugplanung, dem Einsatz von Bodenpasspunkten und einer manuellen
Registrierung von nicht verbundenen 3D-Modellen. Zu diesem Zweck widmet sich
diese Arbeit den wichtigsten Herausforderungen der UAV-Photogrammetrie und
präsentiert Methoden zur Weiterentwicklung des Stands der Technik in verschiede-
nen Teilbereichen. Mit dem Schwerpunkt auf 3D Gebäudemodellierung trägt diese
Arbeit mehrere Verfahren für eine Automatisierung des Rekonstruktionsprozesses
bei, die von (i) einer genauen bildbasierten Georeferenzierung, (ii) einer semantisch-
bewussten 3D UAV-Flugplanung, (iii) einer Registierung von 3D Innen- und Außen-
modellen und (iv) einer umfassenden Untersuchung aktueller Methoden des tiefen
Lernens für die Aufgabe der Einzelbildtiefenschätzung reichen. Basierend auf den
Ergebnissen mehrerer Experimente erreicht das vorgeschlagene Bildregistierungsver-
fahren trotz signifikanter geometrischer, radiometrischer und zeitlicher Unterschiede
Pixelgenauigkeiten zwischen UAV- und multimodalen Fernerkundungsbildern. Die
modellgetriebene 3D Flugplanungsmethode ermöglicht die Akquise mehrbildmes-
sungsfähigen Nahbereichs-Bildsequenzen in dicht bebauten Umgebungen, die ein
gesamtes Gebäude in einer geforderten Auflösung abdecken. Durch die Integration
semantischer Merkmale in den Pfadgenerierungsprozess sind die resultierenden
Trajektorien in Bezug auf die Flugsicherheit erstrebenswert, da sie eingeschränkte
und gefährliche Lufträume, wie angrenzende Gebäude oder Straßen in den Pla-
nungsprozess integrieren. Die Verknüpfung einzelner unzureichend überlappender
bildbasierter Gebäudeinnen- und außenmodelle wird durch die Registrierung geo-
metrischer Strukturen angegangen, die in beiden Modellen unter Verwendung von
3D-Liniensegmenten als geometrische Merkmale geteilt werden. Eine Vielzahl von
Experimenten an verschiedenen Gebäuden hat eine genaue Registrierung in Zenti-
metergenauigkeit bestätigt. Eine umfassende Evaluierung aktueller Methoden zur
Einzelbildtiefenschätzung mit neuartigen Fehlermetriken an einem hochwertigen
RGB-D Datensatz bewertet die aktuelle Eignung dieser Methoden für potenzielle
praktische Anwendungsfelder und verdeutlicht die noch bestehenden Herausfor-
derungen in diesem Forschungsgebiet. Unterstützt durch aussagekräftige experi-
mentelle Evaluierungen, die die Leistungsfähigkeit der vorgeschlagenen Methoden
bestätigen, markiert diese Arbeit einen Schritt in Richtung einer automatisierten,
schnellen, genauen und sicheren Verwendung der UAV-Photogrammetrie.
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1
I N T R O D U C T I O N

1.1 motivation

The generation of accurate and high-resolution as-built 3D building models is decisive
in the field of 3D city planning and management by integrating heterogeneous
geo-information and managing complex urban processes, such as 3D cadastre,
property management, geo-design and intelligent transportation systems (Biljecki
et al., 2015). However, highly dynamic and complex processes of urban development
demand for efficient, cost-effective, and fast acquisition and processing methods
for providing precise high-quality 2D and 3D geospatial data. Latest advances in
microcontroller, hardware, and sensors have led to the emergence of an expanding
market of small-scale unmanned aerial vehicles (UAVs) equipped with high-quality
sensors, which have already proven to become an essential part of photogrammetry
and remote sensing (Cummings et al., 2017; Yao et al., 2019). Equipped with
cameras, these high-quality platforms eventually bridge the gap between close-
range terrestrial and airborne photogrammetry and open various new application
fields, while being a low-cost alternative to classic manned aerial photogrammetry.
Compared to satellite-borne or airborne remote sensing, UAVs stand out for to
their considerably higher spatial resolution, fast execution, and flexibility, turning
them into a popular instrument for a variety of remote sensing applications, such
as environmental monitoring, precision farming, cultural heritage documentation
and civil engineering (Pajares, 2015). The ability to freely navigate to any accessible
airspace and the complete control over perspective through modern gimbal systems
enable UAVs to recover details that would remain unseen from aerial views. This
property is particularly advantageous for 3D building reconstruction, since UAVs, in
contrast to airborne systems, are able to capture both aerial-like nadir images, as well
as oblique and even horizontal images of façade elements. Through the tremendous
development of image-based 3D reconstruction in the fields of photogrammetry
and computer vision, current structure from motion (SfM) and multi-view stereo
(MVS) methods have proven their capability in UAV-based building reconstruction
tasks yielding high-quality, dense and clutter-free 3D point clouds from image
sets without rigid baselines in a comparable accuracy and density towards light
detection and ranging (LiDAR)-based systems (Vacca et al., 2017). Samples of 3D
building models generated from UAV image sequences in the course of this thesis
are shown in Figure 1.1, while numerous works have confirmed the potential of
UAV-photogrammetry for as-built building reconstruction tasks (Malihi et al., 2018;
Wu et al., 2018).

However, limitations and challenges remain in the retrieval of geospatial products
from UAV imagery. The attainable georeferencing accuracy of UAV images utilizing
low cost and lightweight localization sensors, consisting of an inertial navigation
system (INS) and global navigation satellite system (GNSS), is generally too low for
precisely geo-localizing the resulting building models in a superordinate reference
system, and thus integrating them with other geo-data. To avoid elaborative and
costly deployment of ground control points (GCPs), indirect georeferencing methods

1



2 introduction

(a) Office (from Koch et al. (2016)) (b) Farm (from Koch et al. (2019))

(c) Silo (from Koch et al. (2019))

Figure 1.1: Samples of 3D building models generated from UAV images in the course of this thesis.
The generated reconstructions stand out due to their high resolution, dense measurements,
a high degree of detail, low noise and high completeness, particularly for building façades

can exploit the availability of numerous georeferenced image data from other modal-
ities and data sources. By precisely localizing pixel correspondences in cross-modal
image pairs, it is possible to achieve georeferencing accuracies of UAV target images
in the range of the reference image. Nevertheless, the task of registering multi-modal
image data is affected by significant radiometric, geometric, and temporal differences
among the image pairs, demanding special attention in the development of a robust
image matching approach. In contrast to large-scale mapping tasks, such as the
generation of orthomosaics or digital surface models (DSMs), small-scale 3D build-
ing reconstruction, on the other hand, requires more demanding data acquisition
techniques involving close-range images from different viewpoints and altitudes.
Thus, flight planning substantially influences the quality of the resulting 3D model
and — particularly in urban environments — is usually conducted manually or on
the basis of potentially outdated image material. Besides legal regulations defining
clear rules for the execution of UAVs, the safety of the vehicle, surrounding objects,
and humans have to be guaranteed before and during each flight. Until now, this
safety has to be ensured by the pilot. However, integrating these safety aspects into
an automated flight planning scheme would lead to a more efficient and safer UAV
campaign. Exploiting semantic cues of acquired UAV images can contribute to a bet-
ter scene understanding and is therefore utilized for an automatic generation of safe
3D UAV paths, avoiding restricted and hazardous airspaces, while simultaneously
aiming at acquiring a sequence of close-range images of a single object, suitable
for creating complete and high-quality 3D models in an intended resolution. Due
to the facilitated reconstruction of building models with UAVs, increased demand
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Figure 1.2: Combination of this thesis’s contributions as a workflow to generate 3D building reconstruc-
tions using UAV-photogrammetry and image sequences of corresponding interior parts.
Parenthesized numbers refer to the objective definitions in Section 1.2

for enriching those models with their interior parts is emerging. Joint indoor and
outdoor building models enable seamless navigation and location-based services
from street level to specific building locations. However, the reconstruction of interior
models usually differs from the exterior model generation in terms of temporal
acquisition and sensor selection. Lack of visual correspondences between shared
building elements further complicates the task of an accurate alignment between
both models. Although the interest in this task has already been reflected in various
projects, primarily manual and cumbersome techniques have been used to address
the alignment of indoor and outdoor building models. These include the deployment
of clearly visible markers in the environment or a manual 3D alignment of the
resulting 3D point clouds or 3D models in a post-processing step (Strecha et al., 2014).
Instead of relying on unstable appearance-based correspondences, rigid geometric
building structures (partially) visible in both models, such as window and door
frames, serve as valuable features for an accurate and automatic registration.

1.2 objectives

This dissertation aims to develop suitable methodologies for extending the capabil-
ities of camera-based UAVs in terms of an automated generation of accurate and
detailed 3D building models. The main objectives of this thesis are summarized as
follows:

• Objective 1: Georeferencing by co-registration of aerial and UAV imagery

Accurate georeferencing of UAV imagery is crucial for subsequent tasks, such as
DSM generation and 3D modeling. The low accuracy of onboard geo-localization
sensors, however, hinders direct georeferencing, whereas alternative methods, such
as registration of UAV images towards already georeferenced image data, can vastly
enhance the georeferencing accuracy beyond sub-decimeter level. The challenges of
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matching multi-modal remote sensing images include large geometric, radiometric
and temporal differences, which have to be considered in the developed registration
approach to enable accurate pixel-wise correspondences.

• Objective 2: Semantically-aware safe 3D UAV path planning

The generation of UAV-based 3D building models requires multiple overlapping
close-up images fulfilling complex requirements in the multi-view geometry. Au-
tomated flight planning based on a coarse terrain model would enhance the time-
consuming and error-prone manual or semi-automated planning stage, particularly
for tightly built-up environments. The identification and selection of suitable image
acquisition viewpoints rely on incorporating multi-view requirements and pho-
togrammetric properties in the path planning methodology. Besides, the semantic
information embedded in UAV imagery can contribute to a more thorough scene
understanding and be exploited to generate safe UAV paths that consider prohibited,
restricted, and hazardous airspaces.

• Objective 3: Alignment of indoor and outdoor building models

The generation of holistic 3D building models composed of interior and exterior
parts requires an accurate alignment between these individual 3D models. An
automated registration approach has to address the complex challenges of a lack of
visual correspondences and a limited degree of geometric overlap. A 3D line-based
scene representation can contribute to the identification and registration of shared
geometric structures in indoor and outdoor models, such as openings of windows
and doors.

• Objective 4: Evaluation of single-image depth estimation methods

The emerging success of recent deep learning-based methods for predicting dense
depth maps from single image views, referred to as single-image depth estimation
(SIDE), will likely affect several UAV-photogrammetry and 3D building reconstruc-
tion areas. These might include generating coarse terrain models from single views,
relaxing demands for image acquisition viewpoints, and modeling poorly textured
and narrow spaced indoor environments. Despite the tremendous upsurge of this
research field, a sophisticated evaluation protocol addressing relevant and inter-
pretable geometric properties of a predicted depth map is still lacking. Current
evaluation strategies and datasets can hardly provide in-depth analyses of developed
methodologies and hamper further advances in this area.

The following contributions concerning the specified objectives can be combined to
automate a UAV-photogrammetry campaign aimed at the reconstruction of complete
3D building models, as visualized in Figure 1.2, While an automated and precise
georeferencing (1) and trajectory planning (2) contribute to the generation of exterior
models, the investigation of current SIDE methods (4) aims at verifying their maturity
for replacing established stereo vision-related tasks such as interior reconstruction
and DSM generation. Finally, an automated alignment of indoor and outdoor models
merges individual building parts (3).
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1.3 publications

This cumulative dissertation is based on the following peer-reviewed journal papers:

1. Zhuo, X., Koch, T., Kurz, F., Fraundorfer, F. and Reinartz, P. (2017). Automatic
UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image
Data. Remote Sensing 9 (4), p. 376

2. Koch, T., Körner, M. and Fraundorfer, F. (2019). Automatic and Semantic-aware
3D UAV Flight Planning for Image-based 3D Reconstruction. Remote Sensing
11 (13), p. 1550

3. Koch, T., Liebel, L., Körner, M. and Fraundorfer, F. (2020). Comparison of
Monocular Depth Estimation Methods using Geometrically Relevant Metrics
on the IBims-1 Dataset. Journal of Computer Vision and Image Understanding,
Volume 191, 102877

and one peer-reviewed conference paper:

1. Koch, T., Körner, M. and Fraundorfer, F. (2016). Automatic Alignment of Indoor
and Outdoor Building Models using 3D Line Segments. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR-
WS), pp. 10–18

Pre-print versions of the published papers are provided in Appendices A to D.

1.4 thesis outline

The dissertation is organized into five chapters. The motivations and objectives
of the thesis have already been addressed in this chapter. In Chapter 2, a brief
introduction on the applicability of UAVs in remote sensing demonstrates their
successful usage alongside traditional remote sensing platforms. In addition, a
comprehensive study regarding the generation of 3D building models from various
platforms and sensors is presented. Chapter 3 describes the current state-of-the-art
and limitations in using UAV imagery for 3D reconstruction applications, including
the tasks of georeferencing, depth estimation, flight planning and building model
registration. Summaries of the contributions developed in the course of this thesis
are provided in Chapter 4, including the tasks of accurate image georeferencing,
semantic-aware 3D path planning for MVS image acquisition, the registration of
individual indoor and outdoor building models as well as the evaluation of existing
SIDE methods. A discussion on the proposed works and their applicability in related
fields, as well as an outline on possible future work, concludes this thesis in Chapter 5.





2
T H E R O L E O F UAV S I N R E M O T E S E N S I N G A N D B U I L D I N G
R E C O N S T R U C T I O N

2.1 uavs in comparison to conventional platforms

Unmanned and remotely controlled airborne platforms, which are popularly known
as drones, have numerous designations, such as unmanned aerial vehicle (UAV),
unmanned aerial system (UAS), micro aerial vehicle (MAV), remotely piloted vehicle
(RPV), and remotely piloted aerial system (RPAS). These include remotely controlled,
semi-autonomous, or fully autonomous systems. Although no unified standard
has been yet established for the classification of civil and commercial UAVs, the
aspects of weight, payload, and frame structure are often used to categorize the
enormous variety of currently existing systems. However, these guidelines may vary
from one state to another. According to current German law (October 2019), UAVs
are classified into 0.25–2 kg, 2–5 kg, 5–25 kg, and more than 25 kg, whereas more
stringent regulatory conditions must be complied with as their weight increases.
Thus, solely a mandatory identification of the device applies to the first group,
whereas the use of UAVs between 5–25 kg is only permitted with individual ascent
permissions. Systems of more than 25 kg are generally prohibited by law in the
civilian sector. According to the frame type, UAVs can be further classified into
fixed-wing, multi-rotor, or hybrid systems. While fixed-wing systems stand out for
long operation times and high airspeed allowing to cover large-scale environments
in flight, the flexibility of multi-rotor UAVs and their hovering capability enable
precise navigation even in narrow and tightly built environments. Hybrid systems
should combine the advantages of both systems, but are still under development
(Saeed et al., 2018).

Alongside the vast progress in UAV systems, microcontrollers, and navigation
sensors, remarkable advances have been achieved in the development of high-quality
small-scaled sensors that are lightweight enough to be carried even by mini-UAVs,
such as systems below 5 kg. Equipped with cameras, RGB-depth (RGB-D) cameras,
thermal or infrared cameras, multi-spectral cameras, or even light detection and
ranging (LiDAR) sensors, UAVs have become valuable remote sensing platforms and
geo-data suppliers.

As a result of tremendous economic and social developments, Earth is continually
undergoing major changes in rural and urban areas that demand for flexible, fast,
cost-effective, and automated data acquisition and processing strategies for earth
observation on a small and large scale. Today’s predominant possibilities of remote
sensing-based earth observation and geospatial information acquisition include
satellites, manned aircraft and UAVs. Despite its young age, UAVs have already
become an indispensable part of remote sensing to address these challenges and has
gained ground in various applications in both research and practice. The following
chapter presents a detailed comparison between these remote sensing platforms
in terms of different aspects of data quality and operability for remote sensing
applications. The comparison exclusively refers to camera-supported platforms. A

7
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Table 2.1: Comparison between different platforms used for photogrammetric applications. The table
merges parts of the works of Zhuo et al. (2017) and Gerke (2018)

Satellite Manned Aircraft UAV

Coverage Global km2 m2 - km2

GSD dm - m cm - dm mm - cm

Capture Geometry nadir nadir, oblique full flexibility

Onboard GNSS/IMU high quality high quality low - moderate quality

dm-level accuracy cm-level accuracy m-level accuracy

Price very high high low - moderate

Operating cost low high low

Flexibility fixed orbit less mobile mobile

weather-dependent weather-dependent cloudy, drizzly weather

autonomous pilot needed remotely controlled

Applicable in haz-
ardous areas

yes partial yes

Optical sensors RGB, multispectral, hy-
perspectral

RGB, multispectral, hy-
perspectral, thermal

RGB, multispectral, hyper-
spectral, thermal

concise summary and visualization of the key aspects are listed in Table 2.1 and
depicted in Figure 2.1.

Coverage refers to the spatial extent of the observed area and is mainly determined
by the flight altitude. Regarding global monitoring and mapping the earth’s surface,
it is beyond any question that in addition to radar-based satellites, current optical
satellites such as the WorldView series, GeoEye, Pléiades, SPOT, KOMPSat, or Planet
Labs provide earth observation data on an unprecedented scale. Fixed orbits at high
altitudes up to 700 km facilitate swath widths as high as 20 km, enabling the Earth’s
surface to be largely covered (up to 65◦ latitude) with only a few days of revisiting
times. Manned aircraft can cover large regional territories up to several hundreds
of kilometers on a single flight due to their relatively high flight altitude of several
hundreds of meters up to a few kilometers. Because of its low flight altitude of only
a few hundreds of meters (and even legal restrictions to 100 m altitude in many
countries), as well as short flight endurances, UAVs are limited to cover comparable
small regional areas. Most current multi-rotor UAVs can not exceed a coverage of
more than 0.50 km2 at 100 m altitude with 70 % overlap of adjacent images, whereas
fixed-wing UAVs can survey up to 10 km2 with a single flight.

Spatial resolution is usually reported as a measure of the smallest object that can
be resolved by the sensor and depends on the flight altitude and the focal length and
resolution of the equipped sensor. It can be expressed as the ground distance of one
pixel in the image, referred to as ground sampling distance (GSD). The high altitude
of satellites constitutes a major drawback in terms of the spatial resolution of the
recorded data. Although imaging sensors on satellites are constantly improving, the
spatial resolution even of very high resolution (VHR) satellite imagery is currently
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Figure 2.1: Comparison of different remote sensing platforms. Image source: Xiang et al. (2018)

confined to at best 30 cm GSD for WorldView-3 and WorldView-4 images and 50 cm
for WorldView-1 and WorldView-2, Pléiades, and KOMPSat-3. This resolution may
already be sufficient for many applications but does not entirely cover fields requiring
higher precision, such as exact building modeling. Manned aircraft equipped with
large format digital imaging sensors, such as Vexcel UltraCam (Wiechert et al.,
2011), Leica DMC III (Mueller and Neumann, 2016), or Z/I DMC II (Neumann,
2011) achieve much finer GSDs up to 5–10 cm, depending on the flight altitude.
Over many decades, manned aircraft set the bar for high-precision aerial images.
However, with the advent of UAVs and high-resolution small-format cameras, spatial
resolutions in centimeter and even millimeter range have become feasible given the
unsurpassed flexibility of flight altitudes between a few meters up to hundreds of
meters. Figure 2.2 compares orthomosaics generated from UAV and aerial images
towards a WorldView-2 satellite image of the same scene. The high resolution and
low acquisition altitude of UAV images clearly reveal a substantially enhanced level
of detail in the depicted objects, which even surpasses that of airborne images.

Temporal resolution in remote sensing expresses the amount of time needed to
repeatedly acquire data for the exact location. Many applications demand for in-
situ measurements, such as customized data acquisition campaigns or post-disaster
management. Other domains require high temporal resolutions and frequent data
acquisition, such as precision farming or monitoring tasks. Although revisit cycles of
satellites have already been decreased to a single day, this may not be sufficient for
monitoring continuous terrain changes or necessary in-situ measurements. Due to
atmospheric distortions in high altitudes and weather conditions, it is furthermore
not guaranteed that each cycle provides usable imagery. Manned aircraft are capable
of collecting data without the limitation of revisit periods. However, they suffer
from complex logistics of flight preparation and the availability of pilots. These high
logistic efforts and the requirement of nearby runways slow down the response time
for urgent tasks. Frequent data acquisition campaigns in the same area are generally
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(a) UAV (b) Aerial (c) Satellite

Figure 2.2: Comparison of remote sensing imagery acquired from a UAV (a), manned aircraft (b) and
VHR satellite (c). First row shows an orthomosaic derived from UAV and aerial image
sequences and a cropped WorldView-2 image to the same image content. By visualizing
an enlarged image part, the higher degree of local details obtained from UAV images is
revealed (middle). The GSD for UAV, aerial and satellite images is 1 cm, 5 cm, and 30 cm,
respectively. The last row shows oblique images of the same scene. The used data is part of
the TUM-DLR multi-modal earth observation benchmark (Koch et al., 2016b) which was
established in the course of this work

feasible, however, extensive logistical and monetary costs are usually too high for
practical realization. UAVs, on the other hand, are ideally suited for both in-situ
measurements and arbitrary acquisition frequencies, since they are flexible, easy to
operate, able to start, fly, and land in hazardous areas and can already be set up for
autonomous flights with pre-designed trajectories for monitoring applications.

Data quality is of high importance in remote sensing and embraces image quality,
correctness, georeferencing accuracy and availability. The high altitude of satellites
influences the image quality since the images are affected by atmospheric distortions.
Bad weather conditions and clouds might lead to unsuitable and unusable image
data. Based on meteorological data for the region of Central Europe, Van der Wal
et al. (2013) emphasized that merely 20 % of obtained satellite imagery from daily
revisiting satellites are of adequate image quality. Lower flight altitudes of manned
aircraft mitigate these effects allowing for more reliable data acquisition even for
adverse weather conditions. Modern UAVs are also capable of flying under drizzly
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weather conditions. At the same time, the close distance between sensor and surface
still allows to capture relatively sharp images assuming the equipment of high-
quality large-format cameras with fast lenses that enable quick shutter speeds. In
general, the quality of the equipped imaging sensor profoundly affects the image
quality, and thus the resulting geo-product. Satellites and manned aircraft do usually
not have strict payload issues and are able to carry heavy sensors. As a result,
they have access to the most precise and accurate remote sensing sensors currently
available. The dependence on lightweight sensors to be carried by a UAV constitutes
a major drawback. However, the quality of small-scale imaging sensors has been
vastly improved in recent years providing valuable earth observation data in very
high resolution (Colomina and Molina, 2014). One of the biggest challenges in
remote sensing is to accurately integrate the acquired image data into a consistent
reference frame. This georeferencing task requires high-quality positioning systems
mounted on the platform that assigns each image with precise external orientations.
In addition to extremely accurate measurements usually obtained from a global
navigation satellite system (GNSS) and inertial navigation system (INS), a precise
synchronization between localization sensors and the imaging sensor is essential.
Such high-precision localization systems are currently still enormous in terms of
size, weight, and price and, therefore, only deployed on satellites and manned
aircraft. However, they allow for georeferencing accuracies in decimeter range, while
lightweight and low-quality localization sensors equipped on UAVs can only reach
accuracies up to a few meters. A comparison of different low-cost and high-quality
localization sensors is provided in the work of Colomina and Molina (2014).

Flexibility plays an essential role in the use of remote sensing methods for specific
applications. Although modern remote sensing satellite missions consist of multiple
satellites for increasing the temporal resolution, they are fixed on their orbits and
limited in terms of the acquisition geometry capturing primarily nadir-directed
images. At most, sensors can be manually panned to some degree. Manned aircraft
possess a higher degree of flexibility as their trajectory can, but also has to be
planned individually for each mission, which, however, is time-consuming and
requires complex logistics. The safety of pilots limits the flexibility in hazardous
areas, while imposed restrictions on the airspace often constrain their usage in urban
and highly populated areas. In contrast to simple grid-like flight patterns conducted
by airplanes, helicopters enable more flexible maneuverability and customized flight
paths, while requiring smaller launching and landing areas. Besides commonly used
nadir-directed cameras, modern photogrammetric imaging systems, such as the DLR-
3K system (Kurz et al., 2011) utilizes multiple calibrated and tilted cameras mounted
on a platform allowing for synchronized nadir and oblique image sequences from
the same position. UAVs can be deployed on-demand, and flight parameters can
be adjusted in accordance with the desired image resolution and perspective. The
last row in Figure 2.2 shows samples of oblique images obtained from the different
platforms. The flexibility of gimbal adjustments of UAVs is particularly beneficial in
capturing building façades, which are often highly distorted or even remain unseen
in aerial and satellite imagery. The small size and easy control of UAVs facilitate
launching and landing even in uneven and steep landscapes while their full flexibility
and maneuverability allow for fast motion, hovering, quick turnarounds, and the
ability to keep current positions. The independence from pilots permits to fly even
in hazardous and narrow spaced regions. However, due to the big growth in the
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Figure 2.3: Upsurge in published papers combining the fields of UAVs, photogrammety and remote
sensing. Results derived from a dimensions.ai literature search3 on April, 25, 2019, looking
for the terms UAV and Photogrammetry ( ) and UAV and Remote Sensing ( )

commercial market, governmental regulations have become stricter in recent years,
complicating the usage of UAVs in populated and protected areas. An overview of
current regulations for UAV operations on a global scale is given by Stöcker et al.
(2017)1.

Costs are a decision criterion in the selection of remote sensing-based geo-data. The
immense expenses of planning, constructing and maintaining satellites, as well as
processing the image data reason for the relatively high cost of purchasing VHR
imagery up to 50e per km2 for a high-resolution stereo image pair with 50 cm GSD2.
Manned aircraft also suffer from high costs due to the expenses of the vehicle, pilots
and logistics. UAVs have witnessed a rapid decrease in purchase costs to a few
thousands of Euro for mid-quality devices and a few tens of thousands for high-
quality platforms. At the same time, the cost of high-quality optical imaging sensors
has also got reduced to an affordable range. Besides the purchase cost, there is no
further cost necessary, which decreases the total acquisition costs already after a few
flights.

2.2 application fields of uavs in remote sensing

The utilization of UAVs in photogrammetry and remote sensing has recently gained
increasing importance, which is also evident in the number of published scientific
articles, as shown in Figure 2.3. The following section provides a brief overview of
current application fields of UAVs in remote sensing. An excerpt from the presented
works is listed in Table 2.2.

2.2.1 Environmental Monitoring

Environmental monitoring describes the observation of scientifically relevant aspects
of the environment and the documentation of ecological parameters. Besides the
diagnosis of climate and human impacts on natural and agricultural systems, the
investigation of hydrological processes and the prevention of natural disasters are
elementary tasks within this discipline. Most monitoring systems are based on a

1 The report refers to international regulations in 2017 and may no longer be accurate for some countries
2 The stated costs are based on exemplary purchase prices from renowned geodata providers on January

11, 2021 (https://apollomapping.com, http://www.landinfo.com/)
3 https://app.dimensions.ai/

https://apollomapping.com
http://www.landinfo.com/
https://app.dimensions.ai/
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Table 2.2: Application fields of UAVs in remote sensing

Application Field Task Literature

Environmental Monitoring Precision wildlife monitoring Hodgson et al. (2016)

Monitoring of land cover changes Ahmed et al. (2017)

River monitoring Detert and Weitbrecht (2015)

Disaster Management Assistance after avalanche catastrophe Bejiga et al. (2017)

Wildfire detection and prediction Merino et al. (2012)

Assistance after earthquakes Qi et al. (2016)

Agriculture and Forestry Precision farming Gómez-Candón et al. (2014)

Crop monitoring Maes and Steppe (2018)

3D canopy height estimation Saari et al. (2011)

Cultural Heritage Preservation Excavation mapping Sauerbier and Eisenbeiss (2010)

Modeling of archaeological sites Fernández-Hernandez et al. (2015)

Historical city reconstruction Balsa-Barreiro and Fritsch (2018)

Civil Engineering Monitoring of transportation systems Brooks et al. (2015)

Monitoring of construction sites Tuttas et al. (2017)

Crack detection Gopalakrishnan et al. (2018)

Building reconstruction Vacca et al. (2017)

variety of terrestrial, manned airborne and satellite observations, however high costs,
as well as low spatial and temporal resolutions, are bottlenecks of both global and
local monitoring tasks (Manfreda et al., 2018). Moreover, some habitats do not allow
for on-ground surveys as they might damage the natural ecosystem. Therefore,
UAVs have the potential to bridge the gap between field observations and traditional
airborne and satellite-borne remote sensing and, thus to improve spatial, spectral, and
temporal data retrieval. Researchers have already demonstrated the potential of using
UAVs for numerous monitoring tasks, such as for plant population (IV et al., 2006),
phenology (Klosterman and Richardson, 2017), pest infestation (Lehmann et al., 2015),
land cover change (Ahmed et al., 2017), and biomass estimation (Dittmann et al.,
2017). UAVs allow monitoring of river system dynamics with a level of detail that is
several orders of magnitude higher compared to alternative remote sensing platforms,
leading to a deeper understanding of hydrological processes (Detert and Weitbrecht,
2015). A recent survey on the use of UAVs for environmental monitoring outlined
the benefits and increasing usage in various application fields but also demonstrated
remaining tasks and challenges, such as inconsistent GSDs for elevated areas due to
missing 3D flight planning techniques that consider the underlying surface structure,
heterogeneous regulations across different countries and the challenge of accurate
image geo-registration without the deployment of ground control points (GCPs)
(Manfreda et al., 2018).

2.2.2 Disaster Monitoring and Search and Rescue

The rapid utilizability of UAVs in the event of a disaster is beneficial in assisting
emergency responders by providing real-time aerial imagery for supporting rescue
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planning and decision making. The rapid retrieval of high-quality 2D and 3D spatial
data for relatively large areas reduces the operational time and number of required
rescuers and minimizes the risks for search and rescue missions. An exemplary search
and rescue campaign after a simulated strong earthquake showed a greatly improved
search efficiency and rescue strategy by automatic detection of collapsed buildings
in UAV images (Qi et al., 2016). To protect rescuers during their search for missing
people and victims in the ruins of collapsed buildings, Puerta and Fraundorfer (2016)
developed a semi-automatic environmental-aware UAV navigation strategy. Images
of a manual or pre-designed overview flight are used to generate a 3D occupancy
map defining free and occupied airspaces, which is frequently updated in real-time
during the flight. The accessible airspace with respect to the map can then be used
for an automatic collision-free navigation of the UAV even in complex and narrow 3D
scenarios. A live stream of the UAV camera and an integrated 2D human recognition
system enables a safe and fast search and rescue operation for environments that
are too dangerous for human access due to the risk of collapsing buildings. The
real-time capability of onboard image processing and data transmission to a ground
station can save valuable time in searching for missing persons (Sun et al., 2016).
For instance, victim localization after a catastrophe requires immediate action and
online feedback for the fastest possible response for human rescue missions. Sensors,
onboard computational power, and robust data transmission are sufficient to employ
even state-of-the-art computational expensive convolutional neural networks (CNNs)
with real-time feedback for the rescue team after an avalanche occurred (Bejiga
et al., 2017). An automatic framework for wildfire detection and the prediction of the
evolution of forest fires has experimentally proven the applicability of UAVs for fire
fighting activities (Merino et al., 2012). UAVs were also utilized for early damage
assessment and post-event reconstruction planning after an earthquake damaged
thousands of buildings in Italy in 2009 (Baiocchi et al., 2013). Damaged and collapsed
buildings were detected in real-time in a video stream which helped to receive a
timely estimate about the extent of the disaster. A damage assessment after the 2015

Gorkha earthquake in Kathmandu could be achieved by utilizing UAV imagery for
creating a 3D reconstruction of the destroyed environment (Yamazaki et al., 2015).

2.2.3 Agriculture and Forestry

The high temporal and spatial resolution of UAV imagery has led to a new range of
time-critical agriculture-related applications, such as determining harvest schedules
(Khanal et al., 2017) and precision farming (Gómez-Candón et al., 2014). Light-
weight multi-spectral and hyper-spectral sensors mounted on UAV have proven to
estimate useful parameters used in agriculture monitoring, such as the generation
of normalized difference vegetation index (NDVI) maps, which feature comparable
accuracy towards satellite-based observations, but with immediate feedback for
farmers and in a higher spatial resolution (Manfreda et al., 2018). Further variables
derived from UAV-based monitoring systems include, for instance, crop water stress
index (Park et al., 2015), photosynthetic activity (Zarco-Tejada et al., 2013b) or
carotenoid content (Zarco-Tejada et al., 2013a). These variables are used for various
agricultural applications, such as pest control, crop monitoring, field surveys, sowing
and spraying (Maes and Steppe, 2018). Precision agriculture tasks require highly
accurate orthomosaics which can be derived with the help of GCPs (Gómez-Candón
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et al., 2014). Becirevic et al. (2019) have shown that crop heights can be estimated
from multi-temporal UAV imagery in a comparable accuracy than manual ruler-
based height measurements. A reference digital surface model (DSM) was computed
before the growing season, while differences towards DSMs from other time steps
yield accurate crop field heights in high spatial resolution. UAVs have also proven to
assist in numerous forestry applications, such as forestry activity monitoring, species
identification, and tree height estimation (Adão et al., 2017; Getzin et al., 2012; Saari
et al., 2011). Natesan et al. (2019) proposed a CNN for tree species classification from
nadir directed UAV images from 150 m altitude. Even with the current development
of nano-satellites, UAVs offer unique features, such as the combination of 3D canopy
height measurements, orthomosaics and multi-angular data (Maes and Steppe,
2018). However, challenges still arise in terms of fully automated pipelines for such
applications, including the tasks of automatic flight preparation, flight planning,
accurate and effortless georeferencing, as well as different and frequently changing
flight regulations across different countries (Maes and Steppe, 2018).

2.2.4 Cultural Heritage Documentation

The recording and 3D modeling of complex archaeological sites is usually associated
with high monetary, logistical and temporal costs, since, typically, laser scanners,
tachometers, tapes, rulers, and numerous people are required for the documentation
task, which often demands daily updates. In the 2000s, laser scanners were the most
common sensors, however, recent times have witnessed an increasing interest in
using UAVs for creating DSMs, orthomosaics, and 3D models. The dynamic processes
of archaeological excavations feature immense terrain changes which require easy,
fast, and accurate data retrieval methodologies for timely updates of the current
excavation process and campaign management. Pre-designed acquisition flights
can be easily executed in a high frequency and the capability of acquiring nadir
and oblique images of hardly observable parts reveals the potential of generating
orthomosaics, elevation models and full 3D models of excavated objects or entire
historical cities (Balsa-Barreiro and Fritsch, 2018; Fernández-Hernandez et al., 2015;
Sauerbier and Eisenbeiss, 2010; Themistocleous et al., 2015). A comparison between
UAV and terrestrial LiDAR DSMs has proven the suitability of camera-equipped
UAVs with only slight differences between both DSMs of few centimeters, while
multiple acquisition views from UAVs resulted in less occlusions in the DSMs
than LiDAR-based mapping (Eisenbeiss and Zhang, 2006). Mostegel et al. (2017)
presented a multi-scale surface reconstruction pipeline for generating a detailed joint
3D surface model of a prehistorical rock art site from multi-modal and multi-scale
imagery acquired from a manned hang glider, a fixed-wing UAV, an autonomous
octocopter UAV and a terrestrial stereo setup. The individual reconstructions were
georeferenced with the use of GCPs and merged towards a consistently connected 3D
mesh with a spatial resolution that ranges from 1 m for the surrounding environment
up to 50 µm for the engraved rocks. An extensive survey on the potential of UAVs
for archaeological applications was presented by Campana (2017).
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2.2.5 Civil Engineering

A tremendous amount of effort related to UAV development was made in the realm
of civil and construction engineering. The attraction of integrating UAVs in many
civil infrastructure applications is primarily based on accelerating accessibility to
remote and dangerous sites. It plays an important role in decision making and can
be used comprehensively for urban planning analysis, tourism, and other fields.
UAVs — mostly equipped with cameras or LiDAR sensors — are used for urban
planning, monitoring of linear structures, such as pipelines (Rathinam et al., 2008), in
bridge inspections (Ellenberg et al., 2014), as assistance in construction sites (Tuttas
et al., 2017) and for traffic monitoring in transportation systems (Brooks et al., 2015).
Gopalakrishnan et al. (2018) proposed a deep learning-based approach for crack
detection in close-up images of diverse civil infrastructure systems, such as storage
silos or local roadways. Zhuo et al. (2018) utilized oblique UAV images and semantic
segmentation for refining open street map (OSM) building footprints, showing the
potential of updating currently available topographic maps. Based on an elaborate
project, Zekkos et al. (2018) shared some lessons-learned of UAV-photogrammetry
after conducting numerous campaigns in 26 different sites across the world. They
reported promising and satisfying results that were comparable towards LiDAR but
also indicated current limitations, such as the requirement of complicated flight plans
by experienced pilots, the modeling of poorly textured objects, and the considerations
of dynamic governmental regulations of UAV operations.

As will be discussed in more details in the following chapter, UAVs offer very
effective tools in terms of (3D) urban planning, since they can provide an indispens-
able basis of useful geo-data for management and planning, ranging from accurate
medium-scale 3D maps, orthomosaics and DSMs up to highly-accurate 3D models
of single objects in centimeter-level resolutions. However, the use of UAVs is not
regulated by similar stringent safety standards as manned aviation, and — although
the development of UAV control is already at an advanced stage — unexpected and
uncontrolled crashes can still occur (Clothier and Walker, 2015). Such failures, caused
by wind, undesirable human interaction, malfunctions, or inaccurate navigation due
to poor satellite constellations or fully GNSS-denied areas can cause crash-landings,
and thus damage to the operation of the targeted facility or even to humans. A
risk assessment of a potential crash needs to be considered during the campaign
planning, which could vastly differ for employing UAVs in urban and industrial
environments than for flying in large, rural and mostly uninhabited spaces. Although
UAV breakdowns and crashes are unpredictable, precautions should be taken during
the flight planning stage, e.g., by avoiding hazardous flights above populated and
dangerous areas. Ensuring safety remains a manual task for pilots and path planners
and usually requires expert knowledge and experienced pilots.

2.3 comparison of platforms , sensors and methods for 3d

building reconstruction

Since the mid-1990s, the demand for 3D city models is continuously growing and
has meanwhile become commonplace. Remote sensing provides an indispensable
foundation for the generation of 3D buildings and 3D city models in small and large
scales. With the official open geospatial consortium (OGC) standard for modeling
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Figure 2.4: Definition of different abstraction levels for building representation in accordance with
CityGML standard (Kolbe et al., 2009)

and exchanging virtual 3D city and landscape models, CityGML proposes the
demands for easy, clear, and explicit handling of topographical and semantical
information (Kolbe et al., 2009). Reconstruction, modeling, and representation of
as-built buildings are of particular interest in the field of building information model
(BIM) and — depending on the defined quality requirement for a civil project — 3D
buildings can be represented in different resolutions and abstraction levels, which
is commonly known as level of detail (LoD) in computer graphics. LoDs in BIMs
are different geometrical, graphical, and semantical representations of built assets
beginning with generic 2D models at the lowest LoD (LoD-0) to various amounts of
graphic and non-graphic information attached to 3D modeled objects (LoD-3), up to
the supplementation with interior features (LoD-4). Figure 2.4 visualizes different
abstraction levels applied for 3D building models.

The foundation of creating such 3D building models is based on the acquisition
of 3D information from either direct (e.g., LiDAR) or indirect measurements (e.g.,
photogrammetry). Prerequisites on the acquired or processed 3D data for subsequent
building modeling is a precise georeferencing, high resolution, low noise, and
complete recovering of the objects. If these requirements are met, techniques exist for
generating 3D building models in agreement with CityGML standards. Most data
acquisition systems collect dense 3D information that can be further processed into
watertight and polyhedral 3D models (Balsa-Barreiro and Fritsch, 2018; Duan and
Lafarge, 2016; Kim and Shan, 2011; Malihi et al., 2018; Poli et al., 2015; Pu and
Vosselman, 2009; Sampath and Shan, 2010; Toschi et al., 2017; Verma et al., 2006;
Wen et al., 2019; Wu et al., 2017; Yang et al., 2016). The first part of the following
chapter describes the state-of-the-art in generating 3D building models up to LoD-3
from different remote sensing data, while the second part deals with LoD-4 models
and their relation to remote sensing.

2.3.1 Reconstruction of Building Exterior from Remote Sensing Data

This section provides an exhaustive review on the state-of-the-art for as-built recon-
struction of building exteriors. Since this is a long-standing task with increasing
interest in various fields, numerous different ways have been developed during the
last decades, focusing on an automated procedure for both large-scale and small-
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scale modeling. To this end, building reconstruction has been addressed with various
sensors from different platforms. With the widely-accepted standard of CityGML,
clear rules have been established regarding model preparation, accuracy, informa-
tion richness, representation, and visualization. Recent works of as-built building
reconstruction try to formulate their approaches following the rules of CityGML.
According to this standard, buildings are represented via different LoDs, which are
visualized in Figure 2.4. While LoD-0 solely depicts an accurate building footprint
in a global reference frame, LoD-1 additionally adds the building’s height result-
ing in a simplified box-shaped representation of the building. LoD-2 models are
obtained by augmenting these models with real roof shapes. These purely geometric
representations of the building’s shape are currently widely spread among many
geographic information systems (GISs). However, they do not exhibit façade and
detailed roof elements, nor overhangs, or balconies. Adding these local details to
the building models yield comprehensive and complex LoD-3 models for which,
however, accurate and extensive geo-information is required. As a final step, these
pure exterior representations of the building can be supplemented and completed
with an interior model resulting in LoD-4 models. As depicted in Figure 2.5, diverse
platform and sensor combinations can address the task of 3D building reconstruction,
including satellite and airborne sensing approaches using active (e.g., LiDAR) and
passive (e.g., cameras) sensors, as well as UAV-borne imaging and ground-based
sensing methods from static or moving platforms (e.g., mobile mapping systems
(MMSs)). Apart from different data acquisition strategies, a variety of data processing
methodologies have been developed for 3D building reconstruction up to LoD-3,
which are described in the following section. Table 2.3 lists the main features of
the presented techniques with regard to the possibility and quality of 3D building
reconstruction.

Satellite-based remote sensing, despite its long history since the launch of Landsat-
1 as the first multi-spectral remote sensing satellite in 1972, has primarily focused on
natural environments, since early sensors did not achieve the required spatial resolu-
tion for urban analysis and modeling. Only with the latest technical development
of VHR optical satellite-based sensors, spatial resolutions have reached sub-meter
ground resolutions allowing to provide crucial information for urban planing on
building level (Weng et al., 2018). Nowadays, a multitude of optical satellites provide
large-scale data of adequate quality for urban modeling purposes, while the ongoing
development of new satellites will further increase their quantity and continuously
improve the achieved spatial resolutions (Zhu et al., 2018b). Due to the nearly global
coverage in a high temporal resolution, satellite-borne single or stereo images allow
for automated extraction of 3D city models utilizing photogrammetric or machine
learning-based methods. An assessment of the geometric and radiometric quality
of stereo imagery from VHR sensors (GeoEye-1, WorldView-2, and Pléiades-1A)
for the task of 3D information extraction was conducted by Poli et al. (2015). The
high altitude of these satellites affects the radiometric image quality by atmospheric
distortions, and the localization accuracy and inaccurate camera intrinsics influence
the geometric quality of satellite images. This work reported acceptable radiometric
distortions for 3D modeling, while comparable geometric accuracies of derived DSMs
have been observed for the investigated satellites. Accuracies of height estimations
range between 6–8 m root mean square error (RMSE), which were assessed with
the help of airborne LiDAR ground truth data. Many errors occurred in the case of
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Figure 2.5: Data acquisition for the task of 3D building reconstruction addressed by different remote
sensing platforms and sensors

occlusions (e.g., narrow streets in urban areas), shadows (e.g., close to tall buildings),
and homogeneous textures (e.g., special roof covers). The potential of the generated
DSMs for automatic extraction of LoD-1 and LoD-2 building models was studied
and compared towards the usage of aerial images and LiDAR data. The extraction of
LoD-1 building models from the obtained DSMs of different sensors and the help of
topographic maps has shown comparable and reliable results. In contrast, the genera-
tion of LoD-2 models lacked in accuracy for the satellite-borne DSM, due to a higher
level of noise, resulting in means of the residual values in height up to 2 m and only
40 % of correctly modeled buildings. Wang and Frahm (2017) proposed a multi-view
stereo (MVS) matching approach for satellite images considering technical challenges
at different stages of satellite-MVS, such as radiometric changes, inaccurate sensor
calibration, and excessive correspondence search space. Reliable 2D feature matches
are used to compensate for extrinsic calibration errors, and an edge-aware interpola-
tion of the sparse feature matches generates a set of dense feature matches in a fast
and contour-preserving manner. Experiments on WorldView-3 images with 30 cm
GSD and LiDAR ground truth has shown an improvement in the completeness of the
derived 3D point cloud up to 80% with a registration accuracy of 0.25 m horizontally
and 2.57 m vertically. A comparison towards other dense matching algorithms, such
as SiftFlow (Liu et al., 2011), S2P (De Franchis et al., 2014), PMBP (Wang et al., 2016a)
and SGM (Hirschmuller, 2005) demonstrated the superior performance of the pro-
posed method. The enhanced 3D point cloud could further improve processing steps
such as the generation of DSMs and, thus, building extraction and reconstruction.
Another approach for refining satellite-borne stereo image DSMs for the task of LoD-
2 building model generation was proposed by Bittner et al. (2019) by formulating
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Table 2.3: Different ways for as-built building reconstruction, categorized into different platforms,
observability of building parts, reconstruction accuracy, resolution and attainable LoD level.
Samples of current related literature are given in the last column

Platform Approach Observability Accuracy Resolution LoD Literature

Satellite Single image Roof 200–300 cm 30–100 cm 1-2 Wang and Frahm
(2017)

Stereo images Roof 200–300 cm 30–100 cm 1-2 Duan and Lafarge
(2016)

Airborne LiDAR Roof 10–30 cm 1–10 cm 2 Elberink and Vossel-
man (2011); Song et al.
(2015)

Photogrammetry Roof (& façade) 40–80 cm 5–30 cm 2(-3) Frommholz et al.
(2015); Haala et al.
(2015)

Terrestrial LiDAR Façade 5–10 cm 1–5 cm (3) Pu and Vosselman
(2009)

Photogrammetry Façade 5–10 cm 1–5 cm (3) Schindler and Bauer
(2003)

MMS Façade 10–50 cm 5–50 cm (3) Xiao et al. (2009)

UAV LiDAR Roof 10–100 cm 5–10 cm 2 Chiang et al. (2017)

Photogrammetry Roof & façade 1–5 cm 1–10 cm 2-3 Aicardi et al. (2016);
Murtiyoso et al. (2017);
Vacca et al. (2017)

a multi-task learning problem consisting of semantic segmentation and building
roof model generation. They utilized a conditional generative adversarial network
(cGAN) with an objective function based on least-square residuals and an auxiliary
term based on normal vectors for further roof surface refinement. Experiments with
WorldView-1 images on a test site revealed geometric accuracies of 3.1 m RMSE, 64 %
intersection over union (IoU) and 55 % recall. Duan and Lafarge (2016) have shown
that jointly utilizing geometric and semantic cues brings robustness to occlusions
and low image quality. Object shapes can be well preserved by including a region-
based stereo matching strategy which resulted in faithful LoD-1 representations of
buildings from 50 cm resolution satellite stereo imagery of QuickBird-2, WorldView-2
and Pléiades. However, the low resolution of the images impedes the generation of
LoD-2 models, and already small buildings (e.g., houses in residential areas) and
poorly textured and reflective objects are challenging for deriving accurate LoD-1
models. A statistical approach was proposed by Partovi et al. (2015) as a hybrid
method comprised of a top-down and bottom-up strategy. Building roof compo-
nents are extracted and classified as pitched and flat roofs in a bottom-up approach
and afterward fitted towards a satellite-borne DSM in a top-down approach via
a Monte Carlo Markov chain (MCMC) with simulated annealing to optimize roof
parameters iteratively. Experiments have demonstrated the potential of the method
on WorldView-2 imagery, but have also revealed problems for complex building
shapes and robust classification of roof types. A deep learning-based approach for
performing parametric reconstruction models on single-view satellite images was
presented by Wang and Frahm (2017). WorldView-3 satellite images, LiDAR data and
geo-registered GIS vector maps served as training data for a single-shot detection
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CNN to localize building instances and fit parametric models simultaneously from a
single satellite image, formulated as a 3D object detection task. The combination of
building detection and reconstruction eliminates the need for topographic maps for
building footprint extraction, and the ability to reconstruct building models from
single-view images is a promising direction for autonomous, fast and robust urban
planning on a large scale. However, the approach could only extract LoD-1 models
with a mean average precision of 50% and a RMSE in the height estimation of more
than 2.7 m.

With the recent development of both satellite sensors and algorithms in the fields
of photogrammetry and computer vision, global and large-scale 3D city models can
be derived to a highly automated degree, which is already used in urban planning
and city monitoring. However, resulting building models can not yet exceed LoD-2,
as they only capture nadir views, and even a robust generation of faithful LoD-
2 models is challenging for small and complex building shapes. Even with the
availability of VHR satellite imagery, the spatial resolution is too low for recovering
local details of the buildings. At the same time, images often feature a high degree
of noise, which also depends on the weather conditions during data acquisition.
Future satellites, such as Cartosat-3, announce lower GSDs of 0.25 m, suggesting
further improvements in the development of large scale reconstructions from satellite
imagery. The accurate positioning of the satellites allows for direct georeferencing
within a few meters, which is sufficient for large-scale investigations but is not
accurate enough for detailed urban planning. The utilization of GCPs is still required
for more precise georeferencing of satellite-based geo-products.

Airborne systems have become the most prevalent technique for deriving medium-
scale urban 3D models in an automated manner. Due to their relatively low altitude,
manned aircraft and helicopters can recover a much higher degree of detail than
satellites, although manual and costly flights have to be executed. The large payload
allows for carrying high-resolution observation sensors and highly accurate local-
ization sensors used for precise direct georeferencing of the derived data. Usually,
mapping sensors utilize LiDAR and large format digital cameras, both featuring indi-
vidual characteristics. While airborne laser scanning (ALS) directly provides highly
accurate and dense 3D point clouds, photogrammetrically derived point clouds have
to be triangulated from multiple overlapping images of the scene. Subsequently,
building reconstruction methods from ALS point clouds can rely on accurate geo-
metric 3D data and mostly focus on the extraction and modeling of building models.
Photogrammetric techniques, on the other hand, must pay attention to the generation
of dense and noise-free 3D point clouds. The subsequent building modeling task
often relies on similar techniques to those used for ALS point clouds. The following
sections briefly describe current advances in both research directions.

Airborne laser scanning (ALS) enables the acquisition of accurate and dense
point clouds in unsurpassed quality in terms of homogeneous distribution and
high precision of derived 3D points of few centimeters. However, as summarized in
Elberink and Vosselman (2011), systematic and stochastic errors may occur in the
obtained measurements especially in urban areas, as well as inconsistent and rela-
tively low point cloud densities, and data gaps due to occlusions by adjacent objects
(e.g., clutter of trees, absorption of the laser pulse by water features and reflections
from windows on the roof). Nevertheless, compared to airborne photogrammetric
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approaches, particularly the uniform distribution, high accuracy, and low degree
of clutter of ALS point clouds provide an optimal basis to model complex building
structures. As a necessary step towards the reconstruction of 3D building models, the
dense point cloud has to be classified so that building points can be distinguished
from other points. Methods for this task usually rely on stochastic graphical models
(e.g., MCMC (Yang et al., 2013), conditional random field (CRF) (Lafarge and Mallet,
2012)), machine learning techniques (Özdemir and Remondino, 2019), or on the avail-
ability of accurately georeferenced building footprints (Kada and McKinley, 2009).
Once buildings are extracted, the subsequent task of explicit building modeling is
accomplished either by model-driven or data-driven approaches. Former make use
of a pre-defined geometric library of various roof and building type shapes and
select a suitable parametric instance of this library for each building point and refine
the corresponding model parameters by minimizing deviations of the measured
LiDAR points towards the 3D shape (Arefi et al., 2008; Huang et al., 2013; Kada
and McKinley, 2009). Although model-driven methods are robust towards noise
and yield geometric correct building models, they are limited in the flexibility of
modeling complex building shapes, since they rely on pre-defined shapes from
a library. Data-driven methods decompose the building into individual segments
for which parametric planar or curved shapes are fitted towards the point cloud,
which are finally connected considering topological relations between the compo-
nents. The segmentation of individual building structures is typically addressed by
plane detection and extraction using random sampling consensus (RANSAC) (Verma
et al., 2006) or Hough transform (Vosselman and Dijkman, 2001), by performing
a clustering analysis (Vosselman, 1999), using region growing (Xu et al., 2017b) or
via contour extraction (Song et al., 2015). Topological relationships between the
segmented components are established via graph-based methods (Verma et al., 2006),
minimization of intersecting vertices (Matei et al., 2008) or boundary regularization
(Sampath and Shan, 2010). Model-free approaches benefit from the relaxation on
pre-defined building type libraries and are therefore more flexible for modeling
complex building shapes. However, since they purely rely on the acquired 3D points,
they are highly sensitive towards noise, outliers and gaps causing geometrically
incorrect building models.

Despite these problems, current model-driven and data-driven approaches are
already mature in processing large-scale areas in an automated fashion achieving
accurate building models up to LoD-2. Due to the pure geometric nature of ALS and
the absence of 3D points on building façades caused by the acquisition geometry,
the resulting 3D building models lack in geometric and textural details which are
required for the generation of LoD-3 models. To overcome these limitations, other
ways of reconstructing 3D buildings need to be considered.

Photogrammetric approaches, in comparison to ALS, can not directly provide
3D information, due to its passive nature. Therefore, great attention must be paid
towards flight planning for acquiring highly overlapping and matchable images.
After data acquisition, the task of building modeling consists of first detecting and
extracting buildings by using, for instance, GIS maps or semantic segmentation and
second by obtaining 3D information from the images and final modeling of the
extracted buildings. First aerial systems only captured overlapping nadir-directed
images for photogrammetric methods on generating 3D models. Due to the large
degree of noise and low image quality in the early stage, the generation of LoD-2
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models was a challenging task. Early aerial photogrammetric methods focused on
the robust detection of corresponding corner points (Fischer et al., 1997) and build-
ing outlines (Suveg and Vosselman, 2000; 2002) in stereo images with the aid of
GIS maps while fitting predefined building shapes via hypothesis generation and
validation. These model-based methods could create purely geometric and simpli-
fied LoD-2 building models. However, modern manned aircraft are integrated with
multiple synchronized high-resolution cameras featuring both nadir and slightly
oblique images. The development of MVS methodologies facilitated the generation
of accurate and dense DSMs, which has also affected the task of urban modeling.
These systems have not only increased the robustness of generating 3D building
models but also allowed to capture façade elements which can be integrated into
the reconstruction process for generating textured 3D building models up to LoD-3
(Dahlke et al., 2015; Frommholz et al., 2015; Haala and Rothermel, 2015; Haala and
Kada, 2010; Moe et al., 2016; Remondino and Gerke, 2015; Toschi et al., 2017; Zhu
et al., 2018a). Based on dense 3D point clouds or surface meshes, the generation of
3D building models corresponds to that of ALS outputs, revealing reconstruction
approaches with parametric shapes, based on semantic segmentation or via DSM
simplification. Nevertheless, differences exist in the quality of the obtained 3D data
and new challenges arise. Photogrammetric 3D point clouds usually suffer from a
a considerable degree of noise and inconsistent point density, which dramatically
reduce in the presence of poorly textured object surfaces. Moreover, difficulties of
dense matching of oblique imagery arise from large perspective distortions, large
scale variations due to a higher depth of field, illumination changes and multiple
occlusions. Modern computer vision methods, however, have proven to provide
reliable 3D information enabling detailed cadastral applications (Ostrowski, 2016).
Unlike the generation of 2.5D raster DSMs, which is sufficient for the creation of
LoD-2 building models, LoD-3 models require full 3D information. This aggravates
the geometric elevation processing, since filtering and meshing have to be performed
in the full 3D space rather than in 2D space, which often results in smudged and
inaccurate depth transitions around object boundaries. To compensate for these ef-
fects, Holzmann et al. (2016) presented a method for regularizing noisy 3D building
models by integrating detected lines in the images into a cell labeling optimization.
For the extraction of buildings in the images and their separation from the surround-
ings, modern CNN-based semantic segmentation approaches can be applied, which
have proven their applicability in the domain of aerial imagery (Marmanis et al.,
2016). Additionally, oblique images enable texturing roof and façade elements of the
extracted building models yielding more realistic and visually appealing 3D building
models.

A semi-automatic method for 3D city model generation in accordance with
CityGML standards was proposed by Buyukdemircioglu et al. (2018) using large-
format digital aerial images and vector basemaps. The method generates textured
LoD-2 building models with a top-down approach for roof modeling with a prede-
fined library. Experiments were conducted in the city of Chesme Town in Turkey,
consisting of 43000 buildings. The automated method could successfully reconstruct
73 % of the buildings on a 10 cm DSM, however, the reconstruction still included
erroneous building models due to a limited roof library and occlusions from adjacent
trees and other objects. Blaha et al. (2016) integrated semantic segmentation into
a 3D reconstruction framework aiming at densely reconstructing both 3D shape
and segmentation for semantic object classes. By jointly reasoning about shape and



24 the role of uavs in remote sensing and building reconstruction

class, class-specific shape priors (e.g., walls and roofs) led to improved reconstruction
results reported by overall accuracies between 80–90 %, whereby a hierarchical re-
finement alleviated an increase of the runtime and reduction of memory size helping
to scale the method for large areas. Another work carried out by Chen et al. (2018)
has shown, that even structure from motion (SfM) and semantic segmentation can
benefit from each other by utilizing semantic information to boost the accuracy of
feature point matching by assigning each feature point a corresponding label and
include these labels to an equality constrained bundle adjustment. The results yielded
improvements in processing speed and a semantically-enriched 3D reconstruction
model.

Terrestrial systems utilize close-range images or laser scans and record informa-
tion of building façades that hardly reach the buildings’ roof. These approaches make
use of static data acquisition from terrestrial laser scanning (TLS) or utilize street-level
images captured in a dynamic automated fashion, e.g., via MMS. Therefore, they
perfectly augment aerial reconstructions which suffer from weakly reconstructed
building façades (Haala and Kada, 2010). However, although MMS can generate
highly detailed façade models, no information on the buildings backsides can be
obtained, and even for static terrestrial acquisitions, numerous overlapping images
have to be carried out from different locations. A subsequent registration is necessary
to retrieve complete reconstruction models. Pu and Vosselman (2009) proposed an
approach for the automatic reconstruction of building models from terrestrial LiDAR
data. Knowledge-based feature constraints are defined to extract walls, doors, roofs,
windows, protrusions and intrusions from raw laser point clouds while introducing
assumptions for occluded parts. The resulting polyhedron models consist of detailed
façade elements, however, the methodology is construed for simple building shapes.
A photogrammetric model-based approach for automatically recovering detailed
building models from images was presented by Schindler and Bauer (2003). After
reconstructing a dense point cloud, a coarse building model consisting of principal
planes is recovered via linear regression. Smaller features, such as indentations and
protrusions, are detected, and for each element, the most suitable template from a
model library is selected and refined in cooperation with the images. As a result,
geometrically parametric building models could be derived. However, the amount of
feature sets that can be modeled is limited, and occlusions, as well as extreme lighting
conditions like weak contrast, reflections, and shadows, affected the reconstruction
quality. Lee and Nevatia (2004) presented a method for reconstructing 3D windows
frames from a single calibrated rectified ground view image. 2D windows are ex-
tracted by exploiting regularity and symmetry, while the classification of various
window classes helps for deriving the 3D depth of the windows. A method for
generating street-side 3D photo-realistic models from image sequences of an MMS
was presented in the work of Xiao et al. (2009). A multi-view semantic segmentation
method segments each image at pixel level into meaningful areas, such as building,
sky, ground, vegetation, and car, while buildings are separated into independent
blocks, for which a facçade model is constructed through regularizing noisy and
missing 3D data by an inverse patch-based orthographic composition and structure
analysis method. Another MMS method made use of panoramic image sequences
and developed an MVS method enforcing piece-wise planarity constraints (Micusik
and Kosecka, 2009). They presented a novel depth fusion method by exploiting the
constraints of urban environments while combining the advantages of volumetric
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and viewpoint-based fusion methods. The partial piecewise-planar models of the
scene were fused into one textured triangle surface mesh. The resulting models could
not recover local depth transitions of the façades and often lacked in inaccurate local
planar patches. Moreover, trees were typically reconstructed as planar surfaces, and
moving cars occluded substantial parts of the road, causing gaps in the final model.
By setting up topological relationships between extracted main surface patches, an
improvement in recovering the building’s shape structure can be achieved, which
was demonstrated in the work of Tian et al. (2010). Both 3D points and 3D edges are
combined to extract surface path outlines that are connected to neighboring patches.
However, the results have shown that the accuracy of surface patches, as well as the
building outline detection still needs to be improved, and detailed depth transitions
could not be recovered.

UAV-borne photogrammetry finally bridges the gap between airborne and terres-
trial data acquisition. Especially, multi-rotor drones stand out for their flexibility in
hovering and navigating to any free airspace acquiring images with arbitrary perspec-
tives from various positions. Although modern light-weight LiDAR sensors can be
mounted on UAVs, cameras have proven to be able for generating 3D information in
a comparable quality towards LiDAR-based 3D point clouds in terms of density and
accuracy (Aicardi et al., 2016b; Caroti et al., 2015; Themistocleous et al., 2016; Vacca
et al., 2017; Wefelscheid et al., 2011). This development was strongly influenced
by the recent advances of 2D and 3D computer vision algorithms which were inte-
grated into entire 3D reconstruction pipelines, such as Bundler (Bundler), VisualSfM
(Wu), Colmap (Schönberger and Frahm, 2016), Aigsoft (Agisoft), Pix4D (Pix4Da)
or Micmac (Rupnik et al., 2017). These frameworks focused on the generation of
3D point clouds and meshes from unordered image sequences with relatively large
perspective changes and already led to numerous researches on investigating the
possibility of using UAV imagery for 3D mapping and 3D building reconstruction
(Aicardi et al., 2016b; Caroti et al., 2015; Jarzabek-Rychard and Karpina, 2016;
Malihi et al., 2018; Murtiyoso et al., 2017; Murtiyoso and Grussenmeyer, 2017;
Themistocleous et al., 2016; Vacca et al., 2017; Wefelscheid et al., 2011; Wu et al.,
2018). An analysis of using nadir UAV images for automatically generating LoD-2
building models has revealed a comparable quality and accuracy towards ALS-based
methods (Jarzabek-Rychard and Karpina, 2016). The possibility of acquiring and
utilizing both nadir and oblique images in the reconstruction process does not only
increase the completeness of the 3D model but also improves the geometric accuracy
of the entire model (Vacca et al., 2017). A pipeline as a whole for generating LoD-3
building models and building footprints from dense point clouds derived from UAV
imagery was presented in the work of Malihi et al. (2018). The method addresses
clutter and unwanted sections and decomposes the point cloud into several smaller
parts, which are divided into potential planar segments of façades, roofs, or grounds.
These geometric primitives are subsequently fused to generate building models.
Experiments yielded accuracies up to 0.25 m for roof parts and 0.2 m for façade
elements. In an experimental study on reconstructing complex historical buildings,
Murtiyoso et al. (2017) studied the acquisition and processing protocols for UAV
photogrammetry in terms of camera calibration, flight planning, and data manage-
ment. They have shown that different available 3D reconstruction pipelines could
generate promising 3D models. Still, they outlined that calibration parameters of
small-scale camera sensors tend to be unstable and highlighted the necessity of prior
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camera calibration and self-calibration in the bundle adjustment. Moreover, dense
matching of poorly textured façade elements often resulted in gaps and clutter in the
reconstructed model. These and other works have shown that capturing both nadir
and oblique close-up images from UAVs enables the generation of high-resolution,
textured, and complete LoD-3 building models. However, the success of utilizing
UAVs for detailed image-based 3D reconstructions depends on several essential
aspects. A general workflow for UAV-photogrammetry, as shown in Figure 2.6,
highlights the major steps that need to be considered in a photogrammetric UAV
campaign.

A preparation stage, as shown in Figure 2.6a) involves the selection of a compatible
vehicle and sensor among the versatility of currently available camera-equipped
UAV systems. This choice encompasses considerations on vehicle size, flight time,
intended GSD, and the expected environment of the campaign area. While tightly
built-up urban environments potentially tend to offer only limited and narrow free
airspace, small-scale vehicles with wide-angle lenses are preferred, enabling sufficient
coverage and overlap even from views with short distances towards the targeted
building. Conversely, wide and open spaces permit enlarged accessible airspace and
thus safer trajectories in higher flight altitudes, which may allow the use of cameras
with increased focal lengths offering improved image quality.

The further planning step consists of the determination of a suitable UAV path
and image acquisition viewpoints allowing the generation of satisfying 3D mod-
els (cf. Figure 2.6b). In terms of generating sophisticated LoD-3 building models,
commonly used simple grid-like or circular patterns are usually not sufficient since
surrounding obstacles and overhangs might occlude parts of buildings. Therefore,
a precise trajectory must be planned, featuring views from various altitudes and
directions that cover the entire building. Generating optimal and safe UAV paths
requires accurate and up-to-date topographic maps of the whole environment as a
basis for the planning step, which still is often a manual and time-consuming task
even for experienced pilots. Without precise elevation data or by the use of outdated
maps, flight planning is exposed to a vast risk of collision.

On-site execution, as depicted in Figure 2.6c, embraces the acquisition of images
according to the flight plan and groundwork for a subsequent georeferencing task.
Most available UAVs are capable of navigating along a pre-designed trajectory and
capture images from determined viewpoints without human interaction. As already
introduced in Section 2.1, UAVs are generally equipped with low-quality localization
sensors impeding direct georeferencing of the acquired imagery. In order to obtain
accurately georeferenced photogrammetric products in the range of few centimeters,
the deployment of GCPs is indispensable, which, however, is a manual and elaborated
process including planning, ground-based surveying, and localization of the GCPs
in the images. This task even deteriorates in case of inaccessible or dangerous areas.

After a successful operation, the acquired UAV images are processed for obtaining
georeferenced photogrammetric geo-products, such as orthomosaics, DSMs, and
dense 3D point clouds (cf. Figure 2.6d). Pixel coordinates of the GCPs in the images
are assigned with precise terrestrial 3D measurements and subsequently exploited to
transform the local 3D model into a subordinate reference system. Current state-of-
the-art SfM and MVS methodologies are capable of integrating GCP coordinates and
generating highly accurate photogrammetric geo-products.
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Figure 2.6: General framework of UAV photogrammetry. Based on the selection of a compatible vehicle
and camera sensor (a), suitable image acquisition viewpoints are determined with respect
to an available topographic map of the campaign site (b). On-site image acquisition, as
well as deployment and measurement of GCPs (c). 3D reconstruction and geo-product
generation using 3D reconstruction pipelines and precise georeferencing through integration
of GCPs coordinates into pose estimation (d). Analysis and further processing of the derived
geo-products (e.g., semantic 2D and 3D maps, 3D modeling, etc.) (e)
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Subsequent analysis methods highly depend on the application and include 3D
modeling and interpretation methods, such as the generation of 3D building models,
semantic maps and class extractions, as exemplarily shown in Figure 2.6e.

In addition to the exclusive use of UAVs for 3D building reconstruction, several
works attempted to further combine and integrate terrestrial measurements into the
modeling process. Caroti et al. (2015) demonstrated a potential integration of UAV-
photogrammetry and TLS for reconstructing a church, including its interior. UAV
and LiDAR point clouds were registered with the help of GCPs with an accuracy of
1 cm RMSE. Another multi-modal reconstruction approach integrated LiDAR and
oblique UAV point clouds for the generation of LoD-3 building models (Wen et al.,
2019) by extracting plane features from LiDAR point clouds with accurate boundary
constraints obtained from the oblique images. Another work that integrated oblique
UAV and terrestrial images has shown an optimization of 3D modeling in urban
areas which does not only improve the performance of integrated 3D modeling but
also may solve the problem of GNSS tracking loss for MMS in urban areas (Wu et al.,
2018). The results of the proposed image matching procedure exhibited accurate
and highly-detailed 3D building models integrated into a superordinate reference
system.

Although the presented works exposed the ability of using UAV images for
generating textured and highly-accurate and detailed LoD-3 building models, the
utilization of UAVs for building reconstruction has its own challenges. First, the small
size and low payload impede the integration of high-quality positioning systems that
could be used for direct georeferencing. Although a bundle adjustment can integrate
synchronized low-quality GNSS coordinates for all acquired images, allowing for
georeferencing accuracy of several meters, applications, which require more precise
georeferenced photogrammetric products, such as DSMs, orthomosaics, or full 3D
models, have to rely on the use of accurately surveyed GCPs. Second, the quality
of generated 3D models is profoundly affected by the quality of the preceding
UAV flight plan. Especially for the combination of both nadir and oblique views
capturing roof and façades, large parallax angles might result in a failure of image
matching methods. A major drawback of current UAVs is their relatively short
operational time, requiring thoughtful flight plans for acquiring sophisticated images
for the demanded task. Lastly, due to the rising popularity of using UAVs, extensive
regulations on their use have been and still are being adopted. This complicates
the use of UAVs, especially in tightly built-up urban scenarios, and flight plans can
become challenging in terms of safety regularization on the accessible airspace.

2.3.2 LoD-4 Building Models and Remote Sensing Data

3D models of indoor environments are increasingly gaining importance due to the
wide range of applications they can be subjected to: from automated floor plan
generation, visualization, and 3D redesign to monitoring, simulation, and navigation.
With the combination of accurate exterior building models, such as LoD-3, an
extension to LoD-4 allows to assist seamless navigation and location-based services
from street level to specific building locations. Public buildings, such as airports
or shopping malls, could highly benefit from joint indoor and outdoor models for
efficient navigation and to plan appropriate evacuation routes (Nagel et al., 2010).
Although remote sensing-based building reconstruction can generate accurate and
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detailed LoD-3 models, as demonstrated in Section 2.3.1, the further step of enriching
the model with its interior is beyond the scope of remote sensing. Other ground-based
platforms are required for generating indoor models; however, remote sensing is vital
for the integration into an outdoor model. Since indoor models are likely generated
independently from the outdoor model, the registration of both models is crucial
for accurate alignment and, therefore, the generation of LoD-4 models. Nevertheless,
temporal and modal differences and the lack of visual overlap between both models
pose significant challenges for an accurate registration, which has scarcely been the
subject of current research.

The generation of visually appealing indoor models is an independent, extensive,
and long-term field of research, particularly characterized by narrow and complex
spaces, heavy occlusions from obstacles, and homogeneous surfaces. The following
section presents some of the latest developments in this field, which refer to the
use of TLS, RGB-D, and RGB images. A comparison of various off-the-shelf indoor
scanning systems was elaborated by Lehtola et al. (2017).

Terrestrial Laser Scanning produces exceptionally dense and accurate point
clouds independent of the surface texture due to its active nature. However, spec-
ular surfaces, such as windows, mirrors, and varnished objects, cause a high level
of clutter, requiring sophisticated filtering techniques. Decisive disadvantages of
TLS are high purchase costs and large sensor sizes, as well as the requirement of
numerous and time-consuming scans from multiple positions. Various methods
focused on reducing necessary scans by continuously updating a captured 3D map
and estimating the next best scan positions that facilitate a successful registration of
individual scans but avoiding redundancies in the derived data (Frías et al., 2019;
Kriegel et al., 2015). After data acquisition, the unstructured 3D points are filtered,
clustered into planar surface segments, merged to individual rooms, and finally
completed to floor plans and complete 3D models of the entire building. To identify
topological relations in the raw 3D point cloud, variations of RANSAC enable the
detection of planar clusters (Ochmann et al., 2016; Previtali et al., 2014). Vectorization
and piecewise-linear partitioning generate candidates for walls from detected vertical
planes and constraints related to typical building geometries, such as the prevalence
of straight lines and orthogonal intersections are included in the merging process of
individual planar surfaces (Macher et al., 2017). Besides concentrating on estimating
geometric room layouts, volumetric hybrid methods generate distinct meshes for
representing the permanent structure of the building while persevering fine details
of interior objects, such as furniture, in a separate model (Turner and Zakhor, 2015).

RGB-D cameras, such as Microsoft Kinect4, Intel RealSense5, Google Tango4, or
Occipital Structure Sensor6 are low-priced, compact, and lightweight depth sensors
and constitute a popular alternative towards TLS. Technologies for deriving depth
values are based on structured light or time-of-flight, yielding color and depth
images in reasonable resolutions with real-time frame rates. Although they are
limited in range (up to 10 m) and field of view, which complicates the reconstruction
of large-scale rooms and are sensitive towards clutter, the high frame rate allows for
online RGB and depth map acquisition. Methods concentrate on the registration of

4 The development and manufacturing of the device has been ceased
5 https://www.intelrealsense.com/
6 https://structure.io/

https://www.intelrealsense.com/
https://structure.io/
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succeeding data frames (Kerl et al., 2013), efficient noise removal (Yan et al., 2018),
and incremental map updates (Liu et al., 2017). As a result of the limited field of
view, comparable long RGB-D image sequences have to be acquired in particular
for large rooms, which can lead to erroneous 3D maps due to accumulated drifts
in frame-to-frame registrations. Sophisticated loop detection schemes can help to
reduce this effect (Whelan et al., 2015). The obtained depth maps from registered
image sequences are fused into 3D point clouds and further processed to triangulated
polyhedral models, while Manhattan-world assumptions of indoor scenes assist in
generating floor plans or semantic 3D indoor models (Chen et al., 2015; Choi et al.,
2015b; Ikehata et al., 2015).

Image-based indoor modeling from RGB cameras encounters multiple challenges.
First, due to the requirement of overlapping images with large parallax angles
for deriving accurate depth maps, interiors mostly do not exhibit the necessary
space for suitable acquisition viewpoints. Consequently, narrow parallax angles
and ego-motion acquisitions lead to high uncertainty in the depth maps and, thus,
triangulated 3D points. Secondly, the triangulation of corresponding 2D pixels
requires distinct texture, which is often not guaranteed through predominantly
homogeneous surfaces in interiors. Therefore, massive gaps can characterize the
resulting 3D models, even when using state-of-the-art MVS methods. A technique for
deriving dense depth maps from stereo images of poorly textured indoor scenarios
was proposed by Furukawa et al. (2009) by assigning a set of candidate planes
obtained from a raw dense point cloud to each pixel, posed as a Markov random
field (MRF) and solved via graph-cuts. However, the quality of the derived watertight
3D model highly depends on the preceding dense point cloud, which itself can often
not be computed if the camera pose estimation, such as SfM, fails. Though, it has
been shown that indoor environments often feature numerous distinct edges, which
led researchers to address camera pose estimation and 3D modeling by detecting
lines instead of points (Holzmann et al., 2016a). Another branch of research focuses
on estimating planar primitives or entire room layouts from single views using
machine learning-based methods and Manhattan world assumptions (Fouhey et al.,
2013; Hedau et al., 2009). Beyond that, recent advances in deep learning have led
to investigations in estimating dense and detailed depth maps from single views
(Eigen and Fergus, 2015; Eigen et al., 2014; Laina et al., 2016; Liu et al., 2018;
Liu et al., 2016). These methods could vastly improve indoor models derived from
image-based methods since they yield pixel-wise depth maps even in the presence
of poorly textured surfaces. Therefore, walls, ceilings, and floors could be entirely
and accurately reconstructed without performing time-consuming and erroneous
MVS. Although this field has recently aroused tremendous interest computer vision,
the research is at an early stage, and the applicability of these methods in the field of
indoor reconstruction still needs to be assessed.

2.4 summary

With the progress of UAV systems, camera sensors, and 3D vision algorithms, UAVs
have become an essential component in remote sensing, witnessing increasing popu-
larity for an expanding field of applications. While previously experts and expensive
manned aircraft have exclusively accomplished high precision aerial photogramme-
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try, the maturity of UAV developments and cost efficiency have facilitated automation
of airborne surveying even for non-experts. This development has contributed to
the increasing use of UAVs for various small and medium-scale applications, which
would have been too costly with established remote sensing methods. Facilitating ac-
cess to remote sensing for non-specialists offers a cost-effective alternative to manned
aerial photogrammetry and expands the portfolio of remote sensing by providing
new possibilities and application fields.





3
S TAT E - O F - T H E - A RT I N T H E U S E O F UAV I M A G E RY F O R
B U I L D I N G R E C O N S T R U C T I O N

Based on the workflow in Figure 2.6, a photogrammetric unmanned aerial vehicle
(UAV) campaign consists of the individual steps of preparation, planning, execu-
tion, processing, and analysis. This chapter describes the state-of-the-art in UAV-
photogrammetry related to some of the tasks addressed in this thesis, including
planning, processing, and analysis. Besides accurate georeferencing described inSec-
tion 3.1, adequate flight planning (cf. Section 3.2) is crucial for the quality of the
generated geo-products. Since these steps are indispensable for any remote sensing-
related application requiring UAV images, they are not exclusively relevant for the
task of building reconstruction. With the facilitation of generating level of detail
(LoD)-3 building models using modern computer vision methods based on a care-
fully designed flight plan, georeferencing of the images furthermore enables accurate
positioning of the generated model in a spatial reference system and the integration
with other spatial geo-data. With the further step of generating LoD-4 models, sepa-
rately produced indoor models must be accurately aligned with the exterior model
(cf. Section 3.3), requiring eligible analysis methodologies. With the recent success
of using deep learning-based methods to estimate dense depth maps from single
views, as will be described in Section 3.4, a simplification in the derivation of 3D
structures independent from multiple multi-view stereo (MVS)-related views, could
facilitate some of the tasks associated with this work that require 3D information.
Besides easing UAV flight planning based on a prior 3D proxy model generated from
a single view, complete indoor models could be generated solely from RGB images
which do not have to meet the strict requirements of classical MVS image geometry.
A summary of the development, as well as current methodologies for these topics,
are presented.

3.1 georeferencing of uav imagery

Besides the derivation of georeferenced photogrammetric products from UAV im-
agery, accurate image geo-registration serves as a prerequisite for joint information
extraction for multi-scale earth observation, enabling a seamless fusion of satellite,
aerial and UAV-borne remote sensing data for multi-scale observation and monitor-
ing of the environment. In terms of UAV image registration, different methodologies
are discussed, beginning from the capability of direct georeferencing using onboard
navigation sensors (cf. Figure 3.1a). Concerning higher accuracy, practical consider-
ations suggest indirect methods, such as aerial triangulation (AT), the utilization
of ground control points (GCPs) (cf. Figure 3.1b), or image-based registration with
already georeferenced image data (cf. Figure 3.1c).

33



34 state-of-the-art in the use of uav imagery for building reconstruction

Pose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose from GNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INSGNSS and INS

Measurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on groundMeasurements on ground

(a) Direct

Pose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose fromPose from spatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resectionspatial resection

GCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detectionGCP detection

3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs3D coordinates of GCPs

(b) Indirect via GCPs

Pose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INSPose from GNSS and INS

Pose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resectionPose from spatial resection

Image correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondencesImage correspondences

Georeferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference imageGeoreferenced reference image

(c) Indirect via image matching

Figure 3.1: Different methods for georeferencing of UAV imagery. Direct georeferencing via global
navigation satellite system (GNSS) and inertial navigation system (INS) (a), indirect geo-
referencing via GCPs (b) and via image matching with georeferenced reference images
(c)

3.1.1 Direct Georeferencing

In the field of aerial photogrammetry, manned aircraft have access to high-end GNSS
and INS localization sensors, allowing direct georeferencing of the images in the
range of several centimeters without the need of external GCPs or photogrammetric
adjustments in a post-processing step (Kurz et al., 2014). Due to payload limitations,
many commercial UAVs are usually equipped with lightweight and low-quality
localization sensors that affect the achievable localization accuracies. Accuracies of
better than 5 m horizontal and 10 m vertical (Chiang et al., 2012; Padró et al., 2019;
Verhoeven et al., 2013) can hardly be achieved, which might be sufficient for image
archiving and subsequent retrieval, but may not be sufficient for photogrammetric
applications or combination with other spatial data. An investigation regarding the
ability of direct georeferencing with UAV systems shows that the geolocalization
accuracy of current UAV systems is still too low to perform direct photogramme-
try applications at a very large scale (Chiabrando et al., 2013). To compensate for
the particularly critical vertical component of GNSS measurements, Turner et al.
(2012) showed that including barometer altitude observations may improve vertical
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geo-registration accuracy. Although recent real-time kinematic (RTK)-enabled UAVs
have improved the georeferencing accuracy towards decimeter range by connecting
the onboard GNSS receiver to a base station or a virtual reference system (VRS),
leading to comparable accuracies towards airborne and satellite-borne systems, the
additional costs of acquiring RTK-based GNSS sensors might be too high for the
reachable absolute accuracy (Forlani et al., 2018; Padró et al., 2019). However, if
the position of the UAV is held for several minutes, accuracies increase towards
centimeter-level (Turner et al., 2013). In case of monitoring or surveillance applica-
tions that capture images or video streams from the same location, such systems
are convenient. However, photogrammetric applications require almost constant
movement of the UAV, while short operation times of UAVs prevent from numerous
stationary measurements.

3.1.2 Indirect Georeferencing

Aerotriangulation (AT) offers another approach to compensate for the inadequate
accuracy of onboard UAV localization sensors. The imprecise GNSS and inertial
measurement unit (IMU) measurements for each acquired image are introduced
as initial approximates for the exterior orientation parameters and optimized in
the bundle adjustment of the entire overlapping image block (Nex and Remondino,
2014). This integration helps to improve the georeferencing accuracy despite of
the low accuracy of IMU measurements and is relatively robust against outliers
and missing measurements caused by sensor outages. Although the estimation of
orientation parameters highly benefits from this integration, the global accuracy
of the localization parameters can not exceed the GNSS measurements’ average
accuracy.

Ground Control Points (GCPs) are indispensable when aiming at reliability
and accuracy and are therefore the most established technique for achieving an
unprecedented georeferencing accuracy which is even recommended when utilizing
high-end devices on aerial and satellite imagery due to the existence of systematic
errors (Cramer, 2001; Poli et al., 2015). This technique has been widely applied
in numerous UAV-based researches approving georeferencing accuracies of few
centimeters, which even improves the utilization of expensive RTK-based systems
(Gerke and Przybilla, 2016). Various works investigated the effect of the configuration
of GCPs for indirect georeferencing (Agüera-Vega et al., 2017; Ai et al., 2015;
Rumpler et al., 2014; Turner et al., 2012). They agreed on the importance of an even
distribution within the entire survey area, however, an increase in the number of used
GCPs will eventually not further improve the georeferencing accuracy. Although
indirect georeferencing with GCPs can obtain the highest accuracy, the deployment is
often expensive, requires fieldwork operations, and is unpractical or even infeasible
in hazardous or inaccessible areas. Based on experiences from UAV field campaigns,
Nex and Remondino (2014) claimed that GCP field measurements absorb at least
15 % of the toal campaign duration.

Image Registration with Reference Image Data presents a promising alternative
for geo-registration of UAV imagery due to the growing accessibility of accurately
georeferenced high resolution aerial and satellite imagery. Image registration is
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the task of defining image transformations between multiple overlapping images
captured either from various platforms, times, viewpoints, or a combination thereof.
In order to estimate geometrical transformations (e.g., affine, similarity, homography,
projective), corresponding parts between a target and reference image have to be
assigned in terms of image regions or single points. Speaking of UAV image geo-
registration, already georeferenced image data, such as aerial or satellite images,
serve as reference images, whereas spatially imprecise or even entirely unknown
UAV target images have to be aligned towards these reference images. This matching
task, often formulated as wide baseline stereo matching, is characterized by large
differences in image scale, baseline, orientation, and temporal changes. The attainable
georeferencing accuracy depends first on the absolute georeferencing accuracy of
the reference images and second on the registration accuracy of the image matching.
Existing methods for this task can be generally divided into two categories, which
are known as area-based and feature-based matching methods.

Area-based image matching methods compute a similarity measure between
image patches in two frames by comparing intensity values using a specific matching
metric, such as normalized cross-correlation (NCC), mutual information, or Fourier
cross power spectrum. The comparison is usually conducted by a sliding window
approach with a pre-defined window size of the image patch, resulting in high
computational cost for high-resolution images. After pixel-wise comparison of the
target image with patches of the reference image yielding individual matching
costs for each specific location in the reference image, the final correspondence is
found as the matching pair with minimum cost. For speeding up the correspondence
estimation, the matching can be conducted in a hierarchical scheme for various image
scales, starting from down-sampled images and refining the matching for a higher
resolution in the spatial neighborhood of the local minimum of the prior matching
result. Area-based matching methods are applicable for short baselines and small
ratios between baseline and scene depth, which usually leads to small radiometric
and geometric differences between the images. In such cases, the transformation
between the images is usually only a small translation without scale and rotation
differences. These requirements are usually not given for UAV image georeferencing.
UAV and multi-modal reference images often exhibit large baselines, projective
distortions, rotations, tilted views, radiometric changes between the used sensors
and topographic changes of the scene. Since area-based matching methods compare
intensity values between rectangular image patches of equal sizes in a pixel-wise
manner, the image pairs have to be pre-aligned for eliminating rotation and scale
differences. Although the matching can be extended for rotation and scaling by
augmenting the search window, the complexity of the matching increases linearly
for each discrete augmentation. Moreover, area-based methods do not consider any
structural analysis and therefore are sensitive to intensity changes introduced by
noise, varying illumination, and radiometric differences. In contrast, image patches
representing homogeneous areas without any distinct details will likely result in
ambiguous matches with high similarity to numerous similar smooth patches in the
reference image. Besides the pre-alignment of the matching image pairs and similar
radiometric properties, the size of the search window is crucial for the matching
performance and hard to select appropriately. While small window sizes result in
more accurate matching results, the spatial extent of the captured image content is
limited, leading to ambiguous matching costs and failure in poorly textured areas.



3.1 georeferencing of uav imagery 37

Although enlarging the windows size yields increased image content and more
unique image structures, projective distortions and inaccurate matching results can
lead to poor registration accuracy.

While feature-based matching algorithms have proven to be more accurate and
robust than area-based methods, there are several works based on area-based match-
ing methods for the task of UAV image georeferencing. Lin et al. (2007) applied
mutual information as similarity metric for estimating a homography between a
UAV and reference Google Earth image depicting the same area. Due to the require-
ment of a planar scene and eliminating scale and rotation differences, these strong
constraints limit the utilization of this method to very specific applications, and the
choice of a suitable window size highly depends on the topography and can not
be set intuitively. Based on two experiments, this registration technique achieved
accuracies of 3–6 px towards the reference satellite images, representing a ground
resolution of several meters. Conte and Doherty (2009) proposed a similar approach
utilizing NCC as similarity metric, motivating their approach for visual localization
of UAVs in case of GNSS outages. To compensate for geometric distortions, Fan
et al. (2010) proposed a deformable template matching approach combining edge
and entropy features. They used this method to register nadir-view UAV imagery
and high-resolution satellite imagery with known scale differences. Experiments
were only conducted on one real-world scene, and the registration accuracy was
only visually presented without a quantitative assessment. Although the obtained
registration appeared accurate, the presented correlation map has barely shown a
distinct maximum, indicating that ambiguous peaks in other scenarios could lead
to misalignments. Karel et al. (2014) utilized NCC-based matching of perspectively
transformed image patches for an automatic georeferencing of archaeological UAV
images. Although a pre-alignment was conducted in terms of the same image scale
and orientation towards the reference image, the authors reported spurious matches
in homogeneous areas, requiring a subsequent filtering strategy within the bundle
adjustment by detecting false matching hypotheses with the aid of a digital surface
model (DSM).

Summarizing, area-based matching possibly achieve a rough registration, however,
the achievable accuracy is far from the desired pixel or even sub-pixel accuracy.
Numerous works have confirmed the necessity of strong prior knowledge for a pre-
alignment of the images. However, the larger the time interval between the acquired
images, the more likely geometric and radiometric differences will occur that can
hardly be resolved with area-based methods. Additionally, area-based methods are
vulnerable to low textures, illumination changes, and repetitive image structures,
limiting the general applicability in a wide range of different scenarios. In this sense,
robust image matching against large scale and viewpoint changes, as well as ro-
bustness against radiometric and local geometric differences is the key to successful
UAV image georeferencing. Feature-based methods are widely considered capable
of overcoming these challenges and have been investigated for this task as well.

Feature-based image matching methods rather detect and describe highly dis-
criminative local features instead of pixel-wise intensity comparisons of image
patches across the entire image. They locate specific interest points (feature extrac-
tion) and then furnish them with quantitative information (feature descriptors) for
re-identification in target images via feature matching. The local features should be
characterized by their locality, making them robust to occlusion and clutter, distinc-
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tiveness for re-identification in other images, efficiency, and generality to exploit
different types of feature points in different situations. The overall goal of feature-
based methods is to achieve geometric and photometric invariance as far as possible.
The former focuses on the recognition of identical object points in reference images
that have undergone geometric transformations, such as translation, rotation, scale,
or either projective transformations. Latter should ensure the identification even for
different illumination settings, such as shadows, brightness, and exposure. Among
numerous feature-based methods, SIFT (Lowe, 2004), SURF (Bay et al., 2008), ORB
(Rublee et al., 2011), KAZE (Alcantarilla et al., 2012) and its variants have become
the most widely used hand-crafted feature-based methods.

Scale-invariant feature transform (SIFT) (Lowe, 2004) stands out for its robust scale,
orientation, and illumination invariant property, making it one of the most widely
used feature-based methods. Based on a scale-space, consisting of convolutions with
Gaussian kernels of different sizes for different octaves, keypoints candidates are
localized by detecting extrema of the Difference of Gaussians (DoG), which are further
refined by eliminating low contrast points and performing a sub-pixel refinement.
Subsequently, keypoint orientations are assigned to all localized keypoints based
on local image gradients. Lastly, a descriptor generator computes the local image
descriptor for each keypoint based on the distribution of image gradient magnitudes
and orientations in the neighborhood of the keypoint as a histogram over local-
oriented gradients and stores the bins into a compact 128 element vector. As a variant
of SIFT, a full affine invariant matching framework A-SIFT (Yu and Morel, 2011)
was proposed to handle large differences in viewpoints by simulating a series of
transformed images to cover the entire affine space. In the case of matching images
with large differences in viewpoints, A-SIFT offers a more robust performance than
SIFT, which was also confirmed in the evaluation presented in Apollonio et al. (2014).

Inspired by SIFT’s performance, speeded up robust features (SURF) (Bay et al.,
2008) have been established as a faster variant of SIFT with comparable matching
performance. It approximates the DoG with box filters, fastening up the convolution
step with the help of integral images. The detector uses an integer approximation
of the determinant of the Hessian blob detector and uses wavelet responses in
both horizontal and vertical directions by applying adequate Gaussian weights for
orientation assignment. These wavelet responses are also used for the descriptor, by
first dividing the neighborhood around each keypoint into subregions, and second,
taking wavelet responses as representations for each subregion. The sign of the
Laplacian distinguishes bright blobs on dark backgrounds from the reverse case,
which allows for faster matching of solely equally signed features.

Oriented FAST and rotated BRIEF (ORB) (Rublee et al., 2011) is a fusion of the
FAST keypoint detector (Rosten and Drummond, 2006) and the BRIEF descriptor
(Calonder et al., 2012) with some modifications. ORB aims to provide another fast and
efficient alternative to SIFT in terms of matching performance but allowing for real-
time applications even on low-power devices. After keypoint detection using FAST,
Harris corner measure is applied to find top n points in a multi-scale image pyramid.
In order to overcome the absence of keypoint orientations from FAST, intensity
weighted centroids of each patch are estimated, and the directions from the center of
the patch towards the centroid define the keypoint orientations. Moreover, moments
are introduced to improve the rotation invariance. A rotation matrix enhances the
rotation invariance of the BRIEF descriptor, by steering the descriptors according to
the patches’ orientations.
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KAZE features (Alcantarilla et al., 2012) substitute the building or approximation
of Gaussian scale-spaces used in most other approaches by building non-linear
scale-spaces using non-linear diffusion filtering alongside additive operator split-
ting. Herewith, they tackle the problem of vanishing local image features from the
convolution with Gaussian kernels, resulting in reduced localization accuracy and
distinctiveness. By detecting keypoints in a non-linear scale-space, the proposed
algorithm reduces noise but retains the object boundaries. The authors claimed that
KAZE features succeed especially in presence of deformable objects while being
slightly more computationally demanding than SURF. As an adaption of KAZE,
accelerated-KAZE (A-KAZE) reduces the computational complexity by introducing
Fast Explicit Diffusion for feature extraction yielding comparable matching perfor-
mance than KAZE while dramatically reducing the computational time in the range
of ORB features.

Although many variants and alternatives have been developed, numerous investi-
gations demonstrated that, despite the comparable high computational complexity,
SIFT is still more robust to viewpoint changes and common image disturbances and
yields the most accurate matching performance (Bekele et al., 2013; Calonder et al.,
2012; Dwarakanath et al., 2012; Heinly et al., 2012; Juan and Gwun, 2009; Tareen
and Saleem, 2018).

Most recent times have witnessed a shift from using hand-crafted feature-based
approaches towards leveraging deep learning-based architectures, such as learned
invariant feature transform (LIFT) (Yi et al., 2016), LF-Net (Ono et al., 2018) or the
approach of Altwaijry et al. (2016). These works have shown that feature extraction
can be learned as part of an end-to-end pipeline with neural networks to detect and
describe meaningful keypoints. However, Schönberger et al. (2017) carried out an
experimental evaluation of learned and advanced hand-crafted feature descriptors
and demonstrated that hand-crafted features still perform on par or better than
learned features in the practical context of image-based reconstruction. Learned
feature extractors still show a high variance across different datasets and applications,
evidencing that more training data is still needed to develop generalized feature
extractors.

Various attempts have been made for georeferencing UAV images with feature-
based methods. A recent review about vision-based UAV image localization by Xu
et al. (2018) pointed out current methods and remaining challenges of this task. One
of the most severe difficulties is the presence of diverse view angles of acquired
images due to the platform’s high dynamics during acceleration, deceleration, direc-
tion changes, flips, shakes and gimbal steering. Additionally, it is very challenging
to find a sophisticated descriptor that is adaptive to various surroundings, ranging
from urban environments with dense and repetitive textures up to sparse rural
areas. Moreover, scale-invariant feature descriptors might fail for varying object
sizes in UAV images according to the object size, flight altitude, and focal length.
The following introduces the most recent feature-based methods for the task of
UAV georeferencing. Aicardi et al. (2016) adopted an approach for co-registering
multi-temporal UAV image datasets. Georeferenced images are chosen from a refer-
ence epoch, whereas images from stable areas act as anchor images. Images from
subsequent epochs are matched towards the anchor images with SIFT features,
while exterior orientation parameters from the anchor images are integrated into
the global bundle adjustment with the new images. This procedure yielded regis-
tration accuracies of nearly 1 px between different epochs, even in the presence of
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noticeable changes in the scene. However, it only estimated the relative transforma-
tion between the epochs, while the epoch’s absolute transformation still relied on
the georeferencing accuracy of the reference epoch, achieved, for instance, by the
deployment of GCPs. Onyango et al. (2017) made use of A-KAZE features to register
oblique UAV images to oblique aerial images. They pointed out the necessity of
eliminating scale differences between the image pairs by adjusting the octaves in the
feature extraction step towards the same ground sampling distance (GSD). Multiple
homography hypotheses are computed from the putative matches in an iterative
manner and a projective transformation is estimated from the homography with the
maximum number of inliers. They evaluated their method on urban images from
the ISPRS Dortmund benchmark (Nex et al., 2015) reporting residuals of respective
fundamental matrices in the range of 2.5–5.0 px, which corresponds to 3–5 cm GSD
of the UAV. Although several images achieved good matching results, a couple of
failure cases were presented. An evaluation with other datasets and a comparison
towards other feature-based image matching methods were not reported. Yuan et al.
(2019) used deep features for registering UAV and satellite images from GoogleMaps.
A corresponding satellite image patch of the same area is automatically derived from
the coarse localization of the UAV. Absolute registration accuracy in the range of 60–
250 cm can be achieved with the proposed method and a comparison towards SIFT
revealed an improved matching accuracy, indicating a more discriminative property
of deep features. Tsai and Lin (2017) proposed an image registration scheme of UAV
images and historical aerial images with a novel accelerated-BRISK algorithm. Unlike
other approaches, the matching is performed for orthomosaics generated from UAV
image sequences. An adaption of the BRISK feature extractor includes a sorting ring
for analyzing spatial relationships between the descriptor pairs found in the two
input images to remove false matches. The method outperformed SIFT and reported
an acceleration towards SIFT and BRISK by 19 times and 5 times, respectively. The
achieved positioning accuracy ranges from 20 cm to 1 m for reference images with
a GSD of 25 cm. However, UAV images of the test site were captured in a large
altitude with a GSD of 13 cm, resulting in relatively low scale differences between
UAV and reference images. A performance analysis of the method for larger scale
differences was not demonstrated. Nassar et al. (2018) integrated semantic cues for
improving image-based UAV geo-localization. UAV image sequences are registered
to each other while the registration towards satellite reference maps is enhanced by a
novel semantic shape matching that performs registration by matching semantically
segmented object shapes such as roads or buildings. Results demonstrated that using
shape and contextual information provides improved geo-localization than relying
solely on local features. However, experiments were only carried out for two datasets
from the work of Nex et al. (2015), and the results have shown that the method
lacks accuracy for scenes with dense building blocks due to the tendency of huge
blob representation after semantic segmentation complicating the matching step.
Reported accuracies range between 3–5 m, allowing sufficient online geo-localization
capabilities for navigation without GNSS, but lacks an accurate georeferencing of
photogrammetric geo-products. Challenges of matching UAV images and aerial
reference images were also reported in Karel et al. (2014), claiming that SIFT did not
succeed in correctly matching the cross-modal images from an archaeological scene
due to large differences in shape, texture, and illumination. Instead, an area-based
matching scheme with NCC as cost function was utilized; however, a reduction of
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the search space could be conducted by exploiting prior knowledge from the image
acquisition parameters.

Another branch of UAV geo-localization approaches focuses on matching UAV
imagery with available geo-tagged terrestrial images, which results in extremely
large viewpoints changes. Addressing this task by utilizing A-SIFT feature matching
yielded meter-level registration accuracies, however, a preliminary selection of street
views images and low altitude oblique UAV images facing the building façades had to
be conducted in advance (Majdik et al., 2015). To overcome large viewpoint changes,
Shan et al. (2014) synthesized aerial views from pre-aligned Google Street View
images using depth maps and corresponding camera poses. By warping ground-
level images into target aerial views, a registration with UAV images utilizing
SIFT matching was facilitated. However, the availability of a ground-level MVS
reconstruction, a consistent appearance in both aerial and ground imagery, and
the absence of severe occlusions are necessary for the proposed approach. A new
feature representation for learning a rough geo-localization of terrestrial images with
the help of aerial images was proposed by the work of Lin et al. (2015). Given a
ground-level query image and a reference database of aerial imagery, a heat map of
its potential geo-localization can be obtained by the proposed Where-CNN. Although
this method could also be used vice versa for the geo-localization of UAV images
with the help of geo-tagged terrestrial images, manual interventions were still needed
to estimate the scale differences between aerial and terrestrial queries. Furthermore,
an absolute orientation of the query image could not be resolved by the method.
Zamir and Shah (2014) developed a multiple nearest neighbor feature matching
method using Generalized Minimum Clique Graphs (GMCP). SIFT features are
extracted, and multiple neighbors from the reference dataset are retrieved. The
consistency among global features is enforced by selecting a correct single nearest
neighbor using GMCP. An evaluation was conducted by matching unconstrained
user images from photo-sharing platforms against a multitude of street view images.
Localization errors within several meters were reported, while an accurate absolute
geo-registration was not proven and investigated in the paper.

In summary, feature-based methods generally yield better results in georeferenc-
ing UAV imagery, although this task still remains an open problem. None of the
presented methods was able to meet all decisive requirements, particularly accuracy,
robustness, and applicability in varying environments. Although work has already
been invested in pre-processing and approximating multi-modal imagery, as well as
in investigating different feature-based methods, a standard matching procedure has
mostly been applied for the registration process. Detailed investigations regarding
the failure of feature-based methods and the consideration of the differences between
multi-modal remote sensing images were lacking. A careful integration of these
aspects could help to unleash the full potential of feature descriptors, and thus
improve the image geo-registration.

3.2 uav path planning for photogrammetric image acquisition

The generation of photogrammetric geo-products, such as orthomosaics, DSMs, and
entire 3D models from UAV imagery, requires an accurately designed flight plan for
the image acquisition process, highly influencing the quality of the resulting products.
Concerning 2.5D mapping tasks of comparatively large-scale areas, the flight plan-
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(a) 2D flight planning

(b) Model-based 3D flight planning (c) Model-free 3D flight planning

Figure 3.2: Schematics of different UAV flight planning techniques. Simple geometric 2D flight patterns
based on a topographic map allow for fast trajectory planning but likely fail to recover
vertical surfaces (a). Automated model-based 3D flight planning methods (b) rely on a proxy
3D map of the environment and estimate an optimal trajectory for coverage maximization
in an offline manner. Online-capable model-free 3D flight techniques (c) do not rely on a
proxy 3D model but estimate the next-best-views based on a continuously updated 3D map
by merging incoming measurements

ning can be reduced to simple geometric flight patterns with nadir-directed views
from safe flight altitudes (cf. Figure 3.2a). Basic geometric dependencies between
camera intrinsics and flight altitude allow for customized image acquisition for an
intended spatial resolution of the derived photogrammetric products. The gener-
ation of high-resolution and seamless 3D models, however, requires close-up and
oblique views, which is particularly demanding for designing a proper flight plan in
tightly built and inhabited environments. For this purpose, optimization methods on
automatic flight planning have been developed for UAV-based 3D mapping tasks.
These methods are either based on a very coarse proxy model of the environment
(cf. Figure 3.2b) or operate in completely unknown environments (cf. Figure 3.2c).
The following sections introduce current flight planning methods, from established
planning tools for 2.5D mapping tasks in Section 3.2.1 to automated model-free
(cf. Section 3.2.2) and model-based (cf. Section 3.2.3) 3D flight planning methods. An
overview of different automated path planning methodologies is given in Table 3.1.

3.2.1 Basics and Practical Realization

To a very large extent, the success of a UAV campaign depends on the preceding flight
planning. Most available UAV systems come with waypoint navigation technologies,
allowing to fly autonomously along pre-designed trajectories defined by a set of
waypoints specifying the location and orientation of the vehicle and equipped gimbal.
Current UAV “mission planners”, such as PrecisionHawk (Precisionhawk), Pix4D
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Table 3.1: Overview of automatic approaches for UAV path planning using different sensors and scene
representations

Approach Sensor Scene Representation Literature

Model-free Laser-Scanner 3D occupancy grid Nuske et al. (2015); Yoder and
Scherer (2016)

Mesh Kriegel et al. (2015)

RGB-D Camera 3D occupancy grid Heng et al. (2011); Hepp et al.
(2018); Meng et al. (2017); Michael
et al. (2012); Sturm et al. (2013)

Camera 3D occupancy grid Mendez et al. (2017); Palazzolo
and Stachniss (2018); Stumberg et
al. (2016)

Density representation Border et al. (2018)

Model-based Camera 3D occupancy grid Alsadik et al. (2013); Hepp et al.
(2018); Roberts et al. (2017); Smith
et al. (2018)

Mesh Bircher et al. (2016); Hoppe et al.
(2012); Jing et al. (2016); Peng and
Isler (2019)

Capture (Pix4Db), DJI Flight Planner (DJI) or ArduPilot (ArduPilot) facilitate UAV
flight plans as simple geometric patterns, such as regular grids or circular flights with
respect to a desired GSD. By defining the mission area, relevant geometric parameters,
camera intrinsics, and the intended spatial resolution, waypoint positions for the
UAV to be flown automatically, are provided by such tools. These waypoints include
exterior orientation parameters of suitable image acquisition positions that ensure
the derivation of geo-products in the desired GSD, which is inverse proportional
to the flight altitude. In order to derive photogrammetric products, images have to
be acquired with a sufficient degree of overlap. According to many investigations,
overlaps of at least 70–80 % should be maintained and even increased for challenging
areas, such as poorly textured surfaces or uneven terrains (Nex and Remondino,
2014). Detailed explanations on the geometric relationships for photogrammetric
flight planning are provided in Albertz and Wiggenhagen (2009).

Assuming a flat terrain and a nadir-directed camera, the required altitude h (in m)

h =
GSD · f · Iw

sw
(3.1)

to achieve the intended GSD (in m
px ) is defined by the focal length f (in mm) and

the proportion of the image width Iw (in px) and sensor width sw (in mm) of the
calibrated camera. Clearly, the implicit assumption of a flat terrain does not hold
for many situations featuring large elevation changes in the captured environment.
Knowledge of the surface topography, particularly an accurate and up-to-date DSM,
is mandatory for adjusting the flight altitude to achieve a consistent GSD for the
entire area. However, different flight altitudes also affect the horizontal and vertical
ground coverage dh,v of the images

dh = GSD · Iw (3.2)
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dv = GSD · Ih, (3.3)

and thus the overlap of successive views. The baselines bforward,side between spatially
adjacent images in accordance with the intended overlaps, comprised of end lap oend
and side lap oside, are given by

bforward = dh

(
1− oend

100

)
(3.4)

bside = dv

(
1− oside

100

)
(3.5)

In case of a tilted camera with off-nadir angle θ, the GSD must be corrected by
cos (θ)−1. After computing the relevant geometric parameters, a regular grid of
viewpoints can be arranged in accordance with the required flight altitude and
baselines between adjacent viewpoints in both dimensions. Major problems of off-
the-shelf planners comprise the exclusion of the underlying 3D geometry such as
an accurate DSM, the availability and the reliance on recent topographic maps or
satellite images, and in particular, the ability to calculate solely simple 2D trajectories.
In the absence of accurate and up-to-date DSMs, complex trajectories encompassing
close-up views from various altitudes may prove fatal due to a collision with the
surrounding environment. A similarly pronounced risk is associated with the use
of outdated or poorly georeferenced planning maps. Even in spacious rural areas,
newly built high ranging power lines can pose a danger of collision.

The aforementioned off-the-shelf planners are adequate 2.5D mapping tools for
spacious and flat terrains without obstacles (Nex and Remondino, 2014), but en-
counter their limits for precise 3D modeling in uneven, densely built or heavily
vegetated environments. Since no 3D model of the environment is taken into con-
sideration, the obtained trajectories either do not cover every part of the object of
interest due to visual occlusions or may even cause an accident with an adjacent
obstacle. For that purpose, automated 3D flight planning methodologies have been
developed to overcome the outlined problems.

3.2.2 Automated Model-free Methods

Automated model-free methods do not rely on any prior knowledge of the scene and
solve an exploration task by iteratively selecting the most favorable view to refine the
explored model based on a current view with new measurements. Therefore, they
can be carried out immediately on-site without prior planning since they generate a
current model of the observed environment in an online manner. This incremental
scene modeling and viewpoint planning is commonly known as next-best-view
(NBV) planning, which is already a long-standing part of research in Robotics. The
methods alternately fuse incoming measurements from a new viewpoint into the
reconstruction of the scene and estimate novel viewpoints to incrementally increase
the information about the object or the surrounding environment. Utilized sensors
for these measurements include laser scanners (Kriegel et al., 2015; Nuske et al., 2015;
Yoder and Scherer, 2016), RGB-depth (RGB-D) sensors (Fan et al., 2016; Heng et al.,

2011; Hepp et al., 2018a; Meng et al., 2017; Michael et al., 2012; Sturm et al., 2013)
and cameras (Border et al., 2018; Kumar Ramakrishnan and Grauman, 2018; Mendez
et al., 2017; Palazzolo and Stachniss, 2018; Stumberg et al., 2016). In the work of
Nuske et al. (2015), an autonomously navigating UAV explored arbitrarily shaped



3.2 uav path planning for photogrammetric image acquisition 45

river courses while avoiding overhanging trees. 3D information from a rotating 3D
laser scanner is continuously merged to update a volumetric representation of the
entire environment. For each position, the frontier to the unseen river course is
detected, while a collision-free traversal path towards a suitable position close to
this frontier is computed. In order to avoid building up a computational expensive
dense 3D map of the environment, Shen et al. (2012) proposed an efficient particle-
based frontier method that represents known and unknown space through sparse
samples. Vision-based navigation and exploration from monocular cameras require
a semi-dense reconstruction of the environment in real-time. Unlike the usage of
RGB-D cameras or laser scanners, which have access to direct 3D measurements
from the current position simplifying the update process of the model, vision-based
approaches are usually hard to implement, since the generation of depth maps
requires multiple views and significant onboard processing power or at least a
wireless connection to the ground-station for data transmission in order to merge
incoming measurements with the current model. Additionally, selecting the next best
views in accordance with MVS requirements on the fly — in particular maintaining
sufficient baselines and parallax angles of adjacent views — is a challenging task
since the actual mapped free airspace might be very limited. Stumberg et al. (2016)
applied LSD-SLAM (Engel et al., 2014) for both motion tracking of the camera and
model generation. Based on these estimates, a 3D occupancy grid is built which
is further used for planning obstacle-free exploration maneuvers to unobserved
regions. Experiments have shown the capability of safely exploring unknown indoor
scenes, the applicability in outdoor scenarios, however, was not presented. Due to
short operating times of UAVs and the unconstrained goal of exploring unknown
environments, the task of a safe return of the UAV is highly relevant in practice
typically but usually not contemplated by such methods. Nevertheless, Palazzolo and
Stachniss (2018) presented an approach that takes into account the cost of reaching
a new viewpoint in terms of distance and predictability of the flight path for a
human observer and, finally selects a path that reduces the risk of crashes when
the expected battery life comes to an end, while still maximizing the information
gain during the return flight. The computation of the information gain is based on
an uncertainty reduction through expected changes in the entropy from multiple
measurements. Since exploration approaches usually rely on image streams with
high-frame rates for self-localization and mapping, an enormous amount of images
have to be managed when a high-resolution 3D model of the scene should be obtained
in a post-processing step. For that purpose, Mendez et al. (2017) proposed the Scenic
Route Planner, encompassing a collaborative behavior that allows the camera to
switch between acting as independent structure from motion (SfM) agents or as a
variable baseline stereo pair for MVS. While SfM images are required in a high frame
rate for self-localization — especially in GNSS-denied environments — the MVS agent
suggests a highly reduced number of viewpoints that are used for a high-quality
dense reconstruction of the scene. Experiments have revealed promising 3D models,
obtained from an autonomously navigating robot with a vastly reduced amount of
images. However, experiments were only conducted in indoor environments, and
the incorporation of 6-degrees of freedom (DoF) camera poses was ignored, since
only the yaw angle was considered in the camera orientation estimation. Border
et al. (2018) presented the Surface Edge Explorer, which is completely scene-model
free in contrast to many other NBV planning methods. While others mostly rely on
volumetric (e.g., voxel grids) or surface (e.g., triangulated meshes) representations,
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they proposed a density representation to detect and explore observed surface
boundaries. Therefore, the complexity only scales with the number of measurements
and not the scene scale, making it suitable even for large-scale reconstructions.
Additionally, due to the absence of a scene-model, no non-intuitive parameters have
to be tuned, as this is the case with surface representations. Experiments have shown
more accurate and complete 3D models than other approaches, but with a reduced
amount of viewpoints. However, only small-scaled object models were used in a
controlled environment which exhibited free accessibility in the entire surrounding
area. The applicability in realistic, tightly built-up, and large-scale environments
with UAVs was not demonstrated.

Kumar Ramakrishnan and Grauman (2018) introduced sidekick policy learning
as a preparatory learning phase that attempts simplified versions of the eventual
exploration task, then guides the agent via reward shaping or initial policy super-
vision. However, the approach does not consider the surrounding environment, so
that potential novel viewpoint predictions might not be located in free and accessible
airspace.

Summarizing, model-free NBV approaches have the advantage of being capable
of exploring novel environments without prior knowledge of the scene, allowing
efficient on-site operation by skipping a preceding planning stage. However, since
they require to iteratively fuse new measurements in real-time to update the 3D
map creation, strong hardware requirements have to be met. Especially for the
generation of large-scale 3D maps, a continuously expanding 3D model increases the
complexity of merging new measurements with the model. Although many of these
methods face the exploration of complex indoor scenes by extending the observed
frontiers, they are, in principle, also applicable to outdoor scenes using UAVs as
mapping agents. However, the approaches concentrate on gaining information about
the certainty of occupied and free airspaces for estimating new viewpoints which
maximizes the observability of unseen space, rather than estimating meaningful
viewpoints for maximizing the reconstructability of the observed scene, which, in the
sense of photogrammetry, requires complex viewing configurations to derive precise
depth maps. For the generation of 3D building models in realistic environments,
the task of view planning has to incorporate the surrounding environment, which
leads to two challenges. First, the generation of 3D building models requires the
agent to focus on a targeted object instead of exploring the entire scene, though,
the sensor placement of new viewpoints has to guarantee accessible airspaces by
recovering the surrounding as well. Therefore, the objectives are two-fold: exploring
the environment in the close neighborhood of the target building, and second,
estimating viewpoints pointing towards this building. Considering the resulting
need for collision avoidance, either additional sensor equipment is needed to capture
the adjacent neighborhood of the targeted object, or complex maneuvers are required
to capture the entire surrounding. The latter challenge implies that the agent should
never lose track of the targeted building, even in case of immense appearance changes
when observing the object from different perspectives. Although current instance
segmentation approaches have seen substantial improvements due to the rise of
deep learning-based methods (Garcia-Garcia et al., 2017), it is not guaranteed that
the agent always focuses on the indented building. Alternatively, identifying the
intended object can be conducted in 3D space by transferring the semantic label
maps into the fused 3D map. The consideration of a complex environment has not
been addressed in methodologies that focused on exploration tasks for detailed 3D
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reconstruction since all of these methods relied on an entirely free accessible airspace
around the object. Moreover, the obtained trajectories are not optimal in the sense
of obtaining short paths that guarantee complete coverage of the object until the
end of the flight, since the complete extent of the targeted object is unknown in
advance. Apart from a high-resolution 3D reconstruction, the obtained 3D model’s
completeness is crucial for photogrammetric reconstruction tasks. Concerning flight
safety, trajectories obtained by such online methods tend to be rather unpredictable,
complicating the required observability of the UAV for the pilot, while hazardous
flights above other buildings, facilities, streets, and populated areas are unlikely to
be avoided. In order to realize such restrictions, flight planning has to consider the
semantics of the entire environment, however, since model-free methods do not have
access to the entire scene layout in advance, constraints on the accessibility of the
airspace are difficult to implement in real-time.

3.2.3 Automated Model-based Methods

In contrast to model-free exploration methods that focus on autonomy and real-time
capability in unknown environments, model-based path planning algorithms make
use of an available proxy model of the environment and focus on estimating a
subsequent optimal path to maximize the coverage and accuracy of the object in a
global manner (Hepp et al., 2018b; Hoppe et al., 2012; Jing et al., 2016; Peng and
Isler, 2019; Roberts et al., 2017; Smith et al., 2018). By including a proxy model, many
of the challenges that occurred in model-free-based methods, which were pointed
out in the previous section, are obsolete. The accessibility of information about free
and occupied airspaces in the planning phase enables optimization tasks to focus
on the objective of a suitable viewpoint selection for complete and high-quality
reconstructions and on the estimation of optimal and short paths to combine these
viewpoints. On the other hand — contrary to active modeling — these explore-and-
exploit methods do not receive any feedback from the acquired images during the
exploitation flight, and thus feedback about the obtained reconstruction quality. This
leads to the importance of carefully designing useful heuristics being used for the
generation of the refinement path. The global optimization of coverage and accuracy,
however, usually leads to larger completeness and smoother trajectories compared to
model-free methods. Since the computation of the flight paths is done in an offline
manner, it can be conducted on a separate hardware device which eliminates the
need for powerful onboard computations on the UAV. This prevents such approaches
from being fully autonomous, however, the execution of the optimized exploitation
paths can be easily conducted on any type of UAV by simply navigating along a
waypoint file obtained from the optimization result. The necessity of a proxy model
of the environment might be a critical factor for many tasks, however, in the sense of
UAV-photogrammetry, an approximation of the scene is either available through a
current DSM or can be easily and quickly obtained from a preceding safe overview
flight using off-the-shelf planners, such as those introduced in Section 3.2.1. The
acquired overview images can be processed with current and fast 3D reconstruction
pipelines yielding sufficient coarse proxy models. Alternatively, modern computer
vision methods, such as those that will be introduced in Section 3.4, allow for deriving
a dense depth map from a single-view, which could even further ease the process of
generating an approximate 3D representation of the environment. The representation
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of the prior model is either based on an existing map with height information (Jing
et al., 2016), expressed by a set of discrete 3D points in a voxel space (Alsadik et al.,
2013; Hepp et al., 2018b; Roberts et al., 2017; Smith et al., 2018) or by volumetric
surfaces (Bircher et al., 2016; Hoppe et al., 2012; Jing et al., 2016; Peng and Isler,
2019).

In order to define appropriate views for the optimized trajectory, a multitude of
camera viewpoint hypotheses are either regularly sampled in the free 3D airspace
(Roberts et al., 2017; Smith et al., 2018) resulting in 3D camera graphs, or are sparsely
sampled in a 2D view manifold (Peng and Isler, 2019) or skeleton sets (Snavely et al.,
2008) around the object. The subsequent optimization task selects a subset of these
viewpoint hypotheses suitable for generating detailed 3D reconstructions and finds
a feasible and short path through the camera graph. Alternatively, the locations of
the regularly sampled viewpoint candidates can be continuously refined during the
optimization (Hepp et al., 2018b).

As a means of assessing the suitability of camera viewpoints for the reconstruction,
heuristics are usually defined considering the necessities for a successful SfM and
MVS workflow. Although Fraser (1984) already pointed out in an early stage that the
task of suitable camera viewpoint configurations for image-based 3D reconstructions
is an ill-suited problem due to its high degree of non-linearity and multi-modality,
approximations of multi-view requirements and strong constraints were developed
to find adequate and practically feasible solutions in the optimization. An exhaustive
amount of work addressed the problem of selecting the best views from a large
amount of different views hypotheses (Furukawa and Hernández, 2015; Furukawa
et al., 2010; Goesele et al., 2007; Rumpler et al., 2011; Snavely et al., 2006). These
works highlighted the key parameters that influence the reconstruction quality,
such as parallax angles and baselines between views and their observation angles
and distances towards the object’s surface. They proposed meaningful heuristics to
model the reconstruction quality from different camera constellations. Details about
fundamental mathematics covering the subject of close-range photogrammetry and
MVS are found in renowned literature (Förstner and Wrobel, 2016; Hartley and
Zisserman, 2003; Luhmann et al., 2013).

The development of heuristics should imitate the stereo reconstruction process for
arbitrary camera configurations and a given object surface by predicting the object
surface’s reconstruction quality from this camera view configuration. By defining
a suitable objective function, the selection of additional viewpoints is guided by a
reconstruction score to ensure a complete 3D model. Different hand-crafted heuris-
tics were developed encompassing multi-view requirements (Alsadik et al., 2013;
Hoppe et al., 2012; Smith et al., 2018), ground resolution (Bircher et al., 2016;

Hoppe et al., 2012), 3D uncertainty (Dunn and Frahm, 2009; Mostegel et al., 2016), or
coverage of the object (Hepp et al., 2018b; Roberts et al., 2017; Smith et al., 2018). In
Alsadik et al. (2013), multi-view requirements were addressed by optimizing whole
image blocks, which are further guided by synthetically rendered images from the
proxy model to ensure the matchability in the image graph. Hoppe et al. (2012)
included the multi-view requirements already in the candidate view generation.
For each triangle in the proxy model, fronto-parallel views and short distances are
sampled following MVS demands. This iterative process selects views that observe
most triangles at a novel angle and considers the matchability towards the surface.
However, the matchability between adjacent views is not directly assessed in the
viewpoint generation, which might lead to deficient overlap. A similar approach
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was proposed by Bircher et al. (2016) by selecting one admissible viewpoint for each
triangle in the target object. An iterative resampling scheme is employed to com-
pute viewpoints that allow low-cost connections, while the best tour among theses
viewpoints is finally obtained by solving a standard traveling salesman problem
(TSP). Dunn and Frahm (2009) deployed a hierarchical uncertainty-driven model
designed to select viewpoints based on the model’s covariance structure, appearance
and camera characteristics. Viewpoints were selected which best reduce the existing
model’s 3D uncertainty, however, only viewpoints locations were estimated within
the approach, rather than an entire collision-free trajectory between the viewpoints.
Similarly, Schmid et al. (2012) developed a view planning heuristic that considers
coverage, a maximum viewing angle, and an overlapping constraint imposed by
MVS reconstruction techniques allowing for 3D reconstructions. However, the set
of calculated viewpoints is highly redundant, leading to a multitude of images and,
again, connecting the selected viewpoints by a feasible trajectory was not the scope
of the research. Instead of using hand-crafted heuristics, several works developed
machine learning methods to learn heuristics that allow predicting the confidence
in the output of an MVS without executing it (Devrim Kaba et al., 2017; Hepp
et al., 2018a; Mostegel et al., 2016). Although learning-based methods are capable of
substituting complex hand-crafted modeling of multi-view geometries, they are less
flexible in providing a generalized method applicable for various camera intrinsics
and different reconstruction requirements, such as a desired GSD.

Recent works have claimed that the resulting 3D models obtained from a unique
exploitation flight do not exhibit satisfying reconstruction quality and still could
include uncertainties and gaps in hardly observable parts of the object (Huang
et al., 2018; Peng and Isler, 2019). They proposed to iteratively refine the model
with repeated exploitation flights while taking into account the remaining model
uncertainty between each flight. With this procedure, additional views of previously
unsatisfying object details can drastically improve the entire reconstruction quality.

Lately, efficient methodologies formulated the view planning problem as a discrete
optimization task and exploited submodularity in the optimization process, standing
for fast and reliable convergence, even for a large number of viewpoint hypotheses
(Hepp et al., 2018b; Roberts et al., 2017). The main advantage of this idea is to jointly
assess additional information gain of individual viewpoints for arbitrary viewpoint
constellations in a global manner. This allows formulating the path planning task
as an orienteering problem, which can be solved with simple greedy algorithms by
optimizing a path that collects as many information rewards as possible for a specific
path length. The results presented in these works revealed notable trajectories for
generating high-fidelity image-based 3D reconstructions.

However, setting a suitable path length in the optimization may require expert
knowledge and highly affects the trajectory estimation, since, due to the purely addi-
tive nature of an orienteering problem, adding additional views will never decrease
the objective function. This might lead to abundant redundant views for overesti-
mated path lengths and incomplete reconstructions for underestimated path lengths.
Although the presented heuristics follow best practices for MVS requirements, they
do not respect user-specific demands on the resulting 3D model. Those include the
number of views and observations angles for each part of the object surface, and a
unified model resolution, expressed by a consistent GSD for the entire object surface.
Additionally, prior work so far solely considered purely geometric cues for flight
planning of both small-scale and large-scale areas. With the vast progress in semantic
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segmentation using deep learning-based approaches, the applicability of neural
networks for semantic segmentation of aerial and UAV imagery was demonstrated
in several works (Chen et al., 2018a; Kaiser et al., 2017; Marmanis et al., 2016).
Including semantic cues in the flight planning would greatly impact flight safety
since it allows to define inadmissible airspaces above prohibited or hazardous objects,
such as other buildings, highly frequented streets, vehicles, railways, or water bodies.

Summarizing, UAV path planning for photogrammetric applications in practice
still relies on 2D flight paths on the basis of available (but potentially outdated)
topographic maps, while only a few include a rough DSM. Off-the-shelf mission
planners compute simple geometric patterns to achieve a desired spatial resolution,
which is only valid for the ground level. For the reconstruction of elevated areas
or high-rising objects, the obtained GSD varies with the scene depth. Therefore, a
consistent GSD for all reconstruction parts is not feasible with such standard planners.
Automated methods are getting more advanced and can be used for an automated
image acquisition even in full 3D space with respect to MVS image acquisition
necessities. Among them, online methods might be used for an entirely automated
exploration flight in case the environment is completely unknown. However, these
approaches tend to perform rather slow exploration flights, potentially miss to cover
all object parts, and do not aim for high-resolution reconstruction results. In case a
coarse 3D proxy model of the environment is available, offline methods exploit the
knowledge of the scene layout and the accessibility of free and occupied airspaces.
These methods optimize a detailed flight concerning high-quality reconstruction
results, which, in terms of photogrammetric applications, is of higher interest than
complete autonomy but eventually incomplete reconstruction results. However, most
of these methods do not consider real photogrammetric parameters for trajectory
optimization, and moreover, none of them consider the semantics of the surrounding
environment. As shown in Section 2.1, increasing stringent regulations for the
operation of UAVs are emerging and undesired maneuvers of the vehicle, as well as,
outages of the aircraft may still occur. Therefore, UAV flight plans have to consider
the environment by avoiding hazardous flight spaces and adhering non-flight areas.
Including these necessities in an automated flight planning pipeline for full 3D model
reconstruction has not been addressed in current research.

3.3 alignment of indoor and outdoor building models

As presented in Section 2.3.1, recent image-based 3D reconstruction pipelines,
renowned for generating detailed 3D building models from UAV imagery and
the modeling of building interior, have seen substantial improvements. Neverthe-
less, only limited research was done on investigating an automatic alignment of
corresponding 3D indoor and outdoor models reconstructed by individual image
sequences, such as those shown in Figure 3.3. However, the existing demand for
LoD-4 building models, as pointed out in Section 2.3.2, requires automated and
accurate registration methods. Furthermore, successful registration of two complete
surface models of the exterior and interior could allow drawing conclusions about
volumetric parameters of the building, such as wall thickness, which would con-
stitute a further step towards building information models (BIMs). However, the
challenges encountered for obtaining a joint indoor and outdoor model usually
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(a) Indoor model (b) Outdoor model

(c) Aligned models

Figure 3.3: Task of generating complete 3D building models by aligning individual image-based
indoor and outdoor building reconstructions. Corresponding reconstruction parts lack in
insufficient and noisy visual overlap

include weak visual overlap, changes in illumination in transition areas, temporal
changes between the acquisition times, incomplete and drifting reconstructions, and
ambiguous alignment solutions.

The tremendous complexity faced for the registration of individual reconstruction
models was demonstrated in the Chillon Project (Strecha et al., 2014), which aimed to
entirely reconstruct the interior and exterior of a large-scale castle in Switzerland.
Due to different camera models and acquisition modes, encompassing both terrestrial
and aerial footage, an automated joint reconstruction process was not feasible for
all parts, particularly when linking indoor and outdoor models. Instead, multiple
sub-models were generated and manually transformed into the same reference frame
afterward with the help of GCPs and manually selected tie points in the images.
Although the resulting joint model revealed an impressive reconstruction of a large-
scale and complex architectural object, it also demonstrated the extensive manual
interaction required to connect multiple sub-models, and thus obtain a joint indoor
and outdoor model.

Partly, joint sub-models encompassing both interior and exterior can be achieved
when great attention is paid to the image acquisition in transition areas. If the transi-
tion is sufficiently reachable from both sides for image acquisition, such as this is
the case for doorways, a multitude of images with very high visual overlap could
prevent the reconstruction from disconnecting into multiple-sub models. However,
images in such transition areas often suffer from severe illumination changes, ham-
pering a successful feature correspondence estimation. By including and relying
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on higher-level image information, such as the use of semantics, improvements
in image matching and visual localization could be achieved. Schönberger et al.
(2018) proposed a semantic visual localization method that is able to match features
over extreme appearance changes across viewpoints and time. Similarly, a semantic
consistency score, developed by Toft et al. (2018), rates the consistency of each 2D-3D
match and uses this score to prioritize more consistent matching during random
sampling consensus (RANSAC)-based pose estimation. However, obtaining reliable
and sufficient 2D-2D correspondences in transition areas is not guaranteed and still
requires carefully designed and abundant images for linking both models. Addi-
tionally, if the connection is based on a single transition, it is hard to prevent drift
between the two models, which could cause unpleasing geometric inconsistencies
for large-scale reconstructions.

Therefore, an alignment between both models is more likely to succeed if the
registration is conducted in 3D space by obtaining 3D transformations between
the corresponding reconstructions. Traditionally, variants of iterative closest point
(ICP)-based registration are utilized for deriving a 3D transformation that registers
individual 3D point clouds. Applying ICP, however, assumes high geometric accuracy
in the point clouds, low clutter, and in particular, a sufficient degree of overlap
between the individual point cloud sets (Pomerleau et al., 2013). These requirements
are highly likely missed in the case of linking indoor and outdoor models. First, as
already described in Section 2.3.2, indoor models prevalently suffer from a large
amount of noise, caused by unfavorable acquisition geometries, specular surfaces,
and ambiguous correspondences. Although modern filtering techniques, such as
those presented in the comprehensive review of Han et al. (2017), allow for a reliable
clutter removal in the point clouds, the requirement of sufficient overlap between
indoor and outdoor models usually does not apply, since the attainable overlap is
by far too little as only window frames and doorways share the same geometry
between the models. Experiments on recorded data have shown that ICP-based
registration techniques fail for such extremely little overlap. To overcome the problem
of deficient overlap, higher-level features and scene knowledge were utilized to ease
the registration process. Cohen et al. (2015) exploited symmetries and repetitive
structures of building façades, as well as semantic reasoning to find reasonable
connection points of adjacent models that used for linking the models. Their method
focused on merging multiple SfM reconstruction models of a single outdoor building
model which could not be connected due to occlusions or insufficient visual overlap.
While the disconnected models still represented the same building façade in their
method, the strong symmetric assumptions are not valid regarding indoor and
outdoor models.

However, in a later work, Cohen et al. (2016) explicitly addressed the task of
indoor-outdoor model alignment. Their work was done around the same time as
the proposed methodology in Appendix C (Koch et al., 2016a) was published. The
author’s approach followed a similar strategy by aligning the 3D models on the basis
of detected windows in the 3D models. They utilized semantics for the detection of
windows in indoor and outdoor image sequences and computed 3D positions of these
openings with the estimated camera poses and sparse point clouds derived from
SfM. The subsequent registration is based on finding an adequate configuration of
multiple matching hypotheses between window sets in both models while including
an intersection quality metric, that rejects hypotheses that would lead to protrusions
of the indoor model. Although their registration approach is robust to noisy and
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missing window detections and the intersection quality metric avoids geometrical
incorrect registrations, the accuracy of the alignment strongly depends on accurate
semantic segmentation and low clutter in the sparse point cloud derived from the
SfM.

A robust and accurate registration based on sparse or dense point clouds might
be unsuccessful due to excessive noise and data gaps since the number of distinc-
tive interest points are limited in poorly textured indoor environments. Another
abstraction of a 3D scene was proposed in the work of Hofer et al. (2015) by rep-
resenting a 3D environment with a set of 3D line segments. As a substitution of
MVS approaches, the proposed Line3D method uses straight 2D line segments as
underlying features and includes geometric constraints to match the extracted 2D
lines from overlapping images. The resulting 3D line segments are especially useful
for built environments, mainly consisting of piece-wise linear and planar structures.
Therefore, an investigation into the use of such higher-level geometric line features
for the task of registering indoor and outdoor building models is sought.

3.4 single-image depth estimation for scene reconstruction

3D information retrieval from images is fundamental for a variety of applications,
including 3D modeling, scene understanding, and autonomous navigation. Therefore,
it is indispensable for both UAV-photogrammetry and indoor modeling. Besides
using active sensors, such as laser scanners and RGB-D cameras, image-based 3D
information usually relies on the triangulation of 2D-2D correspondences across
stereo images with known interior and relative orientations. Advances in 3D com-
puter vision have relaxed the requirement of rigid stereo camera setups, enabling 3D
camera pose estimation and 3D reconstruction for a monocular camera by leveraging
camera motion between the image acquisitions. These developed SfM and simulta-
neous localization and mapping (SLAM) methodologies still constitute the current
state-of-the-art in image-based monocular 3D reconstruction. However, actual trends
are moving towards depth prediction based on a single view. Although this task,
commonly known as monocular depth estimation (MDE), has been approached with
a broad range of techniques, current deep learning approaches strive to substitute
explicit physical and optical models with implicit learning of scene priors from
extensive RGB-D datasets, allowing to estimate dense depth maps from a single view
image, which is referred to as single-image depth estimation (SIDE). The following
survey on both established and novel algorithms with a focus on most recent deep
learning-based methods is part of the published paper enclosed in Appendix D
(Koch et al., 2019b). A concise overview of the methods presented hereafter is listed
in Table 3.2.

Multi-view depth perception is derived by geometric constraints from multiple
observations of a scene using stereo camera setups or leveraging camera motion and
constitutes the most established image-based depth retrieval method. The former
rely on a prior calibration of the stereo setup and dense point correspondences
across the stereo images to estimate depth via geometric triangulation. The task of
optimal pixel-wise disparity estimation is usually addressed by local, semi-global,
or global optimization methods (Szeliski, 2010). While local methods (Yoon and
Kweon, 2006) evaluate pixel correspondences in a point-wise approach, yielding fast,
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but often inaccurate correspondences due to their sensitivity towards appearance
changes and occlusions, global (Felzenszwalb and Huttenlocher, 2006; Kolmogorov
and Zabih, 2001) and semi-global methods (Hirschmuller, 2005), on the other hand,
make explicit smoothness assumptions and solve for a global optimization problem
formulated as energy minimization frameworks. Those methods result into accurate
and less noisy depth maps but require significantly increased computation times.
A prominent representative for semi-global methods constitutes the well-known
semi-global matching (SGM) algorithm (Hirschmuller, 2005). Methods that leverage
monocular camera motion are utilizing SfM or SLAM methods to transform multiple
single-view images to a stereo problem, which can be subsequently addressed by
MVS methods (Szeliski, 2010). Extensive studies in the field of two or more frame
stereo correspondence algorithms can be found in reputable literatures such as
Scharstein and Szeliski (2002), Hartley and Zisserman (2003) and Seitz et al. (2006). A
further line of approaches was developed with the emergence of light field cameras
using an array of micro-lenses placed in front of the image sensor (Doorn et al., 2011;
Heber and Pock, 2016).

Single-view active methods endeavor to ease the multi-view requirement by ad-
dressing the task of depth estimation by a sequence of images from the same
perspective. Depth information is obtained either by variations of the camera param-
eters as for instance shape from focus/defocus methods (Favaro and Soatto, 2005;
Suwajanakorn et al., 2015), lighting conditions of the scene, like photometric stereo
(Ackermann and Goesele, 2015), or by utilizing polarization cues (Kadambi et al.,
2015; Ngo et al., 2015).

Single-view passive methods further relax the requirement of image sequences
or camera displacements and address the problem of depth estimation from a
single camera shot. Most prominently, shape from shading (SfS) methods (Horn,
1970) exploit intensity or color gradients of a single image under the assumption of
homogeneous lighting and Lambertian surface properties. Although these methods
work on single-shots, they only perform well for largely known environments
or synthetic data but rather poor on real images in unconstrained environments
(Zhang et al., 1999). Another early approach aimed at exploiting light sources and
illumination conditions, such as haze and fog in an image to recover the relative
scene depth by relying on atmospheric optical models (Nayar and Narasimhan,
1999).

Single-view learning-based methods utilize machine learning techniques in order
to implicitly learn scene priors on the basis of a large amount of aligned RGB and
depth map pair training samples. As one of the first learning-based approaches,
Torralba and Oliva (2002) focused on absolute depth estimation for a query image
by incorporating the size of known objects depicted in the image. Instead of de-
composing the image into its constituent elements, the absolute scene depth of the
image is derived from the global image structure represented as a set of features
from Fourier and wavelet transformations. The features of the query image were
finally compared towards a model trained with 4000 images and corresponding scene
depths in a cluster-weighted modeling approach. With the release of first large-scale
RGB-D datasets (Geiger et al., 2012; Saxena et al., 2009; Silberman et al., 2012),
data-driven approaches became feasible and rapidly began to outperform established
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model-based methods. A pioneer work of a supervised learning-based approach was
firstly proposed by Saxena et al., 2006 by training a discriminatively-trained Markov
random field (MRF) incorporating multi-scale local and global image features to
infer depth. An extension of this work to 3D scene reconstruction was proposed in
a subsequent work (Saxena et al., 2009). Since then, a variety of approaches have
been proposed to exploit the monocular cues using hand-crafted features together
with graphical models (Baig and Torresani, 2016; Furukawa et al., 2017; Hane et al.,
2015; Hoiem et al., 2007; Li et al., 2014; Ranftl et al., 2016; Saxena et al., 2008; Shi
et al., 2015; You et al., 2014). Enhanced results have been achieved by incorporating
semantic labels in the depth prediction scheme (Ladicky et al., 2014; Liu et al., 2010).

Single-view non-parametric learning-based methods assume similarities be-
tween RGB values and depth cues across a large set of images (Choi et al., 2015a;
Karsch et al., 2014; Kong and Black, 2015; Konrad et al., 2012; Konrad et al., 2013;
Liu et al., 2014). First, similar images of the input image are retrieved from a RGB-D
database by feature-based matching with the query image. Depth complements of
the nearest neighbors are subsequently combined and either cross-bilateral filtered
for smoothing the final depth map (Konrad et al., 2013), warped towards the input
image using SIFT flow (Karsch et al., 2014; Liu et al., 2011) or optimized via a
conditional random field (CRF) (Liu et al., 2014).

Single-view deep learning-based methods emerged with the undeniable influence
of deep learning within the field of computer vision and shifted this research field
towards the use of convolutional neural networks (CNNs) for depth estimation. Since
2014, several works have significantly improved SIDE performance by using deep
models, demonstrating the superiority of deep features over hand-crafted features
(Chakrabarti et al., 2016; Eigen and Fergus, 2015; Eigen et al., 2014; Fu et al., 2018;
Kim et al., 2016; Laina et al., 2016; Lee et al., 2018; Li et al., 2015; Li et al., 2017; Liu
et al., 2018; Liu et al., 2015; 2016; Roy and Todorovic, 2016; Wang et al., 2015; 2016b;
Xu et al., 2018a; Zhuo et al., 2015; Zoran et al., 2015). These methods pursue the

problem of SIDE as a regression problem by building upon successful architectures
and learning a deep CNN to estimate the continuous depth map. The first work
using deep models was proposed in the work of Eigen et al. (2014) in a two-scaled
architecture. A coarse global prediction is performed with one network in a first
stage, while another network locally refines the prediction in a successive second
stage. An extension to this approach uses deeper models and additionally predicts
normals and semantic labels (Eigen and Fergus, 2015). Some works have harnessed
the power of pre-trained CNNs in the form of fully convolutional networks (FCNs)
(Chakrabarti et al., 2016; Eigen and Fergus, 2015; Laina et al., 2016; Li et al., 2017).
The convolutional layers from networks such as AlexNet (Krizhevsky et al., 2012),
VGG (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016) were fine-tuned,
while the fully connected layers were re-learned from scratch to encode a spatial
feature mapping of the scene. One main limitation using CNNs for depth prediction
is the decrease of the output map resolution due to repeated pooling operations in
the deep feature extractors. In order to preserve the local structures of output depth
maps, several authors have attempted to cope with this problem by up-sampling
(Chakrabarti et al., 2016; Eigen and Fergus, 2015; Li et al., 2017), up-convolution
blocks (Laina et al., 2016), skip connections between the up-sampling blocks (Li et al.,
2017) and space-increasing discretization (Fu et al., 2018). Improving the quality of
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predicted depth maps was also addressed by combining CNNs and graphical models,
such as CRFs (Kim et al., 2016; Li et al., 2015; Liu et al., 2015; 2016; Wang et al.,
2015; Xu et al., 2017a; 2018a). A deep convolutional neural field combining CNNs
and CRFs in a unified framework was proposed in the works of Liu et al. (2015)
and Liu et al. (2016) by estimating depth for superpixels generated in a preceding
segmentation step, while enforcing smoothness between adjacent segments via a CRF.
Li et al. (2015) and Wang et al. (2015) use hierarchical CRFs to refine their patch-wise
CNN predictions from superpixel down to pixel level. CRFs can be further exploited
by fusing the multi-scale information derived from inner layers of a CNN (Xu et al.,
2017a; 2018a). A combination of CNNs and regression forests with very shallow
architectures at each tree node reduces the need for big data (Roy and Todorovic,
2016). A further attempt exploits the Fourier frequency domain in a deep learning
algorithm (Lee et al., 2018).

With the successful use of deep architectures for SIDE, authors have begun to focus
on major challenges of this task, such as distorted depth discontinuities (Hao et al.,
2018; Hu et al., 2019; Ramamonjisoa and Lepetit, 2019) and defects in predicting
planar regions (Heo et al., 2018; Liu et al., 2018; Wang et al., 2016b; Yang and Zhou,
2018). Although the recovery of the actual scene geometry is a key requirement for
many application fields, meaningful evaluation capabilities are lacking to accurately
assess the impact of such spatially local enhancements of depth maps. Besides the
deficiency of a holistic evaluation protocol, current RGB-D datasets utilized for
testing the performance of SIDE methods do not comply with the required accuracies
and quality specifications. A comprehensive survey of current datasets is presented
in the attached paper in Appendix D.

Unsupervised and semi-supervised deep learning-based were recently introduced
in order to cope with the problem of the unavailability of a sufficient quantity of
training samples (Garg et al., 2016; Godard et al., 2017; Kuznietsov et al., 2017;
Ummenhofer et al., 2017; Yin and Shi, 2018; Zhan et al., 2018; Zhou et al., 2017).
This is accomplished by an intermediate task of a view synthesis and allows for
training by only using stereo pairs as input with known baselines. These methods
design reconstruction losses to estimate the disparity map by recovering a right view
with a left view.

Synthetic data is another approach to address the lack of available training data.
With the emergence of synthetic datasets, first work was done to exhibit the possibility
to render noise-free and dense depth maps in a very large scale. However, the large
domain gap between synthetic data and real data is still a very challenging task. First
works in this field are trying to handle this gap (Guo et al., 2018; Zheng et al., 2018).

Ordinal depth prediction simplifies the absolute depth estimation by predicting
dense relative depths from pairwise relationships (closer-than and further-than
relationships) estimates for rare points in the input image (Chen et al., 2016; Zoran
et al., 2015). It has been shown that this simplification leads to better results at the
cost of absolute depth estimation. However, several applications only require relative
or ordinal depth relations, such as 2D-to-3D conversion (Karsch et al., 2014), image
refocusing (Anwar et al., 2017) or foreground-background segmentation (Camplani
and Salgado, 2014).
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Single-image depth estimation of uav images has only been scarcely addressed. A
brief investigation about the capability of current SIDE methods for depth estimation
of oblique UAV was presented in the work of Julian et al. (2017). After re-training
existing SIDE methods with synthetic UAV images, the presented results exhibited
coarse and blurry depth predictions which might not be accurate and reliable
enough for direct applications. This study suggested a more detailed investigation
and adaption of sophisticated methods for the task of UAV-SIDE. A more advanced
method was proposed by Marcu et al. (2018), presenting an embeddable and fast
CNN for joint depth, obstacles and safe landing areas estimation. A pixel-wise
segmentation of UAV images into safe horizontal areas and hazardous vertical and
other areas defines potential landing areas for the vehicle, while depth maps are
predicted to guide the landing procedure. The results have demonstrated the benefit
of jointly estimating depth and semantic maps, while depth predictions revealed
reasonable geometric representation of the environment allowing for the localization
and guidance of landing maneuvers. To address the lack of available training data in
the domain of oblique UAV imagery, the authors made use of extracted image and
depth map pairs from Google Earth.

3.5 contributions of this thesis

Based on the objectives defined in Section 1.2 and the current state-of-the-art of asso-
ciated UAV-photogrammetry tasks presented in Sections 3.1 to 3.4, the contributions
of this thesis are summarized as follows.

3.5.1 Automatic Indirect Geo-registration of UAV Imagery

As pointed out in Section 3.1, many attempts have been already made to enable
accurate geo-registration of UAV imagery, in particular by matching UAV images
towards already georeferenced image data, which would prevent the elaborative
deployment of GCPs. However, prior work exhibits large deficits either in the
achieved registration accuracy or in the robustness of the proposed methodology for
diverse environments. Although works that rely on feature-based image matching
strategies show superior results than area-based methods, most approaches have not
considered the domain-specific differences in matching multi-modal aerial image
data, such as geometric, radiometric, and temporal differences between UAV and
aerial or satellite images, as well as homogeneous and repetitive structures that
occur in remote sensing data. Based on a comprehensive analysis of feature-based
multi-modal image matching, the limitations and bottlenecks causing the failure
of such methods in many scenarios were revealed and subsequently addressed to
enhance the matching quality. A novel feature-based image matching pipeline was
developed for the specific task of accurately registering multi-modal aerial images.
The proposed methodology includes a dense feature extraction approach, a one-to-
many matching scheme, and a geometric match verification strategy that substitutes
the precarious ratio-test.
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3.5.2 Semantic-aware 3D UAV Path Planning for 3D Reconstruction

With regard to high-quality 3D reconstructions of complex scenes from UAV imagery,
an accurate and efficient automated flight planning strategy is required for the
task of acquiring SfM and MVS-compliant images from different viewpoints. Since
UAVs and modern 3D reconstruction methods are capable of quickly obtaining a
coarse 3D model of the environment from few overview images, a model-based
flight planning strategy, that relies on a coarse DSM or 3D model, is preferable for
generating accurate and high-quality 3D models, as already described in Section 3.2.
However, previous works have not considered photogrammetric heuristics in the
flight planning scheme, ensuring a consistent spatial resolution for the entire object
surface after the reconstruction process. Moreover, UAV-photogrammetry often
witnesses complex environments that have to be addressed in path planning as well.
Practical considerations do not always allow for entirely free accessible airspaces,
particularly regarding the semantics of the environment, which could be exploited
to define hazardous and prohibited airspaces. This part’s contributions include the
incorporation of photogrammetric properties and semantics in an automated 3D
flight planning methodology, yielding practically feasible, efficient, and safe UAV
paths, avoiding restricted airspaces but ensuring high-quality 3D reconstructions in
desired spatial resolutions.

3.5.3 Automatic Building Model Alignment

In order to comply with the previous efforts in the creation of LoD-4 building
models (cf. Sections 2.3.1 and 2.3.2), which cover both indoor and outdoor parts,
methodologies for accurate alignment between individual models are demanded.
As presented in Section 3.3, only a few works have dealt with this subject which is
particularly difficult due to the lack of visual correspondences between the individual
models. The contributions of the proposed work involve the exploitation of a 3D
line representation of the scene for the identification of shared geometric structures
in both models. Besides hypothesis generation for potentially matchable planar
structures and robust hypothesis matching and verification in 2D, an accurate 3D
line-based optimization is presented, enabling registration accuracies in centimeter-
range between interior and exterior models with only a small amount of shared 3D
structures.

3.5.4 Evaluation of Single-image Depth Estimation Methods for Indoor Reconstruction

Based on SIDE’s tremendous progress stemming from the adoption of deep learning
in this research area (cf. Section 3.4), further meaningful evaluation criteria are
required to accurately assess the performance in terms of its applicability across
different disciplines. Aside from global statistics, local geometric properties of the
depth maps are crucial for evaluating the performance in recovering the actual scene
geometry. Accordingly, new evaluation metrics have been introduced, comprising
the assessment for different scene depths, at distinctive depth discontinuities, and
for planar surfaces. Since these metrics require highly accurate ground truth data
that cannot be provided by any other established dataset, a new high-quality RGB-
D benchmark dataset has been generated intended for independent validation of
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SIDE methods. A thorough examination of current state-of-the-art approaches has
revealed new insights into these deep learning methods and has identified remaining
challenges in this field.



4
S U M M A RY O F T H E C O N T R I B U T I O N S F O R UAV
P H O T O G R A M M E T RY

The objectives of this thesis are addressed in three peer-reviewed journal papers and
one peer-reviewed conference paper. This chapter briefly introduces the articles with
the following main contributions:

• Section 4.1 is devoted to an automatic and accurate image-based georeferencing
methodology for unmanned aerial vehicle (UAV) images

• Section 4.2 presents an automatic and semantically-aware 3D UAV flight plan-
ning approach for photogrammetric image acquisition

• Section 4.3 addresses the geometric alignment of individual interior and exterior
building models towards the generation of level of detail (LoD)-4 building
models

• Section 4.4 demonstrates a holistic evaluation protocol for the currently very
active field of single-image depth estimation (SIDE) and presents a compre-
hensive analysis of the performance, as well as the identification of remaining
challenges for the applicability of SIDE in current or future applications

4.1 automatic image-based uav georeferencing

Appendix A demonstrates the failure of advanced handcrafted feature-based image
matching methods for the task of UAV georeferencing with multi-modal image data,
such as aerial or satellite imagery. Based on these findings, a methodology for a
robust and accurate image matching is proposed.

4.1.1 Analysis and Bottlenecks of Feature-based Methods

As a result of comprehensive investigations with various image pair samples of
UAV, aerial, and satellite images, the failure of SIFT-based image matching can be
explained by a combination of different parts of the algorithm, namely detection
and description of the feature points, as well as the feature matching scheme. The
bottlenecks can be concluded as follows:

1. The scale-invariant property of SIFT features can not resolve the enormous
scale differences between UAV and aerial images

2. The theoretical number of correct feature matches among detected keypoints is
vastly reduced by the ratio-test, often resulting in too few remaining matches

3. Correct matches are often not found among nearest neighbors in feature space,
but among the top k-nearest neighbors

4. The rotation invariance of SIFT is not as good as it has been considered

61
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Figure 4.1: Influence of different ratio-test thresholds for the task of multi-modal UAV and aerial image
matching. Number of remaining matches after applying ratio-test and number of correct
matches among them (a). Probability density functions (PDFs) of correct and incorrect
matches (b)

5. The number of extracted feature points is too small for reliable image matching.
Aerial images often depict weakly textured and homogeneous surfaces, which
result in an unsatisfying amount and distribution of feature points

Despite the scale-invariant property of the SIFT detector, UAV and aerial images
often differ in their spatial resolution up to a factor of ten, which generally can not be
resolved by the octave representation in SIFT, resulting in too few keypoint detections
in higher octaves. This finding was already pointed out by several researches (Lin
et al., 2007; Onyango et al., 2017) and is usually tackled by eliminating the scale
difference in the UAV images in advance, making use of either a global navigation
satellite system (GNSS) or utilizing barometer altitude measurements.

The widely used ratio-test addresses the elimination of ambiguous feature matches
with similar descriptor distances and has been proven to improve the image match-
ing quality of close-range image pairs (Kaplan et al., 2016). However, UAV images
often exhibit surfaces with homogeneous and repetitive textures resulting in similar
descriptors of detected keypoints. Together with the overall small amount of detected
feature points, the ratio-test often eliminates valuable feature matches among them.
Figure 4.1 demonstrates the influence of different ratio-test thresholds in eliminating
true matches. Based on image pair samples with ground-truth fundamental matrices
(considering equally scaled image pairs capturing the same coverage by image resiz-
ing and cropping), raw matches after applying the ratio-test were filtered according
to the epipolar constraint to identify true inliers and outliers. A maximum number of
around 100 correct matches could be found when only the first nearest neighbor was
considered (equivalent to a threshold of one) (cf. Figure 4.1a). Comparing the number
of inliers to the total amount of around 4000 matches, as depicted in Figure 4.1b, a
very low ratio of inliers is observable, which would highly likely lead to erroneous
registration results. By increasing the impact of the ratio test (equivalent to lower
values of the threshold), many correct matches were rejected due to a high similarity
to other keypoint descriptors, while the ratio of outliers decreased at the same time.
According to the obtained results, the best ratio of inliers is suggested for threshold
values between 0.3 and 0.5. However, the absolute number of correct matches for
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Figure 4.2: Analysis of SIFT matching performance after rejecting ratio-test and considering k-nearest
neighbors (a), and fixing orientation cues in SIFT features after pre-alignment of the images
(b). Matching was performed on equally scaled UAV images and cropped aerial images to
the same image content as the UAV images

these values was found below ten and, therefore, not sufficient for a reliable matching
result.

However, investigations on eight different image pairs from various acquisition
campaigns have shown that the number of theoretical matches nearly doubles
without applying the ratio-test, approving the assumption of rejecting a large number
of correct matches by the ratio-test. Moreover, considering not only the nearest
neighbors in the feature space but taking into account the one hundred nearest
neighbors, the number of theoretical matches could be increased up to a factor of
15. Figure 4.2a compares the number of matches for the different matching schemes
on the different image pairs. Considering the number of detected keypoints, the
theoretical mean inlier ratio for the methods is 0.013, 0.023, and 0.14, respectively.
This investigation demonstrates the bottleneck of the ratio-test, which eliminates a
vast amount of correct matches. On the other hand, the SIFT descriptor often fails
in identifying correct matches for feature points sharing similar structures. Remote
sensing image data often exhibit repetitive and homogeneous structures, while
temporal changes might change the descriptor response in a way that corresponding
feature points are not nearest neighbors in feature space. However, by increasing the
number of putative nearest neighbors, the correct match is often found among the top
k-nearest neighbors, although the number of mismatches substantially increases as
well by incorporating a one-to-many matching scheme. Figure 4.3 shows the increase
of obtained true matches for various image samples when considering multiple
nearest neighbors of feature correspondences.

Lastly, investigations on the orientation estimation of the SIFT keypoints have
demonstrated that a pre-alignment of the images and the utilization of up-right
orientations in the SIFT descriptor almost doubled the number of correct matches, as
depicted in Figure 4.2b.
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Figure 4.3: Cumulative number of theoretical correct matches considering multiple nearest neighbors
in the feature matching for different multi-modal image pairs from the acquired dataset

4.1.2 Proposed Image Matching Approach

According to the findings of the image matching failure presented in Section 4.1.1,
the proposed matching approach is designed to eliminate each of the exposed
bottlenecks by a novel feature extraction method, a one-to-many matching scheme, and
the substitution of the ratio-test with a geometric match verification.

Making use of the sensor information onboard of the UAV, first, the scale difference
between both images can be estimated and approximately eliminated in advance,
and second, a pre-alignment for the image rotation can be achieved with compass
information.

In order to boost the amount of matches — a necessity for weakly textured surfaces
and for aiding automated decision systems whether image pairs are matching prop-
erly or not — a novel dense feature detection scheme extracts a vast amount of feature
points uniformly distributed in the images by making use of a superpixel segmenta-
tion. The boundaries of simple linear iterative clustering (SLIC) (Achanta et al., 2012)
superpixels mostly define strong variations in the local neighborhood’s intensities,
such as edges and corners, which are suitable for representing hypothetical feature
points to be found in the corresponding images. Due to the generation step of SLIC,
the well-distributed generation of the superpixel ensures a uniform distribution of
detected feature points, and all pixels on the boundaries of the segmented superpix-
els are adopted as feature points for which a SIFT descriptor is computed. Based on
the findings in Section 4.1.1, scale-spaces and orientations are fixed in the descriptor.
A one-to-many matching scheme keeps the k-nearest neighbors after exhaustively
matching all keypoint descriptors using Euclidean distance calculation to ensure that
correct matches can be even found for corresponding keypoints that do not show
nearest descriptor distances. The geometric verification step addresses to find correct
matches among the plethora of putative matches produced by the dense feature ex-
traction and one-to-many matching scheme. Postulating that both UAV and reference
images capture the same planar scene and differences in their scales and rotations
have already been eliminated, the transformation between the two aligned images
can simply be approximated as a 2D translation t =

(
tx, ty

)
∈ R2. For each UAV key-

point puav
i=1...I = (xuav

i , yuav
i ) ∈ R2 and every corresponding match hypothesis j1...k of

the k-nearest neighbors in the reference image pref
i,j=1...k =

(
xref

i,j , yref
i,j

)
∈ R2, pairwise

coordinate differences ∆xi,j = xuav
i − xref

i,j and ∆yi,j = yuav
i − yref

i,j are computed. The
estimation of the unknown translation
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t = arg max
tx,ty

I

∑
i=1

k

∑
j=1

ωx
(
t̂x, ∆xi,j, r

)
·ωy

(
t̂y, ∆yi,j, r

)
(4.1)

is based on maximizing the amount of putative keypoint matches that satisfy

ωx
(
t̂x, ∆xi,j, r

)
=

1, |t̂x − ∆xi,j| ≤ r

0, |t̂x − ∆xi,j| > r
(4.2)

and

ωy
(
t̂y, ∆yi,j, r

)
=

1, |t̂y − ∆yi,j| ≤ r

0, |t̂y − ∆yi,j| > r,
(4.3)

where r defines a threshold related to the scene depth. A histogram voting scheme
is utilized for recovering the unknown translation parameters.

In the case of imprecise or unknown image rotation, an extension of the proposed
method enables the registration of even un-aligned image pairs. The extracted feature
points in the UAV image are rotated around the image center for different discretized
rotation values, and the same geometric match verification procedure, as described
above, is performed for each specific rotation. The maximum number of raw matches
for each rotation is kept and compared towards other rotations values. Correct
image rotations are expected to result in noticeably pronounced peaks than incorrect
rotations.

A subsequent refinement step solves for truly one-to-one matches and addresses
for imprecise superpixel boundaries in both images. For all corresponding matching
hypotheses, the corresponding patch is searched in the local neighborhood around the
feature points using normalized cross-correlation (NCC). The refinement optimizes
all matching hypotheses to the correct location and eliminates duplicate matches.
These remaining raw matches can be subsequently used to estimate projective
transformations, and thus to geo-register UAV images towards the reference images
with the help of height maps or orthorectified mosaics with a high-resolution digital
surface model (DSM).

4.1.3 Performance Assessment with Real-world Data

Various evaluations have demonstrated the robustness and accuracy of the proposed
method, which will be briefly described in the following. The first part compares
the raw 2D feature matching performance of the proposed method against the
baseline of SIFT matching on a diverse multi-modal image dataset. In the second
part, registration of individual orthomosaics generated from aerial and UAV images
was conducted, and the registration accuracy was compared against the utilization
of ground control points (GCPs) from terrestrial real-time kinematic (RTK)-GNSS
measurements. Finally, an application scenario shows how to use the proposed
method for enriching 3D building models generated from aerial images with UAV
imagery.

Table 4.1 compares the matching performance of SIFT and the proposed method.
Besides a multitude of matches that could be found with the proposed method, the
registration accuracy was by far more robust and accurate than applying SIFT, which
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Table 4.1: Comparison of the matching results using standard SIFT and the proposed method. Number
of raw matches after applying SIFT and the proposed method for all scenarios. Inliers after
estimating fundamental matrix (F) and homography (H) and mean errors according to
ground-truth fundamental matrix (F) and homography (H)

Scenario Raw Matches Fundamental Matrix (F) Homography (H)

Inliers Error (in px) Inliers Error (in px)

SIFT prop. SIFT prop. SIFT prop. SIFT prop. SIFT prop.

Container 58 8264 14 4876 666.26 2.59 9 2835 1767.55 7.01
Highway 49 1979 15 1184 1996.30 2.79 9 1230 2210.20 1.20
Pool1 162 6593 52 3599 0.83 1.87 33 2188 1.63 1.87

Pool2 107 14 091 18 7555 618.54 2.01 10 4199 1308.02 2.03
Eichenau1 287 4018 45 1850 19.11 4.35 48 1165 3.63 3.53
Eichenau2 436 5846 140 3204 1.11 1.09 146 3077 3.64 4.65

EOC 446 6834 16 3949 959.87 2.92 6 2586 877.21 3.18
WV2 117 15 131 19 6290 175.73 2.22 19 6760 4.03 3.57
Building 553 9113 16 3526 595.06 3.15 11 1932 317.59 2.36
Gmaps 522 15 437 19 5120 195.34 3.42 8 3217 919.48 2.82

often failed in finding plausible matching correspondences. The estimated projective
transformations were used to warp the UAV images to the reference images, as
visualized in Figure 4.4.

Another series of experiments on two datasets have demonstrated the absolute
registration accuracy by matching orthomosaics generated by individual image
sequences from aerial and UAV images. After performing image matching with
the proposed method, UAV camera poses could be estimated in the same reference
frame as the georeferenced aerial orthomosaic exploiting the corresponding aerial
DSM. The absolute geo-registration accuracy was assessed with the help of precisely
measured GCPs in the test areas. Table 4.2 lists 3D coordinate differences for the
GCPs as deviations of the registered UAV orthomosaic and reference orthomosaic
(Errorref). A global assessment of the registration accuracy is reported as deviations
of terrestrial measured 3D GCP coordinates and the registered UAV orthomosaic
(Errorrtk). The results have revealed geo-registration accuracies in the range of the
ground sampling distance (GSD) of the reference images. The absolute georeferencing
accuracy was slightly less accurate than terrestrial measurements, especially for the
vertical component due to an erroneous DSM generated from the aerial images.
A comparison of aerial and UAV-based DSMs after geo-registration is shown in
Figures 4.5 and 4.6.

Lastly, an application has been conducted that utilizes UAV images for enriching
building models generated from aerial views. Since aerial images often result in
occlusions towards the building façades, oblique UAV images can complete the
missing parts and increase the overall resolution. Making use of the multi-modal
dataset presented in Koch et al. (2016), a sequence of nadir and oblique UAV
images was used to generate a detailed 3D building model, while nadir views were
automatically registered towards georeferenced aerial images with the proposed
image matching method. After registration, an enhanced, complete and georeferenced
3D building model could be generated by merging the registered multi-modal images
in a joint bundle adjustment and computing a dense 3D point cloud with an off-the-
shelf multi-view stereo (MVS) pipeline. A superimposition of the registered 3D point
clouds is shown in Figure 4.7.
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(a) Container and Highway (b) Eichenau1 and Eichenau2

(c) Pool1 and Pool2 (d) Building

Figure 4.4: Qualitative results of the proposed matching method showing superimpositions of UAV
images registered towards aerial images

Table 4.2: Absolute geo-registration accuracy comparing the 3D coordinates of GCPs measured from
geo-registered UAV images and georeferenced aerial images (Errorref) towards RTK-GNSS
measurements (Errorrtk)

GCP Eichenau Germering

Errorref
(in m)

Errorrtk
(in m)

Errorref
(in m)

Errorrtk
(in m)

∆xy ∆z ∆xy ∆z ∆xy ∆z ∆xy ∆z

1 0.51 −0.21 0.39 −1.74 0.15 −0.38 0.34 1.49

2 0.09 −0.15 0.41 −1.90 0.69 0.37 0.65 1.68

3 0.41 −0.36 0.83 −2.04 0.14 0.46 0.48 1.76

4 0.81 0.70 0.48 −1.91 0.77 0.26 0.80 1.71

5 0.49 −0.17 0.22 −1.81 0.21 0.50 0.50 0.75

6 0.32 −0.10 0.38 −1.63 0.19 0.18 0.40 1.30

7 0.42 −0.06 0.50 1.42

Abs. mean 0.44 0.28 0.45 1.83 0.36 0.32 0.52 1.44
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Figure 4.5: Comparison of a reference DSM of the Eichenau dataset obtained from georeferenced aerial
images with 20 cm GSD (top) and a UAV-based DSM with 2 cm GSD (middle) obtained by
registering UAV images towards the aerial images with the proposed matching method.
Differences between both DSMs reveal the registration accuracy as color-coded height
disparities (bottom)
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Figure 4.6: Comparison of a reference DSM of the Germering dataset obtained from georeferenced aerial
images with 20 cm GSD (top) and a UAV-based DSM with 2 cm GSD (middle) obtained by
registering UAV images towards the aerial images with the proposed matching method.
Differences between both DSMs reveal the registration accuracy and temporal changes of
the scene as color-coded height disparities (bottom)
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(a) Jointly registered aerial and UAV camera poses

(b) Generated 3D model from aerial images

(c) Generated 3D model from aerial and UAV images

Figure 4.7: Enriching a 3D building model generated from aerial images with the help of UAV images.
Camera poses of aerial and registered UAV images after applying the proposed image
matching method (a). Dense point cloud derived from using aerial images solely (b) and
merged point cloud derived by including UAV images (c)
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4.2 automatic and semantically-aware 3d uav path planning

for 3d reconstruction

Appendix B proposes an automatic model-based 3D path planning pipeline designed
for UAV image acquisition for small-scale photogrammetry applications, such as the
generation of 3D building models. Besides incorporating photogrammetric parame-
ters and minimization of the estimated path length, semantic cues of the surrounding
are exploited for generating safe trajectories that avoid hazardous flight zones. The
developed methodology consists of the following steps:

• Generation of a semantic 3D proxy model of the surrounding environment and
extraction of the object of interest

• Generation of a multitude of discrete viewpoint hypotheses including camera
locations and orientations

• Estimation of a UAV path formulated as a discrete submodular optimization
problem by choosing a minimum number of connected viewpoint hypotheses
for maximizing the reconstruction quality of the object while considering the
semantic properties of the environment to avoid hazardous and restricted flight
areas

4.2.1 Semantically-enriched Prior Model Generation

The methodology follows a model-based trajectory optimization approach for cov-
erage maximization based on a proxy 3D model of the environment. The prior 3D
model is generated from overlapping nadir images of a preceding safe overview
flight covering the entire scenery around the target object to be reconstructed. Besides
the computation of an approximate DSM from the overlapping images, the images
are semantically segmented and fused into the 3D model for generating a semantic
3D proxy model, as exemplarily shown in Figure 4.8. The semantic cues represent
relevant object classes that are later used for defining permissible and prohibited
flight zones, such as areas above roads, buildings, cars, water basins, low vegetation,
and trees. Optionally, the semantic proxy model can be augmented with additional
geographic information, such as open street map (OSM) data in order to distinguish
between different inter-object classes, such as street types. An exact georeferencing
of the overview images, as possible with the proposed method in Section 4.1, can
contribute to an exact alignment between the proxy model and extracted OSM
objects. Based on the proxy model, a semantic-based 3D region growing approach
facilitates the extraction of the target object based on a single manually selected seed
point on the object’s surface. A discretization of the 3D points of the object and the
surrounding environment is conducted, and missing 3D points in occluded regions
are completed under the assumption of vertical surfaces.

4.2.2 Camera Viewpoint Hypotheses Generation

A large amount of evenly distributed viewpoint candidates ci=1...I ∈ R3 is sampled in
the free airspace inside a bounding box around the extracted object, excluding cam-
era viewpoints that are closer to any surrounding obstacle than a predefined safety
buffer. This safety buffer can be adapted according to the corresponding semantic



72 summary of the contributions for uav photogrammetry

(a) Segmented nadir images (b) DSM (c) Semantic 3D proxy model

Figure 4.8: Generation of a semantically-enriched proxy 3D model used for the 3D path planning
approach. Based on a sequence of semantically segmented overview UAV images (a), a
geometric 3D model of the environment (b) is further enriched with the semantic maps of
the input images (c)

labels of the environment to increase the distance towards unreliably reconstructed
object classes, such as trees, which often lack completeness after photogrammetric
reconstructions. For each viewpoint candidate, a vector containing the semantic
labels of all proxy 3D points located below the camera viewpoints is stored. Further-
more, camera orientations ri=1...I ∈ R3 are assigned for each viewpoint candidate
pointing towards the target object’s closest surface points sj=1...J ∈ R3 while avoiding
occlusions with obstacles by performing a visibility assessment of each viewpoint
to identify 3D surface points that are visible from each specific viewpoint location
considering the surrounding environment. The proposed viewpoint orientation strat-
egy results in suitable viewpoint orientations applicable for different object outlines.
These orientations avoid occluded views and produce almost fronto-parallel views
with smooth transitions at object boundaries allowing for large image overlaps re-
quired for successful image registration. Finally, a visibility matrix is computed with
respect to the camera intrinsics to assess the matchability between different camera
viewpoints.

4.2.3 Semantically-aware Model-based Path Planning Approach

The path planning problem is expressed as finding a feasible UAV trajectory among
the viewpoint hypotheses yielding a set of overlapping images for generating a
complete and high-quality 3D reconstruction model of the targeted object. Besides
reducing the estimated path to a reasonable total distance, the semantic cues of
the 3D proxy model are exploited to either entirely prohibit certain flight areas
or partially restrict flight maneuvers above specific objects. Due to discrete sam-
pling of the camera poses, the viewpoints can be represented as an undirected
weighted graph G = (P , E), composed of a set P of nodes as camera poses
pi...I = (ci, ri) ∈ P and edges E =

{
ek =

(
pi, pj

)}
between adjacent viewpoints that

satisfy a specific overlap constraint (e.g., 75 %). Edges are associated with weights
W =

{
wk =

(
weucl

k , wsem
k

)}
comprising the Euclidean distance weucl

k ∈ R between
connected nodes and a semantic label cost wsem

k ∈ R. The latter is defined as the Eu-
clidean distance of traversed ground surface points assigned with specific restricted
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object classes, which can be individually defined for the individual campaign. The
objective of the path planning problem is defined as identifying an optimal trajectory

T ∗ = arg max
T

R(T )

subject to min ∑
e∈E

weucl,

∑
e∈E

wsem < Lsem

(4.4)

among connected nodes in G, where T = {p1, p2, ..., pn} ⊂ P , and R : P → R is
a function representing a reconstructability score of the entire target object from
a given trajectory T . The constraints in Equation 4.4 are used to minimize the
obtained path length and restrict the path from exceeding an accumulated label cost
limit Lsem. In order to evaluate an arbitrary trajectory T in terms of the expected
reconstruction quality R(T ) = ∑T I(p(T ),S), a set of heuristics I(pi, sj) is required
that approximates the impact of an arbitrary camera pose p and stereo configurations
for the reconstruction quality of an object surface point s ∈ S . The proposed
heuristics follow best practices for MVS image acquisition, including a smooth
distance-related function for maintaining an intended GSD, a smooth observation
angle-based function for favoring fronto-parallel views towards the object surface,
and a pairwise assessment of observation directions for all viewpoint hypotheses
to ensure large parallax angles from the optimized views. Details on the developed
heuristics can be found in Appendix B.

Inspired by the works of Smith et al. (2018) and Hepp et al. (2018), a suitable
trajectory can be found by exploiting submodularity in the candidate view selection.
Submodularity is a property of a set function f : 2P → R that assigns each subset
T ⊆ P a value f (T ) (Krause and Golovin, 2014). f (·) is submodular if for every
T1 ⊆ T2 ⊆ P and an element p ∈ P \ T2 it holds that ∆(p|T1) ≥ ∆(p|T2). Regarding
the path planning problem, adding more viewpoint candidates to the trajectory, the
marginal benefit of adding another viewpoint with a large overlap to the current
set decreases. Adding the same viewpoint to a smaller set with limited coverage,
on the other hand, leads to larger rewards. This requires f (·) being both monotone
and non-decreasing stated as monotonicity, implying that further elements to the
set cannot decrease its value. The marginal gain of a viewpoint candidate p towards
a trajectory T is given by ∆(p|T ) := f (T ∪ p)− f (T ). It has been shown that a
simple greedy algorithm can be considered for providing a solution to the NP-hard
maximization of submodular functions with a reasonable approximation guarantee
(Krause and Golovin, 2014).

In order to limit the obtained reward for each surface point from numerous
viewpoints to a maximum reconstructability score of 1, the submodular objective
function f is constrained by

f
(
sj, T

)
= min

(
1, ∑

pi∈T

1
v

I(pi, sj)

)
, (4.5)

where v reduces the obtained reward from a single view in order to enforce at least
v different views capturing the same surface point sj. Since f is both monotone and
non-decreasing, the individual rewards I(pi,Spi

) for all viewpoint candidates can be
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transformed to tightly additive information rewards Iadd
i by utilizing a simple greedy

algorithm, that iteratively computes the marginal rewards of each viewpoint for the
current reconstructability of each surface point and adds the viewpoint with the
highest additive information reward Iadd

i towards the output set. After executing the
greedy method, each viewpoint candidate pi is coupled with a marginal information
reward Iadd

i representing its value for the object’s reconstructability. According to
Roberts et al. (2017), a transformation of additive rewards into a standard additive
orienteering problem allows to solve the objective as a mixed-integer programming
(MIP) optimization problem. Adding path length and semantic restrictions to the
objective function lead to

T ∗ = arg max
T

∑
pi∈T

Iadd
i − λ ∑

ek∈E
weucl

k

subject to ∑
ek∈E

weucl
k < Leucl,

∑
ek∈E

wsem
k < Lsem,

(4.6)

where Iadd
i defines the additive rewards of the nodes along a path T with traversed

Euclidean distances ∑ek∈E weucl
k and traversed distances above semantical restricted

airspaces ∑ek∈E wsem
k . The regularization forces to reduce the maximum path length

Leucl for similar optimization results in shorter paths. The second constraint allows
the optimization to select nodes in restricted but not prohibited airspaces, but
encourages finding the most efficient and shortest path through these conditionally
accessible airspaces by not exceeding a user-defined path length Lsem above restricted
objects.

4.2.4 Experimental Results

The proposed path planning approach was evaluated in terms of feasibility of the
estimated paths and reconstruction quality after utilizing the acquired images in an
off-the-shelf 3D reconstruction pipeline. Due to the great effort of obtaining accurate
ground truth 3D models of real objects and the lack of flexibility of generating differ-
ent scenarios consisting of various environments, a synthetic scene was generated,
composed of various objects arranged to a realistic and interchangeable scenery. The
synthetic scene allows to render photo-realistic images to be processed with common
3D reconstruction pipelines and to compare the reconstruction results derived from
different trajectories with exact ground truth.

First, a performance analysis of the proposed methodology, as well as the influence
of the path length regularization term, were conducted with the synthetic scene. A
series of estimated trajectories excluding semantic restrictions with different regular-
ization parameters were compared towards both automated and manual baseline
trajectories. Figure 4.9a depicts the expected model uncertainties concerning obtained
path lengths for different values of λ. The results show that low regularization param-
eters yielded large expected model certainties, but also led to lengthy paths, while
large values of λ result in shorter paths but reduced certainties of the reconstructabil-
ity. A reasonable compromise of short path lengths and high model certainty could
be realized for regularization parameters in the range of λ = 1, leading to a slight
loss of 4.2% of the model certainty towards the optimized path with λ = 0.1, whereas
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(a) Comparison of the reconstructability for dif-
ferent optimization approaches as a function
of path length

(b) Comparison of semantically-aware optimiza-
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Figure 4.9: Comparison of different optimization methods in terms of the expected model uncertainty
for different path lengths assuming the same objective function. The effects of various
regularization parameters are shown in blue and the performances of baseline approaches
are depicted in gray and black (a). Note that λ = 1 leads to a balanced trade-off between
short path lengths and a high model certainty. Comparison of the semantically-aware global
optimization with λ = 1 for different restrictions on the airspace (b)

the path length has been reduced by half. A comparison of the optimized paths
against a random and next-best-view (NBV) baseline revealed the superiority of the
global approach, attributed to the exploitation of submodularity contributing to the
selection of suitable viewpoints covering all parts of the object, and to the global
optimization refining all viewpoints of the trajectory simultaneously, which led to
less redundant acquisition views.

Subsequently, an investigation regarding the influence of different semantic con-
straints of the airspace on the path estimation and the reconstruction quality was
carried out. Flight restrictions are two-fold: a hard restriction eliminates nodes and
their corresponding edges above a certain semantic cue in the camera graph, while
soft restrictions limit the path length to a maximum tolerable distance Lsem above
specified semantic cues. Precisely, three semantically constrained trajectories were
optimized with the following restrictions:

• No semantics (NS): this path serves as a baseline and only considers geometric
constraints

• Building (B): hard restriction for airspaces above other buildings

• Building & Street (BS): in addition to (B), airspaces above streets were partially
restricted to maximum path length of L = 12 m, approximately twice the width
of a regular street

• Building & Car & Street (BCS): In addition to (BS), hard restrictions above cars
were imposed

The semantic constraints affected the camera graph’s generation, resulting in a
limited number of accessible nodes imposed by hard restrictions and only condition-
ally accessible nodes imposed by soft restrictions. Figure 4.9b reveals that, despite
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Table 4.3: Quantitative evaluation of the reconstruction results for the synthetic scene obtained from
different path planning methods. Point density is reported as the percentage of reconstructed
points that have a shorter distance towards their nearest neighbor than the demanded GSD =
2 cm, as well as one and a half times the distance (1.5 ·GSD = 3 cm). The reconstruction
errors are stated for d1 = 5 cm and d2 = 10 cm. The proposed globally optimized paths
are superior towards the baseline methods while featuring a shorter path. The severely
limited free airspace due to different semantic restrictions only lead to a slight drop in the
reconstruction quality

Method Images Density (%) ↑ Precision (%) ↑ Completeness (%) ↑ F-Score (%) ↑

GSD 1.5·GSD d1 d2 d1 d2 d1 d2

Circle 30 m 100 46.9 73.3 88.8 96.3 79.2 91.8 83.7 94.0
Circle 20 m 100 29.7 60.3 89.7 95.8 84.0 93.9 86.7 94.8
Random 321 94.1 98.9 96.4 98.6 83.3 91.0 89.4 94.6
Greedy NBV 323 96.9 99.8 96.8 98.7 86.5 92.7 91.4 95.6

Global (NS) 148 97.6 99.9 96.7 98.9 91.1 95.7 93.8 97.2
Global (B) 162 97.3 99.8 96.2 98.7 88.3 95.5 92.1 97.1
Global (BC) 148 97.6 99.8 96.4 98.7 89.4 94.8 92.8 96.7
Global (BCS) 152 97.3 99.8 96.5 98.8 87.7 95.1 91.9 96.9

further limitations of the airspace, only slight losses in the model certainty had to be
expected from the optimized paths, indicating decent reconstruction results from a
comparable number of acquired images. A visualization of the obtained trajectories is
shown in Figure 4.10. While each of the estimated trajectories exhibited both oblique
views from the top of the building and horizontal views capturing the buildings
façades from low altitudes, restricted trajectories have been furthermore successfully
avoided banned airspaces and found suitable locations to efficiently cross the re-
stricted road. In terms of flight safety, these trajectories are by far more desirable
than the unconstrained path, since risky long-term periods above hazardousness
roads were mostly avoided.

The use of the synthetic model allows for conducting a quantitative and qualitative
evaluation of the reconstruction quality from arbitrary viewpoints by rendering the
obtained viewpoints and subsequently processing the images with an established 3D
reconstruction pipeline, such as Pix4D (Pix4Da). Besides trajectories derived from the
proposed methodology, the evaluation included both random and NBV trajectories,
as well as manual circular flights at two different altitudes and radii. The quality of
the reconstructed point clouds was quantitatively assessed towards the ground truth
model using the quantities of precision, completeness, and F-score. Furthermore,
an assessment of the point density, which is required to be consistent along the
entire object surface, was conducted by computing geometrical distances between
neighboring reconstructed points. A quantitative evaluation regarding the recon-
struction errors and point density error is listed in Table 4.3, and a visualization of
the spatial occurrences of these errors is shown in Figure 4.11. While circular baseline
paths revealed unsatisfying reconstruction results in terms of a low point density
and gaps in the reconstruction due to occlusions from overhangs of the roof and
balcony, the unconstrained global optimization (NS) yielded the best reconstruction
quality for all investigated errors. The distance-based heuristics led to close-up views,
resulting in a high global point density for more than 97% of all reconstructed points
of the building. Comparing the completeness error, lower circular flights yielded less
optical occlusions, which, however, were limited by the surrounding environment.
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(a) Global (NS) (b) Global (B)

(c) Global (BS) (d) Global (BCS)

Figure 4.10: Visualization of the optimized paths for different semantic restrictions on the airspace for
the synthetic scene. Nadir view of the entire camera graph as accessible and traversable
UAV viewpoints (top). Color-coded edges represent associated semantical costs wsem

k
for the corresponding applied restrictions. Visualization of the optimized camera paths
(middle) and 3D perspective with the RGB proxy model (bottom)
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Paths considering the proxy generally performed better in terms of completeness,
since low altitude viewpoints could be selected from the free airspace, however
globally optimized paths revealed significantly better completeness, especially for
occluded areas. It is worth noting that the globally optimized paths did not exceed a
path length of 490 m, acquiring a maximum amount of 162 images for (B), while both
random and NBV paths were limited to 1000 m resulting in 321 and 323 viewpoints,
respectively. Comparing the results of different semantic restrictions on the airspace,
only a minor decrease in terms of completeness was notable, matching the expected
model uncertainty in Figure 4.9b. Regarding the precision of the reconstruction—a
quality measure according to the noise of the reconstruction depending on the cam-
era constellations—it can be noted that all paths considering viewpoints from the
proposed camera graph achieved comparable good values, proving the suitability of
the proposed viewpoint generation process.

An assessment of the proposed methodology for real-world applications was
carried out at two sites, comprising differently shaped buildings in complex environ-
ments, consisting of other buildings, high vegetation, parked cars, and a crossing
trunk road. Based on few nadir-directed overview images, semantic 3D proxy models
served as a basis for the subsequent path estimation, which considered the semantic
cues for prohibiting flyovers above other buildings and the trunk road. Figure 4.12

summarizes the conducted experiments, showing the initial 3D proxy models, the
optimized path, samples of the automatically acquired images, and the final 3D
reconstruction models. These experiments have shown that the proposed path plan-
ning methodology is capable of generating precise 3D flight plans to create reliable
and accurate 3D models while considering the surrounding environment to plan safe
trajectories. The methodology simplifies the realization of photogrammetric UAV
campaigns since no prior scene knowledge is required, and the execution of the flight
can be carried out in an automatic manner. Furthermore, the expected accuracy of
the reconstruction from the optimized path can be provided before the actual flight,
allowing to modify the path or to plan subsequent trajectories.
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(a) Acquisition flight path and sample images (b) Acquisition flight path and sample images

(c) Reconstruction model (d) Reconstruction model

Figure 4.12: Real world experiments for the Silo scene (left) and Farm scene (right). Optimized trajecto-
ries (blue lines) and discrete image acquisition viewpoints (black cameras) are visualized
in (a) and (b), including sample images from the acquisition flight for the highlighted view-
points. Restricted areas include adjacent buildings for the Silo scene and adjacent buildings,
as well as trunk roads for the Farm scene. Visualizations of the final 3D reconstruction
models derived from the acquired images are depicted in (c) and (d)
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4.3 automatic alignment of indoor and outdoor building mod-
els

Appendix C addresses the alignment of individual image-based 3D reconstructions of
a building’s interior and exterior. This step is considered as a necessity for generating
LoD-4 building models. The proposed methodology exploits geometric correspon-
dences rather than appearance-based correspondences due to little or missing visual
overlap between both models and eventual independent image acquisitions with
large temporal differences, . Using a calibrated camera in the reconstruction process
leads to Euclidean (metric) 3D reconstructions of the resulting 3D models, which can
be registered with a 3D similarity transformation aligning the indoor building model
towards the exterior model.

A summary of the methodology is as follows:

• A 3D line representation of the individual reconstructed models reduces the
amount of scene features and reveals geometric matching structures

• Identification of topological planar structures that are shared in both models
and coarse alignment derived from a robust matching strategy

• Refinement of the alignment by a 3D line-based optimization

4.3.1 Geometric Registration Approach

Since the detection of shared geometric structures between the individual models
based on 3D point clouds seems infeasible due to missing information in low
textured areas, a 3D line-based scene representation (Hofer et al., 2015) can enrich
the derived geometric information in terms of interpreting façades and windows
with a reduced number of obtained 3D data (cf. Figure 4.13). Given two sets of 3D
line segments L1 =

{
l1
1 , ..., ln

1

}
and L2 =

{
l1
2 , ..., lm

2
}

, representing the building interior
and exterior, the overall goal is to find a transformation T = (R, t, s) to align L1 to
L2, where t, R, and s define the parameters of a 3D similarity transformation as a 3D
translation vector, a 3× 3 rotation matrix, and a scale. Each segment l is defined by
its two endpoints. After identifying k corresponding line segments in L1 and L2, the
parameters of T can be estimated by

T = arg min
T

k

∑
i=1

d
(

li
2, π

(
li
1, T̂
))

, (4.7)

where π
(
l, T̂
)

projects a line segment l with T̂, and d (l2, l1) computes the length of
the perpendicular of two 3D line segments extended to infinity.

As only a small subset out of several thousand pairs of 3D line segments in
L1 × L2 are expected to be correct 3D line matches, an exhaustive matching scheme
is not applicable. Instead, the matching problem is reduced to 2D by first generating
multiple 3D plane hypotheses for both models with an iterated 3D line-based
random sampling consensus (RANSAC) scheme. Since window frames and doors
are expected to be located on planar façades, the top k plane hypotheses will likely
include the demanded geometric structures. After projecting corresponding 3D lines
onto the extracted planes and a discretization step, a pairwise robust 2D binary
matching is applied for each extracted 3D plane. The shape matching utilizes robust
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(a) Building interior

(b) Building exterior

Figure 4.13: Scene representation as sparse 3D point clouds (left) and corresponding 3D line segments
(right) for building interior (a) and exterior (b). The higher-level geometric features of 3D
line segments expose potential registration elements such as window frames and doors

Chamfer distance and allows for registration of shared geometric structures in
both models, such as windows and doors. The distance maps exhibit distinctive
minimums, even in the presence of several non-shared structures in the edge maps.
The local minimums in the resulting distance maps indicate potential matching
locations of the indoor model, which allow for deriving a transformation matrix T.
Since this coarse registration might be inaccurate due to the discretization and binary
matching step, a refinement procedure identifies 3D line correspondences in 3D and
optimizes T by minimizing Equation 4.7. An illustration of the proposed workflow
is shown in Figure 4.14.

4.3.2 Experimental Results

The proposed alignment approach was evaluated on two acquired datasets consisting
of UAV image sequences capturing the buildings’ exterior and indoor images from a
hand-held camera. The ability to obtain accurate registration results for unique build-
ing model configurations was demonstrated in the EOC dataset, shown in Figure 4.15.
Through two shared openings on both sides of the building, corresponding building
façades could be identified with the proposed matching approach, and joint optimiza-
tion of both building sides has enhanced the registration accuracy (cf. Figure 4.15e)
compared to the registration of solely one building façade (cf. Figure 4.15d). The
obtained registration accuracy in terms of a mean perpendicular distance of matched
3D line pairs was 4.3 cm. However, the registration often might be ambiguous due
to symmetric building shapes or missing reconstruction parts. The TUM dataset
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Figure 4.14: Workflow of the proposed method for aligning interior and exterior building models. Based
on 3D line scene reconstructions for individual image sequences of the building interior
and exterior, multiple planar structures are extracted. A coarse registration is obtained
by pairwise binary matching of the extracted 3D planes, while a subsequent refinement
step minimizes perpendicular distances between corresponding 3D line matches of both
models

represents such a case where a single room has to be registered within a large
façade with repetitive structure (cf. Figure 4.13). Although the identification of the
true location of the room without human knowledge is impossible, the proposed
methodology yielded multiple registration hypotheses from which a human operator
could choose the correct hypothesis. An illustration of multiple matching hypotheses
of the TUM dataset is depicted in Figure 4.16 and the obtained 3D alignment for the
correct hypothesis (3) is shown in Figure 4.17.

Based on the conducted experiments, it can be concluded that the proposed
method offers a useful tool towards the automated generation of LoD-4 building
models obtained from individual indoor and outdoor image sequences. Since the
methodology’s premise is based on the registration of planar openings, it can not
be performed on entirely curved or non-planar façades. However, this assumption
applies to most buildings, since the method only requires a few planar structures.
Even for a small number of corresponding 3D line correspondences, the 2D binary
matching scheme enables a robust and accurate localization performance. The re-
finement achieved by the 3D line optimization significantly improves the coarse
registration results—especially when multiple shared structures are utilized—and
requires only a small amount of 3D line matches. The 3D line segments could be
fragmented due to occlusions in the images, however, by minimizing perpendicu-
lar distances between 3D line matches instead of entire line segments, robust and
accurate registration results can be realized as long as both horizontal and vertical
3D line matches are present in the set of line matches, which have been found in
all of the conducted experiments. One critical assumption is that scale differences
in both models have to be largely eliminated, otherwise the 2D binary matching
has to be performed for different scale-spaces. Although the correct scale could
be recovered for most experiments by including scale optimization in the binary
matching, the computational complexity increases. By incorporating an approximate
prior registration of both models, the matching approach can be reduced to a local
search space and vastly decrease the computational effort.
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(a) Top view

(b) Front view

(c) Side view
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Figure 4.15: Alignment result for the EOC dataset. 3D lines representing the transformed indoor model
( ) and outdoor model ( ) (a-c). 298 corresponding 3D line segments could be identified
on both sides of the building out of 28k and 24k 3D lines of the indoor and outdoor model,
respectively. A joint optimization of 3D line matches on both building sides substantially
enhanced the global registration results towards a mean perpendicular distance between
corresponding 3D lines of 4.3 cm (d-e)
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(a) 2D binary matching map with blue color
indicating low distances

(b) Top-five registration hypotheses illustrated
by colored and numbered boxes

Figure 4.16: Ambiguous registration of a single room to a repetitive building structure exemplified by
the TUM dataset. Chamfer distance maps indicate possible locations of the indoor model
(a). Top-five registration hypotheses (b) yield accurate localization results including the
correct location (3) which can be manually selected by a human operator

4.3.3 Comparison Towards Other Approach

Cohen et al. (2016) proposed another methodology for the same task after release of
the publication presented in this section. They leveraged semantic information for
detecting windows in multiple views to obtain candidate matches for the alignment
task. Unlike the proposed approach, their optimization accounts for scale differences
in the models by comparing matching window outlines. They conducted experiments
on various challenging datasets, and the alignment results have mostly shown
plausible and accurate model registrations. However, the results strongly depended
on the quality of the preceding semantic segmentation of the acquired images and the
quality of the sparse reconstruction. Assessing the accuracy of the alignment on the
basis of 3D points is hard to realize, however, utilizing a 3D line representation has
revealed imprecise alignments for many scenes. The proposed methodology in this
thesis can perfectly exploit these pre-alignments derived from the method of Cohen
et al. (2016), and thus refine the registration results, leading to vast improvements in
the resulting joint building models. Figures 4.18 to 4.20 illustrate the pre-alignment
results derived from the method of Cohen et al. (2016) for additional datasets and
the optimized alignment achieved from the proposed methodology. It is evident that
the refined registration almost perfectly matches both models.
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(a) Top view

(b) Front view (c) Side view

(d) Before 3D optimization (e) After 3D optimization

Figure 4.17: Alignment result for the TUM dataset. 3D lines representing the transformed indoor model
( ) and outdoor model ( ) (a-c). Top-rank matching result includes 400 line matches
out of 15k and 28k 3D lines of the indoor and outdoor model, respectively (d). Mean
perpendicular distance between corresponding 3D lines after optimization is 4.5 cm (e)
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(a) Top view
(b) Front view (c) Backside view

Figure 4.18: Alignment of indoor ( ) and outdoor ( ) models for the Theatre dataset (Cohen et al.,
2016). Results derived from Cohen et al. (2016) (top) and the proposed method (bottom)

(a) Top view (b) Front view

Figure 4.19: Alignment of indoor ( ) and outdoor ( ) models for the Hall dataset (Cohen et al., 2016).
Results derived from Cohen et al. (2016) (top) and the proposed method (bottom)
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(a) Top view (b) Front view

Figure 4.20: Alignment of indoor ( ) and outdoor ( ) models for the House-1 dataset (Cohen et al.,
2016). Results derived from Cohen et al. (2016) (top) and the proposed method (bottom)
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4.4 evaluation of cnn-based single-image depth estimation

methods

Appendix D presents a new and holistic way of evaluating current advanced deep
learning-based SIDE methods. Considering the developments presented in Sec-
tion 3.4, the proposed evaluation scheme was designed to examine the potential of
replacing complex and computationally expensive multi-view 3D vision methods
with current single-image machine learning techniques. Related to UAV-based build-
ing reconstruction, such methods could facilitate the generation of a DSM from a
single image without the requirement to acquire, register and, densely match mul-
tiple images. Such DSMs could be used as proxy models for subsequent trajectory
planning. In addition, SIDE could help to generate 3D reconstructions of hardly
accessible indoor environments and fill possible data gaps. In order to assess the
applicability of such methods, meaningful evaluation is still lacking validity, com-
prising error-prone benchmark datasets and inadequate evaluation metrics. While
recent approaches started to tackle individual characteristics of depth maps, such
as accurate and sharp depth discontinuous and planar predictions of flat scene
objects, established error metrics solely consider global statistics, which can hardly
recover apparent distinct local differences in the depth map quality. As a result,
several works faced problems to substantiate their improvements and had to rely
on visual comparisons with other approaches (Hao et al., 2018; Hu et al., 2019; Liu
et al., 2018). A more comprehensive and quantitative evaluation protocol is therefore
needed for assisting further research in this field. At the same time, an investigation
on the general performance of such methods could yield revealing insights about
the applicability of SIDE methods and their potential to be used for UAV-based 3D
building reconstruction tasks.

A summary of the contribution is as follows:

• Development of meaningful and geometrically interpretable evaluation metrics
for SIDE methods

• Design and acquisition of a high-quality RGB-depth (RGB-D) benchmark
dataset in accordance with the proposed error metrics

• Comprehensive analysis of the performance of current state-of-the-art SIDE
methods

4.4.1 Comparison of Established and Proposed Evaluation Metrics

Evaluating the performance of SIDE methods requires accurate ground truth depth
maps and error metrics that assess the discrepancy between the prediction and the
reference depth map. Although depth maps reflect the complex 3D geometry of
the captured scene, established error metrics merely allow for global assessments
about the accuracy of predictions. Important geometric properties of depth maps,
which are decisive for practical applications, are, however, largely overlooked. The
following global statistics between a predicted depth map Y and its ground truth
depth image Y∗ with T depth pixels are considered as established metrics:

Absolute relative difference: rel (Y , Y∗) = 1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣ /y∗i,j
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Figure 4.21: Visualizations of the proposed error metrics. The flatness and orientations of predicted
planar regions can be evaluated with the planarity errors (a and b). The distance-related
assessment (c) applies standard metrics for different depth range intervals. The location
accuracy and completeness of depth discontinuities is rated by the depth boundary errors (d
and e), while the consistency of depth predictions with respect to a virtual depth plane
can be assessed with the directed depth errors (f)

Squared relative difference: srel (Y , Y∗) = 1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣2 /y∗i,j

RMS (linear): RMS (Y , Y∗) =

√
1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣2

RMS (log): log (Y , Y∗) =

√
1
T ∑i,j

∣∣∣log yi,j − log y∗i,j
∣∣∣2

Threshold: percentage of Y such that max( yi
y∗i

, y∗i
yi
) = σ < thr

However, the following important quality criteria should be addressed within a
holistic evaluation:

• Flatness of planar surfaces and correctness of estimated plane orientations for
planar image regions.

• Precision and completeness of reconstructed depth discontinuities

• Consistency of ordinal depth relations of spatially separated objects

• Consideration of the absolute scene depth for which a methodology provides
trustworthy predictions

A series of error metrics, as illustrated in Figure 4.21, was specifically designed
addressing these properties, comprised of planarity errors (PE), depth boundary errors
(DBE), directed depth errors (DDE), and a distance-related assessment (DRA). Additional
annotations are required for each benchmark RGB-D image in order to allow for
detailed investigations with the proposed error metrics, such as masks of planar
surfaces depicted in the images and accurate boundaries of depth discontinuities. The
computation of PEs includes the generation of ground truth 3D planes π∗k =

(
η∗k , ok

)
of a masked planar surface k, comprised of a normal vector η∗k and an offset to the
origin o. The projection of the masked predicted depth map into 3D points Pk;i,j
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enables a robust determination of a 3D plane πk = (ηk, ok), allowing an assessment in
terms of the planarity of the predicted 3D plane ε

plan
PE and deviation of the estimated

3D plane orientation towards the reference plane εorie
PE . The calculation of DBEs

exploits the occurrence of distinct depth discontinuities obtained by edge extraction
in the depth maps. Ground-truth depth map edges Y∗bin are compared to extracted
edges in the predicted depth map Ybin via truncated Chamfer distance, yielding a
measure of the precision εacc

DBE and the completeness ε
comp
DBE of reconstructed depth

contours. Specifically, a Euclidean distance transform is applied to the predicted
and ground truth edge image E = DT (Ybin) and E∗ = DT (Y∗bin), respectively,
allowing for an efficient shape matching scheme, while distances exceeding a given
threshold are truncated to a maximum distance. The determination of DDEs requires
an orthogonal reference depth plane in the viewing direction of the camera π∗d at a
defined distance. The predicted depth values are assessed in terms of their ordinal
relation to this reference plane, yielding underestimated, overestimated, and correctly
estimated depths as ε−DDE, ε+DDE, and ε0

DDE.
The proposed error metrics can be summarized as follows:

PE (flatness): ε
plan
PE (Yk) = V

[
∑Pk;i,j∈Pk

d
(
πk, Pk;i,j

)]
PE (orientation): εorie

PE
(
Yk, π∗k

)
= acos

(
η>k · η∗k

)
DBE (accuracy): εacc

DBE(Ybin, Y∗bin) =
1

∑i ∑j ybin;i,j
∑i ∑j e∗i,j · ybin;i,j

DBE (completeness): ε
comp
DBE (Ybin, Y∗bin) =

1
∑i ∑j y∗bin;i,j+ybin;i,j

∑i ∑j e∗i,j · ybin;i,j + ei,j · y∗bin;i,j

DDE (correct): ε0
DDE

(
Y , Y∗, π∗d

)
=
∣∣∣{yi,j|dsgn(π∗d , Pi,j) = 0∧ dsgn(π∗d , P∗i,j) = 0

}∣∣∣/T

DDE (overestimated): ε+DDE
(
Y , Y∗, π∗d

)
=
∣∣∣{yi,j|dsgn(π∗d , Pi,j) > 0∧ dsgn(π∗d , P∗i,j) < 0

}∣∣∣/T

DDE (underestimated): ε−DDE
(
Y , Y∗, π∗d

)
=
∣∣∣{yi,j|dsgn(π∗d , Pi,j) < 0∧ dsgn(π∗d , P∗i,j) > 0

}∣∣∣/T

4.4.2 Comparison of Established and Proposed RGB-D Datasets

A customized acquisition setup was developed, comprised of a digital single-lens
reflex (DSLR) camera and a high-quality laser scanner with an interchangeable
custom panoramic tripod head ensuring coincidence of the optical center of the
camera and the origin of the laser scanner coordinate system. The setup was used to
generate a high-quality RGB-D benchmark dataset referred to as IBims-1, consisting
of 100 aligned RGB image and depth map pairs featuring high resolution, low
noise, and accurate depth discontinuous which are less affected of parallax-based
occlusions compared to other datasets. The scenes were recorded in accordance
with the NYU-v2 (Silberman et al., 2012) dataset, which is still the most commonly
used indoor RGB-D dataset. Both datasets exhibit a similar scene variety and depth
distribution, however, IBims-1 RGB-D image pairs provide an extended maximum
scene depth and more challenging scenarios (cf. Figure 4.22). Further details about the
acquisition process and components of the dataset, as well as a comparison towards
other RGB-D datasets, are provided in the attached paper in Appendix D. An in-
depth comparison of NYU-v2 and IBims-1 reveals the superiority of the proposed
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dataset, showing extremely accurate depth values and complete depth maps with
less occlusion, allowing for comprehensive performance analysis of SIDE methods
(cf. Figure 4.23).

4.4.3 Evaluation and Analysis of Single-image Depth Estimation Methods

A comprehensive analysis applying current state-of-the-art methodologies and pro-
posed error metrics on the IBims-1 dataset was conducted, revealing an in-depth
performance comparison and insights into the behavior of convolutional neural
network (CNN)-based SIDE methods. Quantitative results obtained from the investi-
gated methods for NYU-v2 and IBims-1 are listed in Table 4.4. The following section
summarizes the discovered findings and drawn conclusions with the help of selected
samples. A more detailed description of the conducted experiments and comparison
is provided in the attached paper in Appendix D.

Established Error Metrics indicate the comparability of the IBims-1 dataset with
the NYU-v2 dataset, which was exclusively used for training the investigated methods.
Although the acquisition of a novel dataset using alternative sensors naturally leads
to a domain gap, the acquisition of IBims-1 has focused on a comparability with
NYU-v2, as reflected by similar camera parameters, scene depth, and scene variety. A
comparison of global error statistics confirms the validity of the proposed dataset, as
the results show slightly less accurate global errors with a comparable ranking of
the methods. However, more challenging scenes with partially extended maximum
scene depths lead to a slight drop of achieved accuracy, indicating modest overfitting
effects on NYU-v2 amongst others. Nevertheless, established global error metrics do
not reveal certain properties of the predicted depth maps, and the discrimination of
the methods is limited due to the proximity of the results.

Distance-related Assessment (DRA) allows a more in-depth analysis of the per-
formance with regard to different scene depths. The results have shown a strong
association between accuracy and the distribution of scene depths in the NYU-v2

training dataset, as shown in Figures 4.22b and 4.24, and clearly demonstrate the
effects of such imbalanced training datasets. Although differences in the investigated



4.4 evaluation of cnn-based single-image depth estimation methods 93

(a) IBims-1 (b) NYU-v2

Figure 4.23: Visualization of registration accuracy and depth completeness of IBims-1 (a) and NYU-v2
(b). Overlay of grayscale RGB images and colored depth maps for various samples (invalid
or missing depth values are depicted in grey). Top: full image. Middle and bottom row:
detailed views
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Figure 4.24: Distance-related global errors (left: relative error; mid: log10 error and right: root mean
square error (RMSE)) for the shared depth range of NYU-v2 (mean: ,±0.5 std: ) and
IBims-1 (mean: , ±0.5 std: ) using the methods of Ramamonjisoa and Lepetit (2019)
(top) and Li et al. (2017) (bottom)

methods could be revealed, the reliability of all methods substantially decreases with
increased scene depths leading to large errors already for relatively short distances
at 5 m. Further attempts for improving the performance of SIDE methods should
address this challenge by introducing balanced training datasets or sophisticated
ways to tackle this imbalance. A first attempt has been made by Jiao et al. (2018)
in proposing an attention-driven loss for the network supervision that particularly
improves depth predictions for distant regions.

Planarity Errors (PE) have exposed a surprisingly poor ability of the methods
for predicting planar image regions. Although visual inspections of predicted depth
maps suggest the planarity of planar objects such as walls or floors, quantitative
results uncover large discrepancies, particularly in predicting the correct orientation
of 3D planes disclosing deviations between 17◦ and 28◦. This weakness is signifi-
cantly less severe for horizontal planes such as floors and table tops, however, a
reliable estimation of vertical planes in images could not be observed in the exper-
iments, affecting the applicability of SIDE methods in practice. An illustration of
the reconstruction of planar image regions with different methods is exemplarily
shown in Figure 4.25. However, since some methods have focused on this specific
task by usually performing a preceding segmentation of planar image regions and
estimating 3D plane parameters for contiguous planar segments, such as this is the
case for the method of Liu et al. (2018), the performance substantially increased,
reflected by lower planarity errors. Nevertheless, segmentation errors have a direct
impact on the quality of planar regions, often leading to severe errors when planar
regions are missed or split into different segments.

Depth Boundary Errors (DBE) investigate the precision and completeness of
reconstructed depth discontinuities. CNN-based methods often tend to produce
smooth depth maps due to strided convolutions and spatial pooling operations in the
network designs. This loss of local details results in a failure to reconstruct detailed
depth boundaries, leading to spurious scene geometries. Figure 4.26 compares the
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(a) RGB (b) Eigen and Fergus (2015)
(VGG)

(c) Liu et al. (2015)

(d) Laina et al. (2016) (e) Li et al. (2017) (f) Liu et al. (2018)

−20 cm −10 cm 0 cm 10 cm 20 cm

Figure 4.25: Visual results after applying planarity errors (PEs) on different planar regions (top: table,
bottom: wall). RGB with corresponding plane masks ( ) (a). Predictions using different
methodologies (b-f). Colors in the predictions correspond to orthogonal differences of
projected depths towards the reference plane
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(a) Ground truth (b) Eigen and Fergus (2015)
(AlexNet)

(c) Liu et al. (2015)

(d) Laina et al. (2016) (e) Liu et al. (2018) (f) Ramamonjisoa and Lepetit
(2019)

Figure 4.26: Visual results after applying depth boundary errors (DBEs) on IBims-1. Overlay of ground
truth depth map with ground truth edge ( ) (a) and depth map predictions with extracted
edges (colored) using different methods (b-f)

extracted depth discontinuities obtained from different methods. Approaches that
particularly address this problem, such as the methods of Liu et al. (2015) and
Ramamonjisoa and Lepetit (2019), evidently improve the precision and completeness
of reconstructed depth discontinuities at the cost of falsely predicting depth at
textured planar regions. This investigation suggests that gradients seem to serve as
strong hints to the networks. Therefore, distinguishing between intensity changes
due to real depth discontinuities and solely texture is still a major challenge in SIDE.

Directed Depth Errors (DDE) aim to identify predicted depth values that lie on
the correct side of a predefined reference plane but also distinguishes between over-
estimated and underestimated predicted depths. The results have shown significant
differences among the investigated methods, ranging from 70 % to 84 % correctly
estimated depth values for a virtual reference plane at 3 m distance. Less accurate
methods tended to underestimate depth rather than predicting depth overly far.
While predictions at large object boundaries of the room layout, such as door frames,
were predicted coherently, smaller objects, such as furniture, often encountered prob-
lems leading to a deteriorated scene geometry. Figure 4.27 illustrates the performance
of selected methods on a sample image of IBims-1.

Geometric and Radiometric Augmentations of IBims-1 were generated for inves-
tigating the robustness of the methods. While numerous radiometric augmentations,
such as brightness, contrast, saturation, and color channel swaps, did not significantly
influence the methods’ performance, horizontal flips of the images led to a significant
decrease in the accuracy. This finding suggests that the visibility of distinct scene
structures such as floors or grounds on the bottom part of the image represents
important scene priors for the networks. Complementing the conducted experiments
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(a) RGB (b) Eigen et al. (2014) (c) Liu et al. (2015)

(d) Li et al. (2017) (e) Liu et al. (2018) (f) Ramamonjisoa and Lepetit
(2019)

Figure 4.27: Visual results after applying directed depth errors (DDEs) on IBims-1. Ground truth depth
plane at d = 3 m separating foreground from background ( ) (a). Differences between
ground truth and predictions (b-f). Color coded are depth values that are either estimated
too short ( ) or too far ( )

in the paper, an additional experiment on various discrete image rotations has re-
vealed the severity of such priors. Figure 4.28 demonstrates that already slight image
rotations have led to substantial drops in the accuracy of the predictions. It is worth
noting that the method of Li et al. (2015) did not use augmented rotated images for
training their method, while minor augmentations of slight image rotations included
in the training of the network proposed by Ramamonjisoa and Lepetit (2019) has not
significantly improved the quality as well. While original upright images yielded
best results, orthogonal rotations of 90◦, 180◦, and 270◦ have not worsened the results
as severe as diagonal rotations, as best seen for the RMSE in Figure 4.28b. Since
images of the IBims-1 dataset do not exhibit rotations along the roll axis, horizontal
and vertical surfaces, which dominate indoor scenes, remain image-axis aligned for
orthogonal rotations. This confirms the assumption that CNN-based SIDE methods
learn structural scene priors, such as horizontal ground planes and ceilings and
vertical walls, windows, and doors, which guide the scene depth estimation. This
examination provides insights into the learning process of CNN-based methods and
highlights a remaining challenge in this field. Evaluating deteriorated images by
adding different amounts of noise and blur to the input images has led to decreased
qualities of the predictions for all methods. Specifically, the methods started to sub-
stantially react on these deteriorations for 10 % of Salt and Pepper noise, Gaussian
noise with a variance of 0.01, and a Gaussian blur with σ > 2.

Textured Planar Surfaces and Variations in Scene Illumination were ad-
ditionally investigated with an auxiliary part of the IBims-1 dataset in order to
gain deeper insights into the networks’ behavior. By capturing close-up images of
different patterns and pictures hang on a clearly visible wall, an in-depth analysis
of the influence of gradients and illusory scene depth for SIDE methods could be
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Figure 4.28: Influence of image rotation on the performance of SIDE methods exemplary shown for the
methods of Liu et al. (2015) ( ) and Ramamonjisoa and Lepetit (2019) ( ) using absolute
relative error (a) and RMSE (b). Average errors ( , ) and ±0.5 standard deviation ( , )
on the IBims-1 dataset

conducted. The results have shown that all investigated methods reacted to these
planar textured patterns by predicting a non-existent depth in accordance with the
gradients (cf. Figure 4.29a). This confirms the assumption that gradients and texture
serve as strong hints for the network, however, the effect is unexpected severe and
should be considered when applying such methods in practice, in particular for
navigating autonomous robots. A similar finding has been revealed by comparing
depth predictions of the same scene under various lighting conditions, ranging from
natural to diffuse and directed artificial lighting. In particular, directional lighting
caused severe changes in the predictions, as shown in the bottom row of Figure 4.29b,
which again can be explained by gradients occurred from strong shadows on the
wall. Although applications involving images that capture artificial patterns on a
wall rarely seem to occur in practice, scene lighting is omnipresent and crucial for
the quality of the predictions.
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methods (rows) of the input images (first row). Predicted depth maps are color-coded
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5
C O N C L U S I O N

This thesis addressed different challenges in using unmanned aerial vehicle (UAV)
imagery for photogrammetric applications and contributed towards the improvement,
automation, and safety of photogrammetric survey campaigns, as well as for further
processing of building models towards the generation of level of detail (LoD)-4
building models. The following chapter concludes with a summary of the main
contributions in Section 5.1, an investigation of the applicability of the proposed
methodologies in related UAV-based remote sensing fields (Section 5.2), and thoughts
on potential future developments in Section 5.3.

5.1 summary

Although UAV-photogrammetry is already at an advanced stage of research and has
proven its maturity for 3D modeling, witnessed by increasing popularity in scientific
and industrial fields, the challenges addressed in this thesis have persisted.

The following contributions from this thesis can be drawn:

• An image-based georeferencing methodology for UAV images was proposed
to accurately register UAV images towards aerial reference images. Based
on an in-depth analysis of the matching failure using current feature-based
methods for this task, the revealed bottlenecks include differences in image
scale and rotation, the discriminative performance of feature descriptors, and
the misuse of the ratio-test. A novel feature-based image matching strategy
addresses the identified limitations by proposing a superpixel-based dense
feature extraction strategy, a one-to-many feature matching scheme, and a
global geometric verification strategy that allows to geo-register UAV imagery
with pixel-level accuracy towards georeferenced image data, such as aerial
images, orthophotos, or satellite images

• Integration of semantic cues into automatic 3D UAV path planning was pre-
sented, demonstrating the possibility of casting expert knowledge into algo-
rithms for designing optimal trajectories for multi-view stereo (MVS) image
acquisition, such as integrating photogrammetric properties and respecting
flight safety by avoiding potential hazardous flight zones, such as roads, wa-
ter basins, streets, or cars. The proposed model-based path planning strategy
exploits a semantically-enriched 3D proxy model of the environment that de-
fines accessible, partially accessible, and prohibited flight areas. The proposed
methodology discretely optimizes for a short UAV image acquisition path
allowing for detailed and complete 3D reconstruction models in an intended
model resolution using standard 3D reconstruction pipelines on the acquired
images

• An automatic methodology for aligning individual indoor and outdoor build-
ing models was proposed that focuses on accurate geometric registration of
shared building parts, such as window frames and doors. A 3D-line based scene
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102 conclusion

representation allows to define multiple matching façade hypotheses between
indoor and outdoor models, and a 2D binary matching scheme utilizing Cham-
fer distance proposes a set of transformation hypotheses. A refinement of the
registration based on corresponding 3D line segments finally yields centimeter-
level registration accuracies, leading to generate complete 3D building models
in accordance with LoD-4 standards

• A novel evaluation protocol for assessing the performance of single-image
depth estimation (SIDE) methods was proposed, comprising geometrically-
relevant evaluation metrics and a high-quality indoor RGB-depth (RGB-D)
dataset. The developed error metrics allow for obtaining reliable assessments
about the suitability and the expected accuracy of such methods for certain
applications. A comprehensive analysis of current SIDE methods has identified
potential application areas and remaining challenges that should be addressed
in further research in this field. The results have shown that the preservation of
sharp depth discontinuities and planarity of actual planar image regions tend
to be mutually contradictory due to the networks’ sensitivity towards image
gradients. The availability of merely imbalanced training datasets in terms of
depth distribution is reflected in the weak performance in estimating distant
regions

5.2 applicability in related fields

Although this thesis focused on the application of reconstructing as-built 3D building
models, the proposed methods contribute to a much broader range of application
fields. As already extensively outlined in Section 2.2, UAVs are currently becoming
increasingly important in almost every field of remote sensing, including envi-
ronmental monitoring, agriculture and forestry, cultural heritage preservation and
beyond. Several of them could benefit from the proposed methodologies. A selection
of various application areas is described hereafter:

• One task of environmental monitoring involves revealing temporal land cover
changes. Depending on the temporal difference between acquisition campaigns,
the mapped topology could have undergone dramatic changes in appearance.
Accurate registration between the acquisition epochs is necessary for uncov-
ering changes in the scene. Since the proposed image matching strategy has
proven to be robust against temporal and radiometric changes and achieves
registration accuracies at pixel-level even across different modalities, it can
provide a valuable tool for this task

• A similar challenge arises when natural disasters destroy landscapes and hu-
man habitats, such as residences and infrastructure. In order to optimize disaster
management, a quick and accurate assessment of the extend of destruction is
required. Precise registration of a UAV-based orthomosaic of the affected envi-
ronment with a reference map can help to rapidly localize destroyed objects
and areas

• The increasing use of UAVs for assisting the excavation processes of cultural
heritages requires high temporal acquisition frequencies for monitoring and
planning purposes. Due to the enormous topological changes between the
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short time periods and the spatial limitation of suitable locations for deploy-
ing ground control points (GCPs), the automated and robust image-based
registration strategy could facilitate the excavation progress documentation
without obstructing the excavation activities. With regard to the preservation of
large-scale ancient sites, the proposed automated flight planning methodology
could be applied to generate detailed 3D reconstructions of individual objects
while avoiding hazardous flights above protected or currently excavated areas

• Civil engineering utilizes UAVs for monitoring and inspecting transportation
systems, such as bridges. The proposed flight planning pipeline could be
applied to generate a trajectory that allows detailed and close-up views for all
parts of a bridge, while semantic restrictions can be applied to limit hazardous
flight maneuvers above crowded roads

5.3 future work

Although the proposed methodologies have proven to enhance UAV-photogrammetry
through a set of profound synthetic and real-world experiments, aspects of the ap-
proaches still can be refined while further challenges remain for subsequent research
directions:

• One main limitation of the proposed image matching approach is its restriction
to nadir images. A generalized approach for matching both nadir and tilted
or oblique UAV images would involve the adaptation of the geometric match
verification step to epipolar geometry

• Despite the relatively moderate effort required for generating a coarse proxy
model of the environment for the path planning approach by acquiring a
small amount of overview images, it would be desirable to reduce the initial
acquisition to a single image. Despite the overwhelming progress in the field of
SIDE, the applicability of these methods for UAV images is still at an early stage.
In order to obtain accurate and reliable depth predictions from single images,
domain adaptation as well as extreme scaling differences due to different flight
altitudes pose further challenges in this field

• First efforts towards increasing the safety of UAV flights during an image
acquisition campaign was initiated with the proposed semantically-aware path
planning approach. Current legislation, however, often stipulate the permanent
visibility of a UAV for the operating pilot. This condition should be integrated
into an automated flight planning approach by e.g., introducing additional
visibility constraints or a joint optimization of both UAV and pilot paths

• Regarding the generation of satisfying photo-realistic 3D building models from
UAV images, especially tightly built-up environments often lead to unavoidable
gaps in the 3D model caused by occlusions from adjacent buildings or vegeta-
tion. A geometric completion of the building could be achieved by exploiting
symmetrical features, while modern generative techniques, such as conditional
generative adversarial networks (cGANs), can be used to enrich the occluded
façades with realistic textures corresponding to those of the reconstructed
building
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a.1 introduction

Emerging as novel image acquisition platforms, Unmanned Aerial Vehicles (UAVs)
bridge the gap between aerial and terrestrial photogrammetry and offer an alternative
to conventional airborne image acquisition systems. In comparison to airborne or
satellite remote sensing, UAVs stand out for low cost, the utility to be used in
hazardous or inaccessible areas and the ability to achieve high spatial and temporal
resolutions. Table A.1 compares the main features of UAVs and manned aircrafts
based on the surveys of (Eisenbeiß, 2009) and (Nex and Remondino, 2014). In contrast
with manned aircrafts, UAVs have smaller coverage due to lower flight altitude, but
they are able to achieve high ground sampling distance (GSD) with lower cost and
better flexibility. While manned aircrafts require big landing fields and pilots, UAVs
only need small landing sites and can be remotely controlled, therefore they can
work even in hazardous areas and severe weather conditions. Hence, UAVs have
been widely involved in remote sensing applications, such as disaster management,
urban development, documentation of cultural heritage or agriculture management
(Colomina and Molina, 2014).

Accurate geo-registration of UAV imagery is a prerequisite for UAV geolocaliza-
tion and many photogrammetric applications, such as generating georeferenced
orthophotos, 3D point clouds or DSMs. However, accurate geo-registration of UAV
imagery is still an open problem. Limited by on-board payload restrictions, UAVs are
equipped with lightweight GNSS/IMU systems, whose georeferencing accuracies
are in the range of meters (Chiabrando et al., 2013) and far from the centimeter-level
accuracy of airborne photogrammetry (Jacobsen et al., 2010; Zhao et al., 2014). In
order to achieve higher geo-registration accuracy beyond hardware limits, we use
a pre-georeferenced aerial or satellite image as a reference, and register the UAV
image to the reference image with a novel feature-based image matching method.

In the field of image matching, numerous algorithms for different matching
scenarios have been proposed in the last few decades. The biggest challenge for UAV
and aerial image matching lies in the substantial differences in their scales, viewing
directions and temporal changes. For instance, the flight altitude of UAV platforms
is about 50 m− 120 m above the earth whereas aerial images are usually captured at
800 m− 1500 m from different viewing directions. Although state-of-the-art feature-
based image matching methods are generally working fine for many different image
pairs and are said to be invariant to changes in viewpoints, wider baselines and local
changes of the scene, they surprisingly failed in many of our test cases. Figure A.1
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Table A.1: Comparison between UAV and manned aircraft photogrammetry

UAV Photogrammetry Manned Aircraft Photogrammetry

Coverage m2 - km2 km2

Image resolution/GSD mm− cm cm− dm

Geo-registration possibility low quality GNSS/IMU high quality GNSS/IMU
meter-level accuracy centimeter-level accuracy

Price and operating cost low - moderate high

Flexibility applicable in hazardous areas less mobile
works in cloudy/drizzly weather weather-dependent
remotely controlled pilot needed

(a) Container (b) Highway

Figure A.1: Typical cases from the datasets (a) Container and (b) Highway showing the results of
matching UAV and aerial images using SIFT, where, left of the subfigure is a downsampled
UAV image and right is a cropped aerial image. Green lines indicate the matches detected
by SIFT, almost all of them are wrong

illustrates two typical cases of UAV and aerial image matching using SIFT (Lowe,
2004).

Even though the scale difference has been eliminated by down sampling the UAV
image towards the aerial image and the aerial image has been cropped to the same
region as the UAV image, no reliable set of correct matches could be found in the
similar looking image pairs. This finding motivated us to analyze the reasons for
the failure and to develop a new image matching strategy facilitating a successful
and robust matching of imagery with wide baselines and substantial geometrical
and temporal changes. The obtained 2D matches are used for geo-registration of
the UAV image with reference to the aerial image. The results demonstrate that our
approach achieves decimeter-level co-registration accuracy and comparable absolute
geo-registration accuracy as the reference image.

In summary, the main innovations of this paper cover following aspects:

• An exhaustive analysis of limiting cases of SIFT-based image matching for
UAV and aerial image pairs. The reasons for the matching failure are identified
by investigating the influence of different SIFT and ASIFT parameters, image
rotations and the ratio-test.
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• A novel feature-matching pipeline constituted of a dense feature detection
scheme, a one-to-many matching strategy and a global geometric verification
scheme.

• A comprehensive analysis of the matching quality with ground-truth correspon-
dences and a demonstration of various experiments for evaluating absolute
and relative accuracies of generated photogrammetric 3D products.

The paper is organized as follows: Section A.2 gives a review of related works;
Section A.3 introduces limiting cases for SIFT matching and outlines the key factors
accounting for the failure of the matching. Section A.4 proposes the novel feature
matching method for a robust and reliable matching result for wide-baseline image
pairs. In Section D.5, various experiments are carried out to validate the accuracy of
the proposed matching method. Beside a qualitative and quantitative analysis of the
obtained matches of UAV and aerial images, 3D errors of triangulated matches from
geo-registered UAV images are compared towards 3D points from aerial imagery
and towards terrestrial measured ground control points (GCPs). Additionally, DSMs
generated from geo-registered UAV images and from aerial images are compared
and a joint 3D point cloud is presented. Finally, Section A.6 discusses the applicability
and limitations of the proposed method and Section A.7 concludes the paper and
describes further applications.

a.2 related work

The availability of georeferenced imagery is a prerequisite for many photogrammetric
tasks, such as the generation of registered 3D point clouds, DSMs, orthorectification,
mosaicking or 3D reconstructions of buildings. The key for precise georeferencing of
the mentioned products lies in an accurate geo-registration of the captured images,
which can be tackled in different ways. In the field of aerial photogrammetry high-
end GNSS/IMU localization sensors are used which allows direct georeferencing of
the images without the need of external GCPs or photogrammetric adjustments in
a post-processing step. Many established systems in aerial photogrammetry have
access to such accurate sensors and achieve centimeter-level registration accuracy.
The relatively low-cost DLR 3K sensor system (Kurz et al., 2012) presents a camera
frame carried by either a airplane or helicopter and consists of three Canon EOS 1Ds
Mark II cameras looking in nadir, forward, and backward direction developed for
real time disaster monitoring. The synchronized image acquisition and localization
information provided by the expensive and heavy GNSS/IMU system (4 kg in total)
allows for direct georeferencing accuracies of 10 cm (Kurz et al., 2014). The Vexcel

UltraCam (Vexcel UltraCam) offers a high level optical sensor for high resolution
aerial photogrammetry with more than 100 megapixel. Combined with the high-end
UltraNav-GNSS/IMU system (Vexcel UltraNav), 5 cm accuracy for direct georefer-
encing can be achieved. Due to payload limitations, many commercial UAVs are
usually equipped with lightweight sensors providing localization accuracies in the
range of meters (Verhoeven et al., 2013), which is not sufficient enough for pho-
togrammetric applications using direct georeferencing. An investigation regarding
the ability of direct georeferencing with UAV systems shows that the geolocalization
accuracy of current UAV systems is still too low to perform direct applications of
photogrammetry at very large scale (Chiabrando et al., 2013).
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For this reason, image-based methods are usually utilized to facilitate geo-registration
of UAV imagery in centimeter-level accuracy. One way to augment geo-registration
results is to deploy GCPs, which is even recommended for high-end devices due
to the existence of systematic errors (Gerke and Przybilla, 2016). Nevertheless, the
deployment of GCPs is often expensive, requires fieldwork operations and is unprac-
tical or even impossible for hazardous or inaccessible regions. Due to the growing
accessibility of high resolution aerial and satellite imagery, image matching ap-
proaches present a promising alternative for geo-registration. Here, geo-registration
of UAV imagery is done by matching UAV images with georeferenced databases,
such as 3D models, aerial images, orthophotos or satellite images. An accurate geo-
registration of UAV images depends on the accuracy and reliability of the image
matching result. Although image matching is a long-standing problem and lots of
research has been performed in this area, still many cases exist where established
methods fail or perform poorly. The task of matching UAV and aerial images can
be characterized by wide baselines, large differences in viewpoints, and geometrical
as well as temporal changes. Among intensity-based and frequency-based match-
ing methods, local feature-based matching methods perform best with regard to
these matching conditions (Zitová and Flusser, 2003). Among various feature-based
matching algorithms, SIFT (Lowe, 2004) stands out for its robust scale and rotation
invariant property. Although many variants and alternatives have been developed,
such as its approximation SURF (Bay et al., 2008) and the binary descriptor BRIEF
(Calonder et al., 2010), investigations demonstrate that SIFT is still more robust to
viewpoint changes and common image disturbances than both BRIEF and SURF
(Calonder et al., 2012). ORB (Rublee et al., 2011), which is a combination of the FAST
detector (Rosten et al., 2010) and the BRIEF binary descriptor is a good choice for
real-time applications but several evaluations state that it can not reach the repeata-
bility and discriminative properties of SIFT (Bekele et al., 2013; Dwarakanath et al.,
2012; Heinly et al., 2012; Juan and Gwun, 2009). KAZE (Alcantarilla et al., 2012) is
a new development and succeeds especially in presence of deformable objects. As
a variant of SIFT, a full affine invariant matching framework ASIFT (Yu and Morel,
2011) was proposed to handle big differences in viewpoints by simulating a series of
transformed images to cover the whole affine space. In the case of matching images
with large differences in viewpoints, ASIFT has more robust performance than SIFT,
which was also confirmed in the evaluation presented in Apollonio et al. (2014).

Apart from feature-based wide baseline matching, other concepts also investigate
different methods for geo-registration of UAV imagery. Intensity-based methods, like
an on-board correlation-based method to register UAV images towards aerial images
in case of GNSS outages (Conte and Doherty, 2009) or deformable template matching
with image edges and entropy as feature representation (Fan et al., 2010) do usually
not perform well in case of temporal and geometrical changes. More recent work also
focus on matching terrestrial and aerial images showing extremely large viewpoints
changes. A new feature representation using a Convolutional Neural Network (CNN)
is learned for geolocalizing ground-level images with an aerial reference database
(Lin et al., 2015). However, manual interventions are needed to estimate the scale for
ground-level queries, and the absolute orientation of the query image can hardly be
estimated. Shan et al. (2014) synthesizes aerial views from pre-aligned Google Steet
View images using depth maps and corresponding camera poses, which are then
matched with aerial images using SIFT. A similar approach is presented by Majdik et
al. (2015), where UAV images are matched with geo-tagged street view images using
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ASIFT achieving meter-level global accuracy. However, only low altitudes and oblique
images facing building façades are considered for the geo-registration. Aicardi et al.
(2016) adopts an image-based approach for co-registering multi-temporal UAV image
datasets, however, it only estimates the relative transformation between the epochs,
while the absolute transformation of the epoch is not solved. Finally, Xu et al. (2016)
presents an fast and efficient way for UAV image mosaicking without the explicit
computation of camera poses, however the image mosaics are not geo-registered.

Although considerable attempts and progress have been made regarding this
topic, many of them rely on intensity-based matching methods, which are proven to
be unstable in case of geometric or temporal changes. In this sense, robust image
matching against large scale and viewpoint differences is the key to solve the problem
for which feature-based approaches are still the methods of choice. Some mentioned
approaches focus on improving the matching result for extremely large viewpoint
changes, but still do not reach the desired global georeferencing accuracy.

Our approach is based on previous work (Koch et al., 2016a; Zhuo et al., 2016),
which have been proven to work for complex matching scenarios with multi-scale
images. Compared with the state-of-the-art works mentioned above, our method is
an advancement in following aspects:

• To handle the large differences in scale and rotation between image pairs, we
use a novel feature-matching approach which can overcome the challenge and
robustly deliver abundant matches.

• Our method works for data of different scales, e.g., aerial images, aerial or-
thophotos and satellite images.

• Our method achieves not only decimeter-level co-registration accuracy, but
also comparable absolute accuracy as that of the reference image, which are
georeferenced in the conventional photogrammetric way.

a.3 matching performance evaluation using sift features

This section introduces different UAV and aerial image pairs and a comprehensive
analysis of the matching performance using SIFT and ASIFT. Although one would
expect that SIFT matching can successfully match the presented images, a robust
and successful matching is not possible. In order to figure out why the popular
SIFT matching method surprisingly fails, we analyze the influence of different
SIFT parameters, such as octaves and levels, the ratio-test, but also image rotations.
Experimental results demonstrate that the rotation invariance of SIFT is not as good
as it has been considered to be and the deficiency in the rotation estimation of SIFT
leads to non-optimal matching results. In addition to that, many correct matches
are either not nearest neighbors in feature space or are rejected after applying the
ratio-test.

a.3.1 SIFT

Among the state-of-the-art matching algorithms, SIFT has been proven to be scale
and rotation invariant and outperform other local descriptors in various evaluations
(Bekele et al., 2013; Dwarakanath et al., 2012; Heinly et al., 2012; Juan and Gwun,
2009). Besides, the ratio-test proposed by Lowe (2004) is widely applied to discard
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(a) Container (b) Urban1 (c) Pool1 (d) Building

(e) Highway (f) Urban2 (g) Pool2 (h) Googlemaps

Figure A.2: Datasets used in this paper: Each column represents one (pre-processed) aerial reference
image and two UAV target images. The UAV image in (d) should be matched to the aerial
image (top right) and to a cropped part of a googlemaps image (h)

mismatches. In view of the substantial differences in scale and rotation of the
UAV image and the aerial image, it makes sense to implement the SIFT matching
algorithm (we use the OpenCV 3.0 implementation). This matching method is noted
as "standard SIFT" in the following text.

The ratio-test discards mismatches by rejecting all potential matches with similar
descriptors. It works well in most cases, however, applying the ratio-test in feature-
based matching methods for images with repetitive structures often causes problems
with similar descriptors. In this case, the distance ratio can be so high that these
features would probably be defined as outliers. This can be critical especially when
only a few correspondences remain after matching. To investigate how many correct
matches are actually discarded by the ratio-test, we implemented SIFT matching and
counted the correct matches before and after the ratio-test. Particularly, the distances
of first two nearest neighbors are computed and compared with the threshold.
Considering that the number of matches can be numerous and it is unrealistic to
check every single match manually, we therefore computed the fundamental matrix
between the two images with dozens of manually selected image correspondences,
and then apply the epipolar constraint using the derived fundamental matrix to
filter the raw matches. Afterwards, the filtered matches are again checked by manual
inspection to ensure the purity of correct matches.

It needs to be pointed out that only a manually cropped part of the aerial image
with almost the same image content of the UAV image was used for interest point
detection, otherwise SIFT would fail to find correct matches for any dataset. This
simplification of the matching problem is not feasible in practice and is only used for
this analysis. The proposed method is able to match the original uncropped image
pairs as this will be discussed in Section D.5.
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Levels
1 2 3 4 5 6 7 8

O
ct

av
es

1 12 / 50 15 / 61 15 / 64 17 / 74 17 / 84 11 / 91 17 / 78 14 / 91

2 13 / 61 17 / 71 12 / 89 20 / 103 25 / 124 16 / 134 26 / 137 21 / 148

3 13 / 63 17 / 76 13 / 93 22 / 108 26 / 131 17 / 142 27 / 148 22 / 153

4 13 / 62 17 / 77 13 / 94 22 / 109 26 / 134 17 / 146 27 / 155 22 / 158

5 13 / 62 17 / 77 13 / 93 22 / 110 26 / 136 17 / 148 27 / 157 22 / 159

Table A.2: Analysis of SIFT performance with different octaves and levels for the Container dataset.
Cells contain the number of correct matches (first number) from the set of remaining matches
(second number) after applying the ratio-test with a fixed threshold of 0.75. Due to the scale
adaption of the UAV image the number of keypoint detections saturates after two octaves.
By increasing the levels more keypoints can be detected but the ratio of inliers decreases

To ensure the best matching result using the SIFT detector and descriptor we
comprehensively tested different parameters. Specifically, we analyzed the effect of
different ratio-test thresholds and different parameters of the SIFT detection, like the
number of octaves and levels per octave. Other parameters were kept constant as
they have only minor effect on the matching result. Concretely, we set the contrast
threshold to 0.04, the edge threshold to 10 and the sigma of the Gaussian to 1.6. An
extensive analysis was carried out for all of the datasets in Figure A.2, while only the
results of the Container dataset is depicted. Nevertheless, we found similar results
for all of our image pairs.

In a first step of our analysis, we study the effect of different numbers of octaves
and levels in the SIFT detection step, while fixing the ratio-test threshold to a
commonly used value of 0.75. The number of octaves is related to different image
samplings, while the number of levels represent the number of scale spaces per octave
and is therefore related to the amount of image blurring. Table A.2 lists the number
of feasible correct matches from the set of remaining matches after applying the
ratio-test for different values of octaves and levels. Due to the low image resolutions
of the downsampled UAV image (664× 885 pix) and cropped aerial image (971× 665
pix), the number of keypoint detections saturates after two octaves. While increasing
the number of levels per octave results in more matches surviving the ratio-test, the
number of inliers stays constant at a very low number of around 20 matches.

According to this experimental result, we analyze different thresholds of the ratio-
test in a next step while limiting the SIFT detector to three octaves and five levels.
Like in the analysis above, we again count the number of remaining matches after
the ratio-test and the number of inliers among them, as illustrated in Figure A.3a.
A maximum number of around 100 correct matches can be found when only the
first nearest neighbor is considered (equivalent to a threshold of 1). Comparing this
number to the total number of around 4000 matches this is a very low ratio of inliers
as can also be seen in Figure A.3b. Increasing the impact of the ratio-test (equivalent
to lower values of the threshold), a lot of correct matches are rejected due to a high
similarity to other keypoint descriptors, while the ratio of outliers is decreasing at
the same time.

According to the results in Figure A.3b, the best ratio of inliers is suggested for
threshold values between 0.3 and 0.5, but the absolute numbers of correct matches
for these values is below ten and therefore not a reliable matching result. For our
further analysis we choose a ratio-test threshold of 0.75, which is a good trade-off
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Figure A.3: Influence of different ratio-test thresholds for the Container dataset. (a) Number of remain-
ing matches after applying ratio-test (solid) and number of correct matches among them
(dashed). (b) Ratio of correct (dashed) and incorrect (solid) matches

Scenario Image fragment size (pix) Keypoints Correct matches

Aerial UAV Aerial UAV Nearest Ratio-test Nearest 100

Container 971× 665 664× 885 3763 3682 81 27 690

Highway 617× 908 571× 762 2768 2560 46 22 521

Urban1 1197× 1643 871× 1307 10335 6266 47 27 304

Urban2 1199× 1603 871× 1307 9642 5757 293 176 1031

Pool1 838× 1075 804× 1071 5096 4202 87 47 451

Pool2 976× 1074 799× 1065 5788 4047 152 103 675

Building 1100× 830 687× 1030 4072 3270 76 39 498

Googlemaps 630× 944 924× 1668 3411 5963 45 21 565

Table A.3: Analysis of standard SIFT-matching on the proposed datasets in Figure A.2. Matching was
performed on downsampled UAV images and cropped aerial images on the same image
content of the UAV image. Keypoint detection was limited to 3 octaves and 5 levels and
ratio-test threshold was set to 0.75. Results show number of feature points detected by the
SIFT-detector, correct matches considering only first nearest neighbor, after applying the
ratio-test and possible matches according to 100 nearest neighbors

between rejecting most of wrong matches and keeping a relatively high ratio of
inliers.

Experimental results for the other datasets with these parameters are listed in Table
A.3, which confirmed the difficulty of matching this kind of image pairs. Particularly
in automatic registration systems for online geolocalization, it is crucial that the
system is able to decide whether an image pair could be registered successfully
or not. A high and reliable number of matches between 500 and 1000 is therefore
indispensable for a trustable decision, compared to a rather low number below 50
like in our experiments, which could also satisfy random geometric transformations
by chance.

However, the number of correct matches (using the same feature points and
descriptors) can be significantly increased, if multiple nearest neighbors in feature
space are considered as matching candidates. Figure A.4 shows the cumulative
number of correct matches for the first 100 nearest neighbors for the Container
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Figure A.4: Cumulative number of possible correct matches considering multiple nearest neighbors in
the feature matching for the Container dataset.

dataset. The last column of Table A.3 lists the number of possible matches for the
other datasets. This significant increase of correct matches for all datasets indicates
that many corresponding keypoints in an image pair are not described perfectly
by the SIFT descriptor, but can still be found among the first nearest neighbors in
feature space.

a.3.2 Influence of Rotation

As shown in the matching results above, SIFT has unsatisfactory performance for
matching UAV and aerial images. Considering the fact that the UAV and aerial images
are both almost nadir view and the difference in scale has already been eliminated,
the only observable difference is that the two images are not aligned in rotation.
Therefore, the rotation invariance property of SIFT needs to be reconsidered and
evaluated. To investigate into the problem, a series of experiments were carried out
to test the influence of rotation. As listed in Table A.4, we compare the standard SIFT
matching on the original unaligned images (denoted by ’Std. SIFT’) from Table A.3
and on the aligned image (denoted by ’Std. SIFT Rotation aligned’); besides, instead
of letting SIFT assign the orientation for each keypoint, we forced the orientation
of all the detected key points in the aligned images manually to be a fixed value,
here it was 0

◦ for aligned images (denoted by ’Fixed-orientation’). The matching
result was represented by the number of putative correspondences after ratio-test
(denoted by ’Matches’) and the correct matches among them (denoted by ’Inliers’). It
is worth noting that the performance of matching between rotation-aligned images
using standard SIFT does not get improved; however, the number of inliers increased
substantially after we fixed the orientation of the keypoints. The experiment result
shows that the rotation invariance of SIFT does not always work well, at least for the
scenes in our datasets.

For further investigation into the influence of rotation, we also made a comparison
with the ASIFT method, as Table A.5 shows. First, we compared the fixed-orientation
SIFT with standard ASIFT on aligned images. As we achieved fewer correct matches
for a tilt value of 4 at even higher computation cost, we, inspired by this finding,
also fixed the orientation in ASIFT (denoted by ’Fixed-orientation’) in the same way,
and the matching performance get improved significantly. Comparing the results
in column 2 and column 4, it can be seen that when the orientation is fixed, SIFT
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Scenario Inliers / Matches

Std. SIFT Std. SIFT
Rotation aligned

SIFT
Rotation aligned
Fixed-orientation

Container 27 / 320 22 / 349 30 / 306

Highway 22 / 204 26 / 263 52 / 277

Urban1 27 / 471 17 / 496 43 / 478

Urban2 103 / 635 179 / 677 267 / 734

Pool1 47 / 391 65 / 446 92 / 404

Pool2 103 / 635 179 / 677 267 / 734

Building 39 / 349 27 / 381 51 / 396

Googlemaps 21 / 535 21 / 509 35 / 394

Table A.4: Analysis of the influence of image-rotation on matching performace. Inliers and matches for
downsampled UAV images and cropped aerial images, rotation-aligned UAV images and
rotation-aligned UAV images with fixed orientation in the SIFT-detector

Scenario Inliers / Matches

SIFT
Rotation aligned
Fixed-orientation

Std. ASIFT ASIFT
Rotation aligned
Fixed-orientation

Container 30 / 306 25 / 281 46 / 283

Highway 52 / 227 56 / 249 70 / 237

Urban1 43 / 478 46 / 512 61 / 508

Urban2 229 / 829 254 / 1069 281 / 994

Pool1 92 / 404 73 / 346 109 / 404

Pool2 267 / 734 255 / 600 375 / 620

Building 51 / 394 45 / 382 78 / 424

Googlemaps 35 / 394 42 / 330 47 / 430

Table A.5: Comparison with ASIFT. Inliers and matches for pre-aligned images using standard SIFT
with fixed orientation, ASIFT and pre-aligned images on ASIFT with fixed orientation

results in almost equivalent inliers than ASIFT, however, for a robust matching the
number of inliers is still far from enough.

Based on the above findings, we summarize that the challenges of matching UAV
imagery and airborne imagery stem mainly from the following aspects: inadequate
matching candidates, ambiguous keypoint orientations and misuse of the ratio-test.
To be more specific:

• The rotation invariance of SIFT does not work well when the images have
large differences in scales and viewpoints. In standard SIFT, the dominant
orientation is detected automatically. Instead, if we fix the orientations of SIFT
keypoints, the number of correct matches increases significantly.

• When the image has repeated patterns, the local descriptors of the repeated
structure can be so similar that the distance ratio between the nearest and
second nearest neighbor is no more distinctive. As an important step in the stan-
dard matching pipeline, the ratio-test actually discards many correct matches
and the remaining correspondences are not reliable. In contrast, considering
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(a) UAV image (b) Aerial Image

Figure A.5: Feature points highlighted in red, namely all the pixels at the boundaries of superpixels,
after removing those feature points located at homogeneous areas for (a) the pre-aligned
UAV image and (b) the aerial image of the Container dataset with 1000 SLIC superpixels

multiple nearest neighbors as matching hypotheses can help to increase the
matching performance enormously.

a.4 proposed image matching method

According to the reasons of the matching failure presented in Section A.3, the new
matching approach is designed to eliminate each of the exposed bottlenecks. A new
feature detection scheme increases the number of matchable keypoints which is
necessary for a reliable matching result. To avoid loosing many correct matches
which are not nearest neighbor in feature space or which are rejected by the ratio-test,
we introduce a one-to-many matching scheme. To extract correct matches among
them, a direct method using histogram voting is performed instead of the commonly
used RANSAC scheme. An extension of this method can also handle unknown image
rotations. In the end, the detected matches are used to estimate camera poses of the
UAV images in the coordinate system of the reference images.

a.4.1 Prerequisites

The proposed method assumes that the scale difference between both images can
be estimated and mostly eliminated in advance. This requirement can be generally
fulfilled, as accurate positional information of aerial images is always available and
UAV images are tagged with both GNSS and barometric altitude information. One
of both sensors should deliver reliable data in any case.

Secondly, a pre-alignment with respect to the image rotation can be achieved
using the on-board compass of the UAV. The next sections assume that a rough
pre-alignment of the image pairs is feasible, but in case of no or only imprecise image
heading information, Section A.4.5 presents an extension of the proposed method
which allows to recover an unknown image rotation.
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a.4.2 Dense Feature Extraction

The essential prerequisites of robust matching are sufficient and uniformly dis-
tributed features whose density should reflect the information content of the image.
According to the results in Table A.4 and Table A.5, established keypoint detectors,
such as in SIFT, do not always find a sufficient number of matchable features. To
ensure a large number of inliers, a dense detection scheme is desired, but instead
of using all pixels as potential feature points, only keypoints should be considered
which are located along strong image gradients. This does not only reduce computa-
tional time but also rejects hardly matchable feature points at homogeneous areas
with weak descriptors.

In view of the fact that image segmentation using SLIC (Simple Linear Iterative
Clustering) (Achanta et al., 2012) can efficiently generate compact and highly uniform
superpixels, whose boundaries mostly define strong variations in the intensities of
the local neighborhood, like edges and corners, we therefore adopt all the pixels at
the boundaries of superpixels as feature points. In practice, the number of desired su-
perpixels can be specified according to the need for feature density and compactness.
Since the relative scale difference of both images is known beforehand, the number
and compactness of superpixels in both images are similar and therefore ensures the
extraction of identical object boundaries. Figure A.5 highlights the feature points of
a UAV and aerial image, namely all the pixels at the boundaries of superpixels, after
removing those feature points located at homogeneous areas.

Afterwards a SIFT-descriptor for each detected feature point is computed. Since the
UAV image is already aligned with the reference image, the scale space and feature
orientation of SIFT-descriptors should be identically assigned for both images.

a.4.3 One-to-Many Feature Matching

In this phase, a feature descriptor in one image is matched with all other features
in the other image using the euclidean distance calculation. In standard SIFT, only
the first and second nearest neighbors are taken into account, so that many correct
matches are actually discarded as presented in Table A.3. An example of ambiguous
feature matching is demonstrated in Figure A.6. The correct feature point (left) would
mainly be discarded for two reasons: first, the correct match may not be the first
nearest neighbor in feature space; second, it may not pass the ratio-test due to the
high similarity of the local descriptors.

To solve this problem, we propose a one-to-many matching scheme by taking
the k-nearest neighbors as matching candidates to ensure that correct matches can
be even found for corresponding keypoints which do not show nearest descriptors
distances. Besides, the approximate nearest neighbor method (ANN) is applied to
avoid the exhaustive search and to speed up the matching process. Although the
idea of using a one-to-many matching scheme is not new, the next section proposes
a new approach how to extract the correct matches among them.

a.4.4 Geometric Match Verification with Histogram Voting

It is pointed out in Section A.3 that the commonly used ratio-test in SIFT does not
effectively determine whether a feature point is a correct match. As a substitute,
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(a) Feature point in the
UAV image

(b) Corresponding feature points in the
aerial image

Figure A.6: Challenge of ambiguous feature matching. Feature points in the aerial image with the
closest descriptor distances in image (b) to a feature point at the corner of a container in
the UAV image (a). The correct match often can be found among a set of multiple nearest
neighbors. These ambiguities need to be solved in order to extract the correct match

we use pixel-distances as a global geometric constraint to verify the matching hy-
potheses. The superpixel-based feature point extraction and one-to-many matching
strategy result in a plethora of putative matches, which ensures a sufficient number
of correct matches but also inevitably contains a massive number of mismatches.
Postulating that the UAV and reference image both contain the same planar scene
and the differences in their scales and rotations have already been eliminated, the
transformation between the two aligned images can be simply approximated as
a 2D-translation. Particularly, for each keypoint i, whose image coordinates are
(xi

u, yi
u) in the UAV image and (xi

r, yi
r) in the reference image, and for each of

its k matching hypothesis j (j = 1 : k), whose image coordinates are (xj
r, yj

r) in
the reference image, we calculate their coordinate differences ∆xi,j and ∆yi,j by
∆xi,j = xi

u − xi,j
r and ∆yi,j = yi

u − yi,j
r . Correct matches are expected to satisfy the

conditions |Tx −∆xi,j| ≤ R∧ |Ty−∆yi,j| ≤ R, where R is a threshold related with the
scene depth and Tx and Ty are the parameters of the unknown 2D translation. We can
recover this translation by a simple histogram voting scheme. After computing ∆xi,j

and ∆yi,j for all putative matches, distinctive peaks Tx and Ty in the both histograms
are extracted.

Figure A.7 presents an example for this histogram voting regarding the Container

scenario. While distances of wrong matches are randomly distributed, those of
geometrically correct matches concentrate on or aggregate around a common value
(Tx,Ty), thus shaping a distinct peak in the histogram. To allow for minor changes
of image scene depth, we determine the matches located at close range to (Tx,Ty)
as possibly correct matches, the distance threshold is denoted by R. The value of R
is related to the change of scene depth as well as the accuracy of pre-alignment. A
larger threshold R can compensate for these impacts and result in more matches, on
the other hand, more outliers would also be introduced into the raw matches.

a.4.5 Eliminating Differences in Image Rotation

The scale difference between the UAV image and the reference image can be derived
using either the on-board GNSS information or the barometric altitude sensor.
In contrast, precise orientation-adaption fails for many UAVs due to inaccurate
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Figure A.7: Geometric match verification of the Container scenario with histogram voting. Distribution
of pixel distances for all putative matches according to the one-to-many matching in (a)
row- and (b) column- direction. Distinct peaks represent unknown 2D-translation
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Figure A.8: Recovering the unknown image rotation in case of unavailable or inaccurate UAV IMU
data. Extending proposed method by transforming UAV feature points with multiple
rotation values before the histogram voting step. Figure shows the rotation histogram
for the Container dataset. Maximum number of raw matches represents unknown image
rotation

heading information provided by the low quality IMUs. Our assumption of correct
matches follow a simple 2D translation fails in case of unaligned images. However,
we can estimate the unknown image rotation by adapting the proposed matching
approach with a rotation search scheme. Although Section A.3.2 shows, that fixing the
orientation of the feature points in the SIFT descriptors results in a better matching
performance if the images are pre-aligned, a sufficient number of correct matches
can still be found for unaligned images with the keypoint orientation estimation
of SIFT when using a denser feature detection like the one presented in Section
A.4.2. After generating a set of putative one-to-many matches for unaligned images,
the unknown image rotation is obtained by first dividing the rotation ψ equally
into discrete rotation values ψa = [−180, 180[deg. For each rotation ψa the feature
points of the UAV images pti

u = (xi
u, yi

u, 1)T are rotated around the image center
pti,a

u,rot = M(p, ψa) · pti
u with a transformation matrix M(p, ψa) = [T(p)R(ψa)T(−p)],

where T(p) is a translation matrix with the coordinates of the image center p and R
a rotation matrix with rotation angle ψa. Pixel distances are calculated according to
∆xi,j,a

rot = xi,a
u,rot − xi,j

r and ∆yi,j,a
rot = yi,a

u,rot − yi,j
r and histogram voting from Section A.4.4

is performed for each rotation. The maximum number of raw matches satisfying the
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threshold Ta
x and Ta

y is kept for all rotation values ψa. Figure A.8 shows the number
of raw matches for different image rotations according to the Container dataset. The
distinct peak at −104 deg represents the unknown image rotation.

This method may be used for a full 360 deg search, however, the search range can
be reduced in case of available inaccurate rotations from the on-board IMU. After
recovering the unknown image rotation, further matches can be determined with
fixed orientations according to the previous sections.

a.4.6 Match Refinement

After the geometric verification of the one-to-many matches, it is likely for some
keypoints that they share multiple adjacent feature points in the other image as
geometric correct matches. This is caused by the dense feature point extraction, which
generates dense feature points especially along strong image edges. The distance
threshold R allows multiple geometric correct matches for adjacent feature points
for which the distance to Tx and Ty is below R. Figure A.9 illustrates these local
ambiguities of the feature matches. One feature point in the UAV image in Figure
A.9a corresponds to multiple geometrical correct matches in the aerial image in
Figure A.9b . Even a successive RANSAC filtering step according to geometrical
transformations will not truly solve these ambiguities, if Sampson distances or
transfer errors of neighboring matches are below the filtering threshold. In order
to ensure geometrical correct and unique one-to-one matches, a refinement step
is applied for all geometrical correct matches by eliminating the ambiguities and
optimizing the location of the feature points. The superpixel segmentation cannot
guarantee exact locations of corresponding pixels in both images. The refinement
consists of a NCC matching of a template in the local neighborhood of the UAV
feature point (yellow rectangle in Figure A.9a). For all corresponding matching
hypotheses (yellow dots in Figure A.9b), the corresponding patch is searched in a
local search window around the feature points (red rectangle in Figure A.9b). The
size of the search window for all aerial feature points can be set to the threshold R
of the geometric verification. The NCC optimizes all matching hypotheses to the
correct location, illustrated by the red dot in Figure A.9c. This method eliminates
duplicate matches and refines feature point locations for inaccurate keypoints in a
local neighborhood of the initial keypoints. These raw matches can now be used
to estimate the fundamental matrix or homography in combination with RANSAC
methods and to reject remaining outliers satisfying the geometric constraint. After
computing the fundamental matrix, a guided matching method, as presented in
Section 3, can be applied to find more matches if the threshold was chosen too small.

a.4.7 Geo-registration of UAV Images

As the UAV image and the reference image have overlapping areas, one 3D point in
the object space could be visible both in the reference image and the UAV image. Such
3D points can be used as reference 3D points for geo-registration of UAV images. The
prerequisite of the geo-registration is available georeferenced aerial image together
with its heightmap, or one orthorectified mosaic with a high resolution DSM.
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(a) UAV feature point and
template size

(b) Aerial geometric inliers and size
of the search window

(c) Refined aerial match (red) as
shared optimized pixel location

Figure A.9: Refinement and duplicate elimination of geometric correct matches. (a) One feature point in
the UAV image (yellow dot) and its template size (rectangle). (b) Corresponding geometric
matches in the aerial image and search window for one match (red rectangle). (c) Refinement
of all feature matches to the correct matching location (red dot)

• Match a UAV image U with the reference image R using the proposed matching
method. Assume a feature point (xr, yr) in the reference image is matched to
feature point (xu, yu) in the UAV images, this matching pair correspond to a
3D point P(X, Y, Z) in the object space.

• If image R is an individual georeferenced aerial or satellite image, we assume
its height map is available, which can be generated in the process of dense
matching with neighboring images (d’Angelo and Reinartz, 2011). The height
Z can be looked up in the height map and the planar coordinates X and Y
can be calculated using the orientation parameters of R. If image R is an aerial
orthophoto which is generated by an orthographic projection of the aerial
image mosaic onto a high resolution DSM, the planar coordinates (X, Y) are
namely the corresponding georeferenced coordinates of the pixel (xr, yr) in the
orthophoto, and Z is namely the corresponding height at (X, Y) of the DSM.

• As the proposed matching method generates thousands of matches and each
match results in a 3D point, those points can be used as reference 3D points
to transform the UAV image to the same global coordinate system of the
reference image. If there are UAV images sequences, a bundle adjustment can
be performed to improve the global geo-registration accuracy.

a.5 experiments

In order to verify the robustness and reliability of the proposed matching method,
we compare the performance of our method with standard SIFT on different datasets.
Furthermore, the generated matches are used for geo-registration and 3D recon-
struction of the UAV images. Qualitative and quantitative analyses are presented
to validate the accuracy of geo-registration, and on this basis, photogrammetric 3D
products, such as orthophots, DSMs and merged points clouds are discussed.

a.5.1 Data Acquisition

Experiments were carried out based on offline flight data of four datasets: Eichenau,
Germering, EOC and WV2. It is worth noting that for datasets Eichenau, Germering
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Dataset Reference Image Target Image

Type /
Date

Resolution
(pix)

Height
(m)

GSD
(cm)

Type /
Date

Resolution
(pix)

Height
(m)

GSD
(cm)

Eichenau AO 11/2015 9206× 7357 600 20 UI 11/2015 573× 794 100 1.8
Germering AI 06/2014 5184× 3902 700 9.4 UI 07/2014 823× 996 100 2

EOC AI 06/2014 5184× 3902 340 4.6 UI 11/2014 1106× 807 25-40 0.5-0.8
WV2 SI 2010 5292× 6410 770, 000 46 AI 2015 497× 332 350 4.4

Table A.6: Characteristics of the datasets used in the experiment. Target images are pre-aligned towards
the reference image using GNSS/IMU data. AI: aerial imagery; AO: aerial orthophoto; SI:
satellite imagery; UI: UAV imagery

(a) WV2 (b) Eichenau (c) EOC

Figure A.10: Additional datasets for the experiment. Top: reference images. Bottom: target images.
Overlapping areas are highlighted by yellow rectangles in the reference images

and EOC, which contains 72, 58 and 11 UAV images respectively, the whole UAV
sequences were matched in an automatic manner. Showing the results for all image
pairs is beyond the scope of this paper, so we focused on the same image pairs
which were already introduced in Section 3. The Eichenau dataset contains two
scenarios: Urban1 and Urban2. The UAV images were acquired with a Sony Nex-7
camera simultaneously with the reference aerial images on November 2nd, 2015.
For both scenarios, we matched UAV images not only to aerial images but also to
aerial orthophotos, which are generated by an orthographic projection onto a high
resolution DSM (Hirschmuller, 2008; d’Angelo and Reinartz, 2011). The Germering

dataset is comprised of four different scenarios: Container, Highway, Pool1 and
Pool2. The reference aerial images of this dataset were captured on June 17th, 2014,
whereas the UAV images were captured with a slight time delay on July 11th, 2014

with a GoPro Hero 3+ Black camera. The aerial images in the EOC dataset were
acquired on June 16th, 2014 and the UAV images were captured on November 12th,
2014 with a Sony Nex-7 camera. In EOC dataset, all aerial images are almost nadir
whereas the UAV images have both nadir views of the building roof and oblique
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Scenario Raw matches
(SIFT)

Inliers F / Error (F) Inliers H / Error (H)

Container 58 14 / 666.26 9 / 1767.55

Highway 49 15 / 1996.30 9 / 2210.20

Pool1 162 52 / 0.83 33 / 1.63

Pool2 107 18 / 618.54 10 / 1308.02

Eichenau1 287 45 / 19.11 48 / 3.63

Eichenau2 436 140 / 1.11 146 / 3.64

EOC 446 16 / 959.87 6 / 877.21

WV2 117 19 / 175.73 19 / 4.03

Building 553 16 / 595.06 11 / 317.59

Googlemaps 522 19 / 195.34 8 / 919.48

Table A.7: Results using standard SIFT: number of raw matches after applying SIFT for all scenarios.
Inliers after estimating fundamental matrix (F) and homography (H) using RANSAC. Mean
errors (in pixel) according to ground-truth F and H

views of the building façades. Only the nadir-view UAV images are matched with
the aerial images, and the generated GCPs are used to geo-register the whole UAV
image blocks including both nadir and oblique images. In addition, the nadir UAV
images are also matched with a screenshot of Google Maps. In the WV2 dataset (Koch
et al., 2016b), we match an aerial image from the EOC dataset with a WorldView-2
RGB satellite image of the year 2010 to validate the generalization ability of the
proposed method and its robustness against large temporal changes. Besides, the
datasets Eichenau, Germering and EOC are not significantly affected by temporal
changes, as the vegetation periods are the same (except in EOC) and the appearances
of buildings has not changed. All the aerial images were captured by a Canon EOS-
1DX camera mounted on the DLR 4K sensor system (Kurz et al., 2014), which consists
of two cameras with 15

◦ sidewards looking angle and a FOV of 75
◦ across. In data

pre-processing, an orthographic projection of the aerial imagery was performed to
generate nadir-view images. Figure A.2 and Figure A.10 illustrate all datasets used in
the experiments, where the first row shows the reference images (pre-processed nadir-
view aerial images and satellite image), and the other two rows are the corresponding
target images (UAV and aerial images) to be matched. Detailed characteristics of the
datasets are listed in Table A.6.

a.5.2 Performance Test of Matching UAV Images with a Reference Image

In order to validate the robustness and accuracy of the proposed method, we use
the same image pairs presented in Section A.3, where the standard SIFT performed
poorly in most of the cases. Different from the results in Table A.3, the matching
is now performed with original aerial images other than the cropped images. As
can be seen in Figure A.2, only a small portion of the aerial images is pictured in
the UAV images. Thus, it is also tested if the matching benefits from our geometric
constraints in the presence of large searching areas.

All image pairs are provided with rough information of positions and orientations
from GNSS and IMU so that the images could be pre-aligned beforehand. Then the
target images and the reference images were matched with the proposed matching
method and standard SIFT. Specifically, 750 superpixels were segmented from the
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Scenario Raw matches
(our)

Inliers F / Error (F) Inliers H / Error (H)

Container 8264 4876 / 2.59 2835 / 7.01

Highway 1979 1184 / 2.79 1230 / 1.20

Pool1 6593 3599 / 1.87 2188 / 1.87

Pool2 14091 7555 / 2.01 4199 / 2.03

Eichenau1 4018 1850 / 4.35 1165 / 3.53

Eichenau2 5846 3204 / 1.09 3077 / 4.65

EOC 6834 3949 / 2.92 2586 / 3.18

WV2 15131 6290 / 2.22 6760 / 3.57

Building 9113 3526 / 3.15 1932 / 2.36

Googlemaps 15437 5120 / 3.42 3217 / 2.82

Table A.8: Results using proposed method: number of raw matches after applying our method for
all scenarios. Inliers after estimating fundamental matrix (F) and homography (H) using
RANSAC. Mean errors (in pixel) according to ground-truth F and H

UAV images, the threshold for the feature matching-distance was set to 0.2 as a trade-
off between discarding apparent outliers and retaining enough matching hypotheses.
50 nearest neighbors were selected as matching candidates for the one-to-many
matching and the distance threshold R for the geometric verification was set to 12

pixels. As for matching using SIFT, the threshold of ratio-test was set to 0.75.
In order to evaluate the matching accuracy, we created ground-truths of feature

point correspondences for each dataset using manually selected and automatically
detected matching correspondences. The quantitative results using standard SIFT
and our proposed method are summarized in Tables A.7 and A.8, where Error
(H) denotes the mean transfer error (the Euclidean distance between a point’s true
correspondence and the point mapped by the homography matrix H, which is
estimated from matching correspondences) and Error (F) denotes the mean Sampson
distance (the distance between a point to the corresponding epipolar line). Standard
SIFT failed for almost all scenarios while the proposed method found abundant
matches with much smaller errors.

Regarding matching accuracy, standard SIFT outperformed our method only at
Pool1 scenario. As homography only considers transformation between two planes,
those mismatches at areas with apparently different scene depths were discarded.
The mean transfer error were only 2-3 pixels in most cases, corresponding to a
ground distance of about 20-30 cm.

The matched feature points are marked in the UAV images (the second and third
rows in Figure A.11). As a result of the superpixel segmentation, most matches
are located at regions with rich textures and have apparently much higher density
than SIFT-features. The projection transformations can then be estimated using these
matches. The first row in Figure A.11 depicts the projected UAV images on the aerial
images by the estimated homography.

a.5.3 Evaluation of Geo-registration of UAV Images

Following the proposed pipeline in Section A.4.7, plenty of 3D reference points were
computed and then used as GCPs in a bundle block adjustment to geo-register the
UAV images to the global coordinate frame.
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Figure A.11: Qualitative results of the proposed matching method according to the image pairs in
Figure A.2. First row shows the overlapped UAV and aerial image pairs after applying an
estimated homography calculated from our matches (also for the figure on the bottom
right). Second and third row show the distribution of the geometrical correct matches in
the UAV images (yellow dots)

(a) (b) (c)

(d) (e) (f) (g)

Figure A.12: Comparison of (a) aerial orthophoto with 20 cm GSD and (b) UAV orthophoto with 2 cm
GSD of the Eichenau dataset. (c) 50% transparent overlap of both orthophotos; (d) and (e)
compare cars and (f) and (g) show a roof on aerial and UAV orthophoto respectively

In order to verify the accuracy of geo-registration of UAV images, several evenly-
distributed ground check points were selected across the survey area and their
actual coordinates Prtk were measured using a RTK GNSS receiver. Meanwhile,
these ground check points were marked in all UAV images and their theoretical 3D
coordinates Puav were computed by triangulating the geo-registered UAV images. The
column “Errorrtk” in Table A.9 and Table A.10 lists the errors Puav − Prtk of Eichenau
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Check Point Errorref(m) Errorrtk(m)

∆x ∆y ∆z ∆x ∆y ∆z

1 0.04 -0.51 -0.21 -0.04 -0.39 -1.74

2 -0.05 -0.07 -0.15 -0.11 -0.40 -1.90

3 0.04 -0.41 -0.36 -0.10 -0.83 -2.04

4 -0.14 0.80 0.70 -0.35 -0.33 -1.91

5 -0.04 0.49 -0.17 -0.05 -0.21 -1.81

6 -0.03 0.12 -0.10 0.12 -0.36 -1.63

Table A.9: Errors of the coordinates of check points comparing to RTK GNSS measurements and the
coordinates looked up in aerial orthophoto and DSM - Eichenau dataset

Check Point Errorref(m) Errorrtk(m)

∆x ∆y ∆z ∆x ∆y ∆z

1 -0.06 -0.14 -0.38 0.34 -0.01 1.49

2 0.16 -0.67 0.37 0.43 -0.54 1.68

3 0.14 -0.02 0.46 0.56 0.16 1.76

4 0.11 -0.76 0.26 0.44 -0.76 1.71

5 0.19 -0.10 0.50 0.55 -0.06 0.75

6 -0.05 0.18 0.18 0.39 0.36 1.30

7 -0.08 0.41 -0.06 0.41 0.50 1.42

Table A.10: Errors of the coordinates of check points comparing to RTK GNSS measurements and the
coordinates triangulated using aerial images - Germering dataset

Figure A.13: Camera pose visualization for Eichenau dataset, showing camera poses (red) of the geo-
registered UAV image blocks at 100 m altitude and the aerial image (black) blocks at 600 m
altitude

and Germering datasets. The height errors in “Errorrtk” are around 2 meters, this is
mainly caused by the systematic errors of the global digital elevation model like
SRTM (Rabus et al., 2003), which was used as height reference during the processing
of the reference images.

In order to validate accuracy of co-registration, the coordinates triangulated by
geo-registered UAV images, Puav, were compared with the identical points on the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A.14: Comparison of (a + c) aerial orthophotos with 20 cm GSD and (b + d) UAV orthophotos
with 2 cm GSD of the Germering dataset; (e) and (f) compare a manhole and (g) and (h)
staircases on aerial and UAV orthophoto respectively

reference image as well. In Eichenau dataset the reference image was an aerial
orthophoto (with a high resolution DSM), so the corresponding coordinates Pre f
were manually looked up in the orthophoto and DSM, as explained in Section A.4.7.
In Germering dataset the reference image was an individual aerial image from a
pre-georeferenced aerial images dataset, so the corresponding coordinates Pre f were
triangulated using multiple pre-georeferenced aerial images from that dataset. The
column “Errorre f ” in Table A.9 and Table A.10 lists the error Puav − Pre f .

Afterwards the orthophoto and DSM were reconstructed from the geo-registered
UAV images using the software SURE (Rothermel et al., 2012). Figure A.12 illustrates
the aerial orthophoto and the UAV orthophoto of Eichenau dataset. More specifically,
(a) depicts the aerial orthophoto of the Eichenau dataset, whose resolution is 20 cm;
(b) shows the UAV orthophoto of the Eichenau dataset, whose resolution is 2 cm. It
is obvious that the UAV orthophoto has higher resolution and contains more details
than the aerial orthophoto. (c) displays the UAV orthophoto overlapping on the aerial
orthophoto with 50% transparency, it can be seen that the the two orthophotos are
precisely aligned using the proposed geo-registration method. (d) and (e), (f) and
(g) compare the appearance of corresponding objects on aerial orthophoto and UAV
orthophoto, demonstrating that the UAV orthophoto contains richer textures than
the aerial orthophoto. Figure A.13 illustrates the estimated camera poses as well as
the reconstructed point cloud of the geo-registered UAV image blocks and the aerial
image blocks. Despite the considerable scale difference, our matching approach still
succeeds in an accurate registration. Similarly, Figure A.14 demonstrates the aerial
orthophoto and UAV orthophoto of Germering dataset, whose resolutions are 20 cm
and 2 cm respectively.
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(a) Aerial DSM (b) UAV DSM (c) DSM differences

Figure A.15: Comparison of (a) aerial and (b) UAV DSM of Eichenau dataset. 20 cm GSD for aerial and
2 cm GSD for UAV DSM; (c) colormap illustrating the height differences between the two
DSMs in meters

(a) Aerial DSM (b) UAV DSM (c) DSM differences

Figure A.16: Comparison of (a) aerial and (b) UAV DSM of Germering dataset. 20 cm GSD for aerial
and 2 cm GSD for UAV DSM; (c) colormap illustrating the height differences between the
two DSMs in meters

Figures A.15 and A.16 illustrate the aerial DSMs with 20 cm resolution and UAV
DSMs with 2 cm resolution of Eichenau and Germering dataset respectively. The
aerial DSM in (a) has blurred edge and inadequate details while the UAV DSM
in (b) represent more refined details and sharper edges. Then the UAV DSM was
resampled by bilinear interpolation to the same resolution of the aerial DSM and
their height differences were calculated. (c) illustrates the colorized height differences
ranging from −5 m to 5 m, and it is apparent that the errors are mostly smaller
than 1 m. Note that the two red and one blue spots on the container site in Figure
A.16(c) indicate movements of the containers due to different acquisition times
of the captured images. In this sense, our matching method is able to cope with
such temporal changes in scene. Figure A.17 shows the histograms of the height
differences for both datasets.
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Figure A.17: Histograms of the height differences between the aligned DSMs generated from UAV and
aerial images

(a) Aerial point cloud (b) Merged point cloud

Figure A.18: Comparison of the dense point clouds for (a) only aerial images and (b) additional
registered nadir and oblique UAV images of the EOC dataset. The combination of aerial
and UAV images can enrich 3D models for more details and add façades to buildings

a.5.4 Application Scenario: Enriching 3D Building Models

The EOC dataset represents an urban scene, demonstrating the benefits of a joint use
of aerial and UAV imagery. Figure A.18a displays a dense georeferenced 3D point
cloud generated solely from aerial images. Since the aerial images only contain nadir
views of the scene, the reconstructed building façades are not complete, which is a
typical problem for aerial photogrammetry.

We automatically geo-registered a sequence of nadir-view UAV images (see result
for one image pair in Table A.8) to the aerial images. In addition, we also registered
oblique UAV images facing the façades of the building to the already geo-registered
UAV nadir views in a conventional photogrammetric way. Afterwards, a dense 3D
point cloud was generated using all of the geo-registered UAV images, resulting in
a complete reconstruction of the building with a much higher GSD than the aerial
point cloud. The accurate geo-registration of the UAV images enables us to merge the
UAV and aerial point cloud and leads to a comprehensive representation of the scene,
as illustrated in Figure A.18b. It can be seen that the UAV point cloud is precisely
aligned with the aerial point cloud. While the aerial point cloud covers a large area
of the scene, the UAV point cloud contributes to information of the building façades
(particularly at positions indicated by yellow arrows) and enriched details of the
reconstructed building.
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a.6 discussion

Our method achieves robust and accurate co-registration of images acquired from
different acquisition platforms, thus opening up the possibility to integrate the infor-
mation from multi-source images and achieve a more comprehensive understanding
of the scene. Besides, repetitive image acquisition with manned aircrafts or satellites
is quite expensive whereas it is convenient to perform with UAVs. The robust regis-
tration enables timely update of pre-existing remote sensing data using UAVs, which
can also be applied in environment monitoring and change detection.

The main limitation of our method is that it only works for nadir or slightly tilted
images. When a conspicuous height jump exists, the histogram may present multiple
peaks, e.g., one representing matches on the ground-level and one matches on a
higher level (like roofs). Therefore manual inspection is needed in this case. Moreover,
it is difficult to determine the translation threshold R if the scene depth changes
continuously in the image. As listed in the first column of Table A.8, there were
remarkable fewer raw matches in the Highway scenario than in the other ones due
to topographic changes. Also, those scenarios containing various scene depths (e.g.
Container and Eichenau) resulted in wrong tilts when estimating the homography,
leading to higher mean transfer errors (up to 7 pixels) compared to the scenarios
with flat landscape.

a.7 conclusion

This paper investigates into UAV geo-registration by matching UAV images with
already georeferenced aerial imagery. On the basis of an extensive analysis why SIFT
performs poorly for this kind of image pairs, a robust image matching approach is
proposed to deliver a large number of reliable matching correspondences between
the UAV and a reference image. The method is comprised of a novel feature detector,
a one-to-many matching strategy and a global geometric constraint for outliers
detection. The prerequisite of our proposed method is the availability of rough
GNSS/IMU data of the UAV images to eliminate scale differences in the images and
if possible to pre-align the images with the respect to the image rotation, although
an extension of the method can handle unknown or imprecise image rotations.

Experimental results prove that our method outperforms SIFT/ASIFT in the
aspects of quantity and accuracy of the detected matches. These matches are used to
align UAV image blocks towards the reference images in a bundle block adjustment,
which achieves a registration accuracy of 1− 3 GSD. A global accuracy evaluation
of 3D points from geo-registered UAV images and terrestrial measurements from
RTK GNSS show 0.5 m horizontal 1.5 m vertical deviations, which mainly stem from
inaccurate georeferencing accuracy of the reference image.
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b.1 introduction

Unmanned aerial vehicles (UAVs) have attracted significant attention in the field of
3D modeling, as they are capable of carrying high-resolution cameras combining
advantages of both conventional airborne and terrestrial photogrammetry. The
mobility and maneuverability of UAVs to freely move in three dimensions and
simultaneously capture close-up images of an object with arbitrary viewing angles
allow to generate high-resolution and photo-realistic 3D models with high accuracy
by processing a series of overlapping images with current state-of-the-art Structure
from Motion (SfM) and Multi-View Stereo (MVS) pipelines, such as Pix4D (Pix4Da),
Bundler (Snavely et al., 2006), or Colmap (Schönberger and Frahm, 2016). These
models are of high interest in various fields, such as the use of digitized building
models for 3D city modeling (Vacanas et al., 2015), object inspection (Hallermann
and Morgenthal, 2014), or cultural heritage documentation (Mostegel et al., 2017).
However, the quality of resulting 3D models strongly relies on flight plans that
satisfy the requirements of an image-based 3D modeling process which include the
acquisition of multiple overlapping images, sufficient baselines between the camera
viewpoints and the prevention of optical occlusions from surrounding obstacles.
In terms of mapping mostly flat and spacious scenes, such as landscapes, flight
planning can be easily executed in form of simple grid-like patterns or circular flights
from the same altitude but can become exceedingly complex for densely built urban
areas consisting of different kinds of human-made objects and vegetation. Planning a
UAV trajectory in such areas involves considering the surrounding environment and
keeping a safety distance toward any obstacle while ensuring that the entire object
of interest is captured from close ranges and different perspectives.

The most common method to obtain aerial imagery in an automated fashion is
to use an off-the-shelf flight planner, such as commercial flight planning software
Pix4D Capture (Pix4Db), PrecisionHawk Precision Flight (Precisionhawk), DJI Flight
Planner (DJI), or open-source based PixHawk ArduPilot (ArduPilot). These easy-to-
use planners can generate simple polygons, regular grids, or circular trajectories,
however, some prior knowledge of the scene height must be known in advance for
designing a collision-free flight plan. For more complex scenes, such as urban areas,
standard path planning methods are usually insufficient to generate high-quality
3D models, as we will show later. Therefore, UAV flights in such complex scenarios
still require manual operation by experienced pilots in case standard flight planners
are not feasible or do not guarantee a sufficient reconstruction quality. From a
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practical or even legal point of view, it may be even necessary to adapt the flight plan
with respect to the semantics of the environment, especially in densely built areas.
Restricted airspaces may be defined in regions that are prohibited to be accessed
by the UAV or which should be avoided in case of an unexpected malfunction of
the vehicle. These restricted areas could include other buildings, train rails, water
bodies, parked cars, highways or other heavily frequented roads. Flying UAV in such
environments is already challenging. If the resulting 3D model additionally demands
certain photogrammetric properties, such as the desired ground sampling distance
(GSD), the acquisition of highly overlapping close-up images covering the entire
object could become infeasible in the presence of restricted or prohibited airspaces.

General research on path planning for UAV mapping has already been initiated
in recent years focusing on automation of the generation of optimal flight plans.
Automated flight planning methods can be classified either as model-free and model-
based methods. The former performs an exploration task in unknown environments
by iteratively updating the model with new measurements via selecting the next best
view from a current view. These models do not require prior knowledge of the scene
but usually, they do not guarantee full coverage of the object. Methods of the latter
class, on the other hand, rely on a coarse proxy model of the scene and refine the
model by an optimal subsequent flight which is globally optimized. The targets of
these explore-and-exploit approaches are manifold, such as maximizing the coverage of
a target object (Hepp et al., 2018b; Roberts et al., 2017) or minimizing the acquisition
time (Cheng et al., 2008) or energy consumption (Chakrabarty and Langelaan,
2009; Di Franco and Buttazzo, 2016). However, to the best of our knowledge,
none of these works take into account the surrounding environment for generating
safe UAV paths that additionally avoid or even restrict certain airspaces in the
scene. With the tremendous advances in semantic image segmentation for aerial
imagery by recent deep learning-based approaches (Zhu et al., 2017), accurate
and consistent dense semantic maps can be generated, which extend the purely
geometric 3D scene representation, helping to generate safe UAV flights under the
consideration of the real environment. Since we want to adapt the flight path to
the semantic properties of the scenery, an initial semantically-enriched proxy model
of the entire scene is required, which leads us to employ a model-based approach.
An inspiration of our path planning method was given by the works of Roberts
et al. (2017) and Hepp et al. (2018), formulating the path planning problem as a
graph-based optimization for maximizing the information gain obtained from a
UAV trajectory with a set of heuristics representing 3D modeling image acquisition
practices. With this paper, we build on these works by introducing more interpretable
heuristics which directly influence user-specified requirements of the reconstruction
quality, as well as optimizing for a minimum path length. In addition, we show how
to incorporate semantic information to safe path planning. Figure B.1 illustrates the
general idea of our path planning approach, consisting of a two-staged planning
procedure, wherein a first nadir flight is used to generate a semantically-enriched
proxy model of the entire environment which is further used to generate a set of
viewpoint hypotheses in the free and accessible airspace. A discrete optimization
among this camera graph is conducted to find a short and matchable path along
the graph, which maximizes the reconstruction quality of the target object while
considering restrictions on the airspace defined by the semantical cues.

Particularly, our contributions are as follows:
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(a) UAV images and se-
mantic maps

(b) Semantically-
enriched initial
model

(c) Semantic-aware 3D
UAV path

(d) Final reconstructed
3D model

Figure B.1: Proposal of our UAV path planning methodology for generating 3D reconstructions of
individual objects considering path restrictions based on semantics. A 3D proxy model
is generated using a set of geo-referenced UAV images (a) from a simple flight above
the environment which is further enriched by transferring 2D segmentation labels into
3D space, defining free, conditionally accessible and prohibited airspaces (b). A graph-
based optimization estimates a collision-free trajectory for image acquisition viewpoints
considering restricted airspaces while minimizing the respective path length (c). The
acquired images of the traversed trajectory are suitable to generate high-resolution 3D
reconstruction models (d)

(1) We propose a set of heuristics based on photogrammetric reconstruction pa-
rameters, leading to individual flight paths for arbitrary camera intrinsics that
ensure the generation of 3D models in a user-specified resolution.

(2) We show how to exploit semantic segmentation of UAV imagery for extracting
the target object and for generating a semantically-enriched initial 3D proxy
model, which defines restricted and prohibited airspaces.

(3) We propose a model-based optimization scheme with respect to a semantic
model that maximizes the object coverage while minimizing the corresponding
path length and avoiding restricted airspaces.

(4) We propose a realistic synthetic 3D model suitable for a comprehensive eval-
uation of urban flight planning, including a highly detailed building model
embedded in a realistic and interchangeable scenery.

b.2 related work

The rapid development of UAVs and sensors has contributed significantly to their
popularity in many industries nowadays, such as urban mapping, object inspection,
precision agriculture, and surveying tasks. Equipped with high-resolution cameras
and the utilization of most recent SfM and MVS methods on image sequences, 3D
models of the environment can be generated in a much greater level of detail com-
pared to conventional manned aircraft. However, the quality of such reconstructions
highly depends on the camera network configuration during the acquisition process.
An exhaustive amount of work addressed the problem of selecting the best views
from a large amount of different views hypotheses (Furukawa and Hernández, 2015;
Furukawa et al., 2010; Goesele et al., 2007; Rumpler et al., 2011; Snavely et al., 2006).
These works point out the crucial parameters which affect the reconstruction quality,
such as parallax angles and baselines between views, as well as their observation
angles and distances toward the object’s surface and propose meaningful heuristics
to model the reconstruction quality from different camera constellations.
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An integration of these parameters is already used for automating the image
acquisition process for large-scale areas (ArduPilot; DJI; Pix4Da; Precisionhawk),
allowing to plan UAV flights as simple geometric patterns, such as regular grids
or circular flights with respect to the desired GSD. These off-the-shelf planners are
sufficient in case of spacious and flat terrains without obstacles (Nex and Remondino,
2014), but are not suitable for use in uneven, densely built or heavily vegetated
environments. Since no 3D model of the environment is taken into consideration,
these trajectories either do not cover every part of the object of interest due to
occlusions by obstacles or may even cause an accident with an adjacent obstacle in
the environment.

More advanced path planning approaches aim to automatically map objects in
either completely unknown environments or based on a very coarse prior model of
the environment. Methods of the first group solve an exploration task by iteratively
selecting the most promising view to refine the explored model based on a current
view with new measurements. This incremental scene modeling and viewpoint
planning is commonly known as next best view (NBV) planning, which is already a
long-standing part of research in the field of Robotics. The methods alternately fuse
incoming measurements from a new viewpoint into the reconstruction of the scene
and estimate novel viewpoints in order to increase the information about the object.
Classical sensors for these measurements include laser scanners (Kriegel et al., 2015),
RGB-D sensors (Fan et al., 2016; Heng et al., 2011; Hepp et al., 2018a; Loianno
et al., 2015; Meng et al., 2017; Michael et al., 2012; Sturm et al., 2013) and cameras
(Border et al., 2018; Dunn and Frahm, 2009; Kumar Ramakrishnan and Grauman,
2018; Mendez et al., 2017; Palazzolo and Stachniss, 2018; Stumberg et al., 2016).
Such methods are usually hard to implement utilizing cameras as selected sensors,
as the generation of depth maps, which is necessary to derive new 3D information,
requires significant onboard processing power or at least a wireless connection to
the ground-station for data transmission, in order to merge incoming measurements
with the current model. Additionally, selecting next best views in accordance to MVS
requirements—in particular, maintaining sufficient baselines and parallax angles of
adjacent views—on the fly is a challenging task since the actual mapped free airspace
might be very limited.

In contrast to model-free exploration methods that focus on autonomy and real-time
capability in unknown environments, model-based path planning algorithms rely on
an available proxy model of the environment and focus on estimating a subsequent
optimal path to maximize the coverage and accuracy of the object globally (Hepp
et al., 2018b; Hoppe et al., 2012; Jing et al., 2016; Peng and Isler, 2019; Roberts
et al., 2017; Smith et al., 2018). In contrary to active modeling, these explore-and-
exploit methods do not receive any feedback from the acquired images during the
exploitation flight, which demands high attention to the applied heuristics being
used for generating the refinement path. The global optimization of coverage and
accuracy, on the other hand, usually leads to larger completeness and smoother
trajectories compared to model-free methods. Recent work has proposed to extend
this procedure by iteratively refining the model from several subsequent flights,
taking into account the remaining model uncertainty between each flight (Huang
et al., 2018; Peng and Isler, 2019). Furthermore, the execution of the optimized path
is easy and fast for any kind of UAV by simply navigating alongside the optimized
waypoints. The prior model can either be based on an existing map with height
information (Jing et al., 2016) or is generated by photogrammetric reconstructions



B.2 related work 157

from a preceding manual flight at a safe altitude or via standard flight planning
methods (e.g., regular grids or circular trajectories) (Hepp et al., 2018b; Roberts
et al., 2017) and is usually expressed by a set of discrete 3D points in a voxel space
(Alsadik et al., 2013; Hepp et al., 2018b; Roberts et al., 2017; Smith et al., 2018) or by
volumetric surfaces, such as triangulated meshes (Bircher et al., 2016; Hoppe et al.,
2012; Jing et al., 2016; Peng and Isler, 2019). In order to define appropriate views for
the optimized trajectory, camera viewpoint hypotheses are either regularly sampled
in the free 3D airspace (Roberts et al., 2017; Smith et al., 2018) resulting in 3D camera
graphs, or are sparsely sampled in a 2D view manifold (Peng and Isler, 2019) or in
skeleton sets (Snavely et al., 2008) around the object. Subsequently, an optimization
is defined in order to find a connected subset of these viewpoint hypotheses to
define a suitable path through the camera graph. Alternatively, the locations of
the of regularly sampled viewpoint candidates can be continuously refined during
the optimization (Hepp et al., 2018b). As a means of assessing the suitability of
camera viewpoints for the reconstruction, hand-crafted heuristics are usually defined
considering the necessities for a successful SfM and MVS workflow. These include
multi-view requirements (Alsadik et al., 2013; Hoppe et al., 2012; Smith et al., 2018),
ground resolution (Bircher et al., 2016; Hoppe et al., 2012), 3D uncertainty (Mostegel
et al., 2016) and the coverage of the object (Hepp et al., 2018b; Roberts et al., 2017;
Smith et al., 2018). Instead of using hand-crafted heuristics, several works used

machine learning methods to learn heuristics that allow predicting the confidence
in the output of a MVS without executing it (Devrim Kaba et al., 2017; Hepp et al.,
2018a; Mostegel et al., 2016).

Recently, efficient methodologies formulate the view planning problem as a discrete
optimization task and exploit submodularity in the optimization process, standing
for fast and reliable convergence, even for a large number of viewpoint hypotheses
(Hepp et al., 2018b; Roberts et al., 2017). The main advantage of this idea is to jointly
assess additional information gain of individual viewpoints for arbitrary viewpoint
constellations in a global manner. This allows formulating the path planning task
as an orienteering problem, which can be solved with simple greedy algorithms, by
optimizing a path which collects as many information gains as possible for a specific
path length. The results presented in previous work reveal notable trajectories for
generating high-fidelity image-based 3D reconstructions. However, setting a suitable
path length in the optimization may require expert knowledge and highly affects the
trajectory estimation, since, due to the purely additive nature of orienteering problem,
adding additional views will never decrease the objective function. This might lead
to abundant redundant views for overestimated path lengths and incomplete recon-
structions for underestimated path lengths. Although the presented heuristics follow
best practices for MVS requirements, they do not respect user-specific demands on
the resulting 3D model, such as the number of views and observations angles of the
object surface or a required model resolution using arbitrary cameras. Additionally,
prior work so far solely considers purely geometric cues for flight planning of both
small-scale and large-scale areas. With the vast progress in semantic segmentation
using deep learning-based approaches, the applicability of neural networks for se-
mantic segmentation of aerial and UAV imagery was demonstrated in several works
(Chen et al., 2018; Kaiser et al., 2017; Marmanis et al., 2016).

In this paper, we show how to incorporate semantic cues into UAV flight planning
for generating safe trajectories for real-world 3D mapping applications, which allow
to define inadmissible airspaces above user-defined object types. Additionally, we
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Figure B.2: Overview of the proposed workflow of our UAV path planning approach. Based on a
exploration flight at a safe altitude, the captured images are segmented and fused to an
initial semantic 3D model. After selection of the target object, numerous camera viewpoints
are sampled and assessed according to their eligibility for the reconstruction process, while
the semantic information of the environment assigns restricted or prohibited airspaces for
the UAV. Finally, a discrete graph-based optimization estimates the optimal semantically-
aware trajectory which ensures a high-quality 3D model of the target object.

propose a set of heuristics for SfM and MVS image acquisition used in the optimiza-
tion allowing for the maintenance of a pre-defined model resolution for the entire
targeted object. Although the preferred task of photogrammetric 3D modeling is to
maximize the reconstruction quality rather than minimizing the path length, we inte-
grate a penalization for lengthy paths without a significant drop in the reconstruction
quality.

b.3 proposed flight planning pipeline

Our flight planning methodology follows a two-staged explore-and-exploit approach,
consisting of two subsequent flights, where a first safe exploration flight is used to
generate an initial proxy model of the environment which is further refined by an
optimized exploitation path in terms of full coverage, high-resolution and accuracy of
the object to be reconstructed. Latter additionally respects restrictions of the airspace
derived from semantic cues to avoid hazardousness and prohibited areas and to
elude collisions with the surrounding environment. Our work is inspired by the
works of Roberts et al. (2017) and Hepp et al. (2018) in the matter of estimating a
closed trajectory from numerous viewpoint hypotheses by exploiting submodularity
in the optimization procedure. An overview of our complete workflow is depicted in
Figure B.2. First, the acquired images of the exploration flight are processed to gen-
erate a semantically-enriched coarse proxy model which defines free and occupied
airspace. The semantic cues help to extract the object of interest and, based on the
proxy model, a set of viewpoint hypotheses is generated and evaluated according
to their eligibility for reconstructing the target object with respect to our heuristics
used for MVS image acquisition. Adjacent viewpoints are evaluated according to
their matchability and connected to a camera graph. Finally, an exploitation flight
is optimized by finding a closed and short path among the camera graph which
maximizes the reconstruction quality and avoids prohibited and minimizes haz-
ardousness airspaces defined by the semantics of the proxy model. Summarizing
the objectives of the path planning problem, the following requirements need to be
fulfilled by our methodology:
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1. Coverage: every point on the object surface has to be visible in at least two
images to be able to triangulate its position in 3D space from the images.

2. Safety: the estimated trajectory has to avoid collisions with obstacles and has to
be aware of the semantics of the surrounding environment in terms of restricted
and prohibited airspaces.

3. Path length: the estimated trajectory should be as short as possible and avoid
redundant views, as several images taken from similar camera poses introduce
local uncertainties in depth estimation by glancing intersections.

4. Heuristics: The estimated trajectory should facilitate complete reconstruction
of the target object considering photogrammetric reconstruction criteria, such
as GSD, observation angles, number of views, and sufficient overlap between
adjacent views.

5. Quality assessment: the path planning method should return an approximation
of the expected reconstruction quality before the execution of the flight, in
order to adjust the path or plan another subsequent path.

The following sections provide a detailed description of the proposed methodology,
starting with the outline of the path planning problem and the definition of the
optimization objective in Section B.3.1. Details on the generation of the semantically-
enriched proxy model from a set of nadir images and the extraction of the target
object from the proxy model are provided in Section B.3.2. Section B.3.3 describes
the generation of numerous viewpoint hypotheses, which are assessed with respect
to our proposed heuristics explained in Section B.3.4. Finally, Section B.3.5 presents
the semantic-aware optimization.

b.3.1 Notation and Definition of the Path Planning Problem

The objective of our path planning problem is to find a feasible UAV trajectory to
acquire images of a target object such that the final 3D reconstruction model is of
high quality. The object of interest is expressed as a sparse set of discrete surface
points sj=1...J =

(
xj, ηj

)
∈ S , comprised of 3D locations xj ∈ R3 and normal vectors

ηj ∈ R3 on the tangent plane of the object. We consider a discrete optimization
scheme and represent our camera viewpoint hypotheses as an undirected weighted
graph G = (P , E), composed of a set P of nodes as camera poses pi...I = (ci, ri) ∈ P
consisting of 3D locations ci ∈ R3 and camera orientations ri ∈ R3 defined as
roll, pitch and yaw angles. Adjacent and matchable viewpoints in the graph are
connected through a set of edges E =

{
ek =

(
pi, pj

)}
with associated weights

W =
{

wk =
(
weucl

k , wsem
k

)}
, representing a Euclidean distance weucl

k ∈ R and a
semantic label cost wsem

k ∈ R. We define a feasible trajectory T = {p1, p2, ..., pn} ⊂ P
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as a subset of connected camera poses in the camera graph G. The goal of the path
planning problem is to find an optimal trajectory

T ∗ = arg max
T

R(T )

subject to ∑
e∈E

weucl → min,

∑
e∈E

wsem < Lsem

(B.1)

that maximizes the reconstructability R : P → R of the target object S , while
minimizing the corresponding path length and restricting the path not to exceed
an accumulated label cost limit Lsem. The reconstructability R(T ) = ∑T I(p(T ),S)
obtained from a trajectory T is defined as the accumulated information reward
I(p(T ),S) of all camera poses p(T ) of that trajectory. The computation of rewards
I requires a set of heuristics, approximating the impact of an arbitrary camera
pose p for the reconstruction quality of the object surface S . Besides rating of the
camera poses regarding the distance toward the object surface and the incidence
angles of camera rays, the proposed heuristics also address the assessment of camera
configurations of adjacent camera poses with respect to a successful multi-view
stereo matching.

b.3.2 Semantically-Enriched Initial 3D Model

Given a series of nadir or oblique images encompassing the object of interest and its
surrounding environment, a coarse proxy model of the entire scene is generated by
processing the initial images with current state-of-the-art SfM and MVS pipelines,
such as Pix4D (Pix4Da), Colmap (Schönberger and Frahm, 2016), or Bundler (Snavely
et al., 2006). The initial flight can be realized either by a manual flight at a safe
altitude or via commonly used predefined flight planning systems resulting in grid-
like or circular patterns, which is feasible in most sceneries. In order to compute the
subsequent trajectory in the same reference frame as the initial flight, we incorporate
GNSS coordinates of the UAV or utilize ground control point (GCP) to the bundle
adjustment. The model only requires a low resolution and can exhibit gaps in the
reconstruction, such as missing façades, but should cover a large amount of the
surrounding environment, which determines accessible and occupied air space for
the viewpoint planning. The model itself can be either expressed as a dense point
cloud with low point sampling density or by regularly sampled 3D points from the
faces of a triangulated mesh. The initial proxy model generation can be computed
fast even with off-the-shelf mobile computers. Alternatively, a coarse 3D model can
be already generated on-board the UAV during the exploration flight (Wendel et al.,
2012).

At the same time, a pixel-wise dense semantic segmentation of the images is
conducted using a fully convolutional network (FCN) (Long et al., 2015). An adjustment
of the number of classes required for our task (building, lawn, tree, street, car, others)
and the utilization of a diverse set of available and manually annotated UAV and
aerial nadir images from different altitudes and various scenes was carried out
for training the network. Available training data from (Semantic Drone Dataset)
and (ISPRS Potsdam) was extended with manually annotated UAV images from
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Figure B.3: Example of semantic segmentation results on our validation images with a fine-tuned FCN
model (Long et al., 2015) trained on UAV and aerial images. Visualization is color coded for
buildings ( ), streets ( ), low vegetation ( ), high vegetation ( ), cars ( ), and others ( )

different scenes to achieve a total amount of 3069 images split into 60% training and
40% validation images. The quantitative evaluation after refining the pre-trained
model for 50 epochs yield a global accuracy of 0.81 and a mean Intersection over
Union (IoU) score of 0.52, indicating a reasonable segmentation performance for
our task. We infer every single UAV image used for the initial 3D reconstruction
to the segmentation network, in order to facilitate the redundancy of overlapping
areas for reducing labeling uncertainty. To propagate the 2D semantic labels, we
make use of the visibility information obtained from the 3D modeling process and
back-project every single 3D point into every image in which it is visible and compute
the point label by majority voting. Despite the rather small receptive field of the
FCN-8s providing merely coarse segmentation boundaries as shown in Figure B.3,
an adequate semantic enrichment of the 3D model can be achieved for a relatively
large grid spacing of adjacent viewpoints (3–4 m in our experiments) by exploiting
the redundancy of overlapping images.

Since the initial 3D model is coarsely geo-referenced, it is possible to refine the
segmentation results of the 3D scene for hardly distinguishable objects of the same
semantic class with the use of open street map (OSM) information. For instance, the
distinction of various types of roads, which can hardly be determined by 2D semantic
segmentation methodologies, could be a crucial requirement for generating safe UAV
paths. Heavily frequented road sections (e.g., parking lots, highways and trunk roads)
should be highly avoided, while restrictions on side roads and driveways could be
less strict. The already segmented road sections of the initial 3D model can therefore
be extended with subtypes by automatically inferring the classes from OSM to the
labeled 3D points. Since OSM provides numerous and detailed map features, this
procedure can be extended for various land cover classes and facilitates user-defined
restrictions, such as the differentiation of residential and industrial buildings.

Given an approximate semantically-enriched 3D model of the environment, the
target object to be finally reconstructed needs to be identified, extracted and com-
pleted in a semi-automatic manner. As the initial model could be incomplete during
the reconstruction process and the usage of nadir-views results in gaps in the model,
such as missing façades and other unseen object details, the target model needs to be
completed to ensure camera poses pointing toward these missing details. With the
assumption of simplified building models, we identify and extract the target object
by a simple 3D region growing approach exploiting the semantic labels of the 3D
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points. A user input of one corresponding 3D point belonging to the object to be
reconstructed serves as the seed for the region growing process. After isolation of the
target object, we equally sample surface points s = (x, η) of the object outline to the
ground level and compute 3D point normals required for the proposed heuristics.

b.3.3 Camera Viewpoint Hypotheses Generation

The goal of the trajectory planning is to define a set of viewpoints allowing the
triangulation of as many 3D points of the target object surface as possible according
to photogrammetric necessities for a successful reconstruction. A large amount of
evenly distributed viewpoint candidates c is sampled in the free airspace inside a
bounding box around the extracted object, excluding camera viewpoints which are
closer to any surrounding obstacle than a predefined safety buffer. This safety buffer
can be adapted according to the corresponding semantic labels of the environment
in order to increase the distance toward hazardous objects, such as trees, which
often lack in completeness for photogrammetric reconstructions. For each viewpoint
candidate, we also store a vector containing the semantic labels of all proxy 3D points
located below the camera viewpoints.

Besides the location of camera viewpoints, orientations r need to be assigned
pointing toward the target object while avoiding occlusions with obstacles. Although
the subsequent reconstruction process favors fronto-parallel views toward the target
surface to ensure a high-quality reconstruction, adjacent viewpoints also require
smooth transitions with high overlap. Since viewpoint orientations pointing toward
the closest surface point results in fronto-parallel views, the matchability at edges of
the object might be insufficient due to large orientation changes. On the other hand,
viewpoint orientations which always point toward the center of the object result in
large overlap but slanted views toward the object surface in case of elongated or
other complex object structures. In comparison to other approaches, which either
assign orientations pointing toward the center of the object (Cheng et al., 2008) or
include the orientation estimation in the optimization (Hepp et al., 2018b; Roberts
et al., 2017), we perform a visibility assessment of each viewpoint to identify 3D
surface points which are visible from each specific viewpoint location considering
the surrounding environment. A fast visibility computation approach (Katz et al.,
2007) is utilized and visibilities for all viewpoints and surface points are stored in an
indicator matrix U ∈ RI×J . In particular, a look-at-vector ni ∈ R3 for each viewpoint
ci is computed and directed toward the weighted mean of all visible 3D points
Sci ⊂ S from the corresponding 3D location of the viewpoint. In order to prioritize
object points that are closer to the camera, ni is further weighted by the distance
toward all visible 3D points. We begin with computing weighting coefficients τj for
each visible surface point xj ∈ Sci from a camera view ci utilizing the normalized
distances from all visible surface points toward the camera location by

τj = 1− k

√
‖xj − ci‖ −min ({‖x− ci‖})

max ({‖x− ci‖})−min ({‖x− ci‖})
, (B.2)

where k controls the strength of favoring closer surface points toward the camera
viewpoints. The weighting coefficients

{
τj ∈ R : 0 ≤ τj ≤ 1

}
reflect the influence

of each surface point based on its distance to the camera viewpoint, resulting in
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large values for closer surface points and decreasing values for farther points. In
combination with the normalized direction vectors toward each visible surface point,
the weighted look-at vector ni is computed by

ni =
1

∑j τj
∑

xj∈Sci

τj ·
xj − ci

‖xj − ci‖
. (B.3)

We found that this simple procedure results in suitable viewpoint orientations
applicable for different object outlines, avoids occluded views and results in almost
fronto-parallel views with smooth transitions at object boundaries allowing a large im-
age overlap needed for a successful image registration. Additionally, the orientation
estimation does not have to be included in the optimization, which would increase
the complexity of the optimization. Finally, the look-at vectors ni are converted into
pose orientations ri, composed of three Euler angles ϕi = 0, θi = sin−1(−ni,y) and
ψi = tan−1(

ni,x
ni,z

) representing roll, pitch and yaw angles, whereas roll angles are
fixed to zero, as we assume axis aligned camera views. After updating the visibility
matrix U with respect to the camera intrinsics and assigned orientations, theoretical
overlaps between views are computed. Nodes of adjacent camera viewpoints which
satisfy a specific overlap constraint (e.g., 75%), are connected via edges e in the graph
G, comprised of the Euclidean distance weucl between the corresponding nodes and
the semantic label costs wsem, defined as the mean distribution of assigned labels of
ground points between both nodes.

b.3.4 Path Planning Heuristics

In terms of the optimization defined in Equation B.1, the abundant viewpoint
hypotheses ci have to be assessed with respect to their eligibility for reconstructing
the object. Following best practices on image acquisition for photogrammetric 3D
reconstruction, a set of heuristics is defined which reflect the requirements of the
subsequent steps of image registration and dense matching. There is an extensive
amount of relevant literature on the principles of photogrammetric 3D modeling
(Förstner and Wrobel, 2016; Hartley and Zisserman, 2003; Luhmann et al., 2013)
pointing out decisive aspects for achieving high-quality reconstructions from a set of
images:

1) Distance: the distance between camera viewpoints and object surface defines
the resulting model resolution and depends on the desired point density and
the camera intrinsics.

2) Observation angle: shallow observation angles between the camera views and
surface normals are favored in MVS approaches.

3) Multiple views: every part of the scene has to be observed from at least two
views from different perspectives with sufficient overlap between the views. The
identification of corresponding points in overlapping images is the requirement
for robustly estimating camera poses and for triangulating 3D object points.

4) Parallax angle: shallow parallax angles increase the triangulation error and
therefore affect the model quality, while too large angles decrease the matcha-
bility between the views due to a lack of image similarity between the views
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which could result in a failure of the image registration step or in gaps in the
reconstructed 3D model.

The heuristics are used to predict the eligibility of the viewpoints for the recon-
struction and ensures that the target object can be sufficiently reconstructed using the
estimated viewpoints from the trajectory. Requirements 1) and 2) can be formulated
independently for all viewpoints, while 3) and 4) depend on a pairwise or even
multi-view assessment. We define information rewards

I(pi,Spi
) = ∑

xj∈Spi

Id(ci, xj)Ia(ni, ηj) (B.4)

for all viewpoints combining requirements 1) and 2) as a distance-based and obser-
vation angle-based reward Id(ci, xj) and Ia(ni, ηj).

b.3.4.1 Distance

The resolution of the reconstruction depends on the camera intrinsics and the
acquisition distances toward the object surface and is usually defined as the GSD or
point density after the dense matching reconstruction step. High-resolution models
are of high interest for modeling, monitoring and inspecting objects and can be
realized by the use of high-resolution cameras or capturing close-up views of the
object. Since the goal of the path planning is to provide an equal point density for
every part of the object, regardless of its shape and height, we define a maximum
distance threshold dmax between a viewpoint and the observed surface points in
order to achieve a user-specified model resolution. The maximum tolerable distance
to obtain the required GSD also depends on the camera intrinsics and is given by
dmax = GSD· f

pixel size with a focal length f . We define a smooth symmetrical function Id(d)
for the distance d = ‖ci − xj‖ between a camera viewpoint pi and an object surface
point xj, that assigns maximum reward for a distance less than dmax and decreasing
returns up to a multitude of dmax. The distance-based reward function

Id(d) =


1, if d < dmax,

0, if d > 2dmax,
1
2

(
1− cos

(
dπ

dmax

))
, otherwise

(B.5)

returns no rewards for distances larger than twice of dmax. A visualization of Id(d) is
shown in Figure B.4a.

b.3.4.2 Observation Angle

Besides the importance of distances between camera viewpoints and surface points,
the observation angles of the camera rays toward the surface normals are also of
particular relevance for the quality of the reconstruction. It is commonly known
that fronto-parallel views toward a planar surface result in a higher reconstruction
quality, due to minor distortions of the objects appearance in the image, which leads
to a more robust and reliable matching result (Furukawa and Hernández, 2015).
Although viewpoint orientations are already computed and favoring fronto-parallel
views, the abundance of viewpoint hypotheses still have to be evaluated according
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Figure B.4: Heuristics for individual viewpoint candidates considering distances and observation angles
toward an object point. Left: Rewards considering the distance between viewpoint and
object points regarding the maximum distance d required to achieve a user-specified GSD.
Right: rewards based on observation angles defining maximum rewards for fronto-parallel
views (here: up to 15◦) and zero rewards for more than 75◦

to their observation angles. Hence, we adapt our reward function for observation
angles α = cos−1

(
n>i · ηj

)
and define two thresholds αmin and αmax, where the first

is used for maximum rewards for low observation angles and second represents
the maximum tolerable observation angle for returning rewards. We define the
observation angle-based reward function

Ia(α) =


1, if α < αmin,

0, if α > αmax,
1
2

(
1 + cos

(
π(α−αmin)
αmax−αmin

))
, otherwise.

(B.6)

Since our experiments focus on the reconstruction of buildings, we follow the
proposal of Furukawa and Hernández (2015) pointing out that observation angles
up to 15◦ yield best reconstruction results for planar surfaces, such as building
façades. This suggestion is in accordance with the extensive study about the impacts
of the acquisition geometry for dense matching algorithms by Wenzel et al. (2013).
Therefore we set αmin = 15◦, while the upper threshold—indicating a failure of MVS
algorithms due to large object distortions in the image— was empirically determined
to αmax = 75◦ and approved by the study in (Wenzel et al., 2013). A visualization of
the reward function for these thresholds is depicted in Figure B.4b. Note that these
values are optimal for the reconstruction of objects mainly composed of flat surfaces,
while more complex objects with curved or tilted surfaces would require stricter
thresholds.

During the computation of observation angles, we also store observation directions
due to the requirement of large parallax angles, as stated in requirement (4). The
impact of different parallax angles for the reconstruction quality has already been
largely investigated in several works (Förstner and Wrobel, 2016; Kraus, 2011;
Wenzel et al., 2013). In particular, a hemisphere is constructed for each surface
point xj directed along its corresponding normal vector ηj and discretized into six
distinct segments in order to distinguish between different observation directions.
A visualization of the hemispheres for potential camera constellations is shown in
Figure B.5. Aside from a segment for frontal views occupying an area of a unit circle
with an opening angle of αmin and a segment for discarded observation angles above
αmax, the remaining segments occupy equal areas on the surface of the hemisphere.
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(a) Good camera constellation (b) Bad camera constellation

Figure B.5: Observation angle segments for two camera constellations. A hemisphere is generated
along the objects point normal vector and divided into different segments. Each camera
ray intersects the hemisphere in a specific segment. Good camera constellations intersect
the hemisphere in different segments (a), while camera pairs with ego-motion and small
baselines intersect in the same segment (b)

Each viewpoint ray toward an object surface point intersects the hemisphere in a
specific segment seg(pi, sj) ∈ {0, 1, 2, 3, 4}, which is stored for all visible viewpoint
and surface point pairs. We exploit this result in order to find suitable viewpoints
intersecting the hemispheres in as many segments as possible and avoiding similar
intersection segments, leading to shallow parallax angles and glancing intersections.

b.3.5 Submodular Trajectory Optimization

Recent works have shown that the task of path planning for MVS image acquisition
can be efficiently addressed by employing submodularity to the candidate view
selection (Hepp et al., 2018b; Roberts et al., 2017) enabling approximation guarantees
on the solution using greedy methods. With respect to our notation in Section B.3.1,
submodularity is a property of a set function f : 2|P| → R that assigns each subset
T ⊆ P a value f (T ). f (·) is submodular if for every T1 ⊆ T2 ⊆ P and an element
p ∈ P \ T2 it holds that ∆(p|T1) ≥ ∆(p|T2). An equivalent and more commonly used
definition of submodularity for T1, T2 ⊆ P is given by f (T1 ∪ T2) + f (T1 ∩ T2) ≤
f (T1) + f (T2). In other words, submodularity implies that adding an element to
a small subset results in large rewards while adding the same element to a larger
subset leads to diminishing returns. Speaking of our path planning problem, as
we increase more viewpoint candidates to our trajectory, the marginal benefit of
adding another viewpoint with large overlap to the set decreases. Adding the same
viewpoint to a smaller set with limited coverage, on the other hand, leads to larger
rewards. This property hinders explicit modeling of stereo-matching, as already
pointed out by Hepp et al. (2018). Adding a viewpoint to a smaller subset T1 which
does not allow a stereo matching yields less reward (zero, as it is not matchable)
than adding it to a larger set T2 to which it is matchable and therefore it violates
the submodularity condition. For that reason, a submodular function f (·) has to be
defined which approximates stereo matching in terms of contributions from single
views for 3D modeling. This requires f (·) to be both monotone and non-decreasing
stated as monotonicity, which means that adding more elements to the set cannot
decrease its value. The marginal gain of a viewpoint candidate p toward a trajectory
T is given by ∆(p|T ) := f (T ∪ p)− f (T ). It has been shown that a simple greedy
algorithm can be considered for providing a solution of the NP-hard maximization
of submodular functions with a reasonable approximation guarantee (Krause and
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Golovin, 2014). Similar to Hepp et al. (2018), we constrain our submodular objective
function

f
(
sj, T

)
= min

(
1, ∑

pi∈T

1
v

I(pi, sj)

)
(B.7)

to limit the maximum reward for each surface point to 1, where v reduces the
obtained reward from a single view in order to enforce at least v different views
capturing the same surface point sj. Since this objective function is both monotone
and non-decreasing, we can transform the individual information rewards I(pi,Spi

)
from Equation B.4 for all viewpoint candidates to tightly additive information
rewards Iadd

i utilizing a simple greedy algorithm given in Algorithm 1. Note that
the submodular function in Equation B.7 on its own does not explicitly incorporate
stereo matching, as it only considers single contributions based on the distance and
observation angles from single viewpoints toward the object surface. However, a
stereo matching approximation is firstly given by the matchability graph, ensuring
paths along the graph for which viewpoints exhibit large overlap toward preceding
viewpoints. Secondly, the greedy algorithm incorporates the observation angle
segments by penalizing information rewards for camera viewpoints which intersect
already seen surface points in the same observation angle segments. This helps to
decrease the additive information rewards for cameras with only little parallax angles
and therefore avoids ego-motions in the optimized path which are obstructive for
stereo matching.

The greedy method iteratively computes the marginal rewards of each viewpoint
for the current reconstructability of each surface point and adds the viewpoint
with the highest additive information reward Iadd

i toward the output set. After
each iteration, the reconstructability of all surface points is updated according to the
previously selected viewpoint rewards. The marginal reward of remaining viewpoints
with similar intersection segments of already considered viewpoints is reduced and
therefore these are less likely to be chosen in the next iteration. This procedure is
repeated until the marginal rewards of all viewpoints have been considered and
assigned to the output set. After executing the greedy method, each viewpoint
candidate pi is coupled with a marginal information reward Iadd

i representing its
value for the reconstructability of the object. Roberts et al. (2017) presented an
efficient way to transform additive rewards into a standard additive orienteering
problem, formulated as a mixed-integer programming (MIP) problem, which can be
solved with off-the-shelf solvers.

An orienteering problem can be considered as a combination of a traveling sales-
man problem and knapsack problem. In other words, the optimization needs to find
a closed path that maximizes the collected rewards under a time or travel budget
constraint. However, the choice of a suitable travel budget is hard to predict for some
scenes and the optimization will almost always fulfill the full path constraint due
to the pure additive nature of the rewards which always increases the full coverage
of the model. Given an overestimated path length Leucl, a similar amount of total
rewards can be obtained with a shorter trajectory by penalizing lengthy paths with
a regularization factor λ. With respect to the semantical restriction on the airspace,



168 appendix b

Algorithm 1 The greedy method for maximizing a monotone submodular function

1: function Greedy(P ,S , I(·))

2: I ← ∀p ∈ P : compute I(p,S) . Compute individual rewards for all viewpoints

3: Seg← ∀p ∈ P : compute seg(p,S) . Compute intersection segments for all viewpoints

4: R← ∅ . Initialize reconstructability of object S

5: H ← ∅ . Initialize observation directions of object S

6: for m← 0 to |I| do

7: iadd ← arg maxi∈I f (R ∪ i)− f (R)− |H ∩ Segi |

8: R← R ∪ iadd

9: H ← H ∪ Segiadd

10: I ← I \ {iadd}

11: end for

12: return R, iadd

13: end function

the optimized trajectory must not exceed a user-defined path length Lsem above
restricted objects. Summarized, the optimization objective can be formulated as

T ∗ = arg max
T

∑
pi∈T

Iadd
i − λ ∑

ek∈E
weucl

k

subject to ∑
ek∈E

weucl
k < Leucl,

∑
ek∈E

wsem
k < Lsem,

(B.8)

where Iadd
i defines the additive rewards of the nodes along a path T with traversed

Euclidean distances ∑ek∈E weucl
k and traversed distances above semantical restricted

airspaces ∑ek∈E wsem
k . The regularization forces to reduce the maximum path length

Leucl for similar optimization results in shorter paths. The second constraint allows the
optimization to select nodes in restricted but not prohibited airspaces but, however,
encourages to find the most efficient and shortest path through these conditionally
accessible airspaces.

b.4 experiments

We evaluated the proposed path planning approach both qualitatively and quanti-
tatively with a series of different experiments using synthetic and real-world data.
To provide a more profound analysis of the influence of semantic restrictions, the
following evaluation consists of two components. First, we need to evaluate the recon-
struction results using our pipeline without semantic constraints in order to validate
the general path planning itself. Secondly, comparing these baseline results with
the reconstruction results of using paths which consider the semantic constraints.
In the optimal case, paths which follow the semantic restrictions should return
similar reconstruction results but avoid flyovers of certain objects. Since the complete
pipeline from image acquisition to the final 3D model consists of several different
tasks, including SfM and MVS, the reconstruction results are highly influenced by
the performance of these algorithms. For this reason, we decided to use a state-
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Table B.1: Statistics of the datasets used in our experiments.

Dataset Data Type Extent of Building Extent of Scene Nr. of Nodes Grid Spacing Required GSD

(in m) (in m) (in m) (in cm)

House Synthetic 16× 8× 12 50× 50× 30 2643 3 2.0

Silo Real 25× 22× 25 93× 85× 30 2328 4 2.0

Farm Real 60× 16× 9 110× 65× 30 1716 5 1.5

of-the-art 3D reconstruction pipeline for all experiments with the same settings to
analyze the differences in the 3D models as a result of the different acquisition plans.
Since Pix4D (Pix4Da) is a well-known photogrammetric mapping software which
integrates state-of-the-art processing steps for both SfM and MVS steps and therefore
is often used for processing UAV images, we decided to choose this software for
our experiments. However, the results after processing the images with comparable
software (e.g., Colmap (Schönberger and Frahm, 2016)) do not substantially differ
from the results of Pix4D. For the sake of simplicity we therefore only report the
results using Pix4D. In order to investigate whether adjacent image viewpoints can
be successfully matched, only temporally neighboring images were matched instead
of an exhaustive image matching strategy.

Finding suitable data for a comprehensive analysis is hard to realize, as minor
modifications of the parameters can end up with different trajectories, for which
all of them need to be executed in individual flights. Moreover, comparing the
reconstruction results lack the availability of ground truth data on a large scale. For
this reason, we generated a synthetic dataset, composed of various objects arranged
to a realistic and interchangeable scenery, which allows comparing the reconstruction
results derived from different trajectories with exact ground truth. Additionally, we
also show the real-world applicability with two real sceneries consisting of different
building shapes with a diverse complexity of the surroundings.

b.4.1 Synthetic Scene

We introduce a new customized synthetic scene (the synthetic scene is freely avail-
able at https://www.bgu.tum.de/lmf/synbuil/ which was generated with the open-
source computer graphics software Blender (Blender). The main object of interest is
a conventional living house located at the center of the scene, consisting of a balcony
as overhang, an inset doorway and an adjacent garage. The buildings façades are
textured with dirt allowing for a dense reconstruction without severe gaps from
homogeneous areas. The roof consists of individual 3-dimensional roof tiles allowing
for investigations of detailed structures. The building is surrounded by obstacles,
such as trees and adjacent buildings placed beside a main road crossing the building.
Additionally, a couple of cars are located on the roadside and in front of the building,
which are later used to further restrict the airspace. Figure B.6 shows an overview of
the synthetic scene while properties of the scene are listed in Table B.1.

The 3D proxy model, which was considered as input for all methods which
were investigated, was created from rendered RGB images of 10 nadir-directed
viewpoints at a safe altitude of 70 m encompassing the whole scenery. All images
were rendered with a resolution of 750× 500 px for a virtual camera with a sensor
size of 22.2× 14.6 mm2 and a focal length of 30 mm. Since our semantic segmentation

https://www.bgu.tum.de/lmf/synbuil/
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Figure B.6: Overview of our synthetic scene used in our experiments (mid). Sample views of the
building for the highlighted areas are shown in the left and right column.

network was trained on real UAV images, the generalization on synthetic data is
rather poor. For that reason, we additionally rendered semantic maps for all nadir
views directly from Blender. The 3D proxy model was derived by feeding the
rendered RGB images into Pix4D for generating a dense 3D point cloud, which
was further enriched with the semantic maps following the strategy in Section B.3.2.
Evenly distributed viewpoint hypotheses were sampled in the free airspace from a
regular 3D grid with a spacing of 3 m, while keeping a safe distance of 3 m toward all
obstacles. The camera orientations for all viewpoints were assigned with the strategy
explained in Section B.3.3.

b.4.1.1 Optimization Evaluation

An analysis of the overall performance of the proposed methodology, as well as the
influence of the path length regularization term was conducted with the introduced
synthetic scene. A series of estimated trajectories with different regularization param-
eters were compared toward both automated and manual baseline trajectories. Since
the objective function in Equation B.1, in combination with the proposed heuristics,
serves as a measure of the expected certainty of the object’s reconstructability R,
individual results for the reconstructability can be derived for arbitrary subsets
T of the camera graph without the need of acquiring and processing the images.
A study concerning the influence of the regularization for jointly optimizing the
reconstructability and the path length was conducted by first optimizing a solely
geometrical trajectory without semantic constraints with different regularization
parameters λ and an overestimated path length Leucl = 1000 m.

Figure B.7a depicts the expected model uncertainty with respect to the path length
for different values of λ. As expected, low values (e.g., λ = 0.1) increase the optimized
path lengths but also yield a higher degree of certainty, while large values (λ = 2)
result in shorter paths but reduced certainties of the reconstructability. A reasonable
compromise of short path lengths and high model certainty can be realized for
regularization parameters in the range of λ = 1. Compared to the optimized path
with λ = 0.1, a minor loss of 4.2% of the model certainty is recognizable for λ = 1
whereas the path length has been reduced by half.
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Figure B.7: Comparison of different optimization methods in terms of the expected model uncertainty
for different path lengths assuming the same objective function. The effects of various
regularization parameters are shown in blue and the performances of baseline approaches
are depicted in gray and black (a). Note that λ = 1 leads to a balanced trade-off between
short path lengths and high model certainty. Comparison of the semantically-aware global
optimization with λ = 1 for different restrictions on the airspace (b)

We compare the global optimization against two other automated path planning
baselines, specifically a random trajectory and an online-capable NBV approach for
which both make use of the same camera graph, heuristics, and objective function.
Regarding the random trajectory, subsequent views are randomly sampled from the
camera graph, while the shortest paths between the selected nodes in our graph are
computed until a total path length of 1000 m is reached. Each visited node between
two sampled nodes is considered as an acquisition viewpoint. This procedure was
repeated for 50 times and the averaged model uncertainty for all obtained trajectories
are shown in Figure B.7a. Due to the random sampling, highly redundant views
from similar positions above the building and only a few views capturing the
buildings façades result in a larger degree of model uncertainty compared to the
globally optimized trajectories. The path planning strategy of the NBV method
starts—similar to the global method—from the viewpoint with maximum reward
and greedily selects the next best view from the neighboring nodes according to their
marginal rewards. Again, this strategy was repeated until a path length of 1000 m
was reached. Comparing toward to the global optimization, NBV rapidly decreases
the model uncertainty, as it traverses along the largest gradients of the marginal
rewards. However, due to the local search strategy and the highly non-linear nature
of the objective function, the NBV approach can get stuck in a local minimum in
already seen areas which results in diminishing marginal rewards. This characteristic
property is clearly evident in the plateaus of Figure 4.9a. Summarizing, the NBV
method can be effective for fast exploration of the object due to the gradient-based
optimization, but, however, does not guarantee to recover all local details of the object.
The global approach, on the other hand, exploits submodularity which contributes
to the selection of suitable viewpoints covering all parts of the object, while the
global optimization refines all viewpoints of the trajectory simultaneously, leading to
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less redundant acquisition views. It is evident, that the global approach is superior
toward the baselines in terms of shorter flight paths and higher model certainty. In
addition, the globally optimized trajectories have also been proven to be superior in
terms of the quality of the generated 3D models, as presented in Section B.4.1.3.

b.4.1.2 Semantically-Aware Optimization Evaluation

Following our study in Section B.4.1.1, a regularization parameter of λ = 1 allows
for a reasonable trade-off between short path lengths and high model certainty and
is therefore kept for further experiments investigating the semantic constraints of the
airspace. Since path optimizations in Section B.4.1.1 only consider purely geometric
constraints resulting in a collision-free and matchable viewpoint path in the camera
graph, we additionally restrict and prohibit certain airspaces according to the seman-
tics of the underlying proxy model. Depending on the application, restrictions can
be defined in two ways: a hard restriction eliminates nodes and their corresponding
edges above a certain semantic cue in the camera graph, while soft restrictions limit
the path length to a maximum tolerable distance Lsem above specified semantic cues.
The latter is realized by the secondary condition in Equation B.1.

Precisely, we optimized three semantically constrained trajectories with the follow-
ing restrictions:

• No semantics (NS): this path from Section B.4.1.1 serves as a baseline and only
considers geometric constraints.

• Building (B): hard restriction for airspaces above other buildings than the target
building.

• Building & Street (BS): in addition to (B), airspaces above streets are softly
restricted to maximum path length of L = 12 m, approximately twice the width
of a regular street.

• Building & Car & Street (BCS): In addition to (BS), hard restrictions above cars
are imposed.

The semantic constraints affect the generation of the camera graph, resulting
in a limited number of accessible nodes (hard restrictions) and only conditionally
accessible nodes (soft restrictions). Statistics of the affected nodes and edges for the
synthetic scene are listed in Table B.2. The optimization for the semantically-aware
path plans was conducted in the same fashion as in Section B.4.1.1, except for the
additional side constraint for the soft restrictions above streets. A comparison of the
optimized paths with respect to the path length and model uncertainty is shown
in Figure B.7b. From this figure it can be seen that, despite further restrictions in
the airspace, only slight losses in the model certainty have to be expected from the
optimized paths, indicating that satisfactory reconstruction results can be achieved
from these restricted trajectories with a similar path length.

As follows from the visualization of the optimized paths in Figure B.8, the increase
of restrictions on the airspace has a substantial influence on the estimated path
along the camera graph, yet yielding reasonable trajectories encompassing the entire
building while avoiding prohibited objects. It is worth noting that the soft constraint
on streets for (BS) and (BCS) result in trajectories which simply cross the street twice
in a direct way at suitable locations. In terms of flight safety, these trajectories are by
far more desirable than the unconstrained path, since risky long-term periods above
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Table B.2: Effects of semantic constraints on the graph generation for the synthetic scene. The free
airspace is further restricted for various semantical constraints affecting the number of
accessible and conditionally accessible nodes

Constraint Nodes Edges

Free Restricted Free Restricted

No semantics (NS) 2643 0 13,634 0

Building (B) 2333 (88%) 0 11,836 (87%) 0

Building & Street (BS) 2333 (88%) 459 (20%) 11,836 (87%) 2555 (21%)

Building & Car & Street (BCS) 2208 (83%) 388 (17%) 11,084 (81%) 2164 (20%)

hazardousness roads are mostly avoided. As outlined in Figure B.9, the validity of
the semantical restrictions can also be expressed as histograms of traversed semantic
labels of the proxy model for the optimized paths. While viewpoints above streets
are favored for (NS) and (B), they are highly avoided for (BS) and (BCS).

Since the heuristics were already computed for all potential viewpoints, the ex-
pected reconstruction quality can be assessed for only subsets obtained by the
estimated trajectories. This allows for investigations whether the photogrammetric
requirements are met for each surface point by analyzing the observation distances
and observations angles between surface points and selected viewpoints, as well
as their multi-view configuration. Distributions of the individual photogrammet-
rical properties of each surface point for different semantically-aware trajectories
are shown in Figure B.10. It is apparent that around 75% of the surface points
were mapped from at least three different perspectives according to the observation
direction segments when considering the non-semantically restricted path (NS).
Changes in the semantic-based restrictions on the free airspace only affected 4.4%
of the surface points for the utmost restriction on the airspace (BCS). Regarding the
observation angles, up to 64% of the surface points were seen within 15◦ observation
angle and 85% with less than 30◦, indicating the compliance of fronto-parallel views.
Similar to the multi-view assessment, further restrictions on the airspace had only
a minor effect on the observation angles. The maximum distance for achieving a
GSD below 2 cm with the virtual camera is dmax = 20 m which was met for 70% of
the surface points. It is worth mentioning, that for an increasing restriction on the
airspace even closer views were selected. Reason for this finding is that viewpoints
with an optimal distance toward the object could be restricted and eluded to closer
views for gaining at least an equal amount of rewards instead of more distant views
with fewer rewards.

b.4.1.3 Reconstruction Performance

The use of the synthetic model allows for a revealing quantitative and qualitative
evaluation of the reconstruction quality from arbitrary viewpoints. RGB images from
the viewpoints of the globally optimized paths and baseline paths were rendered
in Blender and subsequently processed in Pix4D, including the registration of the
images and the generation of a densified point cloud, which was further assessed
with respect to the ground truth model. Following the evaluation protocol of related
works (Hepp et al., 2018b; Knapitsch et al., 2017; Roberts et al., 2017; Smith
et al., 2018), the quality of the reconstructed point clouds can be quantitatively
assessed by comparing them toward the ground truth model using the quantities of
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(a) Global (NS) (b) Global (B) (c) Global (BS) (d) Global (BCS)

Figure B.8: Visualization of the optimized paths for different semantical restrictions on the airspace
for the synthetic scene. The first row shows a nadir view of the entire camera graph
as accessible and traversable UAV viewpoints. Color-coded edges represent associated
semantical costs wsem

k for the corresponding restrictions. The second row visualizes the
optimized camera paths together with the acquisition viewpoints as black camera symbols.
Different perspectives with the RGB proxy model are shown in the third and fourth row

precision, completeness, and F-score. Precision quantifies how many reconstructed
points are located close to the ground truth model with a distance equal or less than
an investigated threshold d. Completeness is defined as vice versa and quantifies
how many ground truth points are located in an equal or less distance toward the
reconstructed points than d. We analyzed the results for two different thresholds
d1 = 5 cm and d2 = 10 cm. Furthermore, an assessment of the point density, which is
required to be consistent along the entire object surface, was conducted by computing
geometrical distances between neighboring reconstructed points.

Additionally, we compared the optimized paths against commonly used flight
planning baselines, precisely we generated circular flights at two different altitudes
and radii (30 m altitude with 30 m radius and 20 m altitude with 37 m radius) with
oblique views pointing toward the center of the building. A quantitative evaluation
regarding the reconstruction errors and point density error are listed in Table B.3 and
a visualization of the spatial occurrences of these errors are shown in Figure B.11.
While circular baseline paths revealed unsatisfying reconstruction results in terms of
a low point density and gaps in the reconstruction due to occlusions from overhangs
of the roof and balcony, the unconstrained global optimization (NS) yielded best
reconstruction quality for all investigated errors. The distance-based heuristics led
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Figure B.10: Evaluation of heuristics for optimized semantically-aware trajectories per surface point s.
Number of intersected surface hemispheres (a), minimum observed observation angles (b)
and minimum observation distance (c)

to close-up views, resulting in a high global point density of more than 97% for
all reconstructed points of the building. Comparing the completeness error, lower
circular flights yielded less optical occlusions, which, however, is limited by the
surrounding environment. Paths considering the proxy model generally performed
better in terms of completeness, since low altitude viewpoints can be selected from
the free airspace, however globally optimized paths revealed significantly better
completeness, especially for occluded areas. The last few percentage points are
generally hard to achieve since the building consists of different materials, such
as windows, which are generally difficult to reconstruct. It is worth noting that,
according to Section B.4.1.1, all globally optimized paths did not exceed a path
length of 490 m acquiring a maximum amount of 162 images for (B), while both
random and NBV paths were limited to 1000 m resulting in 321 and 323 viewpoints,
respectively. The visualizations in Figure B.11 reveal local inaccuracies for the random
and NBV paths, whereas all globally optimized paths show decent results for all
parts of the building. The most difficult part concerns the façade beneath the balcony
and the occluded façade of the garage caused by the single tree, whereby former
resulted from a low contrast of the weakly textured and illuminated façade and latter
from a hardly observable area.

Comparing the results of different semantic restrictions on the airspace, only a
minor decrease in terms of completeness is notable, which matches the expected
model uncertainty in Figure 4.9b. Regarding the precision of the reconstruction—
a quality measure according to the noise of the reconstruction depending on the
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Table B.3: Quantitative evaluation of the reconstruction results for the synthetic scene obtained from dif-
ferent path planning methods. We report the point density as the percentage of reconstructed
points that have a shorter distance towards their nearest neighbor than the demanded
GSD = 2 cm, as well as one and a half times the distance (1.5 ·GSD = 3 cm). The recon-
struction errors are stated for d1 = 5 cm and d2 = 10 cm. The proposed globally optimized
paths are superior to the baseline methods, while featuring a shorter path. The severely
limited free airspaces due to different semantic restrictions lead only to a slight drop in the
reconstruction quality

Method Images Density (%) ↑ Precision (%) ↑ Completeness (%) ↑ F-Score (%) ↑

GSD 1.5·GSD d1 d2 d1 d2 d1 d2

Circle 30 m 100 46.9 73.3 88.8 96.3 79.2 91.8 83.7 94.0

Circle 20 m 100 29.7 60.3 89.7 95.8 84.0 93.9 86.7 94.8

Random 321 94.1 98.9 96.4 98.6 83.3 91.0 89.4 94.6

Greedy NBV 323 96.9 99.8 96.8 98.7 86.5 92.7 91.4 95.6

Global (NS) 148 97.6 99.9 96.7 98.9 91.1 95.7 93.8 97.2

Global (B) 162 97.3 99.8 96.2 98.7 88.3 95.5 92.1 97.1

Global (BC) 148 97.6 99.8 96.4 98.7 89.4 94.8 92.8 96.7

Global (BCS) 152 97.3 99.8 96.5 98.8 87.7 95.1 91.9 96.9

camera constellations—it can be noted that all paths considering viewpoints from
our camera graph achieved comparable good values, which proves the suitability of
the proposed viewpoint generation process in Section B.3.3.

b.4.2 Real-World Performance

We show the real-world applicability of our methodology by planning and executing
safe flight paths for high-fidelity reconstructions of two buildings. Our experimental
site consists of a Silo and a Farm building, which define the objects to be finally
reconstructed from our estimated flight paths with a user-specified GSD for the
entire object surface w.r.t. known camera intrinsics. The buildings differ in their
shapes, while the surrounding environment features hazardous obstacles—such as
high vegetation, buildings, cars and a trunk road—which were considered during
the flight planning. An overview of the real-world scenes are depicted in Figure B.12

and statistics of the scene extent are shown in Table D.2. We evaluated and qualita-
tively compared the reconstructed models generated with acquired images from the
estimated trajectories against regular baseline flight paths prepared in accordance
with established flight planning practices. A DJI Mavic Pro 2 was used for both ex-
periments, equipped with a 12 Mpx Hasselblad camera with a focal length of 24 mm.
The parameters of the camera intrinsics were included in our heuristic computation.
The estimated flight plans were finally executed by uploading the waypoints to the
UAV, followed by an autonomous acquisition flight without human intervention.
Similar to the reconstruction process in Section B.4.1.3, the acquired images were
processed in Pix4D for generating a dense point cloud and a triangulated mesh,
which served as our final reconstruction model.
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(BCS)

Figure B.11: Qualitative comparison of the reconstruction results on a dense point cloud for the
synthetic scene using different methodologies (columns). The first two rows show the
point density as colored distances towards adjacent points on the front and rear side of
the building, while red points indicate distances above the required GSD of 2 cm. The
reconstruction errors of precision and completeness for d = 5 cm are visualized in rows
three and four, and rows five and six, respectively, wherein red points indicate erroneous
areas

b.4.2.1 Silo

The first object of interest is a high-rise granary, which features large planar façades.
In order to generate a high fidelity reconstruction, the flight path required low
flight altitudes for capturing frontal images of the façades as well as glimpses of an
occluded façade by contiguous pipes. The surroundings of the granary impeded
the execution of a simple circular low altitude flight by high vegetation and another
building. We generated an optimized path, avoiding the high-grown trees and
restricting fly-overs above the adjacent building.

The initial model was generated from eight nadir images acquired in a grid-
like pattern at 100 m altitude encompassing the entire surrounding area. Since the
reconstruction of branches and leaves is often incomplete due to their small size and
the disturbance of wind affect the consistency of matches across multiple images,
we sampled evenly distributed points from a coarse mesh, filling up gaps in the
reconstruction model. After inferring the images into the FCN model, we assigned
each point in the model with a semantic label leading to the semantic initial 3D
model used for our trajectory planning. Visualizations of the semantic input images
and the respective proxy model are shown in Figures B.12a and B.12c. A total amount
of 2328 viewpoint hypotheses in the accessible airspace was sampled with a grid
spacing of 4 m, while keeping a safety buffer of 10 m toward high vegetation and
5 m toward other obstacles. The viewpoints were evaluated in terms of a required
GSD of 2.0 cm (for half image resolution) and connected in the camera graph when
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(a) Samples of nadir images superimposed with
semantic maps

(b) Samples of nadir images superimposed with
semantic maps

(c) Height map and semantic 3D model (d) Height map and semantic 3D model

(e) Acquisition flight path and sample images (f) Acquisition flight path and sample images

Figure B.12: Real world experiments for the Silo scene (left) and Farm scene (right). A set of segmented
nadir images (a, b) is used to generate a semantically enriched 3D proxy model of the entire
scene (c, d). The final trajectories (blue lines) and discrete image acquisition viewpoints
(black cameras) are visualized in (e, f) including sample images for the highlighted
viewpoints. The restricted areas include adjacent buildings for the Silo scene and adjacent
buildings, as well as trunk roads for the Farm scene

a mandatory overlap of adjacent views of at least 75% was met. The optimization
was conducted with λ = 1, yielding to a trajectory with a path length of 405 m with
98 different views. A visualization of the optimized trajectory and its viewpoints
is shown in Figure B.12e. The path features both oblique views covering the roof
of the silo and close-up fronto-parallel views of the façades, while it avoids the
surrounding trees and passes through the narrow gap between the two buildings
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Table B.4: Comparing automatic and semantically-aware trajectories toward established baseline trajec-
tories for the real world experiments including the number of acquired images, the number
of acquisition viewpoints above restricted areas, the path length, and the average distance
and standard deviation of adjacent 3D points after generating a dense 3D point cloud from
the acquired images. More details about the generation of the baseline trajectories are given
in Sections B.4.2.1 and B.4.2.2

Dataset Baseline Optimized

Images Restricted Path Density Images Restricted Path Density

Viewpoints Length (m) (cm) Viewpoints Length (m) (cm)

Silo 90 24 184 2.2 ± 1.2 98 0 405 2.0 ± 0.9

Farm 89 23 732 2.3 ± 0.8 131 0 677 0.9 ± 0.4

without crossing the adjacent building. We compared the reconstruction results using
the acquired images of the optimized trajectory against a baseline of a circular flight
at a safe altitude of 40 m with 90 acquired images pointing toward the center of
the silo. The reconstructed models of both paths are shown in Figure B.13, while
Table B.4 compares the trajectories and reconstruction results for the baseline and
optimized trajectory. It is evident that our optimized path recovers a higher amount
of details than the baseline path, as well as a more complete model, even for hardly
observable parts of the silo, such as the highly occluded façade and the façade
towards the restricted airspace above the adjacent building. The triangulated mesh
exhibits planar façades but still preservers local details, such as sharp edges and
almost completely reconstructed pipes with a high level of detail. The visualization
of the closest distances for the reconstructed points shows that the desired GSD was
achieved for almost every part of the silo, except for the occluded façades. The point
density of the baseline model, on the other hand, decreases toward the ground part
of the building, due to a fixed flight altitude. Moreover, the baseline path was not
able to recover the occluded façade, exhibits distortions in the planar façades, and
lost the preservation of local details.

b.4.2.2 Farm

The second object is an elongated farm building of low height and with large
overhangs from the roof toward the buildings façades. In order to recover the
entire building, it is, therefore, necessary to capture images from very low altitudes
facing the buildings façades. However, the surrounding environment, as shown in
Figures B.12b and B.12d, impeded established flight planning due to high-grown
adjacent trees, buildings, and a crossing trunk road. In particular, the latter should
be avoided to be overflown, especially at very low altitudes. For that reason, the
semantic proxy model was further enriched by the use of OSM data by converting
already as road labeled 3D points into restricted areas. Similar to the Silo scene,
further restrictions were imposed on flights above other buildings.

The parameters for the optimization were set in the same way as in Section B.4.2.1,
yielding a trajectory with a path length of 677 m and 131 unique image acquisition
viewpoints, as shown in Figure B.12f. The trajectory strictly follows the boundary
toward the trunk road, avoids the adjacent building, and evades the single tree in
front of the buildings façade. Besides oblique images covering the roof of the building,
the buildings façades were captured from fronto-parallel viewpoints at very low
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altitudes up to 5 m. A comparison of the reconstruction result from the optimized
trajectory was conducted against a baseline of a grid-like acquisition pattern at 40 m
with 89 images pointing toward the center of the building. Table B.4 summarizes
both trajectory statistics and quantitative results of the obtained 3D models from
the baseline and optimized trajectories, while visualizations of the 3D models are
shown in Figure B.14. Due to the large overhangs of the building’s roof and the high
altitude of the baseline trajectory, the façades are mostly occluded and therefore
hardly reconstructed. In contrast, the reconstruction of the buildings façades in the
model of the optimized trajectory is vastly improved, with the exception of a partial
gap at one side, caused by a technical malfunction of the gimbal of the UAV for
some images. It is worth noting, that the optimized model features a similar point
density for both the roof and the façades of the building in the range of the required
GSD. Comparing the point densities of both models, 95.2%, 99.7% and 99.9% of
the reconstructed 3D points derived from the optimized trajectory have an equal or
less distance toward adjacent neighboring points for different distance thresholds
(d1 = 1.50 cm, d2 = 2.25 cm, d3 = 3.00 cm), while the baseline only achieved 17.1%,
37.1% and 91.8%, respectively.

b.5 conclusions

We proposed a semantically-aware 3D UAV path planning pipeline for acquiring im-
ages to generate high-fidelity 3D models. Our framework is based on a semantically-
enriched proxy model of the environment from a set of safely acquired images,
which is used to restrict and prohibit accessible airspaces for the UAV, allowing for
safe acquisition paths in complex and densely built environments. An optimized
subsequent refinement path allows for acquiring a sequence of close-up images
with respect to a user-defined model resolution and fulfills the requirements of SfM
and MVS image acquisition, considering the surrounding geometric and semantic
environment. We proposed a set of meaningful heuristics and exploit submodularity
for formulating the path planning problem as a discrete graph-based optimization.
The optimization follows an orienteering problem and maximizes the reconstructabil-
ity of the object while minimizing the corresponding path length. Additionally, it
includes the avoidance of prohibited airspaces and respects conditionally restricted
airspaces, such as traversing highly frequented roads.

Experiments on synthetic and real-world scenes have demonstrated the appli-
cability of our proposed method requiring only minimal human interaction for
complicated scenes, for which established flight plans yield insufficient reconstruc-
tion results and highly experienced pilots are demanded for manual operation of
the vehicle. We have shown that the optimized trajectories are safe in terms of user-
specified restrictions and prohibitions on the accessible airspace but are still capable
of generating high-fidelity reconstruction models with respect to the desired model
resolution. The model-based approach and the proposed heuristics furthermore
allow for retrieving information about the expected reconstruction quality before the
actual execution. This allows for further adaptations of the flight path or even the lo-
calization of suitable image acquisition viewpoints on the ground level for capturing
images of hardly observable parts of the object with a hand-held camera. It is worth
noting, that the proposed framework is not limited to building reconstruction tasks,
but will work for any 3D object of interest.
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The discrete nature of the regularly sampled viewpoints leads to a multitude
of images, which are necessary for the registration of adjacent views but do not
enhance MVS processing, for which similar results could be achieved with only a
subset of the acquired images. This limits the potential placement of viewpoints
and leads to over- and undersampled areas. A more flexible viewpoint placement
strategy could lead to even more sophisticated viewpoints with a reduced number
of hypotheses, thus a reduction of the optimization complexity. Furthermore, it
would be conceivable to include additional costs to the optimization for the gimbal
motion needed between adjacent viewpoint perspectives in order to minimize the
required gimbal operations for the entire flight. Although the optimization would
account for estimating a single trajectory for reconstructing several isolated target
objects at the same time, the viewpoint orientations are currently assigned toward
a single target object. However, an extension of the optimization could incorporate
multiple orientations for each camera viewpoint toward several target objects. Hepp
et al. (2018) and Roberts et al. (2017) have shown that viewpoint orientations can be
integrated in the optimization as well, however, the complexity of the optimization
exceedingly increases. A reduction to only few meaningful orientation hypotheses
for each viewpoint would be favorable for the optimization, which selects the best
perspective for each viewpoint for maximizing the total reconstructabililty of all target
objects. Besides leveraging semantics for restricting the airspace, an extension of the
trajectory optimization could include respecting the material of individual object
parts, such as windows, roofs, and façades, which require customized acquisition
requirements. In terms of safe automated flight planning, further research should
include keeping the UAV in sight with the pilot at any time during the autonomous
acquisition flight, by, for instance, constraining the UAV trajectory optimization to
the visible airspace of the pilot’s path.
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Figure B.13: Qualitative reconstruction results for the Silo scene using a baseline UAV path (a) and
our optimized path (c). Rows show the densified point cloud (top), a triangulated mesh
(mid) and the point density (bottom). Two different viewpoints are visualized which are
separated by the colormap of the point density, showing the closest distances between
adjacent 3D points
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Figure B.14: Qualitative reconstruction results for the Farm scene using a baseline UAV path (a) and
our optimized path (c). Rows show the densified point cloud (top), a triangulated mesh
(mid) and the point density (bottom). Two different viewpoints are visualized which are
separated by the colormap of the point density, showing the closest distances between
adjacent 3D points
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This chapter represents a pre-print version of the published article with identical
content. The original article appeared under doi:10.1109/CVPRW.2016.91.

c.1 introduction

A cheap and fast way for generating building models is to obtain 3D information
from image sequences. Typically, 3D reconstruction pipelines like Structure-from-
Motion (SfM) followed by Multi-View Stereo (MVS), and meshing are used for small
and large scale reconstructions. With the increasing research on image-based indoor
modeling in the recent past, an integration of indoor and outdoor models of the
same building is consequently the next step. For instance, Figure C.1 shows the
reconstruction of our computer-lab which should be connected to the outdoor façade
of the building.

When trying to fit a model of the building interior into an existing outdoor
model, typically there are no visual correspondences for the alignment using tie
points. Therefore, manual work is needed, like using CAD models or floor plans.
An automated way providing the true or at least the most probable locations in the
outdoor model assumes to reduce human interaction. Since performing a complete
reconstruction using continuous image sequences capturing the entire scene by
moving from the outside into the inside of the building is either inaccurate caused by
drifts or even unfeasible by the lack of matchable features in most cases, an approach
using individual reconstructions is desirable. This also allows for matching models
generated from image sequences acquired at different points in time.

The most challenging task in matching indoor and outdoor models is to find
structures that appear in both image sets but do not describe physically the same
part of the scene. To achieve an alignment of these models, topological structures must
be found which can be seen from both inside and outside the building, like windows
and doors. Identifying and detecting these objects could be done by semantic image
segmentation (scene parsing (Brust et al., 2015)) or point cloud analysis (Martinovic
et al., 2015). Exploiting the fact that window and door frames can be characterized by
dominant and co-planar edges, we propose a method employing 3D line segments.

The contribution of this work is (i) a novel framework for aligning individual
image-based 3D reconstructions by (ii) using 3D lines for detecting and matching
shared geometric structures in different 3D models.
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(a) Building exterior (b) Building Interior

Figure C.1: Dense point clouds of (a) a building façade from images captured by an UAV and (b) inside
our computer lab. The true location of the lab is indicated by the red polygon in (a)

c.2 related work

Although the field of 3D reconstruction, scene interpretation, and modelling of
man-made objects like buildings is a well-known and widely studied research topic,
there is, to our best knowledge, only little research investigating the question how
to automatically align 3D indoor and outdoor models reconstructed by individual
image sequences. However, the existing demand of integrating multiple image-based
reconstruction models can be demonstrated by the example of the very recent Chillon
Project (Strecha et al., 2014), which aimed to fully reconstruct the interior and the
exterior of a complex castle in Switzerland. Due to different camera models and
acquisition modes (terrestrial and aerial), a fully automatic reconstruction process
is not possible. Instead, multiple sub-models were generated and projected in the
same reference coordinate system afterwards in a rather manual way by using
Ground-Control-Points or selecting tie points in the images by hand. Although
the result shows an impressive reconstruction of a complex architectural object, it
also demonstrates the extensive manual interaction which is still needed to connect
multiple sub-models.

Cohen et al. (2015) propose a method for merging multiple SfM reconstruction
models of a single building which can not be merged due to occlusions or insuffi-
cient visual overlap. The approach exploits symmetries and repetitive structures of
building façades, as well as semantic reasoning to find reasonable connection points
of adjacent models and use them for stitching the models.

In our scenario, we face a similar problem of having no visual overlap when trying
to stitch indoor and outdoor models. However, in place of finding connection points,
which do not exist in the separated models anyway, we try to find shared geometrical
structures that appear in both models like window frames and doors. These shapes
can be expressed as edge maps and matched to find suitable connections. When
trying to match similar shapes in edge images, chamfer matching (Barrow et al., 1977)
is widely used, especially in presence of clutter and incompleteness. In our approach,
we make use of 3D lines to generate such edge maps which are finally tested for
suitable correspondences using chamfer matching.
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Figure C.2: Workflow of the proposed method for aligning building interior and exterior. See denoted
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c.3 system pipeline

This section describes the pipeline of our proposed model matching approach, as
illustrated in Figure C.2. After giving an overview about the basic concept of the
method, a detailed description of the individual parts is provided.

c.3.1 Overview

Given two sets of 3D line segments L1 =
{

l1
1 , ..., ln

1

}
and L2 =

{
l1
2 , ..., lm

2
}

, the overall
goal is to find a transformation T = (R, t, s) to align L1 to L2, where t, R and s define
the parameters of a 3D similarity transformation as a 3D translation vector, a 3× 3
rotation matrix and a scale. Each segment l is defined by its two endpoints. After
identifying i = 1, .., k corresponding line segments in L1 and L2, the parameters of T
can be estimated by

T = arg min
T

k

∑
i=1

d
(

li
2, π

(
li
1, T̂
))

, (C.1)

where π
(
l, T̂
)

projects a line segment l with T̂, and d (l2, l1) computes the length of
the perpendicular of two 3D line segments extended to infinity.

As only a small subset out of several thousand pairs of 3D line segments in L1× L2
are expected to be correct 3D line matches, an exhaustive matching scheme is not
applicable. Instead, the matching problem is reduced to 2D by defining multiple plane
hypotheses in both models, projecting 3D lines onto these planes, and performing 2D
binary matching. From the resulting distance maps, local minimums can be extracted
which indicate potentially matching locations of the indoor model. After coarse
alignment and identifying 3D line correspondences, a refinement of T is applied in
3D by minimizing Equation C.1.

c.3.2 3D Line Generation

In a first step, for interior and exterior models, 3D line segments have to be generated
from a set of overlapping images. This is realized by initially computing image
orientations using, e.g., classical SfM pipelines, like VSfM (Wu), Pix4D (Pix4Da),
or Bundler (Snavely et al., 2006). As the following line segment reconstruction step
assumes images to be undistorted, radial distortion in the images should be removed
in advance or modeled within the SfM process. Further, both models need to be
approximately equally scaled. This can be achieved by fixing the scale in the SfM
process by including one known real-world distance, the usage of GPS information,
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(a) Building exterior

(b) Building Interior

Figure C.3: Sparse point cloud (left) and corresponding 3D line segments (right) for building exterior
(a) and interior (b) of the Office dataset

or a calibrated stereo camera configuration. Although the building interior often
consists of poorly textured walls — which translates into problems during image
matching due to the low number of matchable feature points — a feasible number
of feature points for the pose estimation process should be found in most cases.
Subsequently, the computed camera orientations and undistorted images are used
to generate 3D line segments following the Line3D method proposed by Hofer
et al. (2015). Figure C.3 shows a comparison of the sparse point cloud obtained
from the SfM process and the 3D line segment reconstruction of the building in
Figure C.1. It can be clearly seen that the derived sparse point clouds do not contain
information in low textured areas, while reconstructed feature points at the façade
and window frames only populate on corners and junctions. A detection of shared
structures in both models based on the point cloud seems to be unfeasible. MVS
approaches help to increase the density of the point cloud, but still perform bad
in poorly textured areas like walls or windows, as exemplary shown in Figure C.1.
Additionally, the enormous number of obtained 3D points handicap an efficient
analysis of the scene structure. However, the reconstructed 3D line segments contain
much more geometric information of the scene, particularly in terms of interpreting
façades and windows. Additionally, analyzing 3D lines can be done far more efficient
by the drastically lower number of lines compared to the densified point cloud, as
noted in Table C.1. The alignment of both models by matching corresponding 3D line
segments of window frames seems reasonable. We do not assume prior information
of the building structure, but expect that window frames can be dissembled to
orthogonal and co-planar 3D lines. This allows us to first define possible window
plane hypotheses and then to reduce the matching problem from 3D to 2D.
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c.3.3 Window Plane Hypotheses Generation

This section describes the generation of possible window plane hypotheses which
are further used to apply 2D matching and find corresponding 3D line segments in
both models.

Vertical Alignment Like many man-made constructions, the interior and exterior
of buildings mostly consist of planar horizontal and vertical surfaces. This allows
us for making use of the Manhattan-world assumption and first identify dominant
orthogonal orientations by computing orientation histograms of the 3D lines followed
by aligning the estimated vertical axis of the model according to the vertical axis
of the coordinate system with the obtained rotation matrix. A similar approach is
proposed by Furukawa et al. (2009).

Line Filtering In order to reduce the computational overhead and increase the
robustness of the method, subsampling of the 3D lines is performed by eliminating
cluttered and skewed 3D lines which unlikely belong to window frames following the
Manhattan-world assumption. The set of 3D lines l ∈ L with length |l| and vertical
component of the normalized orientation ϕz are subsampled according to

L′ = {l ∈ L : |l| ≥ τl ∧(
|ϕz(l)| ≤ τϕ ∨ |ϕz(l)| ≥ (1− τϕ)

)
} ,

(C.2)

where τl and τϕ are user-defined thresholds defining a minimal length (e.g., 20 cm)
and deviation of the vertical and horizontal axes (e.g., 0.05). Table C.1 lists the number
of remaining 3D line segments after the filtering step.

Plane Hypotheses From the set of remaining 3D line segments, multiple window
plane hypotheses are generated by assuming co-planar window frames. A RANSAC
estimation is applied to find dominant 3D planes, wherein inliers are identified as
3D lines lying on this plane within a threshold of the thickness of the plane. Each
plane is defined by the intercept of close, orthogonal, and co-planar 3D line segments.
The normal of the plane is directed towards the camera from which these lines were
reconstructed in order to distinguish between indoor and outdoor sides. We assume
that window frames generate substantially more inliers compared to painted walls or
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(a) Building interior (b) Building exterior

Figure C.5: Filtered 3D lines and the three most dominant plane hypotheses in the Office dataset.
Decreasing number of supporting 3D lines. (a) indoor: 717 (green), 348 (red), 177 (blue); (b)
outdoor: 1326 (green), 1108 (red), 178 (blue)

other indoor and outdoor objects. Figure C.4 plots the number of inliers for the first
35 generated 3D planes of the indoor and outdoor model shown in Figure C.1. As
expected, the number of inliers decreases rapidly and only a few dominant 3D planes
were found. Depending on the complexity of the building, it is mostly sufficient to
consider the ten most dominant 3D planes. For the purpose of clarity, only the three
most dominant 3D plane hypotheses together with their corresponding inlier lines
are illustrated in Figure C.5.

For each pair of computed plane hypotheses, T̂ is now known up to a 2D translation
vector within the outdoor plane. The missing parameters can be estimated by first
matching every plane hypothesis pair in 2D and then evaluating the matching result
to find valid locations.

c.3.4 Matching Plane Hypotheses

After computing multiple plane hypotheses, the next step is to determine correspond-
ing plane hypotheses and find valid locations of the indoor model in the outdoor
model in order to identify 3D line matches. This is done by performing oriented
chamfer matching as described subsequently.

Binary Image Generation For each indoor and outdoor hypothesis, corresponding
3D lines considered as inliers by the plane estimations are projected onto their
corresponding planes for generating 2D lines, as illustrated in Figure C.6. It has to be
noted that, due to the reconstruction process, the models still contain inaccurate and
missing lines, which has to be considered in the matching process. Furthermore, like
most buildings, the façade shows highly repetitive structures. In this case, the correct
location of the indoor model can not be identified without any further information
like adjacent rooms. Instead, all possible valid locations should be returned by the
method, whereby the correct one is identified by the user. As chamfer matching
requires binary images, the 2D lines are discretized with a user-defined step size
(e.g., 5 cm).
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(a) Indoor hypothesis 1 (b) Outdoor hypothesis 1

Figure C.6: Projected 3D inliers onto the first plane hypothesis in (a) indoor and (b) outdoor scene

Figure C.7: Chamfer distance maps of indoor hypothesis 1 and outdoor hypotheses 1 and 2 projected
on outdoor 3D lines. Both maps are equally scaled, while blue color indicates low distance
and therefore likely locations of the indoor model

Oriented Chamfer Matching A popular and efficient technique for shape-based
matching is provided by chamfer matching, particulary in presence of incompleteness
and clutter. We make use of the oriented chamfer distance (Shotton et al., 2008),
which is defined as the mean distance of edge points of a template binary image
to their closest edge points in a query binary image, weighted by the orientation
differences of closest edge points. This distance can be efficiently computed using
distance transform, while the orientations of the edge maps can be extracted directly
from the 2D line segments.

The resulting chamfer distance map indicates possible locations of the indoor
model, the so-called in-plane hypotheses. Figure C.7 illustrates the distance maps of
matching indoor hypothesis 1 to outdoor hypotheses 1 and 2 projected onto the
3D lines of the outdoor model. Note the low distances for the windows at the first
and second floor. However, differences in the scores for different floors are caused
by missing edges during the reconstruction process and slightly different window
heights for the first and second floor. Multiple in-plane hypotheses are subsequently
identified by extracting local minimums in the distance maps.
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Hypothesis 1 Hypothesis 2 Hypothesis 3
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Figure C.8: Number of 3D line matches for different in-plane hypotheses for the three most dominant
indoor and outdoor hypotheses. (a-c) describe different outdoor hypotheses together with
their corresponding 2D binary image. Different indoor hypotheses are indicated by different
colors, while in-plane hypotheses are sorted by their number of matches

Finding Corresponding 3D Line Segments For each in-plane hypothesis i, a full
initial transformation T̂i is now available. After transforming all indoor inlier 3D line
segments with T̂i, corresponding 3D line segments can be detected as closest parallel
3D line segments of the outdoor model. Due to the plane estimation, discretization,
and multiple window pane layer, the inlier 3D indoor lines are shifted along the
normal orientation of the plane until a maximum number of matches is reached. This
procedure is repeated for all possible plane combinations and in-plane hypotheses,
while the number of detected 3D line matches indicates the quality of the matching.
Figure C.8 shows the number of matches for each pair of planes and multiple in-
plane hypotheses. Most matches are found by the correct indoor plane hypothesis 1

(green) and the first outdoor plane hypothesis (a), followed by the second façade (b),
whereby numerous in-plane locations produce a similar number of matches. Wrong
indoor plane hypotheses (red and green) and the wrong outdoor plane hypothesis
(c) generate significantly less matches. Figure C.9 illustrates the location of the five
most probable in-plane hypotheses. All of them correspond to the first indoor plane
hypothesis and first outdoor plane hypothesis.

c.3.5 3D Refinement

After obtaining the n most probable in-plane hypotheses and manually choosing the
correct one, the parameters of the initial transformation T̂ are still erroneous caused
by inaccurate plane estimations, the discretization, or unequal scale of both models,
as exemplary shown in Figure C.10a.

A fine alignment is achieved by using the obtained 3D line matches and minimizing
Equation C.1. Due to the fact, that corresponding 3D line segments still can vary in
their distance - as they could be fragmented during the 3D line generation step -
they are extended to infinity. Therefore, the perpendicular distance between matched
lines is minimized. Note that this optimization requires both horizontal and vertical
line matches in order to eliminate one degree of freedom, but should be satisfied in
most cases. Table C.1 summarizes the intermediate results of the alignment and the
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Figure C.9: Most probable locations of the indoor model. The first five hypotheses belong to indoor
plane hypothesis 1 and are all located on outdoor plane hypothesis 1
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(a) Before 3D optimization (b) After 3D optimization

Figure C.10: Refining the initial transformation by global 3D optimization: 429 3D line matches for (red)
transformed indoor and (black) outdoor lines exemplary shown for the most supported
hypothesis

effect of the global optimization. The mean of all perpendicular distances of 3D line
matches can be considered as a measure of the alignment accuracy and results in
4.7 cm for the Office dataset. A visualization of the aligned 3D line matches before
and after the global optimization is illustrated in Figure C.10, while Figure C.11

shows the final alignment of both dense point clouds.

c.4 experiments

Beside the dataset and result in the sections before, another experiment was carried
out to illustrate the performance of the method. After giving an overview about the
data acquisition and properties of the dataset, intermediate and final results of the
alignment are described.

c.4.1 Dataset Description

The Building dataset contains an outdoor image sequence of a complete building
captured from an UAV and an indoor hand-held image sequence inside of the
building basement. Two large windows at both face sides of the building can be
used for stitching the indoor and outdoor model. GPS tags of the aerial images
were included in a SfM pipeline to compute a georeferenced, vertically aligned, and
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(a) View from Outside (b) View from Inside

Figure C.11: Aligned point clouds of indoor and outdoor model from different perspectives

(a) Indoor (b) Outdoor

Figure C.12: Filtered 3D lines and the four most dominant plane hypotheses in the Building dataset.
Decreasing number of supporting 3D lines. (a) indoor: 2827 (orange), 982 (cyan), 412 (red),
272 (blue); (b) outdoor: 2395 (orange), 1617 (cyan), 721 (red), 676 (blue)

correctly scaled reconstruction model. However, one known real-world distance and
direction has been included in the indoor reconstruction in order to approximate the
orientation and scale of the indoor model.

3D line segments of both models were further generated using the Line3D method
proposed in Section C.3.2 (cf. Figure C.12). A description of the scene and intermediate
results for this dataset are given in Table C.1. For further information of this freely
available dataset, please refer to Koch et al. (2016).

c.4.2 Alignment Result

Unlike the dataset used in section 3, the alignment of these models is unique up
to a 180◦ rotation of the indoor model, while the connection can be achieved on
both windows sides of the building. The result of the plane hypotheses generation
is illustrated in Figure C.12. The four most dominant plane hypotheses represent
the four façades of the outdoor model and the two walls and two window sides of
the indoor model. In this dataset, the number of matchable plane hypotheses can be
reduced by a bounding-box criteria. As the indoor model should not break through
the outdoor model, the front and back sides of the indoor model are not matched to
the side façades of the outdoor model. Further, as the side walls of the indoor model
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Figure C.13: Visualization of (red) transformed indoor and (black) outdoor 3D line matches considering
only matches at one face side of the building (a) and matches at both sides (b)

(a) Front entrance (b) Back entrance

Figure C.14: Final result after joint optimization of front and back entrance from different perspectives

have no connection to the outdoor model and contain different structures, only two
main hypotheses remain after the 2D matching step.

172 inlier 3D matches were found when matching one window façade. Due to the
building structure, another 157 3D line matches can be added when considering the
second hypothesis on the opposite window façade, as shown in Figure C.13b. If only
matches at one side of the building are being used, small inaccuracies of the estimated
rotation and scale together with the elongated structure of the building (60 m) cause
an imprecise fit observed at the opposite side of the building (cf. Figure C.13a).
Therefore, a joint optimization with matches at both sides is performed which leads
to an accurate and robust estimation of T with an error of 5.3 cm (cf. Figure C.13b).
Figure C.14 shows the final alignment of all 3D lines viewed from both sides of the
building.

c.5 discussion and future work

We have presented an approach for automatically aligning individual indoor and
outdoor reconstructions that uses SfM and a 3D line segment reconstruction algo-
rithm. As connecting those kinds of models is mostly restricted to their geometric
shapes like windows and doors, 3D lines are well suited for this task. Compared to
the extensive generation and analysis of dense 3D points using Multi-View Stereo,
a comparatively small number of 3D lines offer more interpretable information, at
least in detecting and matching geometric shapes.
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Table C.1: Properties, intermediate and final results of the experiments Office and Building. Note
the relatively small number of 3D line segments compared to the densified point clouds
generated by a standard MVS (Rothermel et al., 2012). Errors are defined as the mean
perpendicular distance between 3D line matches before and after global optimization

Dataset

Office Building

Indoor Outdoor Indoor Outdoor

Base area (in m2) 75 405 360 1500

Images 247 41 320 228

3D Points (mio) 9 18 13 134

3D lines 4373 3905 10 315 23 801

Filtered 3D lines 1724 2764 6616 21 385

Matches 429 329

Error pre optim (in cm) 5.7 47.7

Error post optim (in cm) 4.7 5.3

The proposed system exploits the planar structures of buildings for generating
multiple meaningful matchable hypotheses and is therefore not limited by the
complexity of the building. After detecting multiple 3D plane hypotheses, matching
can be applied efficiently in 2D by binary image matching methods. However, a
more discriminative matching method has to be developed for our task, as standard
methods return too many local in-plane minima and hence result in too much
computational overhead. This is also the case for reducing the number of meaningful
plane hypotheses. A preceding labeling of the 3D line segments using semantic image
segmentation could help to include useful priors in the window plane estimation
and 2D matching steps.

Beside aligning indoor and outdoor models, this method can also be extended
to align individual adjacent room models which are connected by doors. In case of
complex building interiors containing multiple rooms, a graph-based approach has
to be developed in order to find the correct room constellation.
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This chapter represents a pre-print version of the published article with identical
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d.1 introduction

Capturing the 3D structure of a scene from a single image is a fundamental question
in computer vision and enables manifold scene reconstruction and understanding ap-
plications, such as 2D-to-3D conversion (Xie et al., 2016), 3D modeling (Hassner and
Basri, 2006), room layout estimation (Izadinia et al., 2017), image refocusing (Shi et al.,
2015), foreground-background segmentation (Dhamo et al., 2019), computational
cinematography (Devernay and Beardsley, 2010; Phan and Androutsos, 2013), robot
navigation (Mancini et al., 2018), autonomous driving (ref), or augmented reality
systems (Liu et al., 2018). The process of predicting a depth map of a scene using
one or more images is commonly known as depth estimation and is usually derived
from correspondences across stereo images or motion sequences which provide
relatively rich information for understanding 3D structures. In contrast, a broad
range of research has dealt with the task of predicting pixel-wise depth maps from
monocular images, which is generally referred to as monocular depth estimation
(MDE). Among the multitude of different approaches, single-image depth estimation
(SIDE) addresses depth prediction from a single view without prior knowledge
and, thus, constitutes the most challenging scenario of this discipline. However,
recent years have witnessed the fast development of deep learning methods and their
massive impact on the computer vision domain, which has also affected the progress
of SIDE by implicitly learning relevant scene priors to cope with this task. Current
state-of-the-art methods replace traditional handcrafted methods and employ SIDE
architectures to address the problem of SIDE as a pixel-level regression task. The
remarkable results of such methods, exemplary shown in Figure D.1, demonstrate
the power of such deep networks by inferring geometrical information solely from
monocular RGB or grayscale images.

While these methods produce nicely intuitive results, proper evaluating the es-
timated depth maps is crucial for subsequent analysis and improvement of the
methods, as well as their usability for further 3D understanding scenarios. Consistent
and reliable relative depth estimates are, for instance, a key requirement for path
planning approaches in robotics (Mancini et al., 2018), augmented reality applica-
tions (Liu et al., 2018), or computational cinematography (Devernay and Beardsley,
2010), while preserving the planarity of predicted walls and floors of a room plays a
decisive role in room layout estimation applications (Zhuo et al., 2015).

201

doi:10.1016/j.cviu.2019.102877


202 appendix d

(a) RGB input image (b) Ground truth depth (c) Prediction using
method of Eigen and
Fergus (2015)

(d) Prediction using
method of Liu et al.
(2015)

Figure D.1: Depth maps produced by different methods, scoring similar errors using standard metrics

Nevertheless, the evaluation schemes and error metrics commonly used so far
mainly consider the overall accuracy by reporting global statistics of depth residuals
which do not give insight into the depth estimation quality at salient and important
regions, like planar surfaces or geometric discontinuities. Hence, fairly reasonable
reconstruction results, as shown in Figures D.1c and D.1d, are evaluated with similar
errors, although they apparently show different characteristics in terms of ordinal
relations, smoothness of planar regions, and defects at object boundaries.

For this reason, we provide a set of new geometrically interpretable error metrics
targeting the aforementioned issues allowing for a precise analysis of the performance
of depth estimation methods under different perspectives. At the same time, we
present a new evaluation dataset1 acquired from diverse indoor scenarios containing
high-resolution RGB images aside highly accurate depth maps from laser scans to
overcome the shortage of available datasets providing ground truth data of sufficient
quality and quantity.

This work extends our previous work on the evaluation of SIDE (Koch et al., 2018)
by providing a more detailed description of our dataset and error metrics, further
information on our acquisition procedure and dataset content, and a comprehensive
comparison towards other datasets. In addition, we present additional qualitatively
and quantitatively results and further experiments that analyze the performance
of current state-of-the-art methods for specific situations, such as the presence of
textured regions and variations in the scene illumination.

The remainder of the paper is structured as follows: Section D.2 starts with a
comprehensive presentation of the current state-of-the-art in deriving depth maps
from single and stereo images and reviews existing RGB-D datasets that are used
for training and benchmarking purposes. A thorough description of the proposed
geometric quality metrics is provided in Section D.3. Section D.4 is devoted to a
detailed description of the new IBims-1 RGB-D indoor dataset and a quantitative and
qualitative comparison towards the related NYU-v2 (Silberman et al., 2012) dataset.
In Section D.5, an assessment of the performance of several current SIDE methods
regarding both established and proposed error metrics on IBims-1 is outlined, which
reveals novel insights into the performance and differences among the methodologies.
Besides the benchmarking protocol, Section D.6 presents additional experiments that
aimed to highlight specific properties of the methods, such as robustness towards
image augmentations and the influence of texture and illumination cues on the depth
estimation. Section D.7 concludes the paper with a concise summary and shares the
newly gained insights for further improvements in the field of SIDE.

1 The dataset is freely available at www.lmf.bgu.tum.de/ibims1

www.lmf.bgu.tum.de/ibims1
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d.2 related work

The task of image-based depth perception is a long-standing and active research
field, which has been already addressed by a variety of different techniques. The
following section provides an overview of both established and novel algorithms
with a focus on most recent learning-based methods. Since those data demanding
methods rely on a multitude of aligned RGB and depth image pairs for training,
the availability of RGB-D datasets has recently increased significantly. Therefore, we
introduce and discuss existing datasets used in the field of SIDE in the second part
of this section.

d.2.1 Methodologies

Recovering depth information from images can be addressed by single-view or multi-
view approaches. The following sections provides an overview of different groups
for deriving image-based depth maps. A summary including relevant literatures is
listed in Table D.1.

Multi-view Traditionally, depth information is derived by geometric constraints
from multiple observations of a scene using stereo camera setups or leveraging
camera motion. The former rely on a prior calibration of the stereo setup and dense
point correspondences across the stereo images to estimate depth via geometric tri-
angulation. The task of optimal pixel-wise disparity estimation is usually addressed
by local, semi-global, or global optimization methods (Szeliski, 2010). While local
methods (Yoon and Kweon, 2006) evaluate pixel correspondences in a point-wise
approach, yielding fast, but often inaccurate correspondences due to their sensitivity
towards appearance changes and occlusions, global (Felzenszwalb and Huttenlocher,
2006; Kolmogorov and Zabih, 2001) and semi-global methods (Hirschmuller, 2005),
on the other hand, make explicit smoothness assumptions and solve for a global
optimization problem formulated as energy minimization frameworks, resulting into
accurate and less noisy depth maps, but requiring significantly increased compu-
tation times. A prominent representative for semi-global methods constitutes the
well-known semi-global-matching (SGM) algorithm (Hirschmuller, 2005). Methods
that leverage monocular camera motion are utilizing Structure-from-Motion (SfM)
or Simultaneous Localization and Mapping (SLAM) methods to transform multiple
single-view images to a stereo problem, which can be addressed by multi-view
stereo (MVS) methods subsequently (Szeliski, 2010). Extensive studies in the field of
two or more frame stereo correspondence algorithms can be found in (Hartley and
Zisserman, 2003; Scharstein and Szeliski, 2002; Seitz et al., 2006). A further line of
approaches was developed with the emergence of light field cameras using an array
of micro-lenses placed in front of the image sensor (Doorn et al., 2011; Heber and
Pock, 2016).

Single-view active methods Another research direction endeavors to ease the
multi-view requirement by addressing the task of depth estimation by a sequence of
images from the same perspective. Depth information is obtained either by variations
of the camera parameters (shape from focus/defocus (Favaro and Soatto, 2005;
Suwajanakorn et al., 2015)), by different lighting conditions of the scene (photometric
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stereo (Ackermann and Goesele, 2015)) or by utilizing polarization cues (Kadambi
et al., 2015; Ngo et al., 2015).

Single-view passive methods Most prominently, shape from shading (SfS) methods
(Horn, 1970) exploit intensity or color gradients of a single image under the as-
sumption of homogeneous lighting and Lambertian surface properties. Although
these methods work on single-shots, they only perform well for largely known
environments or synthetic data but rather poor on real images in unconstrained
environments (Zhang et al., 1999). Another early approach aimed at exploiting
light sources and illumination conditions, such as haze and fog in an image to
recover the relative scene depth by relying on atmospheric optical models (Nayar
and Narasimhan, 1999).

Single-view learning-based methods As one of the first learning-based approaches,
Torralba and Oliva (2002) focused on absolute depth estimation for a query image by
incorporating the size of known objects depicted in the image. Instead of decompos-
ing the image into its constituent elements, the absolute scene depth of the image is
derived from the global image structure represented as a set of features from Fourier
and wavelet transforms. The features of the query image were finally compared
towards a model trained with 4000 images and corresponding scene depths in a
cluster-weighted modeling approach. With the release of first RGB-D datasets (Geiger
et al., 2012; Saxena et al., 2009; Silberman et al., 2012), data-driven approaches
became feasible and rapidly began to outperform established model-based methods.
A pioneer work of a supervised learning-based approach was firstly proposed by
Saxena et al. (2006) by training a discriminatively-trained Markov random field (MRF)
incorporating multi-scale local and global-image features to infer depth. An exten-
sion of this work to 3D scene reconstruction was proposed later (Saxena et al., 2009).
Since then, a variety of approaches have been proposed to exploit the monocular
cues using hand-crafted features together with graphical models (Baig and Torresani,
2016; Furukawa et al., 2017; Hane et al., 2015; Hoiem et al., 2007; Li et al., 2014;
Ranftl et al., 2016; Saxena et al., 2008; Shi et al., 2015; You et al., 2014). Better depth
estimates have been achieved by incorporating semantic labels (Ladicky et al., 2014;
Liu et al., 2010).

Single-view non-parametric learning-based methods Another cluster of work
estimate depth using non-parametric learning-based methods (Choi et al., 2015;
Karsch et al., 2014; Kong and Black, 2015; Konrad et al., 2012; Konrad et al., 2013;
Liu et al., 2014). These methods assume similarities between RGB values and depth
cues across a large set of images. First, similar images of the input image are retrieved
from a RGB-D database by feature-based matching. The depth complements of the
nearest neighbors are combined and cross-bilateral filtered for smoothing the final
depth map (Konrad et al., 2013), warped towards the input image using SIFT flow
(Karsch et al., 2014; Liu et al., 2011), or optimized via a conditional random field
(CRF) (Liu et al., 2014).

Single-view deep learning-based methods In conjunction with the undeniable
influence of deep learning within the field of computer vision, the research was
driven towards the use of convolutional neural networks (CNNs) for depth estimation.
Since 2014, some works have significantly improved SIDE performance with the use



206 appendix d

of deep models, demonstrating the superiority of deep features over hand-crafted
features (Chakrabarti et al., 2016; Eigen and Fergus, 2015; Eigen et al., 2014; Fu
et al., 2018; Kim et al., 2016; Laina et al., 2016; Lee et al., 2018; Li et al., 2015;
Li et al., 2017; Liu et al., 2018; Liu et al., 2015; 2016; Roy and Todorovic, 2016;
Wang et al., 2015; 2016; Xu et al., 2018; Zhuo et al., 2015; Zoran et al., 2015). These
methods pursue the problem of SIDE as a regression problem by building upon
successful architectures and learning a deep CNN to estimate the continuous depth
map. The first work using deep models was proposed by Eigen et al. (2014) in a
two-scale architecture. A coarse global prediction is performed with one network
in a first stage, while another network locally refines the prediction in a successive
second stage. An extension to this approach uses deeper models and additionally
predicts normals and semantic labels (Eigen and Fergus, 2015).

Some works have harnessed the power of pre-trained CNNs in the form of fully
convolutional networks (Chakrabarti et al., 2016; Eigen and Fergus, 2015; Laina
et al., 2016; Li et al., 2017). The convolutional layers from networks such as AlexNet
(Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014) and ResNet (He et al.,
2016) are fine-tuned, while the fully connected layers are re-learned from scratch to
encode a spatial feature mapping of the scene. One main limitation using CNNs for
depth prediction is decrease of resolution of the output map due to repeated pooling
operations in the deep feature extractors. In order to preserve the local structures
of output depth maps, several authors have attempted to cope with this problem
by up-sampling (Chakrabarti et al., 2016; Eigen and Fergus, 2015; Li et al., 2017),
up-convolution blocks (Laina et al., 2016), skip connections between the up-sampling
blocks (Li et al., 2017) and space-increasing discretization (Fu et al., 2018).

Improving the quality of predicted depth maps was also addressed by combining
CNNs and graphical models, such as conditional random fields (CRFs) (Kim et al.,
2016; Li et al., 2015; Liu et al., 2015; 2016; Wang et al., 2015; Xu et al., 2017; 2018).
A deep convolutional neural field (DCNF) combining CNNs and CRFs in a unified
framework for estimating depth on each superpixel while enforcing smoothness
within a CRF was proposed by Liu et al. (2015); Liu et al. (2016). Li et al. (2015) and
Wang et al. (2015) use hierarchical CRFs to refine their patch-wise CNN predictions
from superpixel down to pixel level. CRFs can be exploited to fuse the multi-scale
information derived from inner layers of a CNN (Xu et al., 2017; 2018). A combination
of CNNs and regression forests with very shallow architectures at each tree node
reduces the need for big data (Roy and Todorovic, 2016). Exploiting the Fourier
frequency domain in a deep learning algorithm was proposed by Lee et al. (2018).

After the first success of applying deep architectures for SIDE, authors began to
focus on tackling major challenges, such as distorted depth discontinuities (Hao
et al., 2018; Hu et al., 2019; Ramamonjisoa and Lepetit, 2019) or planar regions (Heo
et al., 2018; Liu et al., 2018; Wang et al., 2016; Yang and Zhou, 2018).

Unsupervised deep learning-based Recently, unsupervised or semi-supervised
learning is introduced to learn depth estimation (Garg et al., 2016; Godard et al.,
2017; Kuznietsov et al., 2017; Ummenhofer et al., 2017; Yin and Shi, 2018; Zhan
et al., 2018; Zhou et al., 2017). This is accomplished by an intermediate task of a
view synthesis, and allows training by only using stereo pairs as input with known
baselines. These methods design reconstruction losses to estimate the disparity map
by recovering a right view with a left view.



D.2 related work 207

Use of synthetic data With the emergence of synthetic datasets, first work was
done to exhibit the possibility to render noise-free and dense depth maps in a very
large scale. However, the large domain gaps between synthetic data and real data is
still a very challenging task. First works in this field are trying to handle this gap
(Guo et al., 2018; Zheng et al., 2018).

Ordinal depth prediction Some applications only require relative or ordinal
depth, such as 2D-to-3D conversion (Karsch et al., 2014), image refocusing (Anwar
et al., 2017), or foreground-background segmentation (Camplani and Salgado, 2014).
Methods in this field predict dense relative depths from pairwise relationships
(closer-than and further-than relationships) estimates for rare points in the input
image (Chen et al., 2016; Zoran et al., 2015).

d.2.2 Existing RGB-D Datasets

In order to train supervised SIDE methods as well as to evaluate and compare them
with other approaches, any dataset containing corresponding RGB and depth image
pairs can be considered, which also comprises, e.g., benchmarks originally designed
for the evaluation of MVS approaches.

This variety of freely available datasets can be categorized according to different
criteria (cf. Table D.2). Some of them exhibit an adequate number of samples for
training deep models, others concentrate on few, but highly accurate, RGB-D image
pairs allowing for exhaustive analysis and comparison of different methodologies.
The amount and quality of depth maps also depends on the choice of the sensor
used for the acquisition campaign. In general, RGB-D image pairs are commonly
generated either by active sensors, suchs as RGB-D cameras or laser scanners, or
passively by the use of stereo images. While active RGB-D sensors, such as the
Microsoft Kinect version 1 and 2, the Occipital Structure Sensor, and the Intel

RealSense are pre-calibrated setups, ready to produce aligned depth maps in a
large quantity without manual effort, LiDAR sensors are slow and usually need an
additional camera and registration technique. However, the quality of generated
depth maps from LiDAR are superior to RGB-D sensors in terms of resolution,
completeness, range, and accuracy. More recently, researches started to make use
of the big amount of image data from freely available image databases, such as
Flickr, to generate RGB-D image pairs utilizing stereo vision algorithms. With the
generation of synthetic data, data-depending deep learning methods can be fed with
innumerable training data.

The following datasets can currently be considered for the task of SIDE. Among
the datasets that rely on precise laser scan data, Strecha et al. (2008) propose a
MVS benchmark providing overlapping images with camera poses for six different
outdoor scenes and a ground truth point cloud obtained by a laser scanner. More
recently, two MVS benchmarks, the ETH3D (Schöps et al., 2017) and the Tanks &

Temples (Knapitsch et al., 2017) datasets, have been released, which stand out due to
their high resolution indoor and outdoor images and accurate ground-truth point
clouds acquired from a laser scanner. Although these MVS benchmarks contain high-
resolution images and accurate ground truth data obtained from a laser scanner, the
setup is not designed for SIDE methods. Usually, a scene is scanned from multiple
aligned laser scans and images are acquired in a sequential matter. The scans can be
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used to generate depth maps aligned with the captured RGB images, but, however,
it cannot be guaranteed that corresponding depth maps are dense. Occlusions in
the images result in gaps in the depth maps especially at object boundaries which
are, however, a key aspect of our metrics. Despite the possibility of acquiring a
large number of image pairs, they mostly comprise only a limited scene variety
and are highly redundant due high visual overlap. Currently, SIDE methods are
tested on mainly three different datasets. Make3D (Saxena et al., 2009), as one example,
contains 534 outdoor images and aligned depth maps acquired from a custom-built
3D scanner, but suffers from a very low resolution of the depth maps and a rather
limited scene variety. The Kitti dataset (Geiger et al., 2012) contains street scenes
captured out of a moving car. The dataset contains RGB images together with depth
maps from a Velodyne laser scanner. However, depth maps are only provided in a
very low resolution which furthermore suffer from irregularly and sparsely spaced
points.

The most frequently used dataset for training and evaluating SIDE in indoor
scenarios is the NYU depth v2 (Silberman et al., 2012) dataset containing 464 indoor
scenes with aligned RGB and depth images from video sequences obtained from a
Microsoft Kinect v1 sensor. A subset of this dataset is mostly used for training deep
networks, while another 654 image and depth pairs serve for evaluation. This large
number of image pairs and the various indoor scenarios facilitated the fast progress
of SIDE methods. However, active RGB-D sensors, like the Kinect, suffer from a
short operational range, occlusions, gaps, and erroneous specular surfaces. The
recently released Matterport3D (Chang et al., 2017), ScanNet (Dai et al., 2017), and
2D-3D-S (Armeni et al., 2017) datasets provide even larger amounts of indoor scenes
collected from RGB-D cameras, such as the Matterport Camera or the Structure
sensor (Occipital, 2016). These datasets are valuable additions to the NYU-v2 dataset
but also suffer from the same weaknesses, as the used sensors have a similar design
to the Kinect v1 sensor.

Recently, RGB-D datasets have been published using solely RGB images, such as
DIW (Chen et al., 2016), MegaDepth (Li and Snavely, 2018), and ReDWeb (Xian et al.,
2018). These datasets provide depths maps generated from stereo images utilizing
freely available large-scale data platforms (e.g., Flickr). They offer a huge variety
of different scenes containing both indoor and outdoor scenes and can be easily
computed using established MVS methods. However, the scale is unknown and the
provided depth maps are therefore only relatively scaled, which only allows for
ordinal depth estimation. Nevertheless, first investigations on training deep networks
on these images reveal better generalization capabilities, but, however, they are
ineligible when a metric scale is needed.

The LiDAR-based LIVE Color+3D Database (Su et al., 2017) offers highly-accurate
registered RGB-D image pairs for 98 outdoor scenes similar to Make3D, but with an
increased resolution and dense depth maps. The large range of scene depths and the
high quality of the depth maps allow for detailed investigations of SIDE methods in
outdoor scenarios, however, the scene variety is rather limited.

With the appearance of synthetic datasets, such as SceneNet RGB-D (McCormac
et al., 2017), SUNCG (Song et al., 2017), and 360-D (Zioulis et al., 2018), first attempts
were made to train deep models with rendered RGB-D image pairs of this multitude
of synthetically generated indoor scenes. However, the rendered RGB images are still
far from realistic shots and are therefore not suited for testing the applicability of
SIDE methods in real world environments.
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d.3 novel evaluation metrics for depth estimation

This section describes established metrics and our new proposed ones allowing for a
more detailed analysis.

d.3.1 Commonly Used Error Metrics

Established error metrics consider global statistics between a predicted depth map Y
and its ground truth depth image Y∗ with T depth pixels. Beside visual inspections of
depth maps or projected 3D point clouds, the following error metrics are exclusively
used in all relevant recent publications (Eigen and Fergus, 2015; Eigen et al., 2014;
Laina et al., 2016; Li et al., 2017; Xu et al., 2017):

Absolute relative di�erence: rel (Y , Y∗) = 1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣ /y∗i,j

Squared relative di�erence: srel (Y , Y∗) = 1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣2 /y∗i,j

RMS (linear): RMS (Y , Y∗) =

√
1
T ∑i,j

∣∣∣yi,j − y∗i,j
∣∣∣2

RMS (log): log (Y , Y∗) =

√
1
T ∑i,j

∣∣∣log yi,j − log y∗i,j
∣∣∣2

Threshold: percentage of Y such that max( yi
y∗i

, y∗i
yi
) = σ < thr

The absolute relative difference error measures the relative per-pixel error linear to
the absolute distance. In other words, an error of 0.1 m at a depth of 1 m is penalized
equally to an error of 1 m at a depth of 10 m. An alternative with a squared influence
of the relative per-pixel error is given by the squared relative difference. In contrast,
the RMS error equally penalizes an error of 0.1 m at both depths. The threshold error
on the other hand considers per-pixel proportions rather than per-pixel differences
and measures the ratio of pixels, for which the relative difference between prediction
and ground truth depths is below a threshold (thresholds are usually set to 1.25,
1.252, and 1.253).

Even though these statistics are good indicators for the general quality of predicted
depth maps, they could be delusive. Particularly, the standard metrics are not able
to directly assess the planarity of planar surfaces or the correctness of estimated
plane orientations. Furthermore, it is of high relevance that depth discontinuities
are precisely located, which is not reflected by the standard metrics. A general
weakness of most current state-of-the-art SIDE methods is that the outputs tend
to have spatially distorted or blurry object edges. While these local structures only
affect a rather small part of the entire image, missing or blurry depth discontinuities
have only a minor effect on the global error metrics, impeding a fair comparison of
different methods.

d.3.2 Proposed Error Metrics

In order to allow for a more meaningful analysis of predicted depth maps and a
more complete comparison of different algorithms, we present a set of new quality
measures that specify on different characteristics of depth maps which are crucial for
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Figure D.2: Visualizations of our proposed error metrics. The distance-related assessment (a) applies
standard metrics for different depth range intervals. The flatness and orientations of
predicted planar regions can be evaluated with our planarity errors (b and c). The location
accuracy and completeness of depth discontinuities is rated by the depth boundary errors (d
and e), while the consistency of depth predictions with respect to a virtual depth plane can
be assessed with our directed depth errors (f)

many applications. These are meant to be used in addition to the traditional error
metrics introduced in Section D.3.1. Visual illustrations of our metrics explained
below are depicted in Figure D.2. When talking about depth maps, the following
questions arise that should be addressed by our new metrics:
• How is the quality of predicted depth maps for different absolute scene depths?
• Can planar surfaces be reconstructed correctly?
• Can all depth discontinuities be represented? How accurately are they local-

ized?
• Are depth estimates consistent over the entire image area?

d.3.2.1 Distance-Related Assessment

Established global statistics are calculated over the full range of depth comprised
by the image and therefore do not consider different accuracies for specific absolute
scene ranges. Hence, applying the standard metrics for specific range intervals by
discretizing existing depth ranges into discrete bins (e.g., one-meter depth slices)
allows investigating the performance of predicted depths for close and far ranged
objects independently.

d.3.2.2 Planarity Error (PE)

Man-made objects, in particular, can often be characterized by planar structures
like walls, floors, ceilings, openings, and diverse types of furniture. However, global
statistics do not directly give information about the shape correctness of objects
within the scene. Predicting depths for planar objects is challenging for many reasons.
Primarily, these objects tend to lack texture and only differ by smooth color gradients
in the image, from which it is hard to estimate the correct orientation of a 3D plane
with three-degrees-of-freedom. In the presence of textured planar surfaces, it is
even more challenging for a SIDE approach to distinguish between a real depth
discontinuity and a textured planar surface, e.g., a painting on a wall. As most
methods are trained on large indoor scenes, like NYU-v2, a correct representation of
planar structures is an important task for SIDE, but can hardly be evaluated using
established standard metrics. For this reason, we propose to use a set of annotated
images defining various planar surfaces (walls, table tops and floors) and evaluate
the flatness and orientation of predicted 3D planes πk = (ηk, ok) compared to ground
truth 3D planes π∗k =

(
η∗k , o∗k

)
. Each plane is specified by a normal vector η and an

offset to the origin o. In detail, a masked depth map Yk of a particular planar surface
and an intrinsic matrix is used together in order to project the masked depth map
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to 3D points Pk;i,j, where 3D planes πk are robustly fitted to both the ground truth

and predicted 3D point clouds P∗k =
{

P∗k;i,j

}
i,j

and Pk =
{

Pk;i,j
}

i,j, respectively. The

planarity error

ε
plan
PE (Yk) = V

 ∑
Pk;i,j∈Pk

d
(
πk, Pk;i,j

) (D.1)

is then quantified by the standard deviation of the averaged distances d between the
predicted 3D point cloud and its corresponding 3D plane estimate. The orientation
error

εorie
PE (Yk, π∗k ) = acos

(
η>k · η

∗
k

)
(D.2)

is defined as the 3D angle difference between the normal vectors of predicted and
ground truth 3D planes. Figures D.2b and D.2c illustrate the proposed planarity
errors. Note that for each individual planar mask the predicted depth maps are
median scaled w.r.t. the ground truth depth map. This eliminates scaling differ-
ences of compared methods, which would influence the planarity error by favoring
underestimated depth predictions.

d.3.2.3 Location Accuracy of Depth Boundaries (DBE)

Beside planar surfaces, captured scenes, especially indoor scenes, cover a large variety
of scene depths caused by any object in the scene. Depth discontinuities between two
objects are represented as strong gradient changes in the depth maps. In this context,
it is important to examine whether predicted depths maps are able to represent all
relevant depth discontinuities in an accurate way or if they even create fictitious
depth discontinuities confused by texture. An analysis of depth discontinuities can
be best expressed by detecting and comparing edges in predicted and ground truth
depth maps. In order to evaluate predicted depth maps, edges Ybin are extracted
and compared to a set of ground truth edges Y∗bin via truncated chamfer distance
of the binary edge images. Specifically, a Euclidean distance transform is applied to
the ground truth edge image E∗ = DT (Y∗bin), while distances exceeding a given
threshold θ are truncated to a maximum distance θ. We define the depth boundary
errors (DBEs), comprised of an accuracy measure

εacc
DBE(Ybin, Y∗bin) =

1
∑i ∑j ybin;i,j

∑
i

∑
j

e∗i,j · ybin;i,j (D.3)

by multiplying the predicted binary edge map with the distance map and a subse-
quent accumulation of the pixel distances towards the ground truth edge. Since this
measure does not consider any missing or dispensable edges in the predicted depth
image, we also define a completeness error

ε
comp
DBE (Ybin, Y∗bin) =

1
∑i ∑j y∗bin;i,j + ybin;i,j

∑
i

∑
j

e∗i,j · ybin;i,j + ei,j · y∗bin;i,j (D.4)

by accumulating both ground truth and predicted edges multiplied with their
corresponding distance maps of ground truth and predicted edges E∗ and E =
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DT (Ybin). Therefore, the completeness error penalizes both missing and extra edges
in the predictions in an equal manner. A visual explanation of the DBEs are illustrated
in Figures D.2d and D.2e.

d.3.2.4 Directed Depth Error (DDE)

For many applications, it is of high interest that depth images are consistent over the
whole image area. Although the absolute depth error, the squared depth error and
the RMS errors give information about the correctness between predicted and ground
truth depths, they do not provide information if the predicted depth is estimated too
short or too far. For this purpose, we define the directed depth errors (DDEs)

ε0
DDE (Y , Y∗, π∗) =

∣∣∣{yi,j|dsgn(π∗, Pi,j) = 0∧ dsgn(π∗, P∗i,j) = 0
}∣∣∣

T
(D.5)

ε+DDE (Y , Y∗, π∗) =

∣∣∣{yi,j|dsgn(π∗, Pi,j) > 0∧ dsgn(π∗, P∗i,j) < 0
}∣∣∣

T
(D.6)

ε−DDE (Y , Y∗, π∗) =

∣∣∣{yi,j|dsgn(π∗, Pi,j) < 0∧ dsgn(π∗, P∗i,j) > 0
}∣∣∣

T
(D.7)

as the proportions of correct, too far and too close predicted depth pixels ε0
DDE, ε+DDE

and ε−DDE. In practice, a reference depth plane π∗ is defined at a certain distance (e.g.,
at 3 m) orthogonal to the camera view and all predicted depths pixels which lie in
front and behind this plane are masked and assessed according to their correctness
using the reference depth maps.

d.4 the ibims-1 dataset

As described in the previous sections, our proposed metrics require extended ground
truth which is not yet available in standard datasets. Hence, we compiled a new
dataset according to these specifications.

d.4.1 Sensor Comparison

For creating such a reference dataset, high-quality optical RGB images and depth
maps had to be acquired. Practical considerations included the choice of suitable
instruments for the acquisition of both parts. Furthermore, a protocol to calibrate
both instruments, such that image and depth map align with each other, had to be
developed.

For the creation of depth maps, we considered various sensors and instruments.
Common mass market RGB-D products, such as Microsoft Kinect, not only allow
for fast and convenient capturing of scenes, but also provide registered images and
depth maps at the same time. However, the overall quality – especially in terms
of resolution, accuracy and depth range – of the resulting depth maps and images
turn out to be insufficient for the intended usage as reference data. Stereo rigs,
such as the Stereolabs ZED camera, outperform RGB-D products in several crucial
areas, such as outdoor scenes. They are equally easy to use but also show deficits
in certain areas. As the stereo reconstruction only produces results for textured
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(a) Kinect v1 (b) ZED Cam (c) Laser scan + DSLR

Figure D.3: Comparison of the depth map quality of different sensors

surfaces, the produced depth maps are often incomplete and suffer from noise.
Precise geodetic instruments, such as tacheometers, laser trackers, or laser scanners,
can provide highly accurate distance measurements. Among them, laser scanners
excel in recording highly accurate dense point clouds in 360

◦. Figure D.3 shows a
comparison of depth maps acquired from different sensors capturing the same scene.
Beside differences in the image quality and intrinsics of the RGB images, the depth
map generated with the Kinect v1 lack from numerous areal gaps as well as distorted
object boundaries. The depth map provided by the ZED Cam on the other hand
features almost dense depth estimates due to an internal interpolation of texture-less
regions but, however, show the same deficits around object boundaries caused by
the parallax effect. In addition, the overall noise level – especially for high distances –
is relatively large compared to the Kinect v1. The high density and extremely high
accuracy of the laser scanner allows for generating accurate, dense and detailed
depth maps of superior quality compared to the other sensors.

As we want to generate highly accurate depth maps for high-resolution images,
we finally chose a laser scanner as our sensor of choice. They do, however, fall short
of expectations regarding provided imagery. As only a few instruments can capture
RGB images at all, this is, in practice, most commonly done using an auxiliary
camera. For this reason, we decided to design our own acquisition setup, as it is
explained in the following section.

d.4.2 Acquisition Process

In order to record the ground truth for our dataset, we used a highly accurate Leica
HDS7000 laser scanner, which stands out for high point cloud density and very low
noise level. Dependent on the scene depth of the individual images in our dataset we
varied the point spacing of the acquired scans to ensure at least one depth value for
each pixel in a down-sampled version of the RGB image of 640× 480 px. However,
for most scenes we exceeded the required point density by a multiple in order to
provide nearly dense depth maps in a higher resolution as well (1500× 1000 px).
As our laser scanner does not provide RGB images along with the point clouds,
an additional camera was used in order to capture optical imagery. The usage of a



D.4 the ibims-1 dataset 215

(a) Laserscanner (b) Camera

Figure D.4: Our hardware setup used for the acquisition of IBims-1 with a laser scanner (a) and a
DSLR camera (b) mounted on a survey tripod. A custom panoramic tripod is used in order
to achieve a coincidence of the optical center of the camera and the origin of the laser
scanner coordinate system to avoid occlusions in the resulting depth maps

reasonably high-quality camera sensor and lens allows for capturing images in high
resolution with only slight distortions and a high stability regarding the intrinsic
parameters. For our data acquisition, we chose two calibrated DSLR cameras: one
Nikon D5500 digital single-lens reflex (DSLR) camera equipped with a Nikon AF-S
Nikkor 18–105 mm lens, mechanically fixed to a focal length of 18 mm and a Nikon

D3000 DSLR camera equipped with the same lens, mechanically fixed to focal lengths
of 18 mm and 21 mm.

Using our sensor setup, synchronous acquisition of point clouds and RGB imagery
is not possible. In order to acquire depth maps without parallax effects, the camera
was mounted on a custom panoramic tripod head which allows to freely position
the camera along all six degrees of freedom. An illustration of our setup is depicted
in Figure D.4. This setup can be interchanged with the laser scanner, ensuring
coincidence of the optical center of the camera and the origin of the laser scanner
coordinate system after a prior calibration of the system. It is worth noting that every
single RGB-D image pair of our dataset was obtained by an individual scan and
image capture with the aforementioned strategy in order to achieve dense depth
maps without gaps due to occlusions.

d.4.3 Registration and Processing

The acquired images were undistorted using the intrinsic camera parameters obtained
from the calibration process. In order to register the camera towards the local
coordinate system of the laser scanner, we manually selected a sufficient number
of corresponding 2D and 3D points and estimated the camera pose using EPnP
(Moreno-Noguer et al., 2007). This registration of the camera relative to the point
cloud yielded only a minor translation, thanks to the pre-calibrated platform. Using
this procedure, we determined the 6D pose of a virtual depth sensor which we use
to derive a matching depth map from the 3D point cloud. In order to obtain a depth
value for each pixel in the image, the images were sampled down to two different
resolutions. We provide a high-quality version with a resolution of 1500× 1000 px
and a cropped NYU-v2-like version with a resolution of 640× 480 px. After the pose
estimation of the camera, 3D points were projected to the virtual sensor with the
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Corridor Factory Kitchen Computer
Lab

Classroom Livingroom Office Storage
room

Figure D.5: Sample RGD-D image pairs of our IBims-1 dataset covering different scenes. Illustrations
are composed of the RGB image (left) and the corresponding depth map (right)

respective resolution. For each pixel, a depth value was calculated, representing the
depth value of the 3D point with the shortest distance to the virtual sensor. It is
worth highlighting that depth maps were derived from the 3D point cloud for both
versions of the images separately. Hence, no down-sampling artifacts are introduced
for the lower-resolution version of the depth maps.

d.4.4 Registration Accuracy

In order to present a high-quality RGB-D reference dataset, it is crucial that RGB
images and depth images are aligned properly. The reprojection errors of the 2D-3D
correspondences used for the camera pose estimations provide a first evidence of the
registration accuracy of our dataset. For each of the 100 RGB-D image pairs of our
dataset we manually selected 8-10 point correspondences. The mean reprojection
error for all 2D-3D correspondences is 0.81 px with respect to the NYU-like resolution.

Since the reprojection error is only calculated on the basis of a single points, it is
difficult to make a general statement about the overall registration accuracy. For this
reason we also investigate the alignment on the basis of edges with the assumption
that most depth discontinuities in a edge map correspond to intensity changes in the
RGB image. We therefore compute dominant edges in depth maps and RGB images
respectively using a Sobel operator and compare them using a directed chamfer distance.
Note, that we only consider edges in the RGB image which are located in the local
neighborhood of extracted depth edges (e.g., within 10 px) for excluding gradients
caused by texture or illumination changes. In average, around 450 edge pixels were
extracted and compared for each RGB-D image pair. The averaged chamfer distance
considering all images is 1.20 px. Since some depth edges do not correspond to
intensity changes in the RGB image and vice versa, this metric serves only as a vague
proof of the registration accuracy, but, however, yields an overall quality measure
showing how accurate our RGB and depth maps are aligned.

d.4.5 Contents

Following the described procedure in Sections D.4.2 and D.4.3, we compiled a
dataset, which we henceforth refer to as the independent benchmark images and matched
scans v1 (IBims-1) dataset. The dataset is mainly composed of reference data for the
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Figure D.6: Annotation samples showing provided plane masks ( ) for floors (top), table tops (mid) and
walls (bottom)

Figure D.7: Annotation samples showing provided edge masks ( ) for distinct depth discontinuities

direct evaluation of depth maps, as produced by SIDE methods. This main part of
the dataset contains 100 RGB-D image pairs in total. As described in the previous
sections, pairs of images and depth maps were acquired and are provided in two
different versions, namely a high-quality version and a NYU-v2-like version. Example
pairs of images and matching depth maps from IBims-1 are shown in Figure D.5.

Additionally, several manually created masks are provided. Unreliable or invalid
pixels in the depth map are labeled by two different sets of binary masks. One of
which flags transparent objects, mainly windows, which could be assigned with
an ambiguous depth. While the laser scanner captured points behind those objects,
it may be intended to obtain the distance of the transparent object for certain
applications. The other mask for invalid pixels indicates faulty values in the 3D point
cloud. Those mainly originate from scanner-related errors, such as reflecting surfaces,
as well as regions out of range. Three further sets of masks label planar surfaces of
three different types, i.e., tables, floors, and walls. Each instance is contained in a
separate mask. Examples for planar masks are shown in Figure D.6, while statistics
of the plane annotations are listed in Table D.3. It is worth mentioning that the
plane masks do not coincide with the object boundaries, but rather keeping a buffer
area of several pixel towards the object boundaries. The reason for this is that these
masks are used for investigating the capability of predicting planar regions. Object
boundaries often cause distortions in the predicted depth map which is target of our
DBE but should not influence the PE.
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Table D.3: Statistics of plane annotations in NYU-v2 and IBims-1. Number of instances (Inst.) of a
specific plane type (Type) occurred in the dataset (Images), the average size of each object
mask (Avg. Size), and accuracy of fitted 3D reference planes. The larger deviations in planes
fitted to the images of NYU-v2 can be attributed to the inaccurate and noisy measurements
of the utilized RGB-D sensor. A reliable assessment of planarity errors based on NYU-v2 is
therefore only possible to a limited extent

Dataset Type Images Inst. Avg. Size Mean Dev. Std. Dev.

(in px) (in mm) (in mm)

NYU-v2 Floor 132 132 29389 17.42 14.25

NYU-v2 Table 44 44 27989 17.80 17.19

NYU-v2 Wall 168 168 34975 28.17 22.66

IBims-1 Floor 47 51 22813 1.57 1.85

IBims-1 Table 46 54 15704 1.18 1.50

IBims-1 Wall 82 140 46744 1.79 2.38

In order to allow for evaluation following the proposed DBE metric, we provide
distinct edges for all images. Location accuracy and sharp edges are of high im-
portance for generating a set of ground truth depth transitions which cannot be
guaranteed by existing datasets acquired from RGB-D sensors. Ground truth edges
are extracted from our dataset by applying a Canny edge detector on the depth
maps. Since the scenes in our dataset exhibit various depth ranges, the selection of
dominant edges vary with the depth range of the individual RGB-D image pairs. For
this reason, we only consider distinct depth edges that exceed a depth change of
at least 15% of the overall depth range in the individual image. Figure D.7 shows
examples of the ground truth edges for different scenes from IBims-1.

Additionally, we provide an auxiliary dataset which consists of four parts: (1) Four
outdoor RGB-D image pairs, containing vegetation, building, cars and larger ranges
than indoor scenes. (2) Special cases which are expected to mislead SIDE methods.
These show 85 RGB images of printed samples from the NYU-v2 and the Pattern

dataset (Asuni and Giachetti, 2014) hung on a wall. Those could potentially give
valuable insights, as they reveal what kind of image features SIDE methods exploit.
No depth maps are provided for those images, as the region of interest is supposed to
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be approximately planar and depth estimates are, thus, easy to assess qualitatively. (3)
56 geometrical and radiometrical augmentations for each image of our core dataset
to test the robustness of SIDE methods. (4) Up to three additional handheld images
for many RGB-D image pairs of our core dataset with viewpoint changes towards
the reference images which allows to validate MVS algorithms with high-quality
ground truth depth maps.

d.4.6 Comparison of IBims-1 and NYU-v2

So far, the NYU-v2 dataset is still the most comprehensive and accurate indoor
dataset for training data-demanding deep learning methods. Since this dataset has
most commonly been used for training the considered SIDE methods, IBims-1
is designed to contain similar scenarios. Our acquired scenarios include various
indoor settings, such as offices, lecture, and living rooms, computer labs, as well as
more challenging ones, such as long corridors, potted plants and factory rooms. A
comparison regarding the scene variety between NYU-v2 and IBims-1 can be seen in
Figure D.8a. Furthermore, IBims-1 features statistics comparable to NYU-v2, such as
the distribution of depth values, shown in Figure D.8b, and a comparable field of
view.

However, comparing the depth map quality of both datasets, raw depth maps of
NYU-v2 show a large amount of missing and erroneous depth values due to parallax
effect, limited range (up to 10 m), and relatively high noise level, as this is already
investigated in Zennaro et al. (2015). In total, 36% of all depth values in the raw depth
maps in NYU-v2 are missing. Missing values were interpolated using the colorization
method of Levin et al. (2004), which results in erroneous measurements and artefacts,
such as flying pixels. Moreover, transparent and specular surfaces are not masked
in NYU-v2 resulting in distorted depth values in the dataset. Due to the high point
density and accuracy of the scans in IBims-1, no interpolation is needed for NYU-like
resolution in IBims-1, resulting in dense and valid depth values. Figure D.9 visualizes
the quality of NYU-v2 and compares it towards IBims-1. In contrast to the imprecise
and incomplete depth maps in NYU-v2, the seamless depth maps in IBims-1 facilitate
the extraction of accurate and complete depth discontinuities. The high accuracy of
these depth maps also guarantees the extraction of accurate 3D planes in the range of
a few millimeters, while deviations of more than 2 cm were noted when making use
of the NYU-v2 dataset2, as shown in Table D.3. Although in principle NYU-v2 allows
to generally assess the planarity of depth predictions, the results would not satisfy
our accuracy requirements for providing reliable conclusions about the performance
of the methods.

d.5 evaluation of side methods

In this section, we evaluate the quality of existing SIDE methods using both es-
tablished and proposed metrics for our reference test dataset, as well as for the
commonly used NYU-v2 dataset. As outlined in our review of the state-of-the-art in
Section D.2.1, a multitude of different deep learning-based SIDE approaches have
been developed over the past few years. Naturally, not all of them can be subjected
to detailed investigation. We chose an exemplary subset of the available approaches

2 Plane annotations for NYU-v2 were also made available on our webpage
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Figure D.9: Visualization of registration accuracy and depth completeness of IBims-1 (left) and NYU-v2
(right). Overlay of greyscale RGB images and colored depth maps for various samples
(invalid or missing depth values are depicted in grey). Top: full image. Middle and bottom
row: detailed views

for the evaluation experiments, that either represent a milestone in the development
of SIDE, or constitute current approaches that address specific aspects of particu-
lar interest, which have been identified in the development of our geometrically
interpretable error metrics. In order to allow a fair comparison, only methods that
were trained on indoor scenes, namely the NYU-v2 dataset, were examined. This
preliminary selection was further narrowed down to accessible methods for which
we received either source code or predictions for our dataset, which ultimately led
to a comparison of eight methods, namely those proposed by Eigen et al. (2014),
Eigen and Fergus (2015), Liu et al. (2015), Laina et al. (2016), Li et al. (2017), PlaneNet
(Liu et al., 2018) and Sharpnet (Ramamonjisoa and Lepetit, 2019). Since all of these
methods were solely trained on the NYU-v2 dataset, differences in the results are
expected to arise from the developed methodology rather than the training data. For
the evaluation using our dataset, only valid depth areas were considered by applying
the provided corresponding masks to the raw depth maps. The quantitative results
on both datasets with all error metrics are listed in Table D.4. A detailed analysis
of the individual metrics is given in the following sections. Although a runtime
evaluation would be of great interest for many application fields, the realization of
a revealing comparison was infeasible, since runtime is highly dependent on im-
plementation details and utilized frameworks, which varied between the examined
methods. Furthermore, the lack of available source code for some methods prevents
a comparison on the same hardware setup.

d.5.1 Established Global Error Metrics

The results of evaluation using commonly used global metrics on IBims-1 and NYU-v2

listed in Table D.4 by computing the statistical error metrics on the complete images.
This is the standard evaluation procedure in all recent publications. The revealed
lower overall scores for our dataset are expected since the dataset is previously
unseen by these methods. As the methods are trained to predict depths in the range
of the NYU-v2 dataset (i.e., 1–10 m), they are not able to estimate depths beyond
this range which are also encompassed in our dataset. This highly affects the RMS
error, which turned out to be almost three times as large as in NYU-v2. Moreover, our
dataset uncovers different generalization capabilities of the methods, as the order
of the rankings has changed between NYU-v2 and IBims-1. However, the ranking
according to different standard metrics did not change substantially among the
methods, as most metrics are highly correlated to each other. This proves our claim
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Figure D.10: Distance-related global errors (left: relative error and right: RMS) for the shared depth
range of NYU-v2 (mean: ,±0.5 std: ) and IBims-1 (mean: , ±0.5 std: ) using the
method of Li et al. (2017)

for further sophisticated evaluation criteria, which are analyzed in the following
sections.

d.5.2 Distance-related Assessment

In order to get a better understanding of these results, we evaluated the considered
methods on specific range intervals, which we set to 1 m in our experiments. Fig-
ure D.10 shows the error band of the relative and RMS errors of the method proposed
by Li et al. (2017) applied to both datasets. The result clearly shows a comparable
trend on both datasets for the shared depth range. This proves our first assumption,
that the overall lower scores originate from the huge differences at depth values
beyond the 10 m depth range. On the other hand, the results reveal the generalization
capabilities of the networks, which achieve similar results on images from camera
with slightly different intrinsics and image quality, as well as for unseen scenarios. A
comparison of the performance on a larger depth range for different methods and
error metrics, as shown in Figure D.11, clearly shows a trend of decreasing accuracy
over an increasing distance. Best results are achieved in a very close range up to
4 m, which corresponds to the maximum of the depth distribution of the NYU-v2

dataset on which the methods were trained (cf. Figure D.8b). Training on this highly
imbalanced dataset with current state-of-the-art methods results in predicting depths
below a RMS error of 1 m for distances up to 5 m, but linearly increases together
with the scene depth for distances greater than 5 m. While most methods do not
differ significantly in predicting depth values at various ranges and correspond to
the ranking in Table D.4, the method of Ramamonjisoa and Lepetit (2019) performs
notably better at larger distances. However, since the results exhibit a deficiency in
close ranges up to 2–3 m, which corresponds to the peak of the depth distribution
in IBims-1, errors in this range decisively contribute to the global errors listed in
Table D.4. Such enhanced distinction and assessment of the performance would not
have been feasible by solely relying on established global error metrics.

d.5.3 Planarity

To investigate the quality of reconstructed planar structures, we evaluated the differ-
ent methods with the planarity and orientation errors ε

plan
PE and εorie

PE , respectively, as
defined in Section D.3.2.2, for different planar objects. In particular, we distinguished
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Figure D.11: Comparing distance-related global errors up to 20 m on IBims-1 for the examined methods.
From left to right: relative error, log10 error and RMS error
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Figure D.12: Results for the planarity metrics ε
plan
PE (left) and εorie

PE (right) on IBims-1 for individual
plane types and a combination of all (Combined)

between horizontal and vertical planes and used masks from our dataset. Beside a
combined error, including all planar labels, we separately computed the errors for
the individual objects as well. Results for averaged errors among all types of planar
regions are listed in Table D.4, while results for individual plane types are shown
in Figure D.12. The results reveal different performances for individual classes,
especially orientations of floors and table tops were predicted in a significantly
higher accuracy, while the absolute orientation error for walls is surprisingly high.
Considering the flatness of the predictions, tables can be reconstructed more reliable
than floors or walls. Apart from the general performance of all methods, substantial
differences between the considered methods can be determined. It is notable that the
method of Li et al. (2017) achieved much better results in predicting orientations of
horizontal planes but also performed rather bad on vertical surfaces. In contrast, ori-
entation results for Liu et al. (2015) exhibit large errors for all types of planes. Reason
for this could lie in problems of smooth depth transitions for adjacent superpixels
representing flat, but textured or differently illuminated areas. This oversegmentation
results in strong depth changes in planar regions. The method of Ramamonjisoa
and Lepetit (2019) revealed large differences in the accuracy of the reconstruction
of planar objects, notably for floors and walls. In striving at preserving accurate
and sharp depth transitions, this network tends to be more sensitive to texture
changes and high frequencies, yielding fragmented and falsely determined planes.
The performance of PlaneNet (Liu et al., 2018), which focuses on the preservation
of planar regions, strongly depends on a prior semantic segmentation of the input
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(a) RGB (b) Eigen and
Fergus (2015)
(VGG)

(c) Liu et al. (2015) (d) Li et al. (2017) (e) PlaneNet Liu et
al. (2018)

−20 cm −10 cm 0 cm 10 cm 20 cm

Figure D.13: Visual results after applying planarity errors (PEs) on different planar regions (top: table,
middle: wall, bottom: floor). RGB with corresponding plane masks ( ) (a). Predictions
using different methodologies (b-e). Colors in the predictions correspond to orthogonal
differences of projected depths towards the reference plane

image. For each detected planar region in the segmentation step, the method esti-
mates reasonable 3D plane parameters, but, however, pixel-accurate segmentations
of planar regions often fails, which results in imprecise and fragmented 3D planes.
Visual results showing residuals of projected depth maps and ground truth 3D
planes are depicted in Figure D.13, which reveals different depth map characteristics
based on the used methodology. 3D illustrations, displaying projected 3D points,
fitted 3D plane and ground truth 3D plane for the scenes in Figure D.13 are shown
in Figure D.14. Despite the considerably lower accuracy of fitted ground truth 3D
planes in NYU-v2, planarity errors can principally be determined in the same manner,
although, as already outlined in Section D.4.6 inaccurate ground truth 3D planes
limit the reliability of the derived results. The evaluations have shown that, similar to
the global metrics, better overall results can be achieved, which is partly attributed
to the slight domain shift between both dataset. However, similar to the results
on IBims-1, a difference in the performance regarding the reconstruction of planar
regions could be observed which results in a similar ranking of the investigated
methods.

d.5.4 Location Accuracy of Depth Boundaries

The high quality of our reference dataset facilitates an accurate assessment of pre-
dicted depth discontinuities. As ground truth edges, we used the provided edge
maps from our dataset and computed the accuracy and completeness errors εacc

DBE
and ε

comp
DBE , respectively, introduced in Section D.3.2.3. We set the distance threshold

of the truncated chamfer distance to θ = 10 px, which also defines the upper bound
of the accuracy and completeness errors. Quantitative results for all methods are
listed in Table D.4. Comparing the accuracy error of all methods, Liu et al. (2015) and
Ramamonjisoa and Lepetit (2019) achieved best results in preserving actual depth
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2018)

Figure D.14: 3D visualizations of predicted 3D planes from Figure D.13. Ground truth 3D planes ( ),
projected 3D points from predictions and fitted 3D planes. Color coding of the 3D points
is similar to definitions in Figure D.13

boundaries, while other methods tended to produce smooth edges, and thus failed
to reconstruct precise and complete depth transitions. This smoothing property and
the small output resolution of some methods also affected the completeness error,
resulting in missing edges expressed by larger values for ε

comp
DBE . A comparison of

depth boundaries from different methods can be seen in Figure D.15. Preserving
sharp depth discontinuities is a main challenge using CNN-based methods, due to
the intensive number of strided convolutions and spatial poolings, which reduce
the output resolution, and, thus, local details of the image. However, methods that
explicitly address this aspect have proven to enhance the reconstruction of object
contours, which is also evident in the proposed DBE metrics.

d.5.5 Directed Depth Error

The DDE aims to identify predicted depth values which lie on the correct side
of a predefined reference plane but also distinguishes between overestimated and
underestimated predicted depths. This measure could be useful for applications, such
as image refocusing and 3D cinematography. For the quantitative results listed in
Table D.4 we defined a reference plane at 3 m distance and computed the proportions
of correct ε0

DDE, overestimated ε+DDE, and underestimated ε−DDE depth values towards
this plane according to the error definitions in Section D.3.2.4. A visual illustration of
correctly and falsely predicted depths is depicted in Figure D.16 and a comparsion
of different thresholds of d is shown in Figure D.17. The results show that, apart
from the approach of Ramamonjisoa and Lepetit (2019), the methods tended to
underestimate depth, although the amount of correctly estimated depth values
almost reaches 85% for the methods of Li et al. (2015) and Ramamonjisoa and
Lepetit (2019). For shorter distances up to 3 m, the methods of Eigen et al. (2014)
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(a) Ground truth (b) Liu et al., 2015 (c) Li et al., 2017 (d) PlaneNet (Liu
et al., 2018)

(e) (Ramamon-
jisoa and
Lepetit, 2019)

Figure D.15: Visual results after applying depth boundary errors (DBEs) on IBims-1. Overlay of ground
truth depth map with ground truth edge ( ) (a) and depth map predictions with extracted
edges (colored) using different methods (b-e)

and PlaneNet (Liu et al., 2018) tend to underestimate to a larger extend compared
to other methods, while the method of Liu et al. (2015) rather overestimated short
distances. It is worth noting that the method of Ramamonjisoa and Lepetit (2019)
exhibited a largely well-balanced distribution of over- and underestimated depths.

d.6 influence on the performance of side methods

Furthermore, additional experiments were conducted to investigate the general
behavior of SIDE methods, i.e., the robustness of predicted depth maps to geometrical
and color transformations, the planarity of predicted textured vertical surfaces, and
the influence of different illumination in the scene.

d.6.1 Augmentation

In order to assess the robustness of SIDE methods w.r.t. simple geometrical and color
transformation and noise, we derived a set of augmented images from our dataset.
For geometrical transformations we flipped the input images horizontally—which is
expected to not change the results significantly—and vertically, which is expected
to expose slight overfitting effects. As images in the NYU-v2 dataset usually show a
considerable amount of pixels on the floor in the lower part of the picture, this is
expected to notably influence the estimated depth maps. For color transformations,
we consider swapping of image channels, shifting the hue by some offset h and
scaling the saturation by a factor s. We change the gamma values to simulate over-
and under-exposure and optimize the contrast by histogram stretching. Blurred
versions of the images are simulated by applying Gaussian blur with increasing
standard deviation σ. Furthermore, we consider noisy versions of the images by
applying Gaussian additive noise and salt and pepper noise with increasing variance
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(a) RGB (b) Eigen et al.,
2014

(c) Liu et al.,
2015

(d) Laina et al.,
2016

(e) Li et al.,
2017

(f) PlaneNet
(Liu et al.,
2018)

Figure D.16: Visual results after applying directed depth errors (DDEs) on IBims-1. Ground truth depth
plane at d = 3 m separating foreground from background ( ) (a). Differences between
ground truth and predictions (b-f). Color coded are depth values that are either estimated
too short ( ) or too far ( )

Eigen et al., 2014 Eigen and Fergus, 2015 (AlexNet) Eigen and Fergus, 2015 (VGG)
Laina et al., 2016 Liu et al., 2015 Li et al., 2017

Liu et al., 2018 Ramamonjisoa and Lepetit, 2019
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Figure D.17: Directed depth errors (DDEs) for different distances d of the virtual plane seperating
foreground and background. From left to right: Proportions of correct (ε0

DDE), too-close
(ε−DDE) and too-far (ε+DDE) predicted pixels for different methods

and amount of affected pixels, respectively. Examples from this auxiliary dataset are
shown in Figure D.18.

Table D.5 shows results for these augmented images using the global relative error
metric for selected methods. As expected, the geometrical transformations yielded
contrasting results. While the horizontal flipping did not influence the results by a
large margin, flipping the images vertically increased the error by up to 60%. Slight
overexposure influenced the result notably, underexposure seems to have been less
problematic. Histogram stretching had no influence on the results, suggesting that
this is already a fixed or learned part of the methods. The methods also seem to be
robust to color changes, which is best seen in the results for s = 0, i.e., grayscale
input images which yielded an equal error to the reference. The results for blurring
the input images with a Gaussian kernel of various standard deviations, as well
as adding a different amount of Gaussian and salt and pepper noise to the input
images are depicted in Figure D.19. Minor blurring did not change the results, as
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(a) Original (b) LR-flip (c) UD-flip (d) γ = 0.2 (e) γ = 2 (f) Contrast norm.

(g) Channel Swap
(BGR)

(h) Channel Swap
(BGR)

(i) Hue+9◦ (j) Hue +90◦ (k) Saturation ×0 (l) Saturation
×0.9

(m) Gauss. Blur
(σ = 5.6)

(n) Gauss. Blur
(σ = 10)

(o) Gauss. Noise
(σ2 = 0.1)

(p) Gauss. Noise
(σ2 = 1)

(q) Salt & Pepper
Noise (25%)

(r) Salt & Pepper
Noise (50%)

Figure D.18: Different geometric and radiometric augmentation samples applied to IBims-1

Eigen et al., 2014 Eigen and Fergus, 2015 (AlexNet) Eigen and Fergus, 2015 (VGG)
Laina et al., 2016 Liu et al., 2015 Li et al., 2017

Liu et al., 2018 Ramamonjisoa and Lepetit, 2019
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Figure D.19: Quality of SIDE results for different methods after applying different augmentations with
increasing intensity on IBims-1. Vertical lines ( ) correspond to discrete augmentation
intensities

the examined methods considerably down-sample the input images and are thus
robust to blurring up to a certain standard deviation. However, the performance of
all methods starts to linearly decrease for blurring the image with σ > 2, whereby
the methods of Eigen et al. (2014) and Liu et al. (2015) are more robust for larger
blurring than the other methods. PlaneNet (Liu et al., 2018) could not handle blurring
the image for standard deviations of the Gaussian distribution σ > 2 due to a failed
vanishing point estimation.

The results for adding noise to the images, shown in Figures D.19b and D.19c, give
certain thresholds for the maximum tolerable amount of noise. All of the considered
methods were able to cope with up to 10 % of Salt and Pepper noise and Gaussian
noise with variance of 0.01 until the quality of results decreased notably. The AlexNet
version of Eigen and Fergus (2015) seems to be more robust to noise as opposed to
the VGG version, which is, however, less sensitive to blurred input images. Again,
the method of Liu et al. (2015) performed best on large noise levels, while PlaneNet
(Liu et al., 2018) could not cope with a large amount of noise.
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Figure D.20: Predictions for different printed samples from the Pattern dataset (Asuni and Giachetti,
2014) on a planar surface (rows). Predictions using different methods (b-f) of the input
images (a). Predicted depth maps are color-coded according to the colormaps shown in
the last column

d.6.2 Textured Planar Surfaces

Experiments with printed patterns and NYU-v2 samples on a planar surface exploit
which features influence the predictions of SIDE methods. As to be seen in Fig-
ure D.20, gradients seem to serve as a strong hint to the network. All of the tested
methods estimated incorrectly depth in the depicted scene, none of them, however,
identified the actual planarity of the picture. All of the examined networks respond
to these patterns. However, this effect is less severe for Laina et al. (2016), which
respond with only a constant offset to the alternating gradients in the pattern. Edges
in the input also seem to influence the result as to be seen in Stripes and Boxes.
Again, Laina et al. (2016) gave a constant offset, while the result of Liu et al. (2015)
clearly contained artifacts of the superpixel approach, which is even more evident
in Curves. Although NYU-v2, which served as training data for all methods, also
contains such textured surfaces in terms of paintings and drawings on walls, the
networks are unable to distinguish between intensity changes due to real depth
discontinuities and solely texture. Further research in this field is needed in order
to improve the applicability of SIDE in the fields of 3D room modeling or robot
navigation.

d.6.3 Illumination

Illumination plays a significant role in recovering the 3D structure of a scene, espe-
cially for indoor scenarios where different types of natural and artificial illumination
come together. This can be considered as a combination of under- and overexposure
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and intensity-based gradients on planar regions. As both effects were already dis-
cussed in sections Sections D.6.1 and D.6.2 separately, this experiment represents a
real world scenario revealing these effects for current state-of-the-art methods. For
this experiment we captured a static scene containing a table covering small objects in
the foreground, as well as a white wall in the background separated by a floor lamp.
We generated one ground truth depth map using a Kinect v1 and changed the scene
illumination by various artificial lights, such as diffuse lighting from a floor lamp,
and directional lighting from a spot appended on the floor lamp and a flashlight
illuminates the scene from different viewpoints outside of the image. Depending on
the illumination type, shadows cause strong gradients especially on the background
wall. RGB images, predictions and quantitative results of the examined methods are
visualized in Figure D.21. The results clearly show the impact of directional lighting
of the spot creating depth changes according to the strong gradients on the right
side of the wall, while diffuse lighting did not influence the results notably. While
comparable performances of the different methods – especially for diffuse lighting –
can be observed when using the global error metric, more distinguishable results can
be noted applying the planarity errors. As in the evaluation in Section D.5, Liu et al.
(2015) experiences difficulties in estimating the correct plane, while PlaneNet (Liu
et al., 2018) successfully segmented the wall in each image and produces accurate 3D
planes, although problems in the predictions of objects on the tables can be noticed,
resulting in larger errors for the global metric.

d.7 conclusions

We presented a novel set of quality criteria and a new high-quality RGB-D dataset
for the evaluation of SIDE methods. We pointed out, that established error metrics
which are used to assess the quality of predicted depth maps do not consider
meaningful geometric properties, such as the preservation of depth boundaries and
planar regions, the depth consistency across the image, and the depth range in
the image. In order to gradually establish SIDE methods in industrial applications,
different properties of the derived depth maps are decisive which highly depend on
the application field. For instance, 3D indoor room modeling emphasizes accurate
and correct plane estimations rather the reconstruction of detailed and small-scaled
furnishings. Developing realistic occlusion-aware augmented reality applications, on
the other hand, requires the reconstruction of precise and sharp depth discontinuities
in occluded contours (Ramamonjisoa and Lepetit, 2019). With the growing popularity
of 3D movies, SIDE techniques are partially used to substitute the costly and time-
consuming stereoscopic video recording process or the manual 2D-to-3D conversion
of single RGB images to arrive stereo pairs (Xie et al., 2016). Since most 3D animations
consist mainly of a few discrete depth layers, the consistency of depth estimates for
certain depth ranges becomes an important issue. In the field of autonomous driving,
the accuracy assessment of distance estimates is often considered as non-linear, since
higher accuracies are required for objects close to the camera than for faraway objects
(Liebel and Körner, 2019). Therefore, a distance-related assessment of the depth maps
would provide valuable insights into the performance of the methods for different
depth ranges.

As all of these application samples focus on different geometric properties of
SIDE, measurable evaluation metrics are needed to compare and understand the
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performance of both existing and novel methodologies in this field. We elaborated
simple, but geometrically interpretable error metrics for the mentioned properties
above. Particulary, these are distance-related error metrics, planarity errors, depth boundary
errors, and directed depth errros. Since these metrics require precise, dense, and noise-
free RGB-D image pairs, existing RGB-D datasets can not fully satisfy these high
demands. For this reason, we introduced a new high-quality indoor RGB-D dataset,
recorded with a custom acquisition setup combining a laser scanner and a DSLR
camera to capture accurately aligned RGB-D image pairs. In our experiments, we
were able to assess the quality of current state-of-the-art SIDE approaches w.r.t. to
above mentioned properties, and unlike commonly used global metrics, our proposed
set of quality criteria enabled us to unveil even subtle differences between the
considered methods. In particular, our experiments have shown that the prediction
of planar surfaces, which is crucial for many reconstruction applications, is lacking
accuracy and CNN-based methods tend to produce smooth predictions resulting in
blurry or vanishing depth boundaries. Although new methods that tackle specific
aspects of the analyzed properties have been proposed recently, they still struggle to
find a good trade-off between these aspects. Intuitively, a method that is designed
and trained to predict sharp edges at depth discontinuities based on a single image,
such as Sharpnet (Ramamonjisoa and Lepetit, 2019), tends to be sensitive to texture
changes. Hence, a drop in the planarity metrics could be observed. Detecting planar
regions in images and accurately predicting continuous depth values for such areas,
as proposed in the PlaneNet approach of Liu et al. (2018), on the other hand, comes
at the cost of disregarding finer details in favor of dominant planes. Our experiments
showed that, again, the increased performance with respect to the targeted property
is opposed by notable shortcomings in other aspects, most prominently the detection
of edges. Additional experiments were conducted to test the robustness of the
methods in terms of geometrical and radiometrical distortions, in the presence of
textured planar surfaces and under varying lighting conditions. The results have
proven a high robustness to minor blurring or noising of the input image, as well as
to radiometrical changes. On the other hand, gradients and sharp intensity changes
of planar objects, either caused by texture or illumination, can easily jar the methods
in producing large depth changes. We believe that our dataset is suitable for future
developments in this regard, as our images are provided in a very high resolution
and contain new sceneries with extended scene depths. Together with our new
proposed error metrics, it serves as an independent evaluation protocol for indoor
depth prediction and helps to improve future developments in this field.

acknowledgments

This research was funded by the German Research Foundation (DFG) for Tobias
Koch and the Federal Ministry of Transport and Digital Infrastructure (BMVI) for
Lukas Liebel. We thank our colleagues from the Chair of Geodesy for providing all
the necessary equipment and our student assistant Leonidas Stöckle for his help
during the data acquisition campaign.



234 appendix d

references

Ackermann, J. and Goesele, M. (2015). “A survey of photometric stereo techniques.” Founda-
tions and Trends in Computer Graphics and Vision 9(3-4), pp. 149–254.

Anwar, S., Hayder, Z., and Porikli, F. (2017). “Depth estimation and blur removal from a
single out-of-focus image.” In: Proceedings of the British Machine Vision Conference (BMVC).

Armeni, I., Sax, S., Zamir, A. R., and Savarese, S. (2017). “Joint 2D-3D-semantic data for
indoor scene understanding.” arXiv preprint arXiv:1702.01105.

Asuni, N. and Giachetti, A. (2014). “Testimages: a large-scale archive for testing visual devices
and basic image processing algorithms.” In: Smart Tools and Apps for Graphics - Eurographics
Italian Chapter Conference. The Eurographics Association, pp. 63–70.

Baig, M. H. and Torresani, L. (2016). “Coupled depth learning.” In: Proceedings of the IEEE
Winter Conference on Applications of Computer Vision (WACV), pp. 1–10.

Camplani, M. and Salgado, L. (2014). “Background foreground segmentation with RGB-D
Kinect data: an efficient combination of classifiers.” Journal of Visual Communication and
Image Representation 25(1), pp. 122–136.

Chakrabarti, A., Shao, J., and Shakhnarovich, G. (2016). “Depth from a single image by
harmonizing overcomplete local network predictions.” In: Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 2658–2666.

Chang, A., Dai, A., Funkhouser, T., Halber, M., Nießner, M., Savva, M., Song, S., Zeng, A.,
and Zhang, Y. (2017). “Matterport3D: learning from RGB-D data in indoor environments.”
In: Proceedings of the IEEE International Conference on 3D Vision (3DV), pp. 667–676.

Chen, W., Fu, Z., Yang, D., and Deng, J. (2016). “Single-image depth perception in the wild.”
In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 730–738.

Choi, S., Min, D., Ham, B., Kim, Y., Oh, C., and Sohn, K. (2015). “Depth analogy: data-driven
approach for single image depth estimation using gradient samples.” IEEE Transactions
on Image Processing (TIP) 24(12), pp. 5953–5966.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017). “ScanNet:
richly-annotated 3D reconstructions of indoor scenes.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2432–2443.

Devernay, F. and Beardsley, P. (2010). “Stereoscopic cinema.” In: Image and Geometry Processing
for 3-D Cinematography. Springer, pp. 11–51.

Dhamo, H., Tateno, K., Laina, I., Navab, N., and Tombari, F. (2019). “Peeking behind objects:
layered depth prediction from a single image.” Pattern Recognition Letters 125, pp. 333–
340.

Doorn, A. J. van, Koenderink, J. J., and Wagemans, J. (2011). “Light Fields and Shape from
Shading.” Journal of Vision 11(3), pp. 21.1–21.21.

Eigen, D. and Fergus, R. (2015). “Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture.” In: Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pp. 2650–2658.

Eigen, D., Puhrsch, C., and Fergus, R. (2014). “Depth map prediction from a single image
using a multi-scale deep network.” In: Proceedings of Advances in Neural Information
Processing Systems (NIPS). Vol. 2, pp. 2366–2374.

Favaro, P. and Soatto, S. (2005). “A geometric approach to shape from defocus.” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 27(3), pp. 406–417.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2006). “Efficient belief propagation for early
vision.” International Journal of Computer Vision (IJCV) 70(1), pp. 41–54.

Fu, H., Gong, M., Wang, C., Batmanghelich, K., and Tao, D. (2018). “Deep ordinal regression
network for monocular depth estimation.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2002–2011.

Furukawa, R., Sagawa, R., and Kawasaki, H. (2017). “Depth estimation using structured light
flow–analysis of projected pattern flow on an object’s surface.” In: Proceedings of the IEEE
International Conference on Computer Vision (ICCV), pp. 4640–4648.



references 235

Garg, R., Carneiro, G., and Reid, I. (2016). “Unsupervised CNN for single view depth
estimation: geometry to the rescue.” In: Proceedings of the European Conference on Computer
Vision (ECCV). Springer, pp. 740–756.

Geiger, A., Lenz, P., and Urtasun, R. (2012). “Are we ready for autonomous driving? the
kitti vision benchmark suite.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3354–3361.

Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). “Unsupervised monocular depth
estimation with left-right consistency.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6602–6611.

Guo, X., Li, H., Yi, S., Ren, J., and Wang, X. (2018). “Learning monocular depth by distilling
cross-domain stereo networks.” In: Proceedings of the European Conference on Computer
Vision (ECCV). Springer, pp. 484–500.

Hane, C., Ladicky, L., and Pollefeys, M. (2015). “Direction matters: Depth estimation with
a surface normal classifier.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 381–389.

Hao, Z., Li, Y., You, S., and Lu, F. (2018). “Detail preserving depth estimation from a single
image using attention guided networks.” In: Proceedings of the IEEE International Conference
on 3D Vision (3DV), pp. 304–313.

Hartley, R. and Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge
University Press.

Hassner, T. and Basri, R. (2006). “Example based 3D reconstruction from single 2D images.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPR-WS), pp. 8–15.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image recognition.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778.

Heber, S. and Pock, T. (2016). “Convolutional networks for shape from light field.” In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3746–
3754.

Heo, M., Lee, J., Kim, K.-R., Kim, H.-U., and Kim, C.-S. (2018). “Monocular depth estimation
using whole strip masking and reliability-based refinement.” In: Proceedings of the European
Conference on Computer Vision (ECCV). Springer, pp. 36–51.

Hirschmuller, H. (2005). “Accurate and efficient stereo processing by semi-global matching
and mutual information.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Vol. 2, pp. 807–814.

Hoiem, D., Efros, A. A., and Hebert, M. (2007). “Recovering surface layout from an image.”
International Journal of Computer Vision (IJCV) 75(1), pp. 151–172.

Horn, B. K. P. (1970). Shape from shading: a method for obtaining the shape of a smooth opaque
object from one view. Tech. rep. Cambridge, MA, USA: MIT - AI.

Hu, J., Ozay, M., Zhang, Y., and Okatani, T. (2019). “Revisiting single image depth estimation:
toward higher resolution maps with accurate object boundaries.” In: Proceedings of the
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1043–1051.

Izadinia, H., Shan, Q., and Seitz, S. M. (2017). “Im2cad.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5134–5143.

Kadambi, A., Taamazyan, V., Shi, B., and Raskar, R. (2015). “Polarized 3D: high-quality depth
sensing with polarization cues.” In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pp. 3370–3378.

Karsch, K., Liu, C., and Kang, S. B. (2014). “Depth transfer: Depth extraction from video
using non-parametric sampling.” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 36(11), pp. 2144–2158.

Kim, S., Park, K., Sohn, K., and Lin, S. (2016). “Unified depth prediction and intrinsic image
decomposition from a single image via joint convolutional neural fields.” In: Proceedings
of the European Conference on Computer Vision (ECCV). Springer, pp. 143–159.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. (2017). “Tanks and Temples: benchmarking
large-scale scene reconstruction.” ACM Transactions on Graphics (TOG) 36(4), p. 78.



236 appendix d

Koch, T., Liebel, L., Fraundorfer, F., and Körner, M. (2018). “Evaluation of CNN-based single-
image depth estimation methods.” In: Proceedings of the European Conference on Computer
Vision Workshops (ECCV-WS). Springer, pp. 331–348.

Kolmogorov, V. and Zabih, R. (2001). “Computing visual correspondence with occlusions
using graph cuts.” In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pp. 508–515.

Kong, N. and Black, M. J. (2015). “Intrinsic depth: improving depth transfer with intrinsic
images.” In: Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pp. 3514–3522.

Konrad, J., Brown, G., Wang, M., Ishwar, P., Wu, C., and Mukherjee, D. (2012). “Automatic
2D-to-3D image conversion using 3D examples from the internet.” In: Proceedings of
the Stereoscopic Displays and Applications. International Society for Optics and Photonics,
82880F.

Konrad, J., Wang, M., Ishwar, P., Wu, C., and Mukherjee, D. (2013). “Learning-based, au-
tomatic 2D-to-3D image and video conversion.” IEEE Transactions on Image Processing
(TIP) 22(9), pp. 3485–3496.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with deep
convolutional neural networks.” In: Proceedings of Advances in Neural Information Processing
Systems (NIPS), pp. 1097–1105.

Kuznietsov, Y., Stückler, J., and Leibe, B. (2017). “Semi-supervised deep learning for monocu-
lar depth map prediction.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6647–6655.

Ladicky, L., Shi, J., and Pollefeys, M. (2014). “Pulling things out of perspective.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 89–96.

Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., and Navab, N. (2016). “Deeper depth pre-
diction with fully convolutional residual networks.” In: Proceedings of the IEEE International
Conference on 3D Vision (3DV), pp. 239–248.

Lee, J.-H., Heo, M., Kim, K.-R., and Kim, C.-S. (2018). “Single-image depth estimation based
on Fourier domain analysis.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 330–339.

Levin, A., Lischinski, D., and Weiss, Y. (2004). “Colorization using optimization.” ACM
Transactions on Graphics (TOG) 23(3), pp. 689–694.

Li, B., Shen, C., Dai, Y., Hengel, A. van den, and He, M. (2015). “Depth and surface normal
estimation from monocular images using regression on deep features and hierarchical
CRFs.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1119–1127.

Li, J., Klein, R., and Yao, A. (2017). “A two-streamed network for estimating fine-scaled depth
maps from single RGB images.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3372–3380.

Li, X., Qin, H., Wang, Y., Zhang, Y., and Dai, Q. (2014). “DEPT: depth estimation by parameter
transfer for single still images.” In: Proceedings of the Asian Conference on Computer Vision
(ACCV). Springer, pp. 45–58.

Li, Z. and Snavely, N. (2018). “MegaDepth: learning single-view depth prediction from
internet photos.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2041–2050.

Liebel, L. and Körner, M. (2019). “MultiDepth: single-image depth estimation via multi-task
regression and classification.” arXiv preprint arXiv:1907.11111.

Liu, B., Gould, S., and Koller, D. (2010). “Single image depth estimation from predicted
semantic labels.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1253–1260.

Liu, C., Yuen, J., and Torralba, A. (2011). “Sift flow: dense correspondence across scenes and
its applications.” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
33(5), pp. 978–994.



references 237

Liu, C., Yang, J., Ceylan, D., Yumer, E., and Furukawa, Y. (2018). “PlaneNet: piece-wise planar
reconstruction from a single RGB image.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2579–2588.

Liu, F., Shen, C., and Lin, G. (2015). “Deep convolutional neural fields for depth estimation
from a single image.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5162–5170.

Liu, F., Shen, C., Lin, G., and Reid, I. (2016). “Learning depth from single monocular images
using deep convolutional neural fields.” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 38(10), pp. 2024–2039.

Liu, M., Salzmann, M., and He, X. (2014). “Discrete-continuous depth estimation from a single
image.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 716–723.

Mancini, M., Costante, G., Valigi, P., and Ciarfuglia, T. A. (2018). “J-MOD 2: joint monocular
obstacle detection and depth estimation.” IEEE Robotics and Automation Letters 3(3),
pp. 1490–1497.

McCormac, J., Handa, A., Leutenegger, S., and Davison, A. J. (2017). “Scenenet RGB-D: can
5m synthetic images beat generic imagenet pre-training on indoor segmentation.” In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV). Vol. 4, pp. 2697–
2706.

Moreno-Noguer, F., Lepetit, V., and Fua, P. (2007). “Accurate non-iterative o (n) solution to
the pnp problem.” In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pp. 1–8.

Nayar, S. K. and Narasimhan, S. G. (1999). “Vision in bad weather.” In: Proceedings of the
IEEE International Conference on Computer Vision (CVPR). Vol. 2, pp. 820–827.

Ngo, T. T., Nagahara, H., and Taniguchi, R.-i. (2015). “Shape and light directions from shading
and polarization.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2310–2318.

Occipital, I (2016). Structure sensor-3d scanning, augmented reality, and more for mobile devices.
Phan, R. and Androutsos, D. (2013). “Robust semi-automatic depth map generation in

unconstrained images and video sequences for 2D to stereoscopic 3D conversion.” IEEE
Transactions on Multimedia 16(1), pp. 122–136.

Ramamonjisoa, M. and Lepetit, V. (2019). “SharpNet: fast and accurate recovery of occluding
contours in monocular depth estimation.” In: Proceedings of the IEEE International Conference
on Computer Vision Workshops (ICCV-WS), tbd.

Ranftl, R., Vineet, V., Chen, Q., and Koltun, V. (2016). “Dense monocular depth estimation in
complex dynamic scenes.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4058–4066.

Roy, A. and Todorovic, S. (2016). “Monocular depth estimation using neural regression
forest.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5506–5514.

Saxena, A., Chung, S. H., and Ng, A. Y. (2006). “Learning depth from single monocular im-
ages.” In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1161–
1168.

– (2008). “3-d depth reconstruction from a single still image.” International Journal of
Computer Vision (IJCV) 76(1), pp. 53–69.

Saxena, A., Sun, M., and Ng, A. Y. (2009). “Make3d: learning 3D scene structure from a single
still image.” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
31(5), pp. 824–840.

Scharstein, D. and Szeliski, R. (2002). “A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms.” International Journal of Computer Vision (IJCV) 47(1-3),
pp. 7–42.

Schöps, T., Schönberger, J. L., Galliani, S., Sattler, T., Schindler, K., Pollefeys, M., and Geiger,
A. (2017). “A multi-view stereo benchmark with high-resolution images and multi-camera
videos.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2538–2547.



238 appendix d

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). “A comparison and
evaluation of multi-view stereo reconstruction algorithms.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 519–528.

Shi, J., Tao, X., Xu, L., and Jia, J. (2015). “Break ames room illusion: depth from general single
images.” ACM Transactions on Graphics (TOG) 34(6), p. 225.

Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). “Indoor segmentation and support
inference from rgbd images.” In: Proceedings of the European Conference on Computer Vision
(ECCV). Springer, pp. 746–760.

Simonyan, K. and Zisserman, A. (2014). “Very deep convolutional networks for large-scale
image recognition.” arXiv preprint arXiv:1409.1556.

Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funkhouser, T. (2017). “Semantic
scene completion from a single depth image.” In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 190–198.

Strecha, C., Von Hansen, W., Van Gool, L., Fua, P., and Thoennessen, U. (2008). “On bench-
marking camera calibration and multi-view stereo for high resolution imagery.” In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–
8.

Su, C.-C., Cormack, L. K., and Bovik, A. C. (2017). “Bayesian depth estimation from monocular
natural images.” Journal of Vision 17(5), pp. 22–22.

Suwajanakorn, S., Hernandez, C., and Seitz, S. M. (2015). “Depth from focus with your mobile
phone.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3497–3506.

Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & Business
Media.

Torralba, A. and Oliva, A. (2002). “Depth estimation from image structure.” IEEE Transactions
on Pattern Analysis and Machine Intelligence (TPAMI) 24(9), pp. 1226–1238.

Ummenhofer, B., Zhou, H., Uhrig, J., Mayer, N., Ilg, E., Dosovitskiy, A., and Brox, T. (2017).
“DeMoN: depth and motion network for learning monocular stereo.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 5, pp. 5038–5047.

Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., and Yuille, A. L. (2015). “Towards unified
depth and semantic prediction from a single image.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2800–2809.

Wang, P., Shen, X., Russell, B., Cohen, S., Price, B., and Yuille, A. L. (2016). “Surge: surface
regularized geometry estimation from a single image.” In: Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 172–180.

Xian, K., Shen, C., Cao, Z., Lu, H., Xiao, Y., Li, R., and Luo, Z. (2018). “Monocular relative
depth perception with web stereo data supervision.” In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 311–320.

Xie, J., Girshick, R., and Farhadi, A. (2016). “Deep3d: Fully automatic 2d-to-3d video conver-
sion with deep convolutional neural networks.” In: Proceedings of the European Conference
on Computer Vision (ECCV). Springer, pp. 842–857.

Xu, D., Ricci, E., Ouyang, W., Wang, X., and Sebe, N. (2017). “Multi-scale continuous CRFs
as sequential deep networks for monocular depth estimation.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 161–169.

Xu, D., Wang, W., Tang, H., Liu, H., Sebe, N., and Ricci, E. (2018). “Structured attention
guided convolutional neural fields for monocular depth estimation.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3917–3925.

Yang, F. and Zhou, Z. (2018). “Recovering 3D planes from a single image via convolutional
neural networks.” In: Proceedings of the European Conference on Computer Vision (ECCV).
Springer, pp. 85–100.

Yin, Z. and Shi, J. (2018). “GeoNet: unsupervised learning of dense depth, optical flow
and camera pose.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1983–1992.



references 239

Yoon, K.-J. and Kweon, I. S. (2006). “Adaptive support-weight approach for correspondence
search.” IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 28(4),
pp. 650–656.

You, X., Li, Q., Tao, D., Ou, W., and Gong, M. (2014). “Local metric learning for exemplar-
based object detection.” IEEE Transactions on Circuits and Systems for Video Technology
24(8), pp. 1265–1276.

Zennaro, S, Munaro, M., Milani, S., Zanuttigh, P., Bernardi, A, Ghidoni, S., and Menegatti, E.
(2015). “Performance evaluation of the 1st and 2nd generation Kinect for multimedia
applications.” In: Proceedings of the IEEE International Conference on Multimedia and Expo
(ICME). IEEE, pp. 1–6.

Zhan, H., Garg, R., Weerasekera, C. S., Li, K., Agarwal, H., and Reid, I. (2018). “Unsupervised
learning of monocular depth estimation and visual odometry with deep feature recon-
struction.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 340–349.

Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M. (1999). “Shape from shading: a survey.” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 21(8), pp. 690–706.

Zheng, C., Cham, T.-J., and Cai, J. (2018). “T2Net: synthetic-to-realistic translation for solving
single-image depth estimation tasks.” In: Proceedings of the European Conference on Computer
Vision (ECCV). Springer, pp. 798–814.

Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). “Unsupervised learning of depth
and ego-motion from video.” In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6612–6619.

Zhuo, W., Salzmann, M., He, X., and Liu, M. (2015). “Indoor scene structure analysis for
single image depth estimation.” In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 614–622.

Zioulis, N., Karakottas, A., Zarpalas, D., and Daras, P. (2018). “OmniDepth: dense depth
estimation for indoors spherical panoramas.” In: Proceedings of the European Conference on
Computer Vision (ECCV). Springer, pp. 453–471.

Zoran, D., Isola, P., Krishnan, D., and Freeman, W. T. (2015). “Learning ordinal relationships
for mid-level vision.” In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV), pp. 388–396.


	Abstract
	Abstract
	Zusammenfassung

	Zusammenfassung
	Contents

	Abbreviations
	1 Introduction
	2 The Role of UAVs in Remote Sensing and Building Reconstruction
	3 State-of-the-Art in the Use of UAV Imagery for Building Reconstruction
	4 Summary of the Contributions for UAV Photogrammetry
	5 Conclusion
	Bibliography
	Acknowlegments
	A Zhuo, X., Koch, T., Kurz F., Fraundorfer F., Reinartz P. (2017) Automatic UAV Image Geo-registration by Matching UAV Images to Georeferenced Image Data. Remote Sensing 9 (4), 376.
	B Koch, T., Körner M., Fraundorfer F. (2019) Automatic and Semantically-aware 3D UAV Flight Planning for Image-based 3D Reconstruction. Remote Sensing 11 (13), 1550.
	C Koch, T., Körner M., Fraundorfer F. (2016) Automatic Alignment of Indoor and Outdoor Building Models using 3D Line Segments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 689–697.
	D Koch, T., Liebel, L., Körner M., Fraundorfer F. (2020) Comparison of Monocular Depth Estimation Methods using Geometrically Relevant Metrics on the IBims-1 Dataset. Computer Vision and Image Understanding. Volume 191, 102877

