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Abstract—More and more embedded applications demand to
cope with complex data while still being energy-efficient. Neural
networks provide the processing capabilities, but often cannot
be utilised because of restricted power goals. Spiking neural
networks have been shown to potentially solve this problem due to
their hardware friendliness and energy efficiency. One remaining
problem is the conversion of input data into event-based spikes in
order to be processed. In this study, we examine using resonating
neuron models to perform spectral transform and temporal
spike encoding simultaneously directly on the analogue signal.
Additionally, we compare the approach with the fast Fourier
transform and demonstrate that both show comparable results
while the neuromorphic realisation consumes significantly less
energy. With the resonating neurons as input stage for large
spiking neural networks, it is possible to realise energy efficient
networks in neuromorphic hardware without the need of any
digital logic. A limitation of the approach is the comparatively
large silicon area needed to realise the circuit.

I. INTRODUCTION

Routine processing of analogue data involves initial sam-
pling and quantisation by analogue-to-digital converters, and
subsequent transformation into the frequency domain using the
fast Fourier transform (FFT). In embedded processing chains,
general purpose digital signal processors, micro controllers,
or application specific circuits are then employed to solve the
desired processing task. To cope with highly complex tasks,
neural network-based solutions are occasionally integrated
directly into modern embedded systems. Their usage is often
restricted by the silicon area, power consumption, processing
speed, and accuracy, that determine the price and feasibility
of an embedded application.

Biologically inspired spiking neural networks are being inves-
tigated as alternatives to digitally implemented networks. These
are proven to perform calculations using less neurons compared
to ordinary neural networks [1] and exhibit good hardware
integrability. As their biological counterparts, spiking neurons
intercommunicate using short energy pulses. Information is
thereby encoded into the presence of spikes and their precise
timing intervals.

To exploit the capabilities of spiking networks, real-world
data must be converted into the spiking domain. In biological
systems, parameters including light intensities, pressure levels,
and chemical compositions are converted into spike patterns
using specific sensors. For example, resonating hair cells
reacting to a specific frequency of pressure changes in the
cochlea are exploited for hearing. Following the biological
model, we feed the signal directly as a current to the input of
the electrical resonator circuits to obtain the spectral transform

and spike encoding concurrently. The signal processing then
proceeds entirely in spiking neural networks without analogue-
to-digital converters or other digital circuits. In this study, we
propose using resonate-and-fire (RF) neurons [2] as an input
stage for spiking neural networks, although the associated
computation stages are not examined.

The resonance behaviour of Hodgkin-Huxley-type neurons
has been intensively studied [3]–[8]. These studies focused
on understanding the behaviour of biological neural networks.
Our study in contrast, aims to investigate the practical utility
of these properties. Due to their simplicity, RF neurons are
well suited for application-oriented approaches, although less
biologically plausible. Integrated circuits implementing these
neurons have been demonstrated [9], [10].

Research on spiking neural networks commonly involves
using frequency-domain inputs [11]–[13], especially in the
context of speech processing. Contextually, the digital speech
signal is transformed using the FFT and then coded into
spike events using time-to-first-spike or rate coding techniques.
Wysoski, Benuskova, and Kasabov [2010] use wavelet filters to
transform and encode the time-domain signal. Although further
elaboration of this proposal is lacking, it necessitates buffering
of the signal before application to the parallel input of the
network. In contrast, our approach ensures computations are
performed entirely in the domain of spiking neural networks.
Independent of neural networks, an asynchronous event-based
Fourier analysis has been proposed [15]. The authors developed
the algorithm to process data produced by an asynchronous
image sensor. Several other approaches exist for non-spiking
artificial networks. Sainath, Weiss, Wilson, et al. [2017] utilized
training convolutional filters directly on the buffered time-
domain signal to detect features. Graves, Mohamed, and Hinton
[2013] used recurrent neural networks for real-time processing
of words spoken. For speech enhancement applications, Xu,
Du, Dai, and Lee [2014] proposed deep neural networks using
the result of a short time FFT as input.

Beside speech recognition, radar signal processing is another
well-suited application for such neural networks. Here, the
distance measurement of targets is directly linked to the
frequency decomposition of the measured signal. Therefore,
analysis with RF neurons as the encoding layer is also examined
in this study.

We summarize the contribution of our work as follows:
1) We introduce using analogue RF neurons as the input

stage for spiking neural networks signal processing. Here,
the analogue input signal is directly fed into the neuron
as synaptic current.
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2) We examine the properties of the resonating neurons
(section II) as well as practical limitations of their use
(section III). Therefore, we compare our approach to the
well-known FFT (section III-C).

3) We illustrate the utility of the proposal in a radar
application and compare the performance to that of a
common digitally processed solution (section IV).

II. PRELIMINARIES

A. RF Neuron

As proposed by Izhikevich [2001], the RF neuron is a
symmetric two-dimensional neuron model with oscillatory
behaviour. The dynamics of the neuron are described by

ẋ =

[
−d −ω0

ω0 −d

]
x+

[
I
0

]
(1)

where d is a damping constant, ω0 = 2πf0 is the resonant
frequency of the neuron, and I is the input signal as short
pulses or continuous signals. In its equivalent complex form
given as

ż = (−d+ iω0)z + I (2)

the real and imaginary parts of z represent the current- and
voltage-like variables. An outgoing spike is generated once the
voltage-like variable exceeds a predefined threshold, and both
variables are reset. In accordance with biological neurons, the
voltage-like variable is also referred as membrane voltage.

B. Properties of the Resonator

The resonating behaviour of the neuron model is first
examined without spike emission or reset property. We consider
the input current as a continuous sinusoidal signal with
amplitude a and frequency ω = 2πf of the form I = a cos(ωt).
Commonly, the exact courses of z are of less interest, and
the main information is provided by the envelope env of the
voltage-like variable’s oscillation.

1) Pulsed Excitation: If the input of the RF neuron is
connected to other neurons, the input signal will, depending
on the neurons, most likely consist of short current pulses.
Therefore, the time between successive incoming spikes must
match the natural frequency of the RF neuron to sufficiently
excite it to attain the threshold, as shown by Izhikevich [2001].
This input type is, however, not considered in this study.

2) Resonant Excitation: With the input current oscillating
at the resonant frequency of the neuron ω = ω0, the transient
response follows an exponential process which results in a
constant oscillation expressed as

z = C et (−d+ω0 i) +
etω0i

2d
+

e−tω0i

2d− 4ω0i
(3)

≈ etω0i

2d
for t→∞ (4)

hence, the envelope of the process follows the expression

env =
a

2d

(
1− e−td

)
≈ a

2
t (5)

that is approximated by a linear process for a small t and small
damping constant d, independent of the frequency.
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Fig. 1. Membrane voltage course of a neuron excited by a sinusoidal signal
of its resonant frequency. Additionally, the oscillation’s envelope is shown for
a resonant and near-resonant excitation.

3) Non-resonant Excitation: With a non-resonant excitation
ω 6= ω0, the envelope reaches much lower voltages in the same
time as in resonant excitation if not saturated:

env =
2aω

ω2 − ω2
0

sin(
1

2
(ω − ω0)t), (6)

max(env) ≈ a

∆ω
for ∆ω T ≥ π. (7)

The maximum voltage differences between resonant and non-
resonant frequencies, and with that the frequency selectivity
of the neuron is influenced by the damping constant d, the
measurement time T , and the frequency difference ∆ω =
|ω − ω0|. The relation given in (7) is also valid for a constant
excitation of the resonator with ω = 0. The membrane voltage
course of an exemplary neuron excited by a resonant signal is
shown in Figure 1. Additionally, the maximum value of the
oscillation’s envelope is depicted for the resonant and near-
resonant excitation. The differences between the envelopes are
proportional to the duration of the measurements. The voltage
difference between the resonant frequency ω0 and the non-
resonant frequency ω = ω0 + 2π

T remains constant for all ω0

at a constant measurement time T .

III. APPROACH

A. Spike Generation and Reset Behaviour

To enter the spiking domain, the neuron must generate
outgoing current pulses, depending on its level of excitation.
The requirements for spike generation include:

1) a neuron only responds to signals with near-resonant
frequencies over a broad range of signal amplitudes/
signal-to-noise ratios (SNR),

2) determining the amplitude of the signal is possible,
3) determining the phase of the signal is also possible.

These requirements indicate two possible rules for generating
spikes:
• reaching the threshold voltage, accompanied by resetting

z,
• attaining the threshold voltage, followed by increasing the

threshold without resetting z. The threshold adaption is
linear, exponential or characteristic of an arbitrary process.

The use of the first rule requires a trade-off between the
frequency selectivity of the neuron and the ability to detect
and determine the amplitude of the incoming signal. In general,
resetting z introduces a coarse frequency resolution, since the
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differences of the voltage-like variable Im z between resonant
and non-resonant frequencies increase as the development of
the oscillation persists (see Figure 1). A low threshold and a
resetting behaviour produces a broad range of frequencies for
spike generation by a neuron. In contrast, with a high threshold,
a resonant excitation with a low amplitude is unable to
sufficiently excite the resonating neuron to reach the threshold.
Signals with non-resonant frequencies are also incapable of
sufficiently exciting the neuron, even with a large amplitude.
A variable threshold enables detection of signals of small
amplitude and attainment of voltage levels necessary for the
development of large voltage differences by resonant and non-
resonant excitations. Larger differences are achieved by not
resetting z after the spike generation.

In addition to the number of spikes generated, the timing
of and between the spikes contains information. The time
between two spikes generated by the same neuron for resonant
excitation is directly linked to the amplitude of the incoming
signal. The phase of the signal also slightly influences the
timing of outgoing spikes, since the outgoing spike pattern
shows a phase-locked behaviour. While the envelope of the
oscillating voltage-like variable is not influenced by phase
changes, the oscillation shifts, moving the high points that are
likely to surpass the threshold. Consequently, spike times are
constantly shifted by ∆t = φ

ω0
. This effect is small compared

to timing shifts from amplitude variations scaling the spike
time linearly with the SNR (see (5)). A spike generated after
ten oscillations of a given sinusoidal signal requires a ratio
between signal and amplitude noise of above 50 dB to achieve a
smaller time shift than by a phase shift of ten degrees. Hence,
the effect is only usable for signals that are unaffected by
noise. But even without noise, the shift is only fractions of the
duration of one oscillation.

The damping constant d determines the settling time of the
resonant oscillation as well as its steady-state amplitude. The
constant should be small enough to ensure that the steady-state
is not reached during the measurement time T . Therefore, the
growth of the envelope of the oscillating membrane voltage
is approximately linear (see (5)). As the measurement time
increases, the voltage difference between the resonant and
non-resonant excitation increases (see Figure 1).

B. Frequency, Amplitude and Phase Resolution

Depending on the rule used for resetting and spike generation,
the neurons differ in their selectivity of the input signal’s
frequency components near their resonant frequency. To discuss
the frequency, amplitude, and phase resolution, a comparable
metric covering the activity of a neuron must be defined. Since
information is contained in the number and precise timing of
spikes emitted, the metric must consider both. In general, a
neuron emitting many spikes is more active than one producing
only a few. Additionally, small latencies between a stimulus
onset and the first spike emission as well as between successive
spikes contribute to a higher activity. Depending on the spike
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Fig. 2. Comparison of normalized spike count and activity for different spike
generation and reset rules. Top: variable threshold without reset, bottom: fixed
threshold with reset. Input is a sum of sines with frequencies 0, 10, 20, 25,
33, and 35 Hz and amplitudes 0.4, 0.8, 1, 1, 0.5, and 0.5.

times, we define the activity αj of a neuron j as

αj =

Nj∑
n=1

n (T − tn) (8)

where Nj denotes the maximum number of spikes emitted by
neuron j during the measurement time T . The variables tn
and n represent the time and index of the specific spike events
of the neuron in ascending order, respectively.

Figure 2 displays a comparison of spectral analyses using RF
neurons with different threshold and reset rules. Additionally,
the absolute number of spikes as well as the activity metric
(8) are depicted. For a variable threshold without reset, the
introduction of the activity metric causes a sharper frequency
selectivity and smaller activity values of near-resonant neurons.
Generally, the spikes emitted by resonant neurons are early
and therefore significantly influence the activity metric. Instead
of sharp peaks at resonant frequencies, neurons with a fixed
threshold and membrane voltage reset after spike emissions
show a constant number of spikes and activation value for
a broader frequency range. Neurons with a near-resonant
frequency exhibit a reaction identical to the resonant neuron
up to a specific frequency difference. In traversing this
area, the spike rate instantly drops to zero. Moreover, the
number of spikes and the activation metric show no improved
differentiability. Consequently, the spike timings are similar
for resonant and near-resonant neurons.

An important trade-off during the parametrisation of the
resonating neuron exists between the amplitude range of the
input and the frequency resolution. While ensuring a large
dynamic range of the input at which oscillations are detected,
the frequency resolution becomes coarse. While low thresholds
enable the detection of low amplitude oscillations, high
amplitudes eventually saturate and near-resonant oscillations
also attain high levels of excitation. Low thresholds on the
contrary render the detection of small amplitudes impossible,
but enhance discrimination between resonant and near-resonant
oscillations at higher amplitudes. The following relations are
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used as a bases for deciding on the threshold:

threshold >
amax T

2N
and (9)

threshold <
amin T

2
(10)

where amin and amax denote the detectable amplitude range and
N is the maximum number of spikes during a measurement of
duration T . As described previously, (9) ensures that the spike
rate of the neuron does not saturate at high signal amplitudes.
Equation (10) in contrast, enables the resonant oscillation of a
signal with low amplitude to reach the threshold once during the
measurement. For near-resonant oscillations without an exact
frequency covered by a neuron to be detected, this threshold
must be even lower. To specify the probability of spikes
generated for non-resonant signals at neighbouring natural
frequencies, an additional rule is formulated and expressed as

threshold >
amax

∆ω
. (11)

This prevents spike generation for an oscillation with frequency
ω at a neuron with natural frequency ω+∆ω. For more neurons
and a larger footprint of the circuit, multiple neurons with the
same natural frequency but different thresholds can be realised
to expand the dynamic range of detection. The setting of the
threshold alters only the spike behaviour of the neuron, with
the overall membrane voltage resonance remaining unchanged.
The dependence on near-resonant frequencies with 1

∆ω as in
(7) can not be influenced.

For neurons with a fixed threshold, the amplitude range
is primarily influenced by the minimum detectable signal
amplitude (10) and the frequency selectivity (11). Comparing
both relations produces the expression

amax

amin
= π∆f T. (12)

This means, if no spike must be generated at neighbouring
frequencies with difference 1/T having a signal with amplitude
amax, an amplitude range of 10 dB is achieved. If the selectivity
is less strict, e.g. 2

T or 4
T , the range reaches 16 dB or 22 dB,

respectively.
Neurons with a variable threshold are primarily restricted by

the maximum number of spikes generated during a measure-
ment (see (9)). By comparing the relation to (10), the relation
between the minimum and maximum signal amplitude is

amax

amin
= N. (13)

Thus, if 100 spikes are generated during the measurement, an
amplitude range of 40 dB is achieved. Still, a very wide range
also causes inaccurate frequency selectivity.

C. Comparision to FFT

An overview over the properties and limitations of the FFT
and the neuronal-based approach is given in Table I. The main
differences are highlighted in the following.

1) Energy Consumption: One of the largest benefits of
spiking neural networks is their high energy efficiency [19].
The main consumers of energy in our resonate-and-fire neurons
are the bias currents which enable the oscillation as well
as the generation of the outgoing current pulses. Based on
the proposed realisation by [10], 512 neurons require a total
energy of 0.2 nJ to achieve time constants in order to analyse
signals up to 12.5 MHz as needed later in section IV. [20]
present a circuit design consuming 0.47 pJ per spike generated
including the energy needed to drive axons with a total length
of 1 mm. During the radar application example, 100 spikes
were generated with a total energy consumption of ≈ 50 pJ.
This total consumption of 0.25 nJ is much lower than current
digital FFT blocks. Not considered are the savings introduced
by omitting the ADC and further digital blocks if the whole
processing is realised in neuromorphic hardware.

2) Frequency Resolution: In the FFT and neuronal ap-
proaches, the ability to distinguish similar frequencies scales
with increasing measurement time. The frequency resolution
of the FFT is influenced by the sampling frequency and
the number of samples measured. For a given sampling
frequency, the resolution is proportional to the number of
samples. Additionally, due to the Nyquist criterion, the sam-
pling frequency determines the highest measurable frequency
of the signal without aliasing. However, the accuracy of
the frequency decomposition decreases for oscillations with
frequencies of non-integer multiples of the reciprocal of
the measurement time due to spectral leakage. Resonating
neurons show similar leakage of oscillations into neighbouring
near-resonant neurons. The neurons develop higher amplitude
differences between resonant and non-resonant frequencies
with longer measurements (see (6)). Both effects, leakage at
FFT and resonators, have different causes but similarly scale
with 1

∆ω .
3) Amplitude Resolution: In comparison to FFTs with

sample sizes of 12 bit and more, the amplitude range of the
proposed neuromorphic approach is poor. Due to the event-
based encoding of the weight of the spectral components in
spikes however, the resolution within the measurable range is
high. Since the information is represented by the timing of the
spikes, arbitrarily small amplitude differences can be encoded.

4) Footprint Scaling: The FFT is scaled by the number of
samples or the bit width of each sample point. The former is
associated with a longer measurement duration while keeping
the sampling time constant or by having a higher sampling rate
at a constant measurement time, whereas the latter influences
the amplitude resolution. Both contribute to the footprint size of
the produced circuit because more or less data must be cached
and processed. Depending on the application, it is also sufficient
to compute the spectral transform only for a few specific
frequencies of the spectrum. The most popular algorithm for
this selective spectral transform is the Goertzel algorithm, that
is more efficient than a block-wise solving of the transform,
if M ≤ 5

6 log2(N). Here, M and N denote the number of
the computed frequency components and the total number
of samples, respectively. The resonating neuron approach
scales in a similar way, and with a longer measurement
duration, larger amplitude differences develop between resonant
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and non-resonant frequencies. Consequently, narrower spaced
frequencies can be differentiated. To exploit that, a larger
number of neurons can be used to analyse the signal while
maintaining the influence of near-resonance frequencies of
the now closer lying natural frequencies. Equivalent to the
higher word length in the digital domain, the use of more
neurons to broaden the detectable amplitude range directly
scales the footprint size of the network. In contrast to the FFT,
the number of analysed frequencies scales linearly with the
number of neurons needed. Thus, if only distinct frequencies
must be evaluated, a significant chip area is saved.

The common silicon size of a 1024-point FFT implementa-
tion using 10 bit samples is 0.7 mm2 for a 40 nm process. This
area includes the necessary memory and logic blocks without
considering ADCs and other arithmetic blocks. Depending
on their natural frequency, the footprint of an RF neuron
is primarily dominated by the size of the capacitors which
determine the neuron’s time constants. The additional logic
only accounts for one third of the occupied area. A rough
estimation of the area of neurons up to 12.5 MHz is 40µm2

per neuron based on the process-dependent capacity density of
3.2 fF/µm2. The resulting area for all 512 neurons is 20 mm2,
again using a 40 nm process.

Obviously, the larger size of the neuronal approach is less
attractive since this directly determines the economic efficiency
of the realisation. Next to more suitable fabrication processes
which can shrink the size of the circuit significantly, some
functional considerations, however relativise the difference. If
the entire processing chain is realised using spiking neurons,
as already mentioned, the ADC and further digital blocks
can be eliminated. Furthermore, due to the linear complexity,
the frequencies to be evaluated can be chosen arbitrarily. For
example, neurons at frequencies of little relevance can be
omitted or the spacing of the neurons natural frequencies can
be adjusted freely.

IV. EVALUATION: RADAR APPLICATION

One application that directly relies on the accuracy of
spectral analysis is the radar. Here, an electromagnetic wave
is transmitted by the radar sensor, reflected by a target and
the response received by the sensor. The waveform transmitted
in frequency modulated continuous wave (FMCW) radar
applications is a sinusoidal signal with linearly increasing
frequency over time. By mixing the received signal with
the currently transmitted signal, a sinusoidal intermediate
frequency (IF) signal with a frequency difference between
the two is generated for analysis. Since the transmitted signal’s
frequency increases linearly, the frequency difference between
the transmitted and received signals is linearly dependent
on the time of flight and consequently the distance of the
reflecting target. The amplitude of the signal is influenced by
the radar reflectance and the distance between the sensor and
target. Therefore, only the frequency of the IF signal provides
unambiguous information of the radial distance. Due to the high
steepness of the frequency ramp, the Doppler-shift introduced
by moving objects is negligible.

In common implementations, spectral analysis is performed
using the FFT. This example demonstrates that it can also
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Fig. 3. Comparison of the activity metric of fixed threshold RF neuron and
FFT for the simulated radar data. The signal is noisy with a signal-to-noise
ratio of 19 dB. The RF neuron is able to detect the same frequencies while
suppressing noise. The differences in their amplitude is caused by the choice
of the firing threshold.

be achieved with the presented neuronal resonators. In an
example FMCW radar with a base frequency of 77 GHz, HF
and IF bandwidths of 1 GHz and 12.5 MHz, respectively, and a
measurement time of 40µs per ramp, a theoretical maximum
range of 76 m and a range resolution of 0.15 m are achievable.
The use of a sampling frequency of 25 MHz results in a 1024-
point FFT. Accordingly, 512 RF neurons with evenly spaced
natural frequencies between 0 and 12.5 MHz are to be analysed.
To generate spikes, the simple fixed threshold and reset method
was used. The result of the analysis of a simulated radar signal
reflected at three targets is shown in Figure 3. On the signal,
phase noise with an SNR of 19 dB is applied.

Depending on the chosen threshold, a clear decomposition
of the radar signal is achieved using resonating neurons.
With a predefined maximum amplitude range, the threshold is
adjustable such that all relevant signals are recognised while
simultaneously suppressing noise. Since the same measurement
times are used, FFT and RF neurons show identical resolutions.
Accordingly, due to the linear dependence between the IF
signal frequency and distance, the range between the sensor
and target is determined with the same accuracy.

To achieve a wider amplitude range for the RF neurons,
adaption of the firing threshold is necessary. Therefore, the
peaks become broader while still centred at the correct
frequency or range bin. Consequently, objects which are close
to each other become more difficult to distinguish. To cope
with that necessitates the addition of more neurons with various
thresholds or the use of a different spike generation rule.

As shown in section III-C, while being very low power, the
silicon area needed to realise the neuronal input and spectral
conversion stage is much larger compared to a classical FFT.
In this particular use case one can consider different options to
reduce the number of analysed frequencies. Depending on the
application, low frequencies correspond to small distances and
can be omitted if they are not relevant. Additionally, at longer
distances, coarser distance measurements might be acceptable,
resulting in less neurons at the corresponding frequencies.

V. CONCLUSION

This study presented using RF neurons to encode an analogue
signal into spikes while performing a spectral transform
simultaneously. The proposed method was compared to the
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TABLE I
COMPARISON THE EFFECTS OF DIFFERENT PROPERTIES ON FFT AND RF NEURONS. N IS THE NUMBER OF SAMPLES, M IS THE NUMBER OF EVALUATED

FREQUENCIES. THE SILICON AREA AND ENERGY CONSUMPTION ESTIMATIONS ARE BASED ON A 1024 POINT FFT AND A 40 NM PROCESS [20], [21].

PROPERTY FFT RF NEURON

sampling Nyquist: fs ≥ 2fmax -
spectral leakage spectral leakage at f 6= n 1

T
leakage of all signal components with 1

∆ω
frequency resolution 1

T
≈ 1

T
(at resonator)

amplitude range sample size depending on spike generation
spectrum dimensionality complex (magnitude and phase) real (only magnitude usable)
reversibility inverse FFT -
complexity NlogN (block solving) or NM (Goertzel) M
silicon area 0.7mm2 20mm2

energy consumption 15 nJ 0.7 nJ

FFT for resolution, trade-offs, and scaling of the silicon
implementation. We demonstrated that data from both methods
were consistent. The encoding of the frequency components into
spike events enabled further analysis of the signal in spiking
neural networks, leveraging the advantages of neuromorphic
hardware. The limitations of the proposed approach are a large
silicon area needed to implement the circuits as well as a low
measurable amplitude range. Future research will address these
to provide an economically more attractive solution.
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