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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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time, continuous digitization has led to the recording of extensive, granular production data. Research claims that using production data in data 
mining methods can lead to managing production complexity effectively. However, manufacturing companies widely do not use such data mining 
methods. In order to support manufacturing companies in utilizing data mining, this paper presents both a literature review on definitions of data 
mining, artificial intelligence and machine learning as well as a categorization of existing approaches of applying data mining to manage 
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1. Introduction 

In the last decade, manufacturing companies have faced an 
increasing demand for customization of products that could 
formerly be produced in mass production. This external trend 
has led to an increased internal production complexity [1]. In 
parallel, a trend of shop floor smartification through a roll-out 
of sensors, which increase communication between machines 
and employees, could be observed - a trend commonly known 
as Industrie 4.0. Hence, using large volumes of the generated 
production data in order to gain knowledge of relationships and 
interdependencies has become a research area of particular 
interest [2]. It is the enrichment of and pre-processing from raw 
to smart data that creates the actual value of Industrie 4.0. By 
usage of artificial intelligence (AI), more specifically machine 
learning (ML) and data mining (DM), data can be transformed 

into knowledge for various applications. As a result, it is 
expected that production managers will be able to master the 
aforementioned arisen production complexity effectively [3]. 

Accompanying challenges can be divided into two classes: 
(1) theoretical and (2) application-related challenges. The first 
challenge arises due to the strong linkage of the three major 
disciplines in this research area AI, ML and DM. So far, the 
relations and distinction between these terms have not been 
defined consistently within literature [4]. However, it is 
necessary to thoroughly understand the different terms in order 
to systematically evaluate concepts and methods for managing 
production complexity. The application-related challenge arises 
with the difficulty of implementing AI, ML and DM in practice 
due to various reasons such as low data integrity in databases 
[5] and difficult modeling of production knowledge [6]. 
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The goals of this paper are therefore (1) to create a common 
understanding for the terms DM, ML, AI and statistics from an 
application point of view (i.e. production), and (2) to support 
production managers to identify relevant use-cases for 
managing production complexity through DM. 

The remainder of the paper is structured as follows. In 
section 2, the terms of AI, ML and DM are historically 
analyzed, defined in an application-oriented manner and 
subsequently separated from one another. Section 3 lays out a 
framework for managing production complexity with 
presenting and classifying existing applications of DM methods 
in manufacturing companies. Section 4 summarizes the results 
and gives an outlook on future research. 

 

2. Definition of AI, ML and DM 

2.1. Historical developments of the terms DM, ML and AI 

The term AI refers to the eponymous field of science, which 
emerged under the influence of computer science, mathematics, 
neuroscience and other scientific disciplines and was shaped in 
by several phases of strong research activity and economic 
interest (cf. Fig. 1). From this, three basic objectives of these 
individual phases can be identified in retrospect [7, 8]. 

 
Objective 1: Develop a toolbox for imitating human 
thinking and actions 

Gödel, Church and Turing, among others, laid the 
foundations of computer science and logic for computer 
technology in the 1930s. Programmable computers became 
available and, subsequently, the idea of automating human 
thinking and behavior arose [9]. In 1950, Turing described a 
theoretical concept, which later became known as the Turing 
Test, defining the branches and tools that would later be 
subsumed under the term AI [10, 11]. In the following years, 
after the goal of the so-called symbolic AI had been set, 
researchers were concerned with the hypothesis that 
intelligence on a human level could be achieved by modelling 
a sufficient amount of knowledge in form of logical 
connections and automated reasoning by computers [12]. These 
expert systems showed limitations of the symbolic AI approach 
that could not live up to expectations [8, 9]. 
 

Objective 2: Develop tools for solving specific problems 
The pitfalls of symbolic AI stated above, led to a paradigm 

shift. Instead of modelling explicit knowledge, in 1987 
Rumelhart and McClelland shifted the focus to the assumption 
that a computer can learn rules by observing connections in 
data, which moved especially the subject area of ML into focus 
[13, 14]. This insight enabled a movement summarized under 
the term connectionism. By linking many simple computing 
units in form of neural networks, a flexible yet robust 
architecture is created, countering the symbolic AI approach 
[12]. In addition to neural networks, other ML methods such as 
kernel methods (e.g. support vector machines), hierarchical and 
ensemble learning methods (e.g. decision trees) also gained 
acceptance [15]. In 2006, more extensive neural networks were 
introduced and deemed particularly useful for central problems 
of AI, especially with regard to vision and language. This field 
is better known as deep learning [4, 15]. 

 
Objective 3: Develop tools for identifying and explaining 
patterns in data  

Since the late 1990s an inherent need for tools interpreting 
the vast and exponentially growing amounts of data stored in 
databases has emerged [9, 16]. Thus, the field of DM has 
developed from the environment of AI and under the influence 
of statistics, employing ML methods and statistical data 
analysis with the aim of addressing this need [9, 17]. In addition 
to gaining knowledge from data through DM, extensive 
end-to-end concepts have gradually developed, starting with 
company and task analysis through data acquisition and DM to 
the provision of software tools [16, 18]. 

2.2. Definitions 

Based on the above introduced three objectives of the data 
science phases, the definitions of AI, ML and DM are derived. 

AI seeks to enable computational agents to act and think 
rationally and intelligently [8, 11, 19]. The scientific goal of AI 
is to understand the principles of knowledge representation that 
enable intelligent behavior. The engineering goal of AI is to 
create computational agents that can solve real world problems 
as or more effectively and efficiently than humans [8, 11, 19]. 
The implementation of these premises has many different 
forms. Thus, AI can be seen as a toolbox whose subdomains 
deliver tools to create intelligent computational agents [8]. 

ML is a subdomain of AI and seeks to enable computational 
agents to gain task-related knowledge and solve task-specific 

Fig. 1. Historical development of AI, ML and DM. 
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problems. ML methods aim to optimize a performance 
criterion. This criterion acts as an indicator of the degree to 
which a given task is solved. ML methods enable 
computational agents to learn from (historical) data. The degree 
of solution of a task is optimized by learning. ML offers tools 
to AI and is thus the basis for further subdomains of AI. ML 
and statistics methods form the core of DM [8, 17, 20].  

DM is another subdomain of AI and can be defined as a 
process that aims to generate knowledge from data and presents 
findings comprehensively to the user. Generating knowledge in 
the context of DM can be translated to the discovering of new 
and non-trivial patterns, relations and trends in data useful to 
the user. DM as a process involves, in essence, the collection 
and selection of data, the pre-processing of data, data analysis 
itself including the visualization of results, interpretation of 
findings, and the application of knowledge. To pre-process and 
analyze data, ML and statistics methods are deployed in DM. 
Findings from DM processes can be distinguished in 
descriptive ones, where knowledge is represented in form of 
models that depict patterns and relations in data and predictive 
ones, where knowledge is represented in a prediction of future 
conditions, trends and relations [16, 21, 22].  

2.3. DM and its similarities and differences to AI, ML and 
statistics 

While the term statistics hardly gets used synonymously for 
the other three terms, it is important to point out the scientific 
and methodical differences. For the comprehensiveness of this 
paper, similarities and differences between all of these four 
terms can be found in the matrix below (cf. Fig. 2) 

As for the terms DM and AI, the difference lays in the 
relation. As DM is a subdomain of AI, it relates to the goals of 
AI but specifies and implements them. DM does not supply 
new methods to AI but employs methods that evolved in ML 
and statistics to extract knowledge from data [8]. 

The difference between ML and DM is that, while for both 
ML methods are used, they are used for different purposes and 
thus with different requirements. In ML, the knowledge is 
stored implicitly and serves the purpose of optimizing 
computational agents’ performances. In DM, ML methods are 
employed so that knowledge is gained from data and is then 
stored and visualized explicitly, making it accessible and 
interpretable to the user [20]. 

Statistics supplies methods directly to DM. Statistics, as a 
subdomain of mathematics, is per definition a formal science. 
DM does not require the same formality, even when employing 
statistics methods. This allows DM to analyze data without 
hypotheses and is driven by results that are to be evaluated by 
experts, rather than precise reproducibility of the same. This 
less formal concept was introduced to the domain of statistics 
as Exploratory Data Analysis (EDA) before DM evolved, and 
has influenced the approach of DM towards statistics. The 
fewer formal requirements also enable DM to use statistical 
methods on data that has not been specifically designed for 
analyses [23]. This feature becomes especially important in the 
industrial context, where data integrity is still a big issue [5]. 

 

2.4. Insights and discussion 

Throughout our research we found that the term DM had the 
least stringent definitions, whereas the definitions for ML were 

Fig. 2. Definitions, similarities and differences of the terms AI, ML, DM and statistics. 
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rather congruent. The field of AI as such is so extensive that 
defining it as a toolbox serves the best structural framework for 
the definition of ML and DM  

Overall, we deem a clear definition of the terms AI, ML and 
DM in the production management community as very 
important. A common understanding enables common progress 
through advancing and optimizing applications. Furthermore, 
the given definitions enable production managers to conduct a 
targeted research for applications based on the need for implicit 
or explicit knowledge.  

3. Application of DM methods for managing production 
complexity 

In order to support the identification of use-cases for the 
management of production complexity using DM, we outline 
relevant terms of production complexity and categorize 
existing approaches into six DM application categories (cf. 
Table 1). Thus, this paper enables the identification of relevant 
DM approaches regarding production complexity. 

3.1. Production complexity 

Production complexity can be distinguished in external and 
internal complexity. External complexity in production is 
created by increasing market and customer demands, as well as 
legal requirements. External complexity is reflected in a variety 
of products that are produced to meet market and customer 
demands. Internal complexity is caused by the implementation 
of product variety in an internal value chain.  

To manage external complexity, product varieties have to be 
evaluated and, if possible, reduced. To reduce internal 
complexity, value chain processes must be optimized with 
regard to efficiency. [25] 

3.2. Search and classification methodology 

To find applications of DM suitable to support managing 
production complexity, we examined current classifications of 
DM applications in production or manufacturing literature. 
None of the eight publications found [3, 26-32] presented 
categories specific to production complexity. While explicit 
references of production complexity were missing, some of the 
presented categories related to production planning and control 
and decision support contained applications of interest to the 
topic of production complexity.  

We then examined the applications in those categories and 
evaluated their contribution towards managing external or 
internal complexity. Additionally, we conducted a 
keyword-based research for applications of DM methods in 
managing production complexity outside the mentioned 
publications. Finally, we clustered the suitable applications 
found in 42 publications into six categories separately for 
internal or external production complexity. These categories 
have been developed at the interface of already existing DM 
applications in production management and the assumption 
that managing production complexity requires efficient support 
regarding product-based as well as process-based decisions in 
multi-variant value streams [33]. 

3.3. Applications  

Our research showed that not all application categories 
were represented equally. ‘Evaluating and preventing new 
variants’ was the least represented category, with only two 
publications out of the 42 we found suitable for the topic of 
managing production complexity with DM application 
matching the category. ‘Choosing dispatching rules and 
planning sequencing’ as well as ‘Process planning for new 
products/variants’ were the two categories with the most 
findings (>10 publications each). 

Table 1 represents the categories of DM applications 
suitable to manage production complexity that we identified in 
the applications and exemplary publications. To match the 
scope of this paper, we present the 16 most relevant and within 
each category diverse applications from publications. 

 Table 1. DM application categories and exemplary publications. 

Evaluating and preventing new variants: Applications in 
this category aim to assess the costs and benefits of creating 
new variants to offer decision support.  

Neis [34] presents an approach employing clustering 
methods to assess the costs of adopting new variants based off 
reference products. Products are initially clustered into product 
families and reference products are assigned based on the 
shortest distance to all other products within the cluster. 
Factoring in the distance between a new variant and the 
reference product, a cost function is calculated [34]. 

 
Modulization and standardization: Applications in this 

category aim to reduce product variety by identifying common 
parts and possible modules.  

Agard and Kusiak [35] seek to identify subassemblies as 
modules using association analysis. Parts in customer orders 
are analyzed for common appearance in orders. Item sets 
(combinations of parts) that exceed the confidence levels are 
then examined regarding their feasibility as module [35].  

Instead of modulization, Romanowski and Nagi [36] 
propose an approach for standardization based on the bill of 
material (BOM) using clustering to reduce product variety. 

Complexity DM application category  Exemplary publications 

External 

 

Evaluating and preventing 
new variants 

Neis [34] 

Modulization and 
standardization 

Agard, Kusiak [35], 
Romanowski, Nagi [36] 

Internal Process planning for new 
products/variants 

Hochdörffer et al. [37], 
Denkena et al. [38], 
Wallis et al. [39] 

Choosing dispatching rules 
and planning sequencing 

Bohnen et al. [40], 
Koonce, Tsai [41], 
Liu, Dong [42] 

Predicting and optimizing 
lead and cycle times 

Cheng et al. [43],  
Gröger et al. [30], 
Backus et al. [44] 

Value stream complexity Rozinat et al. [46], 
Park et al. [47], 
Lee et al. [48], 
Knoll et al. [49] 
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After products have been clustered into product families, the 
parts used for the products within a product family are clustered 
based on textual DM. The emerging cluster dendrogram is 
examined by a product expert for the possibility of standardized 
parts within a part cluster [36].  

 
Process planning for new products/variants: In this 

category, applications aim to support planning processes for 
products and variants based on the existing portfolio. 

Hochdörffer et al. [37] suggest using clustering methods to 
determine products requiring similar manufacturing 
technologies and similar capacity on these machines. The 
clusters can be used to determine processes for new variants or 
to optimize production networks [37].  

Similarly, Denkena et al. [38] suggest clustering products 
based on processes but extend the approach by using k-nearest 
neighbor classification to classify new products/variants. Based 
on this classification processes from the nearest neighboring 
product/variant can be adopted or used as planning base [38]. 

Wallis et al. [39] propose using clustering and classification 
methods as well, but deploy them differently. Products are 
clustered first into part-based clusters and then, separately, into 
process-based clusters. Using the naïve Bayes function, 
process-based clusters are mapped onto part-based clusters. 
This allows more efficient assembly planning and exposes 
relations between variants and processes [39]. 
 

Choosing dispatching rules and planning sequencing: 
Applications in this category aim to support choosing 
dispatching rules based on the existing conditions and seek to 
make sequencing more efficient.  

Bohnen et al. [40] present an approach for production 
levelling using clustering methods. Products are clustered 
based on their manufacturing requirements. Time blocks for 
production are then dedicated to the product families, which are 
sequenced based on the needed set-up change. This allows to 
efficiently minimize set-up costs and time [40]. 

Seeking to gain information about dispatching rules and 
factors influencing lead times Koonce and Tsai [41] propose 
employing decision trees. Initially, using evolutionary 
algorithms, for a realistic scenario dispatching rules are 
compared based on lead times. A decision tree is used to learn 
factors of different dispatching rules influencing lead time [41].  

Following the goal of gaining information about 
dispatching rules and influencing factors, Liu and Dong [42] 
suggest an approach similar to Koonce and Tsai but suggest 
using artificial neural networks (ANN) that analyze and 
determine lead times of different dispatching rules [42].  
 

Predicting and optimizing lead and cycle times: 
Applications in this category seek to help understand and assess 
factors that influence lead and cycle times.  

Cheng et al. [43] propose an approach using decision trees 
to examine the influence of production staff on lead times and 
predict lead times based on staff set-up. Additionally, 
manufacturing tasks can be assigned based on individual 
performance. Correlations between staff set-up and lead times 
are analyzed via monitored manufacturing steps. [43].  

A more general approach is presented by Gröger et al. [30], 
who suggest a combined approach of structured query language 
(SQL) and DM to quickly identify influence factors. Influence 
factors on key performance indicators (KPI), such as lead time, 
can be identified using data stored in structured data bases and 
accessed through SQL-queries. The data can then be directly 
analyzed without data preparation using classification methods 
that identify factors influencing the classifying KPI [30]. 

Backus et al. [44] propose using clustering methods and 
regression trees to predict cycle times for lots based on 
historical data. Previous lots are clustered based on common 
bottlenecks in the production system. Regression trees analysis 
is then used to determine factors influencing cycle time within 
common lots and thus enabling prediction [44].  
 

Value stream complexity: 
This category presents applications analyzing complexity 

from a process-oriented value stream perspective. Process 
mining (PM) has evolved as a DM method for discovering, 
analyzing and improving processes. PM extracts process 
models based on event data created during operations [45].  

Rozinat et al. [46] applied PM to reduce the complexity of 
a wafer scanner testing process. Based on a discovery analysis, 
feedback loops and idle times were identified [46]. Park et al. 
[47] use PM to analyze a production process within the 
shipbuilding industry. When combining PM with data 
envelopment analysis (DEA), a variety of block types could be 
analyzed and differences between planned and actual 
operations were identified [47].  

Within logistics we also identified PM applications across 
different industries (e.g. shipbuilding [48] and automotive 
industry [49]). The PM methods (mainly discovery [48] and 
conformance checking [49]) were combined with DM methods 
(e.g. clustering [48]) to improve processes. Exemplarily, Lee et 
al. [48] use PM and clustering to discover process models, 
iterations and bottleneck activities [48]. Contrastingly, Knoll et 
al. [49] address product and processes complexity using 
multidimensional PM to identify waste. 

PM supports the value stream perspective both in 
production and logistics. Therefore, PM should be seen as a key 
DM technique for analyzing and reducing value stream 
complexity. Further research directions should address the 
integration of established lean principles for PM. 

4.  Findings and conclusion 

At the interface of rising production complexity due to 
shifting market demands and vast amounts of production data, 
DM can be a valid tool to support managing complexity.  

Most applications of DM in production management have so 
far been related to quality management. There are very few 
applications of DM directly related to production complexity. 
However, other applications of DM in other fields of production 
management serve the purpose of managing production 
complexity very well. We have presented some of these 
applications and plan to extend the categories in future work to 
present a holistic framework of DM, as well as other ML and 
AI applications able to cover all relevant aspects of managing 
production complexity.  
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In order to verify the outlined framework, we plan to 
evaluate the methods by employing real process data. This is 
especially significant as many of the presented approaches have 
only been implemented using synthetic data.  

A holistic framework and its validation in practice are thus 
the logical next steps.  
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