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Abstract
Purpose: Soft tissue sarcomas (STS) represent a heterogeneous group of diseases, and selection of
individualized treatments remains a challenge. The goal of this study was to determine whether
radiomic features extracted from magnetic resonance (MR) images are independently associated
with overall survival (OS) in STS.
Methods and Materials: This study analyzed 2 independent cohorts of adult patients with stage
II-III STS treated at center 1 (N Z 165) and center 2 (N Z 61). Thirty radiomic features were
extracted from pretreatment T1-weighted contrast-enhanced MR images. Prognostic models for OS
were derived on the center 1 cohort and validated on the center 2 cohort. Clinical-only (C),
radiomics-only (R), and clinical and radiomics (CþR) penalized Cox models were constructed.
Model performance was assessed using Harrell’s concordance index.
Results: In the R model, tumor volume (hazard ratio [HR], 1.5) and 4 texture features (HR,
1.1-1.5) were selected. In the CþR model, both age (HR, 1.4) and grade (HR, 1.7) were selected
along with 5 radiomic features. The adjusted c-indices of the 3 models ranged from 0.68 (C) to 0.74
(CþR) in the derivation cohort and 0.68 (R) to 0.78 (CþR) in the validation cohort. The radiomic
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features were independently associated with OS in the validation cohort after accounting for age
and grade (HR, 2.4; P Z .009).
Conclusions: This study found that radiomic features extracted from MR images are independently
associated with OS when accounting for age and tumor grade. The overall predictive performance
of 3-year OS using a model based on clinical and radiomic features was replicated in an
independent cohort. Optimal models using clinical and radiomic features could improve
personalized selection of therapy in patients with STS.
� 2019 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Soft tissue sarcomas (STS) exhibit a wide range of
behavior, from indolent tumors with long patient survival
to highly aggressive disease that can be rapidly fatal.
Surgical resection is the cornerstone of treatment for
localized disease, and the addition of radiation therapy
(RT) and chemotherapy have allowed for limb-sparing
surgery and improved local and distant control.1,2 Clinical
and pathologic factors, such as tumor size and grade, help
guide selection of optimal adjuvant therapies, but this
remains a critical challenge for individual patients.

Prior studies of STS reported promise for quantitative
imaging biomarkers. These have mainly analyzed
positron emission tomography/computed tomography
(PET/CT) and found that quantitative features3-5 and
structural features (eg, tumor boundary heterogeneity)4,6

were associated with patient outcomes. More recently,
radiomics has been used to study quantitative imaging
biomarkers in STS. Radiomics refers to the process of
extracting multiple quantitative imaging biomarkers (ie,
features) to convert medical images into minable data,
which are then used for outcome modeling and clinical
decision support.7 The quantitative imaging biomarkers
can capture complex image characteristics, such as image
texture, which refers to the structural relationship of
voxels within the image. Initial radiomics studies of STS
have found that radiomics features may be related to the
risk of developing distant metastases8 and overall survival
(OS)6 in STS.

Although most prior work has studied PET/CT,
magnetic resonance imaging (MRI) is the standard initial
imaging option for soft tissue tumors, and thus a radiomic
model based on MRI would be broadly applicable for
sarcoma patients. A previous study evaluated the associ-
ation among radiomic features extracted from MRI, PET/
CT, and fused MRIePET/CT images to predict lung
metastases.8 They found that MRI textures alone are
generally not useful compared with fused PET/CT-MRI
images, which offered the best prognostic ability. How-
ever, that study is limited by a small cohort and lack of
validation data set, thus the utility of MRI-based radiomic
features is not thoroughly investigated. The purpose of
this study is to evaluate the hypothesis that quantitative
imaging features extracted from pretherapy T1-weighted
MR images would be predictive of overall survival
(OS) in patients with STS and to validate the model on an
external international data set.

Methods and Materials

Data collection

The institutional review board of each institution
approved this study, which retrospectively analyzed pre-
treatment contrast-enhanced T1-weighted MRIs from 2
independent cohorts of patients with biopsy-proven STS.
Patients were treated with curative intent with surgery,
radiation therapy, or chemotherapy based on multidisci-
plinary review. Patients younger than 18 years were
excluded. Patients with Kaposi or primary bone sarcomas
were also excluded because of the unique clinical contexts
or treatment pathways associated with these diseases. A
total of 199 patients were treated at center 1 from 2000 to
2017 and 78 patients were treated at center 2 from 2007 to
2015. This study focused on American Joint Committee
on Cancer (AJCC) version 7 stage II-III patients only,
which encompasses nonmetastatic patients with large (ie,
>5 cm) or higher grade (ie, >1) tumors. AJCC stage II-III
patients were specifically studied because multimodality
therapy is often used in these patients and selection of
ideal therapy in individual patients in this group is chal-
lenging. Therefore patients with stage I (n Z 27 in center
1, n Z 2 in center 2) and IV (n Z 7 in center 1, n Z 5 in
center 2) STS were excluded (Fig. 1). Patients with image
artifacts as a result of multiple MRI acquisitions within
the tumor area were also excluded (n Z 9 in center 2).
The final cohorts were 165 and 61 patients, respectively.

Patient and tumor characteristics were collected from
the electronic medical record. Maximum tumor extent
was extracted from radiology reports. Pathologic charac-
teristics, including French Fédération Nationale des
Centres de Lutte Contre le Cancer (FNCLCC) grade and
margin status, were extracted from reports issued by an
STS pathologist at each institution. Histologic type was
reclassified into one of 11 groups based on histologic

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Excluded:
27 stage I
6 stage IV

N=198
Assessed for 

clinical eligibility N=76

N=165
Assessed for 
image quality N=70

N=165
Final cohort included 

in analysis N=61

Excluded:
2 stage I

4 stage IV

None excluded
Excluded:

9 image artifacts

Derivation Validation

Fig. 1. CONSORT diagram for the present study.
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differentiation and patterns of failure, as described in prior
work by Taylor and colleagues.9

MRI data for the center 1 cohort were acquired from
the institutional picture archiving and communication
system. MRIs consisted of contrast-enhanced, T1-
weighted, 2-dimensional (2D) or 3-dimensional (3D) ac-
quisitions completed using 0.7T to 3T General Electric
Healthcare, Siemens Healthineers, Philips Healthcare, and
Hitachi Medical Systems MRI scanners. Image matrix
sizes ranged from 128 to 704, 123 to 343, and 18 to 160
and resolutions ranged from 0.31 to 1.88, 0.62 to 2.40,
and 2 to 11 mm along frequency, phase, and slice
directions, respectively. Five image acquisitions were
completed using gradient echo techniques with flip angles
ranging from 10� to 30� and repetition time (TR) and echo
time (TE) ranging from 3.98 to 7.70 and 1.96 to 3.36 ms,
respectively. The remaining scans employed spin echo or
inversion recoveryebased sequences with flip angles
ranging from 80� to 180� and TR and TE ranging from
400 to 5500 and 7.5 to 51 ms, respectively. Full DICOM
(Digital Imaging and Communications in Medicine) in-
formation was not available for the center 2 cohort
because some DICOM tags were removed during ano-
nymization. However, parameters were generally similar
to the derivation cohort. MR images were acquired using
1.5T to 3T General Electric Healthcare, Siemens
Healthineers, and Philips Healthcare MRI scanners with
TR and TE ranging from 102 to 1311 and 4.8 to 39 ms,
respectively. Reconstructed image matrix sizes (acquisi-
tion sizes may be smaller) ranged from 176 to 704, 176 to
704, and 7 to 82 and resolutions ranged from 0.28 to 1.41,
0.28 to 1.41, and 3 to 7.27 mm along frequency, phase,
and slice directions, respectively.

Tumor delineation and image processing

A radiation oncologist (M.S., M.M., T.C., or J.P.) or
radiologist (K.B.) evaluated each image for quality and
manually segmented the gross tumor, which was defined
as all enhancing tumor on contrast-enhanced T1 MRI.
This was completed using MIM software (version 6.6,
MIM Software Inc, Cleveland, OH) for the center 1
cohort and iPlan RT (version 4.1.2, Brainlab, Munich,
Germany) for the center 2 cohort. Images were discretized
into 64 gray levels by taking the minimum and maximum
value for each image and using equal bin widths before
feature extraction. The images were processed in their
native resolution. The PORTS software package (https://
nciphub.org/groups/ports/overview, https://www.mathwo
rks.com/matlabcentral/fileexchange/55587-ports-3d-image-
texture-metric-calculation-package10) was used to extract
30 features derived from 5 categories: tumor volume,
intensity histograms, gray tone spatial dependence
matrices,11 neighborhood gray tone difference matrices
(NGTDM),12 and gray level zone size matrices
(GLZSM)13 (Table E1; available online at https://doi.
org/10.1016/j.adro.2019.02.003). All features were
calculated in 3 dimensions.

Exploratory and univariate analyses

Initial model building was performed using the center
1 (derivation) cohort. OS was defined as the time from
initial pathologic diagnosis to death. Cox proportional
hazard models were used for exploring univariate asso-
ciations between OS and each clinical and imaging
feature. Before inclusion in the Cox model, right skewed
variables were transformed (log or cube-root) to reduce
skewness. Hazard ratios (HRs) for continuous variables
were scaled by the standard deviation so they could be
interpreted as changes per 1 standard deviation increase in
the corresponding variable. Follow-up was truncated at
1096 days (3 years) for all data analyses to reduce vio-
lations of the proportion hazard assumption identified
during the univariate analysis.14 The univariate analysis
results were not used for feature selection or derivation of
the multivariate model.

Feature selection and model derivation

Collinearity among the radiomic texture features was
assessed using the R2 statistic. To reduce collinearity
among the texture features before model training, a
backward elimination procedure was applied. First, the
feature with the largest R2 value was eliminated and the
R2 values for the remaining features were recalculated.
These steps were then repeated until all remaining fea-
tures had a corresponding R2 <50%.

After feature selection, 3 primary models for predicting
OS were trained: a clinical-only model (model C), a
radiomics-only model (model R), and a combined clinical
and radiomics model (model CþR). C contained only age
and grade as prespecified predictors. R contained tumor
volume and the collinearity-filtered texture features.
C þ R contained all predictors included in C and R.
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Table 1 Patient characteristics

Variable Site* Py

Center 1

(N Z 165)

Center 2

(N Z 61)

Age 53 (19-88) 57 (21-88) .20
Sex .65
Male 96 (58.2) 33 (54.1)
Female 69 (41.8) 28 (45.9)

Location .62
Extremity 122 (73.9) 43 (70.5)
Other 43 (26.1) 18 (29.5)

Pathology size .55
<5 cm 28 (17.0) 8 (13.1)
>5 cm 137 (83.0) 53 (86.9)

Gradez .73
1 4 (2.4) 0 (0.0)
2 65 (39.4) 25 (41.7)
3 96 (58.2) 35 (58.3)

Marginsz .56
Negative 110 (70.5) 32 (76.2)
Positive 46 (29.5) 10 (23.8)

Histologic type <.001
Pleomorphic sarcoma 80 (48.5) 25 (41.0)
Adipocytic 21 (12.7) 17 (27.9)
Uncertain
differentiation

17 (10.3) 7 (11.5)

Smooth muscle 17 (10.3) 5 (8.2)
Fibro-/myofibroblastic 11 (6.7) 0 (0.0)
Nerve sheath 9 (5.5) 0 (0.0)
Skeletal muscle 5 (3.0) 0 (0.0)
Chondro-osseous 3 (1.8) 0 (0.0)
Vascular 2 (1.2) 0 (0.0)
Fibrohistiocytic 0 (0.0) 7 (11.5)

Chemotherapy <.001
Yes 90 (54.5) 9 (14.8)
No 75 (45.5) 52 (85.2)

Radiation therapy dose
(total, Gy)x

50 (18-74) 50 (28-70) .32

Tumor volume (cm3) 153 (1-3694) 147 (4-918) .34

* Values are n (%) or median (range).
y Fisher’s exact test (categorical variables) or the Wilcoxon rank-

sum test (continuous variables).
z Grade was missing in 1 center 2 case; margins were missing in

9 center 1 cases and 20 center 2 cases.
x In the derivation cohort, 9 patients in center 1 were not

included in the dose calculations. Six of these patients did not receive
radiation therapy, and the 3 other patients received radiation therapy,
but detailed dose information was not available.

416 M.B. Spraker et al Advances in Radiation Oncology: AprileJune 2019
Penalized Cox regression fit using the LASSO (least ab-
solute shrinkage and selection operator) algorithm was
used for all 3 models.15 The LASSO-penalty parameter
was selected to minimize the partial likelihood deviance
computed using leave-one-out cross-validation. The
application of the LASSO penalty resulted in a second
round of feature selection based on the association with
OS rather than collinearity. Several alternative feature
selection and multivariate modeling approaches were also
considered during model development (Table E1;
available online at https://doi.org/10.1016/j.adro.2019.02.
003), but none provided a clear performance benefit
compared with the primary approach.

Internal and external validation of model
performance

For each model, the selected features were combined
into a prognostic index (PI). Each PI was computed as a
linear combination of the selected features, weighted by
their corresponding regression coefficients, and centered so
that median (PI)Z 0 in the derivation data set.16 PI values
<0 indicate the individual has a lower risk than the median
patient, PI values>0 indicate the individual has higher risk
than the median patient, and exp(PI) is the overall hazard
ratio for the individual versus the median patient.

Overall model performance for discriminating survival
was assessed using Harrell’s concordance index
(c-index).17 For internal testing and validation within the
derivation cohort, the 0.632 bootstrap was used.17 All of
the feature selection and model training steps described in
the previous section were included in the 0.632 bootstrap
routine. External validation of the models was performed
using the center 2 (validation) cohort with fixed weights
for the PIs based on the derivation cohort.

Model performance was further summarized in both
cohorts using Kaplan-Meier estimates of OS in different
risk groups and receiver operating characteristic curves
for death within 3 years, where the latter were calculated
using an inverse probability weighted estimator to
account for censoring.18 Throughout, the nonparametric
bootstrap and percentile methods were used to calculate
confidence intervals (CIs) and to compare the c-indices
between models.19 Independent associations between
components of the PI and OS were tested in the validation
cohort using Cox models.20 All statistical calculations
were conducted with the statistical computing language R
(version 3.1.1; R Foundation for Statistical Computing,
Vienna, Austria). Two-tailed tests were used with statis-
tical significance defined as P < .05.

Results

Patient characteristics for the derivation (center 1) and
validation (center 2) cohorts are shown in Table 1. The 2
cohorts were similar except that the derivation cohort had
more patients who received chemotherapy (54.5% vs
14.8%) and had a wider range of histologic types than the
validation cohort. Almost all patients in the deviation and
validation cohorts received external beam radiation ther-
apy (96.3% vs 100%) to similar doses (Table 1). No
patients were treated with brachytherapy. The median
follow-up of both cohorts was similar (median, 3.1 years
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Table 2 Primary prognostic models for overall survival based on the derivation data set

Hazard ratio*

Clinical variables
Model C:
Age þ grade

Model R:
Radiomics only

Model CþR:
Age þ grade þ radiomics

Age 1.6 1.4
Grade 3 (vs grades 1 and 2) 2.1 1.7
Radiomics variables
Tumor volumey 1.5 1.5
Histogram: Skewness 1.2 -
Histogram: Kurtosisz 1.1 1.2
NGTDM: Complexity - -
GLZSM: Small zone size emphasis - -
GLZSM: Small zone/low gray emphasisy 1.2 1.2
GLZSM: Zone size nonuniformityy 1.5 1.3

Abbreviations: C Z clinical only; CþR Z clinical þ radiomics; GLZSM Z gray level zone size matrices; NGTDM Z neighborhood gray tone
difference matrices; R Z radiomics only.

* Hazard ratio (HR) is per 1 SD increase for continuous variables; HR > 1 indicates higher risk of death; - indicates the variable was “deselected”
by the LASSO.

y Variable was log transformed before entry into the model to reduce right skewness.
z Variable was cube rooted before entry into the model to reduce right skewness.
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vs 3.0 years; P Z .97), as were rates of OS (log-rank test
P Z .80), with a total of 56 deaths (33.9%) and 21 deaths
(34.4%) reported in the derivation and validation cohorts,
respectively.

The median follow-up of both cohorts was similar (me-
dian, 3.1 years vs 3.0 years; P Z .97), as were rates of OS
(log-rank testPZ .80),with a total of 56 deaths (33.9%) and
21 deaths (34.4%) reported in the derivation and validation
cohorts, respectively. When follow-up was truncated at
3 years, therewere 37 deaths (22.4%) and 16 deaths (26.2%)
reported in the derivation and validation cohorts, respec-
tively. Overall there were 83 (50.3%) and 28 (45.9%)
instances of tumor progression in the 2 cohorts (median
progression-free survival, 3.2 vs 2.5 years; P Z .99). Pro-
gression was locoregional in 28 of these patients (33.7%)
and 5 patients (17.9%), respectively, and distant in 55
(66.3%) and 23 (82.1%) (PZ .15).

Univariate analysis of OS in the derivation cohort is
summarized in Table E2 (available online at https://doi.
org/10.1016/j.adro.2019.02.003). Among clinical vari-
ables, only age (HR, 1.7; P Z .003) and grade (HR, 2.4
for grade 3 vs grades 1-2; P Z .022) were significantly
associated with OS. Among radiomic variables, tumor
volume (HR, 2.3; P < .001) and 25 texture features were
significantly associated with OS. After applying the iter-
ative collinearity filter, 6 texture features met the collin-
earity criterion of R2 < 50% for model inclusion:
skewness (R2 Z 40.0%; univariate HR, 1.5; P Z .015),
kurtosis (R2 Z 35.7%; HR, 1.3; P Z .083), complexity
(R2 Z 29.4%; HR, 0.9; P Z .53), small zone size
emphasis (R2 Z 45.4%; HR, 0.7; P Z .034), small zone
or low gray emphasis (SZLGE, R2 Z 43.9%; HR, 1.1;
P Z .58), and zone size nonuniformity (ZSNU,
R2 Z 44.9%; HR, 1.9; P < .001) (Tables E2 and E3;
available online at https://doi.org/10.1016/j.adro.2019.02.
003). Texture features generally had low to moderate
associations with tumor volume, with absolute Spear-
man’s correlation coefficients ranging from 0.09-0.65.

The C, R, and CþR models are shown in Table 2. In
the R model, the LASSO selected tumor volume (HR,
1.5) and 4 of 6 texture features (skewness, kurtosis,
SZLGE, and ZSNU; HR, 1.1-1.5). In the CþR model,
both age (HR, 1.4) and grade (HR, 1.7) were selected
along with tumor volume (HR, 1.5) and 3 texture features
(kurtosis, SZLGE, and ZSNU; HR, 1.2-1.5). Heat maps of
the texture features selected for the CþR model for a
patient who is high risk (patient 1) and low risk (patient 2)
for death at 3 years are shown in Figure 2. During internal
validation, bootstrap 0.632 c-indices were statistically
significant for all models (P < .001) and ranged from 0.68
(C model) to 0.74 (CþR model) in the derivation cohort.

In the external validation cohort, the radiomics
component of the CþR PI was independently associated
with OS in the validation cohort after accounting for the
clinical component (HR, 2.4; P Z .009). In addition, the
C model (c-index, 0.70; 95% CI, 0.57-0.82; P < .001)
and R model (c-index, 0.6; 95% CI, 0.55-0.80; P < .001)
had overall performances as measured by the c-index that
were similar to the initial estimates from the derivation
cohort, whereas the validation CþR model performed
slightly better than the derivation model with a c-index of
0.78 (95% CI, 0.66-0.88; P < .001). C-indices in the
validation cohort were similar whether follow-up was
truncated at 3 years or full follow-up was used (Table E4;
available online at https://doi.org/10.1016/j.adro.2019.02.
003). When stratified using the median risk threshold
(PIZ 0), sensitivity was 82% and specificity was 62% for
OS at 3 years in the derivation cohort. Sensitivity and
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Fig. 3. Receiver operating characteristic curves of the final
clinical þ radiomics models in the derivation cohort (dashed
curve) and the validation cohort (solid curve). The points indi-
cate the performance of the median risk threshold based on
the derivation cohort. Abbreviations: SCCA Z Seattle Cancer
Care Alliance; TUM Z Technical University of Munich;
UW Z University of Washington.

Patient 1 Patient 2

Histogram
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6.0
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200

0
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Patient 2

Fig. 2. Single-slice contrast-enhanced T1-weighted MRI and
texture feature heat maps are shown for patients identified as
high risk (patient 1) and low risk (patient 2) for death at 3 years
by the clinical þ radiomics model. Patient 1 (high risk) is a
45 year old with AJCC stage III pleomorphic sarcoma
(FNCLCC grade 3) of the lower extremity treated with
sequential preoperative chemotherapy and radiation therapy to
50 Gy followed by surgical resection (negative margins). This
patient survived 18.5 months. Patient 2 (low-risk) is a 44 year
old with AJCC stage III myxoid/round cell liposarcoma
(FNCLCC grade 3) of the lower extremity treated with neo-
adjuvant chemotherapy followed by surgical resection (positive
margins) followed by adjuvant radiation therapy to 66 Gy. This
patient was still alive after 88.5 months of follow-up. Abbrevi-
ations: AJCC Z American Joint Committee on Cancer; CE
T1W Z contrast-enhanced T1-weighted; FNCLCC Z Fédéra-
tion Nationale des Centres de Lutte Contre le Cancer;
GLZSM Z gray level zone size matrix; SZLGE Z small zone/
large gray emphasis; ZSNU Z zone size nonuniformity.
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specificity in the validation cohort were similar (79%
[95% CI, 58%-100%] and 68% [95% CI, 50%-84%]), as
were the receiver operating characteristic curves (Fig. 3).
Kaplan-Meier curves summarizing OS in the higher and
lower risk subgroups from all 3 models for both cohorts
are shown in Figure 4.

To investigate the contribution of tumor volume versus
texture features as a driver of performance in the radiomic
model, models similar to the primary R and CþR models
but using tumor volume only (RA and CþRA) or texture
features only (RB and CþRB) were constructed using the
derivation cohort (Table E4; available online at https://
doi.org/10.1016/j.adro.2019.02.003). In the validation
cohort, tumor volume and texture features appeared to
have similar overall impact on discrimination of OS, with
RA and RB (c-index, 0.68 vs 0.65) and CþRA and CþRB

(c-index, 0.75 vs 0.75) having similar c-indices in the
validation cohort. From Cox analysis, both the tumor
volume component of the CþRA PI (HR, 2.2; P Z .033)
and the texture features component of the CþRB PI (HR,
2.2; P Z .017) significantly improved prediction of OS
over the clinical component alone. However, the tumor
volume component of the CþR PI (HR, 1.4; P Z .38) did
not significantly improve prediction of OS over the
clinical and texture feature components alone, nor did the
texture feature component of the CþR PI (HR, 1.5;
P Z .11) significantly improve prediction of OS over the
clinical and volume components alone.
Discussion

This is the first externally validated study to evaluate
whether radiomic features extracted from pretherapy T1
MRIs are predictive of OS in a cohort of more than 200
patients with STS. There were 2 important findings. First,
radiomic features alone were together significantly
predictive of OS, had similar prognostic performance as a
model based on age and grade alone, and remained

https://doi.org/10.1016/j.adro.2019.02.003
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Fig. 4. Kaplan-Meier estimates of overall survival under each model in the derivation (top row) and validation cohorts (bottom row).
For each model the cohort was risk stratified into lower and higher risk groups using the median risk value in the derivation cohort.
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independently associated with OS after accounting for age
and grade. Second, a combined model based on both clin-
ical and radiomic features appeared to perform the best and
was similarly predictive of OS in independent derivation
and validation cohorts. Prognostic performancewas similar
to other radiomic studies in non-small cell lung cancer,21-23

glioblastoma,24 and hepatocellular carcinoma.25

Optimal selection of therapy for STS remains
challenging, and attempts to individualize treatment based
on clinical attributes alone have remained unsuccessful. For
instance, a recent randomized trial by Gronchi et al26

attempted to individualize chemotherapy regimens based
on a clinical feature, tumor histotype, with the goal of
sparing toxicity associated with standard, anthracycline-
based chemotherapy. Unfortunately, counter to the goal
of the trial, histotype-tailored chemotherapywas associated
with worse progression-free survival compared with stan-
dard chemotherapy.26 Our study found that radiomic fea-
tures were significantly predictive of OS in STS
independent of known clinical features (eg, age and grade)
and appeared to improve prediction of OS when combined
with clinical features comparedwith clinical features alone.
Therefore MRI-based radiomic features represent a prom-
ising and readily available biomarker that may be useful in
selecting therapy for patients with STS, such as identifying
those most likely to benefit from chemotherapy or radiation
therapy dose intensification.

MRI-based radiomic features are attractive in STS
because MRI is the standard imaging modality to evaluate
soft tissue tumors and they are acquired on almost all patients.
Yet most prior work evaluating the relationship between
imaging variables, tumor features, and patient outcomes in
STS is in PET/CT, whichmay not be clinically available. For
instance, increasingmaximumstandard uptakevaluewithin a
tumor PET image is associated with higher tumor grade,27

worse OS,28,29 and worse progression-free survival3 in pa-
tientswith STS.More complex PET features related to spatial
heterogeneity and texture6 are associated with OS. One prior
study completed a radiomic analysis of the association be-
tween radiomic featuresextracted fromPET/CTandMRIand
the development of lungmetastases and achieved the greatest
prediction by extracting texture features from fused FDG
(fluorodeoxyglucose)ePET/MRI scans.8Althoughour study
is not directly comparable because of the use of different
imaging modalities, modeling endpoints, and the use of
external versus internal validation, some similarities emerge.
For instance, 3 of the 4 variables in the model using fused
MRI and PET/CT scans were GLZSM (zone-size) features,
which were similarly selected in our models. Similarly, CT-
based GLZSM variables have been found to be signifi-
cantly associated with OS in head and neck30 and non-small
cell lung cancers (NSCLCs).21

This study also found that tumor volume and texture
features were each separately associated with OS after
accounting for age and grade in the validation cohort.
However, the combination of volume and texture features
did not produce a significant improvement in prediction
over models with only one or the other. It has been
suggested that the high levels of correlation between
tumor volume and texture features can limit interpretation



420 M.B. Spraker et al Advances in Radiation Oncology: AprileJune 2019
of radiomic studies.31,32 However, this primarily has been
a concern in PET, which is characterized by fewer voxels
analyzed because of lower image resolution. The radiomic
features modeled in this study had only low to moderate
correlation with each other, suggesting that correlation
between tumor volume and texture features is not a
confounding factor for T1 MRI in sarcoma. It should be
noted that although the texture features investigated here
are commonly applied to medical imaging, including
other empirical feature classes or representation learning
methods (eg, convolutional neural networks) might
improve model performance.

This study had several limitations related to its retro-
spective nature. First, this study retrospectively examined
images from STS patients treated at institutions using
different techniques. Specifically, there was a significantly
higher proportion of patients treated with chemotherapy at
center 1 than at center 2. However, multiple randomized
trials have found that chemotherapy use has marginal effi-
cacy with respect to OS in unselected patients in STS,1 and
therefore these differences are not expected to substantially
affect the results of the present study. This is consistent with
the finding of similar death rates in the 2 cohorts despite
different chemotherapy use rates. Second, the 2 cohorts had
different proportions of STS histotypes, and all histotypes
were analyzed together because relatively small numbers of
cases in most individual histotypes precluded a reliable
subgroup analysis. An analysis of model performance in
pleomorphic sarcomas, our largest subgroup, is currently
underway. Third, the tumors were manually delineated by a
team of practicing radiation oncologists or a radiologist.
Although prior work has found substantial agreement be-
tween radiation oncologists delineating STS gross tumor
volumes,33 interobserver variability could affect radiomic
features. Investigations evaluating the impact of interob-
server variability in tumor volume delineation will be an
important direction for future study. Finally, regarding im-
aging protocols, MRIs were collected on different scanners
using different protocols and in different years. Priorwork in
PET and CT has found that radiomics feature values can
vary significantly as a result of image noise and acquisition
and reconstruction parameters such as voxel size.34,35

Although the impact of these factors on MRI is unknown,
harmonization of MRI imaging parameters may further in-
crease the predictive power of radiomic models. The model
results were consistent despite these cohort differences,
which suggests that MRI-based radiomics models may
translate well into sarcoma practice. Nevertheless,
designing future radiomics studies to include more uniform
data sets with respect to STS histotype and imaging and
treatment protocols, such as those from cohorts treated in
clinical trials, would eliminate these possible sources of
variability.

Recent work in other disease sites suggests important
future directions for MRI-based radiomics studies in STS.
For instance, radiogenomics studies have been successful in
correlating radomics features with gene expression patterns
in NSCLC,21 low-grade glioma,36 and renal cell carci-
noma.37 Another study has identified a radiomic biomarker
for CD8 cell tumor infiltration in NSCLC and response to
immune therapy.38 Prior work suggests that individual his-
totypes of STS have differential immunophenotypes,39

which may affect response to therapy. Such future radio-
genomics studies in STS may allow for noninvasive
profiling of this heterogeneous group of tumors and serial
response assessment as patients undergo therapy.

Conclusions

In conclusion, this study found, in independent deri-
vation and validation cohorts, that radiomic features
extracted from MRI are promising biomarkers for pre-
dicting OS in patients with STS. Optimal models using
clinical and radiomic features could improve personalized
selection of therapy in patients with STS.
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