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Abstract: Groundwater is the main source of drinking water supply in Jordan. Over the past
30 years, many wellfields have been drilled and expanded to cover increasing drinking water demand
caused by natural population growth, development of life standards and as a result of the influx of
refugees to Jordan. In particular, northern Jordan groundwater resources have been severely depleted.
Therefore, water suppliers and utilities have been increasingly challenged to meet water demand
and deliver water of adequate quality and quantity to households in a timely manner. Meeting
these objectives requires good data management, proper maintenance of groundwater wells, and
effective wellfield management plans. We developed a novel monitoring strategy that allows the
collection of relevant data for wellfield managers (e.g., yield, static and dynamic water level, as well as
energy consumption). The new monitoring system, implemented in 2017, has greatly enhanced data
availability in comparison to the situation between 2012 and 2016. The data are used in an operational
decision support tool based on simple interpretation of the field observations. The implementation of
the project was done using both bottom-up and top-down approaches for the Wadi Al Arab wellfield.
Our results evidence that (i) simple strategies can lead to a significant improvement of wellfield
management, reducing the maintenance time of the wells though appropriate monitoring (from an
average of four days/maintenance/well in 2012 to less than one day/maintenance/well in 2017); (ii) the
joint combination of bottom-up and top-down approaches leads to an effective implementation of
the monitoring system; (iii) the simplicity of the proposed monitoring strategy makes it suitable for
further implementation in other wellfields in Jordan and countries in a similar situation of both data
and water scarcity.

Keywords: groundwater management; wellfield management; decision support system (DSS);
arid region; water supply; maintenance and operation (M&O)

1. Introduction

In many countries, especially those located in arid to semi-arid regions, precautions are taken
against water scarcity [1,2]. Optimization of well field management practices and water quality
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protection received much attention in different regions in the world [3–11]. One of the effects of water
scarcity is the lack of enough drinking water supply to the population and this issue can be worsened
by improper wellfield management. In Jordan, for example, the gap between drinking water supply
and demand has been increasing since the early 1980s [12,13]. In efforts to close this gap, four wellfields
have been drilled in Northern Jordan since then. However, by reviewing the current dataset of the
wellfields, the overall available information on these wells required for proper wellfield management
has been very limited. Essential monitoring data, such as dynamic and static water levels (DWL and
SWL, respectively), power consumption and yields are of limited availability, making it difficult
to propose the right actions to reach an efficient wellfield management. On a national level, some
studies were done in different wellfields, considering groundwater quality [14–22] and groundwater
quantity [23–27].

Among the reasons for water scarcity in Jordan are climate change [28–35], population growth [36],
geopolitical location as a downstream country, and refugee influxes due to political instability in
the region [37]. In Jordan, water scarcity poses serious challenges for the wellbeing, security and
economic development of the country [38]. Although proper wellfield management cannot solve all
complex social, environmental and economic issues related to water scarcity, it can help in reducing
groundwater pumping costs, saving energy [39] and granting a more constant and reliable supply
of water to the population [40]. According to [41], around 73% of drinking water supply in Jordan
comes from groundwater and 15% of energy consumption at the national level is used for water
pumping and supply; hence, the relevance of implementing efficient wellfield management plans is
crucial. Around 80% of groundwater wells are located in the northern part of the country. Northern
Jordan is subjected to the highest water stress within Jordan since it is the most populous region of the
country, with a high water demand and low water availability. According to [42], the depletion in
groundwater levels as a result of over-abstraction indicates that an aquifer is unsustainably managed.
Groundwater in Northern Jordan is hence exposed to depletion as indicated by the rapid drop in
groundwater levels [37], which puts the wellfields under pressure and leads to pump failure, riser
line damage, corrosion and finally, to an unreliable water supply for the population. The highest
groundwater level drop in the country was recorded in the Wadi Al Arab wellfield, with an average
decrease of seven m/year between the year 1995 and 2017 [43]. Standardized procedures to improve
the management of existing wellfields, that are easy to be implemented and accepted by stakeholders,
are hence, urgently needed.

Although many studies have been undertaken to improve groundwater resources management in
Jordan, very few were implemented with consideration of multi-level stakeholder involvement [44],
most of them focused on either top level [45] or bottom level [46] participation. Involving the top level
(higher governmental level such as Ministry of Water and Irrigation (MWI)) in the implementation of
management plans is important for building long-term strategies [47]. Usually, a top-down approach
would not consider or plan for the priorities identified at the bottom level in their strategy [48].
Brown [49] mentioned that the knowledge culture varies at different stakeholder levels [47]. In order
to understand a system, we need to consider the perception of the different stakeholders. Although
this may not help to understand all issues, it is a vital step to demonstrate the main relationships in
the system [50] and understand the current constraints. It is difficult to achieve effective multi-level
stakeholder engagement, but it can be improved by involving other levels in the decision process, by
strengthening the information flow between the levels, and by combining elements from the top-down
and bottom-up approaches [51,52].

Jordan started following a top-down approach through the development and implementation
of a national water strategy for the period of 2016–2025 to better manage its insufficient freshwater
resources and to cope with water supply deficits. Integrated water resources management has been
indicated as a key approach in the national water strategy of Jordan [53]. Moreover, the strategy
states that “deeper knowledge of the availability, quality, and protection of water is the foundation
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for effective decision-making” [53] (p. 3). Yet, no specific advice to also follow a bottom-up approach
during the implementation phase was provided.

The objectives of this research were to reduce the frequency of pump failures per year and the
maintenance period required to return a well to operation, and hence, to improve wellfield management
for the Wadi Al Arab wellfield. The hypothesis that we investigate in this work is that through the
implementation of more accurate operational wellfield monitoring systems, along with a multi-level
stakeholder engagement, we can enhance wellfield management (by enhancing the operation and
maintenance process) and improve the water supply security in Jordan. We tested our research
hypothesis in the Wadi Al Arab (WA) wellfield in Northern Jordan, which covers approximately 40%
of the drinking water supply for the second largest governorate in Jordan, Irbid. We also discuss the
importance of having both the support of MWI and also of educating the technical staff of the local
water utility on the benefits behind a proper wellfield management system. This paper is structured as
follows: Section 2 gives a general description of the study area. Section 3 describes the methodology that
was implemented, including the operational decision support tool (ODST), measurement procedure
and stakeholder engagement. Section 4 shows the quantitative results collected during the project.
Section 5 depicts the discussion of the results. Finally, Section 6 presents our conclusions.

2. Study Area

The Wadi Al Arab (WA) wellfield is located in the north-western part of Jordan about 20 km from
the city of Irbid (Figure 1). The wellfield taps into the A7/B2 upper cretaceous limestone aquifer. As
data availability is limited in the catchment, the study area was extended to the east to include a higher
number of groundwater monitoring and rainfall stations.

Topographically, the area is considered as a high relief area. The elevation ranges from less
than 300 m below sea level in the Jordan Valley in the north-west of the study area to 1000 m above
sea level in the south of the study area, which is considered as the main recharge area of the A7/B2
aquifer [16,26,34,54,55]. The area is characterized by a Mediterranean climate with hot, dry summers
and wet, cool winters. During summer, the average monthly temperatures exceed 30 ◦C in the highland
and more than 40 ◦C in the Jordan Valley. In contrast, temperatures may drop below 0 ◦C in winter.
Rainfall in the area ranges from 300 mm/year in the Jordan Valley to around 600 mm/year in the Ajlun
area [55].

The Wadi Al Arab wellfield was established in 1982, with four of the wells now over 35 years old.
According to the collected well completion reports, wells were initially artesian. However, due to the
high abstraction, water levels have declined significantly and today, none are artesian. Table 1 shows
the location, elevation and completion date of all Wadi Al Arab wells.

In general, a cost-effective groundwater well design should last at least between 20 and 25 years [56].
Harter [57] states that good well design and proper well development will increase both the well and
pump lifetime. On the other hand, with poor groundwater well design, more pump failures would
occur. As water levels have dropped more than 100 m since the early 1980s, the wellfield is facing
significant operational problems. One of them is the extreme corrosion of the equipment. In most
wells, riser pipes and/or pumps do not last for more than two years (e.g., WA 14). Until the beginning
of 2017, water levels were only sporadically measured (e.g., once/twice a year), which was not enough
to efficiently operate the pumps and thus, save energy. This resulted in overly high production costs
and low energy efficiency. As observed during the field investigations, some wells were unknowingly
not pumping water due to corroded pumps or riser lines.
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Table 1. List of Wadi Al Arab wells with the Palestine Belt 1923 (PB) coordinates and elevation and
completion date.

ID Name Latitude “N” Longitude “E” Elevation [m asl] Completion Date

AE1007 WA 1 32◦36′41.05819” 35◦39′25.91936” 9.42 Sep 1982
AE1008 WA 2 32◦ 37′12.81401” 35◦39′30.96736” −35.36 Sep 1982
AE1009 WA 3 32◦ 37′26.67630” 35◦39′52.15763” −26.08 Nov 1982
AE3020 WA 3A 32◦37′26.37884” 35◦39′52.12241” −25.87 Jun 2009
AE1010 WA 4 32◦37′57.04019” 35◦40′18.63580” 19.56 Sep 1982
AE1011 WA 5 32◦35′48.60537” 35◦40′01.84178” 47.00 Jan 1983
AE3001 WA 6 32◦35′43.46482” 35◦40′07.20160” 63.57 Oct 1999
AE3005 WA 8 32◦37′01.94312” 35◦39′20.06533” −14.89 Oct 2002
AE3006 WA 9 32◦35′41.63346” 35◦40′03.82200” 79.287 Feb 2003
AE3016 WA 10 32◦35′33.11840” 35◦40′11.48428” 85.63 Mar 2008
AE3017 WA 11 32◦36′01.24016” 35◦40′01.28220” 74.65 Dec 2007
AE3034 WA 11 A 32◦36′01.35869” 35◦40′00.81987” 73.93 Mar 2016
AE3018 WA 12 32◦37′17.37891” 35◦39′44.09322” −40.89 Dec 2007
AE3019 WA 13 32◦36′34.43015” 35◦40′04.71635” 104.87 Apr 2008
AE3042 WA 13A 32◦36′34.52057” 35◦40′04.92756” 104.87 Feb 2017
AE3021 WA 14 32◦36′14.04827” 35◦39′58.57560” 70.98 Jun 2009
AE3024 WA 15 32◦36′57.18547” 35◦39′35.25914” 32.58 Jul 2014
AE3027 WA 16 32◦36′44.95781” 35◦39′48.68497” 71.77 Sep 2014
AE3030 WA 17 32◦37′38.36044” 35◦40′06.67220” −34.31 Mar 2015
AE3035 WA 18 32◦37′47.36505” 35◦40′17.02858” 12.49 Mar 2016
AE3043 WA 19 32◦35′55.26102” 35◦40′18.24177” 109.59 May 2017
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Figure 1. Overview map of the study area. (a) Shows the location the wells, rainfall stations, 
meteorological station, pumping stations and surface catchment area, it also shows the area 
topography. (b) Shows the area of Irbid governorate and the study area. (c) Shows the location of 
Jordan and surrounding countries. 

2.1. Rainfall and Temperature 

Daily rainfall data was collected from 13 stations located in the area (Figure 1), while 
temperature is only available from one station outside the study area (20 km west from Irbid). In 
Jordan, the hydrological year lasts from October to September. The total monthly rainfall of the 
thirteen stations were averaged and plotted in Figure 2 for the period 2013–2018. The data shows that 
the highest amount of rainfall in the area was recorded in January 2013, with a monthly cumulated 
value of 250 mm. However, we can notice that in this study’s period of interest, the precipitation 

Figure 1. Overview map of the study area. (a) Shows the location the wells, rainfall stations,
meteorological station, pumping stations and surface catchment area, it also shows the area topography.
(b) Shows the area of Irbid governorate and the study area. (c) Shows the location of Jordan and
surrounding countries.
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2.1. Rainfall and Temperature

Daily rainfall data was collected from 13 stations located in the area (Figure 1), while temperature
is only available from one station outside the study area (20 km west from Irbid). In Jordan, the
hydrological year lasts from October to September. The total monthly rainfall of the thirteen stations
were averaged and plotted in Figure 2 for the period 2013–2018. The data shows that the highest
amount of rainfall in the area was recorded in January 2013, with a monthly cumulated value of
250 mm. However, we can notice that in this study’s period of interest, the precipitation patterns do not
display a large annual variability and the different years are comparable from a hydrological point of
view. This pattern can also be seen when analyzing the temperature data for the study area (Figure 3).
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2.2. Hydrogeology

The Wadi Al Arab wellfield taps into the A7/B2 limestone unit (Upper Cretaceous), which is the
main aquifer in the northern part of Jordan. This formation crops out in the southern part of the study
area, where the majority of recharge occurs. In the northern part of the study area (including the
wellfield), this aquifer is confined and overlain by the Muwaqqar Chalk Marl formation (B3 aquitard),
which has a thickness of around 300 m in the Wadi Al Arab area (Table 2) [58].

Static water level (SWL) measurements were collected from the Groundwater Resources
Management (GWRM) project, MWI database and from field visits. The groundwater contour
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lines were drawn according to the SWL measurements and they show a groundwater flow towards the
northwest of the study area (Figure 4). The 2017 groundwater contour map was compared with the
1995 groundwater contour map. The result shows that a large area of the southern part of the study
area has become dry in recent years.

The water level in the Wadi Al Arab wellfield has decreased between 100 m and 150 m over
the past 23 years (Figure 5). However, according to recent water level measurements, the current
decline rate of the Wadi Al Arab wells reaches 10 m/year. All Wadi Al Arab wells were under confined
conditions in 1995. Currently the confinement limit, where the groundwater level intersects with the
base of the B3 unit, has shifted toward the northwest due to the drop in water level. This has resulted
in the southern part of the wellfield being now unconfined.

Table 2. Description of the hydrogeological units in the study area (adopted from [55]).

Formation Symbol Lithology Thickness [m] Aquifer Unit

Wadi Shallala B5 Chalky and marly limestone with glauconite 0–550 B4/B5
Um Rijam B4 Limestone, chalk, chert 0–310
Muwaqqar B3 Chalky marl, marl, limestone chert 80–320 B3

Amman-Al Hisa B2 Limestone, chert, chalk, phosphorite 20–140
A7/B2Wadi Um Ghudran B1 Dolomitic marly limestone, marl, chert, chalk 20–90

Wadi As Sir A7 Dolomitic limestone, limestone, chert, marl 60–340
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2.3. Wellfield Data

Yarmouk Water Company (YWC) started managing the Wadi Al Arab wellfield in 2012. Because
of this, a lot of operational and maintenance data is missing prior to 2012. Therefore, this study
considered only the years 2012–2018.

Data were stored at different agencies and departments; for instance, the electricity consumption
was archived in the financial department, the network data was with the geographic information
system (GIS) department, and the wells maintenance logs were housed in the wells department.
Additionally, the data format was not standardized, and, in some cases units or abbreviations were
not clear without contacting the YWC staff. Descriptive metadata were also missing in the files,
which made it difficult to clearly understand the existing data. While veteran employees were able to
navigate these spreadsheets, the layered and unclear nature of information stored there slowed down
the problem identification process and made the forecasting of upcoming failures nearly impossible.
YWC technicians would therefore rarely make recommendations to their superiors on important well
management interventions.

When a well was replaced, the replacement well was located close to the new well and mostly
used the same name of the old well, followed by a letter (a, b, c, etc.). Usually, only one well works
after the replacement. There are exceptions, however. For instance, wells WA3 and WA3a are still
being operated at the same time, sharing the same electricity meter but having two different flow
meters. Additionally, the collection of abstraction data and electricity consumption data were not
possible for WA6 and WA2, as WA6 does not pump water to the WA pumping station (PS) and no
flow meter reading was collected. Well WA2 has neither a flow nor an electricity meter. The electricity
consumption of individual WA wells was not stored in the financial department of the YWC. Only the
electrical consumption of one subscription that includes all Wadi Al Arab wells and three pumping
station (PS1, PS2 and PS3) was found in the files of YWC since 2012.
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3. Methodology

3.1. Tools Development

Tools play a significant role in data management and in decision making process [59]. The
developed wellfield management toolbox consisted of three parts: the Wellfield Information System
(WFIS), the operational decision support tool and the Wellfield Management Plan (WFMP) report,
which are detailed in the following sections.

3.1.1. Wellfield Information System (WFIS)

The project started in September 2015 by collecting data from all departments in YWC. These
data were available in form of hard copy (e.g., monthly reports), soft copy (e.g., closed-circuit
television (CCTV) records) or as scans (e.g., old well completion documents). All the collected data
were (1) processed by highlighting the suspected errors, which were either corrected or removed;
(2) standardized (data standardization in this context includes converting the data into a common
format, such as having the same date format, or selecting one single label to identify the measurement
type used, such as either SWL); and (3) entered into the WFIS. For the measurements which were
not well documented and were not useful after processing, a new monitoring system was designed
(Figure 6). WFIS is a customized Microsoft Access file to store, organize and manage wellfield/wells data.
This comprises all available data acquired from: (a) the time when the well was drilled (e.g., pumping
tests, well design), (b) field measurements (e.g., dynamic water levels), (c) maintenance activities
(e.g., exchanging or repairing the pump), (d) operation activities (e.g., duration of downtime of
wells), and (e) the operation and maintenance (O&M) costs (e.g., electricity consumption and costs for
maintenance actions).
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Given that the YWC staff used an Environmental Systems Research Institute (ESRI) ArcMap,
a template for GIS maps was created. It provided an overview of the general situation of Wadi Al Arab
wells by mapping the spatial distribution of the measured values and recorded faults of each well.
These maps can be updated by adding the latest measurement/observation into the GIS system.

3.1.2. Operational Decision Support (ODST)

An operational decision support tool (ODST) was developed and tested in the Wadi Al Arab
wellfield as part of the Wellfield Management Plan (WMP). ODST gave a visual representation of
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the actual condition of a well. This ODST was a combination of schematic drawings and graphs of
individual wells that was generated in a Microsoft (MS) Excel file containing the collected data from
the MS Access database (well ID, well name, well depth, SWL, DWL, calculated drawdown, pump
specifications, pump setting, yield, pumping lift). It also showed the electricity consumption and
compared it with the needed consumption to determine the pump efficiency. All graphs and figures
are shown in an interactive Excel dashboard (Figure 7). The ODST can also act as an early warning
system, defining whether an urgent action has to be taken before failure of a well would occur. Figure 7
gives an example of how the schematic drawing looks for a well. It can be seen that an action must be
taken; in this case, the water level was only a few meters above the pump and the warning is shown in
a red stripe.
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3.1.3. Wellfield Management Plan Report

All the GIS maps, graphs and the schematic drawings were gathered and entered into one single
document. This document comprised all the related information of each well in the wellfield (Figure 8).
The last part of this document contained the proposed actions and their prioritization based on cost and
their ability to improve water supply security. The proposed actions considered whether nation-wide
projects mentioned in the National Water Strategy (MWI, 2016) were implemented or not, such as the
Wadi Arab Water System (WAWS) II project. For instance, once the WAWS II project is operational,
which is expected to bring 30 Million Cubic Meter (MCM) per year to Irbid, this will reduce the
pressure on Wadi Al Arab wells and, consequently, it will be possible to stop some wells or convert a
pumping well to a monitoring well. This Wellfield Management Plan (WMP) is a living document,
based on the currently available information and is updated when new data and information becomes
available. In the WMP, individual pages are replaced, omitted or added during the required regular
updating, according to changes in the situation (e.g., when pumps are changed). The main purpose of
this document is to overcome O&M problems in the wellfield. It is therefore used by the staff of the
water utility (YWC), regulator (Water Authority of Jordan, WAJ) and resources management entity
(MWI) in digital format and it is officially recognized by MWI.
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3.2. Measurement Procedure

In general, field measurements were not taken systematically until the end of 2015. The DWL
measurement was not measured regularly, even though this measurement was recommended to be
recorded on a monthly basis for all wells [60]. Due to the lack of SWL data in the area and no monitoring
well to represent the wellfield SWL, the SWL in a well should be measured any time the pump was
switched off for a time longer than the recovery time. However, since the priority of the wellfield
manager was water provisioning, such a long stop of the pump was not always possible. The water
level measurements taken during these intervals were therefore only providing a proxy for the SWL in
the area, considering the influence of the other wells operating nearby. According to YWC staff, water
level measurements were done in the past but many records of SWL could not be found as they were
not systematically stored. Before the implementation of the Wellfield Management Plan, electricity
consumption was sent to the YWC financial department for the subscription number, which contains
the consumption of the three pumping stations and all Wadi Al Arab wells. The WMP recommends
recording electricity consumption monthly and for each well individually. In the past, the monthly
abstracted amount was calculated by multiplying the number of working hours of the pump by the
volume of water per hour. However, this is inaccurate, as some pumps may not even be pumping water.
Therefore, a metered electricity reading should be collected together with metered monthly yield.
Through the Improved Groundwater Resources Management (I-GWRM) project, pressure gauges were
installed for the wells with missing pressure gauges. Table 1 shows the main field measurements
procedure that needs to be developed. We aimed to measure all the different field measurements on a
monthly basis, except for SWL due to the aforementioned limitations (Table 3).

Table 3. Development of the field measurement procedure in Wadi Al Arab wellfield for static water
level (SWL), dynamic water level (DWL), yield, volume of abstracted water, and electricity consumption
of each well.

Measurement Type Before Development Aim to Be Achieved

Static water level Measured but not recorded or recorded just in
the drilling time

To be measured and recorded when
the pump is turned off

Dynamic water level Not systematic measurement To be measured monthly
yield (m3/hr) Not systematic measurement To be measured monthly

Abstracted volume of each well Not measured The flow meter reading should be
collected monthly

Electricity consumption of each well Not recorded To be measured monthly
Pressure Not for all wells, not collected systematically To be collected monthly
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3.3. Stakeholder Engagement

Stakeholder participation was central to this research for the I-GWRM project team. Two of the
methodological characteristics, presented by [50], as part of the participatory systemic inquiry (PSI),
were used in the stakeholder engagement approach. The project held meetings at three different group
levels, namely: (a) High-level group, which included people who had significant impact on the water
sector (upon our request); (b) head of department/directorate group, which included people from
YWC and MWI who were responsible for the mid-level decisions, such as pumping stations and wells
operation and maintenance (according to the needs of the project team); and (c) technician group,
which included people who did the practical work in the field (upon their request). The following
methodological characteristics described in [50] were used: Different starting questions for each of
the inquiry strands and the idea of direct seeding from one group to another. PSI was introduced
and defined as “learning and deliberation which involves multiple stakeholders in generating deep
insights into the dynamics of the systems that they are trying to change” [50] (p. 88).

Changing the existing management and operation system started by building trust between the
project team and technicians in the field. This was initiated through support by the Ministry of Water
and Irrigation, who requested the water utility staff cooperate with the project team in December, 2015.
This was an important step to start working with YWC staff in the field and understanding how
monitoring, operation and management was done in the wellfield. However, it was not enough to
induce change to the existing system. Therefore, being present during day-to-day operations of the
wellfield management process was important to build trust and learn the underlying challenges and
obstacles that they were facing in their work.

In parallel, it was necessary to train the technicians of the Wadi Al Arab wellfield and inform them
about the importance of field measurements for improved management decisions. It was essential
to clarify the benefits behind a proper wellfield management system. The aim of this approach
was to permit the managers and operational staff involved in the tasks of planning, operation and
maintenance of a wellfield to do so while having all the information related to decision-making on
hand. A wellfield management committee for Wadi Al Arab was established involving, staff from MWI
(4 members), YWC (4 members) and a member from the Water Authority of Jordan (WAJ). Besides the
daily visits, regular meetings (monthly), organized by the I-GWRM project team, with the committee
were set up to design the Wellfield Management Plan document in such a way that it fulfilled all
mutually-agreed-upon objectives and requirements. Later on, the meetings were held based upon the
needs and requests of YWC, MWI or the project team.

4. Results

Water pumping consumes around 15% of total electricity consumption in Jordan [61]. In Wadi
Al Arab, electricity consumption increased by 11% between 2012 and 2018 in the subscription which
contains the three pumping stations (PS1, PS2 and PS3) and Wadi Al Arab wells, while the pumped
volume of water (including the volume coming from other sources to PS1) remained almost the same
throughout this period (Figure 9). This means that the electricity consumption of pumping a cubic
meter of water increased due to an increase in the pumping lift or an increase of the number of wells
(Figure 10). It can be also noticed that the electricity consumption decreased by 5% between 2017
and 2018 (Figure 9), the period in which the ODST tool was used by the wellfield managers. Overall,
however, the increase in electricity consumption resulted in a twofold rise in the pumping costs
between 2012 and 2018 (Figure 10). This cost increase has to also consider the increase of the electricity
tariff, shown in Figure 11. The reasons behind the increase in the electricity costs were not always
related to national drivers, and hence this will not be further investigated in this work.
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Since January 2017, the electricity consumption and the production were collected for each well
on a monthly basis, except for WA2 and WA6. Although the total electricity consumption of WA wells
remained the same in 2018 (in comparison to 2017), the cost of pumping 15 MCM of water from 16
wells to the first pumping station was 1.03 million JOD in 2017, while its cost increased to 1.46 million
JOD to pump the same amount from the same wells in 2018. This is due to the increase of the electricity
tariff in 2018. The tariff increased from 0.061 JD/Kwh in 2012 to 0.122 JD/Kwh in 2018.

The electricity consumption of each well to pump a cubic meter of water to the pumping station
varies within the Wadi Al Arab wellfield. For instance, in the years 2017 and 2018, the average electricity
consumption to pump a cubic meter of water from WA-1 to the pumping station was 1.11 kWh while at
WA-18, pumping consumed only 0.52 kWh (Figure 12). The overall energy consumption for abstracting
a cubic meter from the wellfield remained the same in 2017 and 2018 with a value of 0.785 kWh/m3. It
can be seen that sometimes older wells had higher production than new wells (e.g., WA 4 and WA 17).
In addition, the pumping cost from some old wells was lower than the costs for newer wells (e.g., WA 5
and WA 11a). These observations show that the age of the well was not the only factor influencing
pumping costs and well production.

In general, the monitoring procedure has improved since the beginning of 2017. In fact, the
number of measurements taken by YWC staff in 2017 and 2018 was much larger than in the years
preceding the implementation of the ODST. Figure 13 shows the number of annual field measurements
in the wellfield, without counting the electricity consumption measurements. An increase in the
number of measurements started in 2016, while the following years, 2017 and 2018, had the highest
number of field measurements. The number of measurements increased from 260 records in 2012 to
699 and 703 records in 2017 and 2018, respectively. No field measurement records were found for the
year 2013, while the years 2014 and 2015 had 34 and 20 recorded field measurements, respectively. The
total number of working wells increased from 14 wells in 2012 to 18 wells in 2018. However, seven
wells were drilled between 2012 and 2018, two of them were replacement wells (WA11a and WA13a)
and one well (WA19) was drilled and not operated due to water quality problems.
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number of wells (represented as scatter points).

The number of collected field measurements per month are shown in Figure 14. The highlighted
area represents the period since the project started (September 2015) until the end of 2018. The transition
period between the top-down approach (when the letter from MWI was sent to YWC and it is showed
by the red color in the figure below) and the combination of the top-down and bottom-up approach
(when people in the field were involved in the decision making process and showed by the green color
in the figure below) can be seen by the improvement of data availability. Sometimes the number of
monthly measurements was low (e.g., 21 measurements in June 2017), because the measurements of
wells were taken at the beginning or end of the following or the preceding month, respectively.
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Figure 14. Number of monthly field measurements and the transaction period between top-down
(red color) and the combination of top-down and bottom-up approaches (green color).

Figure 15 depicts a comparison of the annual measurement frequency of SWL, DWL and yield
between 2012 and 2018. The number of DWL measurements increased from 43 measurements in 2012
to 266 and 230 in 2017 and 2018, respectively. Each of the monthly basis measurements, such as DWL
and yield, were taken at least 12 times a year in 2017 and in 2018 for each well where measurement
was possible. For instance, when a well is equipped with flow meter, the yield can be measured, but
when the inch pipe is blocked, the water level cannot be measured. The SWL was measured each time
the pump was stopped. Figure 16 shows the measurements of SWL, DWL and yield in WA-1 as an
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example of the improvement in field measurement after the beginning of 2017. Measuring DWL and
yield for each well helped in identifying the needed maintenance. For instance, if the DWL increased
in a well while the ampere reduced, it indicated that one of the riser pipes might be corroded and
needed to be changed or welded. This is because part of the pumped water didn’t reach the well head
but it returned to the well, and the total volume of water that reached the well head decreased. SWL is
important to identify the decline in water level on the wellfield scale and can, for example, be used
later for choosing the location of a new well in the area.
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Figure 16. Improvement of field measurements (SWL, DWL and yield) before and during the
implementation period of the tools, using WA-1 well as an example.

The maintenance intervals/periods mentioned in Table 4 represent only the maintenance when a
well was stopped and the lifting devices were pulled out. The maintenance conducted for any equipment
above the ground, electrical panel or flowmeter, was not considered in the mentioned table, and no data
was found on it. The table also shows the number of days needed to maintain and restart operating the
wells in the period of 2012–2015 (unplanned maintenance) and in 2017–2018 (planned maintenance).
The year 2016 occurred during the transition period of unplanned to planned maintenance.
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The wells were stopped 27 times in 2012, with a total period of 141 maintenance days. In only four
instances was the maintenance finished during the same day. In comparison, the work was completed
on the same day in 15 out of 19 times in 2017, and nine out of 10 times in 2018. WA-14 showed the
longest maintenance period in 2012. It took 29 days to implement six maintenance intervals. The table
also shows that maintenance times for well WA-3a increased in 2017 compared to 2012. However, the
needed period to conduct maintenance for this well was 18 days in 2012 for one maintenance instance,
while in 2017, maintenance was completed for one maintenance instance during the same day and the
other one on the second day. All maintenance types conducted during the unplanned maintenance
period were also conducted during the planned maintenance period, but with less maintenance
intervals/period.

In general, the number of maintenance instances decreased when comparing the year 2012
with the years 2017 and 2018. Sometimes, the number of intervals increased in 2017 and 2018. For
example, in 2015, WA-1 stopped one time for maintenance in 2015 for a period of five days and two
times in 2018, however both maintenance work were done in the same day. The average length of
maintenance intervals varies over the period 2012–2018. However, the years 2017 and 2018 recorded
the lowest average intervals, where about 79% and 91% of the maintenance were done in the same
day, respectively.

Table 4. Maintenance period in 2012–2018. (Numbers indicate maintenance intervals: 1 indicates that
the well was stopped, the well’s lifting devices were pulled out, maintained/repaired/replaced, installed
and re-operated in the same day, and the number 2 means that the well was re-operated in the second
day and so on. X indicates that the well was not operated/drilled in that year, – indicates no records/no
failures, ** indicates no failures.).

Well Name 2012 2013 2014 2015 2016 2017 2018

WA 1 2,6,14 3,2 19 5 3 ** 1,1
WA 2 2,3 1 1 – 2,2 1 **
WA 3 – – 1 – ** ** **
WA 4 4,1 – – 4,1,1 ** 1 **
WA 5 2,1,1 3,1 – – ** 1,1 1
WA 6 7,3,3 6 2 – 2 2,1 **
WA 8 2 – 2,2 2,32,1,1,1 1 1,1,1 1
WA 9 2,6 – 5,3 – ** 1 **
WA 10 8,2,2 2 – 1,1,2,2 ** 1 **
WA 11 2,16 – 1,3 – ** X X
WA 12 – 5 – – ** 1 **
WA 13 4 – – 1 3 X X
WA 3a 18 – 3 – ** 2,1 1
WA 14 4,6,1,4,13,2 1,2 1 2,2,1 ** 1 1,2
WA 16 X X 2,2 – ** 3 **
WA 15 X X X 3 ** 4 1
WA 17 X X X ** ** ** 1

WA 11a X X X X 3 ** **
WA 18 X X X X ** 1,1 1

WA 13a X X X X X ** **

Total well stop for
maintenance [days] 141 26 47 62 16 26 11

Total maintenance
intervals/Times 27 10 13 18 7 19 10

Average days stopped for
each maintenance 5.2 2.6 3.6 3.4 2.3 1.3 1.1
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5. Discussion

5.1. Improvement to Previous Situation

Changing the existing management and operation system was challenging, and arguably, it could
not have been achieved without building trust between the project team and technicians of YWC in the
field. This can be observed in the period 2015–2017, in which the project started using only a top-down
approach giving good results, but less effective than in the later period in which a bottom up approach
was also adopted. Working with employees in their daily operation was an important step towards
understanding the system and its limitations. Involving staff in discussions about possible solutions
to the problems and establishing a joint committee that included multi-level stakeholders from WAJ,
MWI and from the water utility were also influential steps in building a sense of ownership of the
wellfield and ensuring a sustainable (i.e., long term) implementation of the plan. Notably, YWC field
staff have continued collecting field measurements for the past year (2018) without the mandate of the
project team.

It can be seen from the results that the number of recorded data increased in 2017 and 2018;
around 260 readings were collected in 2012 and increased to 700 readings/year in 2017 and 2018. At
the same time, the total number of well maintenance intervals decreased. This indicates that the
implemented monitoring system helped in preventing unforeseen failures in the wellfield which would
require several days to be solved. Besides the increased number of measurements in 2017 and 2018, the
use of ODST assisted the committee in predicting failures and implementing systematic maintenance
planning. The total needed period to conduct maintenance for the lifting devices (motor, pump or
riser pipe) in the wellfield decreased from 141 days in 2012 (14 wells) to 27 and eight days for the
years 2017 (18 wells) and 2018 (18 wells), respectively. Wells operate 24/7 at their highest capacity to
cover the needed demand. Thus, the longer a well is stopped, the more problems occur, especially in
summer when the water demand is high. It is important to minimize the period during which a well is
stopped for maintenance, and maintenance should preferably be done in winter when the demand is
relatively low.

The updated monitoring procedure helped define which well consumes more energy than others.
Consequently, the wells with the highest energy consumption would be considered in future operational
decision processes (e.g., to be stopped, replaced or abandoned). The main factor that affects the
variation of the pumping cost between wells within the wellfield was not identified in this study.
However, the age of the well, pumping lift, well design, well location and selected pump specifications
play a role in the observed variation in pumping costs between wells.

5.2. Strengths and Weaknesses

The suggested monitoring approach depends greatly on the available human resources and
the way the staff uses the tools. The technology was purposefully adapted to the local conditions
and human capacity (i.e., choice of the software used to develop the ODST was limited by the
knowledge of the well field managers about other operating systems) and it can be modified easily
by the end-users. However, an in-depth understanding of the entire wellfield management system
is needed to effectively apply the tool, so that it would not be easy to replace old trained employees
with new untrained employees. In order to successfully apply such management tools in a sustainable
way, regular trainings and knowledge transfer are therefore a must. The training should cover the
following aspects: (i) hydrogeology of the area, (ii) the impact of good and regular measurements on
wellfield management, (iii) how to use the ODST and WFIS and (iv) pump selection course. Otherwise,
challenges would arise for new staff and result in higher maintenance and operational costs and longer
maintenance intervals, which would ultimately lower the water supply security. This traditional
weakness can be overcome by providing specific training courses for related employees, which address
critical issues like the monitoring procedure. Involving all staff related to operation and maintenance of
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a wellfield in the Wellfield Management Committee ensured that the wellfield management approach
became an integrated part of water supply management at YWC.

The low implementation costs and simplicity are the main strengths of this approach. The
new monitoring system needs the following simple equipment: (a) dip meter for water levels,
(b) electromagnetic flow meter to measure the yield and validate the reading of the fixed flowmeter,
(c) clamp meter to measure voltage and current and (d) digital insulation tester to measure the
insulation resistance of pump motor. This equipment is rather standard and generally available also in
low-income countries, where personnel costs are not very high. Besides the low implementation costs,
simple tools were generated to serve as early warning systems for wells needing maintenance. The use
of this tool does not require any previous experience and only minimal training—in our case only two
training sessions.

5.3. Application to Other Sites

The combination of the two approaches (top-down and bottom-up) can be implemented in most
of the projects where data scarcity is a challenge. Additionally, the tool can be used by water utilities
or by any project aiming to improve wellfield management, especially in arid areas and areas with
over-abstraction, where the well conditions are constantly changing (e.g., rapid water level decline).
The tool is now being tested in two other large wellfields in Jordan east of Mafraq city: Aqib and
Corridor wellfields. It should be noted that multi-level stakeholder involvement is a slow process,
and successful outcomes require adequate time and field presence. Therefore, for the application
of the proposed methodology in other sites, enough time should be allocated for the stakeholder
engagement and the training of the involved staff. In fact, in our view, the application of the suggested
technical improvements, such as a finer resolution monitoring, is not effective without the necessary
stakeholder engagement that can guarantee a sustainable development of the wellfield management
plan. The implementation of the wellfield management tool does not solve the issue of water scarcity
and over-abstraction, but still can contribute in saving energy and funds, which can be allocated for
the development of alternative water supply sources, such as desalination and wastewater reuse.

6. Conclusions

In Jordan, groundwater resources are heavily over abstracted and cannot be managed in a
sustainable manner with state-of-the-art technology and the actual water demand. It is exceptionally
difficult to provide enough drinking water to the population and, at the same time, irrigate fields
considering the future challenges of climate change and demographic trends. Nonetheless, improved
wellfield management may enhance the lifetime of the aquifer and production wells and reduce the
cost of water abstraction.

Before the implementation of the proposed methodology, the available data for WA wells were not
sufficient to manage the wellfield in a way that would result in an efficient budget allocation; therefore,
additional data collection was an important step to establish the improved Wellfield Management Plan.
Missing descriptive metadata was a challenge in processing poor documented data and resulted in the
loss of some old data. Currently, descriptive metadata have been added for the recorded data, which
will help researchers in the future to acquire well documented data about the wellfields. In this regard,
the number of recorded field measurements increased from 260 in 2012 to 699 and 703 measurements
during 2017 and 2018, respectively.

In this work we show that it is not necessary to have highly advanced technology to change the
operation and maintenance of a water supply system. The implementation of simple tools such as ODST
and staff training courses, and the provision of needed equipment to facilitate Wellfield Management
can make a substantial difference with relatively low costs. The new monitoring procedure, together
with the use of the ODST, reduced the number of failures and the maintenance duration. Only 15% of
the maintenance times were conducted in the same day in 2012, while the records showed that this
percentage increased to 79% in 2017 and 91% in 2018. Additionally, this new system helped to identify
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variations in energy consumption between wells within the same wellfields, some of them showed a
low energy consumption (e.g., WA-8 with a consumption of 0.52 kWh/m3), while others showed a
high energy consumption (e.g., WA-1 with a consumption of 1.11 kWh/m3). This means that energy
consumption of individual wells would be now considered in the decision making process for wellfield
management. This is especially important as the overall electricity consumption has grown from 2012
to 2018. Because of the increase in energy costs, the water utility should optimize the use of alternative
on-site energy production, like solar energy, to further lower the extraction costs.

Finally, the amount of collected data and the reduction of the maintenance period could
not have been achieved without the combination of the strengths of top-down and bottom-up
approaches. If a decision support system like the one created for Wadi Arab is to be used in
another wellfield, it is necessary to start with investments in human capacity building and multi-level
stakeholder participation.
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