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Project Definition(1/2)

Initial Situation

In the last twenty years, many researches and experiments have been executed in the field of acoustic
metamaterials. The acoustic metamaterial is one of the most impartant metamaterial branch, which has
remarkable performance in reducing vibration and noise, especially for light-weight design applications.
Metamaterials are known with their periodic structures, which is also general property in all metamate-
rial varieties. In most literatures, the acoustic metamaterial models are manufactured by 3D-printing te-
chinique, which is recently a relative mature manufaturing method for acoustic metamaterial experiments.
However, the execution of simulations for acoustic metamaterial is still a challenge for today’s work. By
simulating models and environments rather than experiments a lot of time can be saved. Moreover, the
simulation process in software is relatively flexibel. Due to some influence factors, there are always devia-
tions between experimental and simulation results, which is a common problem in literatures.

Goals

In this thesis, based on the literature research a prototype design is drawn up. After that, different variants
for experiment and simulation process are further designed. By using commercial software COMSOL
®Multiphysics, several typical models are built up to analyze their dispersion relations. In order to match
the experimental results, several models are further improved by executing convergence study. This thesis
aims to give a guidance for simulating two-dimentional acoustic metamaterials to analyze the stop band
property. Different models are built up by same principles. In the end, challenges and suggestions for the
future work are also illustrated.
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Abstract

Good acoustical behavior is one of the most important factor in the light-weight design. The acoustic
metametamaterials are promising solutions to achieve the improvements in this field. With their repeat-
ing structure in periodicity, an excellent sound reduction effect can be achieved. According to the litera-
ture research, there are various of acoustic metamaterial designs with different materials and structures.
However, there are still challenges to find a model, which can be both manufactured and simulated and
meanwhile the results agree with each other.

On the one hand, the manufacturing method (3D-printing technology) has error potentials when building
small-size models. This will lead to a wrong value in experiments. On the other hand, the simulation
environment is idealized, which cause a deviation between simulation results and experimental results.
Obviously, the acoutic physical domain has some unavoidable uncertenties. It is difficult to explore the
propagation of acoustic waves in different media materials.

This thesis aims to propose possible acoustic metamaterial designs based on the literature research.
These models can be both manufactured by 3D-printing technology and simulated in software. The focus
of thesis is to find a simulation process, in which the experiments machted results can be calculated.
The properties of acoustic metamaterials, which can be evaluataed and compared by experiments and
simulations, are also explained and analyzed.

The first few chapters give an overview about state of the art. The history and development as well as
categories of metamaterials are introduced. After that, the important physical parameters and academica
models as well as possible analytical methods of acoustical metamaterials are explained. Possible math-
ematical calculation methods are compared with Finite-element method specially for software. Based on
the literature research different prototype designs are proposed. Before explain the simulation process in
details, the possible simulated properties are analyzed and compared. In order to improve the simulation
results, the convergence study is executed. In the end, the challenges and possible improvements are
summarized.
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1 Introduction

1.1 Motivation

Ecological trends and efficiency requirements give the lightweight design a significant mean-
ing in today’s development. To satisty customer’s expectations, good acoustical behavior
turns into one of the most important design criteria. The vibration and noise reduction
measures usually require heavy and bulky systems, which in general have conflicts with the
lightweight design. Therefore, the acoustic metamaterial is treated as a promising solution to
achieve Noise Vibration and Harshness (NVH.) improvement, especially for automobile and
aerospace applications.

Acoustic metamaterials are regarded as a new type of artificial composite acoustic material
that is closely related to the concept of phononic crystals at a subwavelength scale (LU et
al., 2014, p.1). The impressive character of them is the repeating structural patterns. The
periodic arrangement of scatterers causes the destructive interference of waves in the band of
frequencies, which leads to sound attenuation (Gupta, 2014, p.1).

Yet, there exists a variety of metamaterials in literature. This thesis aims to get an overview of
acoustic metamaterial for noise isolation through a literature research. The typical structures
of acoustic metamaterial will be summarized and a prototype design will be suggested based
on the literature research. The prototype, which will be built by a 3D printing technique,
should also be simulated on the basis of relevant numerical principles. In the end, the simu-
lation results will be validated and improved by comparing with experimental results, where
the prototype will be installed into a mess system and the effectiveness of the metamaterial
in noise reduction will be evaluated.

So far, there has been some researches on both experiments and simulations of acoustic meta-
material. However, the structures and properties of them studied in each paper vary greatly.
Moreover, 3D printing manufacturing and simulation processes are not always possible for
some complex structures. For models that can be both 3D printed and simulated, the experi-
mental results and simulation results are more or less different.

Currently, there are three typical 3D printing technologies for acoustic metamaterial manufac-
turing: Selevtive Laser Sintering (SLS.), Fused Deposition Modelling (FDM.) and Selective
Laser Melting (SLM.). Among them, SLS. and FDM. are more commonly used. Usually, it
is necessary to build a corresponding CAD model before manufacturing the sample. Experi-
ments are generally executed in an acoustic impedance tube or based on self-built experimen-
tal platforms. And the reflection of sound waves should be avoided during experiments.

The most simulations of acoustic metamaterials are achieved by building a finite element
model in COMSOL ® Multiphysics, the software Abaqus and LMS VL Acoustics software
environment are also used in pieces of literature. In addition to finite element model, other
basic simulation models include the Heckls model and the Helmholtz model. The difficulty
of simulation is to create a same model environment as experimental test. Generally, the
simulation environment is idealized, and the test environment will have a certain influence on
experimental results, which also causes a deviation between experimental results and simu-
lation results to some extent.
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In general, there are two properties of acoustic metamaterials that can be evaluated through
simulation process and meanwhile compared with experimental results: the dispersion re-
lation and Sound Transimission Loss (STL.). On the one hand, the dispersion curve ex-
presses a relation between eigenfrequency and wave vector of metamaterial structure. On the
other hand, the bandgap of a prototype can also be visualized through the dispersion rela-
tion. Those bandgaps are also referred to as stopbands, there are frequency zones for which
free wave propagation is prevented through the metamaterial, resulting in frequency zones
of pronounced wave attenuation (Claeys, Deckers, Plutmers, & Desmet, 2016, p.1). STL.
expresses a relationship between incident sound energy and transmitted sound energy, which
reflects noise reduction effect of a metamaterial structure. So far very little simulation has
been done for these two properties. It is difficult to find a relatively mature simulation step
for a prototype.

The idea of prototype built in this thesis comes from a numerical study on the behavior of
partition panels with micro-resonator-type metamaterials (Amado-Mendes, Godinho, Dias,
Amaral, & Pinho, 2018, p.1). Each resonator on the basis plate can be considered as a
mass-spring element. This numerical modelling concept allows straightforward control of
the resonance frequency of the first bending mode (Claeys et al., 2016, p.2) and can be
applied with the Floquet-Bloch boundary conditions, which enables modelling only a unitary
cell of the periodic system (Amado-Mendes et al., 2018, p.5).

To visualize the sound insulation effect of acoustic metamaterial prototype and to com-
pare with the experimental results. It is decided to use commercial software COMSOL
®Multiphysics to simulate the dispersion curve, which reflects band gap structure at a certain
frequency range. The focus of this thesis is try to build a exactly same model as the prototype
design and execute the corresponding analytical solution for the simulation process.

Due to the Floquet-Bloch boundary condition the simulation model can be simplified and
considered as a periodic structure. After defining the necessary coordinate system and pa-
rameters to set up the first Brilouin zone, the geometry and material properties of the model
can be built up in the correspongding physical module. In the end, the simulated results will
be compared with experimental results and then be improved. In order to prove the correct-
ness of the simulation process used in this thesis, a phononic crystal structure is additionally
simulated to compare with the results from a paper. By changing some parameters and set-
tings, the results of immproved models are showed and discussed.

1.2 Structure of the work

The first two chapters give an overview about state of the art. At first, chapter 2 introduces
the history and development of metamaterials. Different variants of metamaterials are classi-
fied and explained briefly. Chapter 3 then goes into the concepts of acoustic metamaterials.
Physical properties and academic models as well as typical structures of them are explained.
In chapter 4, calculation methods for the dispersion relation and Finite-element method spe-
cially for the simulation are compared. Based on principles each method is explained.

Then, chapter 5 describes different prototype designs as well as their work principles. Chapter
6 presents the physical parameters and simulation steps for the selected models. Chapter 7
then analyzes the results of simulation and experiments. The similarities and deviation are
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discussed. In chapter 8, simulation process is improved to reduce the deviation by executing
convergence study. In the end, chapter 9 contains a discussion about suggestions for the
future work.
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2 Introduction and categories of metamaterials

In this chapter, the history and development of metamaterials will be introduced. Based on
that different kinds of metamaterials will be shortly explained. After that, the next chapter
will focus on acoustic metamaterials.

2.1 History and development

Scientists and engineers started to research metamaterials since the 19th century. Metamate-
rials are known with their periodic patterns which don’t exist in nature. In the case of periodic
structures, only a single computational sample needs to be studied because the sample pre-
cisely describes the periodic structure, as the object that repeats in space is always of the same
size (Maldovan & Thomas, 2009, p.26). Therefore, the cost of simulation for metamaterials
is greatly reduced.

In recent years, metamaterials can be applied in different fields such as microwave, optoelec-
tronics and material science etc.. In general, metamaterials can be divided into following
categories: elastic metamaterials, structural metamaterials, nonlinear metamaterials, electro-
magnetic metamaterials and acoustic metamaterials. In the following sections, each category
will be briefly introduced.

2.2 Elastic metamaterials

Elastic metamaterials are also called mechanical metamaterials, whose mechanical properties
are defined by their structure that can not be found in nature. By exploring locally resonant
effect of the building units, they are able to possess negative values of effective mass, effec-
tive bulk or shear modulus (X. Zhou, Liu, & Hu, 2012, p.1). With these properties elastic
metamaterials can be used for cloaking and superlensing effects. Typical examples of them
are like:

Acoustic/phononic metamaterials

Materials with negative Poisson’s ratio (auxetics)

Metamaterials with negative longitudinal and volume compressibility transitions
Pentamode metamaterials or meta-fluids

Cosserat and Micropolar Metamaterials

2.3 Structural metamaterials

Structural metamaterial plays an important role in light-weight design. With the same den-
sity, they have much better properties than conventional materials, that means they are much
harder and can withstand more loads. This property comes from their remarkable compact
structure shaped like a truss.



2 Introduction and categories of metamaterials 7

Figure 2.1: Example of elastic metamaterial: pentamode metamaterial
(https://en.wikipedia.org/wiki/File:Pentamode.png)

2.4 Nonlinear metamaterials

Nonlinear metamaterials are important for the study in nonlinear optics field. The typical
properties of nonlinear metamaterials are electric permittivity and magnetic permeability in
electromagnetic fields, which can generate the refractive index. Because of this property
nonlinear metamaterials can generate more remarkable nonlinear behavior in response to
electromagnetic radiation than conventional materials.

Figure 2.2: Photograph of the nonlinear tunable magnetic created by a square lattice of
nonlinear Split Ring Resonator (SRR.) resonator
(Shadrivov, Kozyrev, van der Weide, & Kivshar, 2008, p.6)
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2.5 Electromagnetic metamaterials

Electromagnetic metamaterials are arrays of structured subwavelength elements which may
be described as effective materials via the electric permittivity and magnetic permeability
respectively (Watts, Liu, & Padilla, 2012, p.3). They are able to generate pronounced elec-
tromagnetic responses which are not possible in natural materials. This negative response
comes from the negative refraction index generated by their periodic structure in subwave-
length scale rather than their chemical composition. In general, electromagnetic metamateri-
als can be divided into several classes:

e Negative index
e Single negative
e Hyperbolic
e Bandgap
e Double positive medium
e Bi-isotrpic and bianisotropic
e Chiral
e Frequency Selective Surface (FSS.) based
(@) (b) fe)

1k

Figure 2.3: Schematic of the two canonical metamaterial unit cells used to create magnetic
and electric response
(Watts et al., 2012, p.3)

2.6 Acoustic metamaterials

Same as electromagnetic metamaterials, acoustic metamaterials also have negative refraction
index. The difference is that acoustic metamaterials affect sound waves through mechanical
properties such like bulk modulus and mass density. The periodic structures with these ma-
terial properties form a resonant system, which can block the transmission of sound waves
within a certain frequency range. The structural features of acoustic metamaterials can be
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significantly smaller than the wavelength of the waves they are affecting (Deymier, 2013,
p-8).

As acoustics is a new application field of metamaterials, it is difficult to execute simulation
process of acoustic metamaterials due to the lack of literatures. Based on the properties of
acoustic metamaterials and some physical principles, there are several calculation methods to
analyze the behavior of acoustic metamaterials. However, how to model them and simulate
their behavior in specific software, is still a challenge. The further details about acoustic
metamaterials will be described in the next section.

Smm

Figure 2.4: Locally Resonant Sonic Crystals
(Liu et al., 2000, p.2)
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3 Concept of acoustic metamaterials

In 1967, the Russian physicist Victor Veselago firstly proposed the concept of metamaterials.
After that, the study and researches of metamaterials developed quickly in different fields,
especially in acoustics. The main goal of acoustic metamaterial applications is to enhance
the response of materials to sound waves.

The history of acoustic metamaterials began two decades ago. The study of them mainly
involves the control and reduction of sound noise, creation of useful sounds for medical
diagnosis and measurement of other physical properties. The focus of this thesis is the first
option.

The principle of acoustic metamaterials can be explained by the principle of general meta-
materials. Similar with other metamaterial categories, the interest in acoustic metamaterials
is mainly focused on their negative refraction index. This parameter is generated by chang-
ing the bulk modulus and density. Due to the floating of these micro structural and physical
characteristics, the impact on macro sound waves is achieved.

The study of acoustic metamaterials began with the manufacturing of them. Early in 2000
acoustic metamaterials are firstly fabricated as sonic crystals based on the idea of localized
resonant structures (Liu et al., 2000, p.1). Later in 2004 the existence of acoustic metama-
terials, in which both the effective density and bulk modulus are simultaneously negative, is
confirmed (Li & Chan, 2004, p.1).

With the development of 3D printing technology, the manufacturing of acoustic metamateri-
als is becoming mature. In recent years, scientists have begun to execute experiments on them
to analyze their properties and industrial application possibilities. Early in 2016, the poten-
tial of metamaterial as vibration insulation along known transmission paths is investigated,
which verified that different stop bands can be combined (Melo, Claeys, Deckers, Pluymers,
& Desmet, 2016, p.7). Later in 2018, an additional structure based on acoustic metamaterial
for the reduction of vibro-acoustic transfer function of a car body panel is designed (Jung,
Kim, Chol, & Wang, 2018, p.1). In the same year, a host structure with the resonant el-
ements is demonstrated to isolate vibrations at low frequencies with multiple transmission
paths (Sangluliano, Claeys, Deckers, Pluymers, & Desmet, 2018, p.1). Recently in 2019,
a laminate acoustic metamaterial design with multi-stopband for structural-acoustic coupled
system was proposed (Xiao, He, Li, & Cheng, 2019, p.1).

Because of the long experiment period and many uncertainties during experiment process,
researchers began to attempt the simulation of acoustic metamaterials in recent years. Early
in 2013, three novel metal Periodic Cellular Material Structures (PCMS.) types have been
studied by using finite element simulation, by getting natural frequencies and mode shapes
their acoustic response and vibration behavior are evaluated (Al-Zubi et al., 2013, p.15).
Later in 2016, a metastructure which combines local resonances with structural modes of a
periodic architected lattice is demonstrated, by using finite-element simulations the applica-
tion in controlling structural vibrations and noise is confirmed (Matlack, Bauhofer, Kroder,
Palermo, & Daraio, 2016, p.1). In 2019, a design of ring-shaped acoustic black holes in
plates for broadband vibration isolation is simulated separately by using Gaussian expansion
method and finite element method (Deng, Guasch, & Zheng, 2019, p.1). In the meantime, on
the basis of finite element simulations the frequencies of cylindrical metamaterials for tubular
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structures at broadband vibration damping are analyzed (Yeh & Harne, 2019, p.1).

Most simulations of acoustic metamaterials demonstrate their superior performance in re-
ducing vibrations. However, there are still challenges to prove the effectiveness in acoustic
insulations. On the one hand, it is not easy to build an exactly same simulation environment
as experiments. On the other hand, the idealized simulation conditions lead to the deviation
between simulation and experiment results.

In the following sections, firstly the properties and general parameters of acoustic metamateri-
als will be shortly claimed. After that, the typical 1D and 2D models of acoustic metamaterial
mainly for academic study will be illustrated. In the end, typical structures and designs of
acoustic metamaterials will be introduced.

3.1 Acoustic parameters

The propagation of sound waves through a medium is described by the acoustic wave equa-
tion. The acoustic wave equation in a homogeneous medium absent of a source is given by
(Ma & Sheng, 2016, p.1):

2p POP
P———7=0 3.1)

where P is pressure, and the two parameters are the mass density p and the bulk modulus
k. For acoustic metamaterials, bulk modulus and mass density are important parameters to
define their refraction index. In the following, both of them will be briefly explained.

3.1.1 Bulk modulus

Bulk modulus has an essential meaning to fluids. It reflects the compression resistance of an
object. In physics, the bulk modulus can be defined as:

K=p— 3.2)

where fl—g is the derivation of pressure with respect to density.

3.1.2 Mass density

The mass density can also be called just density. It is defined as mass per volume and changes
with the temperature and pressure value. In a fluid, the bulk modulus k and the density p
define the speed of sound c:

c=,/— 3.3)

Negative refraction of acoustic waves may be achieved with double negative acoustic meta-
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materials in which both the effective mass density and bulk modulus are negative (Li & Chan,
2004, p.1). The dipolar resonance of heavy inclusions coated with a soft material embedded
in a stiff matrix can result in a displacement of the center of mass of the metamaterial that is
out of phase with the acoustic wave, leading to an effective negative dynamical mass density
(Deymier, 2013, p.5).

3.2 Typical academic models in 1D and 2D

At the beginning, the researches of acoustic metamaterials are mainly based on academic
models, which actually don’t exist for real and work on a theoretical basis. For these mod-
els, scientists have found several analytical solutions to analyze their physical properties. In
general, academic models of acoustic metamaterial can be divided into 1D and 2D. For each
category there is a typical structure in the literature. In the following subsections, each model
will be briefly introduced.

3.2.1 One-dimensional model

The typical one-dimensional model of acoustic metamaterial is the mass-spring-unit, which
can be regarded as a resonant unit cell of a metamaterial structure. The principle of this
model is based on the interaction between mass unit and basic plate by combining them with
a spring:

Figure 3.1: Principle of mass-spring-unit in 3D-version
(Nateghi et al., 2017, p.6)

In order to clarify the effect of this model mathematically, a simple one-dimensional coupled
oscillator under an external harmonic excitation force F(®) from the literature (Ma & Sheng,
2016, p.2) is considered. By regarding the motion equation, the following equations can be
derivated for the model (Ma & Sheng, 2016, p.2):

K
F = (Ml—I—W)Xl (3.4)
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Wy =/ K/M, (3.5)

where M| and M, are masses of structure. @y is the local resonance frequency of M;. xj is
displacement of M|, where the double overdot denotes a second-order time derivative. By
applying Newton’s second law, the system’s inertial response M(®) and the dynamic mass
density p can be then defined as (Ma & Sheng, 2016, p.2):

- K

p=1r/% (.7

where f is the force density, x is the sample (unit cell) displacement.

Figure 3.2: A spring-coupled mass-in-mass oscillator
(Ma & Sheng, 2016, p.3)

3.2.2 Two-dimensional model

There are different types of two-dimensional phononic crystals made of different materi-
als. The most common type is that made of solid and fluid materials. As exsamples, two
comprehensive 2D models from the book "Periodic Materials and Interference Lithography"
(Maldovan & Thomas, 2009) will be introduced. Because of different principles of mechani-
cal waves in the solid and fluid material, it is difficult to study the band gap of these models,
so that some approximations must be made in order to apply simple numerical techniques
(Maldovan & Thomas, 2009, p.198). It is assumed that the two-dimensional phononic crys-
tals extend infinitely in the xy plane.

The first type is vacuum cylinders in a solid background arranged on the square and trian-
gular lattices. In this model mechanical waves propagate only through the solid background
material. Therefore, in order to get the band gap of this model, the elastic wave equation for
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nonhomogeneous solid materials is considered (Maldovan & Thomas, 2009, p.195):

Jd J
V- (pch Vui+pct 5 2) + 5 ((pei —2pc7) v -u) = —p(0(K) 'y (3.8)

where p = p(r) is density, c; = cr(r) is transverse velocity, ¢ = ¢ (r) is longitudinal veloc-
ity. u = ui(r) is the spatial part of the displacement vector of the elastic Bloch wave.

Figure 3.3: Two-dimensional solid-vacuum phononic crystals
(Maldovan & Thomas, 2009, p.199)

The second type is solid cylinders in air arranged in the square and triangular lattices. Differ-
ent from the last model, in this model mechanical waves propagate as acoustic waves mainly
through the air region. Therefore, the propagation of these acoustic Bloch waves is governed
by the acoustic wave equation. Combing with the equation describing the Bloch waves, band
gap can be analyzed. Bloch waves can be described with following equation (Maldovan &
Thomas, 2009, p.203):

pi(r,t) = Refi(r)e K=k (3.9)

where fi(r) is a periodic scalar function, k is the wave vector.
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Figure 3.4: Two-dimensional air-solid phononic crystals
(Maldovan & Thomas, 2009, p.203)
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3.3 Typical structures and designs

Acoustic metamaterials have remarkable performance in vibration and noise insulation ap-
plications. In general, acoustic metamaterials can be divided into those periodic structures
with and without resonators, which are small masses attached on the host structure. Depend-
ing on the type of structure, the field of application can vary. In the following subsections,
diffetent typical structures of acoustic metamaterials based on the literature research will be
introduced.

3.3.1 Rod-type acoustic metamaterials

As an impressive geometric property, the rod-type acoustic metamaterials generally have a
structure arranged in axial periodicity. Due to this property the rod-type acoustic metama-
terials have excellent vibration reduction performance in the axial direction. In 2006, the
band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of
freedom are analyzed (Yu, Liu, Zhao, Wang, & Qiu, 2006, p.1). Recently in 2018, a sub-
structure is fabricated and clamped on a panel in order to evaluate the vibration reduction
effect (Oltmann, Hartwich, & Krause, 2018, p.1). The rod-type acoustic metamaterials are
expected to be widely used in the vibrational attenuation of transmission components. Ac-
cording to Wu et al., the rod-type acoustic metamaterials can be structurally divided into two
types (Wu, Ma, Zhang, & L., 2016, p.6):

e Two or more materials are arranged alternatively in the axial direction to form a peri-
odic structure
e [ocal resonance units distributed on the periodic structure

Figure 3.5: Two types of rod-type acoustic metamaterials according to Wu et al.
(Wu et al., 2016, p.6)

The first type of acoustic metamaterials can be considered as a one-dimensional spring-mass
system, and the second type can as a dynamic vibration absorber. From the perspective of
engineering application, the first kind of metamaterial structure is difficult to be applied. In
contrast, the application of the second type of metamaterial structure is relatively flexible (Wu
etal.,, 2016, p.6).
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Figure 3.6: Priciples of two rod-type acoustic metamaterials
(Wu et al., 2016, p.6)

3.3.2 Membrane-type acoustic metamaterials

The membrane-type acoustic metamaterials are generally composed of masses arranged on
the membrane cell unit. In order to get a better sound insulation effect, the cell size and
shape can be changed. The resonance frequency of the whole system is greatly affected by
the weight, quantity and position of the mass unit.

Membrane
Platelet

Figure 3.7: Single membrane with negative effective mass density
(Ma & Sheng, 2016, p.4)

The study of membrane-type acoustic metamaterials has a long history. In 2008 Yang et al.
have presented the experimental realization and theoretical understanding of a membrane-
type metamaterial with negative dynamic mass characteristics, operative in the 100-1000 Hz
frequency regime (Yang, Mei, Yang, Chan, & Sheng, 2008, p.1). In 2010 Naify et al. have
examined the transmission loss of membrane-type metamaterials to understand the effect
of material parameters on the resonant and peak transmission frequencies (Naify, Chang,
McKnight, & Nutt, 2010, p.2). In 2012 Mei et al. have presented a thin-film acoustic
metamaterial that aims to totally absorb low-frequency airborne sound at selective resonance
frequencies ranging from 100 — 1000 Hz (Mei et al., 2012, p.2). In 2014 Chen et al. have
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developed an analytical vibroacoustic membrane model to study sound transmission behavior
of the membrane acoustic metamaterial under a normal incidence (Y. Chen, Huang, Zhou, Hu,
& Sun, 2014, p.1). Recently in 2020, a finite element simulation for the acoustic-structural
interaction of the membrane-type acoustic metamaterial with eccentric masses is developed,
the results are validated experimentally (Lu, Yu, Lau, Khoo, & Cui, 2020, p.11).

Receiving plane

Membrane " { ]

Transmitting plane

—Mass

__Duct wall

Figure 3.8: Schematics of the simulation configuration for the membrane-type acoustic
metamaterial
(Lu et al., 2020, p.2)

3.3.3 Plate-type acoustic metamaterials

In 2012 Stenger et al. have designed, fabricated and experimentally characterized a broad-
band elastic free-space cloak in thin plates at acoustic frequencies (Stenger, Wilhelm, & Weg-
ner, 2012, p.4). In 2015 Nouh et al. have presented a theoretical and experimental investiga-
tion of the wave propagation and vibration attenuation characteristics of metamaterial plates
manufactured from assemblies of periodic cells with built-in local resonances (Nouh, Aldrai-
hem, & Baz, 2015, p.20). Recently in 2019 Wang et al. have studied the sound insulation
performance and mechanism of a simple large-scale plate-type acoustic metamaterial panel
by using finite-element-analysis (Wang, Chen, Zhou, Chen, & Ma, 2019, p.14).

The plate-type acoustic metamaterials are generally composed of periodic holes or resonators
with different shapes arranged on a plate. They are typical two-dimensional acoustic meta-
materials and have remarkable performance. According to Huang et al., the mechanism of
membrane- and plate-type acoustic metamaterials can be considered as (Huang, Shen, & Jing,
2016, p.3):
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(a) (b)
Fi] m
X X
F(1) F(1)
(c) (d)

Figure 3.9: Membrane or plate clamped in a waveguide: a) Without mass attached. b) With
mass attached. c) The corresponding mass-spring diagram for a). d) The
corresponding mass-spring diagram for b).

(Huang et al., 2016, p.3)

3.3.4 Other types

In addition to the three mentioned common acoustic metamaterial structures, there are some
other types of structures. In 2013, Chen et al. presented an acoustic meta-atom model of hol-
low steel tube (H. Chen, Zeng, Ding, Luo, & Zhao, 2013, p.1). In 2018, Guild et al. have pre-
sented and discussed a thin functionally-graded acoustic metamaterial sound absorber (Guild,
Rohde, Tothko, & Sieck, 2018, p.1). Recently in 2020 Rice et al. have analyzed a single
open kelvin cell and then determined a lossy Helmholtz model of the same structure (Rice,
Kennedy, Goransson, Dowling, & Trimble, 2020, p.1). They have also designed and manu-
factured a model based on a benchmark periodic metamaterial structure (Dowling, Flanagan,
Rice, Trimble, & Kennedy, n.d., p.1).

Figure 3.10: Schematic of acoustic meta-atom model of hollow steel tube: 2D and 3D model
(H. Chen et al., 2013, p.5)
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Figure 3.11: CAD Sample based on a Kelvin Cell; 3D-printed Sample based on a
benchmark structure
(Rice et al., 2020, p.9); (Dowling et al., n.d., p.12)

—

F"——“ﬁ

Figure 3.12: Compact 3D printed functionally-graded acoustic metamaterial sound
absorber, consisting of 3 sections
(Guild et al., 2018, p.2)
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4 Calculation methods and Finite-element-method in software

4.1 Calculation methods

In order to calculate the properties of acoustic metamaterials and to compare with the ex-
perimental results, scientists began to use mathematical methods to solve the metamaterial
problem. Generally, there are two parameters which can be analyzed both in experiments and
in numerical methods: the band gap and the noise prediction. For each parameter, there are
different methods for the calculation. The most applications of the acoustic metamaterial are
based on the analysis of the band structure. The band gap is characterized by the position
(center frequency) and the width of the band gap (Gupta, 2014, p.6).

For calculating the band structure, there are four typical methods: Plane wave expansion
method (PWEM.), Multiple scattering method (MSM.), Finite difference time domain (FDTD.)
method and Korringa Kohn Rostoker (KKR.) method. For the noise prediction, there are ap-
proaches such like: Finite Element Method (FEM.), Boundary Element Method (BEM.) and
Statistical Engergy Analysis (SEA.). Because the main focus in this thesis is to simulate the
dispersion curve, in the following four typical calculation methods for the band gap will be
explained.

4.1.1 Plane wave expansion method

PWEM. comes from electromagnetics by solving eigenvalue problem. It is based on the
Maxwell’s equations. PWEM. was primarily described by Dr. Danner (Danner, 2002) and
applied for photonic crystals. Later on, it is widely used for sonic crystals and in other
fields.

Plane waves are solutions to the homogeneous Helmholtz equation. These solutions are based
on a periodic environment. PWEM. was used in some of the earliest studies of photonic
crystals and is simple enough to be easily implemented (Danner, 2002). Maxwell’s equation
describes how electric and magnetic fields are generated. According to Faraday’s law of
induction the Maxwell-Faraday equation is:

JoB
VXE=——" 4.1)

where E and B are field vectors, and t is time. If it is assumed that the fields are time-
harmonic, then (Danner, 2002):

2
loxuxeE=%E 4.2)
€ c
where € is the relative permittivity. The goal is to find the energies and electromagnetic
field configurations that are allowed to exist in a periodic structure (Danner, 2002). That
means to solve for @ and the fields. The fields themselves and the dielectric function can be
expanded in Fourier series along the directions in which they are periodic (Danner, 2002).
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In real applications, the model will be simplified and then the calculation will be reduced
under some assumptions. By expanding through Fourier series the eigenvalue problem will
be solved. When the eigenvalues are calculated employing standard numerical methods, it is
straightforward to use the eigenvalues to find the allowed propagation frequencies, and the
eigenvectors to calculated the field distributions (Danner, 2002).

PWEM. is an efficient method to calculate the periodic structures by expanding in Fourier
series. From 1D to 2D there are plenty of applications based on PWEM. since 19th cen-
tury. Early in 2004 Shi et al. have combined the PWEM. with perfectly matched layers for
calculating band structure of photonic crystal slabs (Shi, Chen, & Prather, 2004, p.1). In
2011 Bin et al. have combined Cartesian coordinates and polar coordinates wave number
eigenvalue equations to calculate the band structure of the two-dimensional metal photonic
crystals (Bin, Wen-Jun, Wei, An-Jin, & Wan-Hua, 2011, p.1). In 2013 the students of TU
Graz applied the PWE on a specific photonic crystal: a two-dimensional, hexagonal arrange-
ment of air holes in a dielectric material (Application of the plane wave expansion method to
a two-dimensional, hexagonal photonic crystal, 2013, p.2).

25~
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Figure 4.1: Band structure of a 1D Photonic Crystal based on PWEM.
https://en.wikipedia.org/wiki/Plane-wave-expansion-method/media

4.1.2 Multiple scattering method

MSM. is used to explain the propagation of a wave through scatterers. Early in 18th century
scientists have already written articles about its theories. After that, researchers began to put
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it in real applications. The first important theory of MSM. was made by the German physicist
Paul Peter Ewald. Later on, it is widely used for electronic structure calculations.

The principle of MSM. is to derive the one-electron Green’s functions. In order to calculate
the band structure of photonic crystals, same like PWEM., the first thing is to solve the
Maxwell equations for the electric field (Zhang, Chan, & Sheng, 2001, p.2):

VXV XE(ro)—Kk*e(r,0)E(r,0) =0 (4.3)

where K and € is the position dependent dielectric function. This equation can be put into an
integral equation form (the dyadic Green’s function), instead of integrating over the outer sur-
face of the whole crystals, the integration can be carried out as the sum of surface integrations
over individual scatterers (Zhang et al., 2001, p.2):

Ep(r,) = Zj{dS’- (do(r—7) x (V' XE(r,0))+ (/' xdo(r—r)) xE(F,®)) (4.4

Under some assumptions this equation can be further reduced. Firstly it can be simplified
as a linear equation. After considering the Wronskian-like surface integral and applying a
Fourier transformation, the physical solution can be picked up by counting the number of
positive pseudo-eigenvalues for each frequency (Zhang et al., 2001, p.3). In 2006 Cai et al.
have analyzed the band structure of elastic wave propagating in a binary phononic crystal by
employing MSM. (Cai, Xiaoyun, & Xisen, 2006).

4.1.3 Finite-difference-time-domain method

The FDTD. is one of the most important methods to solve the electromagnetic problems.
It was first described by Chinese American mathematician K. Yee and then applied in vari-
ous fields. The most fascinating character of FDTD. method is that it can calculate a wide
frequency range.

The FDTD. method is a differential numerical modelling method, which is based on grids.
With this method 1D, 2D and 3D problems can be solved. The time-dependent Maxwell’s
curl equations are discretized for the rectangular grids, FDTD. updating electric and magnetic
field expressions can be then derived using time-dependent Maxwell’s curl equations (Singh
& Jain, 2012, p.6). In photonic band structure material where the dielectric constant is
periodically modulated, the electric and magnetic fields of the electromagnetic waves can be
described as (Dastjerdi & Ghanaatshoar, 2013, p.3):

En,k(r) = Mn,k(r)exp(ik’r>7”n,k(r+R) = un,k(r> 4.5)

H, i (r) = Vuk(r)exp(ik.r), Vi (r + R) = Vi (r) (4.6)

where E(r) and H(r) are electric and magnetic fields, n is band index, k is wave vector, R is
the lattice constant, u(r) and v(r) are periodic functions. Based on this equation, one can find
eigenvalues of the periodic structure for a given periodic boundary condition (Dastjerdi &
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Ghanaatshoar, 2013, p.3).

Similar works have been done after FDTD method was proposed. In 2000 Qiu and He have
studied a photonic crystal with a dielectric layer coated on a metallic cylinder as an inclusion
(Qiu & He, 2000). In 2004 Cao et al. have calculated the band structure of two-dimensional
phononic crystals based on FDTF method (Cao, Hou, & Liu, 2004). In 2007 Zhou et al. have
computed the photonic band-structure of three dimensional crystals based on FDTD scheme
(M. Zhou et al., 2007).
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Figure 4.2: Band diagramm based on FDTD.
(Dastjerdi & Ghanaatshoar, 2013, p.3)

4.1.4 The Korringa-Kohn-Rostoker Method

The KKR. method was proposed to analyze the electronic band structure of solid crystals
which are arranged in periodic forms. The real applications of KKR. method are not as much
as other methods. The principle of KKR. method is to solve the Green’s function by using
multiple scattering theory. Consider the Green function of a periodic array of spherically
symmetric, non-overlapping potentials, the Green function is defined as (Mavropoulos &
Papanikolaou, 2006, p.15):

(=2 +V"(r) = E)G(r+ R,/ + R";E) = =8, 8(r — 1) 4.7)

After considering the homogeneous Schrodinger equation and using a subsequent Fourier
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transform, it can be written as (Mavropoulos & Papanikolaou, 2006, p.16):

Gru(kiE) = Y G (E)e~ kB -R" 4.8)

Under some assumptions such as translational symmetry, this equation can be combined with
Dyson equation and then be solved (Mavropoulos & Papanikolaou, 2006, p.16).

4.2 Finite-element-method in software

The industry relies dominantly on the usage of computational software rather than analyt-
ically obtaining results from mathematical formulations (Ang, Koh, & Lee, 2016, p.17).
Because the analytical solutions always require complicated calculation process and need a
long time period, more and more scientists try to use simulation software to solve the meta-
material problem. In addition, the most of calculation methods for metamaterials are based
on electromagnetic domains and proposed to solve the electronic and magnetic problems. It
is difficult to transform them to solve the acoustic problems.

For acoustic metamaterial problems, the most softwares are based on Finite-Element method.
The Finite-Element method is the most widely used method for analyzing mathematical mod-
els. This analyzing process is also called Finite-Element analysis. In the following subsec-
tions, the mathematical principles of Finite-Element method will be explained. And the pos-
sible software which can be used to simulate the acoustic metamaterials will be illustrated.

4.2.1 Mathematical principles of Finite-element-method

Finite-Element method is an approximate numerical method developed based on the rapid
development of computer technologies, which is used to solve partial differential equation
problems with specific boundary conditions in mechanics and mathematics. The core princi-
ples of Finite-element method are numerical approximation and discretization. The general
steps of Finite-element analysis can be divided into following points:

e Discretization of the entire model structure

e Analysis of the unit mechanics

e Units assemblying

e Analysis of the entire model structure

e Applying boundary conditions

e Units assemblying

e Reaction of the entrie model structure

e Reaction analysis of a single unit within structure

The convergence study of discretization and unit characteristics is an important research field
of Finite-element analysis. In general, finite elements and the assembled entire structure can
be mainly divided into 1D, 2D and 3D elements:
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The main point of Finite-element method is to solve the partial differential equation of each
element and then combine to an assembled structure. For different problem cases, various
field equations are considered to solve the structure problem. These equations include for
exsample the conservation equations, classical equations of mechanics and equations of elec-
tromagnetism. For software applications, Finite-element method mainly focuses on the struc-
tural mechanics and fluid mechanics.

Figure 4.4: Finite-element discretization of radiator model
https://cn.comsol.com/multiphysics/fea-software

The concept of Finite-element method began several centuries ago and developed in these
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years quickly. With the rapid development of computer simulating technology, the Finite-
element method can solve various complicated problems. Abaqus and COMSOL ® Multiphysics
are among the latest software, which use Finite-element method to solve problems. Finite-
element analysis software can help to reduce the number of prototypes and test times in the
design and optimization processes, which leads to a cost reduction.

4.2.2 Possible software based on Finite-element-method

At present, there are two commonly used softwares which are able to simulate the acous-
tic metamaterials: Abaqus and COMSOL ®Multiphysics. In addition, the team from KU
Leuven has used LMS Virtual. Lab Acoustics to establish an acoustic environment and then
coupled with a Nastran structural solver and a Sysnoise acoustic solver to perform the needed
simulation process (Claeys et al., 2016, p.15).

Today, the realistic applications in simulating acoustic metamaterials by using software Ansys
are rare. It is difficult to create an acoustic environment and then couple with boundary
conditions. In order to calculate the band structure in Abaqus, it is necessary to establish two
single cells with identical meshing and boundary conditions. Recently in 2019, Dong et al.
have numerically simulated the dispersion relation of a metamaterial structure in ABAQUS
6.14-1 (Dong et al., 2019, p.7).

The most simulations of acoustic metamaterials are created in commercial software COM-
SOL ®Multiphysics. It is powerful and relatively simple to create an acoustic domain. Based
on that, different parameters and properties can be analyzed.

Early in 2011, Elford et al. have computed the band structure of a C-shaped locally resonant
sonic crystal (Elford, Chalmers, Kusmartsev, & Swallowe, 2011). In 2013, Chen et al. have
simulated 2D and 3D model composed of hollow steel tube (H. Chen et al., 2013). In 2019,
Wang et al. have analyzed the sound transmission loss of a large plate with and without
mass unit (Wang et al., 2019). In the same year, Dong et al. have simulated the acoustic
subwavelength imaging of a structure optimized by topology method (Dong et al., 2019).

An advantage of using COMSOL ® Multiphysics to compute the acoustic band structure is

the capability of modelling more complex scatterer geometries (Elford et al., 2011). More-

over, it can be easily extended with additional functional modules and has an external inte-

gration interface such as MATLAB. It is possible to set models through scripts, use MATLAB

functions in model Settings, conduct interactive modelling between COMSOL ®)Multiphysics
and MATLAB, analyze results in MATLAB and create model interfaces.
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5 Design and construction of prototype

Based on the literature research a prototype design is proposed. The idea comes from a
numerical study on the behavior of partition panels with micro-resonator-type metamaterials
(Amado-Mendes et al., 2018).

In order to put the prototype in an impedance tube, the base structure is designed as a circle
plate whose diameter matches the size of the impedance tube. On the one side of the plate,
there are some square holes in periodic arrangements. The basic design of the resonator is a
cube which directly connects to the bottom of holes.

Each resonator of this prototype can be considered as a mass-spring element. This numerical
modeling concept allows straightforward control of the resonance frequency of the first bend-
ing mode (Claeys et al., 2016, p.2) and can be applied with the Floquet-Bloch boundary con-
ditions, which enables modeling only a unitary cell of the periodic system (Amado-Mendes
etal.,, 2018, p.5).

Figure 5.1: Sketch of the first prototype

5.1 Physical principles

Conceptually the designed prototype is based on a mass-spring system. In this system the
propagating wave effect is reduced. The resonator can be considered as a small mass unit,
which is connected to the base plate. The plate is modelled as infinite in a longitudinal
(vertical) direction, with the incorporation of periodic discrete resonators (Amado-Mendes et
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al., 2018, p.5). With this concept, the following motion equation can be applied to the model
(Amado-Mendes et al., 2018, p.5):

Ku— o’*Mu=F (5.1)

where u is the displacement vector, K and M represent the stiffness and mass matrices, F is
the external forces, w is the angular frequency. By applying Floquet boundary condition, the
following relations between displacements of adjacent nodes are imposed (Amado-Mendes
etal., 2018, p.5):

Uy = uy e k@ (5.2)

where a is the spatial periodicity of the system, k, is the wavenumber in the periodic direc-
tion.
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Figure 5.2: Schematic representation of mass-spring system
(Amado-Mendes et al., 2018, p.5)

5.2 Design of demonstrators

In order to investigate and analyze the parameter influence of acoustic metamaterial on the
eigenfrequency, further different resonators in various forms and sizes are designed. In the
following pictures and tables, all designed models will be showed. All these models are
first drawn in a CAD software and then imported, finally printed by a 3D printer. The same
material resin (tough) is used for all models.

In order to study the effect of a single variable on the eigenfrequency more precisely, the
volumes of all models are kept at a fixed value (around 20 mm?>). The variables are: the
thickness of plate, the shape and size of resonators, the shape and thickness of holes on the
plate. For a better comparison of different models, each model is numbered according to their
characteristics.
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Figure 5.3: Model 1: Panel-Flat-Sides

Table 5.1: Parameters of Model 1

Parameter Value
Diameter of panel 40mm
Thickness of panel 16mm

Figure 5.4: Model 2a: Panel-4x4-Length6-T30; Model 2b: Panel-4x4-Length6




30

5 Design and construction of prototype

Table 5.2: Parameters of Model 2a

Parameter Value
Diameter of panel 40mm
Thickness of panel 30mm
Hole length x depth 6x20mm
Distance between holes 0.5mm
Table 5.3: Parameters of Model 2b

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 6x20mm
Distance between holes 0.5mm

Figure 5.5: Model 2c: Panel-Grid-Without-Resonator; Model 3a: Panel-Grid-13x13
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Table 5.4: Parameters of Model 2¢

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Table 5.5: Parameters of Model 3a

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 1.5x20mm
Distance between holes 0.5mm

Figure 5.6: Model 4a: Panel-Grid-5x5-Depth-5; Model 4b: Panel-Grid-5x5-Depth-10
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Table 5.6: Parameters of Model 4a

Parameter Value
Diameter of panel 40mm
Thickness of panel 17.7mm
Hole length x depth 4x5mm
Distance between holes 0.5mm

Table 5.7: Parameters of Model 4b

Parameter Value
Diameter of panel 40mm
Thickness of panel 19.2mm
Hole length x depth 4x10mm
Distance between holes 0.5mm

Figure 5.7: Model 5a: Panel-Grid-Cube-Fixed-On-Bottom; Model 5b:
Panel-Grid-Cube-Fixed-On-Bottom-5b



5 Design and construction of prototype

33

Table 5.8: Parameters of Model 5a

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Resonator length x width x height (cubic) I1x1x20mm
Table 5.9: Parameters of Model 5b

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Resonator length x width x height (cubic) 2x2x5mm

Figure 5.8: Model 6a: Panel-Grid-Cube-Fixed-On-Sidewall-6a; Model 6b:

Panel-Grid-Cube-Fixed-On-Sidewall-6b
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Table 5.10: Parameters of Model 6a

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Resonator length x width x height (cubicx2) |2x2x2.5mm
Table 5.11: Parameters of Model 6b

Parameter Value
Diameter of panel 40mm
Thickness of panel 22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Resonator length x width x height (cubic) 2x2x5mm

Figure 5.9: Model 7a: Panel-Grid-With-Cubic-Bridge; Model 7b:
Panel-Grid-With-Conical-Resonator
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Table 5.12: Parameters of Model 7a

Parameter Value
Panel diameter x thickness 40x22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Bridge Ix1x10mm
Resonator length x width x height (cubic) 2x2x2.5mm

Table 5.13: Parameters of Model 7b

Parameter Value
Panel diameter x thickness 40x22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Bridge Ix1x10mm
Conical resonator 3x4mm

Figure 5.10: Model 7c: Panel-Grid-Hemispherical-Resonator; Model 8a:
Panel-8x8-Length2.5
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Table 5.14: Parameters of Model 7c¢

Parameter Value
Panel diameter x thickness 40x22mm
Hole length x depth 4x20mm
Distance between holes 0.5mm
Bridge Ix1x10mm
Hemispherical resonator 3x1.5mm
Table 5.15: Parameters of Model 8a

Parameter Value
Panel diameter x thickness 40x22mm
Hole length 2.5mm
Hole depth 20mm
Distance between holes 0.5mm

Figure 5.11: Model 8b: Panel-5x5-Length4-Without-Bottom; Model 8c:
Panel-5x5-Length4-Lattice-Edges
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Table 5.16: Parameters of Model 8b

Parameter Value
Panel diameter x thickness 40x24mm
Hole length 4mm
Hole depth 24mm
Distance between holes 0.5mm
Table 5.17: Parameters of Model 8c

Parameter Value
Panel diameter x thickness 40x22mm
Hole length 4mm
Hole depth 22mm
Distance between holes 0.5mm

Figure 5.12: Model 9a: Panel-Cylindricalgrid; Model 9b:
Panel-Cylindricalgrid-Cube-Fixed-On-Bottom
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5 Design and construction of prototype

Table 5.18: Parameters of Model 9a

Parameter Value
Panel diameter x thickness 40x22mm
Hole diameter 4mm
Hole depth 20mm
Distance between holes 0.5mm
Table 5.19: Parameters of Model 9b

Parameter Value
Panel diameter x thickness 40x22mm
Hole diameter 4mm
Hole depth 20mm
Distance between holes 0.5mm
Resonator length x width x height (cubic) 1x1x20mm
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6 Simulation process
6.1 Theories for simulation process

In this section, various physical properties, which can be evaluated in the simulation process,
will be introduced. Moreover, the important physical principles and boundary conditions for
acoustic metamaterials will be described.

6.1.1 Physical properties
e The absorption coefficient:

The absorption coefficient describes the sound absorption effect of a metamaterial structure.
It can be written as the ratio of absorbed sound energy to incident sound energy. After consid-
ering the equation of motion and the continuity equation, the acoustic absorption coefficient
for normal incidence may be obtained as (Al-Zubi et al., 2013, p.3):

o = 4Re(z/poco) ©6.1)

(Re(z/poco) +1)? + (Im(z/poco)?)

In order to get the absoprtion coefficient in the simulation, some approximations such as
Rayleigh’s approximate energy method are taken into consideration. In 2013, Al-Zubi et
al. have simulated the sound absoprtion of different acoustic materials by using Abaqus and
Matlab and compared with experimental results, the performance of different materials vary
greatly (Al-Zubi et al., 2013).
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Figure 6.1: Sound absorption of some periodic cellular material structures based on Abaqus
and Matlab
(Al-Zubi et al., 2013, p.6)
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e Dispersion relation:

The dispersion relation describes the physical relation between wavenumber k and frequency
o of a structure. It is usually illustrated in a diagramm with the x-axis as wave number and
the y-axis as frequency. To some extent it reflects the band gap of a structure. By combining
an acoustic plane wave propagating equation and an acoustic wave equation, the relation
between the frequancy @ and the wave vector k of the acoustic plane wave can be given by
(Maldovan & Thomas, 2009, p.188):

=2 (6.2)
co

where ¢ is the velocity of the acoustic wave, which is determined by the mechanical prop-
erties: the wave length and mass density. In the literature, the dispersion relation of acoustic
metamaterials is limited to two-dimensional modeling. In 2011, Elford et al. have simulated
the band gap of a C-shaped locally resonant crystal by using COMSOL ® Multiphysics, it
shows that resonance bands can be combined to form broad regions of attenuation (Elford et
al., 2011).
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Figure 6.2: Band structure for a C-shaped locally resonant sonic crystal based on COMSOL
®Multiphysics
(Elford et al., 2011, p.4)

e Sound transmission loss:

At a specific frequenncy, sound transmission loss describes the reduction of sound intensity
caused by a structure. It can be defined as a ratio of the sound energy transmitted through a
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treatment versus the amount of sound energy on the incident side of the material (Wang et
al., 2019, p.4):

Win

out

STL = 10log( ) (6.3)

IR R

W, = ——— =
in ) p()C()’ out 2 000

(6.4)

where W, is incident sound energy, W, is transmitted sound energy. By giving the inci-
dent sound pressure value and the scanning frequency band range, the sound transmission
loss value of a specific structure can be calculated. In 2019, Wang et al. have simulated the
sound transmission loss of a plate-type acoustic metamaterial panel to analyze sound insula-
tion effect by using COMSOL ®Multiphysics, the simulation results are verificated by the
experiment (Wang et al., 2019).
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Figure 6.3: Results of STL. based on COMSOL ® Multiphysics
(Wang et al., 2019, p.31)

e Frequency response:

The frequency reponse of an acoustic metamaterial can be described as the measurement of
the frequency spectrum in response to a stimulus. In the simulation process, this stimulus
is usually given as a sound pressure or an external force. The governing equation can be
described in a matrix form as (Yeh & Harne, 2019, p.5):

(—w*M + joC+K)g=F (6.5)
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where F is the forcing vector, M is the mass matrix, K is the stiffness matrix, C is the damping
matrix. By simulating the frequency reponse of an acoustic metamaterial, the eigenfrequen-
cies of a structure within a specific frequency range can be analyzed. In 2019, Yeh and Harne
have simulated a series of cylindrical hollow tubes with different metamaterial inclusions
based on COMSOL (®)Multiphysics, the results are validated by experiments (Yeh & Harne,
2019).
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Figure 6.4: Results of frequency responses based on COMSOL ®Multiphysics
(Yeh & Harne, 2019, p.11)

6.1.2 The Brillouin zone and wave vector

The band structure can be obtained from the diagram of dispersion relation. The dispersion
relation describes the relation between eigenfrequency and wave vector of sound waves. It
can be written as a function depending on the variable k:

o = o(k) (6.6)
e Wave vector:

Wave vector is a physic definition, which represents the vector of a wave. It is a vector whose
magnitude is the angular wave number and whose direction is the direction in which the wave
travels. In one-dimensional problems, it can also be called wave number. Wave number is
the inverse of the wavelength. It is the number of waves per unit of length in the direction
of wave. In theoretical physics, the relation of wave vector and wave number can be written
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as:

= k| =27/A (6.7)

where A is the wave length. Wave vector is an important parameter for the wave equation.
In two-dimensional sound wave propagating problems, the wave vector of sound wave with
different magnitudes and arbitrary directions in defined plane must be considered.

e The First Brillouin zone (Reduced Brillouin zone):

The Brillouin zone was first proposed by the French physicist Leon Brillouin to divide the
region of wave vector space. All the waves in the periodic structure generate Bragg reflection
on the Brillouin boundary. For some waves, this reflection may cause discontinuous changes
in electron energy on the Brillouin boundary. Since the energy of the moving electrons and
magnetons of a complete crystal are all periodic functions of the reciprocal lattice, it is pos-
sible to use only the wave vector in the First Brillouin zone to describe the energy band. Due
to this the First Brillouin zone is also called the Reduced Brillouin zone.

In order to calculate the dispersion relation and to investigate the band gap, the first thing is
to determine the domain of the function, that is, to define the set of wave vectors required to
completely describe the propagation of two-dimensional waves (Maldovan & Thomas, 2009,
p-152). This set of wave vectors is also called the Brillouin zone. Only wave vectors within
the Brillouin zone need to be considered to plot the dispersion relation (Maldovan & Thomas,
2009, p.155). There are different methods to define Brillouin zones. In simple 2D models,
the Brillouin zone is usually considered as a square or hexagon:

a)
[ ] [ [ ] [ [ ] L
® « * —p «
| 4 L 4 L ] L 4
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Figure 6.5: The typical Brillouin zone for two dimensional models: a) Square Brillouin
zone; b) Hexagon Brillouin zone
https://en.wikipedia.org/wiki/File:Brillouin-zone.svg
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Due to the periodicity only a structural unit will be considered in the Brillouin zone. The
critical points in Brillouin zone are strictly defined. In general, I" is the center of Brillouin
zone, M is the center of an edge, X is the center of a face, K is the middle of an edge joining
two hexagonal faces.

k, ky
_ £

M

>k,

Figure 6.6: The critical points in two dimensional Brillouin zones
(Maldovan & Thomas, 2009, p.156)

6.1.3 The Floquet-Bloch boundary condition
e Bloch wave:

In infinite periodic structures, the propagating waves are also called Bloch waves, which can
be described with a periodic function. The propagation of acoustic Bloch waves within the
phononic crystal is governed by the acoustic wave equation (Maldovan & Thomas, 2009,
p-204):

1 1 ’
V- (-vp)=——75(ak)p (6.8)
P per
where p is the density, ¢ is the longitudinal velocity of acoustic waves within the phononic
crystal, p is the spatial part of the pressure of an acoustic Bloch wave propagating with wave
vector k within the phononic crystal. In order to get the dispersion relation, this equation

must be numerically solved.
e Floquet boundary condition:

Floquet boundary condition is one of the periodic boundary conditions. With periodic con-
ditions the surrounding environment of the unit cell can be ignored so that the simulation
models can be simplified. It can also be regarded as a property that can be generalized to
express the global property by the property of parts. In Floquet boundary condition, the field
values of source boundary and target boundary differ by a phase factor, which is determined
by the relative distance between wave vector and boundary. For the two-dimensional acoustic
models, each side of the model should be combined with Floquet boundary condition.
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Figure 6.7: Unit cell with Floquet boundary condition
(Elford et al., 2011, p.2)

6.2 Simulation steps

To visualize the sound insulation effect of acoustic metamaterial prototype and to com-
pare with the experimental results. It is decided to use commercial software COMSOL
(®Multiphysics to simulate the dispersion curve, which reflects band gap structure at a certain
frequency range. The focus of this thesis is try to build an exactly same model as the pro-
totype design and execute the corresponding analytical solution for the simulation process.
Due to the Floquet boundary condition the simulation model can be simplified and consid-
ered as a periodic structure. After defining the necessary coordinate system and parameters
to set up the Brilouin zone, the geometry and material properties of the model can be built up
in the correspongding physical module. In the end, the simulated results will be compared
with experimental results and then be optimized. The steps to simulate a model in COMSOL
®Multiphysics are strictly defined by the software developer, which is also a big advantage
of this software tool. In general, the simulation process can be described as the following
workflow:

Build Specify
Set l.Jp Model —p! Geometric p—p Cre_gte — Material
Environment . Definitions )

Objects Properties

!

Define Physics
<«— Run Study [e—] Create Mesh j&— Boundary
Conditions

Postprocess
Results

Figure 6.8: Workflow of simulation steps in COMSOL Multiphysics
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In the next, the simulation model will be built as the workflow described above. Since this
thesis is mainly about two-dimensional modelling, only several representative models will
be selected from chapter 4 for the simulation. Through simulation results the influence of
different parameters will be analyzed. The involved parameters are such as: shape, number
and size of holes on the plate, shape, size and location of resonators. All selected models are
simulated in a top view, so that 3D factors such as the thickness of the plate are ignored. In
the next, the model 2a, model 2¢c, model 5a, model 5b, model 6a, model 7b, model 9a and
model 9b will be simulated to analyze their band structure. In the following subsections, each
simulation step for the models will be explained.

6.2.1 Model environment

Since the main focus here is to research the properties of acoustic metamaterials, the pressure
acoustics module of the physical domain is selected for the simulation. In this physical mod-
ule the interaction within air dominates the acoustic interaction. In this module, the plate is
mainly modeled in the frequency domain through the Helmholtz equation, which reflects the
relation between frequency and wave vector:

1 k2
V(o (VP a) 45 = O (69)
keg = (%)2 —k (6.10)
—iw=2 (6.11)

where ¢ and p are sound speed and density of air, A is the wavelength. By giving the material
properties and solving the above equations the eigenfrequencies of the model can be obtained.
This pressure acoustics domain is set on the entire surface of the model. The wave numbers
out of plane and the initial pressure value are set as 0. In this step, the sound hard boundary
is automatically used for every side of model.

6.2.2 Geometric objects

As mentioned above the two-dimensional model is built based on the experiment panel. The
Floquet-Bloch boundaary condition can only be set on the straight side of model. Therefore,
in order to set the boundary conditions later, the basic panel is transformed into a square
with the side length 40mm in the simulation, which is same as the diameter of the panel. On
the surface of the square, different holes are built by removing the corresponding part. The
resonators are built by adding extra parts in the holes. The additional parts (resonators) are
then combined with the square. In this way they form an union so that the material properties
and physical properties can be set on it, which means they use the same material property and
physical property and move together as an entire part. In the following pictures, all simulated
models selected from the experiment are showed.
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Figure 6.9: Model 2a (left) and model 2c (right)

Figure 6.10: Model 5a (left) and model 5b (right)

Figure 6.11: Model 6a (left) and model 7b (right)
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Figure 6.12: Model 9a (left) and model 9b (right)

6.2.3 Definitions and parameters

In order to set up the first Brillouin zone, some parameters need to be defined at first. For
the physical parameter, L1 is defined as the side length of the first Brillouin zone, it is also
the side length of the simulation model. For the global variables, kx and ky are the direction
vectors of the wave vector k, which varies from O to 3. In the following table, the initial value
of k is set as 0.5.

Table 6.1: Global parameters for the simulation model

Parameter Value

L1 40mm

k 0.5

kx if(k<1,pi/L1*k,if(k<2,pi/L1,(3-k)*pi/L1))
ky if(k<1,0,if(k<2,(k-1)*pi/L1,(3-k)*pi/L1))

6.2.4 Material properties

In pressure acoustics module only the material properties of air are considered: density and
sound speed, which are determined by the physical formulas. These material properties are
set on the entire model surface including resonators, which directly contact with air. That
means, the material properties of the model itself has little influence on the results.
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Table 6.2: Material parameters for the simulation model

Parameter Value
density (rho) 1.29kg /m?
sound speed (c) 343m/s

6.2.5 Periodic boundary conditions

In order to set the Floquet-Bloch boundary condition, the first Brillouin zone must be defined
before that. In the first Brillouin zone the direction and calculation method of wave vectors
are defined. In this two-dimensional model only wave vectors kx and ky in x- and y-direction
are considered. Here the basic square is considered as the first Brillouin zone. Firstly a
coordinate system for the wave vector k is established in the basic square, the original point
is the center of the square. Since the band structure diagramm consists of three parts, the
definition of the wave vector k can be described as: k=0 at the center of the square, k=1 at
the center of the face, k=2 at the center of the edge, k=3 at the center of the square. The
dispersion relation is calculated in three parts: from k=0 to k=1, from k=1 to k=2, from k=2
to k=3. These three parts join together to form the band structure diagramm.

A

ky
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40mm o
k=0,3 =1 kx
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Figure 6.13: The Brillouin zone for the simulation model

For simulation models the Floquet-Bloch boundary condition is used. It is one of the impor-
tant periodic conditions and set twice on the two opposite sides of the square. The sound
hard boundaries are the contact boundaries between the air and model. In the following pic-
tures, the Floquet-Bloch boundary condition and sound hard boundaries of several models are
showed. For the models with resonators, the sound hard boundaries includes the boundaries
of resonators.
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Figure 6.14: The Floguet-Bloch boundary condition for the model 2c

Figure 6.15: The Floquet-Bloch boundary condition for the model 6a

Figure 6.16: Sound hard boundaries of model 2c (left) and model 6a (right)
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Figure 6.17: Sound hard boundaries of model 9b (left) and model 7b (right)

6.2.6 Meshing

In this step an extra fine mesh size is selected in order to get an accurate simulation result.
The meshing procecss depends on the physical domain and corresponding formulas, which
determines the smallest size of meshing unit. The square sides are extra selected, since the
Floquet-Bloch boundary condition is used. Then the boundary condition is copied to the op-
posite square sides. As the mesh form a free triangle meshing is set on the entire model area.
In the following pictures, the meshing of several models including mesh size and boundary
condition are showed as exsamples. The meshing size and conditions of resonators are same
as the basic square.

Figure 6.18: Meshing for the structure (left) and for the boundaries (right) of model 2c
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Figure 6.20: Meshing of model 6a (left) and model 9a (right)

6.2.7 Study

For the band structure analysis an eigenfrequency study is selected. At first a parameter
sweep is executed to set the wave vector variable k. It is defined to vary from O to 3, and the
two direction variables kx, ky change with it. The eigenfrequency numbers are set as 6, and
the target frequency is around 5000Hz.

Table 6.3: Parameter sweep for the wave vector k

Parameter Sweep

k range(0,3/36,3)
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In order to visualize the band structure, an one-dimensional diagramm is defined: the wave
vector k is the x-axis, the eigenfrequency is the y-axis with the unit Hz. The values of the
wave vector k are taken from the results of the parameter sweep. The eigenfrequency values
are taken from solutions of the simulation process. The simulation process of each model is
executed seperately. In the following subsections, the band structure diagramms of different
models are analyzed and compared.

6.3 Verification of simulation process

In order to prove the simulation process of this thesis is correct and widely applicable, a
normative structure of phononic crystals from the book "Periodic Materials and Interference
Lithography for Photonics, Phononics and Mechanics" (Maldovan & Thomas, 2009) is sim-
ulated to compare with the results in the paper. The comparison is showed in the pictures
below. It is obvious that the most important five eigenfrequency lines are successfully sim-
ulated. The stop band is easily recognizable. The most powerful advantage of this simula-
tion method is that it can automatically ignore the useless eigenfrequency lines, so that only
the import lines are showed in the diagrams, which leads to an intuitionistic visualization
of the band structure. The left diagram in the following picture is from Mohammadi et al.
(Mohammadi, Eftekhar, Khelif, & Adibi, 2010, p.5). The simulated eigenfrequencies are
marked with dark lines.
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Figure 6.21: Comparison of the band structure between the paper (left) and simulation
(right) in this thesis
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7 Simulation results

7.1 Diagrams of the dispersion relation

In the last section, totally eight models are simulated in 2D. In the follwing pictures, the
despersion relations of them are showed. The stop bands are marked in the diagrams and can
be summarized as:

Model 2a:
Model 2b:
Model 5a:
Model 5b:
Model 6a:
Model 7b:
Model 9a:
Model 9b:

The stopband is between 4900Hz and 5300Hz.

The stopband is between 5000Hz and 5500Hz.

The stopband is between 5200Hz and 5600Hz.

The stopband is between 4700Hz and 4800Hz.

The stopband is between 5000Hz and 5500Hz.

The stopband is between 4900Hz and 5500Hz.

The stopband is between 5000Hz and 5500Hz.

The stopband is between 4800Hz and 4900Hz.
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Figure 7.1: The band structure of the model 2a: with 4x4 holes and without resonators
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Figure 7.2: The band structure of the model 2b: with 5x5 holes and without resonators
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Figure 7.3: The band structure of the model 5a: with circle holes and without resonators
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7.5: The band structure of the model 6a: with 5x5 holes and with resonators in the
length of 2x2mm
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7.2 Discussion about simulation results

In the last section, the dispersion relation diagrams of all models are showed. In order to
analyze the influnce of single parameter on the results, at one time two of them are chosen
and compared to make sure that only one variable parameter exists. The analyzed parameters
are: with and without resonators, the form and shape of resonators, the size of resonators,
the form and shape of holes, and the position of resonators. After comparing the simulation
diagrams one by one, following sumarries can be made as the first conclusion:

If there are no resonators, the more holes in the model, the larger value of the stop band.
And the circular holes have a smaller frequency band range than square holes.

The square resonators with the size 1x1mm show a very small stop band range and an
unstable noise reduction effect, not only in square holes but also in circular holes.

The position of resonators has an influence on the frequency range. If resonators are
connected to the side wall of holes rather than bottom, the stop band range will be
smaller.

With the same position of resonators and the same holes, there are almost no difference
in the stop band between square resonators and circular resonators.

With the same holes, there are almost no difference between the stop band frequency
of the model with resonators and without resonators.
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7.3 Correlation between simulation and experiment results

In this section, the experimental results and simulation results of the same model will be
compared and analyzed. The main focus is to optimize the simulation process, so that the
results of simulation are as close as possible to the experimental results.
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Figure 7.9: Experimental results of model 2a and model 2b

By comparing these two diagrams from experiment, the stop band of the model with 4x4
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holes is between 3600Hz and 3850Hz, the stop band of the model with 5x5 holes is between
3725Hz and 3975Hz. The more holes in the model, the larger value of the stop band. This
conclusion is same to the simulation results. However, the frequency band values from ex-
periments are smaller than the simulation.
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Figure 7.10: Experimental results of model 5a and model 5b

By comparing these two diagrams from experiment, the stop band of the model with res-
onators connected to the bottom of holes is between 3850Hz and 4100Hz, the stop band of
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the model with resonators connected to the side wall of holes is between 3600Hz and 3800Hz.
The former has a larger frequency band range, which matches to the simulation. Different
from the simulation, the latter has obviously smaller stop band values.
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Figure 7.11: Experimental results of model 6a and model 7b

By comparing these two diagrams from experiment, the stop band of the model with square
resonators is between 3725Hz and 3925Hz, which is almost exactly the same as the model
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with circular resonators and same holes. This finding matches to the simulation but with
larger frequency values.
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Figure 7.12: Experimental results of model 9a and model 9b

These two diagrams of models with 1x1mm resonators from experiments show a good ab-
sorption of noise in the frequency range 3725Hz—3925Hz, which can not be found in the
simulation.
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¢ Similarities and differences of experimental and simulation results:

The overall variation trend and characteristics of the frequency band are the same. The exper-
imental results are generally smaller than the simulation. It should be noted that the influence
of some parameters can not be found and evaluated in the simulation results.

7.4 Potentials for convergence study

e Causes for the differences:

The main reason why the frequency band values are different in the experiments and simu-
lations is that the simulation model is only built in two-dimension. Some parameters which
have great influence on the 3D-model can not be considered, such as the connecting part
between resonators and holes, the depth of holes and resonators and the resonators which
consists of several parts. Moreover, the simulation environment is idealized, that means, the
interference of environmental factors was ignored, which leads to a larger frequency band
value. Further more, by using the Floquet boundary condition the model is assumed to be
periodically infinite, which is different from the experiment panel.

¢ Potentials for the convergence study

Firstly, for the model with smaller resonators in the length of 1mm, the mesh size of the
resonators can be selected smaller to get an even finer meshing. With a finer meshing the
interference of resonators with the basic structure can be better evaluated. Moreover, in order
to ensure the geometry of simulation models is as close as possible to experiments, the four
corners of model can be rounded to match the experiment panel.
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8 Convergence study

In this chapter, the convergence study is executed for several chosen models based on the
conclusion of last chapter. On the one hand, the models with smaller resonators in the length
of Imm are simulated with a finer meshing on the resonator surface. On the other hand,
the four corners of basic square can be rounded to match the experimental results. In the
following sections, the process of convergence study is showed and the results are compared
with the last chapter. In the end, further suggestions for the research of acoustic metamaterials
are summarized.

The principle of a convergence study is to find the most comprehensive result by changing
only one variable parameter. In the following, the process of convergence study is firstly
divided into two steps in order to keep only one variable parameter in each simulation. The
two parameters are: mehsing size of smaller resonators, model geometry. After each sim-
ulation, the results are compared with the last chapter in order to prove the effectiveness of
convergence study.

8.1 Convergence study of the meshing size for small resonators

In this section, only the parameter meshing size of resonators is changed. The meshing size
of other model areas remains with the size of old models. In order to take a more visualized
look, a single unit of resonators with the length of Imm is showed in different meshing sizes
in the following pictures. It is obvious that the number of triangle mesh units is much bigger.
There are two simulated models (5b and 9b) from the chapter 5 have those smaller resonators.
Each model is simulated with the finer meshing size and compared with the results from the
last chapter.

Figure 8.1: Comparison of different mesh size of resonators with the length of Imm: rough
mesh (left), finer mesh (right)
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In the pictures above the differences are showed between the model with rough and with finer
meshing. The first two pictures are results of model 5b, which has 5x5 square holes with the
small resonators. The last two pictures are results of model 9b, which has 5x5 circular holes
with the small resonators. It is obvious that with a finer meshing size of resonators the stop
band is wider and the frequency value is smaller, which means the eigenfrequeny values of
simulation are closer to the experiments. The stop band of improved model 5b is between
4000Hz—4250Hz. The stop band of improved model 9b is between 4250Hz—4400Hz.

o] e]e]e]e] 00000
o] e]=]e]e] 00000
o] e]e]e]e] 00000
o] e]e]e]e] 00000
(o] e]=]e]e] 00000

Figure 8.4: The simulation models with smaller resonators: model 5b (left), model 9b (right)

8.2 Convergence study of the model geometry

In this section, the model 2c and model 5a with 5x5 holes are taken as exsamples to prove the
effectiveness of geometry improvement. The four corners of those models are rounded with a
radius of 4mm, which is same as the hole length. Because the Floquet-Bloch boundary con-
ditions can not be applied on the curved sides, only the straight sides of model are considered
under the periodic boundary condition. The rest curved parts of sides are then automatically
considered as sound hard boundaries.
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Figure 8.5: Model 2c before optimization (left) and after optimization (right)
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Figure 8.6: Model 5a before optimization (left) and after optimization (right)

Figure 8.7: The Floquet-Bloch boundary conditions of optimized model 2¢

Figure 8.8: The Floquet-Bloch boundary conditions of optimized model 5a
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Except geometry and the Floquet-Bloch boundary condition of the simulation model, other
parameters and properties remain unchanged comparing with the old model. By comparing
the results before and after optimization, it is obvious that the stop band range is becoming
bigger, and the minimum value of eigenfrequency is smaller, which is closer to the experi-
mental results. The stop band of model 2c after optimization is between 4900Hz-5600Hz.
The stop band of model 5a after optimization is between S000Hz—-5700Hz. In the following
sections, the optimization process will be discussed and summarized. The challenges in sim-
ulating acoustic metamaterials will be illustrated. Some opinions for the future work will be
suggested.



72 9 Discussion and summary

9 Discussion and summary

9.1 Discussion of results

To sum up, the overall variation trend and characteristics of the frequency band in the sim-
ulation are same as experiments. However, the eigenfrequencies of experiments are gener-
ally smaller than the simulation. Moreover, the influence of some parameters specially for
three-dimensional models can not evaluated in the simulation. It can be concluded that the
simulation results agree with experimental results.

In the last chapter, two improvement methods are applied in the simulation process to match
the experimental results. For the model with small resonators in the length of 1mm, the
meshing size of resonators are reduced. For the model without resonators, four corners of
basic square are rounded with a radius of 4mm. However, each method has its advantages
and disadvantages. The first method can only be used for the model with relative small
resonators, whose mesh units are much fewer than basic model panel. For the model with
normal resonators, the meshing of resonator is just as same as the basic model. For the
moment another method can only be applied for the model without resonators, the curved
corners have to some extent influence on the eigenfrequency of resonators.

Obviously, both improvement methods can eliminate the influnence of some factors on sim-
ulation results. With them the simulation results are more closer to the experiments. Nev-
ertheless, none of them is perfect and can be applied for all kinds of models. As a result,
there are still improvement potentials in the field of simulating acoustic metamaterials. In the
following section, the challenges and suggestions will be explained.

9.2 Conclusion and outlook

Still, there are some challenges in the simulation of acoustic metamaterials:

e For the dispersion curve, the most simulations in literatures are achieved based on
two-dimensional models. It is necessary to execute simulations with three-dimensional
models, which match experimental prototypes. However, in order to simulate three-
dimensional models for the dispersion curve, for each face and side of models the cor-
responding boundary conditions and initial conditions must be considered, which is still
a challenge for today’s work. Moreover, the most important factor for dispersion curve
is the Floquet-Bloch boundary condition, which is mostly based on two-dimensional
corordinate systems.

e In this thesis, only the band gap is compared with experiments as the results of sim-
ulations. For the most simulation models in the literature, it is difficult to get both
dispersion curve and sound transmission loss. These two properties are based on dif-
ferent principles and formulas. But for a more powerful and persuasive result it is
necessary to simulate both properties with a same model in the future work.

e Commonly, there are deviations between experimental and simulation results, whether
the simulated property is dispersion curve or sound transmission loss. On the one
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hand, the model itself can lead to this deviation, since the manufacturing method (for
exsample 3D-printing technique) has errors, if the geometry of prototype is relatively
small. On the other hand, the simulated environment is idealized, which is different
from experimental environment. During experiments there are unavoidable constrains
and influence factors. So it is necessary for the future work to build up a simulation
environment which is as close to experiments as possible.
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