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Abstract 
Proteomics, transcriptomics, genomics, and phenomics are well-established scientific fields that 

contribute in their own way to the research of life and disease and in particular, cancer research. 

However, studying the data and results from only one omics-type will only reveal part of the bigger 

picture of what is happening inside a cell. Several methods have been developed for multi-omics 

data integration, however, they are either computationally expensive standalone tools or libraries 

that require programming expertise for their usage and the incorporation of results into further 

analyses. This cumulative thesis consists of two original publications that address the need for an 

online resource that supports scientists and clinicians with real-time multi-omics data integration, 

data analysis and visualization tools. 

The first publication presents the initial status of ProteomicsDB, a quantitative proteomics 

database, and describes the extension of the platform to support new omics-types. These data 

required the design of new data models to solve the challenge of storing and connecting 

information from multiple omics types and data sources using different identifier schemes. As a 

result, two generic data models were implemented, one for the storage of quantitative omics 

expression data and one for the storage of cell viability studies. To overcome the identifier 

mapping challenge and to enable combined data analysis, a third model was implemented 

allowing inter-connections with the proteomics data already existing in the database. The data 

model consisted of a composition of so-called triplestores along with tables that store metadata 

for each identifier. The generality of this data model allowed to capture any kind of relations 

between identifiers, such as protein-protein interaction networks as well as pathway data. 

The second publication extended the data wealth of the platform with additional proteomic, cell 

viability, drug-target and meltome data. In addition, the available protein properties were 

expanded with results from a new cellular assay containing protein turnover data. To support the 

interpretation of the new data types and assays, the user interface of the platform was extended 

with suitable visualization tools. The vast amount of data stored in ProteomicsDB enabled the 

development of integrative online tools, like the mRNA-guided missing value imputation method 

for protein expression data and the machine learning-based prediction of cell viability upon drug 

treatment based on protein expression data. The presented version of ProteomicsDB also enables 

users to upload custom expression datasets and analyse them alone or in comparison to stored 

data, using the analytics toolbox of the platform. Finally, all functionalities of the platform were 

extended to support data from any organism, transforming ProteomicsDB into a multi-omics and 

multi-organism resource for life science research.  
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Zusammenfassung 
Proteomik, Transkriptomik, Genomik und Phänomik sind etablierte Forschungsbereiche, die zur 

Erforschung von Krankheiten und speziell zur Krebsforschung beitragen. Daten und Resultate 

eines einzigen Omics-Typs offenbaren jedoch nur einen Bruchteil der Vorgänge auf zellulärer 

Ebene. Um Daten mehrerer Omics-Typen, sogenannte Multiomik-Daten, zu integrieren, wurde 

eine Vielzahl von Methoden entwickelt. Diese teilen sich auf in rechenintensive Stand-alone 

Programme und Programmbibliotheken, welche für die Nutzung und weitere Verwertung der 

Ergebnisse Programmierkenntnisse voraussetzen. Diese kumulative Arbeit besteht aus zwei 

Veröffentlichungen, die auf den Bedarf von Wissenschaftlern und Klinikern an einer Online-

Ressource eingehen, welche Echtzeit-Multiomik-Datenintegration sowie Datenanalyse- und 

Visualisierungstools unterstützt. 

Die erste Publikation präsentiert den initialen Status von ProteomicsDB, einer quantitativen 

proteomischen Datenbank und beschreibt die Erweiterung der Plattform um neue Omics-Typen. 

Für die herausfordernde Speicherung und Verknüpfung verschiedener Omics Datentypen aus 

unterschiedlichen Quellen mit verschiedenen Idenfikationsbezeichnugen wurden neue 

Datenmodelle nötig. Als Lösung wurden zwei Datenmodelle implementiert, eines für die 

Speicherung quantitativer Omics-Expressionsdaten und eines für die Hinterlegung von 

Zellviabilitätsassays. Als Lösung für die Problematik des Abgleichs von Idenfikationsbezeichnugen 

wurde ein drittes Datenmodell implementiert, welches nun deren kombinierte Analyse und die 

Verknüpfung zu den bereits gespeicherten proteomischen Daten ermöglicht. Die verwendete 

Modellierung bestand aus der Kombination von sogenannten “Triplestores” und Tabellen, welche 

Metadaten für jeden Eintrag enthalten. Die resultierende allgemeine Anwendbarkeit erlaubt die 

Speicherung von Beziehungen jeglicher Art zwischen den Einträgen, wie zum Beispiel Protein-

Protein-Interaktionsnetzwerke oder die Abbildung von Signalwegen. 

Die zweite Publikation erweiterte die Datenmenge der Datenbank um zusätzliche proteomische 

Daten, Zellviabilität-, Protein-Wirkstoffinteraktions- und Meltomedaten. Die gespeicherten 

Proteincharakteristiken wurden um die Ergebnisse eines neuen zellulären Proteinumsatzassays 

erweitert. Weiterhin wurden die Visualisierungsoptionen der Plattform um zusätzliche 

Darstellungen für die neuen Datentypen und Assays erweitert. Die riesige in ProteomicsDB 

gespeicherte Datenmenge ermöglichte die Implementierung von omic-übergreifenden 

Onlinetools, wie eine mRNA-basierte Methode zur Imputation fehlender Proteinexpressionswerte 

und die von maschinellem Lernen gestützte Vorhersage der Zellviabilität nach 

Medikamentenbehandlung, die basierend auf Expressionsdaten von Proteinen realisiert wurde. 

Die beschriebene Version von ProteomicsDB ermöglicht es außerdem den Nutzern eigene 

Expressionsdatensätze hochzuladen und diese allein oder im Vergleich mit den hinterlegten Daten 

mittels der bereitgestellten Werkzeuge zu analysieren. Desweiteren wurden alle Funktionalitäten 

der Plattform erweitert um Daten von anderen Organismen zu unterstützen, was ProteomicsDB 

in eine omics- und organismus übergreifende Plattform für die Biowissenschaften transformiert. 
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1 From genes to proteins to disease 
Living organisms, prokaryotes and eukaryotes, unicellular and multicellular, are strongly 

dependent on the accurate and continuous flow of information that allows proper cellular 

function, including cell growth, replication and death. Following the central dogma of biology (1), 

information is encoded and decoded at different levels, starting from the “blueprint” of a cell, the 

genomic information that is encoded in the deoxyribonucleic acid (DNA). Information here is 

compressed, as a small number of genes in any organism will produce, via the transcription 

process, a larger number of ribonucleic acid (RNA) molecules. The human genome, for example, 

consisting of around 20,000 genes (2), can produce 70,000 to 100,000 RNA molecules, because of 

alternative splicing in a wide range of abundance values (3). This number increases, even more, 

when sequence mutations occur, resulting in a larger number of translated proteins. This number 

is not the final, though, as the number of proteoforms (4), is larger (5). Proteins and proteoforms 

can further undergo post-translation modifications. These modifications can happen on side 

chains of amino acids and play an essential role in many cellular processes, such as signalling or 

regulatory processes, as well as in protein homeostasis since most post-translational modification 

are reversible. Proteins are expressed in different subcellular organelles, in different abundances, 

and exhibit different degradation rates (6,7). Moreover, proteins do not act alone; they interact 

with each other and form complexes. Proteins and protein-complexes interact with each other as 

well as with RNA molecules and the surrounding environment in such a way that they ensure the 

normal function of the cell. The health of a cell and, subsequently, of the full organism, is highly 

dependent on this fine-tuned environment. Any alteration or blocking in these interactions or 

change in a protein’s abundance can affect the normal cycle of a cell, resulting in different 

phenotypes (8). The state, where the regular flow of information in a cell is disturbed, causing 

changes in protein expression or existence is defined as a disease (9). 

A disease can be caused at any level of the central biological dogma (1). A single nucleotide 

substitution, addition or deletion, also called a mutation in the genome sequence can have 

different effects. For example, it can alter a start codon on the 5’ UTR of a gene, with the effect of 

never transcribing this gene. Alternatively, it can introduce a stop codon much earlier, altering the 

length of the resulting transcript and protein. It can also introduce new codons altering the normal 

sequence of a protein and changing its function. As proteins are directly associated with changes 

in the phenotype, it renders the study of the proteome of high importance with the aim to identify 

and cure diseases or at least try to slow the process. Current technological advances enable the 

full proteome acquisition from a sample. Several studies have been published exploring the full 

proteome of organisms to identify which genes are expressed and in which tissues and quantities 

(10,11). All these studies, though, suffer from the fact that not all proteins are yet detectable. 

Either because they measure peptides and try to infer protein existence and abundance, 

introducing uncertainty during the procedure, or because they are of really low abundance or 

length, making them harder to find. The existence of miRNA molecules in a tissue can also have 

an effect, as they might silence genes and consequently suppress the expression of a protein 

(12,13). Thus, by studying the proteome alone might provide an incomplete picture of what is 

happening inside a cell, tissue, or organism in the state of a disease. Proteomics can benefit from 

transcriptomic and genomic advances, technologies and studies to complement the space of 

missing protein expression. Phenomics can also contribute to the above cooperation, as changes 

on any level, genome, transcriptome and proteome can be correlated and associated with changes 
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in the phenotype of the same tissue-sample, upon exposure on the same conditions. However, 

each omics field has a different starting point in the research history, placing them at a different 

level of advancement. Every technique, though, has its benefits and should be considered equally 

in order to achieve a better understanding of the life inside a cell, a tissue, or even an organism. 

To be able to integrate data from different omics-types, there is the need to understand how each 

omics field is functioning and the technologies that are used. 
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2 Multi-omics technologies 
In the past two decades, various omics technologies have contributed to detecting genes or 

biomarkers, with genomics and particularly transcriptomics leading the field so far. Biomarker 

research can further benefit by including information provided by other omics fields, such as 

proteomics with the study of deep proteomes, or phenomics in collaboration with drug-target 

interaction information. Below follows a description of the technologies that are covered in this 

thesis and the way that information gets generated. 

2.1 Transcriptomics 
Although genomics is an interesting field as it focuses on the structure evolution and function of 

genomes, it provides no information on gene expression. As described earlier, a genome contains 

all possible genes that exist in a cell; not all of them, though, are expressed, and if so, they are not 

of the same abundance. Stretches of the DNA that contain genes and encoded information are 

transcribed into RNA during transcription. The field that studies the function and abundance of 

RNA molecules is called transcriptomics and provides the first sight of gene expression. Two of the 

most prominent transcriptome profiling technologies are microarrays (14-17) and RNAseq (18). 

2.1.1 MicroArray  
A typical microarray experiment (19) is illustrated in Figure 1.1. The first step is the extraction of 

the total RNA from a biological sample. The mRNA is then poly-A enriched (20,21) and reverse 

transcribed to complementary DNA (cDNA) using fluorescently labelled nucleotides (22). 

Afterwards, the labelled mRNA is hybridized to a microarray. A microarray consists of probes, 

which are collections of oligonucleotides, complementary to the cDNA sequences that are 

targeted. These probes are then attached to a predefined grid. During hybridization, each probe 

will bind preferentially to perfectly complementary cDNA molecules. That will cause different 

amounts of fluorescence across regions, which can then be read with a laser scanner. The intensity 

of the fluorescence and the position in the grid are then associated with the cDNA sequences and 

their quantity in the measured samples. 

 
Figure 1.1 A typical MicroArray experimental workflow. Acquired and adjusted from (19). 
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Because of the technology and the materials that are used for the quantification of microarray 

data, several types of noise are introduced. This requires further data curation before any analysis 

can start. Data preprocessing includes but is not limited to background noise filtering, cross-

hybridization adjustment in the case of non-specific binding of cDNA to the probes, as well as 

removal of unwanted variance, also known as batch effect (23), within or across microarray 

experiments. Several normalization methods have been proposed, such as the Robust Multiarray 

Average (RMA) normalization, which assumes that most of the transcripts do not show differential 

expression between conditions and normalizes all microarrays simultaneously. A modification of 

this method, GCRMA (24), also uses position-specific effects, as it is observed that the nucleotide 

sequence plays an essential role in the binding affinity of the probes to the targets. MicroArray 

technology offers great sensitivity and good throughput. However, it is limited to the amount of 

analytes on the chip. In short, MicroArray chips provide information about the quantity of a 

specific set of transcripts in a sample, with no sequence information, however. 

2.1.2 RNAseq 
The RNAseq technology compared to MicroArray chips is unbiased, as it does not require a 

preselection of probes. Besides, RNAseq offers not only quantification of the existing transcripts 

in a sample but also sequencing. Similarly to a microarray experiment, in an RNAseq experiment, 

the first step is the isolation of the total RNA from the biological sample and the reverse 

transcription to cDNA, excluding the labelling step. The cDNA is then fragmented into short 

nucleotide sequences. The generation of these short nucleotide sequences can also be achieved 

by mRNA fragmentation, followed by reverse transcription into cDNA. Both 3’ and 5’ ends of these 

fragments are ligated to short DNA adaptors, which contain functional elements for the 

sequencing, e.g., the primary sequencing site. The obtained cDNA library is then analyzed by an 

NGS platform, such as the widely used Illumina (see review (25)). The outcome of the sequencing 

is millions of short reads that correspond to either one or both ends of the fragments. The length 

of these sequences varies from tens to hundreds, depending on the technology that was used 

(26). The temporal and financial cost of the sequencing depends on whether there was used 

single-read or paired-end sequencing methods, with the second being the more expensive and 

time-consuming. The reads, or short sequences, are then mapped to the reference genome of the 

organism, and in particular, the reads are assigned to the exons that they correspond to. 

The standards for quantification of the transcripts have been modified during the years, starting 

with RPKM and FPKM values, to RSEM, and finally, TPM values. RPKM stands for Reads Per 

Kilobase of transcript, per Million mapped reads and scales by transcript length taking care of the 

fact that longer RNA molecules generate more sequencing reads in most of the RNAseq protocols. 

It is calculated, as shown in Equation 1.1. 

 

𝑅𝑃𝐾𝑀 =  
𝑛𝑢𝑚𝑅𝑒𝑎𝑑𝑠 ×  103  × 106

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑅𝑒𝑎𝑑𝑠 × 𝑔𝑒𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ
 (1.1) 

 
In the case of paired-end RNAseq data, although a sequenced molecule comes from a single cDNA 

fragment, it can generate two reads. FPKM stands for Fragments Per Kilobase of transcript, per 

Million mapped reads, and uses the same formula for the calculation by replacing the number of 

reads with the number of fragments. RPKM and FPKM values have the disadvantage that they will 

not always sum up to one million, meaning that a transcript’s abundance level might be affected 

by the average transcript’s length in the measured sample. This is not the case for Transcripts Per 
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Million (TPM), where the sum of all transcripts should always add up to one million (Equation 1.2). 

There are many cases though that a single read can map to more than one gene or transcript. For 

these uncertain mappings, a method was proposed by (27), called RNAseq by expectation 

maximization (RSEM). This method uses a statistical model that derives from the sequencing 

process, allowing that way modelling of non-uniform read distributions. 

The transcriptomics data that were used in this thesis are normalized using the TPM quantification 

method. 

𝑇𝑃𝑀 = 𝐴 ×  
1

∑ 𝐴
× 106, 𝐴 =  

𝑡𝑜𝑡𝑎𝑙𝑁𝑢𝑚𝑅𝑒𝑎𝑑𝑠 ×  103

𝑔𝑒𝑛𝑒𝐿𝑒𝑛𝑔𝑡ℎ
 (1.2) 

 

2.1.3 A reason to move beyond transcriptomics 
Transcriptomics is a high-throughput and robust technology. Both methods described above 

provide a dense expression matrix with only a few or no missing values. However, in all cases, the 

actual result of these experiments is the quantification of the transcribed genes in a sample. There 

is no information about whether this transcript is then translated to a protein and to which 

abundance. Transcript existence and abundance information is still important and has many 

applications in diagnosis or patient classification, for example, in oncology (28). In order to find 

what is happening in a cell, it is necessary to dig deeper and study the existence, abundance levels, 

and function of proteins. 

2.2 Proteomics 
The entire set of proteins and proteoforms that are expressed or modified by an organism 

constitute the proteome. Proteomics is the field that studies the proteome, its function, and 

alterations under the effect of drug treatment or biological phenomena like disease, e.g., 

oncogenesis (29). In comparison with other omics-types, as described by (30), “the proteome is 

the expressed protein complement of a genome and proteomics is functional genomics at the 

protein level”. The accurate identification and quantification of the proteins that are expressed in 

a cell or tissue or, in general, in a sample across different conditions, enables the protein 

expression pattern recognition. By studying those patterns, modules can be identified (31) and 

related to phenotypes or disease states. Genomics and transcriptomics are two powerful fields 

with well-established technologies. In both these fields, molecule amplification is an advantage 

for the later identification and quantification of genes or transcripts. This step is not possible in 

proteomics, though, as no technique exists that would amplify proteins prior to their detection. 

This can cause issues, as it gets harder to detect the low abundant proteins in a sample. Various 

methods have been established to address the issue with the sensitivity required for the detection 

of such proteins, such as antibody-based affinity approaches (32). Each antibody is specific to a 

target. That makes antibodies a valuable tool for tracing, identifying, and quantifying the 

expression of certain proteins in a sample. Some of the most common assays are Western Blot 

(33,34) and Enzyme-Linked Immunosorbent Assays (ELISA) (35,36). Despite the sensitivity of the 

antibody-based assays, antibodies are cross-reactive with non-target proteins, which limits the 

number of proteins that antibodies are highly specific. Mass spectrometry-based approaches 

(37,38), are capable of identifying and confidently quantifying proteins in their whole expression 

dynamic range. This enables not only the detection of low abundant proteins but also full protein 

expression profiles comparison across multiple samples and experiments, with the ultimate goal 
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to study protein expression behaviour and find differences among healthy and/or disease 

biological samples. 

2.2.1 Mass spectrometry-based proteomics 
There are two most dominant approaches when it comes to mass spectrometry-based 

proteomics. The “top-down” approach, where intact proteins are measured and the “bottom-up” 

approach, also referred to as shotgun proteomics, where proteins are digested into peptides using 

a proteolytic enzyme (e.g., Trypsin), which are then measured. Proteins are quite diverse 

regarding their biochemical properties, which makes the preparation of the samples as well as the 

data acquisition in the top-down approach challenging. In bottom-up proteomics, this complexity 

gets reduced as the peptides, can be further separated using online or offline liquid 

chromatography (LC). Here, peptides with different physical or chemical properties, such as 

hydrophobicity, are bound to reverse phase material and eluted at varying concentrations of an 

organic solvent, commonly referred to as retention time. As a previous step, peptides that bare 

specific modifications, for example, phosphorylated peptides, can be enriched by first passing the 

mixture through a titanium dioxide capillary column, also referred to as IMAC enrichment (39,40). 

This thesis will focus on the bottom-up approach, as all data that was used or processed in the 

scope of this thesis were produced by this approach. 

2.2.2 Mass spectrometry 
A typical mass spectrometer (MS) consists of the following three parts: the ion source or ionizer, 

the mass analyzer and the ion detector. The most commonly used ionization method is 

electrospray ionization (ESI). A fine needle, also called the emitter, is coupled online with the LC, 

and a high voltage is applied between the needle and the MS, which allows the peptides to be 

ionized at atmospheric pressure, and the ions are transferred into the high vacuum of the MS. 

Positive ESI spray creates peptide ions that are mostly of charge two and above. Introduction of 

LC additives, for example, DMSO (41), can enhance the peptide ionization. The ions in the high 

vacuum of the MS can be manipulated using electrical fields and separated by their mass to charge 

ratio (m/z) by the mass analyzer. Several mass analyzers exist and are commonly used.  

Ion traps consist of four parallel rods-electrodes, where direct current (DC) and alternating current 

(AC) is applied on opposing rods. This mechanism is used to confine ions in space while they 

trapped in a spiral-like secular motion. Ions are sequentially ejected from the ion trap and hit a 

detector that records the induced current. 

Quadrupoles (Q) have the same structure with ion traps, but, in contrast to the latter, a radio 

frequency voltage (RF) with a DC offset is applied between opposing rod pairs. That causes the 

ions with a specific m/z ratio to travel through the mass analyzer, while the rest of the ions have 

unstable trajectories and collide with the rods. They are usually employed as mass filters to select 

only one type of ion. Compared to the Ion traps, quadrupoles cannot store ions. 

Time of flight (TOF) mass analyzers make use of an electric field that accelerates ions in vacuum 

given the same kinetic energy. Lighter ions, having a higher velocity reach the detector earlier 

compared to heavy ions. Therefore the m/z of an ion is calculated from the time it needs to reach 

the detector. A longer drift distance will cause better separation of the m/z ratios, leading to more 

precise measurements. 

Fourier transform (FT) analyzers monitor the motion of the ions in a magnetic field. The ions, after 

excitation, orbit at their cyclotron frequency forming clusters. To determine the m/z of the 

oscillating ions, the induced image current gets recorded on two electrodes, which in turn get 
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Fourier transformed. Increasing the transient time, the resolution of the FT mass analyzer 

increases as the frequencies can be measured with high accuracy. 

Orbitraps belong to the family of FT MS. They consist of 2 homocentric electrodes. Between the 

outer and the inner electrodes, an electric field is applied. The injected ions start to orbit steadily 

in elliptical trajectories around the inner electrode, while their centrifugal force balances their 

distance from it. This causes ions with lower m/z to orbit closer to the inner electrode. At the same 

time, ions show an axial oscillating movement across the inner electrode. The frequency of this 

movement is recorded and used to calculate the m/z ratio of the trapped ions using Fourier 

transformation. Orbitrap mass analyzers are nowadays the most commonly used mass 

spectrometers due to their high resolution and superior mass accuracy. 

2.2.3 Tandem mass spectrometry 
Up to this point, all mass analyzers detect and measure the m/z ratio of the injected peptides, 

which corresponds to an MS scan, also known as MS1 scan. Measuring the mass of a single ion in 

MS1 cannot reveal the exact peptide sequence. In order to derive sequence information, further 

fragmentation of a peptide into shorter parts of the initial peptide sequence is needed (42). This 

process is called an MS/MS scan or MS2 scan. In an MS2 scan, there are two consecutive MS 

stages. The MS1 scan is used to record the mass of all peptides in a certain retention time point. 

The mass spectrometer selects and isolates a single ion population, also called the precursor, and 

proceeds into further fragmentation of the selected ion population using a fragmentation method. 

The most commonly used fragmentation techniques are the electron-transfer dissociation (ETD) 

(43), the higher energy collision-induced dissociation (HCD) (44) and the collision-induced 

dissociation (CID) (45). The fragment ions are then recorded in an MS2 scan. In the resulted 

spectra, sequence information can be read as the delta (m/z distance) between two fragment 

ions. 

2.2.4 Peptide identification 
Although the field is named proteomics and the ultimate goal is to identify and quantify proteins, 

in shotgun proteomics, peptides are the ones that get measured. The spectra that are collected 

from the mass spectrometers are assigned to peptides, and different statistical models and 

strategies are applied to ensure the quality of matching a spectrum to a peptide sequence or 

commonly called a Peptide Spectrum Match (PSM). Afterwards, the identified peptides get 

assigned to their proteins of origin following several rules, which will be described later. 

Database search and control for false discovery rate 
Two techniques can be applied for the identification of a spectrum. De novo sequencing is one of 

them, where the observer either performs manual spectrum interpretation, calculating the 

distance between abundant or obvious peaks in the spectrum and assigning them to the mass of 

amino acids or uses appropriate software and libraries (46). This approach is sensitive to errors 

and becomes more complicated in the cases that one or more modifications are present in the 

peptide. Even solving this issue though, manual annotation of a single spectrum is time-consuming 

and modern mass spectrometers produce thousands of spectra per hour of measurement, 

rendering manual spectra interpretation not optimal for large scale studies. Another approach, 

called the Database search, emulates the sample preparation in the wet-lab, by applying in-silico 

digestion using the cleavage pattern of the used protease. Having the in-silico peptide sequences 

at hand, all possible masses can be calculated that can occur by fragmenting this peptide along its 
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backbone. This will generate all possible theoretical 

spectra of the peptides that correspond to the target 

organism. A theoretical spectrum consists of peaks of 

unknown intensity and masses that were calculated 

with the procedure described above (Figure 1.2). For 

every acquired spectrum, this database of known 

theoretical spectra can be filtered by mass, as this is 

recorded and reported back from the mass 

spectrometer along with the spectrum, limiting the 

number of candidate peptides. A comparison of the 

acquired spectrum to the theoretical one and 

implementation of similarity scores will result in a 

PSM, where the best matching candidate has the 

highest score. This approach is much faster as the 

database needs to be created only once at the 

beginning of the identification process, and by 

utilizing computation power, thousands of spectra 

can be annotated in a very short amount of time. 

However, at this point, there are two types of errors that can occur: false negatives, which 

translates to a spectrum not being identified although it originates from a peptide in our sample, 

and false positives, which give us the wrong information of a peptide existing in our sample 

although it does not. The false positives or Type I errors should be avoided as they might lead to 

false hypotheses. 

The automated matching procedure solves the issue with time. However, it offers no control over 

the number of false assignments or, in particular, control over the false positives. For that reason, 

the target-decoy approach was proposed to offer an estimation of the False Discovery Rate (FDR) 

in a set of PSMs. The identification procedure stays mostly the same. The database with the 

theoretical spectra that was created earlier is now referred to as the target space. Shuffling or 

reversing the peptide sequences of the target space, gives us new false theoretical spectra which 

constitute the decoy space. The decoy spectra share the same peptide properties (e.g., precursor 

mass) with the target spectra. By combining the two databases (target and decoy) and continuing 

with the identification process, a spectrum generating a Type I error has 50:50 chance to match 

to a target or a decoy theoretical spectrum. Dividing the number of decoy hits after the database 

search with the number of target hits (Equation 1.3) gives us the false discovery rate. 

 

𝐹𝐷𝑅 =  
𝐹𝑃

𝑇𝑃 +  𝐹𝑃
 ≈  

𝑑𝑒𝑐𝑜𝑦 ℎ𝑖𝑡𝑠

𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑖𝑡𝑠
 (1.3)  

 
To control for FDR and find the lowest identification score that results in the desired FDR, PSMs 

by descending score and the FDR is calculated in each subset from the highest score to the current 

one. PSMs with a score higher or equal to the lowest score that corresponds to the selected q-

value cut-off are accepted.  

The theoretical spectrum approach lacks information about the intensity of the fragment ions in 

a spectrum. That alone might lead to false matches, increasing the false discovery rate, as the 

same theoretical spectrum might match more than one peptide sequences. This can be solved by 

Figure 1.2 A mirrored spectrum. The top 

spectrum is an experimental spectrum of the 

peptide sequence YLDGLTAER. The bottom 

spectrum is the theoretical spectrum of the 

same peptide. 
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substituting the theoretical spectra with experimentally acquired ones originating, for example, 

from synthetic peptides (47,48). However, creating custom libraries of experimental spectra for 

organisms where synthetic datasets do not exist yet, is time-consuming and expensive. Using 

these spectra from projects like ProteomeTools (47,48) as a gold standard, allowed the training of 

a deep neural network Prosit (49), capable of predicting peptide fragmentation accurately. As of 

now, Prosit can predict only unmodified peptide sequences, but there are efforts to extend the 

tool to all known modifications. Such a tool allows the full replacement of the theoretical spectrum 

databases with predicted spectra that include both mass and intensity information. 

2.2.5 Protein inference 
A protein consists of multiple peptides, but at the same time, a given peptide might be originating 

from multiple proteins. As in bottom-up proteomics peptides get measured and identified, it is 

not that straightforward to assign peptides back to their proteins of origin. Several rules and 

algorithms exist for protein inference. The Occam’s razor rule reports the minimum set of proteins 

that can explain all of the observed peptides. The anti-Occam’s razor reports all proteins that 

contain the measured peptides. Another way is to consider only the peptides that belong 

exclusively to one protein. The last method is the one followed for protein inference by 

ProteomicsDB and thus to the data that was used in this thesis. 

2.2.6 Quantification 
As with protein inference, protein quantification is inferred from their peptide quantification. Two 
approaches exist for quantification. In the first approach, label-based quantification, the peptides 
are labelled prior to their measurement, which introduces precise mass shifts, recognizable by the 
mass spectrometer. That allows measurement at the same time of multiple conditions and 
separate quantification in the same run (Figure 1.3). The second approach is called label free 
quantification and compares the results of two or more samples or conditions from separate runs. 
Several methods can be applied to extract the final abundance of a peptide from its acquired 
spectra. Spectral counting (50,51) is based on the fact that in data dependent acquisition, the most 
abundant peptide precursors are selected for further fragmentation and therefore trigger an 
MS/MS event. High abundant peptides produce stronger signal intensities and thus are selected 
more frequently. In intensity-based quantification(52), peptide abundance is calculated as the 
area of the extracted ion chromatogram (XIC) of the precursor ion over its elution profile. In that 
case, both the signal of the MS event and the one recorded from the MS/MS event can be used 
for quantification, rendering this method independent of any labelling technique. 
After calculating each peptide’s abundance, the estimation of protein abundance takes place. Two 
most commonly used methods for protein level summarization are the iBAQ (53) and the top3 
(54) methods. In iBAQ, the sum of all peptides intensities that correspond to a protein is 
normalized to the length of that protein. Top3 uses the sum of the intensities of the three most 
abundant peptides of a protein. (55) 
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2.3 Phenomics 
A rather interesting omics-type is phenomics, a field that is dedicated to the systematic study of 

phenotypes of an organism or tissue or cell line under several conditions. Recording the changes 

of a cell line’s phenotype after exposing it to different drugs or conditions and associating these 

changes to changes at the cell line’s proteome, can lead to the discovery of biomarkers, sets of 

genes or proteins that are highly associated with disease. The most dominant route to study 

phenotypic changes are cellular assays and in particular, cell viability assays. 

2.3.1 Cell line viability assays 
The most common cellular assays in the field are the cell line viability assays or also called dose-

response experiments. Here different drugs, alone or in combinations, in different dosages or 

dosage ratios (dose) are applied on samples of the same cell line to track the effect of the selected 

treatment on the viability (response) of the cell line. The readout of such assays is the cell survival 

or death in a sample. Cell viability assays can be grouped into four main classes.  

Dye exclusion assays are based on the fact that dead cells do not exclude dyes, in contrast to 

viable ones that do exclude them. Several dyes have been developed for this type of assays, 

including trypan blue, erythrosine B, eosin and Congo red with trypan blue being the most 

commonly used (56). Staining of the cells is a straightforward procedure; however, the full 

experimental procedure of a large number of samples is time-consuming (57). In this type of 

assays, cell death might be underestimated as there are two essential factors that can give 

misleading results: i) cells might undergo an early disintegration, causing them not to have been 

Figure 1.3 Quantitative MS workflows. Rectangles in yellow and blue represent different conditions. 

Horizontal lines represent the point that two samples are combined. Dashed lines indicate points at which 

experimental variation and thus quantification errors can occur. Figure from (55) 
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dyed by the end of the cell culture period and ii) any surviving cells might continue to grow and 

proliferate during the assay. Regardless, dye exclusion assays are simple in execution, rapid and 

require a small number of cells. 

In colorimetric assays, the reagents that are used, produce a colour as a response of cell viability, 

which allows the response measurement by a spectrophotometer. They are cheap, easy to 

perform and are available in commercial kits. Examples of this type of cell viability assays are the 

MTT assay (58), MTS assay (59,60) and XTT assay (61). 

Fluorometric assays utilize fluorometers or flow cytometers to monitor the viability of the cells. 

They are offered as commercial kits by several companies as well as kit packages for full 

experimental procedures. The most common fluorometric assay is the alamarBlue (AB) assay (62). 

Here, the blue non-fluorescent dye resazurin enters the cells and gets reduced to resorufin with 

the help of different enzymes such as diaphorases (63). Contradictory, resorufin is red and highly 

fluorescent. Viable cells convert resazurin to resorufin constantly, increasing the total 

fluorescence of the medium. The ratio of the viable cells can then be measured with the use of a 

fluorometer. 

In luminometric assays, the addition of the reagents produces a stable glow. This glow can be 

used as a signal and measured by a luminometric microplate reader (64). The assay can be 

performed on a 96-well plate or 384-well microtiter plate, while both cell viability and death can 

be recorded from the same well (65). A well-established approach is the adenosine triphosphate 

(ATP) assay. ATP plays a considerable role in many functions of a cell, for example, in cell signalling, 

biological synthesis and movement processes. Lethally damaged cells that lose their membrane 

integrity are not able to synthesize ATP, causing its level to drop. The enzyme luciferase can be 

used to detect the ATP levels of a cell in real-time through biotinylation. Biotinylation immobilizes 

luciferase on the cell membrane enabling the detection of the real-time release of ATP as ATP 

yields a luminescent signal. 

2.3.2 Dose-response curves and feature extraction  
In all the aforementioned assays, a single value 

is recorded as the viability or response of the 

cells after treatment with a compound at a 

specific dose. By repeating the experiment 

using different treatment doses, the results 

can be visualized as a dose-response curve 

(Figure 1.4). It is crucial at this point to include 

a 0 concentration treatment as the control 

treatment that should picture the viability of 

the cells under “normal” conditions. The rest 

of the dose-points are then normalized and 

compared to the control dose-point. There are 

several linear or sigmoidal models that can be 

fitted to the dose-response data, with four-parameter log-logistic regression being the most 

common. (Equation 1.4). The resulting model follows a sigmoidal curve indicating the overall 

change on the viability of the cells. In Equation 1.4 b is the slope of the curve, c is the lowest 

viability measurement or lower limit, d is the highest viability measurement, or upper bound and 

Figure 1.4 Example of a 16-dose-response curve and 

model attributes that can be extracted from the 

fitted model. 
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e is the effective concentration at which the viability of the sample is 50% of the maximum 

(control) viability. 

𝑓(𝑥) = 𝑐 +  
𝑑 − 𝑐

1 + 𝑒𝑏∗𝑙𝑜𝑔(𝑥)−𝑙𝑜𝑔(𝑒)
 (1.4) 

 
Having the model at hand, further features can be calculated that will help to define if a cell is 

sensitive to a drug or not. R2 is a value that can be exported from the model and depicts how close 

are the actual data points or, in this case, dose-response measurements to the fit. A value close 

to 1 shows a perfect fit, so further results are trustworthy, while a value close to 0 depicts a bad 

fit and suggests that further results should not be trusted. The area under the curve (AUC) is the 

integral of the resulted curve. The closer the AUC is to 1, the less effective the drug is against this 

cell line. There are cases that the AUC can be higher than 1, for example, when the drug has no 

effect on the cell line, and the cells keep proliferating. Another feature is the Relative inhibition 

effect (RE), which is the relative difference of the viability of the last dose to the viability of the 

control. A negative RE or close to 0 shows no sensitivity of the cell line to the drug, while a positive 

RE with a value close to 1 shows high inhibition of the cell line. Each of these attributes alone can 

lead to a false interpretation of the experiment’s results. A typical case is an RE with a value of 1, 

showing high inhibition, although the EC50 value of that drug might be extremely high, causing 

the drug to be toxic for any cell. For that reason, they should be used in combinations, while 

separate thresholds can be applied to each one of them. 

2.4 Multi-omics data integration 
As shown above, each omics technology comes with its advantages and disadvantages. Each one 

alone reveals an incomplete picture of what is happening inside a cell in the state of a disease. 

Integrating information from many different omics technologies can help in this cause. In the last 

years, different multi-omics data integration tools have been developed either as standalone 

applications or as programming language-specific packages and libraries, e.g. R packages. 

In general, the developed tools can be grouped into three main categories based on their 

applications; biomarker prediction, disease classification and subtyping and tools that provide 

insights into the biology behind a disease.  

An example of a biomarker prediction tool based on multi-omics data integration is MOFA (66). 

MOFA is a computational method for the discovery of principal sources of variation in multi-omics 

datasets. It infers hidden factors that capture technical and biological sources of variability using 

a Bayesian framework. It was validated using multi-omics data from 200 samples with chronic 

lymphocytic leukaemia (CLL), including gene expression profiling, DNA methylation and drug 

response data using 63 drugs. 

A multi-omics data integration tool that is used for disease subtyping is moCluster (67), which 

identifies patterns across multi-omics datasets. Using sparse consensus Principal Component 

Analysis (PCA), it identifies latent variables that are then clustered using traditional clustering 

methods, such as K-means. It was used in the analysis of 83 colorectal cancer cell lines across gene 

and protein expression data as well as DNA methylation data and identified four integrative 

subtypes, two of them not having been discovered in studies previous to the moCluster 

publication. 

Multiple co-inertia analysis (MCIA) (68), is another integration approach that contributes to 

disease subtyping while it also provides insight into the disease biology. This approach normalizes 
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the given set of features (e.g. genes and proteins) using a covariance optimization criterion and 

projects the different datasets into the same space. Visual observation of the sample space using 

different axes of MCIA can reveal disease subtypes. In the tested case, the first MCIA axis 

separated the samples to proliferative and immunoreactive, while the second axis separated the 

samples with differentiated subtype from the ones with mesenchymal subtype (68). Taking a look 

at the feature space of the same datasets and applying ingenuity pathway analysis (IPA) on cell 

line-specific features resulted in revealing significantly enriched canonical pathways that were 

relevant to the cell line, such as melanoma development signalling pathway in melanoma cells. 

Therefore, the sample space of MCIA can help in disease subtyping, while the feature space in 

deriving insights into the disease biology. 

Multi-omics data integration can also have applications on the exploration of other omics-types. 

Transcriptomics expression data can be used for missing value imputation in proteomics (69), 

replacing standard imputation methods like the replacement of missing values using either a 

constant value or by random sampling from a distribution close to the detection limit. However, 

all these tools and methods exist as standalone packages or are described in specific studies, not 

being offered in any platform for online usage across public datasets, requiring manual data 

manipulation and programming skills for their usage. 
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3 Bioinformatics 
Modern sequencing techniques, together with high-

throughput technologies, increase the amount of produced 

data by gigabytes (GB) or terabytes (TB) on a daily basis. 

Right from the beginning, there was a need for public 

databases for storage and access to the produced and 

published biological data. The exponential increase in the 

amount of data that are uploaded in public databases 

(Figure 1.5) makes it clear that there has to be a robust, well-

defined infrastructure to handle the data growth that is 

foreseeable approaching. This data amount and variety 

transform biological databases into gold mines for data 

mining and knowledge discovery applications. 

Biological databases can be categorized either by the origin 

of the stored data or by the type of data they store. Using 

the first categorization approach, biological databases can 

be divided into: 

 Primary/archival databases, that store raw experimental data, such as GenBank (70), 

EMBL-bank (71) and PRIDE (72), and 

 Secondary/curated databases, which rely on data stored in primary databases but store 

extra information and metadata like sequence motifs, gene- transcript- and protein-

sequences, gene locations in chromosomes, protein-protein interactions even evolutional 

relations between species that are not always experimentally supported. Such examples 

are UniProt (73) and PROSITE (74). 

Based on the second way of categorization, databases can be divided as follows: 

 Nucleotide sequence databases, such as NCBI, and EBI, 

 Protein sequence databases, such as UniProt and PROSITE, 

 Genomic databases, such as Ensembl as well as databases that are organism specific, e.g. 

FlyBase (75) and MGI Mouse Genome (76), 

 Structural databases, storing protein structures and structure predictions like PDB (77), 

SCOP (Structural Classification of Proteins) (78) and CATH (Protein Structure Classification) 

(79) 

 RNA databases like Rfam (80), mirBase (81), and 

 Microarray databases, such as ArrayExpress (82). 

This chapter constitutes a review of the most popular and relevant to the study databases and 

data repositories. 

3.1 Public repositories (archival databases) 
Over the last decade, data sharing in the scientific community got more and more attention. 

Starting with genomic and transcriptomic studies, journals and scientific publishers in general, 

oblige submitting authors to provide along with their study, the corresponding raw and/or 

processed datasets. The same applies nowadays for the proteomics data and is expanded over the 

years to every other omics-type that exists. The scope of this enforcement is not only for the 

scientific community to be able to reproduce the published results but to enable the data 

Figure 1.5 Histogram showing the 

annual growth of data in PRIDE 

Archive. Figure adjusted from (70) 
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reusability and repurposing. Some of the most popular omics data repositories are described in 

this chapter. 

3.1.1 Gene Expression Omnibus – GEO 
Although the name suggests that these repository stores genomics data, GEO stores and shares 

the biggest collection of genomic and transcriptomic numerical data. Their database organizes the 

data in several layers, some of them stored as provided by the users and some of them after 

reprocessing from data curators. 

Data submitters upload a text file describing the sequencing platform that was used to produce 

the data and in case of array-based platforms, a data table describing the array template. This file 

is stored as a GPL record under a unique identifier. As a next step, submitters upload files 

describing the biological samples, the protocols followed, and the conditions applied to them, as 

well as their abundance measurements. Each sample gets a unique identifier and is stored as a 

GSM entry. The last file that submitters have to upload is a record that summarizes an experiment. 

This record is stored and gets a unique GSE identifier. Data curators at the GEO process this entry 

and reassemble it into GEO dataset records (GDS). Experiments or samples that belong to the 

same GDS are biologically and statistically comparable. Both GDS and GSE entries are query-able 

through the GEO website. However, only GDS entries constitute the basis of the GEO’s 

visualization and analysis tools. It is worth to mention at this point that not all uploaded data are 

suitable to assemble a GDS entry, meaning that not all data are used in the visualization and 

analysis tools. 

Although, as described, a considerable amount of metadata accompanies the raw or processed 

uploaded data, there is no controlled vocabulary that should be followed and not all requested 

information is mandatory to complete. The renders the automatic retrieval and reprocessing of 

separate datasets or samples a rather tricky task, as each sample has to be curated separately and 

brought by the user to a generic format so that it can be compared to others. 

3.1.2 PRIDE  
The Proteomics Identifications Database 

(PRIDE) (72) it the largest repository in the 

world of mass spectrometry-based 

proteomics. It was set up in 2004 at the 

European Bioinformatics Institute (EBI). 

Submitters have to create a user account, 

request a unique identifier and upload all the 

raw files used in their “to be published” 

study, as well as a document in a specific 

format providing information about the 

study that is submitted and a description of 

each raw file that is uploaded. Each uploaded 

dataset is assigned with a unique 

ProteomeXchange accession to be reported 

in the corresponding manuscript. Upload of identification and/or quantification results is also 

possible but not mandatory. Lack of precise experimental and meta-data annotation makes 

reprocessing of these raw files also challenging. Moreover, except for the submitted files, the 

Figure 1.6 Number of submissions per month on 

PRIDE. Figure acquired and modified from 

https://www.ebi.ac.uk/pride/statisticsdetails on 

27.02.2020 
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protein identifications or expression values regarding a specific sample measurement are not 

queryable.  

Except for the data archive, PRIDE offers since 2015 a new repository for spectral libraries, called 

PRIDE Peptidome. Uploaded studies that include peptide identification information are used to 

extract spectra with peptide identifications. The extracted spectra with or without identifications 

are clustered into clusters. Low-quality clusters are then filtered out. The remaining clusters 

provide consensus spectra and peptide identifications. The final clusters are stored in PRIDE 

Cluster (83) and are accessible either via File Transfer Protocol (FTP) or API. The same cluster can 

also be used to generate spectral libraries for different organisms, and they are available for 

download and usage in spectrum search engines/tools. PRIDE also offers a collection of offline 

software tools that users can download and use on their personal computers, like: 

 ms-data-core-api (84) that can be used for reading any proteomics data format to be later 

used in any application.  

 PIA: Protein inference toolbox (85), which include algorithms for mass spectrometry-

based protein inference and identification. 

 PRIDE Mod (84), a modification library for the retrieval of protein modification 

information, by providing an identifier from preselected databases (e.g. UniMod) 

By the time of writing of this thesis, PRIDE still remains the primary repository for the storage of 

mass spectrometry raw files, with a continuing growth on the number of datasets that are 

submitted per month (Figure 1.6).  

3.1.3 MassIVE 
The NIH-funded Center for Computational Mass Spectrometry developed a community resource 

for the storage and sharing of mass spectrometry data in the scientific community. Users have to 

first to register for an account in order to be able to access their private FTP directory and upload 

their raw files. It is suggested to pre-organize the files per dataset or experiment to make the rest 

of the data submission process easier. After the successful upload of the data, the user can select 

and trigger one of the platform’s workflows for each dataset separately. To do so, the user must 

provide meta-data concerning the origin of the raw files with respect to the species, the 

instrument that was used, any allowed post-translational modifications (PTM) as well as a short 

description of the corresponding dataset or study. Each dataset can be accompanied by a set of 

keywords that will enable the indexing and accurate searching of the corresponding dataset. 

Datasets can also be assigned a ProteomeXchange accession so that they comply with standard 

publication requirements. If users also upload identification result files, they must map them to 

the corresponding raw files manually. There is also the option to let MassIVE run its own workflow 

and produce the corresponding identification results, also applying global FDR cutoffs. Peptide 

and protein identification results are query-able in their website, however not easily accessible 

via an application programming interface (API) calls. MassIVE also offers tools for the visualization 

of spectra as well as protein coverage plots.  

MassiVE is another powerful repository, but its usage is limited to the storage and retrieval of raw 

files, spectra and peptide identification when available. A drawback, in this case, is that MassIVE 

stores no information on experimental designs so far and provides no quantification on the stored 

samples. 

3.2 Biological databases (curated databases) 
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There is a clear line that separates public repositories from biological databases. It is the raw data 

along with any annotation that is provided and stored in the repositories, against the knowledge 

that is extracted from these raw data, proper data annotation and global comparisons among the 

resulting information that is stored in the databases. The pioneer databases or also referred to as 

knowledge bases (KB) in the omics world are described in this chapter. 

3.2.1 Bgee  
Bgee (86) is a database for the storage, sharing and comparison of gene expression data produced 

by different platforms (e.g. RNAseq, Affymetrix) originating from different species. The database 

stores expression data, originating only from “normal” healthy tissues, reprocessed by Bgee data 

curators. The reason behind the reprocessing of publicly available data is to provide a comparable 

reference of gene expression datasets. Another feature of the platform is the hosting of analysis 

or post-processing tools, such as call of presence or absence of gene expression, differential gene 

expression analysis (over- and under-expression) as well as information about gene orthology and 

homology between organs and species. That enables intra-species gene expression comparisons.  

The data curators of Bgee selected and downloaded raw data files from GEO and ArrayExpress. 

The raw data originate from healthy tissue samples from various organisms. Each dataset was 

reprocessed using the same pipeline to ensure maximum quality and later aggregated into 

organism-specific datasets. Reprocessed data concerning a specific organism, are provided in 

compressed comma separated format files, in the ‘Species’ page. Here, general information is 

provided for the selected organism as well as the gene expression calls files, containing records of 

unique combinations of a gene, tissue or anatomical entity and developmental stage of it, with 

the reported presence or absence of gene expression. 

Anatomical ontologies of several species are aligned using ontology alignment methods (87). Via 

this alignment, homology relationships were designed between these ontologies. As a next step, 

developmental ontologies were mapped to the aligned anatomical ones. Using the provided 

annotation of the raw transcriptomics data and the by manual annotation where it was missing, 

Bgee integrates heterogeneous gene expression data on the new ontology. The anatomical and 

developmental ontologies of the different species can be accessed and visualized as tree 

structures in the web interface of Bgee. 

Their ‘Gene Search’ functionality allows users to query genes of interest and locate them in the 

available organisms. By selecting a gene/organism entry on the returned list, users get transferred 

in a gene and organism-specific page. Here general information about the selected gene is 

displayed as well as gene expression values across different tissues with the possible expansion to 

tissue developmental stages. The gene expression values are normalized between 0 and 100, 

producing that way the visualized expression scores. Finally, cross-references to other resources 

are provided. 

Bgee is accessible via a web interface but also offers programmatic access via an R package 

(BgeeDB) that provides full access to annotations, quantitative transcriptomics data as well as the 

gene expression calls. Last but not least, the R package includes functions to perform a GO-like 

enrichment analysis, where genes are mapped to anatomical entities based on their expression 

patterns. 

3.2.2 UniProt 
The number of known and annotated human protein-coding genes is not constant, and every day 

new scientific discoveries change our view on that. The Universal Protein Resource (UniProt) is a 
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comprehensive and long-term supported resource for protein sequence and annotation data. As 

of today, UniProt hosts and provides access to protein sequences for more than 84000 species 

that have sequenced genomes (84,387, release 2018_07). Most of these proteomes are results of 

the translation of genomes that are submitted in ENA, DDBJ (88) and GenBank. These sequences 

are then further enriched with metadata and annotations coming from Vectorbase (89), Ensembl 

(3) and WormBase ParaSite (90). A challenge that UniProt faces is the continuing growth of 

sequenced genomes, which most of the times results in the availability of sequences of very 

similar strains. In 2015 they introduced a redundancy removal process that identifies and removes 

identical proteomes of a species before they get imported into the UniProt knowledgebase 

(UniProtKB). The remaining proteomes are clustered using a Reference Proteome set (about 9% 

of all proteomes), which are manually selected by the scientific community with the goal of 

providing best proteome annotation per cluster. 

UniProtKB is one of the primary sources for annotations of the human proteome and offers daily 

snapshots. The UniProtKB database is composed of two resources: TrEMBL contains automatically 

annotated gene and protein sequences and is based on snapshots of the human genome, while 

Swiss-Prot is a manually annotated and reviewed database, records of which are extracted from 

literature and curator-evaluated computational analyses. UniProt is the gold-standard protein-

sequence database in mass spectrometry-based proteomics and is used to identify proteins by 

common database-centric search approaches. 

3.2.3 ProteomicsDB  
ProteomicsDB is an online resource that was initially developed for hosting the first mass 

spectrometry-based draft of the human proteome (10). A detailed description of the database, as 

well as the online platform and its capabilities, are described in the two manuscripts in the 

Appendix. The first manuscript provides a thorough view over the initial implementation as well 

as the first expansions and addition of new analysis tools, while the second is focused more on 

the integration of data originating from different omics types.  

ProteomicsDB is, by the time of writing of this thesis, the only online resource that fills in the gap 

between experimental raw data and curated data, by storing and providing access to fully 

annotated experimental designs on protein expression data. Each project in ProteomicsDB is 

linked to a scientific publication and provides some minimal description of it. A PubMed id is 

provided as a cross-reference to the initial manuscript as well as a ProteomXchange identifier that 

links to the underlying raw data. Each project is a collection of different experiments in one study. 

ProteomicsDB enforces this separation between experiments, to ensure the best annotation of 

their experimental design. Each experiment has a unique internal identifier and is described by a 

name and a short description. A mandatory field in an experiment entry is the definition of the 

scope of the experiment, for example, full proteome, kinobead assay, thermal shift assay, or 

protein turnover assay. Every experiment includes a set of samples. Each sample also gets a unique 

identifier and is described by rich metadata, including:  

 the tissue and species of origin of the corresponding sample, 

 any kind of sample treatment (Temperature or inhibitor treatment) along with treatment 

details (e.g. time course) and the treatment agent of p 

 the labelling method that was applied (e.g. TMT, SILAC) that was applied if so, 

 the protease that was used for the digestion of the proteins in a sample and the digestion 

method (e.g. in-gel, in-solution),  
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 the online liquid chromatography system along with the mass spectrometer, the mass 

detector and resolution in every MS level and 

 the acquisition mode (e.g. DDA, DIA, SRM) 

Each experiment also includes a list of the raw files that belong to it. As the last step, each raw file 

is mapped to the corresponding sample. In the case of TMT-plex multiple files are assigned to one 

sample and vice versa. 

Having all the above in place, ProteomicsDB can store full experimental designs by defining 

samples as biological or technical replicates and assigning them to treatments and conditions. An 

experimental design includes a full overview of a dose-, time- or temperature-dependent wet-lab 

experiment. Columns represent the different sample replicates and rows the drugs and 

concentrations, or temperatures or durations that were applied to those replicates. Each stored 

experimental design can be later visualized as a curve in the biochemical assay tab. All the above 

constitute the metadata around the actual data that is served via the platform.  

ProteomicsDB plays another important role in these gaps between repositories and databases. As 

discussed earlier, there are repositories that store raw files and maybe identifications if not 

identification information only. Nevertheless, no other platform exists that connects metadata 

annotation with peptide and protein identification and quantification, with ProteomicsDB being 

the pioneer. ProteomicsDB remains the main point of reference when researchers want to 

compare protein expression across samples, identify selective compounds and design 

combination treatments as well as explore the evidence behind each stored peptide identification 

and its quality, by comparing each experimental spectrum to matching reference spectra from 

synthetic peptides or to predicted reference spectra. 

3.3 Community standards and the need for them 
Genomics and transcriptomics are well-established fields, where scientists have deployed 

standards that are respected and followed by researchers of these fields (91). Especially in RNAseq 

experiments, there is a standard pipeline that almost everyone follows. After the experimental 

procedure that was described above, there are standard steps that are followed and lead to 

differential expression analysis. These standards include but are not limited to: 

 Quality control. FastQC (92) and FaQCs (93), are two of the most common software used 

for sequence quality analysis 

 Data (read count) output format. The General Feature Format (GFF) is used here to store 

genes or transcripts and read counts 

 Trimming and filtering for bad quality reads. Trimmomatic (94) and FASTX-Toolkit (95) are 

usually used to remove reads and bases of low quality as well as trim adaptor-sequences. 

Nowadays, this step can be avoided, as output from Illumina contains high quality reads. 

 Alignment. It can be done with multiple tools. The golden standard today is STAR (96) 

alignment, a transcriptome specialised tool. 

 Counting and Quantification. STAR can also provide counts but is not always the best tool 

for that task. Most commonly used software for quantification are featureCounts, which 

is available as an R package, Kallisto (97) and Salmon (98). 

 Differential Expression (DE). Plenty of tools have been developed and used during the 

years. The ones that are most commonly used (as reviewed by (99,100)) are DESeq (101) 

and DESeq2 (102). 
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The proteomics field, being younger than the other two, has only a few well-defined standards. 

Each vendor’s mass spectrometer outputs raw files in its own data format. Each proteomics 

laboratory follows a different workflow to prepare their samples for measurement, while the 

details of the workflow or sample preparation, most of the times, does not accompany the 

published raw files. Raw files that are deposited on publically available repositories are usually not 

accompanied by the identification or quantification results and not mapped to the measured 

samples. Moreover, identification and quantification are handled by tens of different software 

solutions, all following different assumptions or being non-deterministic, providing different 

results in the same version but also across versions of the same software. In 2002, the HUPO 

Proteomics Standard Initiative (HUPO-PSI) (103) was founded. HUPO-PSI defines community 

standards and open protocols for data representation in proteomics to enable data exchange, 

verification and comparison among laboratories. They define standards on different levels, such 

as Mass Spectrometry (PSI-MSS), Proteomics Informatics (PSI-PI) and Quality Control (PSI-QC). In 

Mass spectrometry, a default file format is proposed, mzML, for the representation of raw mass 

spectrometer output. mzML is a merged version of 2 preexisting formats, the mzData and the 

mzXML and is conducted using the XML markup language. A second initiative here is the definition 

of Controlled Vocabularies for use and description of Mass Spectrometers as wells as Protein 

identification and quantification software. The PSI-PI group introduced two file formats for the 

representation of protein identification and quantification results, named mzIdentML and 

mzQuantML respectively. The PSI-QC group charter is a multidisciplinary team and introduces the 

qcML file format. qcML files are designed for the exchange of QC metrics derived from mass 

spectrometry results. However, these standards are not mandatory to follow for publication and 

so far not so many laboratories follow them. Due to this, the data analysis workflows also differ 

from laboratory to laboratory and following different workflows using different software can lead 

to different results. There is an incrementing need in the proteomics field for common and 

standardized data processing and analysis options. In particular, online platforms should, as a first 

step, define and use a standard processing pipeline for all the proteomic data that they store and 

analyze. That would already enable the cross-platform data comparisons, but would also allow 

the easy integration of data originating from other platforms. 
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4 Databases and database management systems  
All repositories that were described so far store a large amount of data. Storing all this data as 

files of the file system is not worthy. With the exception being the raw data files that are stored 

in repositories that are not queried or processed to provide information to the user, all the rest of 

the data and metadata that they store need to be organized in databases. Databases (DB) are 

collections of elements relative to each other, which are structured and stored in an appropriate 

way. A Database management system (DBMS), is a software that implements all functions that 

need to be supported, such as selections, insertions, deletions, contemporary access and security. 

A DBMS is capable of handling multiple DBs at the same time in the same machine. 

4.1 Database models 
Over the last 50 years, many different database models have been proposed and implemented. 

In 1970, Edgar Frank Codd proposed the relational data model (104). The model’s simple and 

comprehensive architecture led to its integration to many high-load applications. One of the 

model’s main advantages is that it can be described in a mathematical way using either Set Theory 

or Predicate Logic. The main points of the relational data model are: 

 The support of the data independence, so that changes in the structure and organization 

of the DB will not affect the connected application, 

 The avoidance of redundancy, which is the case when duplicated data is stored in several 

parts of the database. 

The relational model defines the rules for database normalization, also called normal forms (NF). 

Each form is named with an incrementing integer and has the property that it should respect the 

previous form. The First normal form (1NF) sets the rule that information is stored in a table where 

each column contains atomic values. In 1NF, there are no repeating groups of columns. The second 

normal form (2NF) requires the table to be in 1NF, and all table’s columns should be dependent 

on the tables primary key. The third normal form (3NF) requires the table in 2NF, and there should 

be no column with transitive dependency on the primary key. The 2NF and 3NF are concerned 

with functional dependencies; in other words, constraints between two sets of columns in a table. 

The fourth normal form (4NF) is concerned with multivalued dependencies. A multivalued 

dependency requires a table with at least three columns (e.g. X, Y and Z), where for a value of 

column X there are well-defined sets of values for the other two columns y and Z respectively 

while these two sets are independent to each other. It is quite rare that a table in the 4NF will not 

comply with the next NF, the fifth normal form (5NF), also known as project-join normal form 

(PJNF). In the 5NF, a table is in the state that it cannot be further loss-less decomposed in 2 or 

more tables. It is quite rare that a table in the 4NF does not comply with the 5NF. Finally, the sixth 

normal model requires every table to consist of the primary key and maximum one more column. 

It is rarely followed as it proposes an extreme table decomposition that increases query 

complexity. Data stored in a relational database can be queried by using the Structured Query 

Language (SQL). 

A different way of storing data is to not organize them in tables known as relations in the relational 

model but to store them as entities that have relations to each other in the form of triples. A triple 

is a data entity consisting of a subject, a predicate and an object, as defined from the Resource 

Description Framework (RDF) (105). The database that stores triples is called a triplestore or RDF-

store, and it can be queried using semantic queries. A popular query language for RDF-stores is 

SPARQL. The RDF data model represents named properties and property values. It consists of the 
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three following object types: Resources, Properties and Statements. A resource is anything that is 

described by an RDF expression. It can be a web page, a part of a webpage, a collection of 

webpages (website) or even something not accessible via web, like a printed book. A resource is 

always named by a Universal Resource Identifier (URI). A property is a characteristic or relation or 

attribute that is used to describe a resource. Each property defines the resource types it can 

describe, the allowed values as a form of enumerations and relationships with other properties. 

A resource along with a named property and the value of this property constitute an RDF 

statement, with the resource being the subject, the property being the predicate and the value 

being the object of the aforementioned triple. The object in a statement can have to types of 

values: another resource or a literal value such as a string or an integer. The definition of an RDF 

schema is written in the Extensible Markup Language (XML). The RDF data model is also called a 

semantic data model, as it captures the meaning of an application environment, something that 

is not possible in a relational data model. As a result, RDF data models are the standard in 

describing ontologies. For better exploitation of the capabilities of such a data representation, 

more tools have been developed on top of that model. The Web Ontology Language (OWL and 

OWL2), is a semantic web language for the detailed description of entities relations between 

entities and groups of entities. It is a computational logic-based language so that computer 

programs can exploit the knowledge that is expressed in OWL. OWL follows the same syntax and 

principles with RDF, while at the same time, it expands the RDF properties’ attributes. 

As the triples can also be described as rules, rule-based inference engines have been developed, 

also known as reasoners. As stated in their name, they exploit the information described in 

properties, like in case of a property being bi-directional or transitive. As an example, having the 

triplets <10><greater_than><5>, and <5><greater_than><3>, if the predicate <greater_than> was 

defined as a transitive property, the reasoner would create the inferred triple 

<10><greater_than><3>. Of course, this is an easy example that even pure SQL is able to resolve. 

It gets more complicated when a property defined as the reverse of another (like greater/smaller 

or parent_of/child_of) and becomes even more complicated when these attributes are combined. 

OWL same as RDF can be queried using SPARQL. RDF and OWL are well-defined standards by the 

World Wide Web Consortium (W3C). 

Semantic data models opened the way for the creation of several others. Graph data models are 

an extension that includes though more structures than a single triplestore. Here resources are 

depicted as nodes and properties as edges. All attributes of a resource are stored as metadata of 

a node, as well as the attributes of a property as metadata of that edge. Graph databases exploit 

this data representation by implementing algorithms originating from the field of graph theory, 

enabling the fast calculation of shortest paths, nearest neighbours and other algorithms. A 

common language to query data from graph databases is the so-called GraphQL. 

Each of the aforementioned data models is better suitable with specific use-cases that should be 

considered when storing biological data. Protein or transcript expression data are usually 

organized by sample, tissue and experiment all grouped in a broader project topic. This type of 

data is often accompanied by metadata like the description of the sample or the scope of an 

experiment and the protocols that were followed. This use-case needs a relational data model as 

it describes one-to-many relations between different tables. This model supports the continuous 

addition of new data that correspond to these tables and can be easily expanded to include new 

tables with relations to the existing ones. Data retrieval is also trivial as collecting information for 

a sample of interest or all samples that a protein is expressed above a defined level, needs to 
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access only specific tables. However, the relational data model is not the best choice for protein-

protein or protein-drug interaction networks, especially when this data needs to be treated as a 

network or a graph. In this case, the graph data model is the first choice as it is optimized for the 

storage of relations between different entities and includes algorithms for the in-depth 

exploration of any graph. It is not optimized though for data aggregation, at least not in the same 

way as a relational data model. As a result, a combination of data models can provide better 

solutions than the usage of a single data model for the storage of different kinds of data. 

4.2 SAP HANA 
SAP HANA is an in-memory relational database management system (RDBMS) developed by SAP 

SE. It bundles together three different layers (Figure 1.7). 

The calculation layer holds the data, database and DBMS all under the umbrella of a service named 

index server. The index server is responsible for the process of incoming queries with the help of 

a query plan optimizer and the execution engine. Data can be stored in row- as well as column-

oriented tables. In the second option, HANA utilizes several compression strategies for every 

column. As a first step, each column uses a dictionary, which maps all distinct values of a column 

to number. Finally, run length-, prefix- or sparse- encoding encryption algorithms are directly 

applied when possible. The in-memory storage removes the overhead of querying and retrieval of 

data from the secondary memory, the hard disk. That allows the full utilization of the processor 

and main memory which enables the real-time processing of vast amounts of data. With the level 

of compression that was described earlier, it is computationally hard to perform insertions on the 

fly. For that reason, HANA uses secondary storage called the Delta storage. That allows the 

efficient merging of big chunks of imported data to the actual compressed storage in the hard 

disk. The delta storage exists only in main memory, which means that any change in it has to be 

written back to the disk. This operation is performed by using delta logs. In the case of write-

failure, the database can recover by using the delta logs and replicate the last changes. 

The control flow layer includes all functionalities regarding the backend webserver. It deploys 

backend endpoints close to the database with intermediate security layers so that only the proper 

database users with the appropriate privileges have the right to expose data. It includes the 

integrated extended application services (XS engine) and an HTTP server (web dispatcher). The 

side by side existence of the two services enables the use of ODATA services (xsodata in SAP 

HANA), server-side JavaScript modules (XSJS) that are handled and executed by the XS engine and 

finally the frontend framework.  

Modern SAP HANA installations come with two different versions of the extended application 

services: the classic (XSC) service and the advanced (XSA) service. In XSC, all backend and frontend 

procedures and files are organized in so-called Delivery Units (DU). Each DU is fully compatible 

and track-able with version control systems, like GIT, and can be deployed by the in-HANA 

repository system called REGI. The frontend in DUs is part of the SAPUI5/OPEUI5 framework. XSA 

renames and reorganizes the DUs into multi-target applications (MTA), which includes more strict 

protocols regarding the security and access levels of each user to the separate layers of the 

backend and frontend. XSC can serve many DUs at once without further configuration. 

Contradictory, XSA is based on the logic that MTAs should be fully isolated applications, a fact that 

makes the transition from the one engine to the other quite challenging. In XSA each MTA deploys 

tables, procedures and data in its own container (HDI). An MTA belongs to a single user by default, 

and only this user has access to the corresponding HDI container. The same applies to *.xsjs 
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endpoints, as in XSA they are stored and served in their defined HDI container, making it extremely 

hard for MTA applications to reuse existing endpoints from one another. In most cases, a total 

reimplementation of an XSC DU is needed in order to be compatible with XSA. 

SAP HANA supports several standards for data access, such as Java Database Connectivity (JDBC) 

and Open Database Connectivity (ODBC) adapters. Moreover, it includes several adapters for 

connection and integration of external services (e.g. R server) or data sources (e.g. remote 

connections via JDBC to other databases) or C++ libraries via the application function library (AFL). 

AFL, together with an adapter that implements the Google Remote Procedure Calls (GRPC) 

enables the use of external Machine Learning and Deep Learning models. All these services can 

be implemented directly in HANA in the form of procedures. Although HANA has an embedded 

Graph Engine, with the purpose of emulating a graph database, its performance is not comparable 

with other Graph Databases. 

This work is based on HANA 2.X that enables runtime on IBM Power infrastructure and utilizes the 

XSC engine with a focus on functionalities that can be easily migrated to the XSA in the future. 

4.3 Software communication standards 
Most of the web platforms that are described in this chapter use either a web interface for the 

access and query of the raw or processed data, or an FTP connection for direct download of the 

available files. This type of interfaces is necessary for human intelligence as they provide the data 

in a more extended way and organized in meaningful for the human mind tabs and webpages. 

Even the data requests executed on the website to the server, with the purpose of data 

visualization is many times organized in a human-readable way. In these years that computer 

technology thrives, machine learning and deep learning tools evolve, and data mining and 

Figure 1.7 SAP HANA schematic overview. SAP HANA is a single system, which bundles together the three 

depicted layers. 
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knowledge discovery are getting more important every day, the primary way of communication 

between a software program and a resource or online database is via APIs. 

4.3.1 Application programming interface – API 
APIs, in computer science, are interfaces or protocols for the communication between different 

software programs or parts of them. The purpose of an API is to simplify software implementation 

and maintenance. There are different forms of API specifications, including specifications for data 

structures, variables or remotes calls. Along with the API specification, documentation is provided 

usually describing its usage and facilitating implementation. Another specification of an API is the 

one that describes an interface between a server and a client or more commonly called backend 

and frontend, respectively. In that specification, the frontend makes a request to the server using 

a defined format and expects a response in a predefined format. In some cases, instead of the 

return of a response, a request might initiate predefined actions. The frontend requests use 

standard protocols such as the Hypertext Transfer Protocol (HTTP), which are then called HTTP 

requests. The response message of the server is in a structured format, most commonly using XML 

or JavaScript Object Notation (JSON). This specification is called a Web API. A Web API can consist 

of multiple APIs from different servers, and in that case, it is called a mashup. In this case, 

especially in the social media space, content that is created in one place can be shared and 

published dynamically in multiple web locations. 

APIs can be released in the following policies: private, partner or public APIs. A private API is used 

only internally in a company or organization. A partner API is used from specific partner 

applications, allowing direct access to certain actions of the main application. That way, the main 

application can also track the usage of their API and exercise quality control. Finally, a public PAI 

is open for usage to the public. A common issue with public APIs is their interface stability. Changes 

that are applied to the API should be documented and early announced as it may break 

compatibility with client applications that exploit its functionality. A best practice is declaring older 

versions of API endpoints as deprecated and release of the modified endpoints as newer versions. 

Deprecation informs other developers of future removal of the specific endpoint so that they can 

slowly migrate to newer ones. 

Although most of the afore-mentioned online resources and databases offer API endpoints that 

are open to the public, most of them do not follow the same response structure. An example is 

the retrieval of spectra that can be represented in different formats. 

4.3.2 F.A.I.R. principles 
APIs that serve the same type of data but in different formats, introduce difficulties in the 

implementation of both mashups and applications that need to extract knowledge from these 

APIs. Missing documentation of other APIs makes it impossible for applications to interpret the 

returned data, especially in cases that no metadata is served. 

In 2016, Wilkinson et al. came with a well-defined set of principles as guidelines that should be 

followed by resources that want to enhance their data reusability, known as F.A.I.R principles 

(106). The word FAIR is formed by the initial letters of the words describing the four main 

principles: Findability, Accessibility, Interoperability and Reusability. Previous attempts to define 

such principles focused on the human scholar. FAIR principles focus on making the data 

interpretable and automatically findable by the machines as well as enhancing data reusability by 

the individuals. The first principle, findability, describes the way data and metadata should be 

served and organized so that machine and human can find and identify the uniqueness of each 
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retrieved entity. Data and metadata should be described by globally unique identifiers (e.g. DOI). 

That renders data and metadata indexable and consequently searchable by search engines. The 

second principle describes the ways that data should be accessed. It requires a well-described and 

open communication protocol that in case of limited access, it allows for an 

authentication/authorization procedure. The third principle enforces the usage of controlled 

vocabularies that are either described from the primary resource or defined in public ontologies. 

That way, machine and human can avoid mistakes of mapping terms to meanings. Interoperability 

also demands the use and sharing of qualified references and cross-references to other resources. 

That way, data can be integrated among resources and interoperable with workflows and 

applications regarding storage, processing, and analysis. Finally, the fourth principle is also the 

ultimate goal of the FAIR principles, reusability of the stored data. It requires data and metadata 

to be richly described, accompanied by a plethora of relevant attributes. If possible, data should 

follow community standards. 

There are already many resources that are considered FAIR, based on the way they serve their 

content. UniProt is a nice example as all entries are identified with unique and stable Universal 

Resource Location (URL) links. Following these links, content can be served in a plethora of 

formats, including a web page, RDF and plain-txt, covering that way the ‘F’ and ‘A’ principles. Each 

record in UniProt is accompanied by rich metadata that is served either in HTML format (human-

readable) or RDF (machine-readable), while in the case of RDF they make use of controlled 

vocabularies. That way, UniProt also respects the third ‘I’ principle. Moreover, each record in 

UniProt offers different cross-references providing links to external resources, enabling that way 

strong and rich citations. All these links are machine-readable when accessing a record-webpage 

in its RDF format. That enables data reusability (‘R’ principle) (107). 

The process of making a resource FAIR is called FAIRification (Figure 1.8) and consists of the 

following steps: 

1. Retrieval of the nonFAIR data. 

2. Analysis of the retrieved data and definition of concepts that could describe them. At this 

step definition of possible relations between the data is also necessary as it will lead easier 

to the completion of step 3. 

3. Definition of a semantic model that describes the meaning of the several entities and 

relations, in an accurate but also computer-actionable way. Existing semantic models can 

help speed up the FAIRification process. 

4. Make data linkable by applying the semantic model of step 3 on the nonFAIR data. 

5. Licensing, as the absence of a license, might be a driving factor in people not reusing the 

supplied data, regardless of them being open data. 

6. Definition of rich metadata, as these will enhance the information that is encoded, and 

7. Publication of the FAIR resource. With the last step, metadata of the resource will be 

indexed by search engines. 

GO FAIR (https://www.go-fair.org) is a detailed resource providing guides and examples that help 

resource in the process of getting FAIR. 

 
 

https://www.go-fair.org/
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Figure 1.8 Process of FAIRification. a) The data layer. b) The data modelling and FAIRification layer. c) The 

publication layer. d) The FAIR data use-case layer. Figure acquired and adjusted from www.go-

fair.org/fair-principles/fairification-process. 

  

http://www.go-fair.org/fair-principles/fairification-process
http://www.go-fair.org/fair-principles/fairification-process
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5 Objectives 
A large variety of resources exist, each one storing their data using different data models or 

database management systems. All of them though, are focused in one omics-type or one 

organism. That can be either due to the complexity of the corresponding omics data that requires 

the utilization of different data models or even systems or simply because of their main research 

focus. Even in case of storage of quantitative multi-omics expression data originating from 

multiple organisms, there are even fewer resources that perform multi-omics data integration, a 

procedure that can provide the scientific and clinic community with valuable tools and 

hypotheses. Visualization of such data is also not a trivial procedure, as different omics-types use 

different plotting mechanisms to deliver the desired visual output to the user. Even more 

challenging is the visualization of different organisms, especially in the case of quantitative omics 

data originating from different tissues and organisms, where any kind of visual comparison is 

needed. The afore-mentioned challenges can be resolved with a generic, well-designed data 

model that can be supported by a powerful database management system. Proper user interface 

frameworks along with good software design and technology methods can help in providing 

generalized visualization tools that would take away the need for separate views and webpages, 

causing significant code duplication. 

ProteomicsDB, built and hosted on an SAP HANA system, has every capability of storing and 

handling quantitative multi-omics and multi-organism expression data. This thesis is devoted to 

the design and implementation of a generic data model, capable of storing the aforementioned 

datasets. Moreover, exploiting the powerful calculation engine of SAP HANA, real-time data 

analysis and integration tools are implemented and served via ProteomicsDB’s analysis tools. 

Finally, certain modifications on the platforms’ user interface enabled the generic visualization of 

several organisms, allowing the easy future expansion to more organisms. 

The first paper describes the initial status of ProteomicsDB before the beginning of this thesis. It 

later introduces the expansions of the initial schema to include new data models that overcome 

the shortcomings that were described in the introduction, regarding the storage of other omics 

types. This paper also presents a model-solution for the problem of mapping gene or protein 

expression data that use different initial resources for their identifiers. The same model-solution 

is expanded to store any kind of relation between identifiers, opening the way to storing protein-

protein interaction data as well as functional pathway structures. The paper concludes with the 

inclusion of a final data model, which enables ProteomicsDB the storage of cell viability studies. 

New visualization and analysis tools were created, allowing the user to query and interact with 

multi-omics expression data, protein-protein interaction networks and cell viability information 

on multiple datasets, drugs and cell lines. These extensions, together with the data and metadata 

that are stored in ProteomicsDB, open the way towards the storage of more data types and the 

development of new applications regarding multi-omics data integration. 

The second paper expands the data wealth of ProteomicsDB with more proteomics and 

transcriptomic studies. MComBat normalization enabled the mRNA-guided missing value 

imputation method. The same method can be reversed to impute transcript expression values 

based on matching proteomics and transcriptomics data. The biochemical assay data that were 

already stored are now enriched with more protein melting properties and extended with protein 

turnover data. The cell viability data model stores now one more study raising the number of 

screened drugs to 20000. The stored omics expression and cell viability data led to modelling drug 
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sensitivity using elastic net regression models. The fitted models can be used on any sample stored 

in the database to predict if a drug is effective or not on them. The data model extension to 

support temporary user-uploaded data opens the way for applying real-time analysis on the 

platform as well as comparison to ProteomicsDB data. The user uploaded data are slowly 

integrated into all analysis tools, for example, drug sensitivity prediction on user-uploaded 

samples or user expression data exploration in the interactive expression heatmap. 

All these extensions transform ProteomicsDB into a unique and powerful resource for life science 

research, and at the same time, set the ground for the development of future analysis and 

visualization tools.  
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6 Abbreviations 
AC Alternative current  MCIA Multiple co-inertia analysis  

AFL Application function library   MS Mass spectrometer 

API Application programming interface   MTA Multi-target application 

ATP Adenosine triphosphate   NF Normal form 

AUC Area under the curve  NGS Next generation sequencing 

cDNA Complementary deoxyribonucleic acid   ODBC Open Database Connectivity  

CID Collision-induced dissociation  OWL Web ontology language 

CLL Chronic lymphocytic leukaemia  PCA Principal component analysis 

DB Database  PSI Proteomics Standards Initiative 

DBMS Database management system  PSM Peptide-Spectrum Match 

DC Direct current  PTM Post-translational modification 

DDA Data dependent acquisition  QC Quality control 

DIA Data independent acquisition  RDBMS Relational database management 
system 

DNA Deoxyribonucleic acid   RDF Resource Description Framework  

DU Delivery unit  RE Relative Effect 

ELISA Enzyme-Linked Immunosorbent 
Assays  

 RF Radio frequency 

ESI Electrospray ionization   RMA Robust Multiarray Average 

ETD Electron-transfer dissociation  RNA Ribonucleic acid  

FAIR Findability, Accessibility, 
Interoperability and Reusability 

 RPKM Reads Per Kilobase of transcript, per 
Million mapped reads 

FDR False discovery rate  RSEM RNAseq by expectation maximization 

FPKM Fragments Per Kilobase of transcript, 
per Million mapped reads 

 SQL Simple query language 

FT Fourier transformation  SRM Selected reaction monitoring 

FTP File transfer protocol  TB Terabyte 

GB Gigabyte  TOF Time of flight  

GEO Gene Expression Omnibus  TPM Transcripts per Million 

GO Gene Ontology  URI Universal resource identifier 

GRPC General-purpose remote procedure 
call 

 URL Universal resource locator 

HCD Higher energy collision-induced 
dissociation 

 UTR Untranslated region 

HDI HANA Deployment Infrastructure  XIC Extracted ion chromatogram  

HTML Hypertext markup language  XML Extensible Markup Language  

HTTP Hypertext transfer protocol  XS Extended services 

IMAC Immobilized metal affinity 
chromatography 

 XSA Advanced extended services 

IPA Ingenuity pathway analysis   XSC Classic extended services 

JDBC Java Database Connectivity     

JSON JavaScript Object Notation     

KB Knowledgebase    

LC Liquid chromatography    
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1 Methods and implementation 

1.1 Data model extension 

1.1.1 Multi-omics data model  
The new Multi-omics data model is able to organize existing and future quantitative omics 

expression data in five main tables: OmicsProject, OmicsExperiment, OmicsSample, 

MeasurementPlatform and OmicsExpression (Figure 2.1). Starting from the last one to the first, 

each table uses a foreign key to the next table, reducing records duplication and keeping 

information connected and organized.  

The database model shown in Figure 2.1, is designed in a way that a project could contain one or 

more experiments, while an experiment can also be composed of multiple samples. The model 

supports the measurement of a sample on different platforms. The OmicsExpression table stores 

the expression values of the quantified entities (in this context, often genes) in the specified 

sample measurements. The critical part in the OmicsExpression table is that it can contain any kind 

of omics’ measurements as long as they can be expressed by a numeric value (e.g. gene 

Figure 2.1 Multi-omics Data Model. A generic design, capable of storing any kind of quantitative omics 

expression data, organized per sample and experiment. The five boxes describe the structure of every 

table of the data model. Each attribute of the table is defined by the name (e.g. OmicsProjectId), the 

data type (e.g. INT for Integer) and in case of a string data type, the length of it in a parenthesis (e.g. 

VARCHAR(45)). The tables are connected by using homonymous identifiers as Primary Keys (PK) and 

Foreign Keys (FK). 
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expression, methylation level, etc.). The existence of the “Unit” field also allows the description 

of the numeric value of each record (e.g. TPM values of RNA-Seq data, iBAQ values of proteomic 

experiments, etc.).  

The datasets that were downloaded already contain an internal probe id, which is stored in the 

field “ProbeId”, along with the provided probe’s accession number in the field “ProbeAccession”. 

The first one is necessary to map back against the original dataset, while the accession number is 

essential to map a probe to a UniProt accession number and associate it to other omics data. The 

MeasurementPlatform table describes each measurement. It stores information about the used 

platform, the resource type of the probe’s accession number (e.g. Unigene, Ensemble Gene Id, 

etc.), the type of omics data being studied in this measurement and the sample that was used for 

this measurement. Unigene and Ensemble are standard databases in the field and similar to 

UniProt but for nucleotide instead of protein sequences. The OmicsSample table describes each 

sample by its name, species (taxonomy code) and the tissue or cell line of origin. Finally, all 

samples map to an experiment and a project. 

1.1.2 Cell Viability data model 
In order to be able to take advantage of the plethora of drug sensitivity information available in 

the public domain, a data model with elements of the Resource Description Framework (RDF) (1) 

was generated, which will be used to store drug sensitivity datasets in ProteomicsDB (Figure 2.2). 

Dose-response experiments or DoseResponses can be grouped into DoseResponseDataSets, which 

Figure 2.2 The Cell Viability Data Model. It is organized in 3 main branches. The Measurement branch 

(left) where raw and processed measurements are stored, the fitted model branch (right) where the 

model attributes and fitted parameter are stored and the main dose response branch (middle) that stores 

the cell lines and compounds that were used for a specific cell viability experiment 



General Methods 

45 | P a g e  

are annotated with meta-data such as a description, URI, DOI, etc. Each DoseResponse itself may 

contain raw data and/or one or multiple dose-response models with associated parameters like 

IC50, hill slope, etc. Therefore, the data model needed to be flexible enough to support storing 

raw viability data with their corresponding annotations alongside dose-response models with 

their corresponding parameters. 

On the one hand (left column of Figure 2.2), each DoseResponse consists of a set of 

DoseResponseMeasurements (i.e. raw viability data) with an associated Unit (stored in the 

controlled vocabulary of ProteomicsDB), which can be measured in biological and/or technical 

replicates. Each DoseResponseMeasurement itself has associated meta-data like the dose 

resulting in this DoseResponseMeasurement, the Controlled Vocabulary Identifier (CVid) of the 

particular drug and/or a normalized response, among others. These 

DoseResponseMeasurementAttributes are stored as double with an associated type and unit, 

stored as varchar in the controlled vocabulary of ProteomicsDB. Mappings between these 

different attributes are stored using the RDF, which supports storing an arbitrary number of 

DoseResponseMeasurementAttributes together with each DoseResponseMeasurement. This 

allows storing multiple drugs as attributes of a single data point in the case of co-inhibition 

experiments. On the other hand (right column of Figure 2.2), each DoseResponse can have one or 

more DoseResponseModels associated with it. Each of these DoseResponseModels (supplied by 

the authors or fitted using the developed pipelines) has several DoseResponseModelAttributes 

associated with it, which may be different model parameters, lower and upper limit of confidence 

intervals of these or their standard errors, as well as the CVids of model names with their 

associated formulas. Again, these DoseResponseModelAttributes are stored as a double, with an 

associated type and unit, stored as varchar in the controlled vocabulary of ProteomicsDB. The RDF 

is again used to store mappings between these DoseResponseModelAttributes. In addition to this 

data, each DoseResponse is stored together with DoseResponseAttributes (middle column in 

Figure 2.2) in order to be able to associate DoseResponses with cell lines or assay types. Using 

DoseResponseAttributeMappings (RDF), the same DoseResponse can then be associated with 

multiple cell lines in the case of, e.g. co-culture experiments. 

1.1.3 Multi organism implementation 
The new data models, along with some existing tables contained by design a field to store the 

taxonomy code (taxcode) of the species. All organism-specific tables had to be extended by one 

column to store the corresponding taxcode. That alone did not allow the species separation and 

visualization in the web interface yet. All appropriate procedures and calculation views were 

adjusted to either report the result grouped by the taxcode, or require taxcode as an input 

parameter and filter the required data or table joins by that taxcode. Finally, the backend end 

endpoints and the frontend calls include now the taxcode as a parameter wherever needed. This 

required extensive testing before and after the applied changes so that the results would remain 

the same. 

1.2 Resource Identifier Mapping data model 
Gene and protein sequences are deposited in well-established repositories such as Ensembl, 

Unigene and UniProt. These sequences are subject to curation and can, therefore, change 

between releases. The current model of ProteomicsDB uses static tables to map between different 

resources’ identifiers like Ensembl, Unigene and UniProt. For each new identifier added, an 
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additional table is necessary to enable their mapping to other identifiers. This also requires the 

modification of existing procedures every time sequences should be updated. The goal here was 

to design a new generic data model, which overcomes the shortcomings of the current one and 

extends its usability to, e.g. incorporate additional semantic information. The same data model 

will later be extended to support any kind of relations between identifiers. In this chapter, a step 

by step implementations and extension is described for a better understanding of the applications 

and the benefits that this model has to offer. 

1.2.1 Identifier mapping 
The Resource Id Mapping data model (blue part of Figure 2.3) is based on the simple triplet 

principle <Source><Property><Destination> similar to the RDF framework (1). Instead of modelling 

the relation between different identifiers with multiple tables, all relations are stored in a triple 

store structure. This provides a generic and easy-to-use interface to map different entities to each 

other and enables the structured storage of pathway information (e.g. metabolites involved in 

certain processes) and the relation between different entities (e.g. drugs mapping to their 

designated targets). This model will not only provide a unified interface to resource mapping 

(between identifiers from different omics fields), but it will also serve as an interface to store 

relations between drug response and biomarkers. Here, Source and Destination are resource 

identifiers, whereas the Property field describes the relation between different IDs, e.g. “maps 

_to” or “originates_ from”. To avoid repetitions of large strings and to be able to use the different 

resource types as foreign keys in other tables, our data model consists of the following tables: 

 Resource Type, e.g. UniProt, Ensembl 

 Accession, e.g. P00533, ENSG00000143545 

 AccessionProperty 

 RelationType, e.g. maps_to 

 AccessionIdRelation 

The table ResourceType stores all available resource types. The table Accession stores all related 

accessions (identifiers) of a resource. Any number of properties associated with an accession 

number (e.g. version of database or alternative names) is stored in the AccessionProperty table. 

The table RelationType is used to describe relations between different accessions. Finally, the 

AccessionIdMapping table stores the corresponding internal IDs in the triplet model 

<Source><Property><Destination>, but this time as <SourceId><RelationId><DestinationId>. 

Another advantage is that if a relation is transitive, it is easy to formulate mappings that are not 

yet stored: 

1. <ENSG00000146648> <maps_to> <Hs.488293> : stored 

2. <Hs.488293> <maps_to> <P00533> : stored 

3. <ENSG00000146648> <maps_to> <P00533> : created 

1.2.2 Extension for all relations 
As described above, the initial implementation of this model allowed the storage of any kind of 

relations. As a first step, protein-protein interactions, downloaded and reprocessed from STRING 

(2), were imported. This included several new RelationType entries and many more 

AccessionIdMapping entries. At this point, the table AccessionIdMapping was renamed to 

AccessionIdRelation. Protein-protein interactions, as well as id relations, can be visualized as a 

graph, where nodes being the identifiers or Accessions and edges being the relations, each entry 
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in the AccessionIdRelation table is considered an edge. In graphs, edges have properties, for 

example, weight. In our case interactions have different degrees of certainty as well as scores. For 

that reason, a new table called EdgeProperty was introduced to store different properties of the 

stored relations. The second dataset that was downloaded and imported into the Identifier 

Relation Model is pathway data from KEGG (3). Even with the initial STRING dataset, it was 

important to create a hierarchy structure to allow search on different levels of this hierarchy. This 

led to the creation of the RelationIdRelation table, where relations are connected to each other 

with parent-child relations. The hierarchy is also used to separate the relational datasets, by 

splitting them into different root-branches or sub-trees (red part of Figure 2.3). 

 

Figure 2.3 The Resource Identifier Relation Data Model. The blue area depicts the initial implementation 

of the Resource Identifier Mapping data model. It was expanded to store any kind of relations by also 

allowing the organization of relation in a hierarchy (red area). The model was further expanded with the 

metadata and visualization part (green area), to enable the visualization of the stored relations between 

identifiers as a graph. Finally, to minimize querying and retrieval times, a new indexing schema was 

applied on top of the existing graph, the so-called SuperNodes (orange area). 

1.2.3 Metadata 
Both the developed hierarchy and the graph that is stored in the above data model needed specific 

visualizations. Protein interactions are usually visualized with specific symbols and colours. For 

example, activation is a green arrow marker pointing to the direction the activation is happening 

while inhibition is a red vertical bar marker close to the inhibited protein. Here we store different 

types of relations, so we respect the already existing visualizations while adding more for the not 

specified ones. For all general type of relations like co-expression or relations regarding grouping 

to a pathway, a blue diamond marker in the middle of the edge was introduced as these are non-

directional properties. Assigning in advance marker types, colours and positions on an edge to 

relations allowed the setup of a generic visualization model storing visualization types. Each 
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visualization type gets a unique id that gets assigned to the corresponding edges as an edge 

property. It is crucial to be able to store visualizations that way so that even relations with 

predefined visualizations can have additional options. As for edges, the same for resource types 

and accessions had to be designed. Here each resource type gets an entry in the 

ResourceTypeProperty table storing the shape, colour, etc. of the visualized node. Each accession 

that belongs to the corresponding resource type inherits this visualization. The new tables that 

were introduced come to complement the ResourceIdRelation data model (green part of Figure 

2.3). 
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1.2.4 SuperNodes 
The implemented data model accompanied by SQL 

views and procedures was already capable of storing 

any kind of relations between identifiers. With the 

storage and retrieval challenges sorted out, query time 

was raised as an issue. 

All entries in the ResourceIdRelation data model can be 

visualized as a huge graph. In this graph, some areas are 

sparsely connected, while others are dense. Some 

areas can also be grouped in one node, such as groups 

of nodes that correspond to different identifiers from 

different resources but describe one entity. An example 

of such nodes is nodes corresponding to the same gene 

(Figure 2.4ab). The data model is able already to group 

these nodes by gene, but doing so on the fly is time-

consuming and introduces a significant overhead on 

requests done from the frontend. The absence of a 

graph engine capable of creating these subgraphs, lead 

to the creation of several extra tables that would be 

used as indices to the new subgraphs, so-called 

SuperNodes (Figure 2.4cd). SuperNodes representing 

genes will be described here, while the same procedure 

is applied for every other entity is needed to be saved 

as a SuperNode. 

First, SuperNodes are introduced as a new resource 

type, so that the default schema is respected. For every 

gene name that data is stored in ProteomicsDB, a new 

accession entry is created associated with the resource 

type SuperNode. Then, in order to keep the existing 

model clean of new indices that would pollute the 

semantics of the existing tables, a duplicate table of the AccessionIdRelation was added. The 

AccessionIdRelation_M table stores all mappings of a SuperNode accession id to the accession ids 

that correspond to that gene (orange part of Figure 2.3). This allows aggregating any relation info 

up to the gene level. However, this kind of grouping introduces many edges/relations between 

two SuperNodes, either replicated edges or edges with different weights. In that case, we select 

the edge with the highest score/weight. The representative edge is stored in a final table named 

AccessionIdRelation_SN, as it stores relations between SuperNodes. The edge Id is kept the same 

as the original edge though so that all edge properties are inherited (orange part of Figure 2.3). 

This way of storing data, in the form of triples, is efficient for databases as well as for defining 

interfaces between procedures and function calls but is extremely complicated for humans. To 

make data interpretation easier for users but also exploitable in a meaningful way via the 

ProteomicsDB API, new generic views were implemented as part of the repository. One view 

projects the data of a node or SuperNode of the aforementioned graph, collecting all the relevant 

records from the ResourceType, Accession and AccessionProperty tables. A second view projects 

all edges of the graph with their associated metadata and properties. This view though includes 

Figure 2.4 SuperNodes creation procedure. 

Starting from an initial graph (a), nodes that 

are all connected with the same type of 

edge are detected (b - circled). The circled 

nodes are all connected to a new 

SuperNode (c) that replaces the previous 

nodes in the initial graph (d). 
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for every edge not only the source and destination AccessionIds but their full description from the 

Accession and ResourceType tables. AccessionProperty entries were not relevant at this point as 

they do not define or describe edges or relations. In case of need of such information, a simple 

left join on based on the AccessionId is enough. The purpose of this view is to provide relation to 

or from all relevant AccessionIds, either by querying the AccessionNumber or the AccessionId. 

Another use-case of this view is the retrieval of all nodes that are linked to each other using a 

specific set of RelationTypes. Both views perform no filtering on the provided data, as there 

filtering criteria differ per use-case. 

The advantages of this implementation, as well as the results of it, are described in the first 

manuscript of the Appendix. 

1.3 Custom User Data data model 
The Custom User Data data model was 

implemented in order to allow temporary 

storage of custom user expression data. Data are 

organized in three tables: UUID, UserDataset and 

UserExpressionData (Figure 2.5). The table UUID 

stores unique user/session identifiers and the 

last time a session was accessed. Each user can 

upload multiple datasets. Expression data of a 

dataset are stored in the UserExpressionData 

table and then associated with an entry in the 

UserDataset including the dataset name and 

omics type it includes as well as the creation 

date. Each uploaded dataset should contain the 

expression value of a gene in a tissue of origin, 

accompanied by the quantification and 

calculation method that was used and the taxonomy code the sample originates from. All tables 

are interconnected with foreign keys. A deletion in the UUID table will cascade to the rest of the 

tables deleting the relevant data entries. Data here are stored only temporarily while no personal 

user information will be stored. SAP HANA offers the functionality of temporary tables, but this is 

not useful here, as in temporary tables, data is stored only within the time-period of an active 

session. To allow storing for predefined periods, scheduled jobs were designed to remove UUID 

entries that their access date is no older than the number of days defined in the corresponding 

procedure. To enable fast retrieval of a single dataset, an xsodata object was created serving a 

view on the underlying data, enforcing at the same time filtering by DatasetId and UUID. 

1.4 Elastic Net Models data model and prediction procedures 
Training of the elastic net models is described in the second manuscript in the Appendix. In short, 

model training was implemented in R, while hdbprocedures were created for the filtering and 

preparation of the data. Since the model-fitting procedure needs to run only once for each drug 

in each drug sensitivity dataset, there is no need for a user-facing endpoint focused on model 

training. Instead, model training is initiated only upon the addition of new drug sensitivity datasets 

to ProteomicsDB. Once all models are fit, they are stored in HANA. The data model storing the 

trained models (Figure 2.6) consists of the following tables: ModelParameters, Coefficients, 

Figure 2.5 The Custom User Upload data model. 
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Intercepts and Effects. ModelParameters stores, as described by the table’s name, each separate 

model and its training parameters, such as the drug and dataset that it was trained on, the omics 

type of the expression data that was used during training, the number of bootstraps and cross-

validation folds as well as the final number of selected predictors/gene names of a model. More 

parameters are stored here like the alpha and lambda parameters for the model fitting. After 

model fitting, the bootstrap coefficients and intercepts are stored in corresponding tables. The 

Effects table stores the corresponding mean effect sizes and selection frequencies of each 

predictor/gene name of the model. 

 

Figure 2.6 The Elastic Net Models data model. 

Based on these bootstrap coefficients and intercepts, a graphical calculation view is now used to 

predict drug sensitivity. This allows the assessment of the variability of the predictions, which was 

incorporated into the newly developed visualization capabilities of ProteomicsDB (see paper #2 in 

the Appendix). One advantage here is that elastic net models are a type of generalized linear 

model, which allows for fast prediction on new data using simple linear algebra operations. In 

other words, the prediction can be broken down into a series of joins and simple mathematical 

operations, which makes the prediction of drug sensitivity on new data extremely fast. In contrast 

to model training, drug sensitivity prediction happens on user request. Users have the opportunity 

to predict the drug sensitivity of samples (e.g. cell lines) already present in ProteomicsDB which 

the model has not yet seen, or alternatively upload their own data and predict the drug sensitivity 

of their model systems. 
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1.5 Data processing and integration procedures 

1.5.1 Intra- and inter-omics data normalization procedure 
SAP HANA offers adapters for the direct connection of the database to an R server. That allows 

the implementation of data processing and transformation procedures that do not exist in the 

database and its extension packages, so-called RLANG procedures. 

A procedure that allows the further omics data comparison is the omicsMComBatNormalization. 

Given two datasets, the first being the reference dataset and the second the one to be normalized, 

the procedure executes the following steps: 

1. Filters the datasets for common genes or proteins, 

2. Filters out genes or proteins that show zero variance across all samples of a dataset, 

3. Applies the MComBat adjustment to the second dataset and 

4. Returns the normalized dataset, as a table, to HANA for further processing in SQL 

A detailed review of the literature and a description of the logic around the MComBat and batch 

effect correction is part of the second manuscript of the Appendix. To enable user-uploaded data 

comparison to ProteomicsDB stored data, this method is available as a normalization option in the 

frontend. Users can choose this method to make meaningful comparisons. 

1.5.2 The missing value imputation procedure 
Taking advantage of the afore-mentioned omics data normalization method, an mRNA-guided 

missing imputation method described in (4) was implemented. Following their implementation 

and example, at first, all full- and deep-proteome datasets, stored in ProteomicsDB, were 

normalized against each other with the aforementioned method to provide a reference dataset. 

As a second step, all transcriptomic datasets in ProteomicsDB were also normalized against each 

other. Then, the normalized transcriptomics data were MComBat adjusted based on the 

proteomics reference dataset. At last, a linear model was fit on the two normalized omics types, 

leading to a linear equation that will later be used for estimation of missing omics expression 

values. This feature is implemented and added to the backend endpoint and the frontend 

functionality of the already existing analysis tool, the interactive expression heatmap. 

1.5.3 Drug enrichment analysis procedure 
The following method is a part of the Pia Bothe’s internship and Master Thesis with the title, 

“Development of a human tissue ontology based on multi-omics expression patterns to investigate 

drug responses”. 

This functionality includes the following steps, each one wrapped in its own procedure: 

1. Collection of all full and deep proteomes in ProteomicsDB. There are several filters applied 

here that need to be provided as input parameters, for example, the minimum number of 

proteins in a dataset, if only kinases should be considered, etc. 

2. Collection of all cell sensitivity data in ProteomicsDB. Here, only cell lines for which we 

have proteomics expression data are considered. A few filters are also applied here, for 

example, the minimum number of cell lines screened per drug, etc. 

3. Transformation of each drug in step 2 into an equal length vector representation, where 

each dimension is a cell line. Each dimension is a binary attribute, where 0 represents no 

effect of the drug to the cell line, while a 1 represents effect of the drug on the cell line. A 

cell line is considered sensitive to a drug when it fulfils the input based criteria, for 

example, EC50 less than an input value, or Relative inhibition effect higher than an input 
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value. This one-hot matrix (5) allows further comparisons between drugs based on their 

Jaccard similarity (6), as each drug represents a set of strongly affected cell lines. 

4. Drug enrichment analysis, using an R procedure, with user-defined of foreground and 

background selection of cell lines based on their similarity. 

5. Multiple test correction, using an R procedure and the Benjamini-Hochberg procedure 

that provides a q-value per drug. 

6. Final projection of a list of drugs, ordered by their q-value in ascending order, provided a 

cell line or tissue name on which the drug enrichment is performed. 

1.5.4 Elastic net regression procedure 
Another procedure written in R language that utilizes the package (‘glmnet’, version 2.0-18) is the 

fitElasticNet procedure. The procedure requires as input parameters: 

 An expression table, consisting of 3 columns: GeneName, CellLine and Expression value, 

 A drug sensitivity table, consisting of 5 columns: Drug, Cell viability dataset, Cell line, 

Model attribute type and model attribute value, 

 The omics type of the expression data and 

 The number of bootstraps, X, for the model fitting. 

The procedure applies, as a first step, missing value imputation on the expression matrix. Then it 

fits X bootstrap elastic net models, extracts the coefficients and intercepts of each bootstrap and 

reshapes the output to the corresponding tables (Figure 2.6). 

1.6 Frontend adjustments  
All created visualization and analysis tools that were developed in the scope of this thesis, are 

described in the two manuscripts. Here, the logic behind the interaction graph as well as the 

frontend limitations are described. 

1.6.1 Interaction network 
The Resource Identifier Relation data model enabled the storing of any kind of relation between 

different identifiers from different resources. As described in the introduction, protein-protein 

interaction, along with pathway information, are stored in the same data model. Using the 

SuperNodes technique and the relevant views, information stored in the data model can be 

visualized as a graph where nodes are SuperNodes (e.g. Genes or Pathways) and edges are 

relations between them (e.g. ‘activation’, ‘inhibition’, ‘belongs to’). The user interface was 

designed in a protein-centric way. The ‘Protein Details’ webpage was expanded with a new tab, 

the ‘Interaction network’. As the webpage is focused on a protein of interest, same with the 

‘Interaction network’ tab, any kind of selection begins from that protein. The view is divided into 

two vertical panels. 

The left panel contains three tabs: the Relation tab, the Node information tab and the Options 

tab. On initialization of the webpage, only the Relation tab is visible. It contains all settings 

regarding the data retrieval query. More specifically, it contains every relation group and 

relationships so that the user can preselect the allowed relations in the resulting graph. Upon 

query result retrieval and rendering of the graph, the Options tab appears. Here the user can show 

or hide different groups of nodes, such as nodes that represent Genes or Pathways. This menu 

also offers the option to download the visible graph in three different formats: SVG and PNG for 

vector graphics and images and in SIF format that is directly importable in Cytoscape (7). The 

Nodes information tab appears upon selection of one or more nodes. It includes small accordion 
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menus one for each node and includes information about the UniProt Accession or the String 

Identifier that the specific node uses in the relations of the graph. For each node there are small 

buttons that redirect the user to the protein information of that node as well as any other tab of 

the ‘Protein Details’ webpage, allowing even the initialization of the graph using a different protein 

of interest. Finally, in the case that multiple nodes are selected, two more buttons are enabled 

redirecting to the Interactive Expression Heatmap or the Combination Treatment analysis tools. 

The right panel is the graph visualizer, where the queried nodes and edges are displayed. The 

graph is implemented using the D3js library (version 4) (8) and is a force-directed graph. Nodes 

have specific weights and charges so that they do not overlap and edges have specific force ranges 

so that the distance between nodes stays constant, and nodes do not keep increasing their in-

between distance forever. When the final positions of the nodes are set by the D3 simulation 

environment, the simulation is stopped to allow reorganization of the graph. Nodes are drag-able 

objects. On click and drag of a node, the node changes its position in the graph causing the rest of 

the nodes to changes their position accordingly as their charges stay the same and the force 

between them does not allow overlaps. On the release of a node, its current position becomes a 

permanent position, meaning that this node is locked in space and any alteration in the forces in 

the graph is not affecting this node. Every node can be locked into position separately. Clicking 

and dragging in the empty area of the graph allows reposition of the whole graph. Scrolling up and 

down enabled zooming in and out the appointed area, respectively. After rendering a graph, four 

in-frame buttons are enabled. The first button is a plus sign (‘+’) that triggers the expansion of the 

graph on the selected node with the next five neighbours in every relation group that is selected. 

The ‘bucket’ button removes a node and the associated edges from the graph. The ‘open-lock’ 

button unlocks again the selected node allowing the calculation of its position by the simulation 

environment of D3. Deletion and unlocking of multiple nodes are allowed if the nodes are selected 

by holding down the Shift button on the keyboard and clicking on each node separately. Expanding 

a node is a single node functionality. Selection of a node is not only locking that node into position 

but also highlights the selected node by changing its colour to orange and changes the left panel 

to the Node Information tab. 

1.6.2 Frontend framework limitations 
As of right now, SAPUI5 is the framework to create user interfaces for ProteomicsDB, but the 

development of SAPUI5 is stalled, very convenient features of modern frameworks are missing, 

and the development process is very slow. Moreover, the SAPUI5 theme that ProteomicsDB is 

developed on, named ‘sap_goldreflection’, is deprecated and consequent updates of SAPUI5 do 

not apply for this theme. Upgrading to a newer SAPUI5 theme requires a full re-implementation 

of the frontend nowadays. Even in that case, the structure of SAPUI5 is limiting the development 

of new tools as they should comply with specific standards that are not always easy to follow, 

increasing that way significantly the development time. Therefore, an evaluation of other new 

frameworks was needed, to future-proof ProteomicsDB and make it more accessible for 

developers in the future. After comparing React, AngularJS and Vue.js, Vue.js was selected. 

Direct integration of SAPUI5 and Vue.js is not possible. However, SAPUI5 allows deployment of 

pure HTML elements in their XML-like format. On the other side, in Vue.js, when a build is 

triggered for production usage, it produces two JavaScript files containing the main application 

and the declaration of the functions and further scripts. It further produces a CSS file regarding 

the styling of the resulting webpage and an HTML file, called index.html, which loads the JavaScript 
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code from the two previous files. Placing the content of the index.html file to the HTML element 

of SAPUI5 allows deploying Vue.js application in the scope of SAPUI5. Further exploration is 

needed as CSS styles might conflict, and manual adjustments are needed in that case. 
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2 Abbreviations 
API Application programming interface  

CSS Cascading Style Sheets 

HTML Hypertext markup language 

PNG Portable Network Graphics 

RDF Resource Description Framework  

RNA Ribonucleic acid  

SIF Simple interaction file 

SQL Simple query language 

SVG Scalable Vector Graphics 

TPM Transcripts per Million 

URI Universal resource identifier 

XML Extensible Markup Language  
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Summary 
Mass spectrometry has become the lead technology for proteome research. The produced 

proteomics data is of high volume and complexity, rendering hypothesis generation a difficult 

task, especially when one needs to compare results across several experiments or studies. 

Different repositories have been developed in the last years, being focused though in certain 

aspects of the data. More often, existing platforms do not bind together peptide and protein 

identifications with quantification information. ProteomicsDB is a unique resource that stores 

quantitative mass spectrometry-based proteomics data of human origin. Initially introduced in 

2014, ProteomicsDB is capable of organizing and storing identification and quantification data 

along with metadata regarding the experimental design, such as sample treatment and 

preparation protocols as well as data acquisition parameters. Proteomics data are organized in 

samples, experiments and projects, where a project represents a publically available. The protein-

centric interface of the platform allows the in-depth investigation of a protein of interest (POI). 

The existing data model and real-time normalization methods enable cross-dataset comparisons 

of protein abundance, which can be visualized in the human bodymap, providing at the same time 

information about the relative abundance of a protein across human tissues. Dose- and 

temperature-dependent assay data are also available for most of the proteins. Protein-protein 

interactions and pathway information are offered in an interactive and extendable graph. 

Validation of identifications is also an option in the mirrored spectrum viewer, where 

experimentally acquired spectra can be compared to reference spectra originating from synthetic 

peptides. Finally, proteotypic peptides can be explored for the creation of targeted assays. 

Another benefit of this platform is the online analysis toolbox that it offers. Multiple proteins’ 

expression values can be compared in the interactive expression heatmap. Different kinase 

inhibitors can be compared with each other based on their selectivity against a protein of interest. 

Combining the dose-dependent assay data in a drug-target interaction network enables the online 

exploration and design of combination treatments. Different drugs can be explored regarding 

their effectiveness against multiple cell lines, in the new Cell Viability analysis tool. Finally, the 

data model of ProteomicsDB was extended to support any kind of quantitative omics expression 

data. The new data model was populated with MicroArray and RNAseq data from NCBI GEO, 

ArrayExpress and the Human Protein Atlas. The new omics expression data are available for 

visualization in the human bodymap and the interactive expression heatmap. A newly developed 

resource identifier mapping system allows the direct conversion between resource types, allowing 

consequentially the comparison and analysis of omics data from different resources using 

https://doi.org/10.1093/nar/gkx1029
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different gene or protein identifiers. The generalized data models, the inter-connected analysis 

tools and the data diversity render ProteomicsDB a unique resource for the scientific and medical 

community. 
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Summary 
ProteomicsDB was initially developed as a human-centric mass-spectrometry-based proteomics 

database. In 2017, the platform was extended to support different omics-types and cell viability 

data, along with a versatile resource identifier relation data model. The platform is extended not 

with new data, data models and analysis tools. The data wealth of ProteomicsDB is enriched with 

one more cell viability study increasing the total number of screen drugs in ProteomicsDB to 

~20,000. Moreover, the drug-target interaction data are extended to 1,500 kinase inhibitors and 

tool compounds. The protein property information is enriched with 13,000 melting points of 

proteins obtained by thermal proteome profiling. The biochemical assays section contains now 

also protein turnover data, including synthesis and degradation curves for more than 6,000 

proteins. The data extension is completed with the import of more reference spectra, 5 million 

originating from synthetic peptides and about 40 million from predictions using Prosit. The total 

of the stored data along with the previous extensions of the platform opened the way for real-

time multi-omics data integration tools. Taking advantage of the identifier mapping model and 

the matching transcriptomic and proteomic datasets, the interactive heatmap is extended with an 

mRNA-guided missing value imputation method. Elastic net regression models are applied to the 

cell viability and protein expression datasets to model drug sensitivity. The fitted models are 

available as a new analysis tool, where users can predict the drug sensitivity of a preferred cell 

line or tissue that is stored in the database. In order to allow users to bring ProteomicsDB closer 

to their laboratories and own datasets, a new feature is implemented for the temporary upload 

of custom-user expression data and their online analysis and side-by-side comparison with data 

stored in ProteomicsDB. At the time being, user data can be used in the interactive expression 

heatmap and the drug sensitivity prediction tools, but it is planned to be extended to the whole 

analysis toolbox of ProteomicsDB. Finally, the platform transforms from human-centric to multi-

organism, extending all its functionalities to every other organism, with Arabidopsis thaliana being 

the first expansion. 
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1 Status quo of ProteomicsDB 
The big vision behind ProteomicsDB is to provide a one-stop-shop for solutions in daily issues in 

life science research. Scientists will be able to upload their expression profiles for online analysis, 

find relevant data from other omics types, select the appropriate cell line for their experiments 

and build hypotheses based on their online findings. ProteomicsDB is designed as a collection of 

data, analysis tools and access points that enable public access to data originating from different 

omics fields, tissues and organisms all processed with the same pipelines using the same quality 

control metrics. Different aspects of the platform could be embedded in wetlab workflows helping 

with the design of experiments, allowing the validation of in-house results based on public studies, 

assist in biomarker discovery or even be integrated into a full workflow that would process raw 

data directly retrieved from a mass spectrometer. ProteomicsDB is purposed for helping scientists 

and clinicians with simple questions like “Which drug is selective and effective against a protein 

or cell line?”, or “Which cell line should be used for an experiment if the expression of a specific 

set of proteins is required?”. 

The vision is not completed yet, as there are several challenges that need to be faced. 

ProteomicsDB should be prepared in a generic way as every laboratory uses a different 

experimental workflow. It needs to be updated continuously from remote sources as a wrong or 

old identifier for a protein or drug might lead to the generation of false hypothesis triggering a 

chain of unnecessary experiments. Currently, constant updating needs manual work is time-

consuming and prone to errors. Automated solutions have to be designed to overcome this 

obstacle and bring ProteomicsDB closer to its goal. 

The current implementation solves already many issues. It brings together different omics types, 

cell viability data, and new organisms and expands the data wealth of ProteomicsDB with more 

studies around proteomics, transcriptomics and drug-target data. However, it lacks some 

flexibility due to the focus during design-time on specific aspects. Therefore, each data model and 

extension during this thesis comes with its benefits and drawbacks. 

1.1 Support of post-translational modifications 
From the beginning, the data model of ProteomicsDB was able to store post-translational 

modification (PTM) data. PTMs are imported directly from the MaxQuant (1) output, and 

ProteomicsDB is using UniMod (2) PSI names and identifiers to make them query-able to the 

scientific community. However, the current implementation allows only the visualization of the 

position of each detected PTM on a protein and peptide sequence. Another place where PTMs are 

visible is in the peptide identification list of the spectrum viewer, where the user can filter for 

allowed fixed or variable modifications. As PTMs have been highly associated with disease and in 

particular cancer (3-5), ProteomicsDB needs to provide a more direct way to search for them. As 

a first step, a unique and global naming scheme has to be defined, as every software is using its 

own format. The naming scheme should contain the type of PTM, the position in the peptide 

sequence and the amino acid or residue the on which it is bound, for example, “Phospho@S4”, 

which means there is phosphorylation on the fourth amino acid that is a serine. In case of 

existence of more than one PTMs in a peptide sequence, they could be presented in a modification 

string separated by a comma and in ascending order by position. Having this scheme in place 

allows the query of any peptide identification that includes PTMs from the database. The second 

step would involve the extension of all current peptide search functionalities in the website to 

allow existence or filtering on desired modifications. That way, users could browse a specific 
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protein, select all identifications that contain specific modifications and focus their analysis based 

on the results. 

1.2 Extending the stored drug-target data 
The drug-target space of ProteomicsDB is extended so far only by in-house data, using the 

Kinobeads (6) assays. Integrating data from other resources would extend the target-space of the 

stored compounds further from kinases, which is currently the case. Nevertheless, the real 

problem extending any kind of data that are connected to drugs and compounds it the manual 

mapping of these compounds to public identifiers. Most of the public studies and datasets provide 

internal identifiers and names of the used compounds, often accompanied by simplified 

molecular-input line-entry system (SMILES) (7) codes, with a partial mapping to existing drug 

databases, not referring to the version of this database. Compound databases get continuously 

updated, and many times, entries are merged or deleted. During implementing ProteomicsDB, 

ChEMBL (8) was chosen as the database of reference for compounds. It is challenging to connect 

the correct identifier to the imported drug if no structural information is provided. Matching by 

name is hard but also prone to errors as there was many times the case of a compound name 

matching to two or more compound identifiers in the ChEMBL database. Also, the use of SMILES 

codes is not the most efficient as there is a one-to-many relation between SMLEs and structures. 

It is also possible a SMILES code with no stereochemistry information to match to more than one 

compound. A unique representation of the structure of a compound is encoded into InChI (9) 

codes. However, it is rarely the case that the published studies will also provide InChI codes for 

their compounds. A SMILES to InChI converting service would solve this problem. 

ChEMBL provides a free API nowadays with many functionalities that could be exploited from 

resources like ProteomicsDB. One of their services is the online and real-time transformation of 

SMILES to InChI codes. Searching in ChEMBL for compounds that match to an InChI code is still 

not easy, in any case. UniChem (10) was built as a movement to connect compound identifiers 

from different online chemical compound databases. It is updated regularly and provides an API 

for the retrieval of the desired identifier, given an InChI code. Combining the two APIs could help 

not only the import of new compound-driven studies in the database but also the cross-link 

connectivity to other databases as well as the real-time retrieval of information regarding the 

clinical phase of a compound or if it is approved and in which countries. 

With the identifier mapping issue solved, more studies could be imported in ProteomicsDB. 

However, at the same time, certain limitations of the platform’s UI should be solved. Checking the 

biochemical assay tab of a protein and filtering for the Kinobeads assays will result in many entries 

one for each compound per study for which there exists a binding curve. In a different tool, 

studying the selectivity of any compound against a selected target-protein, the user will be 

presented with a long list of compounds, the same as in the previous tool. There is a need to filter 

these compounds and sort them based on some selectivity score. The implementation of the 

concentration- and target-dependent selectivity score CATDS (6) would solve this issue, limiting 

the results only to the selective inhibitors, or giving the opportunity to the user to set the threshold 

manually and order the results by the selectivity score. 

Another issue for this type of data is that Kinobeads assays, same as with proteomics, are blind to 

particular proteins, which might cause them not to appear as targets of a compound. Clinicians 

and researchers should be aware that if there is no curve information about a specific protein it 

does not mean that it is not inhibited by the selected compound. 
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1.3 Cell viability data model and visualization 
ProteomicsDB supports the storage and visualization of dose-response datasets. The data model 

is generalized to allow storage of different model attributes and mappings between them as it 

consists of several triple-stores. The user interface (UI) provides a variety of filters to reduce the 

shown data only to the relevant ones. After filtering on the available data, the UI allows the 

comparison of several drugs on a cell line or different cell lines treated with a selected drug. 

Although both the data model and the UI allow the storage and visualization of combination 

treatments, they are not visualized, however, in an optimal way. More filters could be introduced 

for the selection of the allowed ratios of the combined drugs. Another filter could be added for 

the selection of a pool of drugs that users want to explore existing combinations in the stored 

studies in the allowed ratios. Another shortcoming of the current implementation is that there is 

no connection of the displayed cell lines to the relations of the tissue ontology of ProteomicsDB. 

Establishing such a connection would allow the users to filter for cell lines with the same tissue of 

origin or even “cut” the tissue ontology on a higher level, allowing, for example, all cell lines that 

originate from tissues form the cardiovascular system. 

However, one of the main challenges remains the import of new studies. Drugs of the current 

imported studies were manually mapped to identifiers of other resources, facing the same 

problems as described above and extending the time needed to map and import the data in the 

database. A central online drug identifier mapping solution would fix this issue, bringing along all 

the other benefits that were described earlier, such as clinical trial information. 

1.4 Multi-organism extension 
ProteomicsDB is not a human-centric platform anymore. Its functionalities are extended to any 

other organism that is stored in the database. All tools and visualizations, though, are always 

available for a selected organism only. There is no direct way of comparing protein or transcript 

expression values across organisms, for example, between the same tissues of human and mouse. 

ProteomicsDB lacks currently the information about homologues between species, something 

that would enable such comparisons not only on expression level but also in protein-protein 

interaction networks or even comparison of pathways. 

The user experience (UX) on the website could also be improved. Currently, the change of the 

selected organism results in a total reset of the website to the default settings and view. Any 

produced graphics and analysis is lost upon change to the new organism. Having a mechanism in 

place for temporarily storing the current results and providing a link for their accessibility would 

allow at least offline comparisons between species. The next step, of course, could be the 

incorporation of data from more than one species at any step of the online analysis. 

It is already stated that ProteomicsDB was expanded to support any other organism. This is true 

only for multi-cellular organisms, though. Prokaryotic species or in general unicellular organisms 

cannot be stored, annotated and visualized properly. One step towards solving this issue is the 

extension of the tissue ontology of ProteomicsDB with terms and identifiers for organelles or 

subcellular locations. Finally, the development and integration of more organisms could benefit 

from the usage of publically available organism bodymaps as vector graphics were tissues-paths 

are annotated with identifiers existing in tissue ontologies. 
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1.5 Multi-omics data model 
The multi-omics data model was the first extension of ProteomicsDB as a work of this thesis. The 

design of the model was focused on the already existing but limited support of quantitative 

transcriptomics data in ProteomicsDB. As a result, this model was designed to replace the existing 

data model and store transcript expression data in a generic way. At the same time, it was able to 

capture any other omics-type, where the data are presented as tuples of molecule-identifiers and 

an expression or amount numeric value. That includes copy number variation data, but there are 

still many fields that are not supported by this implementation. In the case of genomics, mutation 

data need a different description than expression data and a complex value including a position 

in the genome or gene, the type of the mutation (e.g. deletion or insert of a nucleotide) and a 

character-value representing the new nucleotide. Single nucleotide polymorphism (SNP) data 

support is also suffering for the same reason. The data model should be extended in order to 

support further omics-types, including metabolomics, methylomics or lipidomics, fields that can 

further contribute to multi-omics data integration and lead to interesting results (11-13). A 

possible solution is the alteration of the expression table to a feature table, not storing anymore 

expression of a gene, probe or any identifier, but include only fields for the description of this 

identifier. This could be achieved by using again a table as a triple store that would store attributes 

or properties of an identifier. An attribute, in this case, would be a position in the genome, the 

type of a mutation, the value of a mutation or the value of an SNP. The model would still support 

expression data, as the expression value and the unit of this value could be stored as attributes of 

this feature. 

Another fast-moving field is genomic and proteomic analyses in single-cell measurements. Single-

cell studies often explore developmental stages of a cell of a tissue (14,15). The current 

implementation of ProteomicsDB supports the storage of single-cell expression data, but is lacking 

a fair description of these studies. ProteomicsDB uses the BRENDA Tissue Ontology (BTO) (16) as 

for the annotation and mapping of samples to tissues of origin. As BTO does not include 

description or identifiers for developmental stages of tissues or cells, more ontologies could be 

integrated into the platform to capture the information around single-cell studies fully. 

2 Sustainable infrastructure in a fast-advancing technology 
A reason that ProteomicsDB has not reached yet the goal of becoming a one-stop solution store 

is the advances both in life science and in information technology. New methods, tools and 

instruments are designed and used for faster or more accurate measurements. To be able to 

describe these data and provide proper annotation, ProteomicsDB has to be updated and 

extended continuously. 

2.1 Advances in technology in life science 
Several new studies are not focused on the proteome or transcriptome of a single organism but a 

collection of symbiotic bacteria, as in the metaproteomics field (17). Samples in these studies 

cannot be stored in ProteomicsDB currently as there is no way of annotating a sample with 

different taxonomy codes (taxcode). Depending on the taxcode of a sample, the appropriate 

sequence space of that organism is used, which is also not easily extendable in the case of 

metaproteomics, at least in the current implementation of the platform. There needs to be 

implemented a new solution for the annotation and integration of complex samples and 

experiments. That would also affect the processing and import pipelines of ProteomicsDB as the 
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sequence space of such samples grows significantly resulting in only a few peptides surviving the 

FDR thresholds and leading to even less inferred proteins. 

The proteomic studies that are stored in ProteomicsDB and covered by the underlying pipelines 

are using the data dependent acquisition (DDA) mode. In principle, storage of studies using data 

independent acquisition (DIA) mode is also supported, but there are many challenges to be faced 

regarding the proper FDR control as well as the definition of a standard processing and import 

pipeline. The proteomics community makes efforts in defining a proper target-decoy approach so 

that control for false positives is possible. Merely applying the same approach as for DDA is not 

enough, however. In DDA, the mass spectrometer reports the m/z ratio of peptide ions. In DIA 

peptide ions are measured in 2 dimensions, which are m/z ratio and retention time. The decoys 

that are generated for the database search should follow the same principles in order to give a 

50:50 chance to a spectrum to match to them. The problem here is that simply shuffling or 

reversing the peptide sequence, like in DDA, would cause the actual peptide to elute in different 

retention time, making the decoy sequence not appropriate for this competition. As 

ProteomicsDB cares about the quality and the truth of the provided data, it is perhaps not yet the 

time to support DIA experiments. However, having in place the data model and import pipelines 

for such experiments will speed up the process when the time comes to support DIA data. 

A rather interesting and evolving field in the world of omics technologies is the sequencing 

technologies. Genomics and transcriptomics have already seen the benefits of nanopore 

sequencing. Low-cost devices, like the Oxford Nanopore’s portable MinION (18,19), are being used 

for fast full genome sequencing. The DNA or RNA sequence passes through a biological pore, 

where the electrical conductivity of each nucleotide is measured, therefore identifying each 

nucleotide sequentially. There are current efforts in bringing the nanopore sequencing technology 

in proteomics (20,21). However it is more complicated as in DNA and RNA only four different 

states have to be identified, while in proteomics there are many more states if one considers all 

amino acids and the modifications they might carry. This technology could shine a bright light into 

de novo sequencing for proteomics and ProteomicsDB should be ready to integrate such results 

in the current data model. 

2.2 Advances in informatics 
Information technology (IT) is also advancing quickly. Electronics and circuits are getting smaller 

and smaller, allowing the build of more powerful central or graphics processing units (CPU, GPU) 

using the same space on a chip. More computing power enables the design and implementation 

of more complex algorithms for the reanalysis of existing data to extract more information or 

simply to increase the processing speed. Not only hardware evolves, though, but also software 

and programming languages. In the last years, newer user interface (UI) technologies and 

frameworks made their appearance, promising an easier and better development experience, 

shareable code components and a modern way of visualizing data. Due to that, older frameworks 

get deprecated and discontinued forcing existing applications to update or even change the UI 

frameworks they use for their development.  

ProteomicsDB is currently using an old UI framework that is not used by many other platforms 

anymore. Parts of the framework are deprecated, and there is a lack of available examples for the 

development of new tools or applications. Due to the deprecation, updating to a newer version 

of the current framework needs a major rewriting of the existing code base, which is not 

meaningful if the new version has the same issues, like limited community usage and support. This 
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led to the decision of using a newer framework, called VueJS which is supported by a large open-

source community. Using such a framework comes with the advantages of reusing existing and 

published code, finding quick solutions to arising problems, and avoiding common bugs leading to 

faster development times. The current expansion of ProteomicsDB is based on the integration of 

the two frameworks, which, although possible, is very hard to maintain. If possible, a full 

reimplementation of the platform should be followed as a next step, to speed up even more future 

development. Finally, ProteomicsDB hosts many unique visualization tools that could be rebuilt in 

a generalized way using the new framework. The generalized plots allow reusing them in other 

webpages of ProteomicsDB, but they can also be offered to the open-source community and 

expand the list of available examples and tools. 

Another obstacle in the development of the one-stop-shop is the database management system 

behind the platform. When ProteomicsDB was initially designed, SAP HANA was an innovative 

solution, providing fast querying of huge tables, by optimizing storage and indexing in the main 

memory of a system. It was and still is a very good solution to the size of the data and the 

complexity of the queries that are performed with every call in the frontend. However, during this 

thesis, the database was expanded with data and procedures that are not suitable to a relational 

data model, such as the identifier mapping procedures. The current advances in IT brought in the 

foreground powerful graph DBMS, like Neo4j (22,23), which are able to store this kind of data and 

provide answers to graph-formed questions, such as the identifier mapping problem. A possible 

solution in this problem is the decoupling of the single DBMS that is currently used into several 

DBMSs, each one serving a different cause and providing answers to the corresponding questions. 

The steps that were described so far will already provide a stable ground for the future 

sustainability of the platform. Applying these solutions will result in a reimplementation of a huge 

part of the existing code. During this procedure, it is worthwhile taking some time to think of other 

existing technologies that would help with future development, deployment and upgrades. SAP 

HANA offers the functionality of packing the whole platform in packages, called delivery units 

(DU). These packages include the database entities, like the schema, the tables, the views and the 

procedures, the server API and backend calls, and the UI code. The advantage of the DUs is that 

they are readily deployable to every other SAP HANA system, making migration to newer or better 

infrastructure easier. They can also include the stored data as files, but it is not recommended as 

it will increase the size of the DU significantly. The client- and server-side of ProteomicsDB are 

already parts of a DU including a part of the database schema. While recoding ProteomicsDB, it is 

worthy of moving the entire database structure in the DU, which will make the whole platform 

portable. Although the data are not part of the DU, there are ways offered by SAP HANA to import 

them from an existing database directly. 

Re-implementing a full platform is not an easy task or decision. It needs pausing all active tool 

development or debugging, as double trouble due to fixing the same error twice might arise. It 

becomes more difficult, especially when the developers behind the platform are researchers and 

academic progress is measured by the number and impact factor of publications and not with 

modern-looking visualization tools. Also, there are no grants in academia that would support the 

hiring of professional developers with the sole purpose of re-designing and implementing an 

already existing application. The decision is tough though necessary, as it will enable fast future 

development and extension, even remigration to newer versions or infrastructure when needed. 
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3 A Resource as a Service 
Becoming a F.A.I.R. resource brings ProteomicsDB one step closer to its goal, as it will also provide 

channels of communication with homemade software used in different wetlab workflows, At the 

same time it will allow ProteomicsDB to be kept up-to-date with data from other resources. 

Many of the online resources described in this thesis offer a web UI but also an API, allowing 

programmatic access. In both tools, the content that is served is defined by the developers to 

comply with the needs of the frontend or the estimated usage of their data. The use of open 

protocols for the definition of an API enables the easy integration of such calls in other services. 

Usually, though this is not enough as APIs and backend calls are designed in a human-readable 

way. APIs and online resources that follow the F.A.I.R principles (24) open the way to inter-

resource communication. Two F.A.I.R. resources that both depend on each other’s data can easily 

establish communication routes that will speed up routine processes, which otherwise would 

need manual data handling and even annotation. ProteomicsDB is a nice example, as many of its 

underlying controlled vocabularies, ontologies and raw data originate from other resources. The 

protein sequence space, for example, is based on the protein sequences that are stored and 

evaluated by UniProt (25). A direct communication path would allow the automatic update of the 

underlying sequence database every time it changes in the original resource. Drug and compound 

entries could be updated or modified using direct connections to the ChEMBL (8) database. Finally, 

a direct connection with the raw file repository PRIDE (26), coupled with the data process queue 

and import pipelines of ProteomicsDB, could automatically extend the data wealth of the 

platform. Raw files and annotation could be retrieved from PRIDE to the ProteomicsDB servers, 

processed with the standard pipelines and directly import the results in the database. 

A F.A.I.R., modern-looking, easy-to-use and expand ProteomicsDB can play an important role in 

life science research but also the clinical setting. 

3.1 For experiment planning 
ProteomicsDB can already support life science in experiment planning. It offers the option to 

explore the properties of a protein of interest and assist users in designing their experiments 

under specific conditions, like temperature, dose and duration. By using the existing analysis tools, 

researchers can explore in the interactive expression heatmap expression patterns of their 

proteins of interest, or protein targets and off-targets of a specific compound and find the 

appropriate cell lines for their experiments. The protein-drug interaction graph can provide 

meaningful insight into designing combination treatments by controlling the concentration of 

each separate compound and exploring the changes in the target-space of all selected compounds 

at the same time. Another type of experiments that ProteomicsDB can provide a quick solution is 

targeted assays. As discussed already, ProteomicsDB stores both protein quantification and 

identification information. A quick visit to the platform can provide information for proteotypic 

peptides that can later be used for the design of SRM assays. To ensure the user of the quality of 

the peptide identifications and therefore the truth behind the proteotypicity of a peptide, 

researchers can explore the evidence behind the identification of proteins, by checking the spectra 

of the identified peptides. The experimental spectra can be compared to reference ones 

originating from synthetic peptides or reference spectra that were predicted by Prosit. Visiting 

ProteomicsDB and starting from a peptide, protein, tissue or organism of interest, a researcher 

can start building hypotheses that can be later tested in the laboratory or by analyzing existing 

data. 
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However, there are a few things that stall the usage of the platform in a wetlab workflow. Many 

of these were described already, like the lack of more data or omics-types and the missing or false 

mappings of molecule names to identifiers. In every experiment, a different protein sequence 

database is used, and even if the resource of this database is the same, the version always 

changes. ProteomicsDB needs to face this challenge and provide a way of mapping identifiers 

across databases and versions so that the results are valid no matter which database was used for 

the search of the data. Finally, by involving more the scientific community into the design of the 

platform, organizing user forums and workshops for researchers will allow ProteomicsDB to grow 

in a more welcome to the wetlab way. 

3.2 For online analysis of results 
Another field in the vision of usage of ProteomicsDB is the online analysis of in-house produced 

raw data. If possible, pipelines would allow the direct import of experiments and measurements 

right after their output from a mass spectrometer. This is not ready yet, however. The current 

version of the platform allows the upload of expression data, but requires the user to process the 

raw data offline and then proceed to the upload. Even then, the functionality and analysis that 

allows user data is currently limited. However, it is planned to be expanded in every part of the 

resource. ProteomicsDB, as a platform, is not just what is available to the user, including the 

backend functionalities and procedures. It comes with a variety of scripts and pipelines that take 

care of metadata annotation, project import, quantification and identification searches, FDR 

calculation procedures and many other scripts that help the semi-automatic data and metadata 

retrieval. Even if the user would like to perform offline analysis combining data from 

ProteomicsDB with in-house data, the current API does not cover the whole database, so not all 

data is accessible in a programmatic way. 

By solving the aforementioned issues, ProteomicsDB could be a valuable addition in every 

workflow and every stage of performing an experiment. For example, in proteomics, experiment 

planning and hypothesis generation could be initiated while exploring the data in ProteomicsDB, 

like finding a cell line the expresses specific targets of a compound. Afterwards, sample 

preparation would follow and then the measurement of the sample in a mass spectrometer. 

Binding ProteomicsDB to the output of the MS would start the online identification and 

quantification pipelines. The researcher would then validate the expression of the protein of 

interest in their samples and continue the online analysis or comparison to the existing data. After 

exploring the available studies, the next step could be the design of a combination treatment 

experiment in ProteomicsDB based on available compounds in the laboratory and the expressed 

proteins in the processed sample. This can trigger a second circle of experiments, preparing the 

new samples, performing the combination treatment experiments and measuring again in the 

mass spectrometer, uploading and searching in ProteomicsDB leading this time the researcher to 

perform an online differential expression analysis. At this step, the researcher can check if the 

targets of interest are significantly inhibited to the expected degree and how it affected the 

general expression patterns in the sample. The workflow could stop here if the initial hypothesis 

was already proved or trigger the generation of a new hypothesis and initiate a new loop. 

ProteomicsDB is envisioned to play a central role in experiment design and online analysis. It is 

possible to achieve this, by assisting the life science research via loops of experiment planning and 

performing as well as data integration and analysis that would lead to a new phase of experiment 

planning. 
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3.3 For the clinical setting 
The final big goal of ProteomicsDB is to be integrated into the clinical setting. There are many 

challenges that need to be faced in order to begin this integration, though. One obstacle is 

concerning the drugs and compounds that ProteomicsDB stores data for, where there is no 

information yet about clinical trials, or if they are commercially available or FDA approved. This 

information is crucial for clinicians as they would use only approved drugs for treating patients. 

Nevertheless, even with this information available, the usage of ProteomicsDB would be limited 

to consulting based on online data. Patient data privacy does not allow, at least not easily, the 

upload of patient data into online resources for their analysis, as data might be exposed during 

this process. Therefore, the integration into an experimental workflow as described above is not 

suitable to the clinical setting as it would require the direct communication of the produced data 

with an online service and probably the online storage of the data. Fortunately, the solutions that 

were described already as parts of the future development and sustainability of ProteomicsDB can 

be proved worthy. 

Having ProteomicsDB as a portable version would allow the deployment of the platform locally 

into the clinical setup. The benefit of having a local platform is that it will be in a totally isolated 

setting, with no physical access to external individuals and a controlled, if not at all, 

communication between the platform and online resources. The drawback here is that 

ProteomicsDB is designed to be hosted and function in an SAP HANA system. The amount of data 

that the platform includes currently requires a powerful infrastructure to store and analyze the 

data, which is quite expensive, and what extends this cost is the license for an SAP HANA system. 

Even if the cost of the license and infrastructure is not an issue, it requires highly-trained personnel 

for the expansion of the local platform with newer datasets or even tools. There is a clear need 

for a central “Master” repository that is available to browse online. An extension of the idea of a 

local platform could be, the installation of a minimal local ProteomicsDB that holds only the 

imported clinical data, while all other external data are retrieved from the “master” repository, 

something that SAP HANA enables via direct communication channels, called “remote sources”. 

In that case, the computational power is split between two servers, the master querying and 

returning only the relevant data, while the “slave” local setup would perform the analysis on the 

retrieved and local data. The computational power of a “slave” system will not be on the same 

scale as the “master” system. This way the cost is dropping drastically as SAP HANA is also offered 

as an “Express” edition that is free for systems with up to 36GB of main memory. The “slave” 

server can be updated both with data and tools, but it still needs personnel with expertise on 

HANA systems. A last important extension to make the “slave” server easily deployable and 

manageable by any IT personnel is the containerization of the minimal ProteomicsDB with the SAP 

HANA express edition in a docker container. That way, any clinic could exploit the knowledge that 

is encoded in the data wealth of ProteomicsDB and use it as patient-focused treatment consultant 

service, moving one step closer to personalized medicine. 

A valuable addition to the platform and in particular to the clinical setup it the new treatment 

suggestion tool that is based on the molecular similarity of samples. Clinicians could import the 

proteomics profiles of cancer patients and use this tool in two ways. The first use-case is to find 

similar to the patient samples, commercially available cell lines and ask ProteomicsDB to provide 

a list of effective and clinically approved drugs based on the cell viability data that are stored. The 

second use-case is to make full usage of the treatment suggestion tool and retrieve a set of 

effective drugs that are significantly enriched in samples and cell lines that are molecularly similar 
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to the patient sample. This tool was a result of the Master thesis of Pia Bothe with the title 

“Development of a human tissue ontology based on multi-omics expression patterns to investigate 

drug responses”, and the wetlab validation of the resulting compound list was performed during 

the internship of Lisa Falk and Philipp Hilgendorf. ProteomicsDB can provide significant assistance 

in patient treatment and complement the existing analysis in molecular tumourboards. 

The entirety of ProteomicsDB, though, was built with a focus on the scientific community. There 

were comments and suggestions from the clinical community to simplify the web interface as it is 

not comprehensive to them, currently. It is true that scientists with specific questions can visit the 

resource and easily derive the appropriate answers. However, the way that the platform is 

presented currently is too specific and might drive clinicians and even scientists from other fields 

away. There is the need to provide ways and views that would summarize the stored information 

to the parts that are relevant not only to clinicians but to the corresponding users. Researchers 

from the proteomics field will be interested in checking the tandem spectra that are stored, but 

this is not something that would interest a clinician. Scientists for the chemical proteomics field 

or medicinal chemistry might want to directly check the target space of a compound or the 

compound that inhibit a specific protein given a concentration, something that is not directly 

accessible currently, although this information can be derived by using other analysis tools. A way 

to circumvent these issues is to reformat the UI of ProteomicsDB and introduce different modes 

of presentation, like a data expert and a data consumer mode. The first mode represents the 

current view of ProteomicsDB. The second mode would lead the user to the relevant analysis tools 

in a step-by-step approach, starting from a protein, cell-line or drug of interest and providing 

simplified and aggregated results in downloadable reports. With regard to the first mode, the 

current UI is protein-centric, something that also makes it difficult for people starting from a 

compound or cell-line of interest to explore the database. Adjusting the platform to provide 

different entry points and linking the results to existing tools or pages would already make the 

platform friendly to more scientific disciplines. 

There is a bright future regarding the contributions of ProteomicsDB to the scientific and clinical 

community. The vision behind the platform is not science fiction, but more like a scientific need. 

Tools are built to be used and should be built in a comprehensive way to the user. 

 

If they are not used, then why do we even bother building them? 
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4 Abbreviations 
API Application programming interface  

BTO BREDA Tissue ontology 

CATDS Concentration- and target-dependent selectivity score  

DBMS Database management system 

DDA Data dependent acquisition 

DIA Data independent acquisition 

DNA Deoxyribonucleic acid  

DU Delivery unit 

FAIR Findability, Accessibility, Interoperability and Reusability 

FDR False discovery rate 

InChI International Chemical Identifier  

IT Information technology 

MS Mass spectrometer 

PTM Post-translational modification 

RNA Ribonucleic acid  

SMILES Simplified molecular-input line-entry system 

SNP Single nucleotide polymorphism 

SRM Selected reaction monitoring 

UI User interface 

UX User experience 
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ABSTRACT

ProteomicsDB (https://www.ProteomicsDB.org) is a
protein-centric in-memory database for the explo-
ration of large collections of quantitative mass
spectrometry-based proteomics data. ProteomicsDB
was first released in 2014 to enable the interac-
tive exploration of the first draft of the human pro-
teome. To date, it contains quantitative data from
78 projects totalling over 19k LC–MS/MS exper-
iments. A standardized analysis pipeline enables
comparisons between multiple datasets to facilitate
the exploration of protein expression across hun-
dreds of tissues, body fluids and cell lines. We re-
cently extended the data model to enable the stor-
age and integrated visualization of other quantita-
tive omics data. This includes transcriptomics data
from e.g. NCBI GEO, protein–protein interaction in-
formation from STRING, functional annotations from
KEGG, drug-sensitivity/selectivity data from several
public sources and reference mass spectra from
the ProteomeTools project. The extended function-
ality transforms ProteomicsDB into a multi-purpose
resource connecting quantification and meta-data
for each protein. The rich user interface helps re-
searchers to navigate all data sources in either a
protein-centric or multi-protein-centric manner. Sev-
eral options are available to download data manually,
while our application programming interface enables
accessing quantitative data systematically.

INTRODUCTION

Mass spectrometry has developed into the flagship technol-
ogy for proteome research much akin to what next gener-
ation sequencing has become for genomics and transcrip-
tomics (1,2). Since proteins execute and control most bio-
logical processes in all domains of life, they are one of the
most frequently targeted class of molecules in the context
of drug development. Today, scientists and clinicians an-
ticipate that proteins will also become a major source of
biomarkers (3) useful to diagnose disease, to stratify pa-
tients for treatment and to monitor response to therapy to
name a few.

At the same time, the volume and complexity of pro-
teomics data generated by modern mass spectrometers is
challenging our ability to turn data into tractable hypothe-
ses, within and, particularly, across larger projects. In or-
der to provide access to previously performed experiments,
many different repositories have been developed (4,5). How-
ever, their focus is often limited to a particular aspect
of the data and frequently, protein identification is de-
coupled from protein quantification. PRIDE (6) is currently
the community-standard for publishing raw data but also
peptide and protein identification results (including post-
translational modifications). However––until recently––it
lacked an intuitive interface for comparing results across
different datasets. PeptideAtlas (7), GPMDB (8) and MAS-
SIVE mostly focus on hosting identification results by re-
processing data using their own pipelines. The protein abun-
dance database (PAXDB) (9) stores quantification data
from publicly available data, but lacks the underlying pep-
tide identification results. MaxQB (10) does provide both
protein identification and quantification data, but is far less
comprehensive than any of the other repositories and also
does not allow cross-dataset comparison. While most of
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these databases can store meta-data such as sample prepa-
ration and data acquisition protocols, specific treatments
and the different conditions used in the experimental setup
are not stored in a programmatically accessible format. In
addition, none of the aforementioned databases allow stor-
age of other data types. This in turn makes it difficult to
systematically explore and mine data across proteomic or
multi-omics experiments.

ProteomicsDB is filling this gap by not only enabling
cross-dataset comparisons of protein abundance, but also
by providing the means to store and analyse proteomics
data in contexts other than expression analyses. The
protein-centric web interface provides researchers real-time
and use-case-specific access to data for single or multiple
proteins using interactive visualizations at different levels
of detail. The data model of ProteomicsDB is able to store
identification and quantification data from almost all con-
ceivable proteomics experiments including meta-data such
as sample preparation protocols, data acquisition param-
eters and sample treatment conditions. More recently, its
capabilities have been expanded to also host results from
other quantitative omics technologies ranging from drug-
protein interaction studies and cell-viability experiments to
data from public protein interaction databases and tran-
scriptomes. In this article, we introduce the different anal-
ysis options available in ProteomicsDB and highlight the
developments accumulated over the past three years.

RESULTS

ProteomicsDB utilizes the in-memory database manage-
ment system SAP HANA (11) and was developed to en-
able the real-time interactive exploration of large collections
of quantitative mass spectrometry-based proteomics data
(12). A major focus during the initial development of Pro-
teomicsDB was to enable the storage of identification and
quantification data on both peptide and protein level, ir-
respective of the experimental setup and analysis method
used. Based on 408 experiments resulting from 78 exper-
iments we identify 15721 of 19629 proteins covering 80%
of the human proteome. A comparison to the Human Pro-
teome Project (13,14) can be found in the Supplementary
Table S1. To this end, ProteomicsDB is able to store the
output of any algorithm used for the automatic interpre-
tation of mass spectra (database search). Combined with
the ability to map each observed peptide spectrum match
(PSM) in any LC–MS/MS raw file transparently to the cor-
responding sample annotated with information on acquisi-
tion and sample preparation parameters, this ensures flexi-
bility during data analysis. The storage of treatment condi-
tions and the overall experimental design facilitate the anal-
ysis of more complex relations within and across different
datasets, such as dose- and temperature-dependent assays.
Efficient access to the data in combination with modern
web-based visualization technologies facilitates real-time
interactive exploration of heterogeneous data in an intu-
itive and simple way. All figures and tables available in Pro-
teomicsDB can be downloaded, while an application pro-
gramming interface allows users to directly interact with the
database in order to download raw data for off-line process-
ing or storage (Figure 1).

Because of the in-memory capabilities of SAP HANA,
most of the data shown on the website are not pre-
computed, avoiding the need for monthly or yearly builds
and enabling rapid adjustments. The different storage lay-
ers and versatile processing capabilities available in HANA
enabled the integration of graph and standard relational
database features. This facilitated the incorporation of
many different data sources and led to the development of
a variety of new features. While all protein-related results
stored in ProteomicsDB are mapped to UniProt (15) iden-
tifiers, a versatile resource identifier mapping system enables
a seamless conversion between different resources, which
facilitates easy integration of additional data sources not
mapped to UniProt (e.g. transcriptomics and interaction
data).

In the following sections, we will start by briefly highlight-
ing the data model used by ProteomicsDB and its develop-
ments over the past years. Subsequently, we will introduce
the main features available on ProteomicsDB, which are or-
ganized in protein-centric visualizations for single and mul-
tiple proteins.

ProteomicsDB data model

The data model of ProteomicsDB is grouped into 7 ma-
jor modules (Figure 1): (i) the meta-data, which contains
annotations and ontologies; (ii) the repository, which con-
tains the mapping of raw data to samples, experiments and
projects, as well as associated meta-data and experimental
designs; (iii) peptide and protein identification and quantifi-
cation data, which stores spectra, the associated database
search engine results, as well as peptide and protein abun-
dance information; (iv) reference identification, which con-
tains reference spectra from measurements of synthetic pep-
tide standards; (v) the quantitative omics model; (vi) exper-
iment specific models, such as dose-response models and
(vii) cell-viability data. See Supplementary Text 1 for more
details about the data models and its internal mechanisms.

Protein-centric web interface

ProteomicsDB is designed to enable researchers to quickly
interrogate identification and quantification information
of single and multiple proteins. For this purpose, Pro-
teomicsDB offers two major ways to browse all available
data. On the one hand, there is the presentation of infor-
mation available for a single protein of interest. This can
be accessed by either searching for a protein or peptide of
interest in the ‘Human Proteins’ or ‘Peptides’ tab, respec-
tively, or by browsing the human proteome in a ‘Chromo-
some’ centric view (Figure 2A). On the other hand, there
are visualizations of specific aspects of the data for multi-
ple proteins. This functionality is referred to as ‘Analytics’
within ProteomicsDB and can be found in the main menu
at the top of the website. Currently, four analytical views
are implemented and offer the cross-experiment analysis of
protein expression, single and multiple drug selection and
the exploration of cell viability data. It should be noted that
ProteomicsDB is optimized for Firefox and Chrome.

This section focuses on describing the visualizations for
single (‘Human proteins’) and multiple proteins (‘Analyt-
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Figure 1. ProteomicsDB consists of three major layers. The bottom layer is the data layer providing information to the calculation layer. It consists of seven
major modules enabling the storage and retrieval of meta data, annotations and quantitative information associated with proteins and biological systems.
Due to in-memory storage of the data layer, calculations using the calculation engine (structured query language), graph engine and other integrated
programming languages (e.g. R and Python) are highly efficient. The results of these calculations can be explored in the presentation layer offering a
variety of different interactive visualizations via the web interface or systematic access via the ProteomicsDB application programming interface (API).

ics’) in more detail. The features to analyse proteotypic-
ity, reference peptides and FDR estimation for single pro-
teins are fully described in Supplementary Text 2–4 (Sup-
plementary Figures S1–4). Each page also provides a brief
description of the functionalities by opening the ‘Help’-tab
to the right of each page and tab. The feedback-icon, lo-
cated on the left on each page, can be used to provide di-
rect feedback, comments or report bugs to us. For the pur-
pose of this paper, we will focus on one protein highlight-
ing all available functions and visualizations throughout the
manuscript. Discoidin Receptor 1 (DDR1) is a member of
a family of receptor tyrosine kinases (RTKs) that is acti-
vated in response to collagen and is part of the arsenal of
cell surface receptors that mediate tumor cell-environment
interactions.

Human proteins

The search field can be used to browse proteins by gene
name, accession number or protein description. The result-
ing table shows all available proteins partially matching the
search string. All tables in ProteomicsDB can be filtered and
sorted by clicking on a specific column header. Most ta-
bles also offer hiding or showing additional columns, which
are not shown by default but are always included in down-
loaded csv files.

Protein summary. Upon selecting a protein of interest, the
user sees a brief summary (Figure 2B) about the informa-
tion available for the protein, including, but not limited to,
the number of peptides which were detected (shared and
unique on either gene or protein level), the sequence cover-
age and some basic annotations such as GO terms, chromo-
somal location, external links and evidence status. The evi-
dence status is either red, yellow or green indicating missing,
questionable and strong evidence for its identification, re-
spectively. In addition, the domain structure of the protein is
dynamically generated and shown in the middle of the page.
Aligned to this, all observed peptides and post-translational
modifications (PTMs) are visualized by black bars. This en-
ables users to quickly investigate which part of the protein is
(likely) ‘MS-accessible’ (i.e. produces peptides measureable
by mass spectrometry) and which domains were previously
observed to harbour post translational modifications (of-
ten an indicator of activity modulation). The sequence cov-
erage view can be expanded to investigate which peptides
were observed in detail. In addition, the ‘Sequence cover-
age’ tab can be opened to view the entire sequence of the
protein. Stretches coloured in red indicate that this part is
covered by peptides in ProteomicsDB. The theoretical se-
quence coverage can be explored using the ‘Protease map’
tab. One or several proteases can be chosen along with dif-
ferent peptide filter criteria, in order to predict which com-
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Figure 2. (A) ProteomicsDB can be used to interrogate identification and quantification information on either single or multiple proteins. Information
about single proteins can be accessed via the ‘Human Proteins’, ‘Peptides’, and ‘Chromosomes’ tabs. Information about multiple proteins can be explored
via the ‘Analytics’ tab. (B) On the ‘Human Proteins’ tab, a brief summary is shown about the information available for a given protein. The corresponding
domain structure is dynamically generated and alongside it, all observed peptides and post-translational modifications (PTMs) are displayed.

bination of proteases will lead to the highest (theoretical)
cumulative sequence coverage. This feature can guide users
in designing experiments that require high sequence cover-
age such as PTM or variant identification.

Peptides/MSMS. The ‘Peptides/MSMS’ tab can be used
to check individual peptides and their corresponding spec-
tra. The initial view lists all observed peptides including
meta-data such as mass, length, uniqueness and the num-
ber of observations, as well as different measures of confi-
dence, such as the search engine score. Each spectrum used
for protein inference can be visualized in ProteomicsDB us-
ing the built-in spectrum browser. In order to view exper-
imental spectra, an overlay containing all available PSMs
for the selected peptide (Supplementary Figure S1 top ta-
ble) can be opened by clicking a peptide of interest. Frag-
ment ions in experimental spectra are annotated on request
by an expert system (16). Annotation rules, such as calcu-
lated fragment ions and sequence-dependent neutral losses,
are stored in the database and can be modified at any time.
Annotation options for the spectrum, general visualization
options and a fragmentation table can be opened to the left
and right of the spectrum (Supplementary Figure S1).

An integrated feature of the spectrum viewer is the mirror
representation of a reference spectrum (bottom spectrum)
if available. These spectra originate from e.g. synthesized

peptides, which were measured independently and can be
used to validate the identification of peptides and in turn
also proteins. This is especially useful when only a few pep-
tides were identified for a specific protein, since such spuri-
ous identifications could originate from false matches dur-
ing the database search. In case a reference spectrum for
the selected peptide is available, the highest scoring PSM
matching to the precursor charge and modification status
of the selected PSM is chosen and displayed. Already today,
ProteomicsDB stores more than 3 million reference spectra
acquired as part of the ProteomeTools project (17) and cov-
ers more than 250k peptides measured in up to 11 different
acquisition methods. For most peptides, multiple reference
spectra are available and by default, the one acquired using
similar acquisition parameters is shown. However, since pa-
rameters such as collision energy are not easily transferable
between instruments (18), the user can choose to compare
the experimental spectrum against any spectrum acquired
under different conditions by selecting a different spectrum
to the left of the spectrum viewer in the ‘Reference spec-
trum’ tab.

Expression. An essential feature of ProteomicsDB is the
storage and visualization of quantitative data from a wide
range of biological sources. While the initial development
focused on the presentation of proteomics data, the generic
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implementation of ProteomicsDB also enables the storage
and visualization of other omics data types, such as RNA-
Seq data. The ‘Expression’ tab (Figure 3) can be used to ex-
plore the expression pattern of single proteins across the hu-
man body. The user can choose the primary data source and
can visually explore the expression using a heatmap-like vi-
sualization of the human body. This view also superimposes
abundance values of cell lines onto their respective tissue of
origin and thus allows the integrated analysis of expression
values originating from tissues or body fluids and cell lines.

The expression view consists of two major components
comprising data selection (Figure 3A) and visualization
(Figure 3B–D). To enable meaningful cross-experiment
comparison of expression values, only data from similar
sources can be selected. For proteomics, MS1 and MS2
quantification techniques (19) cannot be compared directly,
thus the filters only support the selection of either type.
Likewise, the comparison of protein abundance measures
originating from full proteome data (unbiased expression
analysis) or affinity type experiments (biased abundance
analysis) is not possible.

The data visualization is composed of three interactive
and interconnected elements: (i) a heatmap-like body map
(Figure 3B), (ii) a cell type aggregated bar chart (Figure 3C)
and (iii) a sample specific bar chart (Figure 3D). The ex-
pression of DDR1 is restricted to epithelial cells, particu-
larly in the kidney, lung, gastrointestinal tract and brain.
Upon selection of a specific tissue in the heatmap, the mid-
dle barchart highlights all cell lines and tissues, which are
connected to this tissue (e.g. tissue of origin). Likewise, the
selection of a bar in the middle bar chart will highlight the
corresponding tissue in the bodymap. This will also trig-
ger the display of an additional bar chart, depicting the ex-
pression of the selected protein in a sample-specific man-
ner. This view directly enables users to investigate the sam-
ple preparation and data acquisition parameters for each
measurement by clicking on any bar in the bar chart on the
right hand side.

Biochemical assay. Besides visualizing global expression
patterns of proteins, ProteomicsDB is also able to make use
of the stored experimental design to show changes in pro-
tein abundance upon specific treatments and sample han-
dling steps. The ‘Biochemical assay’ tab (Supplementary
Figure S3) provides dedicated views for such data and cur-
rently offers the exploration of Kinobeads (20,21) data, a
competition binding assay used to decipher kinase:small
molecule interactions, and two formats of cellular thermal
shift data (22). Here, we will focus on the description of the
Kinobeads data. Beyond this specific example, any relative
protein abundance measured as a function of e.g. dose, tem-
perature or time can be explored in the same way.

This view lists all available data for the selected protein,
including direct and indirect targets as well as background
proteins. In order to filter for binders, different filters are
available and can be activated or deactivated. The slider can
be used to filter for specific EC50 ranges or two goodness of
fit values: R2 (R-square) and BIC (Bayesian information cri-
terion). Dose response curves are fitted using a 4-parameter-
log-logistic regression (23). Depending on the protein and
the selected filters, the table will show multiple potential

small molecules, which exhibit a dose-dependent effect. The
experimental data is plotted using black circles, whereas the
blue line shows the calculated dose response curve. The or-
ange error bar spans ± one standard error of the EC50.

Interaction network. With the addition of protein–protein
interaction (PPI) data from STRING and functional an-
notation data from KEGG, ProteomicsDB now offers in-
teractive exploration of human PPI networks, enriched
with functional information. This information can be ac-
cessed via the ‘Interaction Network’ tab (Supplementary
Figure S4). We downloaded subscore-resolved protein net-
work data, detailed interaction types as well as directional-
ity information for Homo sapiens from STRING (24) and
combined this data with pathway mappings obtained from
KEGG (25) through their REST API. This information was
mapped to canonical isoforms using UniProt. Therefore, se-
lection of any protein isoform displays the PPI network and
functional annotations of the corresponding canonical iso-
form. This protein-centric analysis allows the exploration of
the PPI network with respect to a protein of interest (POI).

For each resource describing relations between pro-
teins and/or functional categories incorporated into Pro-
teomicsDB, it is possible to select only a subset of the in-
cluded types of relations for visualization in the ‘Relations’
menu. This reduces the complexity of the PPI network and
focuses the attention on relations of interest. Once all de-
sired relation types for the different resources are selected
from the menu on the left (not shown; available in the ‘Rela-
tions’ sub-tab), the interaction network for the selected pro-
tein can be displayed by clicking the ‘Start analysis’ button.
This generates a force-directed graph in the network win-
dow to the right. Proteins and functional annotations are
represented by circular and square nodes, respectively, while
edges between nodes represent the relations between them.
This initial graph only contains the POI together with the
top five interacting proteins as determined by STRING sub-
score, all relations between them, as well as all functional
annotations of the POI. Relations between two nodes with-
out directionality information are merged into a single edge
to further reduce redundancy in the graph. If desired, re-
sources previously selected for visualization can be hidden
by navigating to the ‘Options’ menu and toggling the corre-
sponding radio buttons. At any point in time, the graph in
the network window can be downloaded as a figure (.svg or
.png) or a table (.sif) suitable for import into e.g. Cytoscape
(26). An in-depth description to control the visualization
can be found in Supplementary Text 5.

Analytics

So far, all analyses focused on the exploration of data relat-
ing to a single protein. The ‘Analytics’ section is designed to
enable the analysis of data relating to multiple proteins. Cur-
rently, it offers four visualizations covering multi-protein
expression pattern analysis, drug selection for single and
combination treatments and the exploration of cell viabil-
ity data.

Expression heatmap. The comparison of protein expres-
sion profiles across different tissues, fluids and cell lines can
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Figure 3. (A) ProteomicsDB can visualize expression data from different omics technologies. (B) A heatmap-like bodymap superimposing abundance
values of tissues, fluids and cell lines (biological sources) onto their respective tissues of origin. (C) A bar chart resolving the expression data of b) on
the level of their biological source. If multiple measurements for the same biological source are available, the error bar indicates the lowest and highest
abundance observed for the selected protein. The bar chart and the bodymap are linked to each other, enabling the selection of either a tissue of origin
in the bodymap (highlighted in dark red) or a biological source in the barchart (highlighted in orange). Here, the lung (high expression of DDR1), was
selected in the bodymap, which automatically highlights all corresponding tissues and cell lines in the bar chart (EKVX cell and A-549 cell originated from
lung tissue). (D) A bar chart visualizing sample-specific abundance values of the sources selected in middle bar chart (highlighted in orange). On click on
one of the bars, the corresponding sample preparation protocol can be examined.

give rise to new hypotheses and puts protein expression into
context. While the expression tab of a single protein allows
the analysis of expression patterns over multiple biological
sources, it does not enable the analysis of multiple proteins
simultaneously. This analysis is possible with the help of the
‘Expression heatmap’ tab (Figure 4), which shows proteins
and biological sources as rows and columns, respectively.
For this application, any list of gene names or UniProt iden-
tifiers can be supplied to ProteomicsDB. Similar to the ‘Ex-
pression’ tab, a user can choose between multiple available
data sources and quantification methods.

Figure 4 shows the resulting heatmap when searching for
beta subunits of the proteasome ‘PSMB*’ in tissues and
cell lines using protein expression values estimated by the
iBAQ approach. The heatmap is fully interactive and pro-
vides multiple options to adjust and explore the data. Addi-
tional features of the heatmap are explained in Supplemen-
tary Text 6.

Inhibitor potency/selectivity analysis. One topic of great
scientific interest is finding the most selective and potent
drug against a specific target of interest. For this purpose,
ProteomicsDB enables the interactive exploration of dose-

dependent competition-binding data in a multi-protein-
centric view (Figure 5). Starting with the selection of a pro-
tein of interest (here DDR1) the user can filter models based
on dose-dependent data available for this protein using sev-
eral criteria: the EC50 range, the R2 and BIC (similar as
in the ‘Biochemical assay’ tab) (Figure 5A). The pEC50 (–
log10 EC50 in nM) distribution of all targets meeting the fil-
ter criteria for each drug showing a dose-dependent effect
on the selected target are plotted in separate violin charts
(Figure 5B). The red marker indicates the EC50 of the se-
lected protein for each drug. The selectivity of each com-
pound can be evaluated by the numbers above and below
the red marker, which depict the number of targets with
higher or lower potency compared to the selected protein,
respectively.

Users can inspect the pEC50 distribution of all targets
for a given drug in an ordered bar chart by selecting the ra-
dio button underneath the corresponding violin plot. Tar-
gets depicted in (i) green, (ii) blue and (ii) gray are (a) more
potent, (b) have similar potency or are (c) at least 10× less
potent than the selected target (red), respectively (Figure
5C). This bar chart enables the investigation of all other
targets of the selected drug, which could––depending on
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Figure 4. Expression heatmaps of multiple proteins across different tissues, fluids and cell lines can be displayed via the ‘Expression heatmap’ functionality
of the ‘Analytics’ tab. Proteins and biological sources are shown as rows and columns, respectively. The dendrograms show the result of hierarchically
clustering proteins and biological sources, respectively. Branches can be selected and either removed or used to perform GO-enrichment analyses (proteins).
Here, all beta-units of the proteasome are displayed, suggesting differential expression of the canonical (expression of PSMB5, 6 and 7) and induced
(expression of PSMB8, 9 and 10) proteasome across tissues and cell lines.

its use––increase the risk of unwanted side effects. Indi-
vidual dose–response plots can be investigated by select-
ing a specific drug:protein interaction in the bar chart. On
click––similar to the ‘Biochemical assay’ tab––a scatter plot
depicting the individual measurements (black dots) and the
fitted dose-response model (blue curve) with its estimated
EC50 and standard error is shown to the right of the bar
chart (Figure 5D).

Dose-dependent protein-drug interaction analysis. The po-
tency analysis provides an interface to select an inhibitor for
a single protein of interest. However, in some applications,
targeting multiple proteins can lead to a more effective treat-
ment (e.g. to suppress resistance formation). The ‘Dose-
dependent protein–drug interaction analysis’ tab (Figure
6) provides an interface to explore the predicted dose-
dependent effects of multiple drugs on multiple proteins.
This enables the selection of the most promising drug-
combination to inhibit a set of proteins, while maintaining
the lowest number of off-targets to decrease the chances of
unwanted side-effects. Two views are available, which show
the predicted target profile of the selected drugs at a cer-
tain dose as (i) a protein–drug interaction graph and (ii) a
table showing the predicted inhibition effects. Both views
are based on the dose-dependent models stored in Pro-
teomicsDB.

The “Proteins” search field accepts sets of protein names.
On this basis, all drugs showing at least one inhibitory effect
on one of the proteins are taken into consideration. Alter-
natively, the “Drugs” search field can be used to manually
add/select a set of drugs. In case both fields are used, the
union of all drugs, either inhibiting at least one of the target
proteins or selected manually, is used.

The graph-view shows the protein-drug interaction land-
scape of the selected drugs. Proteins (circles) are connected
to drugs (squares) if a binding/inhibition curve is available
for this combination. Each drug selected for the analysis is

displayed on the left hand side of the view. The checkbox
can be used to disable (hide) a drug from both views. In ad-
dition, the dose of each drug can be adjusted by moving the
slider or by manually entering a desired drug-concentration.
The predicted inhibition of a particular protein in both the
graph and the table view are updated in real-time based on
the given concentration of a drug. Predicted inhibitory ef-
fects are highlighted in the graph by grey edges of vary-
ing thickness (proportional to EC50) and blue proteins, the
shading of which indicates the level of inhibition. Predicted
inhibitory effects are only shown in case they surpass a user-
defined cutoff (left vertical slider). In addition to the man-
ual drug concentration, selecting an edge between a pro-
tein:drug pair sets the concentration of the drug to the EC50
of that interaction.

Cell viability data exploration. With the inclusion of dose-
resolved viability data from several large-scale drug sen-
sitivity studies (27–30), ProteomicsDB is now providing
tools for fast exploration of dose-response curves quan-
tifying sensitivity and resistance of hundreds of cell lines
across hundreds of inhibitors (Figure 7). For each dose-
response dataset, ProteomicsDB offers inhibitor- and cell
line-centric analysis tools, which allow the identification of
sensitive/resistant cell lines for a given inhibitor, while also
enabling the identification of potent/impotent inhibitors
for a given cell line, respectively. We downloaded dose-
resolved viability data from various sources and converted
them to relative viabilities, in order to bring the different
datasets onto the same scale. Subsequently, the classical
symmetric four-parameter log-logistic model was fitted to
each inhibitor/cell line combination in each dataset, fol-
lowed by parameter extraction and calculation of several
summary statistics.

After selecting a dataset of interest, analyses can be either
cell line- or inhibitor-centric. For this purpose, either one
cell line can be chosen, comparing all available inhibitors
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Figure 5. ProteomicsDB enables the exploration of drug selectivity data from various sources. (A) Starting with the selection of a target protein, the user
can filter fitted selectivity curves using several criteria: the EC50 range, the R2 and BIC. (B) Violin plots depicting the pEC50 (-log10 EC50) distributions
for all compounds targeting the selected protein given the filter criteria from (A). The red marker indicates the EC50 of the selected protein for each drug.
Numbers above and below the red marker indicate the number of other target proteins with higher or lower potency, respectively. At the time of writing,
Bafetinib shows the most potent and selective inhibition of DDR1 with the given filters. (C) Bar chart displaying the distribution of pEC50 values for
Imatinib depicting all of its protein:drug interactions available in ProteomicsDB. (D) The underlying raw data and the fitted model can be investigated on
click on one of the bars (black border). The scatter plot highlights the EC50 for the selected protein:drug pair.

on this single cell line, or, vice versa, an inhibitor can be
selected in order to compare the viabilities of all tested
cell lines (Figure 7A). Selection of one cell line and one
inhibitor is also possible, enabling direct investigation of
a specific cell line/inhibitor pair. Using a parallel coordi-
nates plot, it is possible to filter for multiple model param-
eters and different summary statistics simultaneously (Fig-
ure 7B). The exact distribution for each of these variables
can be investigated across all cell lines/inhibitors, while se-
lection of one or more cell lines/inhibitors allows the in-
spection of the underlying dose-resolved viability data (Fig-
ure 7C). Visualization of dose-resolved data for multiple
cell lines/inhibitors––while essential for judging the relia-
bility of the experimental data––is a feature largely missing
from the web portals associated with the original publica-
tions (Figure 7D).

FUTURE DIRECTIONS

The large collection of experimental and reference spec-
tra stored in ProteomicsDB opens the door for the de-
velopment of new functionalities. For example, since the
ProteomeTools project covers the entire human proteome
with reference spectra, a systematic orthogonal evaluation
of protein FDR using synthetic spectra becomes possi-
ble. This will provide further validation of protein identi-
fication events in ProteomicsDB. Similarly, spectra in Pro-
teomicsDB could be downloaded or compared directly to
user data in order to validate the identification of pro-
teins with no prior observations. Furthermore, the com-
bination of reference and experimental spectra and their
chromatographic properties will enable the development of
tools to guide the development of directed and targeted ex-
periments by custom data-driven spectral library genera-
tion. Such tools could make use of the cell line- and tissue-
specific protein background identified before and could pro-
vide experiment-driven estimates of interfering peptides.
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Figure 6. The ‘Dose-dependent protein-drug interaction analysis’ enables exploring protein:drug interaction data in a multi-drug fashion. It allows the
selection of promising drug combinations suitable to inhibit a given target protein (here DDR1). The graph-view shows the protein-drug interaction
landscape of selected drugs. Drugs (squares) and proteins (circles) are connected if binding/inhibition curves (‘Biochemical Assay’ data) are available.
Predicted inhibitory effects are highlighted in the graph by dark grey edges of varying thickness (proportional to the EC50) and proteins coloured in
different shades of blue (indicates the level of inhibition). Predicted inhibitory effects are only shown in case they surpass a user-defined cutoff (left vertical
slider). The concentration of a drug can be adjusted by either clicking an edge (sets the concentration of the drug to the EC50 of that interaction), by
manually adjusting the concentration using the sliders on the left or by entering the desired concentration into the textbox (left; next to sliders). Again,
Bafetinib shows the most selective inhibition of DDR1 at an EC50 of 24 nM in comparison to the other two available inhibitors Imatinib (38 nM) and
Dasatinib (53 nM).

Due to ProteomicsDB’s in-memory architecture, per-
forming database-wide protein inference on all proteins at
the same time is possible. This was essential in the develop-
ment of the picked-FDR approach (31). While a significant
proportion of the data stored in ProteomicsDB is already
programmatically accessible, an obvious next step is the ex-
tension of this service to enable systematic access to all data.
By extending the accessibility of data, ProteomicsDB might
become an important infrastructure for computational sci-
entists to develop and test new algorithms and for biologists
to generate and test new hypotheses.

We will further broaden the scope of ProteomicsDB over
the next years. One of the upcoming extensions is to pro-
vide protein abundance estimates for other organisms, such
as Mus musculus and Arabidopsis thaliana. While the data
model already supports the import of data from other
model organisms, the user interface will need to be adjusted.

With the ability to store expression patterns from other or-
ganisms, cross-species comparisons becomes possible en-
abling a plethora of questions to be asked and answered.

With the integration of other data sources into Pro-
teomicsDB, the comparative visualization of multiple or-
thogonal dataset is within reach. We have already started
to cross-link visualization tools within ProteomicsDB in
the ‘Interaction network’ tab. However, the integrated data
model of ProteomicsDB will also enable the interactive vi-
sualization of multiple data sources at once in order to pro-
vide a more comprehensive view on omics data. For ex-
ample, the annotation rows in the ‘Expression heatmap’
can be extended to show drug selectivity data for pro-
teins or memberships in pathways and signalling cascades,
while the annotation columns can show cell viability data
for biological sources. Similarly, the ‘Expression heatmap’
could make use of the imported protein–protein interac-
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Figure 7. ProteomicsDB incorporates several publicly available large-scale drug sensitivity screens. (A) Each drug sensitivity dataset in ProteomicsDB can
be explored in a cell-line- or inhibitor-centric way and general statistics are shown for a given selection. (B) Users can interactively filter dose-response
models based on multiple parameters such as AUC, R2, lower bound, pEC50 and relative effect (percent decrease in viability over the tested concentration
range). (C) The distribution of a given parameter is visualized in a bar chart on selection of an axis in (B). (D) The underlying raw and fitted data can be
investigated on click on one or many of the bars (highlighted in orange). The scatter plot highlights the EC50 for the selected cell line:drug pairs. The cell
lines CGTH-W1, LB2241-RCC, ALL-SIL and MY-M12 show a clear dose-dependent effect on their viability upon Imatinib treatment. However, their
EC50 values vary, highlighting that these cell lines show differential sensitivity/resistance to Imatinib.

tion and pathway data and allow users to add proteins to
the heatmap based on the network neighborhood of the se-
lected protein. Integrated models of drug-selectivity, cell-
viability and protein/mRNA expression could be trained to
predict treatment outcomes and estimate missing values in
either dataset. Given the computational power of the un-
derlying hardware, it is even conceivable to provide the in-
frastructure and interfaces to users to upload their own data
for direct comparison and for direct model training on their
phenotypic measurements (32).

AVAILABILITY

ProteomicsDB is available under https://www.
ProteomicsDB.org.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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Supplementary text 

1 Data model  

ProteomicsDB uses multiple ontologies and controlled vocabularies (CV) for internal representation, 

annotation and meta-data. For this purpose, multiple publicly available CVs such as PSI-MS (1) (terms 

for proteomics and mass spectrometry), BTO (2) (BRENDA tissue ontology), UO (3) (unit ontology), 

GO (4) (gene ontology) and sep (5) (terms for chromatographic/separation methods) were imported to 

enable cross-platform data exchange. Terms not defined in imported ontologies are created manually. 

Terms, their definitions and relations are stored in the triple-store format, enabling the representation 

of complex relations. In addition to the CVs, similar storage mechanisms were implemented to enable 

storing data from other sources, such as STRING (6), KEGG (7) and CHEMBL (8). These ontologies 

are primarily used in the repository of ProteomicsDB. The main purpose of the repository is to provide 

a mapping of raw files to samples. Each sample can be annotated to track sample preparation and 

data acquisition methods. Some of these methods include stable isotope labelling and sample 

multiplexing technologies such as SILAC (9) and TMT (10), which allow the combined analysis of 

multiple samples in the same experiment (files). Each of these files can therefore contain quantitative 

information from different biological systems (e.g. cell lines or treatments). ProteomicsDB supports all 

major isotope labelling and multiplexing technologies used in the proteomics community and – by 

providing such a mapping – is able to visualize and analyse identification and quantification results 

with respect to their biological origin and experimental setting (e.g. full proteome or affinity 

purification). Samples are then grouped into experiments, which are themselves aggregated to form 

projects, in order to enable a hierarchical organization of the data. 

In addition to the mapping of samples to the biological origin, some experiments require the storage of 

treatment conditions for each sample. To model the design of an experiment, ProteomicsDB defines 

treatments as sets of predefined experimental factors, which represent the sequential steps performed 

during sample preparation. An experimental factor is either a numeric value such as ‘time’ or ‘dose’ 

associated with a unit, or a (controlled) free-text, such as ‘drugs’ and ‘baits’. For example, a drug 

treatment is defined by two experimental factors, namely the drug and the concentration at which it 

was used. Multiple samples assigned to an experiment can be annotated with different drug doses of 

the same drug, enabling the representation of dose-dependent experiments. Some treatment 

conditions are predefined but the underlying model allows the generation of any treatment condition 

necessary for storing the full experimental design. This data model enables the analysis of more 

complex relationships between samples within an experiment and their corresponding protein and 

peptide abundance. 

As mentioned above, the data model representing peptide and protein identifications is designed to 

enable the storage of any database search results, including annotated MS/MS spectra. For this 

purpose, protease-specific in-silico digests of UniProt are stored within ProteomicsDB, enabling the 

mapping of identified spectra and their associated peptide sequences to proteins. Due to the use of an 

in-memory database, the sequence file (UniProt) can be efficiently modified and adjusted to newer 

versions of the human genome. This can be triggered (internally) by uploading an updated UniProt 



sequence file, which results in a new in-silico digest. De-validated protein sequences and their 

corresponding unique peptide identifications are not removed but are instead flagged as outdated and 

moved to archive tables. ProteomicsDB differentiates between three types of uniqueness: Shared 

peptides are peptides, which are observed in multiple proteins mapping to at least two gene loci. 

Unique peptides are classified into isoform- and gene-unique, describing their ability to differentiate 

different isoforms (peptide only maps to one protein accession) and genes (peptide only maps to one 

gene locus). New proteins and peptides are added to the in silico-digest and afterwards the peptide 

uniqueness for every peptide is re-computed. This will also trigger the re-calculation of protein 

abundances. By incorporating a timestamp for each protein, outdated results are still accessible in the 

database but are not shown on the web page for reasons of consistency. 

In addition to the identified experimental spectra, ProteomicsDB allows the storage of reference 

spectra acquired from e.g. synthetic peptide standards. These are stored separately from the 

experimental spectra, but contain similar information on PSM and spectrum level. While experimental 

spectra are annotated on-the-fly by using a peptide fragmentation model stored in ProteomicsDB, the 

annotation of fragment ion signals in reference spectra can be stored directly to enable prior manual 

annotation in order to avoid wrong assignments. 

Extracted quantitative data (e.g. peptide precursor ion intensity area or fragment ion reporter ion 

intensities) are stored at the peptide level to enable protease-specific aggregation of peptide 

intensities into protein intensities, which can be efficiently re-computed every time the in-silico digest is 

modified because of modifications of the underlying protein sequence space. For protein abundance 

estimation, two of the most popular approaches were implemented in ProteomicsDB: the iBAQ (11) 

well as the top3 intensity (12) methods. Protein abundance is calculated separately for different 

isotope label types (e.g. light and heavy SILAC), as these represent different samples. In the case of 

label-free quantification, SILAC and dimethyl labelling experiments (13), iBAQ and top3 intensities are 

derived from the precursor intensity area measurements, while for isobaric stable isotope labelling 

(e.g. TMT or iTRAQ), iBAQ and top3 values are calculated based on the respective reporter 

intensities. 

Besides abundance estimates of proteins, ProteomicsDB was extended to enable the storage of other 

omics data as well. Similar to the proteomics repository, the omics data model organizes samples into 

experiments and projects. In order to reflect the variety of other omics technologies, this model stores 

the abundance measure and the measured entity (e.g. transcript) alongside the technology platform 

and unit provided by the author. Multiple measurements can be attached to a single sample, which 

facilitates storing e.g. transcript abundances in conjunction with e. g. DNA methylation levels. 

The ID conversion functionality – a part of the metadata model – was initially designed to enable the 

inter-resource conversion of IDs and thus supplements the omics data model. However, due to its 

generic implementation, it now also serves as an interface to store relations between for example 

proteins and other proteins, drugs and proteins, as well as a protein’s membership in pathways or 

regulatory networks. All imported entities are automatically clustered into so-called super-nodes to 



enable efficient and easy navigation of this complex graph of different biological entities (e.g. genes, 

transcripts, proteins, metabolites) and relations between them (e.g. ‘interacts with’ or ‘activates’). 

Combining the experimental design and the integrated abundance estimation of proteins enables the 

calculation of e.g. dose- or temperature-response models. The module storing these relations is 

flexible in terms of the underlying model (e.g. 4-parameter-log-logistic (14) or linear fits) and enables 

the visualization, query and analysis of such data. For this purpose, the mathematical formula and it’s 

parameters are stored in a triple-store-like model, connecting the model-parameters to the observed 

protein abundance and sample description. The advantages of this data model are showcased by the 

visualization of competition-binding assay data and CETSA (15) experiments. 

In order to be able to take advantage of the plethora of drug sensitivity information available in the 

public domain, another triple-store-like model is used to store public drug sensitivity datasets in 

ProteomicsDB. In addition to the protein-centric data described above, ProteomicsDB currently stores 

phenotypic data from four drug sensitivity screens (16-19). This allows the association of proteomics 

data on cell lines included in these screens with their sensitivity/resistance towards thousands of 

drugs, enabling the discovery of pharmacoproteomic markers of drug response. These drug sensitivity 

datasets are collections of dose-response experiments measuring the viability (the response) of 

cancer cell lines as a function of the concentration of a specific drug (the dose) or drug combination. 

They are annotated with meta-data such as URI and DOI in order to link them to the original 

publication. ProteomicsDB stores high-level information such as dose-response models and their 

parameters alongside dose-resolved viability data after normalisation, in order to enable the user to 

estimate the variability of the underlying data. The data model is flexible enough to store experiments 

with multiple drugs (drug combinations) and can easily be expanded to support e.g. co-culture 

experiments (cell line combinations) in the future. In cases where raw data are available, this data 

model allows the comparison of drug sensitivity of the same cell line treated with the same drug across 

different drug sensitivity datasets, which increases confidence in the data and reduces the number of 

spurious associations with drug sensitivity in pharmacoproteomic studies further down the line. 

  



2 Proteotypicity 

Targeted proteomics is an emerging field and offers reproducible and consistent identification and 

quantification across many samples. The “Proteotypicity” tab is designed to aid researchers during the 

selection of appropriate peptides for so-called targeted measurements. For this purpose, peptides are 

sorted by their experimental proteotypicity. The experimental proteotypicity of a peptide is the ratio of 

the number of experiments in which this peptide was identified to the number of experiments in which 

the protein was identified. High values indicate good accessibility during sample preparation (e.g. 

solubility) and acquisition (e.g. chromatographic retention, MS detection), thus rendering these 

peptides suitable for targeted measurements. However, the use of multiplexing technologies (e.g. 

dimethyl or TMT) could either improve or impair the ‘MS-accessibility’ of peptides and thus, 

proteotypicity is also dependent on the multiplexing strategy used. To differentiate between peptides 

carrying different labels/modifications, the user can choose for which class of peptides the 

proteotypicity should be calculated. This use-case strongly benefits from using an in-memory 

database. Pre-calculating all possible combinations of options would result in a large storage 

overhead. ProteomicsDB instead calculates the experimental proteotypicity in real-time on request 

using the search results of more than 19k LC-MS/MS runs. This capability allows the incorporation of 

further options, such as user defined PSM- or peptide FDR-cutoffs, peptide charge states or biological 

sources without losing performance. 

 

3 Reference peptides 

The “Reference peptides” tab lists all available reference peptides. Similar to the “Peptides/MSMS” 

tab, each of the available PSMs can be investigated by selecting a peptide of interest. This tab also 

offers the option to compare two reference spectra against each other since the selected reference 

spectrum is plotted on the top (similar to the experimental one), and the lower spectrum is again a 

reference spectrum that can be chosen from a list. This feature can be used to investigate, for 

example, collision-energy-dependent fragmentation and the change of abundance of fragment ions. In 

turn, users can take advantage of this information and manually optimize the collision energy for 

targeted experiments by selecting an energy, which leads to highly abundant heavier fragment ions. 

 

4 FDR estimation 

Estimating the proportion of false matches in an experiment is important to assess and maintain the 

quality of peptide and protein identifications. The most widely used strategy to estimate the false 

discovery rate (FDR) (20) in proteomics is the target-decoy approach. However, the classical target-

decoy approach overestimates protein FDR in large collections of data due to an accumulation effect 

of false positive peptide identifications. ProteomicsDB was essential in the development of the so-

called “picked protein FDR” approach (21) which alleviates this issue. The picked protein FDR 

approach treats target and decoy sequences of the same protein as a pair rather than as individual 



entities and chooses either the target or the decoy sequence depending on which receives the highest 

score. This method avoids the accumulation of decoy identifications in classical target-decoy-based 

models for large datasets. 

The “FDR estimation” tab (Supplementary Figure S2) shows the results of applying this method. Two 

visualizations are available to judge the gene- (left column) or isoform-level (right-column) 

identification of a protein. The upper plot in both columns depicts the database-wide distribution of 

protein scores. Highlighted are the protein of interest (blue dot) and its respective decoy (orange dot). 

If the target was observed with a higher protein-score, the q-value (22) indicates the confidence of this 

identification. Otherwise, the corresponding decoy was “identified” with a higher score, rendering the 

identification of the target invalid. The bottom plots show the distribution of either the gene-unique or 

isoform-unique target and decoy PSMs as a function of their identification score. Here, DDR1 was 

confidently identified on gene-level, but since no observed isoform-specific peptides exist for the 

canonical version of DDR1 (all observed peptides are shared with at least one other isoform of DDR1), 

the explicit identification of the canonical isoform Q08345 of DDR1 cannot be ascertained. 

 

Briefly, each dataset/experiment in ProteomicsDB is analyzed separately with Mascot and 

Maxquant/Andromeda, applying the standard 1% PSM FDR per individual raw file. Afterwards, the 

data in ProteomicsDB is aggregated and peptides shorter than 7 amino acids are filtered out, before 

peptides are grouped by length. For each peptide length bin, a 5% local FDR is applied, rejecting all 

PSMs below the respective search engine score threshold, which is much more stringent than a global 

FDR criterion. The resulting number of proteins are in line with the originally reported number of 

proteins at 1% protein FDR (23). 

In order to account for the accumulation of false positives on a database-wise level, the ‘picked’ 

protein FDR approach described by Savitski et al (21) is used on the aggregated data in 

ProteomicsDB. Briefly, for each identified target and decoy protein hit, the Q-score (- log10 q-value) of 

the most confidently identified gene-specific peptide is used as the protein score. For each protein, the 

scores of the target is compared to the score of its corresponding decoy. If the score of the decoy was 

higher than that of the target, the protein was counted as a decoy hit and the target was disregarded. 

If the score of the target was higher than that of the decoy, the protein was counted as a target hit and 

the decoy was disregarded. Finally, the protein FDR was calculated using the remaining target and 

decoy hits in the same way as for the classical target-decoy approach. 

 

 

 

5 Features of the interaction network visualization  



Scrolling up/down or double-clicking/shift-double-clicking inside the network window zooms in/out of 

the network. Dragging inside the network window allows repositioning of the entire network. Hovering 

over a node highlights all nodes of the network connected to it and the corresponding relations, 

visualized as edges. Hovering over an edge highlights the two nodes it connects. Clicking on an edge 

displays a layover with meta-information considering the selected relation. Since multiple relations 

without directionality information are merged into a single edge, this table can contain multiple entries. 

One/more nodes can be selected by clicking/shift-clicking on them, which fixes their positions with 

respect to the force-directed layout and displays meta-information for protein nodes in the ‘Node 

information’ section to the left of the interaction graph. This section is automatically populated with 

links to different parts of ProteomicsDB, which enables quick navigation to protein-centric (e.g. 

biochemical assay data) or multi-protein-centric (e.g. heatmap) analyses. Selected nodes can be 1) 

moved by dragging one of them to a new position, 2) unselected by clicking anywhere in the network 

window but on the graph, 3) deleted by clicking the trashcan in the control panel (top-left corner of the 

network window) and 4) unfixed (exposed to force-directed layout) by clicking the lock in the control 

panel. After selecting a single protein node, the network can be expanded by clicking the ‘+’ in the 

control panel. This will add the next five interaction partners/functional annotations per resource 

(ordered by their subscores from high to low) to the network, enabling its dynamic exploration. 

 

6 Features of the expression heatmap visualization  

If space permits, the leafs of the dendrogram are expanded to show the respective cell and protein 

annotation. Specific branches of the trees can be selected and removed from the visualization by 

selecting one and then using the “Remove Rows” or “Remove Columns” button at the top. In addition, 

one or multiple branches in the protein-dendrogram can be selected in order to perform a GO-

enrichment analysis by using the “DAVID” (24,25) link at the top. The biological origin of the samples 

is color-coded in blue, orange and green for tissues, body fluids and cell lines. The size of the 

heatmap is defined by the size of the browser. In order to investigate specific patterns in the heatmap, 

navigation is possible via click-and-drag (panning) and the mouse-wheel (zooming). 

  



Supplementary Figures 

 

 

Figure S1 The spectrum viewer visualizes and dynamically annotates available experimental peptide 

spectrum matches (top table) stored in ProteomicsDB according to user-specified settings (tab to the 

left). A mirror representation of a reference spectrum (bottom spectrum) is shown automatically if 

available and can be used to validate the identification of a peptide. The sequence and fragmentation 

table (superimposed on the right) depicts the presence of y- (red) and b-ions (blue). Here, the peptide 

LHLVALVGTQGR of DDR1 shows a very strong correlation to its reference spectrum acquired as part 

of the ProteomeTools project, confirming its valid identification. 

 

 



Figure S2 The FDR estimation for a given protein (here: DDR1/Q08345) using the ‘picked protein 

FDR’ approach can be inspected on gene- (DDR1; left column) or isoform-level (Q08345; right-

column). The upper plots depict the database-wide distribution of protein scores on either of these 

levels. The q-value indicates the confidence of a given identification, if the target was observed with a 

higher protein-score. The bottom plots show the distribution of either the gene-unique or isoform-

unique target and decoy PSMs as a function of their identification score. Here, DDR1 was confidently 

identified on the gene-level, but the explicit identification of the canonical isoform Q08345 cannot be 

ascertained. 

 

 

Figure S3 Chemoproteomics technologies such as Kinobeads enable the elucidation of the target 

space of drugs in a systematic fashion. ProteomicsDB visualizes raw and fitted data of such 

experiments for a given protein in the “Biochemical Assay” tab. Users can filter fitted curves for 

specific EC50 ranges and two measures quantifying goodness of fit: R2 and BIC. Here, Dasatinib and 

Imatinib show a dose-dependent effect on the relative intensity (residual binding to Kinobeads) of 

DDR1, suggesting a high affinity of these compounds to DDR1 (EC50 of 52 nM and 37 nM, 

respectively). 

 

 



 

Figure S4 The interaction graph allows to quickly navigate protein-protein interaction networks and 

pathway annotations. Proteins and pathways are shown as blue spheres and green rectangles, 

respectively. Shapes on edges inform about the type of interaction: blue diamonds symbolize known 

interactions without directionality information as well as functional annotations, red bars indicate 

inhibitory effects (e.g. SRC inhibits CDH1) and green arrows represent activating effects between two 

nodes (e.g. SRC activates MMP2). Selected subgraphs and/or proteins (marked in orange) can be 

directly used for multi-protein centric analyses via “Combined analytics” links (HT: Heatmap; CT: 

Combination treatment) in the “Node Information” panel on the left, which also enables quick 

navigation to protein-centric analyses (I: Summary page; E: Expression; BC: Biochemical assay; N: 

Interaction network; DS: Drug selectivity; CT: Combination treatment). 
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ABSTRACT

ProteomicsDB (https://www.ProteomicsDB.org)
started as a protein-centric in-memory database for
the exploration of large collections of quantitative
mass spectrometry-based proteomics data. The
data types and contents grew over time to include
RNA-Seq expression data, drug-target interactions
and cell line viability data. In this manuscript, we
summarize new developments since the previous
update that was published in Nucleic Acids Research
in 2017. Over the past two years, we have enriched
the data content by additional datasets and extended
the platform to support protein turnover data. An-
other important new addition is that ProteomicsDB
now supports the storage and visualization of data
collected from other organisms, exemplified by
Arabidopsis thaliana. Due to the generic design of
ProteomicsDB, all analytical features available for
the original human resource seamlessly transfer
to other organisms. Furthermore, we introduce a
new service in ProteomicsDB which allows users to
upload their own expression datasets and analyze
them alongside with data stored in ProteomicsDB.
Initially, users will be able to make use of this feature
in the interactive heat map functionality as well as
the drug sensitivity prediction, but ultimately will be
able to use all analytical features of ProteomicsDB
in this way.

INTRODUCTION

ProteomicsDB (https://www.ProteomicsDB.org) is an in-
memory database initially developed for the exploration of
large quantities of quantitative human mass spectrometry-
based proteomics data including the first draft of the hu-
man proteome (1). Among many features, it allows the real-
time exploration and retrieval of protein abundance values
across different tissues, cell lines, and body fluids via inter-
active expression heat maps and body maps. Today, Pro-
teomicsDB supports multiple use cases across different dis-
ciplines and covering a wide range of data (2). For instance,
tandem mass spectra, peptide identifications and peptide
proteotypicity values can be used as starting points to de-
velop targeted mass spectrometry assays. Because of the re-
cent incorporation of a large amount of reference spectra
from the ProteomeTools project (3,4) as well as spectra pre-
dicted by the artificial intelligence Prosit (5), both experi-
mental and reference spectra can be used for assay devel-
opment and to validate the identification of so far unob-
served, or in fact any proteins. The integration of pheno-
typic data allows the exploration of the dose-dependent ef-
fect of drugs of interest (e.g. clinically approved drugs) on
multiple cell lines (6–9). The dynamic identifier mapping
in ProteomicsDB allows the integration of transcriptomics
data from e.g. the Human Protein Atlas project (10) and
Bgee (11), and thus facilitates the automated integration of
different data sources within ProteomicsDB. This, in turn,
allows the development of new tools. A wide range of drug-
target interaction data can be visualized in ProteomicsDB
as well, which enables the exploration of combination treat-
ments in a dose-dependent protein-drug interaction graph
in-silico.
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ProteomicsDB is becoming an increasingly valuable re-
source in (proteomic) life science research, evidenced by
the increasing number of external resources linking to Pro-
teomicsDB, such as UniProt (12) and GeneCards (13), as
well as resources making use of our application program-
ming interface (API) to show e.g. protein expression infor-
mation, as done by OmniPathDB (14) and Gene Info eX-
tension (GIX) (15).

In this version, we expanded the data content of Pro-
teomicsDB by including additional publically available as
well as in-house generated proteomic and transcriptomic
studies. Furthermore, we expanded the drug-target interac-
tion data now covering ∼1500 kinase inhibitors and tool
compounds. The cell line viability data were enriched with
an additional large dataset (16) now covering >20 000
drugs against 1500 cell lines. We further increased the
amount of protein property information that is stored in
ProteomicsDB, such as 13 000 melting points of proteins
obtained by thermal proteome profiling (17). In addition,
we expanded the biochemical assays section to include pro-
tein turnover data with synthesis and degradation curves for
>6000 proteins. We further increased the number of refer-
ence tandem mass spectra in ProteomicsDB to >5 million
from synthetic peptides and 40 million from predictions,
which, in total, are represented by 3 billion fragment ions.

RESULTS

Overview

ProteomicsDB aims to provide real-time analytical func-
tions to users, including computationally challenging tasks.
For this purpose, ProteomicsDB was carefully designed and
organized (Figure 1). It consists of a production unit, a
computing unit, and a storage unit, all intra-connected via
a 16Gbit local network. The production unit hosts the pro-
duction server as well as the entire development and test-
ing environment. The computing unit is one machine with a
fully dockerized environment which currently handles two
main tasks. First, an R server that handles R-procedures
from ProteomicsDB such as the clustering available in the
heat map. Second, a docker container with various services
handling requests to our deep learning tool Prosit which is
connected to two NVIDIA P100 GPU cards.

Over the past two years, the user interface and data con-
tent of ProteomicsDB were updated to accommodate new
requirements such as hosting data from other organisms.
Figure 2A shows the changes that were made to the front
page such that users can select the organism of interest.
Parts of the webpage have been renamed to be more generic
and cover every organism, such as the ‘Human Proteins’
tab, which was renamed to ‘Proteins’. The front page statis-
tics lists new information about the quantity of the data that
is available for the chosen organism, including information
about tissue coverage, quantitative multi-omics expression
values, biochemical assay measurements as well as cell via-
bility measurements. The main pane of the front page was
redesigned to show the main features of the platform. It is
now split into two sections. The left section provides direct
links to the protein centric visualizations, the analytics tool-
box, the new feature to upload custom data and a link to

Prosit. The right section includes links that trigger the se-
lection of the corresponding organism. To make organism
selection available throughout the web interface, we addi-
tionally adjusted the left sidebar to show one icon per avail-
able organism. The ‘Feedback’ button that that was previ-
ously located in that position was transferred to the right
pane below the ‘Help’ button. In light of these changes, all
internal procedures and endpoints (e.g. API) were adjusted
to support the new data types and organisms.

Figure 2B depicts the data expansion in ProteomicsDB
since 2017, grouped by categories. By re-analyzing and up-
loading more publically available proteomics studies, we in-
creased the tissue coverage of ProteomicsDB by ∼70 hu-
man tissues and cell lines (+∼30%), to a total of almost
300 tissues and cell lines. The broader coverage of biolog-
ical systems has direct impact on visualizations like the hu-
man body map or expression heat map. The plethora of data
in ProteomicsDB allows not only the further online explo-
ration of the proteome and its properties but also enables
the development of new tools integrating different omics
data sources. Currently, human proteomics and transcrip-
tomics data are available for ∼17 000 genes and ∼60 tissues
(Figure 2C, D). This large overlap enabled the implemen-
tation of a new missing value imputation approach which
makes use of transcriptomics or proteomics data to esti-
mate the presence and abundance of protein or RNA not
covered in individual data sets. For ∼13 000 proteins, ad-
ditional information derived from other biochemical assays
such as melting behavior or synthesis or degradation curves
are available. By integrating additional publicly available
datasets, the overlap at the tissue- and protein level will in-
crease further over the next years and eventually cover all
the >1000 (cancer) cell lines for which we already have cell
viability data. This, in turn, will aid the development of a
better understanding of the molecular factors that govern
the life of a particular cell.

New biochemical assay data, covering more protein properties

In addition to importing additional expression profile
datasets, we further extended our biochemical assay por-
tal by integrating the results of three additional studies
covering target information of small molecule kinase in-
hibitors, melting (thermal aggregation) behavior of proteins
and turnover data. First, in order to extend knowledge on
druggable protein kinases (18), we imported ∼500 000 ki-
nase inhibitor dose-response curves (Figure 3) covering 243
kinase inhibitors that are either approved for use or are in
clinical trials (18) and ∼1300 tool compounds targeting ki-
nases (unpublished). This data gives users a broader cov-
erage and thus more options to select inhibitors to study
a particular protein kinase. Various learnings might arise
from such analysis, such as assessing the repurposing po-
tential of clinical kinase inhibitors. Moreover, users can dis-
cover an appropriate molecule/inhibitor with respect to po-
tency and selectivity to study the function of a particular
kinase (19). Another use case is to identify inhibitors which
share the same target(s) but have different off-targets, which
can be used to identify and study the core signaling path-
way of the shared target(s) or general on-target effects (18).
In addition, the biochemical assay data and tools provided
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Figure 1. The architecture of ProteomicsDB. The production unit hosts the SAP HANA in-memory database management system which involves three
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in ProteomicsDB (e.g. Inhibitor potency/selectivity analy-
sis) can be used to discover new lead compounds for medic-
inal chemistry programs targeting a specific kinase of in-
terest (20,21). The dose-response curves can be explored
in the ‘Biochemical assay’ tab of the protein details view.
This view allows users to filter the data by different prop-
erties, so that only compounds that fit the desired criteria
will be displayed. For all curves, full experimental designs
are stored for the users to browse and explore. For dose-
response curves that belong to studies that are not published
yet, the curve information is available but the experimental
design, although fully imported, will only be shown when
these studies are published. Second, the meltome data of
ProteomicsDB was enriched with another study that cov-

ers the protein melting properties for many organisms (un-
published). Therefore, users can more thoroughly study the
effect of temperature on selected proteins. We now cover
the melting properties of ∼13 000 human proteins. Pro-
teomicsDB thus provides an extensive resource and data-
driven guidance on which temperature range should be used
for e.g. a thermal shift assay or which temperature would
be suitable for an isothermal dose response assay (ITDR).
Third, we introduced a new assay type in the ‘Biochemical
Assay’ tab which covers data from protein turnover mea-
surements (synthesis and degradation). Users can obtain
the half-life time of proteins of interest to assess their stabil-
ity (22). This data can support the analysis of the mode of
action of drugs (23) and might provide additional avenues
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Figure 2. Additions to ProteomicsDB. (A) The front page of ProteomicsDB has been adjusted to host new organisms as well as provide information about
the quantity of the different data types that are stored in the database. (B) Barplot depicting the proportion and absolute number of data points added
to ProteomicsDB (in blue) since the previous update manuscript in 2017 (green). (C) Venn diagram showing the number and overlap of genes for which
proteomics, transcriptomics or biochemical assay data is available in ProteomicsDB. (D) Venn diagram showing the number and overlap of tissues (as well
as cell lines and body fluids) for which the respective data types are available in ProteomicsDB.

into understanding the effectiveness of drugs in light of the
stability of on- or off-target proteins (18). In total, ∼20 000
proteins (including isoforms) are covered by at least one and
∼3000 by all three biochemical assay types, providing po-
tentially valuable insight into additional aspects of a pro-
tein’s life cycle. As ProteomicsDB visualizes every curve (ac-
cessible via the ‘Biochemical assay’ tab in the ‘Protein De-
tails’ view), users can assess the quality of each individual
curve and underlying data points themselves.

Upload and online analysis of user expression data

Uploading expression profiles. ProteomicsDB’s ability to
interconnect and cross-reference data from various sources
is one of its core features. However, this was so far only
possible for data already stored in ProteomicsDB, limiting
its usefulness for the interpretation of data acquired in a

user laboratory. In order to fill this gap, we implemented
a new feature called ‘Custom User Data Upload’ (Figure
4). Here, users can temporarily upload their expression pro-
files and optionally normalize them to the data stored in
ProteomicsDB. On upload of a dataset, a temporary ses-
sion is created in the database which can be accessed by
a unique session ID. This session will automatically expire
after 14 days, which will result in the permanent and not
recoverable deletion of all corresponding data unless the
user chooses to extend this period. Users can save and use
their session ID to load their session to any other com-
puter or browser. Data stored in such sessions are available
via ODATA (https://www.odata.org) services within Pro-
teomicsDB and will ultimately allow the integration into
any existing analytical pipeline.

The first use case we highlight is the comparison of
custom expression data to expression data stored in Pro-
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Figure 4. Custom data analysis area of ProteomicsDB. The ‘Custom Data Upload’ tab enables users to upload their own expression datasets temporarily
to ProteomicsDB. The datasets are session-specific so that no other user has access to this uploaded data.

teomicsDB. For this to be successful, we highly recommend
making use of the normalization feature available upon up-
load. The uploaded expression profiles are normalized via
MComBat (24) using the total sum normalized proteomics
expression values of ProteomicsDB as a reference set. Be-
cause MComBat normalization depends on the calcula-
tion of a mean and variance for any given protein, only
datasets with three or more samples can be normalized
using this method. Every uploaded dataset has to adhere
to a pre-defined comma-separated format (.csv files) where
each row must provide the following information. (i) A gene
name––HGNC symbol as the identifier, which will help us
associate the uploaded proteins to the ones stored in Pro-
teomicsDB and enable cross-dataset comparisons. (ii) A tis-

sue or cell line name representing the origin of the mea-
sured sample, which will be used for visualizations. (iii) A
sample name, which is important to separate samples with
the same tissue of origin especially for the normalization
step, as samples with the same sample and tissue/cell line
name will be automatically aggregated as there is no way to
separate them. (iv) The expression value of the correspond-
ing protein in the sample in log10 scale, accompanied by
the quantification and calculation method that was used,
which will help with further comparisons of matching in-
ProteomicsDB data. (v) The taxonomy code of each sample,
which will allow dataset separation based on the selected or-
ganism, a feature which is discussed below. A detailed doc-
umentation on how to use this functionality as well as on
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the data upload format, can be found by clicking the ‘Help’
button that accompanies every view in ProteomicsDB (Fig-
ure 4).

Use of analytical tools on uploaded datasets. By upload-
ing an expression dataset, back-end procedures take care
of the data modelling and transformation, so that they are
compatible to existing tools with no major differences to
the data available in ProteomicsDB. The first tool mak-
ing use of this is the interactive expression heat map. The
heat map allows interactive visualization of expression pat-
terns of multiple groups of proteins. Upon upload, users
can choose a data source and focus their analysis on either
data from ProteomicsDB, their own datasets noted as ‘User
Data’ or the integration of both, noted as ‘Combined’. Be-
cause the heat map automatically aggregates tissues, dupli-
cated tissue names provided in the custom dataset will ap-
pear as one column. The automatic mapping enables users
to use all functionalities of the heat map, such as direct
links to the ProteomicsDB’s protein summary views and
perform GO enrichment analysis on the selected proteins.
The ‘Combined’ option allows users to compare their data
to data stored in ProteomicsDB. They can further allow a
comparison of some or all datasets that they have uploaded
to the in-database data. Users should expect that uploaded
datasets that were not subjected to normalization during
uploading, will clustered together. If the normalization step
was enabled, then user samples should cluster with tissues
or cell lines that have similar expression profiles in Pro-
teomicsDB, ideally from the same origin. Figure 4 shows
such an example where a custom dataset was co-clustered
with data stored in ProteomicsDB. Some of the uploaded
expression profiles of cell lines co-cluster with the respec-
tive cell lines stored in ProteomicsDB (here lung and liver
samples). There are cases though (here ovary) that cluster
with other tissues (here uterus). This feature enables users
to find the closest cell lines for which ProteomicsDB con-
tains, e.g. phenotypic information and explore compounds
that may be effective in user cell lines.

Extended heat map features––missing values imputation.
ProteomicsDB stores a large collection of transcriptomics
expression profiles alongside the respective proteomic pro-
files. Having access to expression data from both sources
and to the automatic mapping using the built-in Resource
Identifier Relation Model, ProteomicsDB is able to perform
data-driven missing value imputation using either data type.
Especially proteomics data (depending on the depth of mea-
surement) can show a large number of missing values. Data
selected for imputation might come from different projects
for both omics types. Even projects of the same omics type
might differ in the distribution of their expression values.
This phenomenon is commonly referred to as ‘batch effect’
and results in additional variance by the fact that we aggre-
gate data across multiple ‘batches’. Here, the term ‘batch’
refers to experiments processed in one laboratory over a
short time period using the same technological platform
(25). We performed intra-omics normalization and batch ef-
fect correction using ComBat (26). Next, we apply MCom-
Bat (24) to perform inter-omics correction of systematic dif-
ferences. MComBat, in contrast to ComBat, allows select-

ing a reference dataset so that all other datasets will be nor-
malized based on the reference. Transcriptomics data are
then transferred to the same scale of the proteomics expres-
sion data. Previous experiments showed that the correla-
tion across all tissues between mRNA and protein expres-
sion data is higher with than without such an adjustment
(27). Finally, we implemented the mRNA-guided missing
value imputation method, described in (27). For this pur-
pose, we train linear regression models and extrapolate pro-
tein abundance from transcriptomics abundance. To vali-
date the performance of the generated models, we created
artificial missing values in a random subset of the protein
expression data that are stored in ProteomicsDB. We then
used our models to extrapolate the protein abundances and
compared them to two other common missing value im-
putation strategies: (a) replacing missing values with the
minimum protein abundance of the corresponding sample
and (b) random sampling from the corresponding sample’s
protein abundance distribution, as the created missing val-
ues originate from the whole abundance distribution. The
mRNA-guided missing value imputation method showed
the best correlation to the measured values (Supplementary
Figure S1) which is why we implemented it. The entire pro-
cedure, from data normalization to training the regression
model is performed by the R server (Figure 1). This is pos-
sible because the SAP HANA in-memory database man-
agement system supports direct connections to the R-server
via proper adapters. Missing value imputation is available in
the interactive heat map (Figure 5) and can be activated by
the respective button. Once activated, and only if matching
expression profiles are available, the model trained above
and the adjusted transcriptomics expression data are used
to fill in missing values in the protein expression matrix.
The authors point out that missing value imputation can
lead to issues and should therefore be carefully considered
and evaluated on a case by case basis. Especially in the case
of mRNA-guided missing value imputation, it becomes less
accurate if the RNA dataset or protein expression data has
a limited number of samples. Moreover, not all missing val-
ues can be imputed if RNASeq matching data is missing.

Drug sensitivity prediction for proteomic profiles

ProteomicsDB already covers a lot of phenotypic drug sen-
sitivity information (Figure 2B) and to the best of our
knowledge, no other platform exists which shows the full
dose response curves across multiple resources including fil-
ters to the extent as ProteomicsDB’s cell viability viewer
does. However, the list of cell lines for which this data is
available is necessarily incomplete and likely entirely un-
available or impossible to generate if cells lines were de-
rived from say patient tissue in a particular laboratory. In
order to obtain an estimate of the susceptibility of such
cell lines to drugs, without performing an experiment, Pro-
teomicsDB provides a tool to model and estimate drug sen-
sitivity, based on expression profiles. Recent proteome pro-
filing of the NCI60 (28) and the CRC65 (27) cancer cell line
panels, and an additional panel of 20 breast cancer cell lines
(29) showed that protein signatures can predict drug sensi-
tivity or resistance. On this basis, we implemented elastic
net regression (30) in ProteomicsDB to model drug sensi-
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Figure 5. Combined interactive expression heat map. User datasets can be clustered along with data stored in ProteomicsDB for a combined analysis. User
datasets (marked in orange) that were normalized using MComBat subsequent to upload, cluster close to samples in ProteomicsDB (in blue) that were
generated from the same or similar tissues or cell types.

tivity as a function of quantitative protein expression pro-
files. This functionality can be used in the ‘Drug Sensitivity
Prediction’ view (Figure 6). Here, users can select from a
variety of tissues and cell lines whose proteomic profiles are
stored in ProteomicsDB. Next, a drug or compound can be
selected to check for its effect on the selected cell line (Fig-
ure 6A). Figure 6B shows the result of the prediction as bar
plots - one for each predicted feature (area under the curve,
pEC50, relative effect). Error bars show the range of the pre-
dictions of all bootstraps of the corresponding model. Each
drug in ProteomicsDB might be accompanied by multiple
models (multiple bars in each bar plot), because the drug
may have been used in more than one drug sensitivity screen
which was imported into ProteomicsDB (max. 4). It is im-
portant to point out that each model includes a certain set
of predictor-proteins. If the sample on which a user wants
to predict drug sensitivity does not contain some of the re-
quired proteins, prediction from some models is not pos-
sible. Selecting a bar of any bar plot generates a volcano
plot (Figure 6C), which shows information for the interpre-
tation of the trained model. The x-axis shows how strong
the expression of a particular protein is associated with drug
sensitivity or resistance, analogous to a correlation. The y-
axis shows the number of bootstrap models contained the
particular protein as a predictor, when training the elastic
net model. Proteins that appear in the top left and right ar-
eas of the volcano plot (Figure 6C) are frequently selected
from the models as predictors, as they have a high positive
or negative correlation with drug sensitivity or resistance
and can, therefore, represent potential biomarkers. Instead
of predicting drug sensitivity on tissues or cell lines from
ProteomicsDB, users also have the option to use this func-
tionality on their own datasets, uploaded using the ‘Cus-
tom User Data Upload’ tab. Predictions can be applied to
all user datasets, although it is highly recommended to use
normalization upon uploading, as the models were trained

on data stored in ProteomicsDB and expect values from the
same or similar expression distributions.

Real-time analytics and visualization for any organism

ProteomicsDB was initially developed for the exploration of
the human proteome. As a result, every database view and
endpoint was designed without explicit support for multiple
organisms. In order to support the storage, handling and
visualization of data from multiple organisms, all layers of
ProteomicsDB (Figure 1) required modifications and exten-
sive testing. In the new version presented here, we modified
all backend procedures to support querying of data for a
specific taxonomy. The API endpoints were modified to re-
quire a taxcode in order to respond with the desired data.
With this functionality in place, we prepared the database
and the data models to support and handle the protein se-
quence space of any organism. Similarly, the user interface
was modified to support the visualization of data from a se-
lected organism. Users can change the selected organisms
by using the respective icons on the left hand side of each
view, or directly on the front page of ProteomicsDB (Figure
2A). For the protein expression visualization, new interac-
tive body maps for Arabidopsis thaliana and Mus musculus
were generated (Figure 7A, Supplementary Figure S2) and
function in the same way as the human body map.

To bring Arabidopsis thaliana into ProteomicsDB, we
downloaded, processed and imported the protein sequence
space from UniProt, following the same mechanism as
for human proteins. Upon import, appropriate decoy se-
quences were created for every protease, to allow false dis-
covery (FDR) estimation by the picked FDR approach
already implemented in ProteomicsDB (31). We further-
more imported the Plant Ontology (PO) (32) to be able
to make use of ontologies for the different plant tissues.
This step was not necessary for Mus musculus, since the
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Figure 6. Drug sensitivity prediction. (A) Prediction is enabled for both, data stored in ProteomicsDB or user uploaded datasets. (B) This view visualizes the
predicted sensitivity of a chosen cell line to a chosen drug expressed by area under the curve (AUC, left bar), the negative log of the effective concentration
of the drug (EC50, middle bars) and the relative (cell killing) effect (right bars). If more than one bar is shown, more than one training data set was available
for the particular drug and either one or several predictions are shown. (C). Each dot in the volcano plot, represents a protein that is associated to drug
sensitivity or resistance on the basis of the elastic net model generated during training.

Brenda Tissue Ontology (BTO) (33) that was previously im-
ported into ProteomicsDB to support the analysis of hu-
man proteins covers any mammalian tissue. To complete the
protein information and meta-data panel, we downloaded
and imported protein domain information from SMART
(34) using their RESTful API and GO annotations us-
ing the QuickGo-API of the European Bioinformatics In-
stitute (EBI). Protein-protein interactions and functional
pathway information were downloaded from STRING (35)
and KEGG (36), respectively. The latter data were pro-
cessed and transformed for import into our triple-store
data model, which allows the automatic mapping of the
respective STRING and KEGG identifiers to the corre-
sponding UniProt accessions and our internal protein iden-
tifiers. With the meta-data imported, the proteomics and
transcriptomics expression profiles for Arabidopsis thaliana
were imported. The project covers 30 different tissues, in-
cluding a tissue-derived cell line that was derived from cal-
lus tissue. Because of the generic design of ProteomicsDB,
any analytical view (e.g. heat map) will work without fur-
ther modifications for any other organism. However, due to
the limited datasets available for phenotypic drug responses
(and the respective drug targets), other views do not show
any A. thaliana or M. musculus data yet.

As mentioned before, we have imported >5 million refer-
ence spectra acquired from synthetic human peptides in the
ProteomeTools project. As a next step, we imported more
than 10 million Prosit-predicted peptide spectra, in three
different charge states and 3 different collision energies. By
chance, these spectra also represent 70 000 peptides from
Arabidopsis thaliana because their sequences are identical
in either organism. In addition, we added predicted spectra
for all peptides present in the experimental data set. Thus,
akin to the human case, these reference spectra can be used
to validate peptide identifications in experimental data us-
ing the mirror spectrum viewer integrated in ProteomicsDB.
First, these are directly accessible in the ‘Peptides/MSMS’
tab of the ‘Protein Details’ view, where users can validate or
invalidate i.e. one hit wonders (proteins which are only iden-
tified by a single peptide/spectrum), and more generally val-
idate proteins/peptides in case the user wants confirmation
that the protein is actually present in the sample of a project
and consequently in a cell line or tissue in ProteomicsDB.
Since ProteomicsDB contains up to 14 different types of ref-
erence spectra (11 fragmentation settings from Proteome-
Tools and 3 normalized collision energies from Prosit) as in-
dicated in the list of available reference spectra, users can se-
lect the optimal match (37). Second, in the ‘Reference Pep-
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Figure 7. ProteomicsDB as a multi-organism and multi-omics platform. (A) Proteome or transcriptome expression data are visualized in the tissues of
a chosen organism (left) and numerical expression data (medians in case multiple samples of the same tissue are available) are shown on the right for
each tissue the protein was found in. Tissue bars selected by users turn orange and the respective tissue is highlighted on the body map on the left view
projects the tissue aggregated omics expression values to the corresponding organism’s body map. (B) Venn diagram is showing the overlap of gene-level
data available for proteomics and transcriptomics for Arabidopsis thaliana. (C) Venn diagram showing the overlap of tissues for which proteomics and
transcriptomics expression values are available in ProteomicsDB.

tides’ tab, where users can browse ProteomeTools and Prosit
spectra for e.g. designing targeted mass spectrometric as-
says. The two separate views exist because for some proteins,
no experimental spectra of endogenous proteins might be
available, while many reference spectra might be available
because the ProteomeTools synthesized all meaningful pep-
tides for a hitherto unobserved protein. For proteins where
experimental data from endogenous proteins is available,
users can take experimental proteotypicity of peptides into
account and thus rationalize which peptide to choose for an
assay. Additionally, this view can be used to compare spec-
tra created by different fragmentation methods and, more
importantly, different collision energies to optimize their
targeted assays for collision energies which generate desired
fragment ions (e.g. highly intense and high m/z ions). Fur-
thermore, spectra can now be downloaded in the mirrored
spectrum viewer as msp-files. Finally, as mentioned above,
ProteomicsDB is also ready to support Mus musculus data.
However, the selection of mouse in ProteomicsDB will only
be enabled once the data has been published.

FUTURE DIRECTIONS

The continuous updates introduced over the last years have
transformed ProteomicsDB into a multi-omics resource for

life science research covering proteomic and transcriptomic
expression, pathway, protein-protein and protein-drug in-
teractions, and cell viability data (Supplementary Figure
S3). Many aspects of ProteomicsDB are already respect-
ing the FAIR principles (38). For example, e.g. findability
(F) is supported by unique identifiers, accessibility (A) via
API endpoints including meta-data and reusability (R) by
way of multiple online services taking advantage of Pro-
teomicsDB’s API endpoints. However, more efforts are cur-
rently made to transform ProteomicsDB into a fully FAIR
resource, e.g. by extending the API to allow access to all
data stored in ProteomicsDB. One particular strength of
ProteomicsDB is its versatile mapping service allowing the
seamless connection between different data types. This en-
ables subsequent modelling and data mining to further
evolve ProteomicsDB from an information database to a
knowledge platform. Along these lines, we plan to extend
our analytical toolbox such that scientists in life science re-
search can directly benefit from the wealth of data stored
in ProteomicsDB. Here, we show the first steps into this di-
rection by extending the toolbox as well as enabling users
to upload their own expression data. Combined with Pro-
teomicsDB’s flexible infrastructure, this will provide ease of
use for data analysis, interpretation and machine learning
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capabilities not accessible to every laboratory or scientist.
For this purpose, we are also planning to further extend
the data content of ProteomicsDB to include, e.g. protein
structures integrated with drug–target affinity data (20) or
develop tools which allow the prediction of the target spaces
of kinase inhibitors (39).

Two more extensions are planned that will allow the fur-
ther integration and exploitation of reference spectra. The
first one is to use synthetic or predicted reference spectra
to systematically validate and assess the confidence of ex-
perimental data by evaluating their spectral similarity. As
shown earlier, the integration of intensity information can
lead to drastic improvements in either the number of iden-
tified peptides or the ability to differentiate correct from in-
correct matches (5). Especially the latter will help to increase
the confidence of each peptide identification and thus also
increase the quality of identification and quantification re-
sults stored in ProteomicsDB. The second extension is the
implementation of a smart tool which will allow users to
build targeted assays based on data stored in ProteomicsDB
as described.

Ultimately, the collected data and generated knowledge
should culminate in actionable hypotheses. These may drive
the design of laboratory experiments or eventually aid de-
cision making in patient care. One way how ProteomicsDB
could be used for the latter is by providing tools that as-
sist molecular tumor boards. We plan to provide pipelines
where researchers and clinicians will be able to upload the
protein profiles of patient samples in a fully anonymized
fashion and have in-depth bioinformatic analysis reports
returned, spiked with a wide range of information includ-
ing, e.g. protein and RNA abundance levels, biomarkers
that predict sensitivity or resistance, potential off-label uses
based on approved kinase inhibitors as well as general sam-
ple characterization, classification or origin identification
based on similarities of molecular fingerprints.
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Supplementary Figures

 

Figure S1. Histograms for comparing different imputation methods. A.  The white distribution 

represents all iBAQ protein expression values in ProteomicsDB. The red distribution represents the 

missing values we created by random sampling 10% of the white distribution. The green, yellow and 

blue distributions represent the imputed missing values based on the 3 different methods respectively: 

mRNA-guided, minimum of a sample’s distribution and random sampling from each sample’s 

distribution. B. Histograms of the mean absolute error per tissue for each imputation method. 

 

 



 

Figure S2. Interactive expression body map for Mus musculus. As previously available for Homo 

sapiens, the same interactive body map idea is used for visualizing quantitative expression data for 

every organism hosted by ProteomicsDB. 



 

Figure S3. The future of ProteomicsDB: From data to knowledge to action. Future releases of 

ProteomicsDB will contain protein structure data. Applying data mining and knowledge discovery 

methods, new information will be generated which will be used to build new tools that will deliver the 

extracted knowledge to the user. The final goal of ProteomicsDB is to provide tools that will combine 

all data coming from the previous layers and take part in the decision making in modern research. 

  



 


