
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation

Prof. Dr.-Ing. André Borrmann

Geometrical and Topological Linking

of Railway Systems

Ya-Chun Bollig

Masterthesis

für den Master of Science Studiengang Bauingenieurwesen

Autor: Ya-Chun Bollig

Matrikelnummer:

Betreuer: Prof. Dr.-Ing. André Borrmann

Sebastian Esser, M.Sc.

Ausgabedatum: 01. Dezember 2019

Abgabedatum: 31. März 2020

Abstract

Building Information Modelling (BIM) has already established itself as a best-practice

approach for efficient productivity in the field of building design and operation, yet is still in

its early days in the field of infrastructure. Recent efforts to promote the integration of BIM

into large-scale infrastructure projects also target the construction and operation of railway

networks. The existing methodologies traditionally used for railways are however neither

horizontally, between sub-contractors, nor vertically, along the life-cycle, fully integrated,

leading to possible loss of information.

There exist data exchange schemata to reduce the problem of storage and information flow, but

they are not yet optimized towards railways, nor is there a common standard that construction

industries have agreed upon. Industry Foundation Classes (IFC) recently added the

concept of a linear reference system for infrastructure assets, yet is still only focused on the

geometry needed during the construction phase. Railway Markup Language (railML) is

an accepted data exchange schema tailored towards providing topology for railway operations,

yet lacks full support of geometry data. A prototype tool linking these two schemata

is developed in this thesis to ensure consistent data in both geometrical and topological

representations.

The geometrical entity and element sets of IFC and railML show sufficient overlap to support

a consistent data exchange with the exception of transition curves. However, the exchange

of topological data is, for example, limited regarding the network stored in railML, as IFC

does not yet have entities that describe the relationships among alignments. The developed

prototype allows to reconstruct a simple track geometry from scratch for a given railML file

with minimal user input but loses the relationship information as well as object aggregation

after the transfer to IFC. Conversely, the IFC geometry can be converted reasonably well to

railML but the user would need to manually input navigability between alignments.

Overall, this thesis demonstrates that reasonable consistency, beyond minor differences in

geometry, can be maintained between IFC and railML, if IFC adds an entity set that can

store the relationships among alignments. IFC already offers an analogue to topological

representations in the form of distribution flow networks such as pipe networks, which could

alternatively be abstracted to fit railway networks. Although IFC is extending in scope, a

tool like the one developed in this thesis might still be required.

III

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 3

1.3 Thesis outline . 4

2 Data Exchange Schemata in BIM 5

2.1 Background . 5

2.2 Collaboration and Interoperability . 6

2.2.1 Common Data Environment . 6

2.2.2 Data Exchange and OpenBIM . 7

2.3 Data Exchange Schemata . 9

2.3.1 IFC and gbXML . 11

2.3.2 LandXML, InfraGML, and CityGML 12

2.3.3 OKSTRA and RoadXML . 14

2.3.4 agcXML, BCF, and railML . 15

2.4 Limitations of Data Exchange . 16

2.4.1 Technical Issues . 16

2.4.2 Procedural Issues . 18

3 Industry Foundation Classes for Railways 20

3.1 Overview . 20

3.1.1 Structure of IFC Schema . 21

3.1.2 STEP Format . 23

3.2 IfcAlignment . 25

3.2.1 Linear Reference System . 25

3.2.2 Structure of IfcAlignment . 25

3.2.3 Curve Representation in STEP . 26

3.3 Future Outlook . 28

4 RailTopoModel - Topological Model of railML 29

4.1 Overview . 29

4.1.1 Structure of railML Schema . 30

4.1.2 XML Schema and XML Format . 30

4.2 RailTopoModel . 33

4.2.1 Existing Topological Models . 33

4.2.2 Classical Topological Representation 34

4.2.3 Topological Representation in RailTopoModel 36

4.3 Summary . 37

5 Solution Proposal and Implementation 39

5.1 Problem Discussion . 39

5.1.1 Data Inconsistency Scenarios . 40

5.1.2 Comparisons of IfcAlignment and RailTopoModel 42

5.1.3 Limitations of IfcAlignment and railML 45

5.1.4 Solution Proposal . 49

5.2 Implementation . 50

5.2.1 Technical Framework . 50

5.2.2 Code Structure . 51

5.2.3 Geo2Topo . 53

5.2.4 Topo&Geo . 59

5.2.5 Topo2Geo . 60

5.2.6 Visualization . 63

5.2.7 GUI . 64

5.3 Tool Prototype . 64

6 Case Study 67

6.1 Introduction . 67

6.1.1 Data Validation and Viewing . 67

6.1.2 Case Selection . 68

6.2 Tool Walkthrough . 70

6.2.1 IFC to railML . 70

6.2.2 railML to IFC . 73

6.3 Current Limitations . 78

7 Conclusion and Outlook 79

7.1 Conclusion . 79

7.2 Future Outlook . 81

A Digital Appendix 82

V

Nomenclature

AEC Architecture, Engineering, and Construction

AGC Associated General Contractors of America

AIA International Alliance for Interoperability

AIM Asset Information Model

BCF BIM Collaboration Format

BIM Building Information Modelling

bSDD buildingSMART Data Dictionary

BSI British Standards Institution

bSI buildingSMART International

CAD Computer-Aided Design

CDE Common Data Environment

CPC Construction Progress Coalition

DB Deutsche Bahn AG

DLL Dynamic Link Library

ETCS European Train Control System

gbXML Green Building XML

GIS Geographic Information System

GML Geography Markup Language

GUI Graphical User Interface

GUID Globally Unique Identifier

I Division Deutsche Bahn AG Infrastructure Division

I/O Input/Output

IDM Information Delivery Manual

IFC Industry Foundation Classes

IRS International Railway Standard

ISO International Organization for Standardization

LINQ Language-Integrated Query

LoD Level of Detail

LRS Linear Reference System

MVD Model View Definition

OGC Open Geospatial Consortium

OKSTRA Objektkatalog für das Straßen- und Verkehrswesen

PAS Publically Available Specification

PIM Project Information Model

railML Railway Markup Language

RINF Register of Infrastructure

RTM RailTopoModel

TIN Triangulated Irregular Network

UIC International Union of Railways

UML Unified Modeling Language

WPF Windows Presentation Foundation

XML Extensible Markup Language

XSD XML Schema Definition

XSD.exe XML Schema Definition Tool

1

Chapter 1

Introduction

1.1 Motivation

“Building Information Modelling (BIM) is the use of a shared digital representation of

a built object (including buildings, bridges, roads, etc.) to facilitate design, construction and

operation processes to form a reliable basis for decisions.” in ISO 29481-1:2016 (ISO, 2016) is

one of the BIM definitions. In practice, the BIM process uses a parametric, object-oriented,

and dynamic 3D model with embedded geometrical and functional data to share and coordinate

information between the modern fragmented industrial field from contractors to subcontractors.

BIM strives to create an effective and dependable collaborative process among architecture,

engineering, and construction (AEC) during the design, construction and maintenance phases.

Therefore, BIM is playing a crucial role in the AEC industries, and thus many commercial BIM

software packages, so-called BIM applications in general, are available. Ideally, considering

the technical issues, collaboration within a vendor’s software environment is easier than

collaboration among software from different vendors; in practice, stakeholders in a project tend

to adopt the latter type of collaboration. However, BIM applications from different vendors

usually have their own internal data standards and formats, decreasing the collaboration

efficiency and increasing the risk of information inconsistency. To avoid any misleading

communication among different software packages, buildingSMART International (bSI)

provides an OpenBIM approach Industry Foundation Classes (IFC) since 1996, certified

as an international standard by International Organization for Standardization (ISO)

in 2005 (buildingSMART International, 2020e).

The IFC schema defines a software-independent referencing data model that can store BIM

models and minimize the loss of information during data exchange scenarios between different

software standards. In its first version, IFC 2x3 schema was focused on 3D models, such as

architectural buildings and interior components. Later, it extended its scope and included

additions such as 3D models with time and cost aspects, often called 4D and 5D models,

1.1. Motivation 2

and BIM to Geographic Information System (GIS) interoperability. The latest official

schema IFC 4.1 introduced an alignment standard (buildingSMART International, 2020d).

The extension by GIS and alignment sub-schemata enables IFC to consider the exterior

environment and to provide the basis for large-scale infrastructures requiring a Linear

Referencing System (LRS) during their design and construction phases, such as roads and

railways.

Thanks to the BIM applications and methodologies, various fields, not just buildings but also

civil infrastructures, are applying BIM to gain efficiency and reduce expenditures; nevertheless,

the benefits of BIM as achieved for buildings are not yet fully realisable in civil infrastructures.

Consequently, there are relatively fewer academic studies and industrial applications on

infrastructures than those on buildings; BIM implementation is usually limited to the design

stage of road, airport, and bridge industries (Shou et al., 2015). The current application

on civil infrastructures, especially railways, is not as mature as on buildings due to their

complexity. For example, it requires the data schema to not only support geometrical and

topological information, but also the control system and functional components to model the

complete system. Moreover, Deutsche Bahn AG (DB) started the project of implementing

BIM in the Infrastructure Division (I Division) since 2015 and has been standardizing

the BIM process, such as BIM applications and data management, in all business units, and

yet does not expect an exchange format to meet the DB’s complex requirements in the near

future (Deutsche Bahn AG, 2019).

As seen from DB’s experience, fulfilling the business use case, specifically a complete railway

system, involves a high degree of collaboration, and thus requires a BIM application that can

handle multiple Levels of Detail (LoD). On the one hand, commercial BIM software can

provide sufficient detail on geometry and product information in the design and construction

phases, but on the other hand, they can not manage the topological representation in the

operation phase. As a result, railway operators tend to use their own internally developed

programs and data formats that again increase the difficulty to maintain data consistency.

For the same reasons that led to the development of IFC, railML.org introduced the open-

source Railway Markup Language (railML) in 2005, enabling heterogeneous railway

applications to communicate with each other; its new systemic model of topology-based railway

network description RailTopoModel (RTM) was released as International Railway

Standard (IRS) 30100 in 2016. The latest schema railML 3.1 provides the data structures,

such as infrastructure, interlocking, rolling stock, and timetable, for different

operational uses (railML.org, 2020; railML.org, 2016a).

As mentioned above, the purpose of the IFC schema is to ease the interoperability between BIM

applications. Accordingly, it is being extended towards further alignment-based domains to

keep up with the advancement of BIM applications (buildingSMART International, 2020d); the

ongoing IFC Rail project proposed a description of a railway system, a software-independent

1.2. Goal 3

conceptual model under review (IFC Rail Project, 2019a,b). It is encouraging that IFC is

trying to extend the standard to include the railway infrastructure domain, yet it remains a

complex task that will take time to accomplish.

To summarize, bridging the gap between BIM applications for different target markets remains

an important stepping stone before the introduction of an integrated BIM model. It is

clear that it is impossible to manage railway systems in its entire life-cycle in a single BIM

application. Thus, ensuring that there are multiple applications tailored to the specific needs

of railways in all different phases, yet still provide compatible interfaces for data exchange, is

essential. In particular, it is important to link construction-focused and operation-focused

BIM applications through open data schemata such as IFC for construction and railML

for operation. Typically the required geometrical data in the operation phase is less detailed

than in the construction phase, yet sufficient information should remain available for future

upgrades or maintenance. IFC and railML are open-source, vendor-neutral, certified as

an international standard, and have great expandability; thus, we can expect that more

BIM applications will apply these exchange data formats in the future, on the premise that

communication between IFC and railML can be coordinated sufficiently to ensure that data

is consistent and can form a complete BIM model.

1.2 Goal

As discussed in the introduction, it is known that the referencing data schemata IFC and

railML, also used as exchange data specifications, provide geometrical and topological

data models respectively and simplify the connection of various BIM software packages

(see Figure 1.1). However, the transferred information from one data model to another

can be inconsistent. The sources of possible inconsistency are for example: the topological

representation lacking geometrical information to reconstruct the complete geometry; a

topological data model consisting of multiple layers with vastly different amounts of information;

data being assigned incorrectly due to different semantics between data schemata; the BIM

software encoding data formats incorrectly or neglecting to update the topology after changes

to the geometry.

Therefore, this master thesis aims to investigate the current exchange data schemata for both

geometrical and topological representations for a railway system, discuss the possible reasons

for data inconsistency between these two representations, propose and implement a prototype

tool to consistently convert a geometrical representation into a topological representation

and vice versa, verify the applicability on example cases, and give suggestions for further

development. The discussion in this thesis focuses on the application of BIM on railway

infrastructure and the relevant sub-schemata from IFC and railML.

1.3. Thesis outline 4

Figure 1.1: Thesis goal: to link the geometrical representation by IFC and the topological represen-
tation by railML (A to C denote the BIM software supporting IFC; D to F denote the BIM software
supporting railML).

1.3 Thesis outline

In this thesis, Chapter 2 introduces the concepts of collaboration and interoperability in BIM,

reviews and compares the existing open data standards and data formats, and discusses the

limitations of data exchange schemata. Then, IFC and railML are introduced in detail in

Chapter 3 and Chapter 4 respectively; Chapter 3 analyzes the IFC data structure, the format,

the possible components to model railway infrastructure available in the current IFC 4.1

schema, and the description of alignments as an LRS. Subsequently, Chapter 4 introduces

the railML schema, the topological model RTM, and the difference between RTM and a

classical topological representation. After clarifying the issue, Chapter 5 discusses the data

inconsistency scenarios and the data for reconstructing a geometrical representation from a

topological representation and vice versa. I also propose a possible solution and implement the

concept, followed by testing the prototype solution with cases in Chapter 6. Finally, Chapter 7

summarizes the results and gives an outlook and possible extensions.

5

Chapter 2

Data Exchange Schemata in BIM

Section 2.1 introduces why data exchange is important in BIM and how it influences col-

laboration and interoperability in BIM. Next, Section 2.2 explains the proposed solutions,

i.e. Common Data Environment (CDE) as well as the idea of data exchange schemata.

Section 2.3 simply introduces and compares the common data exchange schemata used in

AEC industries. To conclude, Section 2.4 addresses the limitations of data exchange schemata.

2.1 Background

It is indispensable for AEC industries to implement a full BIM workflow, as it has the potential

to improve both productivity and efficiency significantly; it is especially advantageous for

railway infrastructure due to the complex business requirements. A complete model of

a railway infrastructure encompasses a wide range of components in different LoDs from

roughest to finest detail; for example, network topology for route design; track layout of

the individual routes for a switching layout; description of individual objects and projects

with all associated assets for detail design; and down to the smallest exchangeable units for

manufacturing (Deutsche Bahn AG, 2019; Borrmann et al., 2012). It is difficult, however, for

a single BIM application to manage vastly different scales in a single model or to provide

multi-user capabilities, hence, a BIM project mostly involves multiple applications for different

use cases and phases.

BIM applications can be grouped into three types based on their functions: BIM tools, BIM

platforms, and BIM environments; a BIM tool can be any application used in the context of the

BIM process; a BIM platform can create, modify, and maintain a BIM model, as well as host

project information. A BIM environment is a set of BIM applications, supporting information

for different businesses use cases (Sacks et al., 2018). The current design software packages

available on the market belong mostly to the BIM platform group. These design software

2.2. Collaboration and Interoperability 6

packages provide an object-oriented parametric data model that supports the core concept

of BIM. A parametric model aggregates multiple objects whose shape and other properties

can be controlled parametrically by their relationships (Baldwin et al., 2018; Sacks et al.,

2018); for example, a room has four walls, and each wall has windows; creating, modifying, or

removing one object can affect the higher-level object. Therefore, a BIM model can maintain

information consistency as changes automatically propagate up or down in level. Nevertheless,

design software packages from different vendors commonly have diverging object definitions;

that is, a BIM model created in a specific software can not be passed directly to another

software. As the result of the independent models, it increases the difficulty to share common

information and decreases the collaboration and interoperability between project members.

2.2 Collaboration and Interoperability

Collaboration and interoperability is the key to effective project management making full

use of the advantages of BIM. In the modern AEC industries, a large-scale project is mostly

divided into several parts and then assigned to multiple subcontractors; thus, a collaboration

with partners from diverging industry sectors is unavoidable. In addition to the collaboration,

the interoperability, which refers to the ability to exchange data among applications, is

also a factor to save time and cost. To ensure optimal collaboration and interoperability,

a well-structured information management system including a standardized data pool and

loss-free data exchange is desired.

2.2.1 Common Data Environment

The scope of information management consists of collecting, updating, and synchronizing

graphical or non-graphical documentation, models, and files. As the project progresses, more

stakeholders will be involved, and thus the complexity of the information management will grow

as well. To reduce communication conflicts, CDE provides a platform for joint, standardized,

and systematic information management. British Standards Institution (BSI) published

two Publicly Available Specifications (PAS) PAS 1192-2 and PAS 1192-3, introducing

CDE formats in the data delivery and the operational phases respectively (British Standards

Institution, 2020; Baldwin et al., 2018). PAS 1192-2 and PAS 1192-3 were later included into

ISO 19650 in 2018. The standards define the CDE structure and give the data manager the

criteria and guidelines to organize, update, verify, and transmit data resources.

2.2. Collaboration and Interoperability 7

Figure 2.1: Project delivery in CDE (based on ISO 19650).

Figure 2.1 shows a project delivery using CDE. The project is progressing along the abscissa,

and the amount of information is increasing along the ordinate accordingly. There are three

types of data-subsets in CDE: graphical data, i.e. a 3D model; non-graphical data, i.e. object

attributes; and documentation, i.e. analysis text files. The amount of all data increases as the

project progresses during the data delivery phase, followed by the confirmed information being

handed over to the owners in the operational phase. The information in the data delivery

phase is called the Project Information Model (PIM), while the information in the

operational phase is called the Asset Information Model (AIM). PIM represents the data

which is created, confirmed, and utilized sequentially under design and construction, e.g. 3D

models, construction workflows, and production plans. In contrast, the planning of activities,

such as maintenance and extensions, is more flexible in the operational phase than in the

data delivery phase. During design and construction, PIM data, such as geometry detail,

is produced in abundance but not always necessary for the operational phase; hence, AIM

is commonly just a subset of PIM (Baldwin et al., 2018). A good example is the timetable

design for railways only requiring the topological model of tracks and stations rather than the

geometrical model including curvature information.

Overall, it can be said that the collaboration between project participants during all phases is

based upon the foundation laid by the CDE.

2.2.2 Data Exchange and OpenBIM

Having defined the shared information platform CDE, Section 2.2.2 is now moving towards

how to coordinate information sharing between applications. As shown in Figure 2.2, a CDE

enables project members to synchronize and share dynamic information regardless of their

chosen applications. The CDE is however just a data pool collecting data from participants,

which does not automatically mean that it is a single, centralized, and neutral model. As

it is neither beneficial for companies to develop a single integrated product that can model

2.2. Collaboration and Interoperability 8

an object’s full life-cycle, nor is it in the interest of end-users from various domains to be

limited to a singular choice in software, how to obtain an integrated common model remains

a significant issue.

An integrated model is not a single monolithic model but an aggregation of multiple data

sets created by specialized applications best suited for each use-case scenario. To achieve

an integrated model, frictionless data exchange between each authoring and simulation tool

is needed. Possible approaches to data exchange are for example: (1) using BIM authoring

software from the same vendor; (2) using BIM authoring software from different vendors

that support shared proprietary file formats; (3) using BIM authoring software from different

vendors that support common non-proprietary file formats, also known as open standards.

The first and second are easier approaches than the third, as the applications can effortlessly

import and export data through their internal common format schema such as .DWG for

AutoCAD and .RVT for Revit of Autodesk, yet they give the participants less choice in

applicable software packages. Moreover, it is the premise of data exchange that these software

packages must cover all the required domains in the project. On the other hand, the third

approach is more flexible than the first two and the optimal solution for interoperability (Sacks

et al., 2018; Baldwin et al., 2018), but demands the extra implementation of open standards

into the applications.

OpenBIM is a BIM process adopting open standards, while ClosedBIM is a BIM process

adopting native data standards. An open standard, to be more specific, is a standard that

is publicly available and not limited to specific software or technology. As all native models

and data created in divergent software packages can be connected by using open standards

(see Figure 2.2), architects, engineers, and manufacturers can fully concentrate on their tasks

while the information transmission and workflow can proceed smoothly.

2.3. Data Exchange Schemata 9

Figure 2.2: The concept of OpenBIM.

2.3 Data Exchange Schemata

With the development of Computer-Aided Design (CAD), digital documentation has

replaced traditional paper-based documentation and became the primary documentation

carrier in many industries, formalizing the need for standardized data exchange formats. The

advantages being that project members can create a model in any given BIM application,

export the model data into the shared exchange format, and then import the file into another

BIM application more suited to the next use-case and continue working. That means, users

do not need to first manually re-create the model or extract information from the model

themselves but can rather start working immediately.

Open data exchange standards used for a BIM process specify the data schemata which

are, for example, IFC, Green Building XML (gbXML), LandXML, CityGML,

Objektkatalog für das Straßen- und Verkehrswesen (OKSTRA), railML, Road-

XML, agcXML, BIM Collaboration Format (BCF), and InfraGML. Their initial

release date, latest official version, supported formats, scopes, application and whether they

support the description of railway geometry are listed in Table 2.1.

2.3. Data Exchange Schemata 10

Standards
Initial

release

Latest

official

version

Format Scopes Application
Supports

LRS

IFC

(bSI)
1996

4.1

(2018)

XML,

STEP,

(unofficial:

JSON)

Buildings

Construction/facility

management,

ongoing extension

towards further

applications

allows LRS

positioning via

IfcAlignment

OKSTRA 1999
2.019

(2019)

XML,

(deprecated:

CTE)

Road

transportation
Road transportation

Not complete;

Trasse class

gbXML 2000
6.01

(2017)
XML Buildings

Analyses of

building energy,

water use and cost,

carbon emissions

No

LandXML 2002
1.2

(2008)
XML

Land

development

Land development,

transportation

industries

Not complete;

Alignment entity

CityGML

(OGC)
2002

2.0

(2012)
XML City, landscape

Urban planning,

architectural design,

tourist and leisure

activities

Yes;

Transportation

module

railML 2005
3.1

(2019)
XML

Railway

systems

Infrastructure,

interlocking,

rolling stock,

timetable

Yes

RoadXML 2007
2.4.1

(2016)
XML

Logical

description of

road networks

Traffic simulation,

scenario control

car, truck and

motorbike dynamics

models

Not complete;

XYCurve and

SZCurve classes

agcXML 2008 - XML

Construction

business

processes

Contractor record,

application for

payment,

time sheets

No

BCF

(bSI)
2009 - XML

Construction

workflow

BIM issue

management

separated from 3D

model

No

LandInfra/

InfraGML

(OGC)

2017
1.0

(2017)
XML

Infrastructure,

land surveying

Land development,

transportation

industries

Yes;

Part 3 Alignment

Part 5 Railway

Table 2.1: Sample open data exchange schemata used in a BIM process (Data as of 27. February 2020)
(buildingSMART International, 2020d; Open Green Building XML Schema, Inc., 2020; LandXML.org, 2017;

Gröger et al., 2012; Bundesanstalt für Straßenwesen, 2020; railML.org, 2019b; Ducloux, 2016; AGC of America,

2017; Solibri, Inc. and Tekla Corp., 2019; Axelsson and Wikström, 2017).

2.3. Data Exchange Schemata 11

As shown in Table 2.1, all listed data exchange schemata support the schema Extensible

Markup Language (XML), which is a textual data format, both human- and machine-

readable, and suitable for web services. The scopes of these schemata cover not just buildings,

but also infrastructures, and land: IFC and gbXML are focused on building models and

the relevant analyses from design, construction, and management; LandXML, InfraGML,

and CityGML support the detailed description of surrounding land for the planning of

large-scale civil infrastructures by adopting GIS; OKSTRA and RoadXML are targeted

towards traffic and transportation engineering; in addition to the schemata focusing on design

and construction, there are also schemata offering business-side, workflow management, and

operation support, namely agcXML, BCF, and railML. The following sections introduce

each data exchange schema respectively.

2.3.1 IFC and gbXML

IFC

IFC, initiated in 1994 by the International Alliance for Interoperability (AIA),

now renamed to bSI, was the prototypical data schema in the construction sector and was

inspiring AEC industries to implement the electronic exchange of technical data between

native models. IFC is the most common data exchange schema in the AEC industries. Later,

Chapter 3 introduces IFC in detail.

gbXML

Other than IFC, gbXML also aims to transfer BIM models, especially among the environmental

analysis software packages. In 2000, the initial version of gbXML was published by Green

Building Studio, Inc., which was later acquired by Autodesk in 2008. The core idea

behind gbXML is to describe multiple related buildings located in the same climate region;

for example, a campus and property set; each building in the set can be further represented

in detail including the geometry, materials, air-side systems, water-side systems, as well as

further properties that influence power consumption. Even though gbXML is weak on the

building geometry such as only accepting rectangular shapes, it is still often used for the

energy analysis due to its easy implementation (Adamus, 2013; Dong et al., 2007). According

to the official website of gbXML, the team are still developing gbXML actively; 16 BIM

authoring and CAD software packages as well as 42 building analysis tools integrated gbXML

(Open Green Building XML Schema, Inc., 2020).

2.3. Data Exchange Schemata 12

2.3.2 LandXML, InfraGML, and CityGML

The earliest developed data schemata mostly focused on building models with a maximum of

detail in their geometry for the design and construction phases. Despite the AEC industry’s

acceptance of data exchange schemata, civil infrastructure projects did not yet enjoy the full

benefit of the BIM process due to the lack of spatial or geographical analysis capability in

BIM (Karan et al., 2016). The distinct feature of civil infrastructures, large land occupation,

differs significantly from the land needs of buildings. Moreover, an infrastructure project, for

example a railway system, includes not only the to be developed objects, such as stations and

tracks, but also the existing environment, i.e. geography; hence, GIS and the accompanying

GIS software packages were introduced to fulfil that need. Again, having multiple independent

GIS applications hinders the data interoperability. Since 1994, Open Geospatial Consor-

tium (OGC), an international voluntary consensus standards organization, addressed and has

created non-proprietary formats for GIS as interfaces between GIS applications. Since then,

many different data schemata have been developed, such as LandXML of LandXML.org,

and InfraGML as well as CityGML of OGC.

LandXML

LandXML is an XML-based schema for civil engineering design and survey measurement

data first published in 2002. The purposes of LandXML are transferring engineering design

data between producers and consumers, providing a data format suitable for long-term data

archival, and providing a standard format for electronic design submission (LandXML.org,

2017). LandXML used to be the most popular data schema in the land development and

transportation industries, however, it is gradually being replaced by other GIS schemata due

to several issues. Some examples are: the schema is too flexible as it contains a comprehensive

set of properties with only optional implementation, which is opposed to the concept of

interoperability; the schema is not organized in a structured manner, thus it is difficult to

find entities without an electronic search; the name requirements and the naming logic are

inconsistent between parent classes and their children classes (Scarponcini, 2013). Moreover,

LandXML not being supported by a standards organization also confused the industrial

uptake (Scarponcini, 2013). Following the latest schema LandXML 1.2, published in 2008, the

in 2014 newly developed LandXML 2.0 is until today still only a working draft (LandXML.org,

2017).

InfraGML

Alternatively, OGC Land and Infrastructure Domain Working Group proposed a new

solution in 2013 to replace LandXML, called InfraGML. The data model of InfraGML

2.3. Data Exchange Schemata 13

adopted the XML-based Geography Markup Language (GML) issued by OGC and the

ISO TC211, the new schema, therefore, benefits from the functionality already supported

by GML, including features, geometry, coordinate reference systems, linear referencing, and

surface modelling using a Triangulated Irregular Network (TIN) (Scarponcini, 2013).

Compared to LandXML, InfraGML has a more comprehensive definition for infrastructure

with multi-part standards for the description of alignment, facilities and projects, roads,

railways, land surveying, and land division (Axelsson and Wikström, 2017). Due to the

overlap in alignment functionality with IfcAlignment, it has been decided to harmonize

the two schemata to guarantee future interoperability (Scarponcini, 2013). Even though the

railway infrastructure geometry in InfraGML is not as detailed in IFC, it can be a good

interface to connect IFC with other GIS data schema (Axelsson and Wikström, 2017; Kumar

et al., 2019).

CityGML

In addition to the schema targeting civil infrastructures, OGC offers another GML-based

schema CityGML for the representation, storage, and exchange of virtual 3D landscape models.

The application scope includes, for example, urban and landscape planning, architectural

design, tourist and leisure activities, environmental simulation, and mobile telecommunications

(Gröger et al., 2012). The CityGML schema is thematically decomposed into a core module

and thematic extension modules; the mandatory core module provides the basic functionality

of the CityGML data model; the extension module builds upon the core module to provide

the thematic extensions. The thematic modules encompass thirteen fields: digital terrain,

buildings, tunnels, bridges, water bodies, transportation objects, vegetation objects, city

furniture, land use, city object groups, generic city objects and attributes, and application

domain extensions (Gröger et al., 2012). One other characteristic of CityGML is the multi-

scale data schema supporting multiple representations in five LoDs from the coarsest level

LoD 0 to the finest level LoD 4. To take railways as an example: LoD 0 shows the linear

network of railways; starting from LoD 1 shows 3D geometrical features of railways. The

information in different detail can, for example, be employed for route planning algorithms for

transportation or pedestrians (Gröger et al., 2012). CityGML 3.0 has been recently presented

in (Kutzner et al., 2020), however due to the as yet unfinished nature of the standard is not

included in the thesis discussion.

2.3. Data Exchange Schemata 14

2.3.3 OKSTRA and RoadXML

OKSTRA

The German schema OKSTRA is targeted at road and traffic engineering. OKSTRA was

initiated in 1993, introduced by the Federal Ministry of Transport and Digital

Infrastructure in Germany in 1999 and made mandatory for all road infrastructure

projects in Germany the following year (Rüffer et al., 2001). It was introduced to harmonize

the road network planning of the German federal states, while also providing interfaces for

state-specific extensions. OKSTRA is one of the most extensive road data schemata in the

world (Beetz and Borrmann, 2018); however, the schema and the documentation being solely

available in German has limited the adoption to the German market only (Amann et al.,

2014). The development goals were to provide data storage and facilitate the exchange

of all information that might be relevant towards the design, construction, operation, and

maintenance of a transportation network. The foundation of OKSTRA is made up of three

basic schemata: a geometry schema containing all geometrical and topological information

relevant to the object; a history schema serving as documentation storage for all versioned

historical data of an object; and a general object schema providing the basis for the further 31

application-specific schemata. The application-specific schemata include for example schemata

for accident statistics, traffic statistics, signalling, road condition, land-use, and administrative

data (Hettwer, 2008).

RoadXML

In 2006, the french car manufacturer PSA Peugeot Citroen released the first version of

RoadXML under its original name of RND. Later, the schema was integrated with other data

schemata, e.g. RNS/RS, for traffic software by several vehicle related-companies (Ducloux,

2016). All the companies, including INRETS, OKTAL, PSA, Renault, Thales, and TRL, are

currently responsible to review and maintain the schema (INRETS et al., 2016). Since the

developers are mostly car manufacturers, the first concept of RoadXML was to have one

format for all driving simulator modules and to be a single point of access to the network

description (Chaplier et al., 2010). Today, RoadXML is also used for traffic simulation, sound

control, and vehicle dynamic analysis (INRETS et al., 2016). RoadXML offers a four-layer

description of the environment with different LoDs: topological, logical, physical, and visual

layer. The topological layer represents the position of the road axis and the connections with

the network; the logical layer contains the lanes with width and direction; the physical layer

describes road attributes in more detail e.g. surface properties and the material; the visual

layer has the most detailed information, e.g. road marking width (Ducloux, 2016).

2.3. Data Exchange Schemata 15

2.3.4 agcXML, BCF, and railML

agcXML

agcXML aims to support construction business processes. It was developed by Associated

General Contractors of America (AGC) in 2008 and then taken over as an open

standard by Construction Progress Coalition (CPC) in 2018 (AGC of America, 2017).

agcXML provides multiple schemata for various cases, for example, in the schema Submit

and Distribute Application for Payment, it defines activities including submitting the payment

to the owners, receiving the payment by the owners, and distributing the payment to consultants

(AGC of America, 2017).

BCF

Other than most data exchange schemata that focus on describing models, BCF, originating

from Solibri and Tekla in 2009 and owned by bSI today, primarily focuses on identifying

and sharing model-based issues between BIM applications (buildingSMART International,

2020a). It is known from Section 2.2.2 that data exchange schemata allow team members

to communicate among different BIM software packages. Nevertheless, the communication

does not happen at the same time but is instead sequential. A typical workflow when BCF

is considered in the design is shown in Figure 2.3; first, a model is created; then the model

will be export into a data format such as IFC and be passed to the next stakeholders; BIM

managers or coordinators verify and analyze the model using for example clash detection,

and then report the issues with screenshots and comments using BCF; finally, the modellers

modify the model according to the feedback. BCF optimizes the workflow and can be utilized

not just for the model review in the design phase, but also for information coordination among

suppliers in the procurement phase, for the quality control in construction, and upgrades in

the operation phase (buildingSMART International, 2020a).

railML

railML is developed to bridge the railway operation applications. Compared to infraGML

and CityGML, railML can describe the railway geometry and also have a comprehensive

data set for the facilities as well as properties needed in the operation phase, i.e. the types

of switches, platforms, signals, and the train speeds (railML.org, 2019b). As railML is

focused on operational purposes, the data extent is relatively light-weight compared to IFC

but complements the insufficient data content available in the current IFC version. Chapter 4

introduces railML in more detail.

2.4. Limitations of Data Exchange 16

Figure 2.3: Collaboration workflow with BCF (Baldwin et al., 2018).

2.4 Limitations of Data Exchange

More and more data schemata being developed and extended aim to improve the interoper-

ability in a BIM process; however, they can not guarantee the interoperability, for example,

due to data inconsistency. The sources of the interoperability problems are mainly attributed

to technical and procedural issues. The technical issues are: (1) incomplete coverage of a data

schema; (2) translator problems; (3) system bugs; (4) software domain problems. On the other

hand, the procedural problems are: (1) version control and concurrent engineering issues; (2)

LoD issues. In addition to the reasons above, it can also be the fault of team members not

willing to share data due to intellectual property (Lee, 2011; Sacks et al., 2018).

2.4.1 Technical Issues

Incomplete Coverage of a Data Schema

As introduced in Section 2.3, developers have been trying to have data exchange schemata

cover the entire life-cycle of facilities. The motivation of a data exchange schema was to have

a neutral model for multiple business processes, yet a neutral model does not exist. That is,

each software requires one data schema to be translated to another one.

Assume there are n independent software packages used in a project, on the left in Figure 2.4a,

then n · (n− 1) direct translators without data exchange schemata are required to ensure the

interoperability among n applications. The ideal solution is to have a neutral model connecting

all applications as shown in the middle, reducing the direct translators to n; however, in

practice, the problem just reduces from n · (n− 1) to n ·m direct translators where m refers

to the number of data exchange schemata on the right (Gielingh, 2008).

2.4. Limitations of Data Exchange 17

Given that there is no neutral model, linking exchange schemata to maintain the information

flow is unavoidable; nevertheless, only the common information existing in both schemata

can be exchanged (Gielingh, 2008). For example, the current IFC contains comprehensive

types, entities, and property sets for buildings, yet its scope is not covering the complete

description of infrastructure; only the information of Alignment of CityGML can be

transmitted into the entity IfcAlignment of IFC; unfortunately, the other infrastructure

information, e.g. the properties relating to tunnels, bridges, and transportation systems, will

be abandoned during translation, as there are no suitable entity types to store the information

(see Figure 2.4b). Moreover, the natural information flow is usually from the detailed to

the simple; it requires users to define extra information manually in the conversion from the

opposite direction. For example, the building definition in gbXML is almost a subset of IFC,

thus data transaction from gbXML to IFC is easy; however, the data schema of gbXML

does not contain all information that IFC requires, such as construction products as well as

materials (see Figure 2.4b) (Adamus, 2013; Dong et al., 2007; Daniotti et al., 2020).

(a) A neutral model does not exist (Gielingh, 2008).

(b) Only intersected information between schemata can be exchanged (the entries are examples).

Figure 2.4: Data exchange issues.

2.4. Limitations of Data Exchange 18

Figure 2.4b shows that data inconsistency occurs when there is no explicitly defined corre-

sponding entity type. Rather than the naive assumption that the intersection of two schemata

can be exchangeable (Gielingh, 2008), one must introduce the concept of semantic intersection

(Lee, 2011) to determine the true extent of exchangeable information. To take an example,

CityGML is typically used for the GIS approach in the city or neighbourhood-scale scenario,

whereas IFC is used for the BIM approach in the building-scale scenario. Despite the common

information, it is still necessary to link the information of both CityGML and IFC through

an explicit conversion, because the unified model under development for the integration of

both schemata loses the original semantics (Jusuf et al., 2017). For another example, height,

width, and depth are three attributes defining a box volume in schema A; on the other

hand, schema B uses volume to represent the same thing; even though the volume can be

determined by multiplying height, width, and depth, the attributes height, width, and

depth can not be parsed from volume.

The semantics of the property names are sensitive during encoding. If the names are ambiguous

then they can not be interpreted correctly. These errors can, of course, be picked up by a

human, but the merits of automatic data exchange would be lost. The semantics confusion is

primarily caused by synonyms and homonyms (Lee, 2011). An example for a homonym, setA

contains project name, load, and manager, while set B has structure name, load,

and frame; only the information intersection load can be exchanged, however, load in A

means structural load and in B means truckload. In the synonym case, the different attribute

names project name and structure name refer to the same thing (Lee, 2011). These

semantic problems are considered to defined the data inconsistency scenarios in Chapter 5.

Translator Problems, System Bugs, and Software Domain Problems

Translator problems can occur, as a translator does not have a guideline to follow. Further

problems can be caused just due to simple bugs; a bug in the visualization module of an

application can lead to the wrong model appearance even though the data is read correctly.

Besides, similar to problems caused by the incomplete coverage of a data schema, a BIM

platform only reads the relevant entities in the corresponding domain and omits other

information.

2.4.2 Procedural Issues

As multiple participants are in a project, unsynchronized information is a common cause for

reduced interoperability as well. For example, an inconsistency can occur when engineers have

modified a model and pushed the update, yet architects continue to work on the older version.

The other reason is the different LoDs used in a BIM model. In most cases, a single BIM

model can not include all the details required for different use cases, therefore the model is

2.4. Limitations of Data Exchange 19

split into several models with a different LoD; consequently, data might be lost among the

models or not propagated correctly (Sacks et al., 2018).

20

Chapter 3

Industry Foundation Classes for

Railways

First, Section 3.1 gives an overview on the background of IFC and a short introduction

regarding the standards also established by bSI. Following this, the basic properties and

architecture of the IFC schema is explained; an example for building elements is made and

a sample STEP file is given. Section 3.2 discusses the motivation for the development of

IfcAlignment and introduces the concept of the LRS as well as the structure of the sub-

schema IfcAlignment. For a clear explanation, an example curve implemented in STEP is

given. Finally, past and present research about the extension of infrastructures in IFC and

the collaboration between data schemata is introduced.

3.1 Overview

The IFC schema of bSI, an open international standard ISO 16739-1:2018 for BIM, is the

most commonly used data schema in AEC industries. The up to date schema IFC 4.1 was

released in 2018. In addition to the schema entities aimed at storing the full life-cycle

of buildings, the new updated IFC 4.1 includes alignment entities, providing the basis for

many infrastructure domains using an LRS such as railways, roads, tunnels, ports, and

waterways (buildingSMART International, 2018). Today, IFC is implemented and available in

at least 88 BIM applications from well-known software enterprises, such as ACCA Software

S.p.A, Autodesk, Bentley, NEMETSCHEK Allplan GmbH, and Tekla (Data as of

27. February 2020).

In order to facilitate implementation of the IFC schema, bSI also published several standards:

Model View Definition (MVD), Information Delivery Manual (IDM), buildingS-

MART Data Dictionary (bSDD), and BCF (see Section 2.3.4). An MVD is a subset of the

3.1. Overview 21

IFC schema, allowing users to extract only the data information relevant to specific scenarios.

The concept of MVDs is to reduce the model size and to simplify the implementation for

various data exchange scenarios based on sub-domains. Moreover, the data exchange interface

of sub-domain specific BIM software is validated against a selected MVD (Mahdavi et al.,

2014). The MVDs’ format mvdXML defines the data schema including all IFC expressions

such as entities, relations, and attributes for particular views (Tim Chipman, 2016; Sacks et al.,

2018). For example, structural engineers can export structure-related information for analysis;

a wall-fabricator can export wall geometries and the material properties for production. To

create an MVD, the relevant data exchange process needs to be analyzed; the analysis consists

of what information is needed for the selected scenario and what information needs to be

transmitted (Baldwin et al., 2018). The specification of the information requirements is called

an Information Delivery Manual (IDM). The creation of an IDM is a collaborative

process whereby a group of industry domain specialists collate the minimum exchange re-

quirements for each domain into an exchange requirements model that forms the basis of

the MVD (Richard See, 2012). bSDD is a dictionary to overcome the language barrier in

an international collaboration. For example, the natural language names window in English

and Fenster in German both refer to the same IFC entity IfcBuilding (buildingSMART

International, 2018).

The IFC schema relies on the EXPRESS data specification language, defined in ISO 10303-

11, and the XML Schema Definition (XSD) language, defined in XML Schema W3C

Recommendation (buildingSMART International, 2018); the data model based on EXPRESS

is stored in a STEP physical file with the file extension .ifc, whereas the one based on XSD is

stored in an XML file with the file extension .ifcXML; also, the data model can be encoded in

other formats such as JavaScript Object Notation with the file extension .json. Currently,

the STEP physical file is the preferred choice (Liebich, 2009); it is introduced in Section 3.1.2.

3.1.1 Structure of IFC Schema

The data schema architecture of IFC can be decomposed into four parts; each part is assigned

to one conceptual layer. The four conceptual layers from the lowest to the highest are

the resource layer, core layer, interoperability layer, and domain layer (buildingSMART

International, 2018). There are either rooted or non-rooted entities in each conceptual level;

the resource layer includes only non-rooted entities, while the core layer, interoperability layer,

and domain layer include only rooted entities. According to (buildingSMART International,

2018), the definition of each layer and an example of an IFC schema are given below.

3.1. Overview 22

Resource layer

The lowest layer includes all the individual base schemata for resource entities. These non-

rooted entities do not have an identity, i.e. a Globally Unique Identifier (GUID), and

can not exist independently. The resource entities need to be assigned to or referenced by an

entity from a higher level directly or indirectly, and thus are reusable. Due to the reusable

characteristics, the file size can be minimized by sharing instances of identical resources. The

entities can be classified into 21 groups according to their use purposes; for example, geometry,

topology, material, quantity, and cost.

Core layer, interoperability layer, and domain layer

All entities in this group are rooted; they are derived from the most abstract root class

IfcRoot, which have their own identity, name, description, and owner history, hence, they

can be used independently. The core layer defines both abstract objects, e.g. relationships

among entities, and physical objects, e.g. building elements; these fundamental objects can

be used for further specialization in aspect specific models. The next layer, interoperability

layer, contains the entities that are specific to a general object, such as the derived entities

of building elements, beams, columns, doors, and piles; these entities are called Shared

Elements and are used for inter-domain exchange and sharing of construction information.

In the top layer, the entities are domain-specific extensions and used for intra-domain exchange

and sharing of information.

Example

IFC provides an object-oriented data model. All object information is organized following the

inheritance hierarchy. Figure 3.1 shows a subset of IFC entities related to building objects.

There are three abstract types of entities inheriting from IfcRoot; IfcObjectDefinition,

defining a type or an occurrence as an object; IfcPropertyDefinition, defining an object’s

characteristics; and IfcRelationship, defining the relationship among objects. Starting with

the children nodes of IfcProduct, IfcElement and IfcSpatialElement are derived from

IfcProduct; IfcElement is further inherited by various elements that can be referred to

by a spatial element through a relationship; IfcSpatialElement decomposes a building into

several elements, namely buildings, stories, sites, and space, which can be aggregated through

the entity IfcRelAggregates, inherited from IfcRelationship. To take a four-story

building as an example, first, beams and columns are associated with each story; then four

stories are aggregated and assigned to a building, followed by putting the building in a site;

finally, the site is assigned to a project.

3.1. Overview 23

Figure 3.1: A subset of IFC entities related to building objects (the lines represent the inheritance
hierarchy).

3.1.2 STEP Format

A simple example for the STEP format is shown in Code 3.1. The file is split into two sections,

HEADER and DATA. The HEADER section has information about the IFC version, the

owner, the application that created the file, and the date of exportation, whereas the DATA

section contains instances of IFC entities used to construct a BIM model (Liebich, 2009). Each

statement in the DATA section is composed of a STEP Id, the entity name, and its attributes.

A STEP file is a human-readable text-based file, yet not possible to read sequentially, as the

entities are nested in the attributes of other entities. For example, the entity IfcProject

as seen in the line with the STEP Id #1 has the first three attributes GlobalId=”1

Ed8FFl9LDCgUmtp0YgCdb”, OwnerHistory= ”#2”, Name=”IfcAlignmentProject”; the

second attribute OwnerHistory refers to IfcOwnerHistory with the STEP Id #2 in

Line 10, of which the first two attributes further refer to the entities with STEP Id #5 and

Id #6. Additionally, as the STEP Id is only valid for a single exchange, the Id will change

if the same file is exported again (Liebich, 2009). Thus, an IFC file should be utilized as

a reference model, which needs to be loaded into a BIM platform and then exported again

from the updated BIM model rather than trying to modify the file directly (buildingSMART

International, 2020e).

3.1. Overview 24

1 ISO−10303−21;

2 HEADER;

3 FILE DESCRIPTION ((’’), ’2;1’);

4 FILE NAME (’’, ’2020−03−14T22:41:34’, (’’), (’’), ’Processor version 5.1.0.0’, ’Xbim.IO.MemoryModel’, ’’);

5 FILE SCHEMA ((’IFC4X1’));

6 ENDSEC;

7

8 DATA;

9 #1=IFCPROJECT(’1Ed8FFl9LDCgUmtp0YgCdb’,#2,’IfcAlignmentProject’,$,$,$,$,$,#7);

10 #2=IFCOWNERHISTORY(#5,#6,$,.ADDED.,1584225694,$,$,0);

11 #3=IFCPERSON($,’last name’,’first name’,$,$,$,$,$);

12 #4=IFCORGANIZATION($,’Technical University of Munich’,$,$,$);

13 #5=IFCPERSONANDORGANIZATION(#3,#4,$);

14 #6=IFCAPPLICATION(#4,’1.0’,’TUM CMS SE’,’notDefined’);

15 #7=IFCUNITASSIGNMENT((#8,#9,#10,#11));

16 #8=IFCSIUNIT(∗,.LENGTHUNIT.,$,.METRE.);

17 #9=IFCSIUNIT(∗,.PLANEANGLEUNIT.,$,.RADIAN.);

18 #10=IFCSIUNIT(∗,.AREAUNIT.,$,.SQUARE METRE.);

19 #11=IFCSIUNIT(∗,.VOLUMEUNIT.,$,.CUBIC METRE.);

20 #12=IFCLOCALPLACEMENT($,#13);

21 #13=IFCAXIS2PLACEMENT3D(#14,$,$);

22 #14=IFCCARTESIANPOINT((0.,0.,0.));

23 #15=IFCGEOMETRICREPRESENTATIONCONTEXT($,’Model’,3,$,#13,$);

24 #16=IFCSITE(’2LwWAD9XP9ZufFEuMlzxvE’,#2,’SiteName’,’SomeTestSite’,$,#12,$,$,$,$,$,0.,$,$);

25 #17=IFCRELAGGREGATES(’0jaemTaLb3wO sdAoezuA5’,#2,$,$,#1,(#16));

26 #18=IFCPROJECTEDCRS(’EPSG:31467’,’EPSG:31467 − DHDN / 3−Degree Gauss−Kruger Zone 3’,’EPSG:3146’,$

,’Gauss−Kruger’,’3’,#8);

27 #20=IFCMAPCONVERSION(#15,#18,1.,2.,0.,$,$,$);

28 #21=IFCALIGNMENT(’0qpyZi7wPD58Gn0AbXm1IN’,#2,’myCurve’,’myDescription’,$,#12,$,#22,$);

29 #22=IFCALIGNMENTCURVE(#23,#24,$);

30 #23=IFCALIGNMENT2DHORIZONTAL($,(#27,#30));

31 #24=IFCALIGNMENT2DVERTICAL(());

32 #25=IFCLINESEGMENT2D(#26,1.5707963267948966,1000.);

33 #26=IFCCARTESIANPOINT((0.,0.));

34 #27=IFCALIGNMENT2DHORIZONTALSEGMENT($,$,$,#25);

35 #28=IFCCIRCULARARCSEGMENT2D(#29,1.5707963267948966,785.39816339744823,500.,.F.);

36 #29=IFCCARTESIANPOINT((0.,1000.));

37 #30=IFCALIGNMENT2DHORIZONTALSEGMENT($,$,$,#28);

38 #31=IFCRELCONTAINEDINSPATIALSTRUCTURE(’11kFQ9Hu55kOD2ERHEAM$m’,#2,$,$,(#21),#16);

39 ENDSEC;

40 END−ISO−10303−21;

Code 3.1: Simple example for a STEP physical file.

3.2. IfcAlignment 25

3.2 IfcAlignment

As introduced in Section 1.1 and Section 2.1, information from the large-scale to the small-

scale is required to model a complete railway system, for example, the information about

the surrounding environment, as well as topological network down to the tracks, signals, and

switch systems. Therefore, several data exchange schemata, such as PlanPro and railML

were developed to handle these specific sub-domains (Esser and Borrmann, 2019); furthermore,

the most common data exchange format IFC has been extended to encompass the essential

functions for railway systems. Since IFC 4.1, the entity IfcAlignment is available to define

a reference system for linear construction work.

3.2.1 Linear Reference System

An LRS is a method to identify a specific location along a route using only a single coordinate,

the distance measurement (Scarponcini, 2005). ISO 19148 Geographic information -

Linear referencing and ISO 19133 Tracking and Navigation Standard explain how

the LRS is implemented. The possibly complicated curve describing the route is unfolded into

a single linear element, that is defined using the start point of the curve and the endpoint,

given by the linear distance along the curve (see Figure 3.2a). For example in the case of a

circle, the linear element is given by its circumference and every point on the circle can be

referenced by a single distance measurement along the circumference. Any point on the curve

is therefore converted from the complicated global 3D geometrical coordinates into a simple

1D local coordinate along the curve. Points along the linear element can be referenced by

multiple methods; for example (see Figure 3.2b), an event can be located using the absolute

measurement from the linear element start point or using a relative measurement from a

referent, for example, a landmark, and a distance measure from this point. Furthermore,

points not lying on the curve axis can be described using a referent and an offset distance away

from the linear element. The advantage of an LRS is the simple expression for the location

along extended linear elements, it is therefore suitable for a railway system to manage asset

positions such as tracks, stations, and control systems.

3.2.2 Structure of IfcAlignment

IfcAlignment, a linear positioning element, belongs to the core layer and is inherited from

IfcProduct (see Figure 3.1); the entity is the composition of other entities following the

schema shown in Figure 3.3. The information of an alignment might be defined (1) in the

X/Y plane of a Cartesian coordinate system accompanied with or without the elevation in

3.2. IfcAlignment 26

(a) Unfolding a circle to a linear element.

(b) Examples for an absolute reference, a relative reference, and an
offset reference.

Figure 3.2: Sketches of an LRS.

the Z direction; (2) as a relative alignment based on another alignment; (3) and as a 3D

alignment, either determined by combining a horizontal and a vertical alignment or extracted

from geospatial data (buildingSMART International, 2018). To describe an LRS for railways,

a set of horizontal alignments are considered in the thesis.

A basic horizontal alignment, IfcAlignment2DHorizontal, consists of one or more

alignment segments connecting together by their start and endpoints. Each IfcAlign-

ment2DHorizontalSegment segment can be defined by: a straight line, IfcLineSeg-

ment2D; an arc, IfcCircularArcSegment2D; or a transition curve, IfcTransition-

CurveSegment2D. This horizontal alignment is assigned to the attribute of IfcAlign-

mentCurve, which becomes the axis of IfcAlignment. Finally, multiple IfcAlignments

are grouped together to specify an LRS. An example of a geometrical model for IfcAlignment

is made in Section 3.2.3.

3.2.3 Curve Representation in STEP

The DATA section in Code 3.1 represents a curve by one alignment composed of two separate

alignment segments. The geographical reference system is not given in the example, thus

the alignment is visualized in an arbitrary orientation as shown in Figure 3.4. Looking

3.2. IfcAlignment 27

Figure 3.3: Alignment attributes in 2D (the lines represent the composition).

at IfcAlignment with STEP Id #21 in Line 28 in Code 3.1, it can be seen that the

attribute Axis refers to the entity IfcAlignmentCurve with STEP Id #22 in Line 29, of

which the attribute Horizontal refers to the entity IfcAlignment2DHorizontal with

STEP Id #23 in Line 30. From the attribute Segments of IfcAlignment2DHorizontal,

two IfcAlignment2DHorizontalSegment with STEP Id #27 in Line 34 and #30 in

Line 37 are tracked. Then the basic segments, IfcLineSegment2D with STEP Id #25 in

Line 32 and IfcCircularArcSegment2D with STEP Id #28 in Line 35, are found. All

the geometry information, such as the Cartesian coordinates of start points, the segment start

direction, and segment length, can be found in this entity level. The geometry definition for

different segment types are introduced in detailed in Chapter 5.

#21=IFCALIGNMENT(’0qpyZi7wPD58Gn0AbXm1IN’,#2,’myCurve’,’myDescription’,$,#12,$,#22,$);

#22=IFCALIGNMENTCURVE(#23,#24,$);

#23=IFCALIGNMENT2DHORIZONTAL($,(#27,#30));

#25=IFCLINESEGMENT2D(#26,1.5707963267948966,1000.);

#27=IFCALIGNMENT2DHORIZONTALSEGMENT($,$,$,#25);

#28=IFCCIRCULARARCSEGMENT2D(#29,1.5707963267948966,785.39816339744823,500.,.F.);

#30=IFCALIGNMENT2DHORIZONTALSEGMENT($,$,$,#28);

Figure 3.4: An example alignment in an arbitrary orientation.

3.3. Future Outlook 28

3.3 Future Outlook

Currently, the research groups of bSI, Infrastructure Room and Railway Room, are

working on several projects (buildingSMART International, 2020b). In addition to the

published IfcAlignment, Infrastructure Room is continuously developing the common

schema project to ensure the collaboration and interoperability among the ongoing projects

related to civil infrastructures such as IFC Bridge, IFC Tunnel, and IFC Rail. In

the meanwhile, Railway Room is focusing on the IFC Rail project and progressing on

the development of sub-domains including track, energy, signaling, telecommunication, and

technical services (buildingSMART International, 2020c).

Although BIM applications keep updating the certification with the latest IFC standard,

it still takes time to completely support IfcAlignment. Besides, it is not possible for all

applications to implement all domains, as software enterprises prefer to develop domain-specific

applications. Therefore, enabling collaboration across standards through their overlap in scope

is necessary for now and for the future. Some related research is, for example, the linking of

InfraGML, CityGML, and IFC (Kumar et al., 2019); integrating the data model PlanPro

for representing railway equipment components into IFC (Esser and Borrmann, 2019); as well

as the linking of CityGML and IFC infrastructure (Vilgertshofer et al., 2017). This thesis

also proposes a linking method between IFC and the operation-focused schema railML.

29

Chapter 4

RailTopoModel - Topological Model

of railML

Chapter 4 introduces the operation-focused data schema railML and the novel topological

model RTM. Section 4.1 introduces the background of railML and explains the structure

of the data schema; then an example for railML and an example XML code are given.

Section 4.2 introduces the topological model used in the latest railML and the motivation

for its development; a simple comparison among existing topological data models; the classical

representation of a railway network, as well as the representation using RTM.

4.1 Overview

RailML, an XML-based and open data exchange schema, aims to become an interface handling

the data transfer from one application to another in the railway sector. RailML.org, originally

founded by researchers from the German Fraunhofer Institute for Transportation

Systems and Infrastructure in Dresden and the Institute of Transport Planning

and Systems (IVT) of ETH Zürich, is developing railML for railway applications since

2001 (Nash et al., 2004). Today, the railML consortium includes certified software developers

from Germany, Switzerland, and France, railway companies from all over Europe such as

Deutsche Bahn, Österreichische Bundesbahn, and Trenitalia, as well as other

research institutes from around the world.

The initial version of railML was released to exchange timetable data in 2005; the other

sub-schemata such as rolling stock, and macroscopic infrastructure were introduced in the

later versions of railML. Because the early railML schemata were built on a rather casually

defined and incomplete topological basis that was not able to satisfy all railway data exchange

requirements, many railways and European Train Control System (ETCS) suppliers

4.1. Overview 30

needed to extend the internal railML specifications themselves (Hlubuček, 2017; Seybold

and Franke, 2013). To provide a well-defined basis for diverging use cases, a core topological

model that can describe generic railway elements independent of any end purpose and process

was demanded, thus RTM was introduced in 2013 and certified as an international standard

IRS 30100 in 2016. RTM, as a component of railML, is available in the latest schema

railML 3.1, published in 2019. Currently, some certified software packages are, for exam-

ple, Controlguide OCS for traffic management by SIEMENS; OpenTrack for capacity

planning and timetabling by OpenTrack Railway Technology; and GPSinfradat for

infrastructure survey by Bahnkonzept (railML.org, 2020).

4.1.1 Structure of railML Schema

In addition to the schema for general information, the current railML 3.1 schema can

be divided into four sub-schemata for particular types of railway data: infrastructure,

interlocking, rolling stock, and timetable (see Figure 4.1) (railML.org, 2019b). The

infrastructure schema includes all fundamental elements that describe a railway network,

namely elements for topological representations; geometrical representations; functional

infrastructure such as platforms, signals, tracks, electrification, and switches; physical facilities;

infrastructure visualizations; and infrastructure status. The interlocking schema provides

elements for assets for interlocking, controllers, signal boxes, and specific infrastructure

managers. The rolling stock schema contains the elements storing information about

engines and wagon material. The final schema timetable permits the exchange of timetable

data. Each schema is independent and can be combined by referring to the element identity.

Furthermore, users only need to input their desired subset of attributes as the philosophy of

railML is to keep as few required elements as possible and thus remain flexible.

RailML provides two approaches for data exchange; users can export data into railML and

then import it into another application also supporting railML, or transfer data directly

between applications through the means of interprocess communication (Nash et al., 2004;

Ciszewski et al., 2017). The first approach requires a railML file and the format is introduced

in the next section.

4.1.2 XML Schema and XML Format

As mentioned in Section 2.3, most data exchange schemata including railML are developed

in the meta language XML as XML can describe both data and the data structure itself (Nash

et al., 2004). The XML schema is defined by XSD, describing the structure and elements of

XML as shown in Code 4.1. Similar to all XML-based data schema, the data structure is a

hierarchical tree, and the sub-schemata are nested inside. The element <schema> in Line 2 is

the root, with attributes describing the source of elements and data types used in the schema,

4.1. Overview 31

Figure 4.1: A subset of the railML 3.1 schema.

as well as the version of the schema. <schema> together with the element </schema> in

Line 50 defines a body, and other elements located inside the body of another element are

the children. From Line 13 to Line 40, it can be seen that the child elements, metadata,

common, infrastructure, interlocking, rollingstock, and timetable are defined;

the corresponding XSD files are included in this schema as shown from Line 3 to Line 7. The

attributes’ names, types, and other properties such as restrictions are defined within each

element. For example, the element infrastructure in Line 20 has four attributes: the

attribute name indicates that the element’s name is infrastructure; the following attribute

type refers to the element type rail3:Infrastructure; the last two attributes minOccurs

and maxOccurs convey that this element is not necessary for creating a railML file and

can only be defined once.

4.1. Overview 32

1 <?xml version=”1.0” encoding=”utf−8”?>

2 <xs:schema xmlns:rail3=”https://www.railml.org/schemas/3.1” xmlns:xs=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”https://www.railml.org/schemas/3.1” elementFormDefault=”qualified” version=”3.1”>

3 <xs:include schemaLocation=”timetable3.xsd”/>

4 <xs:include schemaLocation=”rollingstock3.xsd”/>

5 <xs:include schemaLocation=”interlocking3.xsd”/>

6 <xs:include schemaLocation=”infrastructure3.xsd”/>

7 <xs:include schemaLocation=”common3.xsd”/>

8 <xs:element name=”railML” type=”rail3:railML”/>

9 <xs:complexType name=”railML”>

10 <xs:annotation>

11 <xs:documentation>This is the root element of any railML file.</xs:documentation>

12 </xs:annotation>

13 <xs:all>

14 <xs:element name=”metadata” type=”rail3:Metadata” minOccurs=”0” maxOccurs=”1”/>

15 <xs:element name=”common” type=”rail3:Common” minOccurs=”0” maxOccurs=”1”>

16 <xs:annotation>

17 <xs:documentation>root element for railML3 common model</xs:documentation>

18 </xs:annotation>

19 </xs:element>

20 <xs:element name=”infrastructure” type=”rail3:Infrastructure” minOccurs=”0” maxOccurs=”1”>

21 <xs:annotation>

22 <xs:documentation>root element for railML3 infrastructure model</xs:documentation>

23 </xs:annotation>

24 </xs:element>

25 <xs:element name=”interlocking” type=”rail3:Interlocking” minOccurs=”0” maxOccurs=”1”>

26 <xs:annotation>

27 <xs:documentation>root element for railML3 interlocking model</xs:documentation>

28 </xs:annotation>

29 </xs:element>

30 <xs:element name=”rollingstock” type=”rail3:Rollingstock” minOccurs=”0” maxOccurs=”1”>

31 <xs:annotation>

32 <xs:documentation>root element for railML3 rollingstock model</xs:documentation>

33 </xs:annotation>

34 </xs:element>

35 <xs:element name=”timetable” type=”rail3:Timetable” minOccurs=”0” maxOccurs=”1”>

36 <xs:annotation>

37 <xs:documentation>root element for railML3 timetable model</xs:documentation>

38 </xs:annotation>

39 </xs:element>

40 </xs:all>

41 <xs:attributeGroup ref=”rail3:aRailML”/>

42 </xs:complexType>

43 <xs:attributeGroup name=”aRailML”>

44 <xs:attribute name=”version” type=”xs:string” use=”required”>

45 <xs:annotation>

46 <xs:documentation>the supported railML version should be declared for software compatibility

reasons, valid for all subschemas, don’t mix railML versions between subschemas in one XML

file</xs:documentation>

47 </xs:annotation>

48 </xs:attribute>

49 </xs:attributeGroup>

50 </xs:schema>

Code 4.1: The root railML schema in XSD (railML.org, 2019b).

4.2. RailTopoModel 33

An example XML code is shown in Code 4.2. The element topology contains one child

element netElements. netElements is a container of a set of elements netElement.

Each netElement has two attributes, id and length; the id and length of the first

netElement are ne a01 and 500.0 respectively.

1 <topology>

2 <netElements>

3 <netElement id=”ne a01” length=”500.0”/>

4 <netElement id=”ne a02” length=”500.0”/>

5 <netElement id=”ne a03” length=”200.0”/>

6 <netElement id=”ne b01” length=”500.0”/>

7 </netElements>

8 </topology>

Code 4.2: A subset of a railML file about netElements in the sub-schema topology of

infrastructure.

4.2 RailTopoModel

Train operation is a complex task, considering the intricate timetabling, dense traffic, and

the need for continuous maintenance. Many data models were developed to handle the

diverging topology needs respectively, however, there is no monolithic model that can manage

topological descriptions on different levels. Each model is aimed towards different sub-domains

of train operation and thus is suited only towards a specific purpose. Moreover, an exhaustive

description of a railway network is counter-productive to scheduling optimization problems

(Gély et al., 2010). Studies to build a generic data model for multi-scale descriptions started

in 2010, eventually culminating in RTM (Gély et al., 2010). In addition, the International

Union of Railways (UIC) launched a feasibility study to evaluate the existing topological

models and proposed RTM for inclusion in railML in 2013.

4.2.1 Existing Topological Models

Several models were created to describe a fundamental topological model for railway business

use cases and adopted by national railways and EU directives, for example, Register of

Infrastructure (RINF), INSPIRE, ARIANE, InfraNet, Banedata, RINM, and Plan-

Pro (see Table 4.1) (Seybold and Franke, 2013; Wunsch and Jaekel, 2017). These topological

models are tailored towards national requirements, resulting in increased communication

difficulty for railway networks crossing country borders. Furthermore, 95% of each model’s

features are compatible, as the basic concept of a rail network is similar in every country

(Seybold and Franke, 2013). Therefore, a core model with an extension mechanism is the

optimal solution.

4.2. RailTopoModel 34

Topological

model
Organization Country Format Purpose

Supports

multi-scale

RINF EU directive - XML Description of network Yes

INSPIRE

EU Joint

Research

Center

-
GIS based

Geoportal

Description of environmental

related themes

Yes;

interpreted by

nodes and links

ARIANE
Réseau Ferré

de France
France

TEXT,

JSON,

XML

Description of network Yes

InfraNet Infrabel Belgium XML Description of network

Yes;

detailed grape for

each node

Banedata Jernbaneverket Norway

railML,

CSV,

XLS

Description of network,

maintenance of

infrastructure objects

No;

micro only

RINM Network Rail
United

Kingdom
XML Description of network Yes

PlanPro
Deutsche

Bahn AG
Germany XML

Description of network for

signaling and safety

equipment

Yes;

Mostly micro

with some nano

Table 4.1: Sample topological models for railways (Seybold and Franke, 2013; Wunsch and Jaekel,
2017).

4.2.2 Classical Topological Representation

The classical representation of a railway is an undirected graph composed of nodes and edges,

where nodes refer to special points, e.g. switches, buffer stops, and operational points, and

edges refer to connecting track routes. An example track network with functional infrastructure

elements including switches, signals, train detection elements, and operational points for a

5 km single-track bordered by two operational points is shown in Figure 4.2a; its classical

topological representations in two levels are shown in Figure 4.2b and in Figure 4.2c respectively.

Figure 4.2b shows that the track layout is divided into several blocks, and the tracks are

connected by switches and buffer stops in the rough detail level, while Figure 4.2c shows that

the track fragments are connected not only by switches and buffer stops but also level crossing

systems in the more detailed level. It is known that the topological representation is dynamic

for different sizes and precision requirements.

4.2. RailTopoModel 35

(a) A track network with functional infrastructure elements (railML.org, 2019a).

(b) The classical topological representation.

(c) The classical topological representation in another detail level (The level crossing nodes are added
as an example).

Figure 4.2: A simple example in railML 3.1 regarding a 5 km single-track bordered by two operational
points.

Most of the topological models listed in Table 4.1 adopt the classical topological model and

support multi-scale representation (Seybold and Franke, 2013; Wunsch and Jaekel, 2017).

However, the classical topological model does not follow the coherence rule, which means

elements of the same nature are represented differently regarding the description level and

thus does not allow an easy implementation of an object-oriented model (Gély et al., 2010).

For example, the nodes of the level crossings in the classical topological model in Figure 4.2c

are not shown in the rougher representation in Figure 4.2b, besides, the tracks connecting the

level crossings became a single track; nevertheless, both Figure 4.2b and Figure 4.2c represent

the same railway network. In the graph theory, nodes represent only the resources and edges

represent only the relationships, which is not the case for a classical topological model for

railways (railML.org, 2016a). For this reason, RTM was introduced to provide a core model

that can manage data in any LoD.

4.2. RailTopoModel 36

4.2.3 Topological Representation in RailTopoModel

RTM is a topological model based on a connexity graph. Different to the classical topological

model, all resources including linear elements such as tracks and non-linear elements such as

functional infrastructure components are represented as nodes and the relationships between

resources are represented as edges. The topology of Figure 4.2b can then be redrawn as

shown in Figure 4.3a. This concept of representation allows all elements to be aggregated or

disaggregated according to their specific purpose (see Figure 4.3b). Moreover, the relationships

still retain the information about connectivity and navigability between elements.

(a) At Micro level.

(b) At Meso level.

Figure 4.3: The topological model of Figure 4.2a using RTM.

On a railway network, three types of objects can exist: point objects, e.g. signals, boundaries,

and balises; linear objects, e.g. track and speed profile; and areal objects, e.g. stations,

bridges, and catenary zones (Seybold and Franke, 2013). According to the needs, they can be

further used in different levels. In the standard IRS 30100, three levels of detail are defined

(railML.org, 2016a): (1) the level Micro contains detailed information at track level including

tracks, switches, and buffer stops; (2) the level Meso focuses on functional information at track

level including tracks and operational points; (3) the final level Macro describes a network at

a regional level including major operational points and the track collections.

The RTM representation in Unified Modeling Language (UML) consists of four packages

including Base, Topology, Positioning systems, and Net Entities; the simplified UML

4.3. Summary 37

diagram is shown in Figure 4.4. The class Network is composed of the classes NetworkRe-

source and LevelNetwork. LevelNetwork describes a certain view of a network,

namely the LoDs; The basic units to construct a topological model are NetElement and

NetRelation, which are derived from the class NetworkResource. NetElement defines

the basic elements for nodes in the topological representation and contains the aggregation of

element parts defined by the class ElementCollection. When a NetElement belongs to

the Meso level, then the NetElement sets of ElementCollection belong to the Micro

level. Each pair of NetElement is associated with a NetRelation, which embodies edges

defining the connexity relation between NetElements. Furthermore, each NetElement is

located by AssociatedPositioningSystem. The last class Net Entities defines physical

or immaterial objects, e.g. switches, buffer stops, and speed limits; the instances can be located

by using NetElement as an LRS or by a geometrical point. At least one Network at one

level needs to be defined for a project, furthermore, NetElement and NetRelation from

different levels need to be aggregated following a vertical relationship.

Figure 4.4: The simplified UML diagram with respect to the topology package in RTM (railML.org,
2016a).

4.3 Summary

railML 3.1, which adopted RTM, provides an integrated solution for railways. The topologi-

cal model based on RTM offers a generic fundamental topology allowing users to extend it for

specific purposes. As the railML schema focuses on railway operational purposes, detailed

geometrical information is not always necessary; however, geometrical information is required

for maintenance. Besides, although one Network can be derived from another Network,

extra transition steps might be needed to fill the gaps caused by different LoDs. To ensure

4.3. Summary 38

data consistency, not just among data schemata for the operation phase but also among data

schemata for design, construction, and maintenance phases, a solution for connecting both

types of data schemata, i.e. IFC and railML, is proposed and prototyped in Chapter 5 and

tested in case studies in Chapter 6.

39

Chapter 5

Solution Proposal and

Implementation

After researching the concepts of geometrical and topological representations in both IFC and

railML schemata, it can be seen that a data mapping between these two schemata without

data-loss is not easy as both are made for diverging scopes. To propose an optimal data

exchange approach, Section 5.1 discusses possible sources for data inconsistencies, identifies

entities and elements from the schemata that might lead to such inconsistencies, and introduces

ways to mitigate them. Then, Section 5.2 explains the implementation concerning the bi-

directional mapping between geometrical representations and topological representations

based on the results of the problem discussion. The functions of the developed tool are then

introduced in Section 5.3.

5.1 Problem Discussion

Data exchange schemata are used to enhance the interoperability among applications, yet they

do not guarantee data conversion without data loss as discussed in Section 2.4. In particular,

incomplete coverage of a data schema is the largest source of data inconsistencies. Incomplete

coverage is not just a result of a limited or non-existing intersection of two entity sets of

two schemata, but also a result of ambiguous semantic definitions of entities despite them

having the same or functionally dependent information; another reason might be biased due

to different input precision of an entity value. These problems can decrease the efficiency

of automatic data exchange. In the next section, several data inconsistency scenarios are

discussed.

5.1. Problem Discussion 40

5.1.1 Data Inconsistency Scenarios

To give examples for the problem sources mentioned above, two sets are defined; A and B

represent two different data schemata, and each set contains a set of elements representing

the names of entities.

Same Elements

Case 1 Set A and set B include five element each, and four elements of set B, {x1, x2, x3, x4},
are the same as those of set A. As the four elements are identically named, the elements’

values can be exchanged.

A ≡ {x1, x2, x3, x4, x5}

B ≡ {x1, x2, x3, x4, x6}

A ∩B ≡ {x1, x2, x3, x4}

Case 2 Set A keeps the same elements as in Case 1, and set B now has only common

element x1 shared with set A. The intersection range of the two sets is now smaller than in

Case 1.

A ≡ {x1, x2, x3, x4, x5}

B ≡ {x1, x6, x7, x8}

A ∩B ≡ {x1}

Compared to Case 1, which loses only one element x5, Case 2 loses four elements {x2, x3, x4, x5}
when set A is converted into set B. In contrast, when set B is converted into set A, Case 1

also loses one element x6 while Case 2 loses elements {x6, x7, x8}. It can be observed that two

sets with a smaller intersection can be converted worse than those with a larger intersection

regardless of the conversion’s direction.

Disjoint Element Sets

Assume, the elements of set A are distinguished from the elements of set B; these two sets

are called disjoint. In this case, no elements are exchangeable.

A ≡ {x1, x2, x3}

B ≡ {y1, y2, y3} yi 6= xi i = 1, 2, 3

A ∩B ≡ ∅

5.1. Problem Discussion 41

Synonymous Elements

The element sets from set A and set B are completely different, so the intersection of the two

sets contain zero elements; however, this assumption is false. Although the element x2 of the

set A is different from the element y2 of the set B, they are semantically the same. Hence,

they should be exchangeable.

A ≡ {x1, x2, x3}

B ≡ {y1, y2, y3} y2 = x2

A ∩B ≡ ∅

Homonymous Elements

The element sets from set A and set B have one element sharing the same name, so it is

assumed that x2 is exchangeable; this is however false. The element x2 of set A refers to a

different property than the element x2 of set B, thus it is not exchangeable.

A ≡ {x1, x2, x3}

B ≡ {y1, x2, y3} x2 ∈ B 6= x2 ∈ A

A ∩B ≡ {x2}

Functionally Dependent Elements

Again, there can be a false exchange of data if the exchange is purely based on the comparison

of elements in two sets. The intersection of set A and set B is an empty collection but their

elements can actually be exchanged. This situation can happen when two sets have a different

definition for the same object. Nevertheless, the conversion is not necessarily bi-directional.

As shown below, the element y1 of set B can be determined by the product of elements x1 and

x2 of set A; this however also means that a conversion without loss of data is only possible

from set A to set B but not vice versa.

A ≡ {x1, x2}

B ≡ {y1} y1 = x1 · x2

A ∩B ≡ ∅

5.1. Problem Discussion 42

Different Accuracy of Number Types

The precision of a number not only depends on the actual input given but also on the type of

numerical representation used to store the number. Assume a variable is defined in either the

float, double, or decimal types, which can store a different amount of digits from the least

to the most, respectively. When a length defined in double is converted into a float, the

converted variable holds less digits and thus loses precision; correspondingly, a variable defined

in decimal loses even more digits. While the numerical precision is typically not an issue in

small-scale structures, it can become significant in railway tracks that may span hundreds of

kilometres. Small rounding errors in the dimensioning of each segment might compound into

measurable differences along the length of the system. Especially if the location of segments

is functionally dependent on the preceding chain of segments.

5.1.2 Comparisons of IfcAlignment and RailTopoModel

Having introducing IfcAlignment in Section 3.2 and RTM in Section 4.2, it can be observed

that their intersection so far only contains the entities or elements necessary to describe

a railway track layout using an LRS. A railway track layout can be built by three basic

geometrical elements, namely lines, arcs, and transition curves; transition curves are used to

smoothly connect curves of different radius (Jochim and Lademann, 2017). To investigate

how well a railway track layout can be created and how much information can be exchanged,

a comparison between geometrical and topological representations is made according to the

data inconsistency scenarios introduced in Section 5.1.1. IfcAlignment is used to build the

geometrical representation, while the latest railML provides not just the element sets for a

topological representation, namely RTM, but also those for a geometrical representation. In

the following sections, the sub-schema for the topological representation of railML is called

RTM and the sub-schema for the geometrical representation is called Geometry.

IfcAlignment

IfcAlignment provides three basic units, IfcLineSegment2D, IfcCircularArcSeg-

ment2D, and IfcTransitionCurveSegment2D, to compose a railway track layout. If-

cLineSegment2D and IfcCircularArcSegment2D support a line segment and an arc

segment respectively (see Figure 5.1), whereas IfcTransitionCurveSegment2D supports

transition curves that are parametrically defined, such as Biquadratic parabola, Bloss curve,

Clothoid curve, Cosine curve, Cubic parabola, and Sine curve. A comparison of the attributes

of IfcLineSegment2D, IfcCircularArcSegment2D, and IfcTransitionCurveSeg-

ment2D is shown in Table 5.1.

5.1. Problem Discussion 43

Figure 5.1: A sketch of a straight line, an arc, and a transition curve as defined in IFC.

Attributes

(Name)

IfcLine-

Segment2D

IfcCircularArc-

Segment2D

IfcTransitionCurve-

Segment2D

Start

Point

(StartPoint)
X X X

Direction

(StartDirection)
X X X

Radius
(Radius/

StartRadius)

X X

Counter-

clockwise?
(IsCCW/

IsStartRadiusCCW)

X X

End

Point

Direction

Radius

(EndRadius)
X

Counter-
clockwise?

(IsEndRadiusCCW)

X

Length

(SegmentLength)

X X X

Supports transition
curves

(TransitionCurveType)

X

Table 5.1: A comparison of the attributes of the IFC entities for lines, arcs, and transition curves.

5.1. Problem Discussion 44

RailTopoModel and Geometry

RTM and Geometry contain the element sets, NetElement, NetRelation, and hori-

zontalCurve; however, the definitions available in Geometry are rather rudimentary as

railML is geared towards the topological representation preferred for operational purposes.

Table 5.2 indicates how well the RTM and Geometry element sets can define a curve in

railML. It can be seen that for a curve definition, NetElement has three corresponding

parameters that can only define a straight line without directional information; on the other

hand, HorizontalCurve has seven corresponding parameters that can describe lines, arcs,

and transition curves such as Sinusoids, Doucines, Wiener curves, Bloss curves, Cubic parabo-

las, Cosinusoids and Clothoids. Nevertheless, HorizontalCurve only explicitly requires the

curve type and does not necessarily require related parameters such as coordinates, segment

length, and directions.

RTM is used to build a topological railway network and describes the geometrical elements as

nodes and the relationships among nodes as edges. To create a network, at least one RTM in

any level is required. IRS 30100 (railML.org, 2016a) recommends three LoDs, Micro, Meso,

and Macro, but is flexible and allows users to build a network in any LoD. Typically, it is

preferred to start with a network in the Micro level, providing more detailed geometrical

information compared to the other LoDs (see Figure 4.3b). Hence, if a network is initially

built on a rough level and needs to be transferred to a geometrical representation, then

complementary data input is required.

Comparisons

IfcAlignment aims to construct a railway track layout for an LRS, while RTM aims to

represent a railway network. Since the targets are biased, data loss after any transfer is to be

expected. Comparing IfcAlignment and the element sets for Geometry of railML, it

can be seen that IfcAlignment defines every curve type explicitly whereas Geometry of

railML only defines them implicitly. That means, for each curve type, essential parameters

are required in IfcAlignment yet not mandatory in Geometry of railML. Additionally

the element set of Geometry does not contain all necessary parameters needed to define a

transition curve in IfcAlignment; for example, EndRadius and IsEndRadiusCCW are

not available in Geometry and thus can not connect different curve radii. This complicates

the conversion from railML to IfcAlignment and so the conversion of transition curves is

done only in the direction of IfcAlignment to railML.

Additionally, there is even more missing information when comparing IfcAlignment and

the element sets for RTM. The topological information of RTM can not reflect a geometrical

5.1. Problem Discussion 45

Purposes
Attributes

(Name)

RTM
(NetElement,

NetRelation)

Geometry
(Horizontal-

Curve)

Railway

track

layout

Start Point
(geometry-

CoordinateBegin)

X X

Endpoint

(geometry-

CoordinateEnd)

X X

Type

(curveType)
X

Direction

(azimuth)
X

Direction Change

(deltaAzimuth)
X

Radius

(radius)
X

Length

(length)
X X

Network

Relationship

among elements

(relation)

X

Table 5.2: A comparison between the element sets of RTM and Geometry of railML (railML.org,
2019c).

model due to the lack of curve information. Similarly, a rough RTM is not enough to build a

detailed RTM. On the other hand, the RTM stores the relationship data, which is missing in

IfcAlignment.

5.1.3 Limitations of IfcAlignment and railML

Table 5.3 and Table 5.4 summarize the comparison results between IfcAlignment and

Geometry as well as the RTM of railML in both directions regarding the different data

inconsistency scenarios. Additionally, both IfcAlignment and RTM are also compared

regarding the support of varying LoDs.

IfcAlignment → railML

Table 5.3 shows which information of railML might not be well interpreted by IfcAlignment.

It can be seen that IfcAlignment lacks entities to describe the endpoint coordinates of a curve,

5.1. Problem Discussion 46

geometryCoordinateEnd, and the relationships between curves, relation. Although

the endpoint coordinates can be easily determined by the parameters of the start point, the

information relation is not stored at all in IfcAlignment and thus needs to be created.

Other elements, i.e. geometryCoordinateBegin and length, are synonymous with the

entities, StartPoint and SegmentLength, provided by IfcAlignment; nevertheless,

some numerical length precision might be lost due to the different types of length and

SegmentLength, decimal and double.

Alternatively, the geometrical information from IfcAlignment can be stored in Geometry of

railML. Compared to RTM, Geometry contains relatively complete elements; all elements

can be determined by the entities of IfcAlignment. There are only two elements that need

special consideration, azimuth and deltaAzimuth, describing the angle of a segment; they

are defined to see the north direction as 0◦, the east as 90◦, the south as 180◦, and the west

as 270◦. Additionally, more elements exchanged from IfcAlignment to Geometry have

precision differences, i.e. azimuth, deltaAzimuth, radius, and length.

IFC

Elements
IfcAlignment

vs RTM of railML

IfcAlignment

vs Geometry of railML

Same elements radius

Disjoint

element sets

geometryCoordinateEnd,

relation

geometryCoordinateEnd,

deltaAzimuth

Synonymous

elements

geometryCoordinateBegin,

length

geometryCoordinateBegin,

Type,

azimuth,

length

Homonymous

elements

Functionally

dependent elements
geometryCoordinateEnd

geometryCoordinateEnd,

azimuth,

deltaAzimuth

Different accuracy

of number types
length

azimuth,

deltaAzimuth,

radius,

length

Table 5.3: A comparison of IfcAlignment → railML regarding different data inconsistency
scenarios.

5.1. Problem Discussion 47

railML → IfcAlignment

Compared to the scenario Disjoint element sets in IfcAlignment → railML, there are

obviously more entities that need to be completed during the conversion from RTM of railML

to IfcAlignment as shown in the scenario Disjoint element sets in Table 5.4. Because none

of them can be determined from the existing elements of RTM, it is necessary to let users enter

them explicitly. On the other hand, there are fewer entities in the scenario Disjoint element

set and more entities in the scenario Synonymous elements from Geometry of railML

to IfcAlignment. As discussed in Section 5.1.2, the sub-schema of Geometry is looser

than IfcAlignment because Geometry does not define a curve explicitly. The curve data,

especially for transition curves, consequently requires extra calculation and user-input values,

such as radius and directional information. In translating railML to IfcAlignment it can

also be expected to lose accuracy due to the different number types defined in the varying

tools or user input.

railML

Entities
RTM

vs IfcAlignment

Geometry

vs IfcAlignment

Same elements Radius

Disjoint

element sets

StartDirection,

Radius/ StartRadius,

IsCCW/ IsStartRadiusCCW,

EndRadius,

IsEndRadiusCCW,

TransitionCurveType

IsCCW/ IsStartRadiusCCW,

EndRadius,

IsEndRadiusCCW

Synonymous

elements

StartPoint,

SegmentLength

StartPoint,

StartDirection,

StartRadius,

SegmentLength,

TransitionCurveType,

Homonymous

elements

Functionally

dependent elements
StartDirection

Different accuracy

of number types

Radius/ StartRadius,

EndRadius,

SegmentLength

StartDirection,

Radius,
EndRadius,

SegmentLength

Table 5.4: A comparison of railML → IfcAlignment regarding different data inconsistency
scenarios.

5.1. Problem Discussion 48

Support of LoDs

RTM supports multiple LoDs as all objects of the same nature, including routes and op-

erational points, are defined as a NetElement; on the other hand, the relationships are

stored in a separate element NetRelation. Since all objects have the same nature, they

can be aggregated and disaggregated without losing information about their relationship. In

contrast, IfcAlignment is used to describe a detailed geometrical curve that can be composed

of possibly many curve segments IfcAlignment2DHorizontalSegment. In general, If-

cAlignment can not represent multiple LoDs. The curve segments can, of course, be seen as a

set of curves in a more detailed level; nevertheless, the segments can not exist independently as

the entity is in the resource layer. Furthermore, IfcAlignment can only represent one single

continuous curve. Table 5.5 shows a possible LoD linking between RTM and IfcAlignment;

the feasibility is investigated later in Section 5.2.5. In the prototype implementation, If-

cAlignment is implemented in the Micro level and IfcAlignment2DHorizontalSegment

in the Nano level.

RTM IfcAlignment

Nano -
IfcAlignment2D-

HorizontalSegment

Micro
IfcAlignment2D-

HorizontalSegment
IfcAlignment

Meso IfcAlignment -

Macro - -

Table 5.5: Possible LoD linkings between RTM and IfcAlignment.

Summary

A summary of the comparison between the sub-schemata IfcAlignment, RTM, and Geome-

try is given below:

• There are almost no identical elements because they are guided by diverging standards

and therefore define the same objects differently.

5.1. Problem Discussion 49

• The number of disjoint element sets depends on whether a conversion is between the

same type of representations; for example, the conversion between IfcAlignment and

Geometry has less disjoint element sets than between IfcAlignment and RTM.

• In most cases, the elements and entities are synonymous and dependent. Thus, the

elements mostly just need to be recalculated. For example, both startDirection and

azimuth describe the direction of a curve, yet the former is defined in the mathematical

polar coordinate system with α = 0◦ in the east direction, while the latter is defined

with α = 0◦ in the true north direction. The general unit of startDirection is radians,

counting angles starting from a horizontal line in the counterclockwise direction; on

the other hand, the unit of azimuth is degrees, counting angles from the north in the

clockwise direction.

• From both directional comparisons, it can be observed that there are no homonyms.

• Elements with different number types such as SegmentLength and length can

influence precision.

• The entity IfcAlignment is not designed to support multiple LoDs.

5.1.4 Solution Proposal

Having compared the sub-schemata of IFC and railML as well as having discussed the

sources of data inconsistency, it can be understood that data loss can happen in a naive

conversion between IfcAlignment and RTM and Geometry of railML. Therefore, this

thesis proposes a prototype tool to link the topological representation, RTM of railML, to the

geometrical representation, IfcAlignment of IFC; and to link geometrical representations,

IfcAlignment of IFC and Geometry of railML. The proposed solution is to interpret the

data between both schemata in a way that minimizes data inconsistency between geometrical

and topological representations.

An intermediate interface is introduced to pre-process the semantic problems for bi-directional

conversions, given that most of the possible data inconsistencies originate from synonymous

and functionally dependent elements, especially in the direction of topological to geometrical

representation. Furthermore, missing data caused by disjoint element sets are indicated in the

tool, allowing users to supplement the necessary information themselves. Additionally, the

tool can visualize the topological representation, allowing users to confirm a correct network.

5.2. Implementation 50

5.2 Implementation

In this section, the proposed solution is implemented in a prototype tool that offers the full

conversion of two types of curves: lines and arcs, and a partial conversion of transition curves

between IFC and railML. The implementation is introduced separately for each important

function in the tool.

5.2.1 Technical Framework

Before starting the discussion of the implementation, the technical framework of the solution

including the tools and schema libraries is introduced in this section.

Programming Language

The .NET language C# is chosen for its object-oriented principle, interfaces to XML libraries,

easy querying of data sets through Language-Integrated Query (LINQ), and ease of

application creation for a prototype using Windows Presentation Foundation (WPF).

xBIM Toolkit

The xBIM toolkit is a .NET open-source software development toolkit that supports IFC,

allowing developers to read, create, query, and modify an IFC file (Lockley, Benghi, and Černý,

Lockley et al.).

Neo4j

Neo4j is a native graph database, which stores data as nodes and directly connects them by

their relationships rather than storing data in a table and finding the relationships a posteriori

using the Id as in a traditional database (Neo4j, Inc., 2020). The Neo4j platform is used

as a visualization aid for the representation of topological information. A community driver

Neo4jClient for C# is installed to interface with the language Cypher used in Neo4j.

Translation of XSD Schema to Object-Oriented Classes

As shown in Figure 5.2, XML Schema Definition Tool (XSD.exe) provided by Visual

Studio is used to generate C# classes from the XSD files of railML (see Figure 4.1). The

C# file is later converted into a Dynamic Link Library (DLL) used as a referencing library

for railML.

5.2. Implementation 51

(a) XSD.exe command prompt.

(b) A sample class generated by XSD.exe .

Figure 5.2: Generating C# class files using XSD.exe .

5.2.2 Code Structure

Figure 5.3 gives a schematic overview of the code structure. The code structure can be divided

into five parts: Graphical User Interface (GUI), Geo2Topo, Topo2Geo, Topo&Geo,

and Visualization; inside each part, only the most important functionalities for processing

and preparing data are shown. At the front of the tool, a simple GUI is available to visualize

geometrical and topological data in tables, to input missing information needed for curve

reconstruction, and to convert data files bi-directionally. Depending on the conversion type,

the data either goes to Geo2Topo or Topo2Geo. Only a short overview of the code structure

is given in this section; the detailed introductions of each part are given from Section 5.2.3 to

Section 5.2.7.

Geo2Topo, one of the conversion types, transfers IFC to railML files. Once an IFC file

is selected, the general project and alignment-related entities are retrieved. Then, a pre-

processor uses the back-end Input/Output (I/O) to store data in a temporary network and to

determine the relationships among alignments. After this stage, users can visualize the network

in the external platform Neo4j, which is connected via the developed interface. Finally, an

IFC file is created. This part still assigns preliminary random values for the navigability

5.2. Implementation 52

between alignments, as the GUI does not yet allow full interaction with Geo2Topo. Therefore,

the arrows only point in one direction.

Another conversion direction is from railML files to IFC files provided by Topo2Geo. Similar

to the first stage in Geo2Topo, general and topological information is retrieved from the

data file. The network can already be visualized in this stage as the topological representation

a priori contains sufficient data. It is expected that there will be missing information after the

conversion from a topological representation to a geometrical representation; therefore, the

pre-processor uses front-end I/O to complete the geometrical data. If a railML file includes

the element sets Geometry, then a geometrical representation can be generated directly

without data supplementation. At the end, an IFC file is output that can be used further in a

BIM application.

Figure 5.3: Schematic overview of the code structure.

5.2. Implementation 53

5.2.3 Geo2Topo

Geo2Topo is used to convert an IFC file to a railML file, specifically, to allow consistent

data transfer from IfcAlignment to RTM. Table 5.3 indicates that IfcAlignment lacks

information on two elements, geometryCoordinateEnd and relation, and has indirect

information related to geometryCoordinateBegin and length. geometryCoordina-

teEnd can be determined from the existing entities of IfcAlignment, while relation can

only be found by comparing the geometrical information of existing IfcAlignment. On the

other hand, every missing information for the elements of Geometry can be determined

easily.

Geometrical Information at the Endpoint

The basic units of IfcAlignment are IfcLineSegment2D, IfcCircularArcSegment2D,

and IfcTransitionCurveSegment2D. These three units store the non-redundant geomet-

rical information, such as the coordinate of the start point, direction from the start point,

segment length, and curve parameters for arcs and transition curves; the other geometrical

information required for Geometry of railML, such as the coordinate of the endpoint and

direction at the endpoint, can be calculated from the geometrical information at the start

point. Geometry of railML does not define the curve types explicitly, thus the geometrical

information is calculated according to the curve type defined in IFC and then assigned to

each parameter in Geometry of railML. Length for an alignment is the summation of the

individual segment lengths. The other parameters for lines, arcs and transition curves are

calculated according to the formulas shown below respectively; the corresponding sketch for a

line is shown in Figure 5.4, the sketch for an arc is shown in Figure 5.5, and the sketch for a

clothoid transition curve is shown in Figure 5.6.

Line : αend =αstart

xend =xstart + lsegment · cos (αstart)

yend = ystart + lsegment · sin (αstart)

5.2. Implementation 54

Figure 5.4: Parameters for a line segment.

Please note that the upper sign is for an arc defined in the counterclockwise direction, while

the lower sign is for an arc defined in the clockwise direction.

Arc : βcentral angle = lsegment/rarc

xcentre =xstart ∓ rarc · sin (αstart)

ycentre = ystart ± rarc · cos (αstart)

αend =αstart ± βcentral angle

xend =xcentre ± rarc · sin (αend)

yend = ycentre ∓ rarc · cos (αend)

Figure 5.5: Parameters for an arc segment in clockwise (left) and counterclockwise (right) directions.

5.2. Implementation 55

Transition curves For simplicity only the clothoid, more formally known as an Euler spiral,

transition curve is implemented.

The clothoid does not have a closed-form analytic solution and must either be numerically

integrated or approximated using series expansions of the Fresnel integrals shown in Eqs.

5.1 and 5.2 for the x- and y-coordinates respectively. For numerical convenience, the Fresnel

integrals are integrated using a fixed 8-point Gauss-Legendre integration that provides

sufficient accuracy for the prototype and forgoes the complicated series expansion necessary

to calculate a transition curve from arc to arc. The sign of the curvature κi determines

the handedness of the curve at start and endpoint; clockwise is positive, counterclockwise is

negative (R.E.Deakin, 2005).

Clothoid : κstart =

± 1
rstart

rstart 6= 0, tangent to arc at start

0 rstart = 0, tangent to line at start

κend =

± 1
rend

rend 6= 0, tangent to arc at end

0 rend = 0, tangent to line at end

Φ =κ1s+
κ2 − κ1

2lsegment
s2

xend =

∫ lsegment

0
cos (Φ (s) + αstart) ds+ xstart (5.1)

yend =

∫ lsegment

0
sin (Φ (s) + αstart) ds+ ystart (5.2)

αend =αstart + lsegment ·
(
κ1 +

(κ2 − κ1)

2

)
= αstart + Φ (lsegment)

Figure 5.6: Parameters for a clothoid curve.

5.2. Implementation 56

azimuth and deltaAzimuth

StartDirection of IFC adopts a plane angle usually with the unit rad, measuring the

direction of the tangent at the start point from the positive x-axis; on the other hand,

azimuth measures the direction angle of a horizontal curve clockwise from the north in

degrees. In the implementation, the positive x-axis and the positive y-axis are assumed to

indicate the east and the north respectively, the conversion of these two direction measure

systems can therefore be simplified. deltaAzimuth is required when the direction of a curve

has changed; it is equal to the difference between azimuth at the endpoint and azimuth at

the start point.

angleazimuth =

(π/2− angleplane) · 180/π angleazimuth > 0

(5 · π/2− angleplane) · 180/π angleazimuth < 0

Relation

From Section 3.1.1, it is known that IFC objects are associated together by the entities

inherited from IfcRelationship. Conversely, multiple IfcAlignments are only grouped

and assigned to a project by the entity IfcRelContainedInSpatialStructure without real

connections (see Code 3.1), as each IfcAlignment used as an LRS is defined independently.

From visualizing alignments in a BIM platform such as Autodesk Civil 3D, it can be seen

that the two alignments seem to be connected but can actually be split by moving the control

points on both ends of each alignment. For this reason, finding relationships and connecting

alignments is an essential step to build a topological network. Since IfcAlignment stores

purely geometrical information, relationships can only be found by an exhaustive comparison

of all alignment endpoint locations. To be specific, an alignment has two ends; each end needs

to be compared with the ends of other alignments. If there are n alignments, the needed

number of comparisons are 2 · n · (2 · (n− 1)) = 4 · n2 − 4 in the worst case, with a complexity

of O
(
n2
)
. To increase efficiency, a quadtree algorithm with O (n · log n) is adopted.

Using the quadtree algorithm can significantly ease the work required to locate alignments,

besides, it also provides a simple approach to connect a newly inserted alignment into the

network. There are several steps needed to find the relationships among alignments using a

quadtree (please also see Figure 5.7, Code 5.1, and Code 5.2):

5.2. Implementation 57

1. Determine the maximum and minimum extent of alignments and create a bounding box

to define the root of a quadtree.

2. Separately feed both ends of an alignment as nodes into the quadtree. If the current

quad is empty or has less than a preset number of unique nodes in a quad, then add the

node into this quad; otherwise, divide the quad into four children quads.

3. Determine the destination of the node by checking which child quad contains the node

coordinates, then insert the node into the corresponding quad.

4. Repeat from the second step if the node does not fit into the children quads.

1 public void InsertNode (Node node) {
2 i f (! quadRect . Contains (node)) {
3 // al ignment po in t i s not i n s i d e the current r e c t ang l e

4 return ;

5 }
6 i f (nodes == null | | (quadChildNE == null &&

7 UniqueCount(node) <= maxUniqueNodesPerQuad)) {
8 //Current r e c t ang l e i s not f i l l e d ye t

9 AddNode(node) ;

10 } else {
11 i f (quadChildNE == null) {
12 // Subd iv ide the current r e c t ang l e and i n s e r t a l ignment

13 // in to cor r ec t c h i l d r e c t ang l e

14 Subdivide () ;

15 }
16

17 //Chi ld has been crea ted or e x i s t s a l ready

18 //Find out which c h i l d the al ignment be l ongs to

19 QuadTree<T> d e s t i n a t i o n = GetDest inat ion (node) ;

20

21 i f (d e s t i n a t i o n == this) {
22 //We are in or have reached the cor r ec t r e c t ang l e

23 AddNode(node) ;

24 } else {
25 //Traverse down through the t r e e u n t i l

26 //we have found the cor r ec t r e c t ang l e

27 d e s t i n a t i o n . InsertNode (node) ;

28 }
29 }
30 }

Listing 5.1: Insert an alignment node into a quad.

After a few recursive loops, all alignments’ nodes are placed into the quadtree. As shown

in Figure 5.7, a quad is not divided if it is empty or has only a single node, while a quad

is further divided until one of the children quads can contain the node. The green dashed

lines represent alignments that are unrelated, yet have nodes close to the black connected

5.2. Implementation 58

alignments. Each quad can only contain a preset number of unique nodes, which means a

quad only allows a limited number of unique node coordinates inside it; the fewer the numbers

of unique nodes allowed, the deeper the quadtree is going to be. A limit of two unique nodes

in a quad is chosen to balance the time needed to recursively reach the target quad and the

iterative time needed to find the node inside the quad that is inside the search box.

Figure 5.7: Finding the relationships among alignments by a quadtree.

After the nodes have been placed in a spatial 2D space via the quadtree, the relationship

of each alignment can be determined. To achieve this, the nodes and their host alignments

need to be retrieved from the quadtree. A node is retrieved by a recursive collision detection.

First of all, the coordinates of a node of an alignment are surrounded by a box with a small

tolerance in width and height to make a search box, then any node inside that search box is

retrieved from the quadtree (see Code 5.2). As shown in Figure 5.7, assume a search box is

made using the coordinates of the node of alignment A contained in the quad with Id 234,

then the nodes of the alignments A, B and C are retrieved. According to this information,

the alignment A, the alignment B, and the alignment C are known to be connected.

5.2. Implementation 59

1 public void GetNodes (Rectangle rect , ref List<Node> r e s u l t s) {
2 i f (r e s u l t s != null) {
3 i f (r e c t . Contains (quadRect)) {
4 //Desired area conta ins the f u l l quad , so j u s t re turn i t and a l l i t s c h i l d

members

5 GetAllNodes (ref r e s u l t s) ;

6 } else i f (r e c t . I n t e r s e c t s (quadRect)) {
7 // Check in current quad

8 i f (nodes != null) {
9 for (int i = 0 ; i < nodes . Count ; i++) {

10 i f (r e c t . Contains (nodes [i])) {
11 r e s u l t s . Add(nodes [i]) ;

12 }
13 }
14 }
15 // Check in a l l the c h i l d quads

16 i f (quadChildNE != null) {
17 quadChildNE . GetNodes (rect , ref r e s u l t s) ;

18 quadChildNW . GetNodes (rect , ref r e s u l t s) ;

19 quadChildSW . GetNodes (rect , ref r e s u l t s) ;

20 quadChildSE . GetNodes (rect , ref r e s u l t s) ;

21 }
22 }
23 }
24 }

Listing 5.2: Get alignment nodes at the same quad.

5.2.4 Topo&Geo

In order to store the relationship among alignments, a temporary network storage for bi-

directional conversions, Topo&Geo, is proposed. Topo&Geo provides an interface to

fit the different object definitions of IfcAlignment and RTM. Topo&Geo defines three

classes, Node, Connector, and ConnectorContainer, for a temporary network based

on a classical topological representation. Continuing the example shown on the left side

of Figure 5.7, three joined alignments are found in quad 234; nevertheless, the alignments

are not sequentially connected as IfcAlignment does not contain any information on the

orientation. To take an example as shown in Figure 5.8, the alignment A and the alignment B

represent the LRS for a continuous track, but the endpoint of alignment A does not connect

to the start point of alignment B ; the mileage from the LRS increases from the start points of

both alignments towards their endpoints and so switch direction when two endpoints meet.

For this reason, it is important to not only find out the neighbour alignments but also their

orientation. Because the relationship is found using the quadtree algorithm, with each node

being identified as either a start or endpoint of an alignment, it is already known which end

of the alignments are connected; thus, the next step is to store this information and complete

the other properties properly.

5.2. Implementation 60

The temporary network storage is composed of three units, from the smallest to the largest they

are Node, Connector, and ConnectorContainer (see Figure 5.8). Node can be either

the start point or endpoint, two Nodes are aggregated and assigned to a Connector. Because

there are multiple Nodes existing at the same location, a container, ConnectorContainer,

is created to store Connectors. The type of the container depends on the number of

Connectors: (1) one Connector represents the end of a track; (2) two Connectors

represent a continuous track based on two alignments; (3) three Connectors represent a

switch. Additionally, the temporary network storage also offers a class to store the navigability,

which is an essential information for a topological representation, e.g. RTM, but is not

considered in a geometrical representation, e.g. IfcAlignment. The navigability in the

implementation uses two Boolean variables defining four scenarios, i.e., (1) bidirectional

navigability A↔ B, (2) unidirectional navigability from A→ B, (3) unidirectional navigability

from B→ A, and (4) no navigability; the navigability is assigned randomly in the prototype

tool for IfcAlignment.

Figure 5.8: Temporary network storage.

5.2.5 Topo2Geo

Topo2Geo allows users to transfer a railML file to an IFC file. The railML schema provides

element sets for both topological and geometrical representations, RTM and Geometry.

According to the comparison result shown in Table 5.4, all entities for IfcAlignment can be

determined from the elements of Geometry, whereas six entities describing curve shapes

require external supplementation when reconstructing an LRS geometry from RTM. Here, the

5.2. Implementation 61

discussion is focused on the conversion from RTM to IfcAlignment as it causes more data

inconsistency than Geometry to IfcAlignment.

RTM offers three positioning methods, namely intrinsic coordinates, linear coordinates, and

geometric coordinates, allowing users to locate railway components and networks (railML.org,

2016a). The intrinsic coordinates are used to specify a location inside a NetElement; the

coordinate can be between 0 to 1, where 0 and 1 represent each end of a NetElement.

The linear coordinates allow an LRS to locate NetElements; the location can be defined

absolutely, relatively or laterally as shown in Figure 3.2b. The geometric coordinates are

used to place NetElements in a Cartesian or spherical coordinate system. The intrinsic

coordinates are mandatory to locate a NetElement in a network, but it is optional to

associate with linear coordinates or geometric coordinates. However, no matter whether using

linear coordinates or geometric coordinates, the shape of a NetElement still needs to be

defined manually.

Depending on the referencing system, different extra information is required for building

a geometrical representation. When linear coordinates are used, the length, measure, and

relation are known; the geometric coordinates and curve type as well as curve parameters

for each NetElement remain unknown. On the other hand, when geometric coordinates are

used, the coordinates at both ends of NetElement and relation are known; the length

and curve type as well as curve parameters for each NetElement remain unknown. In

general, linear coordinates are used more often than geometric coordinates to describe a

railway network, thus how to convert a topological representation using the linear coordinates

defined in RTM into a geometrical representation in IfcAlignment is considered in the tool.

Developing a Complete Geometrical Representation Using Limited Parameters

To create consistent geometry using minimal manual input, an automatic geometry generation

algorithm is developed in the tool. In a track layout, alignments must be connected tangentially;

therefore, the generation algorithm only requires an initial node coordinate of a NetElement,

the curve types, and curve parameters of each NetElement in the network. Figure 5.9

shows the flowchart of how to complete a geometrical representation. One NetElement

with an initial coordinate and direction is chosen as a root element, and then the endpoint

for the root element is determined according to its curve type. If the root NetElement has

adjacent NetElements, then the tool will get these NetElements and classify them into

two groups by checking whether the start point or the endpoint connects to the endpoint of

the root element and assign the appropriate coordinates. Finally, each adjacent NetElement

is recursively assigned as the root element, and the loop continues until every NetElement

in the network has been processed.

5.2. Implementation 62

Figure 5.9: Flowchart of geometrical completion.

The LoD Issue

An RTM stores multiple LoDs, while an IfcAlignment stores only one level of geometrical

information. Because the axis of an IfcAlignment is composed of segments, it can be

considered as two levels; IfcAlignment is the top level representing rough detail, and

IfcAlignment2DHorizontalSegment is the lower level representing precise detail. To

investigate the feasibility of storing LoDs in IfcAlignment, the two suitable combinations of

LoD linking between RTM and IfcAlignments, listed in Table 5.5, are created in IFC files

and compared.

The first combination assumes an alignment is in the Meso level and segments are in the Micro

level; the second combination assumes an alignment is in the Micro level and segments are in the

Nano level. The created IFC files are visualized in the IFC viewing and validation application

FZKViewer, developed by the Institut für Automation und angewandte Informatik

of the Karlsruher Institut für Technologie; the results of both combinations are

shown in Figure 5.10. The curve geometry on the left-hand side encompasses three alignments;

each alignment has one or two segments that define a single continuous axis for the alignment.

In contrast, the curve geometry on the right-hand side contains only one alignment including

four segments; however, a false representation resulted from two diverging arc segments from

a continuous curve.

5.2. Implementation 63

According to this experiment, IfcAlignment is not suitable to describe geometry converted

from the Meso level, in particular, IfcAlignment cannot represent joint segments that

violate tangential continuity correctly. For this reason, this thesis considers IfcAlignment

in the Micro level and IfcAlignment2DHorizontalSegment in the Nano level. Of

course, this assumption is not perfect as the information from the Meso level, such as the

aggregation of elements from the Micro level, is abandoned during the conversion from

RTM to IfcAlignment. Besides, an alignment is created based on a single NetElement,

which might not describe the detailed geometry. Nevertheless, this assumption represents a

valid geometry in IFC; furthermore, the detailed geometry can be recreated by adding more

NetElements in RTM. In addition, once the created IFC is transferred back to railML, the

geometry can be referred to by the Id in the element sets of Geometry, which are associated

with the elements in RTM.

Figure 5.10: An experiment on the feasibility of IfcAlignment storing LoDs.

5.2.6 Visualization

The Neo4j graph platform is utilized to visualize the topological representation. The

developed tool for this thesis parses the source data from the IFC and railML files and then

creates and modifies a graph database in a local platform. Figure 5.11 shows the topological

representation for the curve geometry created by three alignments as seen on the left-hand

side in Figure 5.10. In the Micro level, one end of the alignment 1 connects to the diverging

alignment 2 and the alignment 3 ; in the Nano level, it can be seen that the alignment 1 is

composed of one line segment and one arc segment. The tool first pre-processes the entities

IfcAlignment, including finding the relationships and extracting the geometry of segments,

and then implements the network in Neo4j. From RTM to IfcAlignment, the network can

be created directly from NetElements and NetRelations. The visualization in Neo4j

gives users a quick overview to debug the geometry or the network they are converting.

5.3. Tool Prototype 64

Figure 5.11: Topological representation in Neo4j.

5.2.7 GUI

Having implemented all the data exchange concepts introduced above, a GUI framework

is developed using WPF, which provides a user-friendly interface to inspect and manip-

ulate data. The GUI framework is made following the design pattern Model-View-

ViewModel (MVVM). There are four parts of the implementation: DataAccess, Models,

ViewModels, and Views. DataAccess is the interface between GUI and Geo2Topo as

well as between GUI and Topo2Geo. After both Geo2Topo and Topo2Geo read data

files, DataAccess accesses the data and organizes it based on the data model created in

Models, which controls how the data is represented in the GUI. Although both STEP and

XML languages are human-readable, it is still exhausting work when it comes to large data

sets, so the data is organized in a list to facilitate data inspection. If data is missing and

needs to be added manually, then ViewModel is responsible for these kinds of interactive

events. The last part Views purpose is to design the graphical objects. This design pattern

ensures every part is independent and has clear data interfaces.

A complete introduction regarding the developed tool is given in the next section.

5.3 Tool Prototype

A prototype tool is developed, supporting the data exchange from IFC 4.1 to railML 3.1

and vice versa. The tool offers five main functions. It reads both IFC and railML files and

performs their conversion; connects to Neo4j and draws the relationships for checking; and

displays the important parameters for geometry in different scales. Besides, users can enter

any necessary information for creating the IFC geometry from railML. Furthermore, the

tool can complete a geometrical representation from a topological representation using only

minimal input and from any start point.

5.3. Tool Prototype 65

The main user interfaces are shown in Figure 5.12a and in Figure 5.12b. The explanations

regarding the functional areas marked in both figures are listed below:

1. Two tabs that can be switched between the conversions IFC to railML and railML

to IFC.

2. Four buttons that allow users to select a data file, convert data, visualize data in

Neo4j, and open the converted file in a text editor. The tool is foolproof in the

conversion, checking if data has been completed before converting; if a railML file

contains Geometry, then the converted file is directly output, otherwise, the tool only

converts data once sufficient information has been input.

3. This area shows diagnostic output and action events, giving users information on

background processes.

4. For both conversion directions, data is grouped and listed by scales. Users can manually

select the scale they are interested in. Nano and Micro levels are available for IFC;

Micro and Meso levels are available for railML.

5. Hints for the curve types in the column No. of Segments/Curve type for an IFC file; 1

is a line, 2 means an arc, and 3 is a transition curve.

6. This area shows important curve information including name, length, start direction,

coordinates of the start point, end direction, coordinates of the endpoint, numbers of

segments in an alignment, and the adjacent alignments at both ends. The angle unit for

IFC to railML is Azimuth in degrees, while the angle unit for railML to IFC is the

plane angle in degrees.

7. If a railML topology data set has no Geometry data sets, then users can choose any

start point to complete the data; once an element is selected, the flyout pops out. Here,

the start point coordinate and the start direction of the selected element are required.

8. From railML to IFC, the tool offers two curve types. Users need to select one curve

type and give a radius with direction. Only if an arc has been selected are the boxes for

radius and direction enabled.

In Chapter 6, the developed tool is evaluated regarding the data consistency after conversions

by testing with some selected example cases.

5.3. Tool Prototype 66

(a) The interface of IFC to railML.

(b) The interface of railML to IFC.

Figure 5.12: The developed prototype tool.

67

Chapter 6

Case Study

This chapter uses the developed tool to discuss how much data loss can be avoided during

the conversions between railML and IFC. A short introduction of the validation tools and

cases is given in Section 6.1. Then a detailed tool walkthrough of the cases is shown in

Section 6.2. Furthermore, Section 6.3 discusses the current limitations and areas that might

need improvement in the tool.

6.1 Introduction

The ability of the developed tool to handle typical use case scenarios is evaluated using two

different IFC files and one railML file. The IFC files are handcrafted using xBIM as only few

BIM platforms correctly support the latest IFC schema and railway systems. The railML

file is an example file provided by railML.org (railML.org, 2019a). The validation tools

and cases are explained in the following sections.

6.1.1 Data Validation and Viewing

Validation of the produced output against the data schema standards is carried out using

both publicly available and proprietary programs. Autodesk Civil 3D is used for effective

visualization of IFC data, while FZKViewer is adopted for schema validation and quick visual

confirmation of the created IFC files. Regarding railML 3.1 there is so far no proper publicly

available tool. The validation tool railVIVID provided by UIC only supports versions 2.0,

2.1, 2.2, 2.3, and 3.0.0.8 of railML (railML.org, 2016b). Instead, the visualization of railML

is done using Neo4j, and the data content is inspected before and after conversion.

6.1. Introduction 68

6.1.2 Case Selection

In this section, two geometry cases and one topology case are chosen. Each case is converted

by the developed tool and analyzed whether the output data remains consistent.

Geometrical Cases

As discussed in Section 5.2.3, IfcAlignments are grouped rather than connected, so the

relationship and navigability among alignments are yet to be determined. IfcAlignment

stores only the geometrical information of curves; after conversion using the tool, the geomet-

rical information is properly stored in the corresponding Geometry element sets in railML.

Moreover, topological information representing the track network is expected to be correctly

determined.

Case 1 The first case is a track layout with a 34 km long main line, a rail yard and multiple

branch lines, consisting in total of 49 IfcAlignments, each made up of multiple segments.

The main line contains several parallel IfcAlignments; along the main line, some branch

lines are splitting from the main line or merging into the main line. Shown in the zoomed-in

part of Figure 6.1 are the top two alignments of the main line and a branch line that connects

to it via a switch. Due to the lack of relationship and navigability information, whether the

branch line merges or splits from the main line is not clear; this information needs to be

determined and added manually. The navigability is however currently only assigned randomly

in the tool. This case shows the alignments in different LoDs, how it is converted and what

relationships are found.

Figure 6.1: The track layout of Case 1.

6.1. Introduction 69

Case 2 Case 2 is a step-by-step example. As shown in Figure 6.2, the first track layout is two

sole IfcAlignments A01 and A02, next, an unmodified layout with an additional diagonal

A03 is added; it is checked whether the diagonal changes the topological representation if it

meets the two alignments without a joint. Later, the two original alignments are split into

A01, A011 as well as A02, A022 and made to join the diagonal; the result is compared to

the second example. Case 2 evaluates the criteria put upon the alignments to successfully

construct a topological representation that mirrors the intent of the geometrical object.

Figure 6.2: The track layout of Case 2.

Topological Case

Case 3 Case 3 is a railML 3.1 file of the topology of a track network in Micro and Meso

levels as shown in Figure 6.3; the network has already been shown with detailed components

in Figure 4.2a. The relationships and navigability of each element is visible in the Micro level,

as well as their aggregation in the Meso level. The elements a01, a02, and a03 are aggregated

into the element a11 ; the elements b01, b02, b03, b04, and b05 are aggregated into the element

b11 ; both aggregations are connected by the element x11. Each element is implemented as

a NetElement; the relationship and the navigability are implemented as NetRelations;

there are two Networks separately storing the list of NetElements and NetRelations.

Both sketches are drawn in a classical graph representation, the RTM is drawn in Neo4j later

in Section 6.2.2. It can be expected that the tool asks users to input extra information to

complete the geometrical representation from the given topological information.

6.2. Tool Walkthrough 70

Figure 6.3: The topology of Case 3.

6.2 Tool Walkthrough

In this section, two types of conversions IFC to railML and railML to IFC provided by the

tool are tested. A detailed walkthrough of both functions to introduce how to use the tool is

made and possible data inconsistencies are discussed as well.

6.2.1 IFC to railML

Case 1

The IFC file for Case 1 is loaded into the tool. The project and geometrical data is parsed and

listed in a table as shown in Figure 6.4. There are in total 49 IfcAlignments in the Micro

level and 415 IfcAlignment2DHorizontalSegments in the Nano level. In the zoomed-in

box, the parameters of the first row are stored in IFC, while the parameters of the second

row, namely the coordinates and direction of the endpoints, numbers of segments in the Micro

level and curve types in the Nano level as well as adjacent alignments at the start points and

endpoints, are determined by the tool.

It can be seen that the first alignment 100A is composed of seven line or arc segments

shown in Figure 6.4b. The segments are ordered by the measure along the LRS of

the alignment; for example, the coordinates of the start point of segment 100A 02 are

(165.17186, 2090.22919), which is very close to the coordinates of the endpoint of segment

100A 01 (165.17185661882, 2090.22918140218); the slightly different values are due to the

different precision of the stored start coordinates in IFC and the calculated end coordinates.

On the other hand, alignments are neither ordered according to topological nor geometrical

relationships to other alignments; for example, there are two alignments 105A and 106A at

the start point of alignment 100A, but no alignments at the other side.

The relationships among alignments can, of course, be checked from the table or in Neo4j. Fig-

ure 6.5a shows the data in an RTM; the large points represent alignments for IfcAlignment

or NetElement for RTM; the small points represent the connexity relationship, Connector-

6.2. Tool Walkthrough 71

(a) Micro level.

(b) Nano level.

Figure 6.4: The geometrical information loaded from the IFC file for Case 1.

6.2. Tool Walkthrough 72

Containers for IfcAlignment or NetRelation for RTM; the arrows between alignments

and relationships represent the navigability. As the navigability is still randomly created,

some points are not connected. Figure 6.5b is focused on the node relations of 100A and

101A. It can be seen that 100A, 105A, and 106A join together; the ConnectorContainers

has three Connectors storing the navigability between 100A and 105A, between 100A and

106A, and between 105A and 106A; cc 001 represents a switch as there are three connected

alignments, while one side of 100A is a buffer stop. Similarly, cc 003 and cc 004 are switches

containing the relationship information for the neighbour alignments (cf. Figure 6.4a).

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNEC…
CONNEC…

CONNECTS_TO
CONNECTS_TO

CONNECTS_TO

CO
N

N
EC

TS
_T

O

CO
N

N
ECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO
CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CO
N

N
ECTS…

CONNECTS_TO

CONNEC…

CONNECTS…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CO
N

N
ECTS_TO

CONNECTS…

CONNE…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CO
N

N
E…

CO
NN

EC
T…

CONNECTS_TO

CO
NNE…

CONNECTS_TO

CO
NN

EC
…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO
CONNEC…

CONNECTS_TO

CONNECTS_TOCONNECTS_TO

CONNECT…
CO

N
N

EC
TS

…
CO

N
N

EC
T…

CONNECT…

CONNECTS…

CONNECTS_TO
CONNECTS_TO

CO
N

N
EC

T…

CONNEC…

CONNECT…

CONNECTS_TO

CO
N

N
EC

TS
_T

O

CONNECTS_TO

CONNECTS…

CO
N

N
ECTS_TO

CONNECTS_…

CONNECTS_TO

CO
NN

EC
T…

CO
N

N
ECT…

CO
N

N
EC

TS
_T

O
CONNECTS_TO

CONNECTS…

CONNE…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CO
N

N
ECT…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECT…

CONNECTS_TO

CONNECTS_TO

CO
N

N
ECTS_TO

CO
N

N
EC

TS
_T

O

CO
N

N
ECTS_TO

CONNECTS_TO

CONNECTS_TO

CO
N

N
EC

TS
_T

O

CONNECTS_TO

CONNECTS_…

CO
N

N
ECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECT…

CONNECTS_TO

CONNECT…

C…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO
CONNECTS_TO

CONNE…
CONNECTS_TO

CO
N

N
E…

CO
N

N
ECTS…

CONNECTS_TO

CONNECTS_TO

CONNECTS_TO

CONNECTS_…

CONNEC…

CO
N

N
EC

TS
_T

O

CO
NN

EC
TS

_T
O

CONNEC…CONNECTS_TO

CONNECTS_TO

CONNECT…
CO

N
N

EC
T…

CONNECTS_…

100A

106A

112A

118A

124A

130A

136A

142A

148A

cc_012

cc_021

cc_030

cc_037

101A

107A

113A

119A

125A

131A

137A143A

cc_001

cc_013

cc_025

cc_032

cc_038

102A

108A

114A

120A

126A

132A

138A

144A

cc_003

cc_016

cc_026

cc_033

cc_039

103A

109A

115A

121A

127A

133A

139A

145A

cc_004

cc_017

cc_027

cc_034

cc_040

104A

110A

116A

122A

128A

134A

140A

146A

cc_006

cc_018

cc_028

cc_035

cc_042

105A

111A

117A

123A

129A
135A

141A

147A

cc_009

cc_020

cc_029

cc_036

(a) An overview of the topology.

(b) The nodes and the relationships for 100A (left) and 101A (right).

Figure 6.5: The topological representation of Case 1 in Neo4j.

To investigate whether the data exchange performed by the tool maintains data consistency,

the converted railML file is reloaded by the other function railML to IFC and converted

back to IFC. Because the geometrical information of IfcAlignment is stored in Geometry

of railML, the geometry information remains the same without loss of data. However,

one exception is the LoD. Although the relationships are found after conversion, there is no

proper entities to store them, thus, the relationships need to be determined again in the next

conversion.

6.2. Tool Walkthrough 73

Figure 6.6: The topological representation of Case 2 in Neo4j.

Case 2

Three IFC files are converted into railML files for Case 2 and visualized in Neo4j as shown

in Figure 6.6. In the first example, since the two lines A01 and A02 are parallel, the two nodes

are independent. In the second example, even though the diagonal A03 seems to join A01

and A02, there is no real connection. For this reason, these three alignments are represented

as independent in the topological representation. The diagonal is only related to the parallel

lines, if there are real joints, i.e. cc 002 and cc 005 . According to the results of Case 2, it can

be seen that relationships among alignments in a topological model only consider end-to-end

joints. If a geometrical representation is converted to a topological representation in order to

locate railway components, for example tracks and switches, as a reference system, it needs to

be ensured that alignments join by start points or endpoints.

6.2.2 railML to IFC

Case 3

The example for Case 3 contains only topological information; the classical topology is shown

in Figure 6.3 and the topological representation in RTM is shown in Figure 6.7. In Figure 6.3,

it can be seen that the alignments a01 and a02 meet at a joint connecting a03, x01, and b03 ;

the track line then splits into two directions starting from b03 ; one goes to b01 and another

6.2. Tool Walkthrough 74

goes towards b02 through b04 ; b05 can be reached only from b02 . The connexity is unclear

in the traditional topology as the arrows only show the orientation of an alignment and does

not give any information about the navigability. On the other hand, the connexity can easily

be seen using NetRelation in RTM. As shown in Figure 6.7, it is clear that a01 and a02

have no connexity, nor between b04 and b05 ; the same as described above, b05 is reachable

only through b02 even though b04 and b05 are visually connected. Using NetRelation, the

topological structures can also denote the correct relationships.

Figure 6.7: The topological representation of Case 3 in the Micro level in Neo4j.

Now, the tool transfers the RTM to IfcAlignment. If the corresponding elements of

Geometry exist, the tool converts the railML directly to an IFC file; otherwise, the missing

values for curve parameters are shown in red and need to be input (see Figure 6.8). Since

an RTM only contains essential data for a pure topology, an assumed geometry is shown in

Figure 6.9a. The alignments a02, a03, b03, b04, and b05 are assumed to be arcs, and the

remaining alignments are assumed to be lines. To complete the geometry, two parameters,

radius and IsCCW, are required. The rule for IsCCW is based on the beginning of the

selected start point, in the direction of the endpoint of each alignment; for example, if the

start point is the b05 start point, where the buffer stop is located, then IsCCW towards the

joint is false; conversely, if the start point is the joint among b02, b04, and b05 , the parameter

IsCCW from the joint back to the buffer stop at b05 is true. If IsCCW is chosen differently,

the shape will change; for example, if the buffer stop at b05 is the start point and IsCCW

for b03 is assigned false, then the whole geometry is horizontally flipped.

6.2. Tool Walkthrough 75

Figure 6.8: A railML file after pre-converting.

The tool offers users a simple way to give the curve parameters without knowing the detailed

configuration of each alignment; for example, users do not need to know how the alignments

connect together, such as whether the start point meets the endpoint of neighbour alignments

or the other way around. The tool detects the start and end directions and modifies them if

necessary. The logic behind the calculation is again that the relationships and measures along

an LRS provided by RTM are used to assign the start points and endpoints of an alignment.

Two start points meeting means the two tracks join in a switch; for example, b04 and b05,

while two endpoints meeting indicates two tracks splitting. Based on this information it can be

easily decided if the IsCCW is reasonable for the geometry and complete the whole geometry

by defining a single point of an alignment. This rule makes the geometry supplementation

very flexible; the same shape can be arrived at by using a different start point and curve

parameters. An example is shown in Figure 6.9b, two parameter sets that can create the same

shape are shown in Figure 6.9a.

6.2. Tool Walkthrough 76

(a) A sketch of the desired geometry.

(b) Two parameter sets recreating the same geome-
try.

Figure 6.9: The desired geometry and the corresponding parameters.

After setting up the parameters, the tool calculates the curve geometries and converts

the railML file to an IFC file (see Figure 6.10a). The created geometry is validated by

FZKViewer without errors and shown in Figure 6.10b. Each NetElement in the Micro

level creates an IfcAlignment, which means each IfcAlignment contains only a single

curve segment. The NetElements a11, x11 and b11, giving the aggregation of the Micro

elements into the Meso level, are lost in the conversion to IFC due to the LoD limitations

mentioned in Section 5.2.5. Possible methods to mitigate that loss are described in Chapter 7.

6.2. Tool Walkthrough 77

(a) The missing parameters after reconstruction.

(b) The converted IFC file shown in FZKViewer.

Figure 6.10: The railML file converted to IFC.

6.3. Current Limitations 78

6.3 Current Limitations

This thesis analyses possible data inconsistency sources and an tool has been developed that

provides a possibility to link a geometrical and a topological representation while minimizing

data loss. Nevertheless, there are still some remaining issues in the prototype that could be

improved in the future. Some of these are for example:

• There are currently no proper entities for storing railway networks in IFC 4.1. Information

regarding the connexity, the relationships, the navigability, LoDs and aggregation are

lost during the conversion from railML to IFC.

• In both directional conversions, IfcAlignment refers to the NetElement in the Micro

level, whereas IfcAlignment2DHorizontalSegment refers to the Nano level. The

tool has no problem transferring from IFC to railML as the geometrical information in

the Nano level is stored in Geometry, it can however only reconstruct the geometry

from a topological representation in the Micro level.

• Similar to the previous issue, as the axis of IfcAlignment only supports a single

continuous curve, it is not possible to store multiple curves merging or splitting from a

curve that might be stored in the Meso level in an RTM.

• The current tool only converts the geometrical coordinates of an IFC clothoid curve to

a railML file but can not recreate that transition curve from a railML file, as the

railML schema does not contain sufficient elements to describe a transition curve to

the same detail as IFC.

• The current tool only supports the conversions for topological and geometrical infor-

mation but does not consider how to use the information stored in the LRS, such as

signals locations or other trackside components.

• No automatic consistency check whether a given topology file is consistent with a given

geometric file due to the previously mentioned shortcomings.

• The current tool does not support adding or removing nodes or alignments inside it,

which might be very helpful in practice.

79

Chapter 7

Conclusion and Outlook

This chapter recapitulates the thesis, in particular regarding the BIM process, data exchange

schemata, the analysis of IFC and railML, and the proposed solution. The thesis concludes

by giving suggestions for possible future improvements and research directions.

7.1 Conclusion

With the development of CAD, the AEC industries have moved on from traditional paper

documentation to digital documentation, and various BIM applications have been introduced

to facilitate that transition. Nevertheless, project participants collaborate on diverse BIM

applications specially focused on each sub-domain, which decreases interoperability. Railway

infrastructure is especially affected by this problem due to the breadth and complexity of

collaboration required. Multiple data exchange schemata are being continuously developed to

achieve optimal collaboration efficiency, of which the most widespread one is IFC. The scope

of the current IFC schema covers the full building domain but only the basic component of

linear infrastructures, the LRS definition. Even though the IFC schema continually expands

to better include infrastructures such as railways, it remains focused on the description of the

geometry for the design and construction phases compared to the railML schema, which

is focused on the operational aspects of a railway network (Augele, 2017). For this reason,

linking data exchange schemata of different sub-domains, IFC and railML, is a worthwhile

task to improve the interoperability of BIM applications for railways.

In practice, the complete IFC file describing the whole life-cycle of a facility is large, and

therefore MVDs are used to extract only sub-domain relevant information rather than passing

all extraneous information to another application. Following the spirit of an MVD, the pure

information related to track layout is an essential basis for various use cases and needs to

be exchangeable between IFC and railML. IFC 4.1 defines the geometry of a track layout

7.1. Conclusion 80

using the entity IfcAlignment, while railML uses RTM, namely NetElement and

NetRelation in a Network, to define the network based on a track layout. Due to the

diverging use cases, these two data exchange schemata are not fully compatible; the IFC schema

defines the detailed geometrical representation for design and construction phases, whereas

the railML schema defines the topological representation for the operational phase. This

thesis analyzed the architecture of both schemata to evaluate a possible linking, investigated

the sources of data inconsistency during data exchanges, proposed a solution, and developed

a prototype tool.

Data consistency is core to maintaining good interoperability. However, it is naive to expect

all data exchange to proceed without any data loss. A set of IfcAlignments itself is an

LRS to specify the location of railway components, in contrast, a NetElement, related with

other NetElements in a Network, is an instance located on an LRS or in a geometrical

reference system. Moreover, an IfcAlignment supports multiple kinds of curves that can

not be defined properly in the corresponding element set Geometry of railML. In addition,

RTM supports the description of multiple LoDs yet IfcAlignment does not. Consequently,

whether transferring from IFC to railML or the other way around, data inconsistency can

occur. The proposed tool was implemented to minimize the loss of essential information and

to reconstruct geometrical and topological representations.

The developed tool can read and write IFC and railML formats. It extracts and displays

the geometrical and topological information and then exchanges that information. From

IFC to railML, the tool determines the implicit geometrical information and from that

the relationships among IfcAlignments. From railML to IFC, the tool determines the

curve geometry from minimal input based on the topological information. Nevertheless,

information regarding LoDs higher than the Micro level, the connexity, and the relationship

is lost after a conversion from railML to IFC due to incomplete coverage of the data schema.

Although the current tool does not guarantee perfect data consistency after a conversion,

the implementation keeps the data in temporary storage and provides for future additional

capabilities. As mentioned, it is not practicable to transfer all data from one to another

data file as some of the data might not be necessary for the sub-domain one is interested

in. For example, an engineer might use an IFC file to design the track layout according to

the curve geometry but does not need the navigability; on the other hand, a railway system

manager uses the network to control train scheduling but does not require detailed geometrical

information. If, however, the geometry of the track layout needs to be changed or a part of a

track is to be dismantled due to an operational reason, then the corresponding alignments

can be found easily using the linked geometrical and topological representations, and any

modifications kept synchronised. Therefore, the developed tool is very useful in such cases.

To conclude, compared to the data exchange inside a single domain, i.e. only inside geometrical

applications and inside topology focused applications, this thesis developed a concept and

7.2. Future Outlook 81

a tool to bridge the gap between geometrical and topological representations, enhancing

productive collaboration and interoperability for railway infrastructures using the BIM process.

The prototype tool linking these two representations simplifies data transfer, completes missing

information with minimal data loss, and provides for future expandability.

7.2 Future Outlook

Due to the lack of proper entities and element sets in both IFC and railML schemata,

some data inconsistency remains. Some issues could be solved temporarily using stopgap

measures, such as storing topological information into the entities for pipe networks in an

IFC file; some issues do not have a solution yet, such as a sub-schema that can store LoDs.

Although future IFC extensions might include these related entities, the concept of the track

topology introduced by the on-going project IFC Rail, (IFC Rail Project, 2019a) differs to

RTM. Compared to the connexity graph theory in RTM where all nodes represent all kinds

of resources, the IFC track topological model is based on a classical graph representation; a

Track Node can be either a junction or a track end; a Track Edge is a simple railway

track that refers to an alignment. Due to the different definitions of the topology, it is still

not possible to have a straight forward data exchange by just transferring property values

between IFC and railML, but extra validation in a tool such as the one developed for this

thesis is needed. So, further improvements of the current tool, such as adding functions to

modify nodes and alignments, to organize nodes into different LoDs, and to solve the other

limitations introduced in Section 6.3, remain worthwile.

Data inconsistency caused by technical issues aside, data inconsistency due to procedural

issues also remains to be solved; for example, how to detect modified alignments between two

IFC files as the express files are not deterministically organized, meaning changing a single

alignment modifies the entire file. Communication issues and versioning issues, where different

sub-contractors work with different versions of files, are not easily detectable as identical

geometry can be represented by many different permutations of express files. An automatic

tool that can verify the consistency of geometrical and topological representations that should

describe an identical state of the network could mitigate such issues.

82

Appendix A

Digital Appendix

The following items are included in the digital appendix of this thesis:

• One original PDF and one redacted PDF

• The English and German titles in a text file

• Figures with high resolution in .png format and code examples used in this thesis

• Example IFC and railML files used in Chapter 6

• Abstract in .txt format

• The Visual Studio project of the implementation

• The developed tool

BIBLIOGRAPHY 83

Bibliography

Adamus, L. W. (2013). BIM: Interoperability for sustainability analysis in construction.

Central Europe Towards Sustainable Building: Integrated building design BIM , 1–4.

AGC of America (2017). agcXML. https://www.constructionprogress.org/agc-xml-standards.

html/. Accessed: 2020-02-28.

Amann, J., J. Jubierre, A. Borrmann, and M. Flurl (2014). An alignment meta-model for the

comparison of alignment product models. eWork and eBusiness in Architecture, Engineering

and Construction: ECPPM 2014 , 351.

Augele, V. (2017). Comparative Analysis of Building Information Modelling (BIM) and

RailTopoModel/railML in View of their Application to Operationally Relevant Railway

Infrastructure. Technical report, Technical University of Dresden. Project Paper in the

Field of Intelligent Transportation Systems.

Axelsson, P. and L. Wikström (2017, August). OGC City Geography Markup Language

(InfraGML) Encoding Standard.

Baldwin, M., D. I. N. e.V., and M. und Maschine Schweiz AG (2018). Der BIM-Manager :

Praktische Anleitung für das BIM-Projektmanagement. Berlin, GERMANY: Beuth Verlag.

Beetz, J. and A. Borrmann (2018). Benefits and limitations of linked data approaches for

road modeling and data exchange. In Workshop of the European Group for Intelligent

Computing in Engineering, pp. 245–261. Springer.

Borrmann, A., Y. Ji, J. Ramos-Jubierre, and M. Flurl (2012). Procedural Modeling: A new

approach to multi-scale design in infrastructure projects.

British Standards Institution (2020). PAS 1192-2:2013 and PAS 1192-3:2014. https://www.

bsigroup.com/en-IE/search-results/?q=pas1192/. Accessed: 2020-02-21.

buildingSMART International (2018, June). Industry Foundation Classes (IFC) Verson 4.1.0.0

Schema Documentation.

buildingSMART International (2020a). BIM Collaboration Format (BCF). https://technical.

buildingsmart.org/standards/bcf/. Accessed: 2020-03-01.

https://www.constructionprogress.org/agc-xml-standards.html/
https://www.constructionprogress.org/agc-xml-standards.html/
https://www.bsigroup.com/en-IE/search-results/?q=pas1192/
https://www.bsigroup.com/en-IE/search-results/?q=pas1192/
https://technical.buildingsmart.org/standards/bcf/
https://technical.buildingsmart.org/standards/bcf/

BIBLIOGRAPHY 84

buildingSMART International (2020b). Current Project and Activities in Infrastructure Room.

https://www.buildingsmart.org/standards/rooms/infrastructure/. Accessed: 2020-03-11.

buildingSMART International (2020c). Current Project and Activities in Railway Room.

https://www.buildingsmart.org/standards/rooms/railway/. Accessed: 2020-03-11.

buildingSMART International (2020d). IFC Specifications Database. https://technical.

buildingsmart.org/standards/ifc/ifc-schema-specifications/. Accessed: 2020-02-14.

buildingSMART International (2020e). Industry Foundation Classes (IFC). https://www.

buildingsmart.org/standards/bsi-standards/industry-foundation-classes/. Accessed: 2020-

02-14.

Bundesanstalt für Straßenwesen (2020). Objektkatalog für das Straßen-und Verkehrswesen

(OKSTRA). http://www.okstra.de/. Accessed: 2020-02-28.

Chaplier, J., T. N. That, M. Hewatt, and G. Gallée (2010). Toward a standard: RoadXML,

the road network database format.

Ciszewski, T., W. Nowakowski, and M. Chrzan (2017). Railtopomodel and railml - data

exchange standards in railway sector. Archives of Transport System Telematics 10.

Daniotti, B., A. Pavan, S. Lupica Spagnolo, V. Caffi, D. Pasini, and C. Mirarchi (2020).

BIM-Based Collaborative Building Process Management. Cham: Springer International

Publishing.

Deutsche Bahn AG (2019, February). BIM Strategy - Implementation of Building Information

Modeling (BIM) in the Infrastructure Division of Deutsche Bahn AG. Technical report,

Infrastructure Division of Deutsche Bahn AG.

Dong, B., K. Lam, Y. Huang, and G. Dobbs (2007, 01). A comparative study of the IFC and

gbXML informational infrastructures for data exchange in computational design support

environments. IBPSA 2007 - International Building Performance Simulation Association

2007 3, 1530–1537.

Ducloux, P. (2016). RoadXML 2.4.1 - Road Network Description, XML Format Specification .

Esser, S. and A. Borrmann (2019). Integrating Railway Subdomain-Specific Data Standards

into a common IFC-based Data Model. In Proc. of the 26th International Workshop on

Intelligent Computing in Engineering.

Gély, L., G. Dessagne, P. Pesneau, and F. Vanderbeck (2010). A multi scalable model based on

a connexity graph representation. Computers in Railways XII, Beijing, China 1, 193–204.

Gielingh, W. (2008). An assessment of the current state of product data technologies.

Computer-Aided Design 40 (7), 750 – 759. Current State and Future of Product Data

Technologies (PDT).

https://www.buildingsmart.org/standards/rooms/infrastructure/
https://www.buildingsmart.org/standards/rooms/railway/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
http://www.okstra.de/

BIBLIOGRAPHY 85

Gröger, G., T. H. Kolbe, C. Nagel, and K.-H. Häfele (2012, April). OGC City Geography

Markup Language (CityGML) Encoding Standard.

Hettwer, J. (2008). Objektkatalog für das Straßen-und Verkehrswesen (okstra). Buhmann/Pi-

etsch/Heins (Eds.): Digital Design in Landscape Architecture, 234–239.

Hlubuček, A. (2017). RailTopoModel and RailML 3 in overall context. Acta Polytechnica

CTU Proceedings 11, 16–21.

IFC Rail Project (2019a). WP2 – Requirement Analysis Report. Technical report, buildingS-

MART International.

IFC Rail Project (2019b). WP3 – Conceptual Model Report. Technical report, buildingSMART

International.

INRETS, Oktal, PSA, Renault, Thales, and TRL (2016). RoadXML. https://www.road-xml.

org/index.php/. Accessed: 2020-02-28.

ISO (2016). ISO 29481-1:2016 Building information models - Information delivery manual -

Part 1: Methodology and format.

Jochim, H. and F. Lademann (2017). Planung von Bahnanlagen. Carl Hanser Verlag GmbH

& Co. KG.

Jusuf, S. K., B. Mousseau, G. Godfroid, and V. S. J. Hui (2017). Integrated modeling of

CityGML and IFC for city/neighborhood development for urban microclimates analysis.

Energy Procedia 122, 145 – 150. CISBAT 2017 International ConferenceFuture Buildings &

Districts – Energy Efficiency from Nano to Urban Scale.

Karan, E. P., J. Irizarry, and J. Haymaker (2016). BIM and GIS Integration and Interoperability

Based on Semantic Web Technology. Journal of Computing in Civil Engineering 30 (3),

04015043.

Kumar, K., A. Labetski, K. A. Ohori, H. Ledoux, and J. Stoter (2019, July). The LandInfra

standard and its role in solving the BIM-GIS quagmire. Open Geospatial Data, Software

and Standards 4 (1), 5.

Kutzner, T., K. Chaturvedi, and T. H. Kolbe (2020). Citygml 3.0: New functions open up

new applications. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation

Science.

LandXML.org (2017). LandXML. http://www.landxml.org/. Accessed: 2020-02-25.

Lee, G. (2011, January). What Information Can or Cannot Be Exchanged? Journal of

Computing in Civil Engineering 25.

https://www.road-xml.org/index.php/
https://www.road-xml.org/index.php/
http://www.landxml.org/

BIBLIOGRAPHY 86

Liebich, T. (2009, May). IFC 2x Edition 3 Model Implementation Guide. Technical report,

buildingSMART International.

Lockley, S., C. Benghi, and M. Černý. Xbim.Essentials: A library for interoperable building

information applications. 2 (20), 473.

Mahdavi, A., B. Martens, and R. Scherer (2014). eWork and eBusiness in Architecture,

Engineering and Construction: ECPPM 2014. CRC Press.

Nash, A., D. Huerlimann, J. Schütte, and V. P. Krauss (2004). railML - a standard data

interface for railroad applications. WIT Transactions on The Built Environment 74.

Neo4j, Inc. (2020). Neo4j Graph Database. https://neo4j.com/. Accessed: 2020-03-19.

Open Green Building XML Schema, Inc. (2020). gbXML. https://www.gbxml.org/index.html/.

Accessed: 2020-02-22.

railML.org (2016a, September). RailTopoModel - Railway infrastructure topological model

IRS30100.

railML.org (2016b). railVIVID: The railML Viewer and Validator – powered by UIC. https:

//en.wiki.railvivid.railml.org/index.php?title=Main Page#About railVIVID. Accessed:

2020-03-27.

railML.org (2019a). railML example data. https://www.railml.org/en/user/exampledata.html.

Accessed: 2020-03-13.

railML.org (2019b). railML Schema Version 3.1. https://www.railml.org/en/download.html.

Accessed: 2020-02-08.

railML.org (2019c). railML R© Use Case Definition Network Statement .

railML.org (2020). Introduction. https://www.railml.org/en/introduction/background.html/.

Accessed: 2020-02-1.

R.E.Deakin (2005). Engineering Surveying - Horizontal Curves. http://www.mygeodesy.id.

au/geodesy/. Accessed: 2020-03-26.

Richard See, Jan Karlshoej, D. D. (2012). An Integrated Process for Delivering IFC Based

Data Exchange.

Rüffer, W., B. Feser, and F.-J. Knelangen (2001). Objektkatalog für das Straßen- und

Verkehrswesen (OKSTRA) - Der Schlüssel zu Straßen- und Verkehrdaten. Technical report,

Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV).

Sacks, R., C. Eastman, G. Lee, and P. Teicholz (2018). BIM Handbook (Third ed.). John

Wiley & Sons, Ltd.

https://neo4j.com/
https://www.gbxml.org/index.html/
https://en.wiki.railvivid.railml.org/index.php?title=Main_Page#About_railVIVID
https://en.wiki.railvivid.railml.org/index.php?title=Main_Page#About_railVIVID
https://www.railml.org/en/user/exampledata.html
https://www.railml.org/en/download.html
https://www.railml.org/en/introduction/background.html/
http://www.mygeodesy.id.au/geodesy/
http://www.mygeodesy.id.au/geodesy/

BIBLIOGRAPHY 87

Scarponcini, P. (2005). ISO 19133 Tracking and Navigation Standard: 6.6 Linear Reference

System Standard. Transportation Research Record 1935 (1), 77–84.

Scarponcini, P. (2013). InfraGML Proposal (13-121). Technical report, OGC Land and

Infrastructure Domain Working Group.

Seybold, B. and B. Franke (2013). Feasibility Study - UIC RailTopoModel and data exchange

format. Technical report, trafIT solutions gmbh.

Shou, W., J. Wang, X. Wang, and H.-Y. Chong (2015). A Comparative Review of Building

Information Modelling Implementation in Building and Infrastructure Industries. Archives

of Computational Methods in Engineering 22, 291–308.

Solibri, Inc. and Tekla Corp. (2019). BIM Collaboration Format (BCF). https://www.

bimcollab.com/en/Resources/OpenBIM/BCF/. Accessed: 2020-02-28.

Tim Chipman, Thomas Liebich, M. W. (2016). mcdXML - Specification of a standardized

format to define and exchange Model View Definitions with Exchange Requirements and

Validation Rules.

Vilgertshofer, S., J. Amann, B. Willenborg, A. Borrmann, and T. H. Kolbe (2017). Linking

bim and gis models in infrastructure by example of ifc and citygml. In Computing in Civil

Engineering 2017, pp. 133–140.

Wunsch, S. and B. Jaekel (2017). Modellprinzipien des RailTopoModel. Technical report,

Technologie Gesellschaft für Bauingenieurleistungen und Arbeitsvorbereitung mbH.

https://www.bimcollab.com/en/Resources/OpenBIM/BCF/
https://www.bimcollab.com/en/Resources/OpenBIM/BCF/

	Introduction
	Motivation
	Goal
	Thesis outline

	Data Exchange Schemata in BIM
	Background
	Collaboration and Interoperability
	Common Data Environment
	Data Exchange and OpenBIM

	Data Exchange Schemata
	IFC and gbXML
	LandXML, InfraGML, and CityGML
	OKSTRA and RoadXML
	agcXML, BCF, and railML

	Limitations of Data Exchange
	Technical Issues
	Procedural Issues

	Industry Foundation Classes for Railways
	Overview
	Structure of IFC Schema
	STEP Format

	IfcAlignment
	Linear Reference System
	Structure of IfcAlignment
	Curve Representation in STEP

	Future Outlook

	RailTopoModel - Topological Model of railML
	Overview
	Structure of railML Schema
	XML Schema and XML Format

	RailTopoModel
	Existing Topological Models
	Classical Topological Representation
	Topological Representation in RailTopoModel

	Summary

	Solution Proposal and Implementation
	Problem Discussion
	Data Inconsistency Scenarios
	Comparisons of IfcAlignment and RailTopoModel
	Limitations of IfcAlignment and railML
	Solution Proposal

	Implementation
	Technical Framework
	Code Structure
	Geo2Topo
	Topo&Geo
	Topo2Geo
	Visualization
	GUI

	Tool Prototype

	Case Study
	Introduction
	Data Validation and Viewing
	Case Selection

	Tool Walkthrough
	IFC to railML
	railML to IFC

	Current Limitations

	Conclusion and Outlook
	Conclusion
	Future Outlook

	Digital Appendix

