DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Data Engineering and Analytics

Integration and Visualization of
Sparse-Grid based Clustering Methods in
the SG++ Datamining Pipeline

Vincent Bennet Bautista Anguiano

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Data Engineering and Analytics

Integration and Visualization of
Sparse-Grid based Clustering Methods in
the SG++ Datamining Pipeline

Integration und Visualisierung von
diinngitter basierten Clustering Methoden
in der SG++ Datamining Pipeline

Author: Vincent Bennet Bautista Anguiano
Supervisor: Prof. Dr. rer. nat. habil. Hans-Joachim Bungartz
Advisor: M.Sc (Hons) Paul Cristian Sarbu

Submission Date: 15th April, 2020

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Garching bei Miinchen, 15th April, 2020 Vincent Bennet Bautista Anguiano

Acknowledgments

I would like to extend my special thanks to my advisors Paul Sarbu and Kilian
Rohner for giving me the opportunity to work in this topic and for their excellent
guidance, support and availability throughout the duration of the Master Thesis.

I would also like to express my wholeheartedly gratitude towards my colleagues
from Wirecard AG, who have accompanied me for almost all of the duration of the
Master Program and whose knowledge and guidance have been a valuable complement
to my professional and personal formation.

I would like to thank also my friends, both from TUM and external, who made my
stay at Germany one of the most enjoyable experiences of my life.

Finally, I would like to thank my family, who have given me their total support for
the duration of my studies and without who I would had never been able to pursue a
Master Degree in the first place.

Abstract

The SG++ Datamining Pipeline is a component of the SG++ Toolbox whose main
purpose is to provide an interface to generate Machine Learning Models based on
Sparse Grid Methods. These are numerical techniques which have been previously
proven to be successful in solving tasks handling large high dimensional data sets [29].

Until recently, the pipeline provided support only to train Sparse Grid based Density
Estimation, Classification and Regression Models. In this thesis, we took the task of
integrating the support for Clustering Models. We did it so by implementing the Sparse
Grid based Clustering Algorithm created by Peherstorfer [28] along with a special
augmentation designed by Fischer [8] to generate a Hierarchical Clustering.

Additionally, we implemented a series of metrics used to evaluate the quality of the
clustering and a series of processes used to generate an output with the purpose of
generating graphical representations of these models. We provide in this thesis the
design of our implementation and the results of a series of tests conducted to show
and to evaluate its functionality.

v

Contents

Acknowledgments
Abstract
1 Introduction

2 Theoretical Background
21 Sparse Grid Methods o oL
2.1.1 Hierarchical Basis and Sparse Grid Interpolation
2.1.2 Sparse Grid based Density Estimation
22 Clustering
2.2.1 Sparse Grid based Clustering
2.2.2 The nearest neighbors” problem. The Vantage Point Tree
2.2.3 Hierarchical Clustering
224 Clustering Quality
2.3 The SG++ Datamining Pipeline

3 Implementation
3.1 Clustering Configurations
3.2 Vantage Point Tree Implementation
3.3 Graph Implementation
3.4 Hierarchical Clustering Implementation
3.5 Fitter Implementation 0L,
3.6 Metrics Implementation
3.7 Visualization Implementation,
3.8 Post ProcessingModule

4 Data sets and Tests
41 Datasets’ Description, .
42 Tests. e e e e
421 Description o
42.2 Running Configurations

— 00 NN U =N DNDN

[g—
o

Contents

5 Results
5.1 Hierarchical Clustering Run
511 2MoonDataset,
512 CirclesDataset
513 bBD GaussiansDataset
514 HTRU2Dataset
52 FatClusteringRun
521 2MoonDataset
522 CirclesDataset
523 bBDGaussians Dataset
524 HTRU2Dataset0....

6 Conclusions and Future Work

Bibliography

37
37
37

51
56
63
63
63
64
65

67

69

Vi

1 Introduction

Clustering is one of the most common tasks in Machine Learning, along with Clas-
sification and Regression, whose objective is to find groups within a given data set
based only on its internal structure. A certain advantage of Clustering Algorithms over
other Machine Learning Methods is their unsupervised learning nature, that means,
data with previously predefined labels is not needed. However, just like many other
Machine Learning Methods, Clustering Algorithms have their share of challenges to
overcome, specially when it comes down to handling large high dimensional data sets
efficiently.

Sparse Grid Methods come to mind when handling such problems, resulting in
the development of Machine Learning Models based on them to process large high
dimensional data sets efficiently. Some of them, like Classification and Regression,
have already been implemented into the SG++ Datamining Pipeline, a component of
the SG++ Toolbox, which is a programming library written in C++, which provides
interfaces to use and apply Sparse Grid Methods. In this thesis, we have extended the
functionalities of the pipeline by integrating into it the support for Sparse Grid based
Clustering Models.

We will begin by introducing all the theory behind our Clustering implementation
in Chapter 2. In this chapter, we will give an overview of Sparse Grid Methods, we
will introduce the additional algorithms and data structures which were used in our
implementation, we will talk about Clustering Quality Analysis and we will make a
small introduction to the current structure of SG++ Datamining Pipeline along with its
functionality and configuration.

The design of our implementation will be presented in Chapter 3. In this chapter, we
will go into detail about the software architecture, the changes made to the pipeline
in order to integrate our Clustering Models and the description of the main classes
implemented along with their functionality.

In Chapter 4, we will present the tests used to show the functionality of our imple-
mentation along with a description of the data sets used and the running configurations.
The results of these tests will be presented in Chapter 5 along with a small analysis
of them. Finally, in Chapter 6, we will present our final conclusions and make an
overview of the future improvements that could still be made to our implementation
and in general to the Datamining Pipeline.

2 Theoretical Background

2.1 Sparse Grid Methods

Sparse Grid Methods are special discretization techniques, which allow to cope with
the curse of dimensionality of grid based mathematical approaches to a certain extent
[12].

The original idea can be traced back to the works of the russian mathematician
Smolyak [34], who used them for numerical integration. They were later however,
developed to approximate the solution of partial differential equations [13] and in the
development of certain Machine Learning algorithms and applications [29] [28] [11] [8]
[36] [19] .

2.1.1 Hierarchical Basis and Sparse Grid Interpolation

Sparse Grid Methods are based on the hierarchical basis, a hierarchical decomposition

of base functions underlying the approximation of spaces [29]. The parent function of

this basis is the standard hat function, which in the 1-dimensional case is defined as:
¢(x) = max(1 — |x|,0) (2.1)

The basis functions are derived by dilatation and translation of the hat function,

ri(x) == p(2'x —i) (22)
where [indicates the level of the function and i an index in the range of (0,2). These
basis functions are centered at the grid points x;; = 27'i. It is important to remark that

these index values are restricted to the following hierarchical index sets

[={ieN:1<i<2"!iisodd} (2.3)

Per level | we obtain a set of hierarchical subspaces W;

W, :=span(¢;; :i € I}} (2.4)

A space of piecewise linear functions V, on a grid h, for a given level n can be then
defined as the direct sum of W),

2 Theoretical Background

V., =EPw (2.5)
I<n
so any function f(x) € V, can be approximated by the interpolant u(x) € V,, the
latter being a linear combination of these basis functions

fx)mu(x) =Y apri(x) (2.6)
I<n,iel
The idea is extended to higher dimensional spaces through the tensor product
approach

d

¢r7(%) =TT ¢, (%) 2.7)

j=1

with T,?being the multidimensional indexes equivalent to / and 7 in the 1-dimensional
case. The other notations are similarly transferred to the high dimensional case

I={i:1<i;<2"\ijisodd, 1 <j<d} (2.8)
Wi := span(¢y;: i € I) (2.9)
Vo= P W (2.10)

[Teo<n

This leads to the high dimensional interpolant u(X) € V,

[N <n,icl;

using a full grid with (2" — 1) grid points.

The L, error of the interpolant u(x) to the original function (f(x)) is bounded by
O(hy,), however O(h,; %) = O(2"?) function evaluations are needed. This is unfeasible
for high dimensional problems. Therefore, we only select those subspaces W; which
contribute the most to the solution. This generates the sparse grid space

vii= @ w (2.12)
[T1<n4+d—1

and our sparse grid interpolant results in:

2 Theoretical Background

Iy <n+d—1icl;

This significantly reduces the number of functions evaluations from O(h;, 1) to
O(h;'(log hy;y1)¥=1) at an L, error bounded by O(k2(log h,;1)?~!). This negligible
difference in accuracy makes the use of sparse grids an attractive option. Additionally,
our interpolation problem becomes only dependent on the size of the grid used, which
most of the time is significantly smaller than the size of the data set to be processed.

2.1.2 Sparse Grid based Density Estimation

Density Estimation is one of the central areas of statistics whose purpose is to construct
an estimate of the probability density function p describing the distribution of the
observed data set S [33]. This density function can be in turn used to visualize, represent
or extract information of the data [28] or as a tool for other Machine Learning methods.

Density Estimation Methods can be either parametric or non-parametric. Parametric
Density Estimation Methods assume that the data follows the structure of a certain
family of known density functions and that the density could be estimated by estimating
the corresponding parameters describing it [33] (e.g. 1 and ¢ in the case of the Gaussian
distribution). On the other hand, non-parametric Density Estimation Methods make no
such assumptions and therefore, no parameters are estimated. One of the most widely
used non-parametric methods is the Kernel Density Estimation [28] defined as:

p(x) = % Y K(* ;zxi) (2.14)
i=1

In this method, the density function is approximated as a linear combination of all
of the possible kernel functions K, centered in all of the points x; € S, with M being
the cardinality of S. Using this approach however, requires that all possible kernel
functions be considered in the calculation and this number scales with the number of
data points, making this method inefficient when handling large data sets.

Peherstorfer overcomes this issue by proposing a Sparse Grid based Density Estima-
tion method in [28]. Given a data set S = {x3, ..., xp1 } with real density f(x) € V and
an initial guess of the estimated density pe(x), we are looking for the estimated density
estimation function p(x) € V such that:

p(x) = arg min [(f(x) — fe(x))Px + Al|AfI[E, 215)
flwev O

Note that the second term of the sum is a regularization term imposing a smoothness
constraint and A is the regularization operator.

2 Theoretical Background

We set then the initial guess of the estimated density to pe(x) = 1 ©M, ¢(x;), with
¢$(x;) € ®; and P, being the hierarchical basis of the sparse grid space V; of level .
We obtain the variational equation [17] of 2.15 and after some transformations our
optimization problem turns into finding p(x) such that:

5 ; 1 ¢
| p@e)dx+ A [Apx)ap(x)dx = 11) p(x) 2.16)
0 0 =
holds V¢ € ®;.
The estimated density function is then expressed as a linear combination of the

hierarchical basis functions of the sparse grid space V; of level |

p(x) =Y ayigi(x) (2.17)
Li
Substituting 2.17 in 2.16 reduces the latter to a system of equations of the form:

(R+AC)& =b (2.18)

with Rij = ((Pl', (Pj)Lz, Cz] = (A(Pi,A(Pj)LZ and b; = % ZJI\il 4)l(x]) which can be then
easily solved to find .

2.2 Clustering

Clustering refers to the unsupervised Machine Learning method, whose objective is
to identify disjointed groups in a series of data points based only on their internal
structure. These groups are known as clusters. Formally it can be defined as [3]:

Given a data set D = {x1, x, ..., X, } with x; € RY, a simple clustering of D is defined
as C = {Cy,Cy,, ...,Cx} such that:

UG =D
ClﬂC]:Q@CZ#C]

There is not a unique way of doing clustering. For example, DBSCAN [4] assigns
clusters to areas of high density, while K Means [21] iteratively finds clusters by
calculating the centroids of the current clusters and reassigning the points to the nearest
one. This causes different algorithms to return different results for the same data set.

2 Theoretical Background

2.2.1 Sparse Grid based Clustering

One of the applications of Sparse Grid Methods developed by Peherstorfer at [28], is
the clustering of data points using Sparse Grid based Density Estimation Methods. In
this algorithm, clusters are defined as groups of data points belonging to high density
areas. On the other hand, data points in low density areas are not assigned to any
cluster at all, but rather classified as noise. This makes this algorithm a density based
clustering method. Peherstorfer’s Clustering Algorithm is summarized in the following
steps.
Given a data set S = {xq,..., X, } :

1. Construct a nearest neighbors’ graph G = (S,) to represent the similarities of
the points in S.

2. Employ a Sparse Grid based Density Estimation model to calculate the probability
density function p describing the density distribution of S.

3. Create subgraph G = (5,&) = (S\ S,&\ &) with k connected components by
deleting vertices S and related edges ¢ at which the estimated density function p
evaluates to values below a given threshold e.

4. Depending on their component, assign labels y1, ..., ym € {1, ..., k} to the remain-
ing data points in $ = {#1,.., #um}. Previously deleted points are labeled as
noise.

2.2.2 The nearest neighbors’ problem. The Vantage Point Tree

Generating a nearest neighbors’ graph in a naive manner is a very expensive task, since
the running time complexity lies unfortunately in O(n?). Generating our graph in such
a way would render the benefits of Sparse Grid Methods useless. Fortunately, the
problem has been amply studied and many algorithms and data structures have been
developed in order to circumvent this issue [10] [26] [37] [38]. Among all of these data
structures, the Vantage Point Tree is the one that was selected for our specific problem.

Vantage Point Trees have certain advantages over some other nearest neighbor data
structures in that they tend to perform relatively better than most of them in terms of
efficiency when handling large high dimensional data sets [20]. Additionally, they are
simple to implement, they can be generated and updated in an online manner and they
have a space complexity of O(n) with n being the number of data points.

Vantage Point Trees were introduced by Yianilos [37] as a data structure used to
partition and index a metric space based on distances to specific points in the space
(the vantage points) in order to perform efficient nearest neighbors” queries. These

2 Theoretical Background

vantage points are taken from the data itself at random (although the selection can be
optimized) and the partition is done in such a way that, for every selected vantage
point, half of the points remain inside an hypersphere, while the other half remain
outside. The radius is determined by the median of all distances from the vantage
points to the rest.

A Vantage Point Tree is actually a binary tree structure. Each node contains the
vantage point itself and the median distance to all of the processed points. The left
child points to the subtree containing all of the points whose distance to the vantage
point is less than the median, while the right child points to the one containing all of
the points greater or equal than the median.

The pseudocode to build a Vantage Point Tree in O(n log n) running time can be
found in Algorithm 1:

Algorithm 1 VpTree Creation

1: function MAKEVPTREE(S)

2 if S == @ then

3 return null

4 node < new Node()

5: node.vantagePoint < S.first()

6 node.y < Median,cgs distance(vantagePoint, x)

7 L < {x € S — {p}|distance(vantagePoint, x) < pu}
8 R < {x € S — {p}|distance(vantagePoint, x) > u}
9: node.right = makeVpTree(R)

10: node.left = makeVpTree(L)

11: return node

Searching for the nearest neighbors in a Vantage Point Tree is similar to searching in
balanced binaries trees, since a Vantage Point Tree is approximately balanced due to the
way the tree is built. This means that the running time of each nearest neighbor query
lies approximately in O(log n). Therefore, the running time of searching k nearest
neighbors lies approximately in O(k log n).

During the search, we keep track of the distance to the farthest point so far found
in a variable named 7. For every node visited, we calculate the distance d from our
target point g to the vantage point of the node and add it to a list. If 4 < 7, we add the
vantage point to our list and update the value of 7. If there are already k points in our
list we delete the one that is farthest away from g.

We compare now the d to the radius y of the ball which partitions the space. If d < p
we will look first on the left child else we will look first on the right and we will repeat
the same process.

2 Theoretical Background

It could be however, that there might be a nearest neighbor on the opposing child. In
the case that we have looked on the left child first, if T +d < u then it means there is
no way that another nearest neighbor exists outside the hypersphere and therefore we
skip the right child. A similar principle applies when looking on the right child first.
The difference lies in that the condition to be fulfilled is T —d > p. Otherwise, we must
continue looking on the corresponding opposite child and repeat recursively the same
process. The pseudocode for the search algorithm can be found in Algorithm 2:

Algorithm 2 VpTree Nearest Neighbor Search

1: procedure SEARCH(node, target, nearestNeighbors, k, T)
2 if node == null then

3 return

4 d : = distance(target, node.vantagePoint)

5: if d <7 then

6 T+ d

7 if nearestNeighbors.size() > k then

8 nearestNeighbors.popFarthestNeighbor()

9

nearestNeighbor.insert(node.vantagePoint)

10: if d < node.u then © If inside the ball we force the search on the left child first
11: if d-t < node.y then

12: searchNeighbor(node.left, target, nearestNeighbors, k, 7)

13: if d+7 > node.y then

14: searchNeighbor(node.right, target, nearestNeighbors, k, T)

15: else > If outside the ball we force the search on the right child first
16: if d+7 > node.y then

17: searchNeighbor(node.right, target, nearestNeighbors, k)

18: if d-t < node.y then

19: searchNeighbor(node.left, target, nearestNeighbors, k)

2.2.3 Hierarchical Clustering

One aspect of Peherstorfer’s Sparse Grid based Clustering Algorithm, is the that the
number of clusters is determined by the hyperparameters, these being the number of
nearest neighbors k and the minimum density threshold €. As remarked by Fischer at
[8], one obvious drawback of this Flat Clustering Algorithm is that the best minimum
density threshold is actually a data dependent parameter. To overcome this issue,
Fischer proposes an augmentation to Peherstorfer’s Clustering Algorithm, which results

2 Theoretical Background

in the creation of a hierarchy of clusters for different values of €. This augmentation
was originally designed in the context of identifying related topics in recommendation
systems, it can however be easily extended to a much more general case.

Fischer’s augmentation consists of an iterative process. We run Peherstorfer’s Clus-
tering Algorithm in an #ngps number of steps, while varying the minimum density
threshold e from a range defined by [0in, Pmax| and also while increasing the threshold
each step by eg.p. For all of these iterations, we keep a fixed value of k, although
one must be aware that this parameter also plays a significant role in the clusters’
identification. For each iteration, we store the clusters in a tree-like structure and
check if from a previous cluster new clusters are generated. These are appended as
children to the cluster whom they belonged in a previous iteration. If these children
are significantly dissimilar to their parent cluster, the parent cluster is then deleted
and its children take its place in the hierarchy. This dissimilarity is measured as the
ratio of the connectivity of the child cluster with its parent and the connectivity of the
points of the parent cluster. To determine if a cluster should be replaced or not, Fischer
defines the split threshold t. A ratio under this threshold indicates that the child is
sufficiently dissimilar to its parent, and therefore, a replace operation is executed. For
higher density thresholds, this will converge to a certain hierarchical structure, which
in turn can be analyzed to define the best minimum density threshold which will yield
the best clustering. Note that points which do not meet the minimum density threshold
Pmin OF Which are not assigned to a final cluster are labeled as noise. The pseudocode
for the hierarchal cluster generation routine and the cluster split routine as stated by
Fischer at [8] can be found in Algorithms 3 and 4, respectively.

2 Theoretical Background

Algorithm 3 Fischer’s Hierarchical Cluster Generation

1: procedure CLUSTER_HIERARCHICAL(S, k, 1steps)
20 pmin < min(p(S)) > p(S) is the Sparse Grid Based Density Function applied
over the data set S.

3 Pmax < max(p(S))
4: Estep < W
5: compute Gy
6: Gk,pmm +— Gy
7 fori =1 to nseps do
8: € < Pmin +1- Estep
9: Calculate G, and get the set of connected components C
10: updatedClusters < @
11: for C; € Cdo
12: point < ¢ € C;
13: parent < point.getCluster()
14: parent.add_Child(C;)
15: updatedClusters <— updated U parent
16: for parent in updatedClusters do
17: if parent.num_children > 1 then
18: if split(parent, Gk,efesrep) then
19: parent.get_parent().add_children(parent.get_children())
20: parent.get_parent().remove_child(parent)
21: else
22: parent.remove_children()

10

2 Theoretical Background

Algorithm 4 Fischer’s Cluster Split Routine

1: function spLIT_cHILD(parent, child, G = (V,E))
2 V), < parent.nodes()

3 V. < child.nodes()

4 connections_parent < |{e = {i,j} € E,Vi € V,, ,Vj € V.}|
5 max_connections_parent < 3|V,|(|V,]| — 1)
6

7

8

9

connections_parent
max_connections_parent

connections_child_parent < [{e = {i,j} € E,Vi,j € V, }|
max_connections_child_parent|V;|(|V,| — |V¢|)

connectivity_parent <

connections_child_parent
max_connections_child_parent
connectivity_child_parent ¢

connectivity_parent

connectivity_child_parent <

10: return

1: function spLIT_cLUSTER(cluster, child, G = (V,E))
2 for child in cluster.children() do

3: if split_child(cluster, child, G) then

4: return True

5 return False

2.2.4 Clustering Quality

Assessing clustering quality is not a straightforward task as with other Machine
Learning Algorithms, like Classification or Regression, since one does not know a
priori the real number of clusters found within the data. Different frameworks and
schemes have been throughly studied and developed in the past [2] [14] [25] in order to
determine cluster quality measures which indicate if a given clustering is adequate.

For the purpose of this thesis we will use the terms measure and metric as synonyms.
Formally, a clustering quality measure is a function that maps pairs of the form
(dataset, clustering) to some ordered set (the set of non-negative real numbers for
example), so that the values reflect how good is that specific clustering [2]. Current
metrics may follow one of these three approaches when assessing the quality of a
clustering:

e External validity criteria: Results are validated against pre-specified clustering
structures [15]. In other words, our data has previously been labeled with a
cluster class to which we can compare the clustering against.

e Relative validity criteria: Results are validated against others generated by some
other clustering algorithm [25].

11

2 Theoretical Background

e Internal validity criteria: Quality is validated in terms of measures that involve
the data set itself [14]. The measures can be, but are not limited to, intra cluster

measures, inter cluster measures, centroid based measures and mixed measures
[25].

For the purpose of our implementation, we have selected the following clustering
evaluation metrics:

e Fowlkes-Mallows Index: This metric was introduced as a tool to measure the
similarity of two hierarchical clusterings C and K [9], so it can be considered that
this measure is based on the relative validity criteria. The metric, defined as By, is
derived from the matching matrix M whose elements m;; represent the matching
entries in both clusterings. In other words, element m;; represents the number of
entries belonging to cluster i € C and cluster j € K.

The metric is calculated as:

Tk
B, = 2.19
k B.0; (2.19)
where
| K|
Te=Y) my—n (2.20)
i=1j=1
Il K|
Pe=Y () mij)?—n (2.21)
i=1 j=1
K| c|
Q=Y (Y mi)?*—n (2.22)
j=1 i=1

The final score lies in the range [0, 1], with 1 indicating a perfect matching and 0
no match at all.

e V-Measure : This is a metric based on the external validity criteria. It is an
entropy based metric which explicitly measures how successfully the criteria of
homogeneity and completeness have been satisfied [30]. Homogeneity refers
to the condition that a clustering should assign only those data points that are
members of a single class to a single cluster. In other words, a cluster should
contain points of only one class. Completeness refers to the condition that a

12

2 Theoretical Background

clustering should assign all of the data points that are member of a single class
to a single cluster. In other words, all of the points of a given class should be
assigned to only one cluster.

Given the clustering K, the set of predefined labels C, the number of datapoints
N and a. as the number of points in cluster k € K with predefined label ¢ € C,
the V-Measure is obtained as follows:

The homogeneity score is calculated through the following entropy formulas:

1 if H(C,K)=0
11— (%H)O else (2.23)
where
K| |C] mn
H(C|K) = Z Z log \T (2.24)
=1c=1 ZC 1 Ck
IC| Z|K| a Z a
_ k=1 “ck k=1 Yck
H(C) = C; N log - (2.25)

The completeness score is calculated through the following entropy formulas:

B 1 if H(K,C)=0 06
‘T 1- (I(<I|<():) else (2.26)
where
cl X, k du
=li= k=1 “ck
K] Z\CI

— k ZC 1 aCk

H(K)=-)_ N o8 == (2.28)

k=1

The metric is computed as the harmonic mean of distinct homogeneity and
completeness scores [30]

_(14p)-h-c
Vo= G te (2.29)

13

2 Theoretical Background

The B parameter is used to indicate the weight of the homogeneity and com-
pleteness score. Values greater than 1 favor the completeness score, while values
less than 1 favor the homogeneity score. For the purpose of our implementation,
both scores are weighted equally. The final score lies in the range of [0, 1] with 1
indicating a perfect clustering.

Calinksi-Harabasz Index: This is a metric based on the internal validity criteria.
It is a variance ratio criterion [5] which measures the quality of a cluster in a
similar way in which the F-statistic does when measuring the quality of a fitted
regression model.

For N data points, k clusters and clustering C, the Calinski-Harabasz Index is
defined as:

_ N-k BGSS
~ k-1 WGSS

where BGSS and WGSS represent the between-cluster dispersion and within-
cluster dispersion values respectively.

CH (2.30)

The between cluster dispersion measures the dispersion of the clusters” centroids
and is calculated as:
BGSS = tr(By) (2.31)

where By is a weighted covariance matrix of the data set containing the cluster
centroids c;, with mean cg (this being the center of the data). The weights are
given by the number of data points 7, belonging to each cluster

k
Bi =) ng(cy —ce)(cq —c)’ (2.32)
q=1

The within cluster dispersion measures the dispersion of the data points in each
cluster and is calculated as:
WGSS = tr(Wg) (2.33)

where W is the sum of the covariance matrices of each cluster C;, with the mean
c; being the centroid of each cluster.

k
Wy = Z Z (x; — Cq)(xi - Cq)t (2.34)

q:1 inqu

The score lies in the range of [0, o) with higher values indicating a better cluster-
ing.

14

2 Theoretical Background

e David-Bouldin Index: This is a metric based on the internal validity criteria. This
metric is used to measure the similarity of clusters [6]. The less similar these
clusters are, the better the clustering obtained.

This metric is a function of the ratio of the sum of within-cluster scatter to
between-cluster separation [24]. Given a number of clusters K, the David-Bouldin
Index is defined as:

1 K
DB = E 1221 maxl-#]-Rij (235)
where
Si+S;
Rj=— (2.36)

with §; representing the scatter of the cluster C; with centroid z;

1

%= ICi

Yo | — zil | (2.37)

xeC;

and d;; the distance between clusters C; and C; with centroids z; and z; respectively

di]' = ||Zi — Z]H (238)

This score lies in the range [0, c0) with 0 representing the best possible clustering.

2.3 The SG++ Datamining Pipeline

The SG++ Toolbox is a universal open-source toolbox written in C++ [31], which
provides the necessary interfaces needed to utilize Sparse Grid Methods with minimum
effort. The toolbox is comprised of several different components each specifically
developed to solve a specific problem like Partial Differential Equation Solvers, Function
Interpolation, Uncertainty Quantification, etc [1].

The SG++ Datamining Pipeline is the component of the SG++ Toolbox in charge
of providing developers the interfaces to train, execute, evaluate and visualize Sparse
Grid based Machine Learning Methods. Currently, the pipeline gives support to four
different Machine Learning Models: Regression, Density Estimation, Classification [11]
and Clustering, the last being the one developed in this thesis.

The pipeline structure is comprised of the following modules:

15

2 Theoretical Background

e Datasource: Loads the data from a given data source and feeds it to the fitter to
train the model.

e Fitter: Trains the model itself through Sparse Grid Methods. The training is done
in an online manner across different batches of data and in multiple epochs if
configured so.

e Scorer: Delivers a metric which measure the quality of a given model. The type
of metric used will depend on the model trained and the configuration given by
the user.

e Hyperparameter Optimizer [19]: Obtains the optimal training hyperparameters
for a model through methods like Bayesian Optimization.

e Visualization [1]: Delivers an output in either csv or JSON format, which can
be later be used as the input of a graphic library in order for the end user to
visualize their trained models and data. The JSON output is designed so that it
can be processed by the plotly library [18] to generate a graphical output.

e PostProcessing: Module developed in this thesis to do extra processing on the
models which are either not directly related to sparse grid numerical techniques
or which are incompatible with the online training procedure of the fitter.

Additionally, the pipeline is configured through a configuration file following the
JSON format. This file specifies where the data is to be obtained, the parameters to
train and to evaluate the model and the parameters to run the visualization module. A
complete list of configurations can be found at [32].

16

3 Implementation

3.1 Clustering Configurations

We can deduce from sections 2.2.1 and 2.2.3, that there exist five configurable hyper-
parameters that need to be given in order to train a clustering model. These are the
number of nearest neighbors, the minimum and maximum density threshold for graph
pruning, the split threshold to determine if a cluster should be replaced and the number
of steps in which to run Fischer’s Algorithm to generate the Hierarchical Clustering.

All of these configurations are to be given in the JSON configuration file as an
extra dictionary with the key "clustering" within the fitter configuration dictionary.
Additionally, two extra parameters were implemented for the purpose of configuring
the storing of information related to the Cluster Hierarchy. Table 3.1 shows a general
description of the implemented parameters:

Attribute Name Attribute Type Valid value Default Value
range
noNearestNeighbors Positive Integer [1,00) 10
minDensityThreshold Float [0,1] 0.1
maxDensityThreshold Float [0,1] 0.5
splitThreshold Float [0,1] 0.4
steps Positive Integer [1,inf) 10
storeHierarchy Boolean Irue or False
False
outputDirectory String AT\y valid The exe'acutable file’s
directory directory

Table 3.1: Clustering Configuration Parameters

Special remarks have to be mentioned regarding the density thresholds. Density
Estimation Models generated by the pipeline, once evaluated, return values way
outside the range [0,1], even negative values. Since the end user will not know a

17

3 Implementation

priori the range of values delivered by the Density Estimation model, it was decided
that the density threshold parameters accept only values in the range [0,1]. When
evaluating the densities and pruning the graph, these values will be interpreted as
the percentage of the maximum density threshold value delivered by the Density
Estimation model. However, data points with negative density values will always be
deleted in the pruning step. Note that the Flat Clustering Algorithm can be run by
setting both density thresholds to the same value and the number of steps to 1, resulting
in a Hierarchy Tree of only one level.

Regarding the default values for the density thresholds, these were chosen due to the
fact that the range defined by them is the one most likely to contain the most significant
information related to the clustering. Densities lower than 10% of the maximum density
are highly likely to describe only noisy data, while analysis done on extremely high
densities (more than the half of the maximum density) may result in extremely small
clusters and therefore, in overfitting. The default value for the split threshold is the
one used by Fischer at [8] where it was shown that this value delivers good results in
general.

3.2 Vantage Point Tree Implementation

VpTree

-root: VpNode
-storedltems: DataMatrix

+VpTree(matrix: DataMatrix)

+getindexedKeyFromPoint(point: DataVector)

+getNearestNeighbors(target: DataVector, noNearestNeighbors: size_t): priority_gqueue<VpHeapltem>

-sortByDistances(index1: size_t, index2: size_t)

-buildRecursively(index1: size_t, index2: size_t): VpNode

-searchRecursively(node: VpNode, target: DataVector, nearestNeighbors : priority_queue<VpHeapltem>, noNearestNeighbors: size_t, tau: double)

77
1
VpHeapltem VpNode
+index: size_t +threshold: double
+distance: double +index: size_t
+VpHeapltem(index: size_t, distance: double) :Irégﬁht\:lvlzl;lgge
+operator<(other: VpHeapltem): bool VP +0...2

Figure 3.1: Vantage Point Tree Implementation Design

18

3 Implementation

Figure 3.1 shows a summarized version of the implemented classes for the Vantage
Point Tree. Our Vantage Point Tree implementation is largely based on the one created
by Steve Hanov’s at [16], with changes made to adapt ourselves to the structure of the
SG++ Datamining Pipeline and to make use of the data structures provided by the
SG++ Toolbox. The VpNode class is our basic structure unit to create the tree, while
the VpTree contains the reference to the root of the tree and gives access to the rest of
the structure.

One can notice that the VpNode class contains no attribute to store the coordinates
of the Vantage Point. All of the Vantage Points will be stored instead inside the VpTree
class using the DataMatrix attribute storedItems. The attribute index of each VpNode
object will point to the row of this matrix where the corresponding Vantage Point is
stored. Additionally, the value of this index attribute will be propagated to the Graph
and HierarchyTree classes to maintain constant and unique references to all of the
points used during the training of the model.

The creation of the tree is implemented in the constructor of the VpTree class and
the recursive method buildRecursively. The former triggers the recursive call while the
latter implements the pseudocode stated in Algorithm 1. There is however a small
difference in our implementation. The method buildRecursively receives the indexes
which describe the range of rows of the storedItems attribute to process in the current
call. In every call, the points within this range are reordered based on their distances
to the vantage point. We split the range into two subranges of equal length, both
representing respectively the indexes of the points which were ordered before and after
the point with the median distance to the Vantage Point. The recursive call is then
made by calling the method buildRecursively twice with both subranges respectively
until the length of the subrange equals to 1. This was done in order to save memory
space during the construction of the tree and to index the data as to easily identify it
through the whole training of the model.

The search for the k nearest neighbors is implemented with a similar execution
structure in the methods getNearestNeighbors and searchRecursivey, the former being the
trigger of the process and the latter being the recursive algorithm defined in Algorithm
2. One detail which can be observed in both methods is the use of a priority queue
instead of a list in order to store the current nearest neighbors found. This was decided
in order to speed up the update of the current nearest neighbors. Deletion in a list is in
the worst case in O(n), while in a priority queue is in O(1) if the queue is defined in a
proper way. Additionally, a priority queue can order the elements automatically every
time a new element is inserted and does it in O(log 1) time.

To make use of the priority queue, the VpHeapltem class was implemented. This
class contains the essential information to identify a nearest neighbor inside the Vantage
Point Tree, namely the index pointing to the row in the attribute storedltems of the VpTree

19

3 Implementation

class and the distance to the target, whose nearest neighbors are being searched. In order
for the priority queue to order the elements by the distance attribute, the operator “<”
had to be defined for this class in a way that the order of a VpHeapltem is determined
by the value of the distance attribute.

Finally, a search method named getIndexedKeyFromPoint was added in our VpTree
class in order to recover the index of a given data point. This was implemented mainly
for evaluation purposes, since the index given by the VpTree class will also indicate the
final label assigned to this data point in the the HierarchyTree class. The way the tree is
built will result in an approximately balanced structure. In consequence, our search
will remain approximately in O(log n).

3.3 Graph Implementation

Graph

-graph: UnidrectedGraph
-pointerTolndex: map<UnidrectedGraph::vertex_descriptor, size_t>
-indexToPointer: map<size_t, UnidrectedGraph::vertex_descriptor>
-deletedVertices: list<size_t>

+Graph(vertices: size_t)
+Graph(inout rhs: Graph)

+addVertex()

+addVertex(vertex: size_t)

+removeVertex(vertex: size_t)

+addEdge(vertexl: size_t, vertex2: size_t)

+deleteEdge(vertexl: size_t, vertex2: size_t)

+createEdges(vertex: size_t, nearestNeighbors: priority_queue<VpHeapltem>)
+getConnectedComponents(inout componentMap: map<UnidrectedGraph::vertex_descriptor, size_t>): size_t
+getindex(vertexDescriptor: UndirectedGraph::vertex_descriptor): size_t
+getVertexDescriptor(vertex: size_t): UndirectedGraph::vertex_descriptor

Figure 3.2: Graph Implementation Design

For the graph implementation we used some functionalities provided by the Boost
Graph Library [35]. These include, but are not limited to, interfaces to define all graph
structure operations, a plethora of graph algorithms like the connected component
detection and the possibility to customize properties for vertices and edges.

The Boost Graph Library offers three different container types for vertex and edge
storage. These are vectors, lists and sets containers. Using one or the other has an
impact on the performance of certain operations and algorithms. We decided that the
best containers for our graph implementation would be a list container for the vertices

20

3 Implementation

and a set container for the edges, due to the following reasons:

e Deletion of vertices using list containers has a constant amortized running time
in comparison to vector containers, whose deletion running time is in O(V + E).

e Iterators of vertices using list containers don’t get invalided after deleting vertices.

e Set containers automatically detect bidirectional edges between two vertices in
undirected graphs, and do not add them if an edge with the same endpoints
already exists. This saves memory consumption when creating the connections.

All of the graph algorithms needed for the clustering model have been implemented
in our Graph class, whose summarized design can be seen in Figure 3.2. The attribute
graph represents the Boost Graph instance. The methods addVertex, removeVertex, addEdge,
deleteEdge and getConnectedComponents are actually wrapper methods, which run the
equivalent Boost Graph algorithms on the graph attribute every time they are called.
The method createEdges receives the results of the nearest neighbors’” query executed by
the VpTree class and inserts the nearest neighbors” connections.

One particularity in our design is the use of two map attributes, indexToPointer and
pointerTolndex. The former maps the index of a certain vertex to a memory location in the
list container, while the latter delivers the inverse mapping. These were implemented
due to the fact that elements of a list in C++ do not have a random access operator
and can only be accessed through the memory location of the element. Both maps
are built when creating the graph using the indexes given by the VpTree class and are
automatically updated every time a new point is added or deleted. External classes have
access to both maps through the methods getIndex and getVertexDescriptor respectively.

Each graph will also keep track of the points which were previously deleted, through
a list containing the indexes of the previously deleted vertices. We need to rebuild the
indexes again when copying a graph, and this lists contains the information of those
who must be skipped so that the references to the points are maintained correctly.

21

3 Implementation

3.4 Hierarchical Clustering Implementation

HierarchyTree

-root: ClusterNode

+HierarchyTree(vertices: numberPoints)

+getRoot(): ClusterNode

+getMostSpecificCluster(vertexindex: size_t): ClusterNode
+getMostSpecificClusterAtLevel(vertexindex: size_t, level: size_t): ClusterNode*
+postProcessing()

+evaluateClustering(inout results: DataVector)
+evaluateClusteringAtLevel(inout results: DataVector, level: size_t)
+storeHierarchy(outputDirectory: string)

ClusterNode

-clusterLabel: int

-density: double

-level: size_t
-vertexindexes: list<size_t>
-children: list<ClusterNode>
-parent: ClusterNode

+ClusterNode()

+ClusterNode(clusterLabel: int, vertexindexes: list<size_t>, density: double)
+removeChild(child: ClusterNode)

+removeChildren()

+addChild(child: ClusterNode)

+addChildren(children: list<ClusterNode>)

+split(graph: Graph, densityThreshold: double): bool

+splitChild(child: ClusterNode, graph: Graph, densityThreshold: double): bool

Figure 3.3: Hierarchical Clustering Tree Implementation Design

Figure 3.3 shows the summarized design of the data structure used to process and store
the hierarchy of clusters obtained during the training of the model.

The ClusterNode class represents one node inside the Hierarchy Tree. Apart from
the list of vertex indexes and the references to its children and parent nodes, additional
attributes have been added to store the information of the cluster label assigned, the
density threshold at which this node was created and the level in the tree in which the
node was inserted. Fischer’s splitting routine described in Algorithm 4 is implemented
in the methods split and splitChild. The former can be subject to further parallelization
in order to speed up the hierarchy generation. Of all the children, only one needs to
fulfill the split condition in order for the node to be replaced. By parallelizing the split
method, concurrent executions of the splitChild can be run and if one of them fulfills

22

3 Implementation

the split condition, the others can be interrupted and the process can continue.

Similarly to the VpTree class, the HierarchyTree class contains the reference to the root
of the tree, giving it a unique access point for traversal. Since the Hierarchical Tree is
itself a representation of the final clustering, additional methods were implemented for
evaluation purposes. These methods are evaluateClustering and evaluateClusteringAtLevel.
Both deliver the clustering labels inside a DataVector object, following the indexation
given by the VpTree. The difference between these two methods lies that the former
delivers the label found at the deepest level of the tree, while the latter delivers the
labels at the given level.

The method postProcessing is a special method used to assign unique cluster labels to
each node after the hierarchy of clusters has been completely processed. Per default,
the root will have the label —1, representing all the points classified as noise. In practice
this means that all points that are found in the root, but not in subsequent levels are
assigned as final label the noise label, which means that either they didn’t satisfy the
minimum density threshold specified by the user or that a node in the first level was
replaced by its children in a subsequent iteration.

Finally, the method storeHierarchy will store the general information of the Hierarchy
Tree in JSON format, for the purpose of saving it and for further analysis.

23

3 Implementation

3.5 Fitter Implementation

ModelFittingBase

#config: FitterConfiguration
#solver: SLESolver

+fit(dataset: Dataset)

+adapt()

+update(dataset: Dataset)

+evaluate(samples: DataMatrix, results: DataVector)
+reset()

ModelFittingClustering

-densityEstimationModel: ModelFittingDensityEstimation
-vpTree: VpTree

-graph: Graph

-prunedGraphPreviousStep: Graph

ModelFittingDensityEstimation -hierarchy: HierarchyTree
+fit(dataset: Dataset)
+fit(dataset: Dataset) +adapt()
+adapt() —<| +update(dataset: Dataset)
+update(dataset: Dataset) +evaluate(samples: DataMatrix, results: DataVector)
+evaluate(samples: DataMatrix, results: DataVector) +reset()
+reset() +initializeHierarchyTree()

+copyPreviousGraphStep()

+generateSimiliarityGraph()

+applyDensity Thresholds(densityThreshold: double)

+detectComponentsAndLabel(clusterMap: map<UndirectedGraph::vertex_descriptor, size_t>)
+getHierarchy(clusterMap: map<UndirectedGraph::vertex_descriptor, size_t>, densityThreshold: double)
+storeHierarchyTree()

Figure 3.4: Fitter Implementation Design

We have based ourselves on the implementation of the fitter for Classification Models
at [11] to create the one for Clustering Models. Figure 3.4 shows a summarized design
containing the main elements of our fitter implementation inside the ModelFittingClus-
tering class. Similarly to the fitter for Classification Models, our model extends from
the abstract class ModelFittingBase and contains an attribute densityEstimationModel of
the class ModelFittingDensityEstimation, which is the one used to train and to evaluate
the Density Estimation model described in Section 2.2.1. Additional attributes relevant
to the fitter include:

e The vpTree attribute of the VpTree class used to store our Vantage Point Tree and
to do nearest neighbors’ queries.

e The graph and prunedGraphPreviousStep attributes of the Graph class. The former
contains the graph in its latest status during the generation of the hierarchy and
the latter contains a copy of graph at the end of the previous iteration step.

o The hierarchyTree attribute of the HierarchyTree class used to store the Hierarchical
Clustering from Fischer’s Algorithm described in Section 2.2.3

24

3 Implementation

Regarding the extended methods fit, adapt, update and reset, they will execute the
method of the same name of the attribute densityEstimationModel. The behavior of the
method evaluate will depend on the current status of the training of the model. If the
Clustering Hierarchy has not been generated, the method will return the density values
of the Density Estimation model, else, the method will return the cluster labels found
inside the Hierarchy Tree. To evaluate the cluster label of a given data point, we first
search in the Vantage Point Tree to obtain its corresponding index. If the point is not
found, the noise label (—1 in our case) will be assigned, else, we search in the Hierarchy
Tree the cluster at the deepest level of the tree to which the point belongs. Once found,
we obtain the label corresponding to this cluster and return it.

The rest of the methods will be executed inside the Post Processing Module. These
encompass all of the steps required to generate the Hierarchical Clustering using
Fischer’s Algorithm. These are:

o initializeHierarchyTree: Method used to initialize the hierarchyTree attribute, by
creating the root of the tree.

e copyPreviousGraphStep: Method used to copy the content of the graph attribute
into the prunedGraphPreviousStep attribute at the end of every iteration.

o generateSimilarityGraph: Method which builds the Vantage Point Tree inside the
vpTree attribute, does the nearest neighbors” queries and creates the nearest neigh-
bor graph inside the graph attribute. This method can be subject to parallelization
since the nearest neighbors’ queries for each point are independent of each other.

o applyDensityThresholds: Method which evaluates the trained Density Estimation
model and deletes from the graph attribute the vertices associated to the data
points which do not meet the specified minimum density threshold.

o detectComponentsAndLabel: Method used to trigger the connected components
algorithm of the graph attribute and to assign the corresponding labels to the
vertices.

e getHierarchy: Method implementing the two inner loops of Fischer’s Algorithm
described in Algorithm 3 (lines 11 to 22) to process and update the Hierarchical
Clustering. The latter part of this method can be parallelized by running the split
routine concurrently in all of the updated Cluster Nodes in order to generate the
hierarchy faster.

e storeHierarchyTree: Method used to store the info of the Hierarchy Tree by calling
the method storeHierarchy of the hierarchyTree attribute.

25

3 Implementation

3.6 Metrics Implementation

Accuracy

+Accuracy()

+measure(predictedValues: DataVector, trueValues:
DataVector, model: ModelFittingBase, testDataset:
Dataset): double
+measureLowerlsBetter(predictedValues:
DataVector, trueValues: DataVector, model:
ModelFittingBase, testDataset: Dataset): double

;

Metric
+Metric()
+measure(predictedValues: DataVector,
MSE trueValues: DataVector, model: ModelFittingBase,

testDataset: Dataset): double
+MSE() i +measureLowerlsBetter(predictedValues:
+measure(predictedValues: DataVector, |___——DataVector, trueValues: DataVector, model:
trueValues: DataVector, model: ModelFittingBase, testDataset: Dataset): double
ModelFittingBase, testDataset: Dataset): double +measurePostProcessing(model:
+measureLowerlsBetter(predictedValues: ModelFittingBase, datasource: Datasource): double
DataVector, trueValues: DataVector, model:
ModelFittingBase, testDataset: Dataset): double

\
ClusteringMetric
-mse: MSE

+ClusteringMetric()
VMeasure +measure(predictedValues: DataVector, trueValues:
+VMeasure() DataVector, model: ModelFittingBase, testDataset:
+measurePostProcessing(model: ModelFittingBase, ™| Dataset): double)
datasource: Datasource): double +measureLowerlsBetter(predictedValues:
DataVector, trueValues: DataVector, model:
ModelFittingBase, testDataset: Dataset): double
+measurePostProcessing(model: ModelFittingBase,
datasource: Datasource): double

DavidBouldin

+DavidBouldin()
+measurePostProcessing(model: ModelFittingBase,
datasource: Datasource): double

FowlkesMallows CalinskiHarabasz
+FowlkesMallows() +CalinskiHarabasz()
+measurePostProcessing(model: ModelFittingBase, | |+measurePostProcessing(model:
datasource: Datasource): double ModelFittingBase, datasource: Datasource): double

Figure 3.5: Implementation Design of the Scorer Module with the new structure for the
Clustering Metrics

26

3 Implementation

The implementation of the metrics to evaluate the clustering of our method required
certain changes to be made in the structure of the pipeline. In comparison to the metrics
already implemented for the other models, clustering metrics require the data set as a
whole for their calculation. Additionally, the metric must be calculated once the whole
training process is over. However, the quality of the Density Estimation model must be
also evaluated during the training.

In order to fulfill both requirements, we have created a new abstract class called
ClusteringMetric, from where all of the classes for the metrics described in section 2.2.4
are derived. Figure 3.5 shows a summarized version of the design. This class contains
an attribute called mse of the MSE (Mean Squared Error) class. During the online
training part, the methods measure and measureLowerIsBetter of the ClusteringMetric
class will call the methods of the same name of the mse attribute in order to evaluate
the quality of our Density Estimation model.

The method measurePostProcessing will be the one called outside the online component
of the pipeline and will deliver the final score for the clustering itself. To keep the
structure of the Scorer Module, the measurePostProcessing method was also added in
the classes of the metrics used to evaluate other models, however its calling will only
execute the measure method of the corresponding metric.

A special remark has to be made about the handling of noise when calculating the
value of a metric. Noise is not a cluster per se, however we consider it as a one for
quality measurement purposes without generating misleading results. In the case of
the Fowlkes-Mallows Index and the V-Measure, the predefined labels can also contain
noise labels to compare against.

In the case of the Calinski-Harabasz Index, noise is naturally penalized if we consider
it as a separate cluster. The bigger the set of noisy points is, the smaller the value of the
in between cluster dispersion will be. This occurs due to the fact that the centroid of
the noisy points will be closer to the centroid of the whole dataset and therefore, the
component of the variance will be smaller. This will cancel the large weight given by
the number of noisy points and will result in a small between cluster dispersion value
and therefore, a smaller score.

Something similar happens in the case of the David-Bouldin Index. If the noise
points are irregularly distributed through all over the data set, the similarity measures
between the noise and the real clusters will increase, penalizing the score. On the other
hand, if the noisy points are concentrated in just one single area (a possible result when
clusters are not dense enough), then the similarity with the real clusters will decrease,
improving the score.

27

3 Implementation

3.7 Visualization Implementation

Visualizer

-config: VisualizerConfiguration

+runVisualization(model: ModelFittingBase, dataSource: DataSource, epoch: size_t,
fold: size_t, batch: size_t)

+runPostProcessingVisualization(model: ModelFittingBase, dataSource:
DataSource, fold: size_t)

#storeScatterPlotJson(matrix: DataMatrix, model: ModelFittingBase,
currentDirectory: String)

#storeCutsJson(matrix: DataMatrix, indexes: vector<size_t>, varDim: size_t,
filePath: String)

#storeCutsJson(matrix: DataMatrix, filePath: String)

#storeHeatmapJson(matrix: DataMatrix, model: ModelFittingBase, indexes:
vector<size_t>, varDim1: size_t, varDim2: size_t, filePath: String)
#storeHeatmapJson(matrix: DataMatrix, model: ModelFittingBase, filePath: String)
+runTsne(originalData DataMatrix, compressedData: DataMatrix)
+getHeatmap(model: ModelFittingBase, currentDirectory: String, matrix: DataMatrix,
nDimensions: size_t)

+getLinearCuts(model: ModelFittingBase, currentDirectory: String, matrix:
DataMatrix, nDimensions: size_t)

/ N

VisualizerDensityEstimation VisualizerClustering

+VisualizerDensityEstimation(config: VisualizerConfiguration) ~visualizerDE: VisualizerDensityEstimation

+runVisualization(model: ModelFittingBase, dataSource: DataSource, +VisualizerClustering(config: VisualizerConfiguration)

epoch: size_t, fold: size_t, batch: size_t) +runVisualization(model: ModelFittingBase, dataSource: DataSource,
+runPostProcessingVisualization(model: ModelFittingBase, dataSource: epoch: size_t, fold: size_t, batch: size_t)

DataSource, fold: size_t) +runPostProcessingVisualization(model: ModelFittingBase, dataSource:
#storeGrid(model: ModelFittingBase, currentDirectory: String) DataSource, fold: size_t)

#storeScatterPlotJson(matrix: DataMatrix, model: ModelFittingBase, #storeScatterPlotJson(matrix: DataMatrix, model: ModelFittingBase,
currentDirectory: String) currentDirectory: String)

#storeCutsJson(matrix: DataMatrix, indexes: vector<size_t>, varDim: - -getDensityGraphPlot(matrix: DataMatrix, model: ModelFittingClustering,
size_t, filePath: String) currentDirectory: String)

#storeCutsJson(matrix: DataMatrix, filePath: String) -getHierarchyAnimation(matrix: DataMatrix, model:
#storeHeatmapJson(matrix: DataMatrix, model: ModelFittingBase, ModelFittingClustering, currentDirectory: String)

indexes: vector<size_t>, varDim1: size_t, varDim2: size_t, filePath: String) -storeHierarchyCsv(matrix: DataMatrix, model: ModelFittingClustering,
#storeHeatmapJson(matrix: DataMatrix, model: ModelFittingBase, currentDirectory: String)

filePath: String)

Figure 3.6: Implementation Design of the Visualization Module for Clustering Models

Regarding the Visualization Module, a new class called VisualizerClustering was
created to visualize the Clustering Models generated by the pipeline. The summarized
design of this class is shown in Figure 3.6. Similarly to the ModelFittingClustering
class, the VisualizerClustering class was implemented in a way that it consists of an
online and an offline visualization process.

The online process, implemented in the method runVisualization, is in charge of
generating all of the outputs corresponding to the Density Estimation model. These
outputs are the Density Estimation heatmaps and the linear cuts [1] generated by the
attribute visualizerDE of the class VisualizerDensityEstimation. The offline process
however, is run in a new method called runPostProcessing, which is called by the Post

28

3 Implementation

Processing Module. The addition of this method was also reflected in the rest of the
already implemented models in order to maintain the structure of the module. In those
models, the original scatterplots [1] are now processed by this method instead of being
generated online during the training of the models.

In Clustering Models, the runPostProcessing method delivers two outputs designed to
generate scatterplots. If the data dimensionality is higher than 2, the t-SNE component
of the Visualization Module [1] is first applied to find a 2-dimensional embedding
which can be easily visualized.

The outputs themselves will depend on the format specified. If the format given is
CSV, the first output will be a csv file containing either the points or the embedding
and their evaluated densities, while the second one, generated by the method storeHier-
archyCsv, will deliver another csv file containing either the points or the embedding
with their corresponding labels of the most specific cluster found within the Hierarchy
Tree.

If the format given is JSON, the method getDensityGraphPlot is executed for the first
output and a JSON file is generated. This file purpose is to be used to generate a
scatterplot in plotly consisting of either the data points themselves or the embedding,
with both the evaluated densities from the Density Estimation model and the lines
showing the nearest neighbors” graph connections. For the second output, the method
getHierarchyAnimation is executed and generates a JSON output whose purpose is to
create a dynamic animation plot in plotly, showing the clusters generated at each level,
their corresponding pruned graphs and the clusters generated in the previous level.
This last element was added to easily visualize the parent cluster from where the new
ones are generated. Examples of both of this plots can be seen in Figures 3.7 and 3.8,
respectively.

29

3 Implementation

Graph and Densities

Density value

7

Figure 3.7: Example of a Density Graph visualization output as generated by Plotly

30

3 Implementation

Hierarchichal Clustering

1 Noise
Cluster: 0
Cluster: 1
0.8 Graph
0.6
0.4
[]
[]
0.2 L]
0
0 0.2 0.4 0.6 0.8 1
Level: 1
| |
Level: O Level: 1

Figure 3.8: Example of a Hierarchical Clustering visualization output as generated by
Plotly

31

3 Implementation

3.8 Post Processing Module

PostProcessingLeastSquares

+postProcessing(datasource: DataSource, model:
ModelFittingBase, visualizer: Visualizer, fold: size_t)

PostProcessingClustering

PostProcessingBase

<+H— +postProcessing(datasource: DataSource, model:

+postProcessing(datasource: DataSource, model: ModelFittingBase, visualizer: Visualizer, fold: size_t)

ModelFittingBase, visualizer: Visualizer, fold: size_t)

PostProcessingDensityEstimation PostProcessingClassification
+postProcessing(datasource: DataSource, model: +postProcessing(datasource: DataSource, model:
ModelFittingBase, visualizer: Visualizer, fold: size_t) ModelFittingBase, visualizer: Visualizer, fold: size_t)

Figure 3.9: Post Processing Module Implementation Design

This is a new module implemented for all models in order to run processes which
are not directly related to the online training of Sparse Grid based Machine Learning
Methods. The implementation’s design can be seen in Figure 3.9. So far the module
contains only one method named postProcessing. For Density Estimation, Classification
and Regression Models, this method executes the runPostProcessing method of their
corresponding Visualizer objects.

For Clustering Models, this method implements Fischer’s Algorithm described in
Algorithm 2.2.3, by calling all the related methods of the ModelFittingClustering class
in addition to the runPostProcessing of the VisualizerClustering class. It additionally
stores, if previously configured, the information of the Cluster Hierarchy and the data
points with their respectively assigned cluster labels.

A small modification to Fischer’s Algorithm was added in order to preserve the root
node of our Hierarchy Tree and therefore, a single access point to it. The root will never
be replaced, even if the split criterion is fulfilled. This does not affect the end result and
the root node is useful to identify those points which were ultimately labeled as noise.

32

4 Data sets and Tests

4.1 Data sets” Description

Four different labeled data sets were used in order to test our implementation. Table
4.1 shows a general description of them.

Number of Number of Number of Real
Data Set Name) .
Dimensions Samples Clusters
2 Moon 2 1,000 2
Circles 2 2,000 2
5D Gaussians 5 3,000 3
HTRU2 8 17,898 2

Table 4.1: Data sets’ general description used to test our implementation

The first three data sets were synthetically generated with the help of the scikit-
learn machine learning library in python [27] using the following procedures and
configurations.

e The 2 Moon Data set was generated with the method make_moons of the package
sklearn.datasets (Figure 4.1) while setting the number of samples to 1,000, shuffling
the data and utilizing a Gaussian noise value of 0.05. The class label indicates to
which of the two moons a data point belongs.

e The Circles Data set was generated with the method make_circles of the package
sklearn.datasets (Figure 4.2) while setting the number of samples to 2,000, shuffling
the data, utilizing a Gaussian noise value of 0.05 and a scale factor of 0.3. The
class label indicates to which of the two circles a data point belongs.

e The 5D Gaussians Data set was generated with the method make_blobs of the
package sklearn.datasets (Figure 4.3) while setting the number of samples per
Gaussian to 1,000, the number of features to 5, a cluster standard deviation of 1

33

4 Data sets and Tests

for all Gaussians and the centers of each Gaussian to (0,0,0,0,0), (5,5,5,5,5) and
(=5, —5,—5, =5, —5) respectively. The class label indicates to which of the three
Gaussians a data point belongs.

from sklearn.datasets import make_moons
data, labels = make_moons(n_samples=1000, shuffle=True, 0.05)

Figure 4.1: Code used to generate the 2 Moon Data set using scikit-learn

from sklearn.datasets import make_circle
data, labels = make_circles(n_samples=2000,
shuffle=True, noise=0.05 ,factor=0.3)

Figure 4.2: Code used to generate the Circles Data set using scikit-learn

from sklearn.datasets import make_blobs
data, labels = make_blobs(n_samples=[1000,1000,1000],
centers = [[0,0,0,0,0],[5,5,5,5,5],[-5,-5,-5,-5,-5]11,
n_features=5, cluster_std= [1,1,1])

Figure 4.3: Code used to generate the 5D Gaussians Data set using scikit-learn

The HTRU2 Data set [23] is a publicly available data set within the UCI Machine
Learning Repository [7]. This is an 8-dimensional data set containing measures of
astronomical phenomena, which were gathered, classified and originally presented at
[22]. The class label determines if the phenomenon measured represents a legitimate
pulsar candidate (label 1) or a fake one (label 0). The data is heavily skewed towards the
latter, containing 1,639 data points labeled as legitimate pulsar candidates and 16,259
as fake ones.

All data sets were normalized utilizing a Minimum-Maximum normalization ap-
proach in order for all data points to be contained in an n-dimensional box whose
minimum and maximum dimension boundaries were set to 0.1 and 0.9, respectively.

34

4 Data sets and Tests

4.2 Tests

4.2.1 Description

For the purpose of testing our implementation, two tests were conducted for each of
the data sets described in the previous section. These were:

1. We generated a Hierarchical Clustering using our implementation within the
SG++ Datamining Pipeline over the whole range of possible density values. We
saved the hierarchy meta data file, measured the quality of the final clustering
and generated the visualization plots.

2. With the help of the hierarchy meta data file and the visualization plots of the
previous test, we determined the best density estimation threshold that would
deliver us the clustering that best matched the predefined labels distribution. We
proceeded then to run the Flat Clustering Algorithm while applying this density
threshold. We measured again the quality of our clustering and compared these
results against the previous ones in order to check the improvement in quality.

4.2.2 Running Configurations

To run the first test, the running configurations used for each data set in order to
generate their corresponding Density Estimation Models are described in Table 4.2. The
parameters of the pipeline, specifically the fitter parameters, which are not shown in
this table, were set to the their respectively default values.

Grid . Regularization
Data Set Name Level Batch size Lambda Plots generated
2 Moon 5 1,000 1x10° Scatterplots,
Heatmaps
Circles 7 2,000 1x10° Scatterplots,
Heatmaps
5D Gaussians 4 3,000 1x10° Scatterplots
HTRU2 4 2,000 1x107° Scatterplots

Table 4.2: Specific running configurations for each data set

Regarding the clustering parameters, we set for all data sets a value of 5 to the
number of nearest neighbors and a value of 10 to the number of steps used to generate

35

4 Data sets and Tests

the Hierarchical Clustering. The minimum and maximum density thresholds were set
to 0 and 1 respectively. The chosen split density threshold value chosen was the default
one.

For the Visualization Module, the output selected was JSON in order to easily
generate plots by using the plotly library. In the case of the high dimensional data
sets, the t-SNE configurations used to generate the 2-dimensional embedding were
a perplexity value of 30, a theta value of 0.5, a random seed of 150 and a maximum
number of iterations of 1,000.

For the second test, most of the previous configurations were maintained for all data
sets. The only applied changes were the number of steps, which was set to 1, and the
minimum and maximum density thresholds, which were set to the value obtained from
the analysis of the first test’s results.

Regarding the metrics used to evaluate the clustering, all four implemented metrics
were used in both tests for all data sets.

36

5 Results

5.1 Hierarchical Clustering Run

5.1.1 2 Moon Data set

We first take a look at the Density Estimation model obtained for the 2 Moon Data set,
which is shown in Figure 5.1. From the heatmap, potential subclusters can already be
identified in extremely high density areas inside each of the 2 Moons. Figure 5.2 shows
the nearest neighbors’ graph along with the evaluated densities for each point. Again
the potential subclusters of the 2 Moons can be easily detected along with the linkage
points between them.

Level | # Clusters | # Points in Level Threlzl)leorllcs:lltl}{ange A‘;e::%:ehi?;?ts
0 Unclustered 1,000 N/A N/A
1 2 1,000 0.0 500
2 7 980 0.3-0.4 127.14
3 12 717 0.4-0.8 59.75
4 14 342 0.5-0.7 24.42
5 11 98 0.7-0.9 8.9

Table 5.1: General Description of the Hierarchical Clustering obtained from the 2 Moon
Data set.

Table 5.1 contains a summarized information of the Hierarchical Clustering obtained
from the 2 Moon Data set. Additionally, graphical representations of the Hierarchy are
shown in Figures 5.3, 5.4 and 5.5. We obtained a total of 46 clusters distributed in 5
hierarchical levels. In level 1 (Figure 5.3b), we already obtain a clustering that matches
the predefined labeling of the data set, however, based on our density estimation model,
we know that additional subclusters exists within these ones. These are shown in levels
2, 3 and 4 (Figures 5.4a, 5.4b and 5.5a respectively) and they match approximately
the high density areas of the Density Estimation Heatmap. An interesting fact to
remark is the overlap between the density threshold ranges of levels 3 and 4. This is

37

5 Results

an indicator that clusters originally inserted in level 3 were deleted and substituted
by their corresponding children in level 4. After level 4, the model starts to suffer
from overfitting due to the low number of remaining points after the pruning of the
graph. A closer look to Figure 5.5b confirms this and also shows that most of these
new clusters contain mostly a small number of data points, and therefore, almost no
relevant information.

No. noise Fowlkes- V-Measur Calinski- David-
Points Mallows casure Harabasz Bouldin
| 0 0.333 0.358 125.122 1.29

Table 5.2: Quality Scores obtained for each implemented metric of the Hierarchical
Clustering of the 2 Moon Data set

’ Homogeneity \ Completeness \V—Measure‘
| 1 \ 0218 | 0358 |

Table 5.3: Completeness and Homogeneity of the Hierarchical Clustering of the 2 Moon
Data set.

Table 5.2 shows the final quality scores of the Hierarchical Clustering of the 2 Moon
Data set for each implemented metric. The low values of the Fowlkes-Mallows Index
and the V-Measure are due to the large number of clusters obtained in the hierarchy. A
closer look to the Homogeneity and Completeness Scores of the V-Measure (Table 5.3)
indicates that to increase our score we need to reduce the number of clusters. Basing
ourselves on this, on the information of the hierarchy and on the visualization plots,
we identified that to improve these scores we have to run the Flat Clustering Algorithm
using only a density threshold of 0.0.

Finally, the Calinski-Harabasz and David-Bouldin Indexes obtained in this run cannot
tell us much now about the quality of the clustering, since we need another score to
which we can compare them against. They will be however, used as a reference in the
run of the Flat Clustering Algorithm to evaluate the quality improvement.

38

5 Results

e Grid

0.8

0.6

0.4

0.2

Density Estimation: 2D Fitted Model

Density Value

0.2 0.4 0.6 0.8 1

Figure 5.1: Density Estimation Heatmap of the 2 Moon Data set with a graphical depic-

tion of the sparse grid used for its calculation. The heatmap shows within
both moons multiple high density zones, which can form independent
clusters when higher density thresholds are applied.

39

5 Results

Graph and Densities

Density value

8

0.2 0.4 0.6 0.8

Figure 5.2: Nearest Neighbors” Graph of the 2 Moon Data set using 5 nearest neighbors
along with the evaluated densities of all of the points. Just like in Figure 5.1,
potential sub clusters of the 2 moons can already been seen based on the
density values and on the connections among the points.

40

5 Results

Hierarchichal Clustering

® Unclustered
Graph

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.2 0.4 0.6 0.8
Level: 0

1 1 1 1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(a) Level 0

Hierarchichal Clustering

o

0.9 e Cluster:

-

e Cluster:
Graph

0.8

0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8

Level: 1

1 1 1 1 1 I
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(b) Level 1

Figure 5.3: First two levels of the Hierarchical Clustering obtained for the 2 Moon Data
set. In level 1, we already obtain the clustering specified by the predefined
labels.

41

5 Results

Hierarchichal Clustering

0.9 ® Cluster: 0
® Cluster: 1
0.8 ® Cluster: 2
Cluster: 3
0.7 o Cluster: 4
® Cluster: 5
0.6 Cluster: 6
e Cluster: 21
0.5 e Cluster: 22
Graph
0.4
0.3
0.2
0.1
0.2 0.4 0.6 0.8
Level: 2
1 | I 1 1 |
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5
(a) Level 2
Hierarchichal Clustering
0.9 ® Cluster: 4
f e Cluster: 5
0.8 Cluster: 6
Cluster: 7
0.7 Cluster: 8
Cluster: 15
0.6 Cluster: 16
Cluster: 17
0.5 Cluster: 18
e Cluster: 19
0.4 e Cluster: 20
e Cluster: 21
0.3 ® Cluster: 22
Cluster: 23
02 o Cluster: 24
® Cluster: 32
01 Cluster: 33

0.2 0.4 0.6 0.8

Level: 3

1 l 1 1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(b) Level 3

Figure 5.4: Levels 3 and 4 of the Hierarchical Clustering obtained for the 2 Moon Data
set. The potential clusters mentioned in Figures 5.1 and 5.2 start to appear
in these levels.

42

5 Results

Hierarchichal Clustering

0.9 Cluster: 18
m‘ e Cluster: 19

0.8 } ® Cluster: 20
° * Cluster: 23

0.7 ® Cluster: 24
® Cluster: 25

"\ Cluster: 26

® Cluster: 30

Y ® Cluster: 31

® Cluster: 32

Cluster: 33

® Cluster: 34

® Cluster: 35

* Cluster: 36

02 w Cluster: 37
® Cluster: 40

0.1 ® Cluster: 41

0.6 ’

3
0.5 %
0.4 o3

0.3

0.2 0.4 0.6 0.8

Level: 4

1 1 1 1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(a) Level 4

Hierarchichal Clustering

Cluster: 26
0.9 =g Cluster: 27
. o w Cluster: 28

0.8 .
) .r~ e Cluster: 29
o) ® Cluster: 30
0.7 ® Cluster: 31
® Cluster: 34
0.6 , ® Cluster: 35
- o Cluster: 36
0.5 f) y Cluster: 37
* ° Cluster: 38

L]
0.4 = ® Cluster: 39
® Cluster: 40
0.3 ® Cluster: 41
L) e Cluster: 42
0.2 ’g*g&: P Cluster: 43
Ve ® Cluster: 44
0.1 ° Cluster: 45
0.2 0.4 0.6 0.8
Level: 5

1 | 1 1 1 |
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(b) Level 5

Figure 5.5: Levels 4 and 5 of the Hierarchical Clustering obtained for the 2 Moon Data
set. More subclusters are obtained in these levels. These however, tend to
be quite small in comparison to the size of the data set, indicating that the
model is being overfitted.

43

5 Results

5.1.2 Circles Data set

The heatmap of the Density Estimation model obtained for the Circles Data set is shown
in Figure 5.6. Similarly to the 2 Moon Data set, potential subclusters can already be
identified both circles in the areas of relative high density. Interesting to see is the
presence of negative density zones in the area between the circles and in the center of
the inner circle.

Figure 5.7 shows the nearest neighbors’ graph of our data set along with the evaluated
densities. In this case we have obtained points whose estimated density is a negative
value, and therefore will be labeled automatically as noise. We can also see some high
density areas which will likely form subclusters after a certain density threshold is
applied.

Level | # Clusters | # Points in Level Threlzl)leorllflltl}{ange A\I;e;‘:%:elli(:é?ts
0 Unclustered 2,000 N/A N/A
1 2 1,994 0.0 997
2 20 1,126 0.1-0.7 56.3
3 23 359 0.2-0.8 15.60
4 2 13 0.9 6.5

Table 5.4: General Description of the Hierarchical Clustering obtained from the Circles
Data set.

Table 5.4 contains the summarized information of the Hierarchical Clustering ob-
tained for the Circles Data set and its graphical depiction can be observed in Figures
5.8, 5.9 and 5.10. We have obtained 47 clusters distributed among 4 levels. Similarly
to the 2 Moon Data set, the best clustering is obtained already in level 1 (Figure 5.8b),
though without perfect matching due to the presence of noisy points in the clustering.
These are actually the ones with negative density shown previously in the graph plot.
The potential subclusters seen in the Density Estimation Heatmap start to appear in
levels 2 and 3 (Figures 5.9a and 5.9b, respectively). Again the density threshold ranges
of both levels overlap, indicating substitution of previously existing clusters in level 2
by their children. In level 4 (Figure 5.10) the model overfits the data, showing only 13
of the original 2000 points clustered in 2 clusters, one of them consisting of just a single
data point.

44

5 Results

No. noise Fowlkes- V-Measur Calinski- David-
Points Mallows casure Harabasz Bouldin
| 6 0.575 0.423 81.905 1.213

Table 5.5: Quality Scores obtained for each implemented metric of the Hierarchical
Clustering of the Circles Data set.

’ Homogeneity \ Completeness \V—Measure‘
| 0.998 \ 0.268 | 0423 |

Table 5.6: Completeness and Homogeneity of the Hierarchical Clustering of the Circles
Data set.

Table 5.5 shows the final quality scores of the Hierarchical Clustering of the Circles
Data set for each implemented metric. We obtain again low values for the Fowlkes-
Mallows Index and the V-Measure, caused mainly by the large number of clusters
obtained in the hierarchy. A closer look to the Homogeneity and Completeness Scores
of the V-Measure (Table 5.6) indicates again that to increase our score we need to reduce
the number of clusters. Basing ourselves on this, on the information of the hierarchy
and on the visualization plots, we decided to run the flat Clustering Algorithm using
only a density threshold of 0.0.

Regarding the Calinski-Harabasz and David-Bouldin Indexes obtained in this run,
they seem to be at first glance indicators of a good clustering when compared to the
ones obtained in the 2 Moon Data set. We still need however, to check how they are
affected after the run of the Flat Clustering Algorithm to really determine the overall
quality of the clustering.

45

5 Results

Density Estimation: 2D Fitted Model

® Grid Density Value

— 16

0.8

0.6

0.4

0.2

Figure 5.6: Density Estimation Heatmap of the 2 Circles Data set. The heatmap shows
within both circles multiple separate high density zones, which could form
subclusters of the circles when higher density thresholds are applied.

46

5 Results

Graph and Densities

Density value

15

10

0.2 0.4 0.6 0.8

Figure 5.7: Nearest Neighbors” Graph of the Circles Data set using 5 nearest neighbors,
along with the evaluated densities of all of the points. Just like in Figure
5.6, potential sub clusters can already been seen based on the density values
and the connections among the points. Curious to see is the drastic change
in density in some of the outer points of both circles. A closer look to the
density values shows us that this points” densities have actually negative
values.

47

5 Results

Hierarchichal Clustering

® Unclustered
Graph

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8

Level: 0

1 1 1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4

(a) Level 0

Hierarchichal Clustering

® Noise
e Cluster: 0
e Cluster: 1
Graph

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8

Level: 1

1 1 1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4

(b) Level 1

Figure 5.8: First two levels of the Hierarchical Clustering obtained for the Circles Data
set. In level 1 we already obtain an almost perfect clustering based on the
predefined labels in the data set. Note that even though our minimum
density threshold was 0, the algorithm flags some of the points as noise due
to them having negative density values.

48

5 Results

Hierarchichal Clustering

0.9 e Cluster: 0
® Cluster: 1

0.8 ® Cluster: 2
Cluster: 3

0.7 ® Cluster: 4
® Cluster: 5

0.6 Cluster: 6
Cluster: 7

0.5 Cluster: 8
e Cluster: 9
0.4 e Cluster: 10
e Cluster: 11

0.3 e Cluster: 12
Cluster: 13
02 e Cluster: 14
e Cluster: 15
0-1 Cluster: 16

0.2 0.4 0.6 0.8
Level: 2
1 1 1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4
(a) Level 2
Hierarchichal Clustering

0.9 ® Cluster: 2
' ‘?.“Um Cluster: 3

0.8 ® Cluster: 4
: \\‘: p e Cluster: 5

0.7 'i) Cluster: 6
o Cluster: 7

0.6 Y 3 Cluster: 8
o e Cluster: 9
0.5 ' é e Cluster: 10
e Cluster: 11
0.4 L b e Cluster: 12
}.‘3" Cluster: 13
0.3 ¢ Cluster: 14

e Cluster: 15

0.2 '% &.& Cluster: 16

m. '3 Cluster: 17

0.1 Cluster: 18
0.2 0.4 0.6 0.8

Level: 3

1 1 1 1 |
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4

(b) Level 3

Figure 5.9: Levels 2 and 3 of the Hierarchical Clustering obtained for the Circles Data
set. The potential clusters mentioned in Figure 5.6 start to appear in level
2. In level 3, subclusters start to reduce in size, indicating that the model is
starting to overfit the data.

49

5 Results

Hierarchichal Clustering

0.9
Cluster: 17
'8 &g *8
0.8 " ~ K-ty Cluster: 18
’ e Cluster: 19
0.7 e Cluster: 20
' Py e Cluster: 21
; e Cluster: 22
0.6 cl .
Py uster: 28
ﬂ [‘ e Cluster: 29
0.5 .
{ @ o Cluster: 30
- 8 e Cluster: 31
0.4 “ e Cluster: 32
4 Cluster: 33
0.3 o Cluster: 34
® Cluster: 35
0.2 3 Cluster: 36
. O
ﬁ .."IIN o % Cluster: 37
01 ﬁ Cluster: 38
0.2 0.4 0.6 0.8
Level: 4
I [1 1 [
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4

Figure 5.10: Levels 4 of the Hierarchical Clustering obtained for the Circles Data set.
The model is definitely overfitted at this level due to the low number of
points remaining.

50

5 Results

5.1.3 5D Gaussians Data set

In Figure 5.11 we show the 2-dimensional embedding of the graph of the 5D Gaussians
Data set and its evaluated densities. It is clear from the plot, that each Gaussian forms
a unique separate cluster. However, since the density values appear to be almost
uniform across each Gaussian it is highly likely that subclusters are non-existent. One
remarkable aspect is the apparent difference in density values in two of the Gaussians
in comparison to the other one. A closer look to our data set and to the grid level used
to generate the density estimation indicates that the low density Gaussians are weakly
described by the model due to them being located in areas containing low numbers of
grid points.

Level | # Clusters # Points in Level Threzleorllcszllgange A\lzje;:éehi(i;?ts
0 Unclustered 3000 N/A N/A
1 3 2999 0.0 999.6
12 27 0.6-0.8 2.25

Table 5.7: General Description of the Hierarchical Clustering obtained from the 5D
Gaussians Data set.

Despite this shortcoming, the Gaussians are identified correctly in the Hierarchical
Clustering. The Hierarchical Clustering of the 5D Gaussians Data set is presented in
Table 5.7 and its graphical depictions are shown in Figures 5.12 and 5.13. In level 1,
(Figure 5.12b) we already obtain a good cluster separation with only one point flagged
as noise due to its density being a negative value. The almost non-existent presence of
subclusters is confirmed in level 2 (Figure 5.13), since there is only one Gaussian which
contains a few subclusters. These however, consist of an insignificant number of data
points due to them being generated at high density thresholds. In the end they do not
provide any useful information about the data.

No. noise Fowlkes- V-M . Calinski- David-
Points Mallows castire Harabasz Bouldin
| 1 0.99 0.973 3359.31 0.244

Table 5.8: Quality Scores obtained for each implemented metric of the Hierarchical
Clustering of the 5D Gaussians Data set.

51

5 Results

’ Homogeneity \ Completeness \V—Measure‘
| 1 \ 0.943 | 0973 |

Table 5.9: Completeness and Homogeneity of the Hierarchical Clustering of the 5D
Gaussians Data set.

Tables 5.8 and 5.9 show the scores of the Hierarchical Clustering for the 5D Gaussians
Data set. In contrast to the 2-dimensional data sets, the Fowlkes-Mallows Index and
the V-Measure are actually high due to the little presence of subclusters inside the data.
This seems to have had also an effect in the Calinski-Harabasz and the David-Bouldin
Indexes, since they are significantly better in comparison to the 2-dimensional data
sets. Just like the previous data sets we will run the Flat Clustering Algorithm using a
density threshold of 0.0 and check on the improvement of our scores.

52

5 Results

Graph and Densities

2N

Density value

1000

800

600

400

200

-40 -20 0 20 40

Figure 5.11: 2-dimensional embedding of the Nearest Neighbors” Graph of the 5D
Gaussian Data set using 5 nearest neighbors, along with the evaluated
densities of all of the points. Curious to see is the strong difference in
density of the left Gaussian. due to the fact that the low density Gaussians
are located in areas with low numbers of grid points. In contrast to the
2-dimensional data sets, it’s not clear at first glance where potential subclus-
ters may lie. The embedding however, along with the graph connections,
gives us a small insight of how the points could be distributed in the high
dimensional space.

53

5 Results

Hierarchichal Clustering Hierarchichal Clustering

30 30
o Unclustered © Unclustered
Graph Graph
20 20
10 10
0
0 &
-10 -10
20 -20
_30 -30
-40 -20 0 20 40 —40 -20 0 20 40
Level: 0 Level: 0
1 I ! | | I
Level: 0 Level: 1 Level: 2 Level: 0 Level: 1 Level: 2
(a) Level 0
Hierarchichal Clustering Hierarchichal Clustering
30 30
® Noise *® Noise
e Cluster: 0 e Cluster: 0
20 s Cluster: 1 20 ° Cluster: 1
® Cluster: 2 ® Cluster: 2
Graph Graph
10 10
0 0
“10 -10
~20 -20
-30 _30
-40 -20 0 20 40 _40 _20 o 20 40
Level: 1 Level: 1
I I 1 | | |
Level: 0 Level: 1 Level: 2 Level: 0 Level: 1 Level: 2

(b) Level 1

Figure 5.12: First two levels of the Hierarchical Clustering of the 5D Gaussians Data
set. In level 1, the clustering matches almost perfectly to the Gaussians
definitions, with only one point being labeled as noise due to its negative
density value.

54

5 Results

Hierarchichal Clustering

30
® Cluster: 0
e Cluster: 1
20 ® Cluster: 2
® Cluster: 3
® Cluster: 4
10 [e Cluster: 5
Cluster: 6
0 Cluster: 7
¢ Cluster: 8
e Cluster: 9
-10 ® Cluster: 10
e Cluster: 11
-20 e Cluster: 12
® Cluster: 13
e Cluster: 14
-30 Graph
-40 =20 0 20 40
Level: 2
1 1 1
Level: 0 Level: 1 Level: 2

Figure 5.13: Level 2 of the Hierarchical Clustering obtained for the 5D Gaussians Data
set. The model is definitely overfitted in this level, since almost all of the
new clusters consist only of one data point.

55

5 Results

5.1.4 HTRU2 Data set

Just like the 5D Gaussian Data set, we present the 2-dimensional embedding of the
graph of the HTRU2 Data set along with the evaluated densities in Figure 5.15. We
also present the same embedding of the data but with the predefined class labeling in
Figure 5.14. One can notice that the low density areas of the graph plot match to some
extent some of the areas described by the minority class (Label 1). Additionally, the
nearest neighbors” graph connections suggest that these areas are actually related to
each other and that they are potentially part of a single cluster.

Level | # Clusters | # Points in Level Thregi)rllzllgange A\{)e;fgeifs?;?ts
0 Unclustered 17,898 N/A N/A
1 4 15,982 0.1 3,995.5
2 3 15,480 0.2 5,160
3 14 12,997 0.3 928.35
4 42 6,902 0.4 164,33
5 73 100 0.5-0.9 1.36

Table 5.10: General Description of the Hierarchical Clustering obtained from the HTRU2
Data set.

The summary of the Hierarchical Clustering of the HTRU2 Data set and its graphical
depiction can be found in Table 5.10 and the Figures 5.16, 5.17 and 5.18, respectively.
We obtained a total of 136 clusters distributed among 5 levels. Starting with level 1
(Figure 5.16b), we can see that we obtained a cluster similar on size to the majority
class of the data set. The lower density areas mentioned before are actually flagged
as noise, despite the minimum density threshold being 0 and the data not containing
negative densities. The reason behind this is that, in contrast to the previous data sets,
the points are so heavily connected that separate connected components start to appear
only when the first real density threshold is applied (0.1 in this case). This causes
many of the low density areas to be deleted and subsequently to be flagged as noise.
Additionally, the noise set obtained is almost similar in size to the minority class of the
data set. Subsequent levels don’t show any additional relevant information, since the
big cluster obtained in level 1 is split recursively into another big cluster and multiple
smaller ones until only insignificant clusters remain in level 5 (Figure 5.18b).

56

5 Results

No. noise Fowlkes- V-Measure Calinski- David-
Points Mallows Harabasz Bouldin
| 1916 [05417 0.104 119.04 1.064

Table 5.11: Quality Scores obtained for each implemented metric of the Hierarchical
Clustering of the HTRU2 Data set.

’ Homogeneity \ Completeness \V—Measure‘
| 0.298 \ 0.063 | 0104 |

Table 5.12: Completeness and Homogeneity of the Hierarchical Clustering of the
HTRU2 Data set.

Tables 5.11 and 5.12 contain the score information of the Hierarchical Clustering
for the HTRU2 Data set. Due to the extremely high number of clusters, the values
of the Fowlkes-Mallows Index and the V-Measure are extremely low. This seems to
be affecting the Calinski-Harabasz Index as well, since a large number of clusters is
penalized by the metric. On the other hand, the David-Bouldin Index appears to indicate
a good clustering at first glance, but that could be also explained through the existence
of multiple single-point clusters which have per definition a sparsity measure of 0 and
therefore, have an insignificant contribution to the final score. Basing ourselves in the
Hierarchical Clustering results, we will proceed to run the Flat Clustering Algorithm
using only a density threshold of 0.1 and check if the scores improve significantly by
reducing the number of clusters obtained.

57

5 Results

HTRUZ2 Data set. Real labels

60 e Label0

e Label1l

40

20

-20

-40

-60

=50 0 50

Figure 5.14: 2-dimensional embedding of the HTRU2 Data set with its predefined
labeling.

58

5 Results

Graph and Densities

Density value

1400

1200

1000

800

600

400

200

Figure 5.15: 2-dimensional embedding of the Nearest Neighbors” Graph of the HTRU2
Data set using 5 nearest neighbors, along with the evaluated densities of all
of the points. Interestingly, the density distribution matches the predefined
labels distribution to some extent. There is a big concentration of points
whose densities values vary from medium to high, while a very small
amount does not even surpass the 10 percent of the maximum density.
Comparing this plot with Figure 5.14, we can see that the low density areas
are mostly made of points with predefined label 1, the minority cluster.
Additionally, the graph connections show that these areas are close in the
high dimensional space and therefore, could be part of a single cluster
entity.

59

5 Results

Hierarchichal Clustering

60

Hierarchichal Clustering

60 ® Unclustered

® Unclustered ’)
Graph
Graph
40
40
20 20
0 0
~20 -20
—40 -40
—60 -60
=50 0 50 -50 0 50
Level: 0 Level: 0
I I 1 | | | | | | | | |
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5 Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5
(a) Level 0
Hierarchichal Clustering Hierarchichal Clustering
60 o Noise 60 o Noise
e Cluster: 0 ’ ® Cluster: 0
40 ® Cluster: 1 40 e Cluster: 1
® Cluster: 2 . ® Cluster: 2
Cluster: 3 Cluster: 3
20 Graph 20 t ! L7 Graph
0 0 = N
i, * > N
-20 -20 e . g
—40 -40 “
—60 -60
-50 0 50 -50 0 50
Level: 1 Level: 1
1 I 1] 1 I I 1 1 I I 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level:: 5 Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5
(b) Level 1

Figure 5.16: First two levels of the Hierarchical Clustering of the HTRU2 Data set. The
low density areas of Figure 5.15 are assigned as noise in the first level of
the hierarchy, despite them consisting of only positive density values and
the defined minimum density threshold being 0. This is in fact, due to
the heavy connectivity in the graph in comparison to previous data sets.
Multiple connected components only start to appear after a significant
density threshold is applied, deleting the points and flagging them as

noise.

60

5 Results

Hierarchichal Clustering Hierarchichal Clustering
60 e Cluster: 0 60 e Cluster: 0
Cluster: 1 Cluster: 1
40 e Cluster: 2 0 N ® Cluster: 2
Cluster: 3 ° R 1 Cluster: 3
Cluster: 4 h 7‘ Cluster: 4
20 Cluster: 5 20 Cluster: 5
Cluster: 6 ¢ ~ Cluster: 6
Graph - & 2 R
0 0 @
_20 -20
> >
4 <
—40 —40 b G
£
-50 0 50 -50 0 50
Level: 2 Level: 2
[1 l l [1 | | 1 | 1 |
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5 Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5
(a) Level 2
Hierarchichal Clustering Hierarchichal Clustering
60 Cluster: 5 60 Cluster: 5
Cluster: 6 Cluster: 6
Cluster: 7 Cluster: 7
40 Cluster: 8 40 s Cluster: 8
* Cluster: 9 b1 e Cluster: 9
2 e Cluster: 10 2 % e Cluster: 10
Cluster: 11 Cluster: 11
® Cluster: 12 ® Cluster: 12
o Cluster: 13 o Cluster: 13
Cluster: 14 Cluster: 14
Cluster: 15 Cluster: 15
_20 Cluster: 16 _20 Cluster: 16
Cluster: 17 Cluster: 17
Cluster: 18 4 Cluster: 18
| : :
a0 e Cluster: 19 a0 e Cluster: 19
® Cluster: 20 ® Cluster: 20
Graph
-50 0 50 -50 0 50
Level: 3 Level: 3
1 | [l 1 | [l | [1 1 1
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5 Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(b) Level 3

Figure 5.17: Levels 2 and 3 of the Hierarchical Clustering of the HTRU2 Data set. The
big cluster area just keeps reducing in size and multiple single-element
clusters start to appear.

61

5 Results

60

40

20

-20

Level: 4

I
Level: 0

Hierarchichal Clustering Hierarchichal Clustering

Cluster: 47 60 Cluster: 47
Cluster: 48 Cluster: 48
® Cluster: 49 e Cluster: 49
e Cluster: 50 40 o Cluster: 50
e Cluster: 51 ® Cluster: 51
e Cluster: 52 ® Cluster: 52
Cluster: 53 20 Cluster: 53
© Cluster: 54 ® Cluster: 54
® Cluster: 55 ® Cluster: 55
Cluster: 56 0 Cluster: 56
Cluster: 57 Cluster: 57
Cluster: 58 Cluster: 58
e Cluster: 59 -20 e Cluster: 59
® Cluster: 60 ® Cluster: 60
® Cluster: 61 ® Cluster: 61
® Cluster: 62 —40 ® Cluster: 62
Graph Graph
=50 0 50 -50 0 50
Level: 4
l | 1 | ! | | | 1 [|
Level: 1 Level: 2 Level: 3 level: 4 Level: 5 Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5
(a) Level 4
Hierarchichal Clustering
60 o Cluster: 61
® Cluster: 62
Cluster: 63
40 ® Cluster: 64
® Cluster: 65
Cluster: 66
20 Cluster: 67
Cluster: 68
® Cluster: 69
0 e Cluster: 70
® Cluster: 71
® Cluster: 72
-20 Cluster: 73
® Cluster: 74
® Cluster: 75
—40 Cluster: 76
Cluster: 77
-50 0 50
Level: 5
i 1 | I 1 |
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5

(b) Level 5

Figure 5.18: Levels 4 and 5 of the Hierarchical Clustering of the HTRU2 Data set. In

level 4, the same behavior of previous levels continues to occur. In level 5
however, the model totally overfits by generating mostly clusters consisting
of 1 and 2 elements.

62

5 Results

5.2 Flat Clustering Run

5.2.1 2 Moon Data set

After running the Flat Clustering Algorithm while applying a density threshold value of
0.0, we obtained a Clustering equivalent to the level 1 of the corresponding Hierarchical
Clustering. The new quality scores are shown in Tables 5.13 and 5.14. As expected,
the Fowlkes-Mallows Index and the V-Measure are now perfect since our clustering
matches the predefined labeling. More interesting to see is the significant improvement
of the Calinski-Harabasz Index in comparison to the previous run. The David-Bouldin
Index shows improvement as well, albeit a small one in comparison to the other metrics.

No. noise Fowlkes- V-M . Calinski- David-
Points Mallows casure Harabasz Bouldin
| 0 \ 1 1 905.436 1002 |

Table 5.13: Quality Scores obtained for each implemented metric of the Flat Clustering
of the 2 Moon Data set

’ Homogeneity ‘ Completeness ‘V—Measure‘
| ! | ! [t]

Table 5.14: Completeness and Homogeneity of the Flat Clustering of the 2 Moon Data
set

5.2.2 Circles Data set

Tables 5.15 and 5.16 show the scores obtained for the run of the Flat Clustering
Algorithm on the Circles Data set using a density threshold of 0.0. We have obtained the
same clustering depicted in level 1 of the respective Hierarchical Clustering. Similarly
to the 2 Moon Data set, the Fowlkes-Mallows Index and the V-Measure increased to the
point of giving almost perfect scores, held back only by the presence of a few points
flagged as noise. On the other hand, the Calinski-Harabasz and David-Bouldin Indexes
worsened drastically. An explanation for this behavior is that the centroids of both
clusters, represented by the circles, are actually quite close to each other. This causes
that both metrics misinterpret them as being too similar and therefore, both metrics
result in a very low score. This example shows the necessity of using multiple metrics
to evaluate the quality of a clustering, since some of them can produce misleading
results for specific cluster shapes and distributions.

63

5 Results

No. noise Fowlkes- V-Measure Calinski- David-
Points Mallows Harabasz Bouldin
| 6 | 0997 0.985 0.403 184.894

Table 5.15: Quality Scores obtained for each implemented metric of the Flat Clustering
of the Circles Data set

‘ V-Measure ‘
0985 |

’ Homogeneity ‘
| 0.998 \

Completeness
0.972 \

Table 5.16: Completeness and Homogeneity of the Flat Clustering of the Circles Data
set

5.2.3 5D Gaussians Data set

Tables 5.17 and 5.18 show the scores obtained for the run of the Flat Clustering Algo-
rithm on the 5D Gaussians Data set using a density threshold of 0.0. We have obtained
the same clustering depicted in level 1 of the respective Hierarchical Clustering. The
Fowlkes-Mallows Index and the V-Measure show a small improvement in compari-
son to the previous scores. A special remark has to be made in the V-Measure, in
which the reduction of the Homogeneity Score was compensated by the increase of
the Completeness Score, resulting in the general improvement of the final score. The
Calinski-Harabasz Index improved significantly as well, mainly due to the reduction
of the number of clusters found within the data set. The same cannot be said for the
David-Bouldin Index, which gives a worse score in comparison to the previous run,
due to the fact that our clusters have more sparsity values than the ones generated in
the Hierarchal Cluster Run. This actually makes sense since very small clusters will
tend to have less sparsity values due to the nearest neighbors” connections, causing the
average distances to the centroid of the cluster to be reduced significantly. This shows
us the main disadvantage of using the David-Bouldin Index in our implementation,
since it seems to be rewarding insignificant cluster areas, which don’t provide relevant

information.
No. noise Fowlkes- V-Measure Calinski- David-
Points Mallows Harabasz Bouldin
| 1 | 099 0998 | 16,8382 0387 |

Table 5.17: Quality Scores obtained for each implemented metric of the Flat Clustering
of the 5D Gaussians Data set

64

5 Results

’ Homogeneity \ Completeness \V—Measure‘
| 0.997 \ 0.998 | 0998 |

Table 5.18: Completeness and Homogeneity of the Flat Clustering of the 5D Gaussians
Data set

5.2.4 HTRU2 Data set

Finally, the scores for the Flat Clustering Algorithm run on the HTRU2 Data set using
a density threshold of 0.1 can be found in Tables 5.19 and 5.20. We have again obtained
the same clustering depicted in level 1 of the respective Hierarchical Clustering. The
Fowlkes-Mallows Index could be interpreted as having a really good clustering, since
approximately 90% of the points match the predefined labels. This is a questionable
result when checking the value of the V-Measure, which on the other hand is quite low.
This disagreement in scores is the result of the skewness of the predefined labels in
the data set, something that the V-Measure implicitly takes into account trough the
Homogeneity and Completeness Scores. The Fowlkes-Mallows Index on the other
hand, only checks that the cluster labels match the predefined labeling and in a case
like this, in which the label distribution is heavily skewed towards 90% of the data,
grouping all points into one cluster will result into a score of approximately 0.9.

The Calisnki-Harabasz Index however, shows again a significant improvement, even
though there is a significant amount of noise points. It seems that the points flagged as
noise are actually part of a well defined cluster, although not dense enough to be flagged
as such. For similar reasons, the David-Bouldin Index shows also an improvement
although smaller in comparison.

No. noise Fowlkes- V-M . Calinski- David-
Points Mallows casure Harabasz Bouldin
| 1916 | 0901 0.24 3215.17 0624 |

Table 5.19: Quality Scores obtained for each implemented metric of the Flat Clustering
of the HTRU2 Data set

’ Homogeneity ‘ Completeness ‘V—Measure‘
| 0.257 \ 0.229 | 024 |

Table 5.20: Completeness and Homogeneity of the Flat Clustering of the HTRU2 Data
set

65

5 Results

Another way to evaluate how well the set of noise captures the minority class is
through a confusion matrix, whose results are presented in Table 5.21. These results
deliver a precision value of 0.51 and a recall value of 0.597 with a final F1-Score of 0.55.
Considering the heavy skewness of the data set and the capture of almost 60% of the
minority class, we conclude that our Clustering Algorithm did a relatively good job in
identifying those areas were the minority class is mostly predominant and therefore
provided a clustering or relatively good quality.

Label Label 1 Label 0
Noise Cluster

Label 978 661
Other Cluster

Labels 938 15,321

Table 5.21: Confusion Matrix used to evaluate how well our implementation manages
to capture the minority class of the HTRU2 Data set.

66

6 Conclusions and Future Work

In this thesis, the Sparse Grid based Clustering Models were integrated into the SG++
Datamining Pipeline by implementing Pehertorfer’s Sparse Grid based Clustering
Algorithm along with Fischer’s Hierarchical Clustering augmentation. To solve the
problem of efficiently generating the nearest neighbors” graph, we implemented a
Vantage Point Tree data structure that not only solved the problem, but also provided
us with an indexing of the data, which was used to reference the data points across
other data structures. This resulted in an efficient use of memory, since we avoided
copying the data across the other data structures.

Regarding the training of the model, we have introduced a new PostProcessing
Module, whose main objective is to execute those processes unrelated to Sparse Grid
Methods but which are still part of the training of the model. Adaptations to the other
already implemented models were made accordingly in order to maintain their correct
functionality.

We also implemented a series of clustering metrics used to evaluate the quality of the
Clustering Models and made adaptations to the pipeline’s structure in oder to integrate
them without affecting the functionality of the other previously implemented metrics.

Finally, we tested our implementation using four different labeled data sets, with
one of them containing real data from another study, namely the HTRU2 Data set.
Our results showed that our implementation works well with different data shapes
and distributions. Special remarks have to be done regarding the HTRU2 Data set,
in which our implementation managed to make a good generalization of the data’s
internal structure, despite the data distribution being heavily skewed towards one of the
predefined classes. Our results also showed the usefulness of having different metrics
to evaluate the quality of our clustering, since some of them tend to give misleading
results when the data has a specific distribution.

Further improvements could still be made to our implementation. For instance,
the process realized in the tests, in which we selected the best density threshold to
obtain the best flat clustering, could actually be automatized through the help of the
Hyperparameter Optimizer Module.

Additionally, certain regions of the code could be also parallelized to increase the
efficiency of our implementation. This would be specially useful during the generation
of the Hierarchical Clustering, since we detected that this process was the major

67

6 Conclusions and Future Work

bottleneck during the execution of the tests.

Another feature which could be added in the future is the implementation of other
nearest neighbor algorithms and data structures. A suggestion would be implementing
the Locality Sensitive Hashing algorithm, since it has been proven previously to be very
efficient when generating a nearest neighbors’ graph out of a large high dimensional
data set [38].

Finally, new clustering metrics should also be implemented, specially ones that can
handle cluster structures similar to those found in the Circles Data set.

68

Bibliography

[10]

[11]

V. B. B. Anguiano. “Visualization of High Dimensional Models within the SG++
Data Mining Pipeline.” Studienarbeit. Technical University of Munich, Oct. 2019.

S. Ben-David and M. Ackerman. “Measures of Clustering Quality: A Working Set
of Axioms for Clustering.” In: Advances in Neural Information Processing Systems
21. Ed. by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou. Curran Associates,
Inc., 2009, pp. 121-128.

C. Braune, S. Besecke, and R. Kruse. “Density Based Clustering: Alternatives to
DBSCAN.” In: Partitional Clustering Algorithms (2014).

C. Braune, S. Besecke, and R. Kruse. “Density Based Clustering: Alternatives
to DBSCAN.” In: Partitional Clustering Algorithms. Ed. by M. E. Celebi. Springer
International Publishing, 2015, pp. 193-213.

T. Calinski and]. Harabasz. “A dendrite method for cluster analysis.” In: Commu-
nications in Statistics 3.1 (1974), pp. 1-27.

D. L. Davies and D. W. Bouldin. “A Cluster Separation Measure.” In: IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI-1.2 (Apr. 1979),
pp- 224-227. 1ssN: 1939-3539.

D. Dua and C. Graff. UCI Machine Learning Repository. 2017.

M. Fischer. “A Recommender System using Clustering with Sparse Grid Density
Estimation.” Technische Universitidt Miinchen, 2016.

E. B. Fowlkes and C. L. Mallows. “A Method for Comparing Two Hierarchical
Clusterings.” In: Journal of the American Statistical Association 78.383 (1983), pp. 553—
569.

J. H. Friedman, J. L. Bentley, and R. A. Finkel. “An Algorithm for Finding Best
Matches in Logarithmic Expected Time.” In: Acm Transactions on Mathematical
software 3 (1977), pp. 209-226.

D. Fuschgruber. “Integration of SGDE-based Classification into the SG++ Datamin-
ing Pipeline.” Technische Universitdt Miinchen, 2018.

69

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]

J. Garcke. “Sparse Grids in a Nutshell.” In: Sparse grids and applications. Ed. by
J. Garcke and M. Griebel. Vol. 88. Lecture Notes in Computational Science and
Engineering. extended version with python code http://garcke. ins . uni-
bonn . de /research/pub/sparse _grids_nutshell_code . pdf. Springer, 2013,
pp- 57-80. por: 10.1007/978-3-642-31703-3_3.

Z. Gerhard W. “A Sparse Grid PDE Solver; Discretization, Adaptivity, Software
Design and Parallelization.” In: Advances in Software Tools for Scientific Computing.
Ed. by H. P. Langtangen, A. M. Bruaset, and E. Quak. Springer Berlin Heidelberg,
2000, pp. 133-177.

M. Halkidi, M. Vazirgiannis, and Y. Batistakis. “Quality Scheme Assessment in
the Clustering Process.” In: Principles of Data Mining and Knowledge Discovery.
Ed. by D. A. Zighed, J. Komorowski, and J. Zytkow. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 265-276.

M. Halkidi, Y. Batistakis, and M. Vazirgiannis. “Cluster Validity Methods: Part 1.”
In: SIGMOD Record 31 (July 2002).

S. Hanov. VP trees: A data structure for finding stuff fast. Steve Hanov’s Blog. URL:
http://stevehanov.ca/blog/index.php?7id=130.

M. Hegland, G. Hooker, and S. Roberts. “Finite element thin plate splines in
density estimation.” In: ANZIAM Journal 42.0 (2009), pp. 712-734. 15sN: 1446-8735.

P. T. Inc. Collaborative data science. 2015. URL: https://plot.1ly.

E. J. Kopek. “Optimizing Hyperparameters in the SG++ Datamining Pipeline.”
Technische Universitat Miinchen, 2018.

N. Kumar, L. Zhang, and S. Nayar. “What is a Good Nearest Neighbors Algorithm
for Finding Similar Patches in Images?” In: Computer Vision ECCV 2 (2008),
pp. 364-378.

S. Lloyd. “Least squares quantization in PCM.” In: IEEE Transactions on Information
Theory 28.2 (Mar. 1982), pp. 129-137. 1ssN: 1557-9654.

R. Lyon, B. Stappers, S. Cooper, J. Brooke, and]J. Knowles. “Fifty Years of Pulsar
Candidate Selection: From simple filters to a new principled real-time classifi-
cation approach.” In: Monthly Notices of the Royal Astronomical Society 459 (Apr.
2016), stw656. po1: 10.1093/mnras/stw656.

R. Lyon. HTRU2. Mar. 2016. por: 10.6084/m9.figshare.3080389.v1.

U. Maulik and S. Bandyopadhyay. “Performance evaluation of some clustering
algorithms and validity indices.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 24.12 (Dec. 2002), pp. 1650-1654. 1ssN: 1939-3539.

70

http://garcke.ins.uni-bonn.de/research/pub/sparse_grids_nutshell_code.pdf
http://garcke.ins.uni-bonn.de/research/pub/sparse_grids_nutshell_code.pdf
https://doi.org/10.1007/978-3-642-31703-3_3
http://stevehanov.ca/blog/index.php?id=130
https://plot.ly
https://doi.org/10.1093/mnras/stw656
https://doi.org/10.6084/m9.figshare.3080389.v1

Bibliography

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Q. Nguyen and V. Rayward-Smith. “Internal quality measures for clustering in
metric spaces.” In: IJBIDM 3 (Apr. 2008), pp. 4-29.

S. M. Omohundro. Five ball tree construction algorithms. International Computer
Science Institute, 1989.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine
Learning in Python.” In: Journal of Machine Learning Research 12 (2011), pp. 2825-
2830.

B. Peherstorfer. “Model Order Reduction of Parametrized Systems with Sparse
Grid Learning Techniques.” Technische Universitidt Miinchen, 2013.

D. Pfliiger. Spatially Adaptive Sparse Grids for High Dimensional Problems. 2010.

A. Rosenberg and]. Hirschberg. “V-Measure: A Conditional Entropy-Based
External Cluster Evaluation Measure.” In: Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning(EMINLP-CoNLL). 2007, pp. 410-420.

SG++ ToolBox. https://sgpp.sparsegrids.org/. Accessed: 2020-02-18.

SG++ User Guide. Datamining Pipeline Configuration. https://github.com/SGpp/

SGpp/wiki/Datadriven-datamining-pipeline-configuration. Accessed: 2020-
02-26.

B. Silverman. Density Estimation For Statistical and Data Analysis. Chapman and
Hall, 1998, p. 1.

S. Smolyak. “Quadrature and interpolation formulas for tensor products of certain
classes of functions.” In: Dokl. Akad. Nauk SSSR 148 (5 1963), pp. 1042-1045.

The Boost Graph Library: User Guide and Reference Manual. USA: Addison-Wesley
Longman Publishing Co., Inc., 2002. 1sBN: 0201729148.

S. Weber. “Exploiting the Data Hierarchy with Geometry Aware Sparse Grids for
Image Classification.” Technische Universitdt Miinchen, 2019.

P. N. Yianilos. “Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces.” In: (1993).

Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu. “Fast kNN Graph Construction
with Locality Sensitive Hashing.” In: Machine Learning and Knowledge Discovery
in Databases. Ed. by H. Blockeel, K. Kersting, S. Nijssen, and F. Zelezn}’f. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 660-674.

71

https://sgpp.sparsegrids.org/
https://github.com/SGpp/SGpp/wiki/Datadriven-datamining-pipeline-configuration
https://github.com/SGpp/SGpp/wiki/Datadriven-datamining-pipeline-configuration

	Acknowledgments
	Abstract
	Contents
	Introduction
	Theoretical Background
	Sparse Grid Methods
	Hierarchical Basis and Sparse Grid Interpolation
	Sparse Grid based Density Estimation

	Clustering
	Sparse Grid based Clustering
	The nearest neighbors' problem. The Vantage Point Tree
	Hierarchical Clustering
	Clustering Quality

	The SG++ Datamining Pipeline

	Implementation
	Clustering Configurations
	Vantage Point Tree Implementation
	Graph Implementation
	Hierarchical Clustering Implementation
	Fitter Implementation
	Metrics Implementation
	Visualization Implementation
	Post Processing Module

	Data sets and Tests
	Data sets' Description
	Tests
	Description
	Running Configurations

	Results
	Hierarchical Clustering Run
	2 Moon Data set
	Circles Data set
	5D Gaussians Data set
	HTRU2 Data set

	Flat Clustering Run
	2 Moon Data set
	Circles Data set
	5D Gaussians Data set
	HTRU2 Data set

	Conclusions and Future Work
	Bibliography

