
Technische Universität München
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Geoinformatik

Integration and Management of
Time-dependent Properties with

Semantic 3D City Models

Kanishk Chaturvedi

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. habil. Thomas Wunderlich
Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Thomas H. Kolbe

2. Prof. Dr. Gilles Gesquière
Université Lumière Lyon 2, France

3. Prof. Dr.-Ing. André Borrmann

Die Dissertation wurde am 15.04.2020 bei der Technischen Universität München
eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt am 28.06.2021
angenommen.

ABSTRACT

Semantic 3D city models describe spatial, graphical and thematic aspects of the cityscapes by
decomposing and classifying the occupied physical space according to a semantic data model. The
relevant real-world entities are represented by the ontological structure, including thematic classes,
attributes, and their interrelationships. The main advantage of such semantic data models is that they
make it possible for applications and simulation tools to distinguish urban objects (like buildings and
streets) and use their rich thematic and geometric information for queries, statistical computations,
simulations, and visualisations. There are international standards such as CityGML and IFC, which
provide not only well-defined data models for describing spatial, graphical and semantic information
of physical objects but also an exchange format for exchanging entire city models among different
software systems and applications. For this reason, semantic 3D city models are used worldwide
for different application domains ranging from Smart Cities, Simulations, Planning to History and
Archaeology.

However, most of the applications involve scenarios where city objects and their properties are not
static and change with time, and current generation semantic 3D city models do not support such
changes explicitly. These changes can be associated with different properties of city objects such as
geometry, semantics, topology, or appearance. Furthermore, these changes can also be slower (e.g.
evolution of a city over ten years) or highly dynamic (e.g. varying air quality in a room, the energy
consumption of a building, and traffic density in a road segment). Hence, such semantic data models
must be capable of representing changes taking place in cities and their properties over time.

The objective of this thesis is to extend semantic 3D city models to support different types of
time-dependent properties. Based on the comprehensive review of numerous application domains, the
thesis provides a systematic analysis and identifies key requirements for extensions of 3D city models
to support time-dependent properties. Considering the gathered requirements, a complete “ecosystem”
is provided. It not only allows extending 3D city models using the conceptual data models, but also
illustrates ways to implement, manage, and visualise them using applications. From the modelling
perspective, the research work introduces two novel concepts for incorporating the listed requirements:
(i) the "Versioning" concept for managing slower changes in the form of historic and parallel versions
of 3D city models and (ii) the "Dynamizer" concept, that allows the representation of highly dynamic
data and provides a method for injecting dynamic variations of city object properties into the static
representation. Both concepts are realised as extensions of the international OGC standard CityGML.

Furthermore, the thesis also proposes ways to manage static and dynamic properties of the extended
3D city models allowing them to be queried by applications in an integrated fashion. The time-
dependent properties can be stored in database management systems along with the precise description
and metadata of time-series. In other scenarios, where the properties are highly dynamic (e.g. real-time

iv

observations from a sensor or an IoT device), the storage of time-varying values is cumbersome.
Hence, the concept of Spatial Data Infrastructure is utilised. The SDI allows city objects and time-
varying properties to manage in distributed systems and to integrate them when they are used. For this
purpose, the research work introduces a new concept called "InterSensor Service" allowing to establish
interoperability over different types of time-dependent properties. The service allows connecting to
multiple IoT platforms, simulation specific data, databases, and simple files and representing the
observations using open and international standards. In this way, the heterogeneous observations can
be analysed and visualised in a unified way.

The concepts are implemented and demonstrated within this thesis in the context of real-world
Smart City projects. Although the concepts are developed for the CityGML standard, they can also be
applied to other GML-based application schemas including the European INSPIRE data themes and
national standards for topography and cadasters, like the British Ordnance Survey Mastermap or the
German cadaster standard ALKIS.

ZUSAMMENFASSUNG

Semantische 3D-Stadtmodelle beschreiben räumliche, grafische und thematische Aspekte von
Stadtlandschaften, indem sie den belegten physischen Raum gemäß der Struktur eines semantischen
Datenmodells zerlegen und klassifizieren. Die relevanten Objekte der realen Welt werden durch die
ontologische Struktur mit thematischen Klassen, Attributen und deren Beziehungen repräsentiert. Der
Hauptvorteil solcher semantischen Datenmodelle besteht darin, dass sie es Anwendungen und Simula-
tionswerkzeugen ermöglichen, Stadtobjekte (wie Gebäude und Straßen) zu unterscheiden und deren
umfassende thematische und geometrische Informationen für Abfragen, statistische Berechnungen,
Simulationen und Visualisierungen zu nutzen. Es gibt internationale Standards wie CityGML und IFC,
die nicht nur wohldefinierte Datenmodelle zur Beschreibung räumlicher, grafischer und semantischer
Informationen von physischen Objekten bereitstellen, sondern auch ein Austauschformat für den
Austausch ganzer Stadtmodelle zwischen verschiedenen Softwaresystemen und Anwendungen. Aus
diesem Grund werden semantische 3D-Stadtmodelle weltweit für verschiedene Anwendungsbereiche
eingesetzt, die von Smart Cities, Simulationen, Planung bis hin zu Geschichte und Archäologie
reichen.

Die meisten Anwendungen beinhalten jedoch Szenarien, in denen Stadtobjekte und ihre Ei-
genschaften nicht statischer Natur sind, sondern sich über die Zeit ändern. Die aktuelle Genera-
tion semantischer 3D-Stadtmodelle unterstützt solche Änderungen nicht explizit. Diese Änderungen
können mit verschiedenen Eigenschaften von Stadtobjekten wie Geometrie, Semantik, Topologie
oder Erscheinung verbunden sein. Darüber hinaus können diese Änderungen auch langsamer (z.B.
Entwicklung einer Stadt über 10 Jahre) oder hochdynamisch (z.B. schwankende Luftqualität in einem
Raum, Energieverbrauch eines Gebäudes und Verkehrsdichte in einem Straßenabschnitt) stattfinden.
Daher ist es wichtig, dass die Datenmodelle für semantische 3D-Stadtmodelle in der Lage sind,
Veränderungen in Städten und deren Eigenschaften im Laufe der Zeit zu repräsentieren.

Das Ziel dieser Arbeit ist die Erweiterung semantischer 3D-Stadtmodelle zur Unterstützung ver-
schiedener Arten von zeitabhängigen Eigenschaften. Basierend auf der umfassenden Betrachtung
zahlreicher Anwendungsbereiche bietet die Arbeit eine systematische Analyse und identifiziert
die wichtigsten Anforderungen für Erweiterungen von 3D-Stadtmodellen zur Unterstützung zeit-
abhängiger Eigenschaften. Unter Berücksichtigung der gesammelten Anforderungen wird ein voll-
ständiges "Ökosystem" bereitgestellt, das nicht nur die Erweiterung von 3D-Stadtmodellen mit Hilfe
der konzeptuellen Datenmodelle ermöglicht, sondern auch Möglichkeiten zur Implementierung,
Verwaltung und Visualisierung mit Hilfe von Anwendungen aufzeigt. Aus der Perspektive der Model-
lierung stellt die Forschungsarbeit zwei neuartige Konzepte zur Berücksichtigung der gesammelten
Anforderungen vor: (i) das “Versionierungskonzept“ zur Verwaltung langsamerer Änderungen in Form
von historischen und parallelen Versionen von 3D-Stadtmodellen und (ii) das "Dynamizer"-Konzept,

vi

das es ermöglicht, hochdynamische Daten zu repräsentieren und ein Verfahren bereitstellt, mit dem
dynamische Änderungen von Stadtobjekteigenschaften in die statische Repräsentation eingebracht
werden können. Beide Konzepte sind als Erweiterungen des internationalen OGC-Standards CityGML
realisiert.

Darüber hinaus schlägt die Arbeit auch vor, wie man statische und dynamische Eigenschaften der
erweiterten 3D-Stadtmodelle verwalten kann, so dass sie von Anwendungen in einer integrierten
Weise abgefragt werden können. Die zeitabhängigen Eigenschaften können in Datenbankmanage-
mentsystemen zusammen mit einer genauen Beschreibung und Metadaten der Zeitreihen gespeichert
werden. In anderen Szenarien, in denen die Eigenschaften der Objekte hochdynamisch sind (z.B.
Echtzeitbeobachtungen von einem Sensor oder einem IoT-Gerät), ist die integrierte Speicherung von
zeitvariablen Werten der Eigenschaften von Stadtobjekten in Datenbanksystemen umständlich. Für
diese Fälle wird daher das Konzept der Geodateninfrastruktur genutzt, das es vorsieht, Stadtobjekte
und zeitvariable Beobachtungen in einem verteilten System zu speichern und erst bei der Nutzung
zusammenzuführen. Zu diesem Zweck wird in der Forschungsarbeit ein neues Konzept namens
"InterSensor Service" vorgestellt, das es ermöglicht, die Interoperabilität über verschiedene Arten
von zeitabhängigen Eigenschaften hinweg herzustellen. Der Service ermöglicht die Anbindung an
mehrere IoT-Plattformen, simulationsspezifische Daten, Datenbanken und einfache Dateien sowie
die Repräsentation der Beobachtungen mit Hilfe offener internationaler Standards. Auf diese Weise
können die heterogenen Beobachtungen einheitlich analysiert und visualisiert werden.

Die Konzepte wurden im Rahmen der Arbeit in Smart City-Projekten aus der Praxis umgesetzt und
demonstriert. Obwohl die Konzepte für den CityGML-Standard entwickelt wurden, sind sie auch auf
andere GML-basierte Anwendungsschemata übertragbar, darunter die Datenthemen der EU-Richtlinie
INSPIRE und nationale Standards für Topographie und Kataster wie die British Ordnance Survey
Mastermap oder den deutschen Katasterstandard ALKIS.

ACKNOWLEDGEMENTS

This thesis represents the outcome of several years of research conducted at the Chair of Geoin-
formatics of the Technische Universiät München. In doing this research and writing this thesis, I
enjoyed support and encouragement from many people without whom this thesis would not have been
completed and to whom I want to express my sincere gratitude.

First and foremost, I extend my deepest gratitude to my supervisor Prof. Dr. Thomas H. Kolbe.
It was indeed an honour to work under his valuable guidance and supervision. I thank him for his
continuous support and encouragement, fruitful discussions, constructive criticism, and valuable
scientific remarks. For the rest of my professional life, he will be my true inspiration.

I would also like to extend my heartiest thanks to Prof. Dr. Gilles Gesquière and Prof. Dr.-Ing.
André Borrmann for co-supervising this research. Their invaluable suggestions and encouragement
helped me a lot in completing my thesis.

My special thanks go to my colleagues Dr. Andreas Donaubauer and Dr. Tatjana Kutzner, for all
the fruitful discussions related to my research and for having been a reliable mentor during all these
years. I also thank them for providing valuable feedback in completing my thesis. I enjoyed working
at the Chair of Geoinformatics. Thanks a million to my peers Dr. Zhihang Yao, Maximilian Sindram,
Mandana Moshrefzadeh, Mostafa ElFouly, Son H. Nguyen, Benedikt Schwab, Bruno Willenborg,
Christof Beil, Caroline Marx, Dr. Aftab Khan, and Dr. Ihab Hijazi. I also express my special gratitude
to Dr. Gabriele Aumann, Tanja Nyc, and Roland Dietrich.

The research would not have been possible without the sponsors of the research projects in which
I have been involved. A significant part of this thesis was carried out within the project Smart
District Data Infrastructure (SDDI) Demonstrator funded by the Climate-KIC of the European
Institute of Innovation and Technology (EIT). I want to thank Climate-KIC and the EIT for providing
continuous support. I also thank project partners Mr. Jim Wood and Mr. Ben Edmonds (London Legacy
Development Corporation), Prof. Nilay Shah and Dr. Koen H. Van Dam (Imperial College London),
Mr. Paul Oesten-Creasey (VU.City), and Dr. Andreas Matheus (Secure Dimensions GmbH). Some of
the concepts in this thesis were also developed for the project OGC Future City Pilot Phase 1. I would
like to thank the pilot sponsors and participants for making this project a big success. I acknowledge
Mr. Bart De Lathouwer (Open Geospatial Consortium), Mr. Simon Navin (Ordnance Survey), Mr.
Emmanuel Devys (IGN France), Dr. Claus Nagel and Dr. Lutz Ross (virtualcitySYSTEMS GmbH),
Dr. Mohsen Kalantari (University of Melbourne), and Mr. Guy Schumann (Remote Sensing Solutions
Inc., U.S.A.). I would also like to thank the project Digital Twin Munich for allowing me to apply my
research skills to the project. I acknowledge Mr. Jan Liebscher, Mr. Markus Mohl, and Mr. Maximilian
Müller (Landeshauptstadt München), and Dr. Ralf Kerschner (CGI Deutschland).

viii

This thesis would not have been possible without the lasting patience, support, and love of my
family. All my love goes to my wife Kimi for her belief in me and for sharing this journey with me.
My heartfelt gratitude goes to my parents Harsh and Sadhana, aunts Rani and Vibha, parents-in-law
Vineet and Pallavi, brother Shantanu, sister-in-law Kanika, my adorable nephews Raghav and Kriday,
and our cat Pablo. This thesis is also their accomplishment; hence I dedicate it to them.

Contents

Chapter 1: Introduction 1
1.1 Semantic 3D City Models . 1
1.2 Motivation and Problem Statement . 2
1.3 Research Hypotheses and Questions . 3
1.4 Outline of the thesis . 5

1.4.1 Part I: Integration of time-dependent properties 6
1.4.2 Part II: Management of time-dependent properties 6
1.4.3 Part III: Proof of Concept . 7

1.5 Projects . 7
1.6 Open Source Solutions . 8

Chapter 2: Background 11
2.1 Time-dependent properties in the applications of 3D city models 12

2.1.1 Smart Cities and Digital Twins . 12
2.1.2 Urban Simulations . 18
2.1.3 Mobility . 23
2.1.4 Urban Development . 25
2.1.5 Requirements Summary . 28

2.2 Review of existing standards for the listed requirements 28
2.2.1 Sensor and IoT data access and management 28
2.2.2 Representation and management of time-series 31
2.2.3 Managing alerts and events . 32
2.2.4 Representation of moving objects . 33
2.2.5 History and Version Management . 34

2.3 Evaluation of city modelling standards for the listed requirements 35
2.3.1 CityGML 2.0 . 35
2.3.2 IFC v4 . 38
2.3.3 EU INSPIRE . 39

Chapter 3: Methodology 41
3.1 Time-dependent properties in the context of 3D city models 42

3.1.1 Identification of city object properties affected by time 42
3.1.2 Classification of changes in cities . 43

3.2 Overview of the CityGML standard . 45
3.2.1 Data Modelling with CityGML . 45
3.2.2 Management of CityGML-based city models 47

x Contents

3.3 Realisation of the concepts with the CityGML standard 49
3.3.1 Data Models . 49
3.3.2 Data Management . 50
3.3.3 Proof of concept . 51

PART I: INTEGRATION OF TIME-DEPENDENT PROPERTIES 53

Chapter 4: Modelling Slower Changes 55
4.1 Versioning in semantic 3D city models . 56

4.1.1 Requirements for modelling the new Versioning concept 58
4.2 Modelling the Versioning concept within the CityGML standard 61

4.2.1 Versionable Features . 61
4.2.2 Version - a new Feature Type . 63
4.2.3 Version Transitions . 64
4.2.4 Complete UML Model of the Versioning concept 65

4.3 Illustration of the Concept . 66
4.3.1 Using new CityGML identifiers . 66
4.3.2 Using Version and Version Transitions . 68

4.4 Discussions . 70

Chapter 5: Modelling Highly Dynamic Changes 73
5.1 Making 3D City Models Dynamic . 74
5.2 Modelling the Dynamizer concept within the CityGML standard 75

5.2.1 Dynamizer - a new Feature Type . 76
5.2.2 SensorConnection . 78
5.2.3 Atomic Timeseries . 81
5.2.4 Composite Timeseries . 87
5.2.5 Complete UML Model of Dynamizer . 90

5.3 Illustration of the Concept . 90
5.3.1 Integrating city object properties with real-time sensors 91
5.3.2 Representing timeseries values in-line within city objects 99
5.3.3 Representing complex periodic patterns using Dynamizers 103

5.4 Discussions . 109

PART II: MANAGEMENT OF TIME-DEPENDENT PROPERTIES 111

Chapter 6: Management on the level of databases 113
6.1 Managing CityGML ADEs within databases . 114

6.1.1 Managing the Versioning ADE within the 3DCityDB 115
6.1.2 Managing the Dynamizer ADE within the 3DCityDB 117

6.2 New Relational Data Model for the Dynamizer ADE 119
6.2.1 Dynamizer Core Module . 120
6.2.2 Timeseries Metadata Module . 120
6.2.3 Timeseries Module . 122

Contents xi

6.3 Import and Export of Dynamizer ADE data to/from the 3DCityDB 124
6.4 Discussions . 125

Chapter 7: Management of Dynamic City Models on the level of SDIs 127
7.1 Spatial Data Infrastructures (SDI) . 128
7.2 Establishing cross-platform interoperability for sensor and time-series data 129

7.2.1 OGC Sensor Observation Service . 130
7.2.2 OGC SensorThings API . 133
7.2.3 Further recommendations on working with the OGC SWE standards 136

7.3 Introduction to the InterSensor Service . 136
7.3.1 Architecture . 138
7.3.2 Data Model . 139

7.4 Illustration of the concept . 141
7.4.1 Adding a data source . 141
7.4.2 Automated generation of the standardised interfaces 143

7.5 Discussions . 146

PART III: PROOF OF CONCEPT 149

Chapter 8: Using Dynamic 3D City Models in Smart Cities 151
8.1 OGC Future City Pilot Phase 1 . 152

8.1.1 Integrating city object properties with real-time sensor data 152
8.1.2 Enriching city object properties with solar potential simulation time-series . . 157
8.1.3 Integrated management and visualisation of static and dynamic properties . . 161

8.2 Smart District Data Infrastructure (SDDI) . 162
8.2.1 Deployment options for the InterSensor Service 164
8.2.2 Joint visualisation and analysis of heterogeneous sensor data 166
8.2.3 Integrated management and visualisation of static and dynamic properties . . 167
8.2.4 Easy deployment of interoperable solutions 169

Chapter 9: Securing Data Infrastructures for Smart Cities 173
9.1 Securing the Smart District Data Infrastructure (SDDI) 174
9.2 Gathering requirements for securing the infrastructure 175

9.2.1 Smart Cities . 176
9.2.2 Spatial Data Infrastructures (SDI) . 177
9.2.3 Security . 177

9.3 Demonstration scenario for securing the SDDI framework 178
9.4 Implementations . 180

9.4.1 Implementing Single-Sign-On . 180
9.4.2 Linked Protected Data . 181
9.4.3 Setting up the core security services . 183

9.5 Illustration of the Concept . 184

Chapter 10: Conclusions and future work 187
10.1 Thesis Summary . 187

xii Contents

10.2 Discussion of the results . 188
10.3 Scientific Contributions . 193
10.4 Outlook and future prospects . 194

Bibliography 197

Original publications 209

List of Figures

1.1 Organisation of the thesis. 5

2.1 Illustration of a Smart City concept. 13
2.2 Possible ways for linking sensors with city objects. 17
2.3 Examples of urban simulations with semantic 3D city models. 19
2.4 Textures of the global irradiation values for the months 20
2.5 Tabular representation of monthly irradiation values of a building. 21
2.6 Visualisation of estimated heat demand values of a building in Berlin. 22
2.7 Illustration of mobility applications. 24
2.8 Illustration of the evolution of Singapore City. 26
2.9 Management of historic and parallel versions within semantic 3D city models. 27

3.1 Topographic object properties within semantic 3D city models 43
3.2 UML diagram of CityGML 2.0 Core module. 46
3.3 Two new modules proposed for CityGML . 49
3.4 Data Management of new CityGML modules within 3DCityDB 50

4.1 An illustration of historical succession. 56
4.2 Reconstruction of events to handle alternative models. 57
4.3 Managing parallel or alternative versions. 58
4.4 Representation of Version Transitions. 59
4.5 Issues with versioning of aggregated features. 60
4.6 Versionable Features of CityGML. 62
4.7 Introduction of the new Version feature. 63
4.8 Introduction of the new VersionTransition feature. 64
4.9 Complete UML model of the CityGML Versioning concept. 66
4.10 An instance example of versions representing modifications of a building. 67

5.1 Conceptual illustration of CityGML Dynamizers. 76
5.2 Dynamizer modelled as a new FeatureType. 77
5.3 Representation of the data type SensorConnection. 79
5.4 Representation of the feature type AtomicTimeseries 82
5.5 Representation of the StandardFileTimeseries class. 83
5.6 Representation of the TabulatedFileTimeseries class 84
5.7 Representation of the GenericTimeseries class. 86
5.8 Representation of Composite Timeseries. 88
5.9 Complete UML model of the Dynamizer concept. 89
5.10 Dynamizer SensorConnection linking to different sensor platforms. 90

xiv List of Figures

5.11 Representation of time-series in-line using Atomic Timeseries. 100
5.12 Example of composing AtomicTimeseries to a pattern. 104
5.13 Example of complex CompositeTimeseries. 108

6.1 Transformation Workflow of the 3DCityDB ADE Plugin Manager. 114
6.2 Management of CityGML ADEs within the 3DCityDB. 115
6.3 Version Management in the 3DCityDB using the Versioning ADE. 116
6.4 Issues with the access of Dynamizer AtomicTimeseries by CityGML Viewers. 118
6.5 Issues with the access of Dynamizer SensorConnection by CityGML Viewers. 118
6.6 High Level Overview of the implementation of the Dynamizer ADE within the

3DCityDB. 119
6.7 Relational Logical Model of the Dynamizer ADE. 121
6.8 Geometry hierarchy managed within the table SURFACE_GEOMETRY for a LoD1

solid geometry. 123

7.1 Illustration of heterogeneous data sources for sensor and time-series data. 129
7.2 Interoperability of sensor and time-series data using the OGC Sensor Web Enablement

standard suite. 130
7.3 Interoperability of sensor and time-series data using the OGC SOS standard. 132
7.4 Official UML Data Model of the OGC SensorThings API standard. 133
7.5 Interoperability of sensor and time-series data using the OGC SensorThings API

standard. 135
7.6 Motivation of developing the InterSensor Service. 137
7.7 The three-layer architecture of the InterSensor Service. 138
7.8 Key resources of the InterSensor Service. 139
7.9 Representation of types of data sources which can be used by the InterSensor Service. 140
7.10 Resolving the issue of accessing Dynamizer AtomicTimeseries by the InterSensor

Service. 146
7.11 Resolving the issue of accessing observations from heterogeneous sensor platforms

by the InterSensor Service. 147

8.1 Thematic attributes of a buiding including description and links for sensor based
services. 155

8.2 Timeseries graph visualisation of real-time sensor observations. 156
8.3 Management of CityGML Dynamizer ADEs for Future City Pilot Phase 1. 161
8.4 Integrated management and visualisation of static and dynamic properties of CityGML

Dynamizers. 162
8.5 Joint usage of standardised web services in the Smart District Data Infrastructure. . . 163
8.6 Implementation scenario of the InterSensor Service. 164
8.7 Deployment of the InterSensor Service. 165
8.8 Joint visualisaion of observations being retrieved directly from heterogeneous data

sources. 166
8.9 Real-time energy notification system for buildings within Queen Elizabeth Olympic

Park . 167
8.10 Joint visualisation of geo-tagged tweets retrieved by the InterSensor Service along

with CityGML based 3D building objects. 168

List of Figures xv

8.11 Joint visualisation of available rental car information being retrieved by the InterSensor
Service along with CityGML based 3D building objects. 169

8.12 Illustration of the SDDI functionalities with highly detailed models provided by
external visualisation solution providers. 170

8.13 Illustration of the SDDI functionalities with an external visualisation platform. 171

9.1 Illustration of secure and controlled access to the distributed applications and services
within the SDDI framework. 175

9.2 Venn Diagram illustrating the key focus of the research contribution. 176
9.3 Representation of chaining of distributed resources in the SDDI framework. 179
9.4 Illustration of the security demonstration scenario showing that users identified by

different identity providers can access the distributed components. 180
9.5 An overview of the security demonstrator architecture. 181
9.6 Selection of the appropriate Identity Provider to access the resources. 184
9.7 SOS2 can only be accessed by the user with a valid eduGAIN login. 185

List of Tables

2.1 List of Smart City projects aiming on developing Digital Twins of cities. The table
shows the Project name, Project location, and Use cases. The last two columns show
that for their use cases, all the projects use semantic 3D city models and require
integration of city models with real-time sensor and IoT information. 14

2.2 List of key requirements considered for extending semantic 3D city models for
supporting time-dependent properties. 29

2.3 Evaluation of 3D city modelling standards for the listed requirements. 36

3.1 Classification of slower and highly dynamic changes. The first two columns refer to
the requirements listed in Chapter 2. 44

LISTINGS

4.1 Representation of multiple object versions within one single CityGML dataset 67
4.2 Representation of version transitions within one single CityGML dataset. This listing

extends Listing 4.1. 69

5.1 OCL expression for defining that either column number or column name must be
provided for time and value columns . 85

5.2 OCL expression for defining that only one type of time-series value can be represented
within a single GenericTimeseries and only one type of encoding is represented by
TimeValuePair . 87

5.3 Illustration of a CityGML Building object having a generic attribute ’temperature’ . . 91
5.4 Dynamizer defined within the CityGML 3.0 document having direct links to sensor

observations available at ThingSpeak platform . 92
5.5 CityGML Dynamizer having direct links to sensor observations available at the

FROST Server . 94
5.6 Illustration of a CityGML RoofSurface object having a generic attribute named

’outside_temperature’ . 95
5.7 CityGML Dynamizer having direct links to sensor observations available at the

Weather Underground platform . 96
5.8 CityGML Dynamizer subscribing to a sensor data stream using the MQTT protocol . 98
5.9 Illustration of a CityGML Building WallSurface having a generic attribute to record

monthly solar irradiation value . 99
5.10 CityGML Dynamizer TabulatedFileTimeseries referring to time-series stored in an

external CSV file . 100
5.11 Alternative representation of CityGML Dynamizer TabulatedFileTimeseries 102
5.12 CityGML Dynamizer GenericTimeseries representing time-series in-line 103
5.13 CityGML Dynamizer CompositeTimeseries representing periodic patterns of energy

consumption values . 104

7.1 Example of configuring the data source connection to a ThingSpeak channel 142
7.2 Example of configuring the data source connection to a Twitter channel 142
7.3 Example of configuring the data source connection to a Dynamizer stored in 3DCityDB143
7.4 Illustration of the InterSensor Service resource endpoints generated for each data

source connection . 144

xx Listings

7.5 Illustration of the OGC SensorThings API endpoints automatically generated for each
data source connection . 144

7.6 Illustration of the OGC Sensor Observation Service endpoints automatically generated
for each data source connection . 145

7.7 Illustration of the 52◦North Timeseries API endpoints automatically generated for
each data source connection . 145

8.1 Illustration of Dynamizer SensorConnection to link to a weather station sensor running
over the OGC SOS . 154

8.2 Representation of monthly solar irradiation values as individual generic attributes in
the current version of CityGML 2.0 . 157

8.3 Illustration of monthly solar irradiation values represented according to the OGC
TimeseriesML 1.0 standard . 159

8.4 Illustration of a Dynamizer AtomicTimeseries representing dynamic solar irradiation
values for a specific Building Wall Surface . 160

Chapter 1

Introduction

1.1 Semantic 3D City Models
Virtual 3D city models are digital models that represent urban objects such as terrain surfaces,
buildings, vegetation, water bodies, infrastructure, and landscape elements in a 3-Dimensional (3D)
space. They have been used for many years for the visualisation and graphical exploration of cityscapes.
The most notable examples of virtual 3D city models are Google Earth, Apple Maps, and Bing Maps.
While the mentioned examples provide a highly realistic 3D representation of cities, they lack semantic
aspects of city objects. The interpretation of the rendered 3D model happens entirely by the (human)
viewer relying on his or her ability to recognise individual urban objects. However, the complexities
involved in many disciplines, such as planning and decision making, require a virtual representation of
cityscapes allowing much more than mere visualisation. For example, computing the total roof surface
area of a city quarter, estimating the energy demand of a district within a city, calculating the monthly
solar irradiation on a building roof surfaces, and so on. These requirements lead to the development of
"Semantic 3D city models" (Kolbe 2009), which not only describe spatial and graphical aspects of
the city objects, but also provide the ontological structure including thematic classes, attributes, and
their interrelationships. Such information models make it possible for applications and simulation
tools to distinguish urban objects (like buildings and streets) and use their rich thematic and geometric
information for queries, statistical computations, simulations, and visualisations. Hence, many cities
worldwide such as Berlin, Singapore, New York, London, and Helsinki, have already developed
semantic 3D city models for different use cases and applications.

Several organisations and standard working groups provide semantic data models for cities and their
objects. CityGML (Gröger et al. 2012), issued by the Open Geospatial Consortium (OGC), is one of
the widely accepted standards for modelling and exchanging semantic 3D city models. This standard
facilitates the integration of heterogeneous data from multiple sources. It allows for the representation
of geometrical and semantic attributes of the city level objects (such as buildings, streets, water bodies,
vegetation, etc.) along with their interrelationship to the other objects. INSPIRE (Infrastructure for
Spatial Information in the European Community) (INSPIRE 2013) is an initiative of the European
Commission for developing a European Spatial Data Infrastructure. The INSPIRE Directive addresses
34 spatial data themes (such as Administrative units, Buildings, Transport networks, Land use,
Geology, etc.), which are discoverable and interoperable through the implementation of a common set
of standards, data models and web services. Industry Foundation Classes (IFC 2016) is also a very
popular standard for modelling and exchanging Building Information Models (BIM) (Borrmann et al.
2015). This standard has been developed by buildingSMART International and provides open data

2 1 Introduction

models for sharing building and construction industry data among different software applications.
IndoorGML (Lee et al. 2014) is another OGC standard that specifies an open data model and exchange
format for indoor spatial information. This standard intentionally focuses on modelling indoor spaces
for navigation purposes. Another notable example is the SEDRIS standard (Synthetic Environment
Data Representation and Interchange Specification) (Kang et al. 2015), which is one of the oldest
semantic information models for representing and sharing the environment data. The environment
data may be concrete (such as trees and mountains) or abstract (such as the behaviour of light). The
standard SEDRIS offers a data representation model, augmented with its environmental data coding
specification and spatial reference model, to capture and communicate meanings and semantics.

1.2 Motivation and Problem Statement
Semantic 3D city models are an important source of information for different types of applications
and simulations. The well-defined city objects give the spatial context to all information that is related
to the physical entities in cities and provide a means for interactive and spatio-semantic queries and
aggregations. There are many application and simulation scenarios, which highly benefit from the use
of semantic 3D city models such as energy demand estimations (Strzalka et al. 2011; Agugiaro 2016;
Kaden and Kolbe 2013), solar potential simulations (Zahn 2015; Biljecki et al. 2015a; Salimzadeh
et al. 2018), disaster management (Morel and Gesquière 2014), training simulators and autonomous
driving (Randt et al. 2007; Schwab and Kolbe 2019), and indoor navigation (Mäs et al. 2006). An
extensive review of different applications of 3D city models is also provided by (Biljecki et al. 2015b).
They distinguished applications into two categories: the first category is non-visualisation use cases,
which do not require the visualisation of the 3D city model as well as the results of the operations
that the use case comprises. The second category is visualisation-based use cases, where visualisation
of the city model and the results play an important role. For example, solar potential analysis is an
instance of a non-visualisation use case, in which the simulation results can be visualised, but this is
not essential to achieve the purpose of the use case. The results can be stored in a database, which
can be queried without the need of being visualised. On the other hand, the applications related to
navigation, gaming, and also urban planning fall into the category of visualisation-based use cases. In
these cases, the visualisation of the objects is essential, and the use cases would not make much sense
without it. In total, the authors identified more than 29 use cases including more than 100 applications,
which are arranged into these categories.

However, most of these applications involve scenarios where city object properties are not static
and change with time (c.f. chapter 2), and current generation semantic 3D city models do not support
such changes explicitly. In general, these changes can be associated with different properties of city
objects. For example, a construction event leads to the change in geometry of a building (i.e. addition
of a new building floor or demolition of an existing door). The geometry of an object can be further
classified according to its shape, location, and extent, which can also be changed with time. A moving
car object involves varying only the position and orientation of the car; however, a flood incident
involves variations in location and shape of water. There are other properties which result in changes
in the semantics of city objects over time, e.g., hourly variations in energy or gas consumption of
a building or changing the building’s type from residential to commercial. Some properties involve
changes in appearances over time, such as building textures changing over years or traffic cameras
recording videos of moving traffic over definite intervals. Semantic 3D city models comprise relevant
real-world entities and also represent interrelationships between objects. Such interrelationships may
also change over time. Besides, the city objects may be decomposed into parts based on deeply nested

1.3 Research Hypotheses and Questions 3

structures that can be observed in the real world. For example, a building may be decomposed into
different (main) building parts like walls, stairs, etc. and these may again consist of parts like windows
or doors. The changes may also be related to such semantic decompositions.

The main objective of the thesis is to extend current generation semantic 3D city models by
providing explicit support of time-dependent properties. The thesis reviews multiple application
domains and identifies key requirements for temporal and dynamic extensions of city object properties.
Further, it defines approaches to extend semantic 3D city models based on the specified requirements.
The thesis provides a complete “ecosystem”, which not only allows extensions using the conceptual
data models, but also offers ways to (i) implement, (ii) manage, and (iii) visualise them in the
applications. The concepts presented in the thesis have been developed for the CityGML standard.
However, they can also be applied to other GML-based application schemas including the European
INSPIRE data themes and national standards for topography and cadasters like the British Ordnance
Survey Mastermap or the German cadaster standard ALKIS.

1.3 Research Hypotheses and Questions
The main research question that this thesis seeks to answer is

How can semantic 3D city models be extended to support time-dependent properties?

The research question is further subdivided into the following hypotheses and questions:

From the ’modelling’ perspective,

Question 1.1: What are time-dependent properties in the context of semantic 3D city models?

This is a fundamental question determining the time-dependent properties associated with the static
properties of city objects.

Question 1.2: What kinds of time-dependent properties are required in various applications of
semantic 3D city models?

This question attempts to review several application domains and investigates over different types
of time-dependent properties used in those applications. The question tries to identify essential
requirements that arise from these applications enabling to extend city objects and their properties
to support time-dependent properties in a systematic way.

Question 1.3: How can existing data models be extended to support the identified time-dependent
properties?

This question aims to find out how can we extend data models for semantic 3D city models to
support the identified time-dependent properties. The possible sub-questions are "Are the identified
time-dependent properties similar or fundamentally different from each other?" and thus, "Is one
common data model sufficient or do we require individual data models for representing all the
identified time-dependent properties?".

4 1 Introduction

Hypothesis 1.4: Existing modelling standards for representing various time-dependent properties
can be utilised in extending semantic 3D city models.

The modern research and application fields such as Sensor and IoT, Big Data Management,
Urban Mobility already provide sophisticated standards and platforms for managing various kinds
of time-dependent properties. Such standards and platforms are stable, well-defined, and used
worldwide. This hypothesis states that many of such standards can be utilised in developing the
extensions for semantic 3D city models.

From the ’management’ perspective,

Question 1.5: How can we manage time-dependent properties along with static properties of 3D
city models?

There are already several sophisticated database management systems, which allow efficient
management of semantic 3D city models. However, the available solutions only store the static
properties of city objects. This question finds ways on how time-dependent properties can be
managed along with the static properties of city objects.

Hypothesis 1.6: It is not always required to store time-dependent properties along with the static
properties of city objects in database management systems.

In many scenarios, time-dependent properties may be highly frequent. For example, sensors and
IoT devices are capable of measuring values up to every millisecond, which produces a massive
amount of data in a short period. The concept of Spatial Data Infrastructures (SDI) can be beneficial
in such cases allowing managing and accessing highly dynamic data using open and international
standards in an interoperable way.

Question 1.7: How can we achieve cross-platform interoperability for heterogeneous data sources
of time-dependent properties?

This question aims to determine the right approach for accessing heterogeneous data belonging to
different stakeholders and running over different platforms in a unified way.

From the ’applications’ perspective,

Question 1.8: How can city modelling applications achieve integrated access to static as well as
dynamic properties of city models?

This question tries to find ways on how the 3D city modelling applications can interpret static as
well as dynamic information in an integrated fashion.

Question 1.9: How can we have a unified visualisation for multiple heterogeneous time-dependent
properties using the same framework?

1.4 Outline of the thesis 5

This question aims at reviewing multiple data sources and achieving an interoperable framework
allowing accessing and visualising the data in a unified way.

Question 1.10: What are secure ways allowing users and applications to access the static and
dynamic properties of semantic 3D city models?

The concept of SDIs allows integrating different data sources such as sensors, IoT devices, simula-
tion tools, and 3D city models within a common operational framework. However, such distributed
systems, if not secured, may cause a significant threat by disclosing sensitive information to untrus-
ted or unauthorised entities. This question attempts to investigate how can such distributed access
and management be secured from the users and applications perspectives.

1.4 Outline of the thesis

The research work carried out within this thesis has made a significant contribution to 15 Scientific
Publications including Journal Articles, Book Chapters, Conference Papers, and Engineering Reports
(listed in the "Original Publications" section). The results of this thesis have been applied and
implemented successfully in several research projects (c.f. section 1.5) contributing directly to
multiple Open Source solutions (c.f. section 1.6).

1. Introduction

2. Background

4. Slower Changes

5. Highly Dynamic Changes

Part I: Modeling

3. Methodology

9. Securing Data Infrastructures for Smart Cities

10. Conclusions and future outlook

6. On the level of Databases

7. On the level of SDIs

Part II: Management

8. Using Dynamic 3D City Models in Smart Cities

Part III: Proof of Concept

Figure 1.1: Organisation of the thesis. The report is divided into 3 main parts and 10 chapters.

6 1 Introduction

The thesis is organised into 3 parts and 10 chapters (Figure 1.1), as follows:
Chapter 2 is empirically oriented. It discusses the fundamentals that are crucial to an understanding

before delving deeper into the topic: what are time-dependent properties in the context of semantic 3D
city models?, what are the requirements that arise from different applications for temporal extensions
of 3D city models?, what are the available standards and technologies to represent time-dependent
properties?, and to which degree the existing city modelling standards support the listed requirements?.
Based on the comprehensive review, key requirements are gathered for extending semantic 3D city
models.

Chapter 3 defines a methodology by classifying the key requirements according to two broad
categories: slower changes and highly dynamic changes. Accordingly, data modelling and data
management approaches are defined for the research. Since the realisation of the new concepts is
based on the OGC CityGML standard, this chapter also provides a brief overview of the data modelling
aspects and available tools for the CityGML standard.

The subsequent chapters are organised into 3 parts:

1.4.1 Part I: Integration of time-dependent properties

Chapter 4 focuses on changes in cities that are slower such as history and evolution of cities. For
managing such gradual changes, the chapter introduces a new Versioning concept for the CityGML
standard. It extends the existing CityGML data model and allows exchanging different versions and
version transitions within one dataset. In this way, a complete history or evolution of the city model
is supported by version transitions having bi-temporal attributes. The concept also allows managing
parallel alternative versions of the objects at the same time. The Versioning concept includes a new
identifier approach allowing users to refer to a specific historic or parallel version in the dataset in an
efficient way.

Chapter 5 focuses on changes that represent high frequent or dynamic variations of the object
properties. For example, such variations are related to (i) thematic attributes such as changes of
physical quantities (energy demands, temperature, solar irradiation levels), (ii) spatial properties such
as changing feature’s position (moving objects), and (iii) appearances such as changing building’s
textures or colours. In these cases, only some of the properties of otherwise static objects need to
represent such time-varying values. Such changes are supported within 3D city models using the
newly proposed Dynamizer concept. The approach allows integrating different kinds of dynamic data
such as time-series obtained from sensor and IoT devices, simulation databases and external files. It
also provides a method to inject them into the static attributes of city models.

1.4.2 Part II: Management of time-dependent properties

The second part of the thesis focuses on managing time-dependent properties with semantic 3D city
models. Chapter 6 discusses the approaches for managing newly introduced Versioning and Dynamizer
concepts in the database management systems for performing queries and analysis. Further, this chapter
provides a new relational database model for managing time-series and its metadata values associated
with Dynamizers. This functionality allows performing queries based on the time-series related to a
specific city object.

Chapter 7 discusses how time-dependent properties of city objects along with the static properties
can be retrieved using web services. For this purpose, the chapter presents the concept of the Spatial
Data Infrastructure (SDI) and describes ways to access time-series data using open and international

1.5 Projects 7

standards. Further, the chapter introduces a new concept InterSensor Service allowing to retrieve time-
series data from CityGML Dynamizers and translates them "on-the-fly" according to the international
standards. Besides, the service can also retrieve time-series data from the arbitrary sensor and IoT
platforms, databases, and external tabulated files and perform such translations. In this way, time-series
data from heterogeneous data sources can be retrieved and accessed in a unified way.

1.4.3 Part III: Proof of Concept

The third part of the thesis provides proofs of concepts that have been developed in the previous two
parts. Chapter 8 provides implementations for the developed concepts in the context of two real-world
Smart City projects. Various demonstrations show the applicability of CityGML Dynamizers in linking
with real-time sensor data as well as representing solar-potential simulation results in-line with city
objects. The demonstrations also include the cross-platform interoperability of many heterogeneous
data sources of time-series data using the InterSensor Service. Such unified representations improve
decision-making in Smart City scenarios.

Furthermore, Chapter 9 highlights the importance of security in realising distributed infrastructures
(as mentioned in Chapter 8). The chapter presents a novel solution for securing the overall access
and management of distributed applications and services. The proposed concept facilitates privacy,
security and controlled access to all stakeholders and the respective components by establishing
proper authorisation and authentication mechanisms. The approach offers Single-Sign-On (SSO)
authentication by a novel combination in the use of the state-of-the-art security concepts such as
OAuth2 access tokens, OpenID Connect user claims and Security Assertion Markup Language
(SAML).

Chapter 10 concludes the thesis with the key takeaways, answers to the research questions, main
contributions of the research, and proposes a roadmap for future work.

1.5 Projects

The research described in this thesis have been applied successfully to the following projects:

1. OGC CityGML 3.01: To increase the usability of CityGML for more user groups and areas of
application, the OGC CityGML Standards Working Group (SWG) and the Special Interest Group
3D (SIG 3D) of the initiative Geodata Infrastructure Germany (GDI-DE) have been working since
2014 on the further development of the CityGML standards. This development intends to the next
major version CityGML 3.0. The requirement of supporting time-dependent properties by city
objects was considered as one of the core packages within the development of CityGML 3.0. The
data models developed within this thesis (Chapters 4 and 5) have been developed considering
the requirements and motivation of the CityGML 3.0 SWG. The new Versioning and Dynamizer
concepts are planned to become part of CityGML 3.0 (Kutzner et al. 2020).

2. OGC Future City Pilot Phase 12: The Future City Pilot, Phase 1 (FCP1), an initiative from
the Open Geospatial Consortium (OGC), successfully demonstrated that the use of geospatial
technologies including international standards such as CityGML and Industry Foundation Classes

1https://github.com/opengeospatial/CityGML-3.0CM
2https://www.opengeospatial.org/projects/initiatives/fcp1

https://github.com/opengeospatial/CityGML-3.0CM
https://www.opengeospatial.org/projects/initiatives/fcp1

8 1 Introduction

(IFC) can provide stakeholders with information, knowledge and insight which enhances financial,
environmental, and social outcomes for citizens living in cities. During the pilot, multiple scenarios
were set up based on real-world requirements and were put forward by the pilot sponsors: Sant
Cugat del Vallès (Barcelona, Spain), Ordnance Survey Great Britain (UK), virtualcitySYSTEMS
GmbH (Germany), and Institut National de l’Information Géographique et Forestière - IGN
(France). The scenarios focused on the following areas: Urban Planning, Urban Flood Mapping,
Adult Social Care, and Dynamic Resource Modelling. The solutions for the respective scenarios
were developed by the pilot participants: University of Melbourne (Australia), Remote Sensing
Solutions, Inc. (U.S.A), and Technical University of Munich (Germany). The solutions were
developed for (i) achieving interoperability between the IFC and CityGML standards, (ii)
illustrating a new level of interoperability between flood models and semantic 3D city models
based on the CityGML standard, and (iii) integrating dynamic data such as real-time sensor streams
and solar potential analysis results with 3D city models. The Dynamizer concept (c.f. Chapter 5)
developed within this thesis was implemented as an Application Domain Extension (ADE) for cov-
ering the use cases of this project. The results of Dynamizers for this project are shown in Chapter 8.

3. Smart District Data Infrastructure (SDDI) Demonstrator3: This project runs within the Smart
Sustainable Districts Program of the Climate-KIC of the European Institute for Innovation and
Technology (EIT). The SDDI framework allows integrating diverse components such as multiple
stakeholders, sensors, IoT devices, simulation tools with a virtual district model representing
the physical reality of the district. Within the project, the owners of the district, London Legacy
Development Corporation (LLDC), have identified different use cases related to the reduction
of resource and energy usage, reduction of waste, reduction of emissions, improvements of
well-being, mobility, and in general concerning efficiency. The concepts in this thesis (Chapters 7,
8, and 9) have been developed considering the requirements of the use cases of this project.

4. Digital Twin Munich4: Digital Twin Munich (Digitaler Zwilling in München) is an ongoing
project initiated by the City of Munich (Landeshauptstadt München). It is funded by the Federal
Ministry of Transport and Digital Infrastructure, Germany. The Digital Twin intends to create a
complete digital image of Munich. In addition to a three-dimensional presentation, this "digital
copy" will contain extensive information (including real-time data from sensors and IoT devices).
The aim is to improve the basis for urban, traffic and environmental planning, for example, by
modelling what-if scenarios. The concepts developed within this thesis (Chapter 7) enable ways to
integrate real-time information from various sensors and IoT devices with the 3D City Model of
Munich in a standardised and interoperable manner.

1.6 Open Source Solutions

The concepts developed in this thesis have been implemented and contributed to the following Open
Source solutions:

1. InterSensor Service (https://github.com/tum-gis/InterSensorService): InterSensor Service is a
lightweight web service that allows users to connect to multiple IoT platforms, databases and

3https://www.lrg.tum.de/gis/projekte/smart-district-data-infrastructure/
4https://muenchen.digital/twin/

https://github.com/tum-gis/InterSensorService
https://www.lrg.tum.de/gis/projekte/smart-district-data-infrastructure/
https://muenchen.digital/twin/

1.6 Open Source Solutions 9

external tabulated files and retrieving their observations without worrying about data storage
and the multitude of different APIs. It is a Java application based on the Spring framework. The
application is free and Open Source. This application has been developed and implemented within
this thesis (Chapter 7).

2. IoT-FROST-Ecosystem (https://github.com/tum-gis/iot-frost-ecosystem): IoT-FROST-Ecosystem
is a guideline that has been developed within this thesis for covering use cases of projects. It
provides a step-by-step process to work with various IoT platforms and allows their observations
to be managed and visualised in standardised ways. It describes ways (i) to interact with several
sensors and IoT platforms, (ii) to manage their observations according to open and international
standards, and (iii) to visualise heterogeneous observations using a common dashboard application.
The guideline utilises Open Source applications which are used to set up IoT ecosystems based on
open and international standards. By following the steps in this repository, a user can very easily
install and set up the required applications on his/her personal desktop/laptop or a remote (virtual)
machine.

3. 3DCityDB (https://github.com/3dcitydb): 3DCityDB (3D City Database) is an Open Source
geodatabase that stores, represents, and manages the large CityGML datasets on top of a standard
spatial relational database management systems such as Oracle Spatial and PostgreSQL. It
provides a Java front-end application named ’3DCityDB Importer/Exporter’, which allows for
high performance importing and exporting the CityGML datasets with arbitrary file sizes. It
also allows exporting the contents in the form of different visualisation formats such as KML,
COLLADA, and glTF, allowing the 3D objects to be viewed and interactively explored in the web
applications. Furthermore, 3DCityDB software suite also includes a visualisation client named
’3DCityDB-Web-Map-Client’, which provides rich 3D visualisation and interactive exploration of
arbitrarily large semantic 3D city models based on the CityGML standard. The concepts developed
within this thesis (Chapter 6 and 7) contribute towards the extension of the 3DCityDB and the
3DCityDB-Web-Map-Client.

4. CityGML 3.0 Conceptual Models (https://github.com/opengeospatial/CityGML-3.0CM): The
conceptual models of Versioning and Dynamizer concepts developed within this thesis (Chapter
4 and 5) are planned to become a part of the CityGML 3.0 release. The data models have been
provided to the official OGC CityGML 3.0 repository and are openly available at the mentioned
GitHub repository.

https://github.com/tum-gis/iot-frost-ecosystem
https://github.com/3dcitydb
https://github.com/opengeospatial/CityGML-3.0CM

Chapter 2

Background

This chapter discusses the fundamentals that are crucial to an understanding before delving deeper
into the topic. The chapter is oriented towards the basic questions such as "what are time-dependent
properties in the context of semantic 3D city models?", "what are the requirements that arise from
different applications for temporal extensions of 3D city models?", and "to which degree the existing
3D city modelling standards support the listed requirements?". The discussion provides a systematic
analysis on identifying essential requirements which should be considered for extending semantic 3D
city models for supporting time-dependent properties. Major applications and use cases of semantic
3D city models are studied to gather scenarios for dealing with different types of time-dependent
properties. The chapter also provides a comprehensive review of relevant standards that could be
considered and re-used for extending data models for supporting the listed requirements. Finally,
the chapter evaluates three widely used standards OGC CityGML, buildingSMART IFC, and the
European Union INSPIRE for the listed requirements for supporting time-dependent properties. The
results help determine the current state of the standards as well as defining the methodology for
extending semantic 3D city models.

Some of the discussions in this chapter have been presented in the published paper

Chaturvedi, K. and Kolbe, T. H. (2019). ‘A Requirement Analysis on extending Semantic
3D City Models for supporting Time-dependent properties.’ In: ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences IV-4/W9, pp. 19–26. URL: https:
//www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/

https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/

12 2 Background

2.1 Time-dependent properties in the applications of 3D city models

Semantic 3D city models provide spatial context to all information that is related to the physical
entities in cities. At the same time, they provide a means for interactive and spatio-semantic queries
and aggregations for numerous applications and use cases. Hence, they act as a central information
hub and connect different applications by aligning information exchange with the city model entities.
As briefly mentioned in section 1.1, semantic 3D city models are used worldwide in numerous
applications. However, most of the applications require handling with different time-dependent
properties, which are not supported in current generation 3D city modelling standards. This sub-
section reviews four key application domains where semantic 3D city models are widely used. The
section further investigates types of time-dependent properties that several applications require. Based
on the review, requirements are gathered for extensions of semantic 3D city models for supporting
different types of time-dependent properties.

2.1.1 Smart Cities and Digital Twins

According to the Department of Economic and Social Affairs of the United Nations Secretariat,
53% of the world’s population resided in urban areas in 2014, and the world continues to urbanize
rapidly5. With an increasing urban population, it is highly essential to use the best technology and
tools available to manage the development and operation of cities efficiently. Smart Cities is an
emerging concept that "relies on advanced data processing with the goals of making governance
more efficient, citizens happier, businesses more prosperous and the environment more sustainable"
(Yin et al. 2015). This concept allows the efficient management of city resources like energy, water,
and mobility with the help of advanced information and communication technologies including
Sensors and the Internet of Things (IoT) (Hancke et al. 2013), Big Data (Hashem et al. 2016), Cloud
Computing (Suciu et al. 2013), and also geospatial technologies (Roche 2014). Many cities all over the
world are already developing their smart infrastructures. Commercial implementations include IBM
Smarter Planet6, CityNext7 from Microsoft, and The Internet of Everything for Cities by CISCO8.
Some of the projects are also run as a collaboration among universities, companies and city councils
such as Smart Sustainable Districts9, under Climate-KIC of the European Institute of Innovation &
Technology (EIT) and the project EU ICT 30-201510 (Internet of Things and Platforms for Connected
Smart Objects) funded by the European Union Horizon 2020 Programme. Sensors and IoT devices
play an essential role in such smart infrastructures. They provide detailed information by sensing the
environment in real-time. Many application domains, including intelligent energy management and
smart grids, traffic management, home and industrial automation, and others benefit from the use
of real-time sensor observations. These sensors can be stationary such as Smart Meters (Patel et al.
2016) and weather stations (Quarati et al. 2017). Some of the sensors can also be mobile such as a
sensor continuously moving for measuring air quality in different parts of a city (Hagemann et al.
2014). There is also another category of virtual sensors which are not necessarily located physically.
However, their sensing observations can be studied to get better information about our surroundings

5https://population.un.org/wup/
6https://www.ibm.com/smarterplanet/us/en/
7https://partner.microsoft.com/en-us/solutions/citynext
8https://www.cisco.com/c/dam/en_us/solutions/industries/docs/gov/everything-for-cities.pdf
9https://www.climate-kic.org/areas-of-focus/urban-transitions/our-initiatives/smart-sustainable-districts/

10https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-30-2015

https://population.un.org/wup/

2.1 Time-dependent properties in the applications of 3D city models 13

and environment. For example, real-time social media analytic like Twitter feeds can be used for
behavioural and sentiment analysis and to make better decisions (Batty et al. 2012).

Figure 2.1: Illustration of a Smart City concept. Image source: www.houseofbots.com

With the technological advancement and growing popularity in the field of sensors and IoT, another
term, that is gaining attention, is "Digital Twins". A Digital Twin is a digital equivalent of a physical
asset, which collects information via sensors and IoT devices and applies advanced analytics and
artificial intelligence to gain real-time insights about the physical asset’s performance, operation or
profitability (Grieves and Vickers 2017). Digital Twins are also vital for Cyber-Physical Systems. The
Cyber-Physical Systems comprise of smart machines and storage systems and exchange information,
trigger actions under certain events and hence, control each other independently in an autonomous way
(Frontoni et al. 2018). It allows bridging the virtual and physical worlds together and therefore, enable
users improving their decision-making and reducing risks by predicting issues before occurrence
(Mohammadi and Taylor 2017). The Digital Twin technology is spreading from its industrial origins
to the Smart City environment. This approach allows a more holistic approach in terms of cross-
vertical optimisation of the design, management, and operation of urban infrastructure (Batty 2018;
Tomko and Winter 2019). Benefits include operational cost savings, energy efficiencies, increased
resilience, improved sustainability, and a positive impact on the economic growth. Digital twin
solutions include spatial modelling of the built environment, mathematical models of electric and
mechanical systems, and real-time sensor data (crowd) sourced from IoT platforms. Typical use cases
include flood risk modelling, multi-building energy management, renewable energy optimisation,
traffic flow optimisation, occupancy tracking and evacuation simulations, and the generative design of
city extensions.

There are several Smart City projects focused on developing Digital Twins of cities by integrating
various city objects with real-time sensor data streams (Table 2.1). Semantic 3D city models play
a central role in such Smart City projects allowing precise representation of the physical reality.
For example, the Future City Pilot Phase 111 is an Interoperability Program initiated by the Open
Geospatial Consortium (OGC) in collaboration with the buildingSMART International (bSI). The

11https://www.opengeospatial.org/projects/initiatives/fcp1

www.houseofbots.com

14 2 Background

Project name Location Use Cases 3D City
Models

Integration of
sensor data

OGC Future City
Pilot Phase 1

London, U.K.
Rennes, France

Adult care with live
weather information,
solar energy potential

Smart District Data
Infrastructure

London, U.K. Energy efficiency, Smart
Park, Sentiment analyses

Digital Twin Munich Munich,
Germany

Urban, traffic, and
environmental planning

Kalasatama Digital
Twins Project

Helsinki, Finland Solar energy potential,
wind simulation

Digital Twin
Rotterdam

Rotterdam,
the Netherlands

Urban Planning and
development

Virtual Singapore Singapore Urban Planning, collab-
oration and decision-
making, improved
accessibility

Fishermans Bend
urban renewal project

Melbourne,
Australia

Traffic flows, energy
demand estimation

Table 2.1: List of Smart City projects aiming on developing Digital Twins of cities. The table shows
the Project name, Project location, and Use cases. The last two columns show that for
their use cases, all the projects use semantic 3D city models and require integration of city
models with real-time sensor and IoT information.

pilot aims at demonstrating the use of international standards such as CityGML and IFC together can
provide stakeholders with information, knowledge and insight enhancing financial, environmental, and
social outcomes for citizens living in cities. One of the objectives of the pilot is to demonstrate “how
dynamic city models can provide better services to the citizens as well as can help to perform better
analysis?”. This use case requires developing the Digital Twin of the Greenwich district in London
allowing static information such as buildings or houses with elderly citizens having special needs
to be integrated with real-time information such as measurements of temperature and air humidity
being retrieved by a weather station. Such potential integration within council-owned assets shall lead
to better decision-making in the cases of extreme weather and other emergency scenarios matching
human needs to the right housing or resources. The CityGML standard is used for representing the
buildings of the district, and the OGC Sensor Observation Service (SOS) (Bröring et al. 2012) (c.f.
section 2.2.1) is used for retrieving real-time measurements from the weather station. Similarly, the
project Smart District Data Infrastructure12 (SDDI) focuses on developing Smart City infrastructures
for specific districts within selected European cities. This project runs within the Smart Sustainable

12https://www.lrg.tum.de/en/gis/projects/smart-district-data-infrastructure/

2.1 Time-dependent properties in the applications of 3D city models 15

Districts Program of the Climate-KIC of the European Institute for Innovation and Technology (EIT).
The SDDI framework allows integrating diverse components such as multiple stakeholders, sensors,
IoT devices, simulation tools with a virtual district model representing the physical reality of the
district. One of its first implementations is based in the district Queen Elizabeth Olympic Park in
London. In this project, the owner of the district, London Legacy Development Corporation (LLDC),
have identified different use cases related to the reduction of resource and energy usage, reduction
of waste, reduction of emissions, improvements of well-being, mobility, and in general concerning
efficiency. To achieve its goals, the Digital Twin of the Olympic Park comprises a semantic 3D model
(including buildings, streets, vegetation, and water bodies, etc.) based on the OGC CityGML standard.
Within the Digital Twin, the 3D city objects are linked with real-time sensor data streams. For example,
Smart Meters installed in important buildings measuring their electricity and gas consumption, weather
stations located in the park measuring weather properties (such as temperature, humidity, and wind
speed), and so on (more details about this project are given in Chapter 8). There is also another
ambitious project in Munich called Digital Twin Munich13 (Digitaler Zwilling in München). This
project is initiated by the City of Munich (Landeshauptstadt München) and is funded by the Federal
Ministry of Transport and Digital Infrastructure, Germany. The Digital Twin intends to create a
complete digital image of Munich in a 3D environment. In addition to a 3D presentation, this "digital
copy" will contain extensive information (including real-time data from sensors and IoT devices). The
aim is to improve the basis for urban, traffic and environmental planning, for example, by modelling
what-if scenarios. This project also aims to integrate real-time information from various sensors and
IoT devices with the 3D City Model of Munich in a standardised and interoperable manner.

The Kalasatama Digital Twins Project14, a part of the Helsinki 3D+ project initiated by the
Government of Finland, aims at producing high-quality digital twin city models of the Kalasatama
area for smart urban development. Within the project, the digital twins have already been created
using (i) the CityGML standard-based semantic city information model and (ii) a photorealistic
mesh model. The 3D city model is already used for different use cases such as calculating the city’s
solar energy potential and assessing the effect of wind on the high-rise buildings of Kalasatama. In
the future, a more significant number of the buildings will have an API to provide real-time data,
replacing simulations with real measurements as quoted by (Ruohomäki et al. 2018). The Digital Twin
Rotterdam project15, initiated by the City of Rotterdam, also aims at developing the Digital Twin of the
Rotterdam city. Within the project, a 3D model has already been developed, comprising not only the
buildings, but also trees, lampposts, and underground cables and pipes. The Digital Twin of Rotterdam
allows integrating real-time data from various IoT devices with the city objects. For example, the
status of municipal waste containers equipped with sensors, real-time availability of parking spaces
within the parking lots, and real-time display of traffic flow, including lifting bridges where water and
road traffic intersect. Virtual Singapore16, created by the National Research Foundation of Singapore,
is another project in the same direction. The project offers 3D semantic modelling, in which the
meaning of data can be related to the real world, displaying land attributes or the characteristics of
different forms of transport, or the components of buildings and infrastructures. And, apart from
the normal map and land data, the platform also incorporates other real-time dynamics, as well as
information about demographics, climate or traffic, making it a tool that offers enormous potential
and which can be used in many different ways. Similarly, another ongoing project "Fishermans Bend

13https://muenchen.digital/twin/
14https://www.hel.fi/static/liitteet-2019/Kaupunginkanslia/Helsinki3D Kalasatama Digital Twins.pdf
15https://www.3drotterdam.nl/
16https://www.nrf.gov.sg/programmes/virtual-singapore

https://www.hel.fi/static/liitteet-2019/Kaupunginkanslia/Helsinki3D_Kalasatama_Digital_Twins.pdf

16 2 Background

urban renewal project"17 has been proposed by Land Use Victoria and the University of Melbourne in
Australia. The project aims to develop essential design and condition information for physical assets
above and below ground, plus legal boundaries to better manage current and future developments
during the 30-year urban renewal project. The representation of physical information is based on
semantic information modelling. On the city scale, digital twins will illustrate traffic flows and demand
for resources like electricity and water throughout the day.

As described, there are several Digital Twin initiatives being implemented throughout the world
and such implementations will continue to grow in the future. According to the recent research from
ABI Research18, "the installed base of Digital Twin and city modelling deployments is expected
to grow from just a handful of early implementations in 2019 to more than 500 by 2025". All the
above-mentioned Digital Twin initiatives consider semantic 3D city models such as CityGML and
IFC as an integral component of their infrastructures. Hence, it is important that the next generation
semantic 3D city models support seamless integration with sensors and IoT devices. It will allow
measuring real-time observations associated with city objects, which can be be used for performing
advanced analytic. This brings us with two essential requirement described as follows:

2.1.1.1 Requirement R1: Integration of sensor observations with city object properties

Ubiquitous sensor and IoT devices are used to monitor public infrastructures such as bridges, roads,
and buildings and enable more efficient use of resources based on real-time observations collected by
them. For example, Smart Meters installed in buildings in a specific district not only provide real-time
insights about energy usage to the administration but also helps to estimate energy demand for the
district. However, to perform such estimations, it is essential to define relations between city objects
and the respective sensor observations. Hence, the specific city objects are required to be linked
explicitly with sensors and IoT platforms and APIs. However, an important aspect to consider is how
such links between city objects and sensor platforms can be established. The following discussions in
this thesis explore different possibilities for integrating sensor and IoT observation with city objects.

As shown in figure 2.2, one option (represented as ’A’) is to link them by defining additional
semantics such as Linked Data19. Linked Data provides a structured way to define semantic informa-
tion for different interlinking types of data. It can be built upon standard web technologies such as
Hypertext Transfer Protocol (HTTP), Resource Description Framework (RDF), and Uniform Resource
Identifiers (URIs). It can also be based on Ontology representation languages such as Web Ontology
Language (OWL) and Unified Modelling Language (UML). However, a probable issue with this
approach is that it would add another representation to the already existing representations of sensors
as well as city models. Furthermore, this would require the additional management for the semantics
of Linked Data.

The second possibility (represented as ’B’ in figure 2.2) is defining explicit links to city objects
within the representations of sensors. There are several well-defined standards for representing sensors
and their observations (c.f. section 2.2.1). This approach would allow associating time-dynamic
observations directly to the city objects. For example, a sensor interface measuring real-time gas
consumption of a building may comprise of direct links to the building object or building’s room
where the Smart Meter is installed. However, current sensor modelling standards do not allow defining
the sensor’s relation with the city object property. In this way, we can only name the feature of interest,

17https://www.fishermansbend.vic.gov.au/
18https://www.abiresearch.com/market-research/product/1033835-digital-twins-smart-cities-and-urban-model/
19http://linkeddata.org/

2.1 Time-dependent properties in the applications of 3D city models 17

Smart

Meter Building

Smart

Meter Building

Explicit
Links to
Sensors

Explicit
Links to

City

Objects

Smart

Meter Building

Linked
Data

(RDF)

A

B

C

Figure 2.2: Possible ways for linking sensors with city objects.

which typically is an object and not the property of an object. For instance, if a building object has an
attribute "gas_consumption", the issue is that the sensor operator would have to maintain the link(s) to
different geospatial datasets (e.g. INSPIRE, CityGML, and IFC), that are not under his/her control.

The third option (represented as ’C’) is defining explicit links to real-time observations within
the city object. In this way, city object attributes can also be associated with time-dynamic sensor
observations. For example, the attribute "gas_consumption" (as mentioned above) will become
dynamic by having defined links to the interface for the Smart Meter observations. In this way, 3D city
modelling applications can represent dynamic variations of a specific city object property. Similarly,
in an application related to Civil Engineering, Bridge Deformation Monitoring (Davila Delgado et al.
2017) is an example of predictive maintenance which involves a systematic measurement and tracking
of the alteration in the shape or dimensions of the bridge as a result of stresses induced by applied
loads over some time. In such cases, an explicit linking of connected sensors installed at the bridge
would allow overriding the static attribute values of the Digital Twin of the Bridge object.

2.1.1.2 Requirement R2: Managing events and alerts

Digital Twins enable improving decision-making by predicting issues before occurrence and at the
same time by notifying as soon as the issue has occurred. The former aspect of predicting issues is
mostly realised by using sophisticated machine learning algorithms. However, in cases of the latter

18 2 Background

aspect, synchronous communication with sensors may be insufficient as the applications depend
on asynchronous events, such as external communications, status changes, natural phenomena, or
data updates. In these cases, automatic notification by using a publish/subscribe scheme are required
where clients are notified with the desired information. For example, in the case of water management
systems, the notifications of water gauges exceeding a threshold may prevent critical flood scenarios.
Similarly, real-time processing of air quality data may alert citizens and administrators for dangerous
air pollution situations. The explicit linking of city objects with sensors and IoT enable users and
applications to subscribe to real-time data streams and be alerted in case of occurrence of any particular
phenomenon.

2.1.2 Urban Simulations

"A simulation is an approximate imitation of the reality in which a particular set of conditions is
created artificially in order to study or experience something that could exist in reality"20. In the urban
context, simulators are often used by urban planners to understand how cities and city entities are
likely to evolve in response to various policy decisions. UrbanSim (Borning et al. 2008) and Land
Use Evolution and Impact Assessment Model (LEAM) (Deal 2006) are the most commonly used
examples of large-scale urban simulation models that are used by municipal planning agencies and
authorities for land use and transportation planning. Semantic 3D city models are also considered as
an important source of information for different types of urban simulations. Prominent examples are
noise propagation simulation and mapping (Czerwinski et al. 2007), urban and telecommunication
planning (Köninger and Bartel 1998; Knapp and Coors 2007), disaster management (Zlatanova and
Holweg 2004; Kolbe et al. 2008; Morel and Gesquière 2014), real-time simulations for training and
autonomous driving (Randt et al. 2007; Schwab and Kolbe 2019), indoor navigation (Becker et al.
2009; Mäs et al. 2006), energy demand estimations (Strzalka et al. 2011; Agugiaro 2016; Kaden and
Kolbe 2013), solar potential simulation (Zahn 2015; Biljecki et al. 2015a; Salimzadeh et al. 2018),
flood simulations (Amirebrahimi et al. 2016; Schulte and Coors 2009), and wind analysis (Cousins
2017). (Biljecki et al. 2015b) also provide an extensive review of different simulations based on 3D
city models. The authors classified the use cases in two broad categories. The first category is the
non-visualisation use cases, which do not require the visualisation of the 3D city model as well as the
results of the operations that the use case comprises. The second category is the visualisation-based
use cases, where visualisation of the city model and the results play an important role. For example,
solar potential analysis is an instance of non-visualisation use case in which the simulation results
can be visualised but this is not essential to achieve the purpose of the use case. The results can
be stored in a database, which can be queried without the need of being visualized. On the other
hand, the applications related to navigation, gaming, and also urban planning fall into the category of
visualisation-based use cases. In these cases, the visualisation of the objects is crucial, and the use
cases would not make much sense without it. In total, the authors identified more than 29 use cases
including more than 100 applications, which are arranged into these categories.

Simulation specific data can be represented by particular geo-objects and properties within the
city models. Further, the results of simulations can be fed back to the original 3D city models for
thematic enrichment and data fusion by data from different disciplines. Most simulations generate
properties which vary with time. However, current 3D city models represent such time-varying results
as static values. For example, the Solar Potential Analysis Tool (Zahn 2015) developed at the Chair

20https://www.oxfordlearnersdictionaries.com/definition/english/simulation

2.1 Time-dependent properties in the applications of 3D city models 19

Figure 2.3: Examples of urban simulations with semantic 3D city models. The top-left image shows
the flood inundation simulation with 3D city models. The top-right image is the screenshot
for noise propagation simulation (screenshot taken from ESRI), and the bottom image is
the wind flow analysis with 3D buildings (screenshot taken from Helsinki Kalasatama
project)

of Geoinformatics, Technical University of Munich is widely used for assessing and estimating
solar energy production for the roofs and façades of the 3D building objects . The simulation tool
operates on CityGML-based semantic 3D city models. By combining a transition model, sun position
calculation, and an approximation of the skydome, the solar power from direct, diffuse, and global
sunlight irradiation are estimated for individual months and years. The shadowing effects of the
surrounding topographic features are considered by applying a ray-tracing approach. The Sky View
Factor (SVF), a measure indicating the visible fraction of the sky hemisphere, is determined for
each surface. As a result, each building surface is enriched by its irradiation values. These are also
aggregated to the building level. Finally, a point cloud is generated from sampling points that have
been produced for each building surface by the simulation. Each point is parametrised with the direct,
diffuse, and global irradiation values over the different months.

Figure 2.4 shows the textures of the global irradiation values for the months: February, March, April
and May. The colour gradient ranges from dark green (no irradiation) over yellow to red (maximum
monthly irradiation of 153 kW h/m2. This type of visualisation allows for quick identification of
suitable areas for photovoltaic energy production. However, to be able to perform profound analyses,

20 2 Background

Figure 2.4: Textures of the global irradiation values for the months (left to right): February, March,
April, and May generated for a district in Rennes, France. Screenshot taken from the
3DCityDB-Web-Map-Client.

the values are stored as attributes in the city model in addition to the purely visual representation
of the solar irradiation values as textures. Based on the point grid results, the different temporal
resolutions for direct, diffuse and global irradiation are computed and stored as generic attributes
for each spatial aggregation level (wall, roof surfaces and building) in the city model. Currently, the
temporal classification of a simulation result parameter is encoded in the attribute name as a suffix.
For instance, an attribute named globalRadMonth_01 denotes the aggregate global irradiation estimate
on a specific feature for January. Similarly, individual generic attributes can be defined for storing the
irradiation values for different months. In the same way, the attributes can be defined for the aggregate
global irradiation estimate on a specific feature for the entire year such as globalRadYear.

As depicted in figure 2.5, the monthly estimates for the three irradiation types direct, diffuse,
and global for a facade surface are visualised as an attribute table. This data visualisation has some

2.1 Time-dependent properties in the applications of 3D city models 21

Figure 2.5: Tabular representation of monthly irradiation values of a building in Rennes, France.
Screenshot taken from the 3DCityDB-Web-Map-Client.

limitations, as it makes it hard for the viewer to grasp relevant information from the data quickly. For
instance, the table representation does not allow to observe the full range of the data directly. It would
usually not be possible to view the monthly attributes for direct, diffuse and global irradiation at the
same time, because a table of that size would not fit on the screen. More difficulties arise when trying
to compare the three variables to each other or recognise monthly deviations. The usability of such
analyses will drastically be improved, if city model standards allow time-dependent variations of such
result values to a common generic attribute.

Similarly, concerning energy simulations, (Kaden and Kolbe 2013) explain the application of the
CityGML standard for city-wide estimation of the energy demands of buildings. The authors discuss
the project "Energy Atlas Berlin". The project aims at determining the suitability of all individual
roof surfaces for each of the 550,000 buildings in Berlin for the production of photovoltaic and solar
thermal energy. It also integrates methods for energy demand estimation, which includes heating
energy, electrical energy and warm water. It also assesses the energetic retrofitting possibilities on the
individual building level. As shown in Figure 2.6, the authorities can explore the energy demand of
individual buildings for different months of a year. In this application, one (static) attribute for each
month is explicitly modelled. However, in the current version of CityGML (version 2.0), it is not
possible to override or replace the same attribute with respect to time.

2.1.2.1 Requirement R3: Supporting time-series in-line within city objects

Most of the simulations involve time-dependent attributes, for example, monthly values of solar
irradiations or energy demand estimations for a building (as illustrated in the previous section). Since

22 2 Background

Figure 2.6: Visualisation of estimated heat demand values of a building in Berlin, Germany.
Screenshot taken from 3DCityDB-Web-Map-Client.

these simulation results are associated with city object properties, the respective city object properties
must be enriched with these time-dynamic values. The results of these simulations are sometimes
stored in databases or encoded in external files such as Microsoft Excel or CSV. They may also be
retrieved by an external API or web interface of simulation software. In these cases, explicit links
can be established from city object properties to the simulation results. However, to perform detailed
realistic simulations, for example, cross-domain exchanging of simulation results with city objects for
enhancing disaster management or energy assessment, it is essential to model the precise description
of the time-series. It is also relevant to create a snapshot of the state(s) of a city model, including
time-varying data for documentation and archiving. This approach requires modelling a data structure
using which time-series data can be exchanged with appropriate metadata to allow correct machine
interpretation and thus proper use for further analysis.

2.1.2.2 Requirement R4: Supporting complex patterns and schedules

In many applications, it is not sufficient to provide a means for the tabulation of time-value pairs. The
applications may require patterns to represent dynamic variations of properties based on statistics
and general rules. For example, energy applications can be used to study patterns in the energy
consumption of a building for weekdays, weekends, public holidays, or even customised period
(e.g. between 6 pm and 10 pm). In these cases, time may be defined for a non-specific year (e.g.
averages over many years), but still classified by the relative time of a year. For example, January
monthly summaries for the energy consumption of a building might be described as ”all-Januaries

2.1 Time-dependent properties in the applications of 3D city models 23

2001-2010”. Similarly, the energy consumption values may reflect generic patterns for individual
weekdays/weekends in a week or a month. Another example scenario may also be determining
patterns for specific seasons (such as spring, summer, autumn and winter) over ten years. In different
simulations, such time-series can also be used as a basis for defining schedules. For example, schedules
in the energy simulations may be required for specifying setpoint values for the heating and cooling
systems, or for setting the operational schedules of energy systems, ventilation, lighting, and electrical
appliances. Similarly, in the cases of traffic analysis, a public bus line following a schedule can also
have a repeating trajectory.

2.1.3 Mobility

With an increasingly urban population, reducing congestion, accidents, and pollution has become
a common challenge to all major cities in the world. According to the European Commission21,
"Urban mobility accounts for 40% of all CO2 emissions of road transport and up to 70% of other
pollutants from transport in the European Union". It leads city authorities and urban planners to adopt
sustainable solutions for not only reducing pollution but also allowing visitors and residents to have
a more comfortable and enjoyable everyday city experience. Many cities worldwide have adopted
the so-called "Smart Mobility" (Benevolo et al. 2016) solutions offering multimodal capabilities
which bundle transport options such as public transport, car-sharing, bicycle-sharing, and ride-hailing
(Bertolini and Le Clercq 2003; Nobis 2006; Luginger 2016). There are also many mobility simulations
in major metro cities such as Helsinki 22 and Dublin23 providing indicators for the impact of mobility
solutions on accessibility, metro/rail ridership, required parking space, congestion and CO2 emissions.
Such mobility simulations are also beneficial for urban planning and disaster management, especially
in planning, managing, and optimising pedestrian flows in public buildings like airports, railway
stations, shopping malls, and stadiums. Evacuation planning is an important aspect to determine how
an evacuation plan will work in the events of a disaster such as an earthquake and fire. Evacuation
simulations (Chu et al. 2019; Almeida et al. 2013; Okaya and Takahashi 2013) allow determining
measures to create better emergency management for residence, offices, and in general, the community.
Besides, mobility simulations also help to manage the movements of visitors during an event. For
example, the Smart District Data Infrastructure (SDDI) project involves a pedestrian flow simulation
(Yang et al. 2020; Yang et al. 2019) to manage pedestrians’ walking behaviour, flow and peak
demands during specific events organised at the Queen Elizabeth Olympic Park, London. Other
notable examples of use cases for mobility simulations are navigation for robots (Kwak and Park
2012), aviation or maritime traffic monitoring (Bosson and Lauderdale 2018), wildlife tracking and
conservation (Ayele et al. 2018), and autonomous driving24.

Semantic 3D city models also play a vital role in mobility applications and simulations. One of the
significant advantages of 3D city models is that they allow detailed 3D geometry representation of
city objects, which is more realistic than the symbolic representation provided by traditional 2D maps
(Oulasvirta et al. 2009; Schilling et al. 2005). Furthermore, city objects enriched with their thematic,
semantic, and cognitive properties enhance processing and visualisation for navigation applications.
For example, a building of type ’restaurant’ and ’brand’ Starbucks offers more navigational cues
than a block of grey, anonymous residential building (Nedkov 2012). Such semantically rich objects

21https://ec.europa.eu/transport/themes/urban/urban_mobility_en
22https://www.itf-oecd.org/shared-mobility-simulations-helsinki
23https://www.oecd-ilibrary.org/transport/shared-mobility-simulations-for-dublin_e7b26d59-en
24https://elib.dlr.de/118438/1/SUMO_proceedings_online.pdf

24 2 Background

Figure 2.7: Illustration of mobility applications. Screenshot taken from (Ruhdorfer 2017)

are also beneficial for landmark-based navigations (Krukar et al. 2017). (Ruhdorfer 2017; Beil and
Kolbe 2017) also demonstrate how the detailed geometrical and semantic representation of street
space can hugely benefit a variety of applications, including traffic analysis, visibility analysis, and
pedestrian flow simulations. The authors showcased various demonstrations with a semantic 3D
city model of New York City by generating a detailed 3D street space model for the entire city.
Similarly, (Schwab and Kolbe 2019) also highlight the importance of detailed street space models and
discuss the feasibility of semantic 3D city models in the context of autonomous driving. The ability
of 3D city models to define navigable spaces such as steps and ramps also make them suitable for
performing pedestrian flow and movement simulations (Slingsby and Raper 2008; Scholl 2019). If the
3D city model contains information on the interior of buildings, this information can also be used for
wayfinding and accessibility applications (Khan 2015; Isikdag et al. 2013; Kim et al. 2014).

2.1.3.1 Requirement R5: Integration and overlay of dynamics of moving objects

Most of the mobility applications described previously involve objects changing their properties
with time. For a navigation application, there might be a car or a tram changing its location over the
day. In an evacuation simulation, there might be a group of people coming out of different exits of
the building at different points in time. However, some cases of mobility applications also require
objects changing their semantic properties over time. A traffic monitoring camera generates videos of
traffic flow over regular intervals of a day. Similarly, a traffic detector inductive loop installed beneath
the road surface at a traffic junction produces the statistics of traffic speed and density over regular
intervals of a day. In other cases, applications require dealing with changing geometry and thematic

2.1 Time-dependent properties in the applications of 3D city models 25

attributes with time. For example, the project ’AERO-TRAM’ (Hagemann et al. 2014) involve a
mobile measurement system mounted on the roof of a tram and examine the spatial distribution of
pollutants (such as particle number concentrations and nitrogen oxides). Such cases require mapping
locations and sensor observations with time. The other example could be to access data on moving
objects that passed through a particular area at a specific time after a disaster, therefore gathering
information on density and flow of people and vehicles in a more timely manner. Hence, it is crucial
to extend city models allowing moving objects to be represented within them.

Similarly, the use cases of Smart Mobility require a well-connected infrastructure where different
objects can communicate with each other. For example, the concept Vehicle-to-Everything25 allows a
moving vehicle to communicate with a different moving vehicle or any other static object such as a
temporary roadside infrastructure that may affect the vehicle. Such concepts rely on real-time inform-
ation obtained from hundreds of sensors installed onboard vehicles, transport infrastructures such as
traffic light, temporary infrastructures such as a construction site, and also crowd-sourced information
such as GPS feeds. In similar ways, as highlighted by (Schwab and Kolbe 2019), autonomous driving
requires that every object within the moving vehicle sight becomes relevant as those objects can reflect
sound and electromagnetic waves. For realising such concepts, the static, as well as moving objects
within a city model, must be capable of dealing with dynamic information. Hence, it is essential to
establish an overlay and integration of moving objects with the static objects of the city models.

2.1.4 Urban Development

Cities change over time, and so do the city objects as shown in figure 2.8. For example, over a
time sequence, a building may be constructed, modified, destructed or even replaced by other ones.
However, at each stage, it is crucial to record and document the changes over time. Lessons from the
past successes and failures serve as guidance for the future planning of the cities. Hence, to understand
urban evolution and develop sustainable and durable cities, changes in cities are studied by historians
and urban planners. Several studies in the past have been done for demonstrating the historical
evolution, for example, 4D visualisation of Bastion fort (Rizvic et al., 2015), digital reconstruction of
the city of Pompeii (Dell’Unto et al., 2013) and the relief maps of the past augmented with various
video displays (Priestnall et al., 2012). However, some use cases also require rebuilding the past of a
city, which is not an easy task. Historians and researchers make use of historical artefacts available
in the present to reconstruct the scenarios in the past. For example, the Venice time machine project
(Kaplan, 2015) intends to build an extensive document corpus by digitising historical archives for
studying the last 1000 years of Venice. The researchers reconstruct one or more city objects and
even the entire city by exploring the numerous documents available to them today. These documents
include project plans, aerial views, municipal council meetings and multimedia documents like videos,
photographs, old postal cards, paintings etc. Some of these documents are evidence of the actual
buildings of the past, whereas others are artistic renderings. While studying the urban evolution, these
traces are used to comprehend various socio-economic and political aspects of the given period.

With the advancement in technology (especially in the field of 3D city models), it becomes easier
to build large scale flexible city models in a virtual environment compared to their equivalents in the
real world. As a result, semantic 3D city models have been used to study historical information. For
example, the Virtual Leodium project (Pfeiffer et al. 2013) allows studying the evolution of the city of

25https://www.reportsnreports.com/reports/2058475-the-v2x-vehicle-to-everything-communications-ecosystem-2019-
2030-opportunities-challenges-strategies-forecasts.html

26 2 Background

Figure 2.8: Illustration of the evolution of Singapore City. Screenshot taken from www.pinterest.com

Liege in Belgium based on the CityGML standard. The study enables representing the sequence of
versions of a “reality” at a specific time or in a particular time sequence.

Apart from linear sequencing, some use cases also address to work with planning alternatives or
parallels of buildings or other structures, e.g. for comparison by a reviewing body. The planning
alternatives are not different versions of actual structures at different times but different structures that
might be substituted for one another. In urban planning scenarios, various planning authorities can
also work with alternative planned versions at the same time to insert a newly generated object or
delete or update any existing object (Samuel et al. 2018).

www.pinterest.com

2.1 Time-dependent properties in the applications of 3D city models 27

2.1.4.1 Requirement R6: Managing historic versions

Semantic 3D city models are an essential source of information in applications related to urban
planning, architecture, business development, tourism, history, and archaeology, which often involve
studying the evolution of cities representing how city objects change over a long period. For example,
for a time sequence, a building may be constructed, modified, demolished and replaced by other ones.
These changes are slower and involve features that begin or cease to exist over different periods. Hence,
such changes are required to be managed using historic or linear versions of city models, including
up-to-date information about newly added, modified, or demolished objects. Scenarios for studying
city evolution also require enabling backward compatibility for semantic 3D city models to handle
multiple representations of the past of a city. A given date may be a starting point to imagine the past
and constructing several scenarios (c.f. section 4.1). Such backward compatibility is also beneficial for
archaeology, for instance, for the urban reconstruction of ancient cities, modelling of archaeological
3D objects and their attributes, managing excavations, testing reconstruction hypotheses, and analysing
the development of sites over time. Hence, it is required for semantic 3D city models to be able to
manage historic versions. In order to be able to exchange and query all versions and their features,
it is also important to manage all the versions within one single data file. As shown in figure 2.9,
this would allow representing the evolution of the city in the form of different versions of CityGML
documents. The successive versions represent the state of all features of the entire city at specific
points in time. In addition, the figure shows that the authorities can work, in parallel, with different
workspaces or branches to insert, delete or modify the objects. Such additions can be merged with the
earlier versions of the CityGML documents to form the final versions. It leads to the next requirement
of managing alternative versions.

Figure 2.9: Management of historic and parallel versions within semantic 3D city models.

2.1.4.2 Requirement R7: Managing alternative versions

Semantic 3D models also play a crucial role in the documentation and reconstruction of both historical
and contemporary events. Examples include crime scene and accident reconstructions, representation

28 2 Background

of battles and other past events, archival descriptions of ancient structures before demolition, docu-
mentation of construction and demolition of buildings. Such events involve a sequence of versions
of a “reality” at a specific time or in a particular time sequence. Events are often reconstructed from
conflicting and incomplete evidence, and a complete reconstruction must allow branching to handle
the alternative possibilities. In this way, as shown in figure 2.9, the authorities or users can work, in
parallel, with different workspaces or branches to insert, delete or modify the objects. Such additions
can be merged with the earlier versions of city objects to form the final versions leading to multiple
possible futures. Hence, semantic 3D city models should be to manage such parallel and alternative
versions. Again, for cross-domain applications, it is essential to exchange the city models along with
their parallel versions to perform, e.g. "what-if" analysis. Hence, it requires (i) managing all the
parallel versions within one dataset and (ii) interoperable data exchange format to be interpreted by
different applications and software systems.

2.1.5 Requirements Summary

The previous sub-sections discuss important applications of semantic 3D city models which include
Smart Cities, Digital Twins, different types of urban simulations like solar potential simulation and
energy demand estimation, mobility, and urban development including planning and history. Based on
the review of numerous use cases, key requirements are gathered for semantic 3D city models for
supporting different types of time-dependent properties. The requirements are summarised in Table
2.2.

2.2 Review of existing standards for the listed requirements

2.2.1 Sensor and IoT data access and management

Due to the widespread use of heterogeneous sensors and IoT devices in numerous applications, several
open and interoperable standards and protocols have been developed to access and manage their data.
Sensor Web Enablement (SWE) (Bröring et al. 2011), an OGC initiative, provides a suite of standards
that enable the discovery, access, tasking, as well as eventing and alerting of the sensor resources in a
standardised way. The OGC SWE standards suite comprises well-defined information models. One
of the standards is the SensorML (Botts 2014), which represents sensor description and metadata.
This standard also describes sensor calibration records and accuracy and precision information.
The other information model within OGC SWE is the Observations and Measurements (O&M)
(Cox 2013). It allows describing real-time observation data. The SWE also provides comprehensive
interface models and web services such as Sensor Observation Service (SOS) (Bröring et al. 2012) and
SensorThings API (Liang et al. 2015) for retrieval of sensor descriptions and observations with the
help of standardised requests. In comparison to SOS, SensorThings API is a relatively new standard,
which is REST-ful, lightweight, and based on JSON. Owing to the well-defined and comprehensive
set of open and international standards, the SWE standard suite is already being used worldwide in
various domains such as Digital Twins like Digital Twin Munich26, SDDI27, and (Moshrefzadeh et al.
2020), early warning systems (Wupperverband 2017), disaster management (Jirka et al. 2009), marine
science (Partescano et al. 2017; Toma et al. 2015), citizen science (Pfeil et al. 2015), environmental
and air quality monitoring (IRCELINE 2018; Jirka et al. 2011) and many more. The open-source

26https://muenchen.digital/twin/
27https://www.lrg.tum.de/en/gis/projects/smart-district-data-infrastructure/

2.2 Review of existing standards for the listed requirements 29

No. Requirement Example Use Cases

R1 Integrating sensor observations with
city object properties

Smart Meters monitoring building energy

Monitoring bridge deformation

Traffic cameras recording numbers of cars

R2 Managing events and alerts Water level exceeding a threshold

Air Quality exceeding a dangerous limit

Energy consumption breaching the allowed usage

R3 Integration and overlay of dynamics
of moving objects

Air quality sensors mounted on a tram

Autonomous car communicating with city objects

Pedestrians moving into or out of a building

R4 In-line Support of Timeseries Solar irradiation for building roof surface

Energy demand estimation of a building

Flood inundation simulation

R5 Complex patterns and schedules Weekly patterns of energy consumption

Heating schedule of energy systems

Repeating trajectories for bus lines

R6 Managing historic versions Documentation of changes over time

Reconstruction of the past events

Multiple representations of the past

R7 Managing alternative versions Planned alternative structures for comparison by Urban
Planners

Table 2.2: List of key requirements considered for extending semantic 3D city models for supporting
time-dependent properties. The individual requirements are referred to using their unique
numbers in the thesis.

30 2 Background

implementations such as 52◦North Sensor Observation Service28 and the FRaunhofer Opensource
SensorThings (FROST) Server29 allow inserting, querying, and visualising arbitrary sensor data and
observations according to the OGC Sensor Observation Service and OGC SensorThings API standards
respectively.

Apart from OGC Sensor Web Enablement, there are also other architectures and frameworks
which focus on interoperability of sensor and IoT devices and being applied in different projects. The
FIWARE (FIWARE 2018) is a generic and open-source platform that aims to make interoperable city
services, to provide access to real-time context information, and to implement smart city applications.
The platform enables developers and communities to create their services based on commonly defined
APIs and data models. The FIWARE is already being used in several smart city initiatives such as
“City Enabler”30. It is a FIWARE-based software product allowing scattered and distributed urban
data to be collected and organised in a central repository, which can be fed to different applications
with the help of the standard APIs. Other than FIWARE, another project called BIG IoT (Bröring et al.
2017) focuses on cross-standard, cross-platform, and cross-domain IoT services and applications. The
approach is to register an individual IoT platform to their so-called “BIG-IoT Marketplace”, which acts
as a catalogue. Using the Marketplace, the BIG-IoT API allows discovering, authenticating/authorising
multiple IoT resources and allows using them in a single application. Similarly, the bIoTope project
(Robert et al. 2017) under the European Union’s Horizon 2020 Programme provides an ecosystem
allowing registering heterogeneous IoT platforms and accessing them using standardised and open
APIs. Like BIG-IoT Marketplace, the bIoTope project also includes a Marketplace called IoTBnB
which can be used for discovering and authenticating the different IoT platforms. In similar ways,
another EU Horizon 2020 project VICINITY (Mynzhasova et al. 2017) provides a decentralised
ecosystem offering “interoperability as a service”. Its architecture involves a VICINITY Cloud acting
as a Marketplace used for registering and then discovering and accessing the numerous IoT platforms
using the standardised APIs. Other pertinent initiatives carried out within the EU Horizon 2020
Programme are symbIoTe (Gojmerac et al. 2016), INTER-IoT (Ganzha et al. 2016), and Thingful
(Thingful 2018). Sensor Measurement Lists (SenML) (Jennings et al. 2018) is also a specification
working towards interoperability of sensors. In this specification, representations share a common
SenML data model. A simple sensor, such as a temperature sensor, could use this media type in
protocols such as HTTP to transport the measurements of the sensor or to be configured. (Jazayeri
et al. 2015) also provide a comprehensive evaluation of four open, interoperable standards for the IoT
devices: OGC PUCK over Bluetooth, TinySOS, SOS over CoAP, and OGC SensorThings API.

There are several platforms which consist of a complete suite for managing sensor observations.
These platforms include their own data storage, visualisation clients, and the APIs to query and
retrieve the observations. ThingSpeak (Maureira et al. 2014) is an IoT platform that allows users
to register different sensors attached to simple microcontrollers such as Arduino and Raspberry Pi,
collect and store sensor observations in the Cloud and develop IoT applications. The ThingSpeak
platform provides applications to analyse and visualise observations. The system also allows querying
by location, allowing the user to have access to data from various locations in the world. Open-
Sensors31, which is termed as “Twitter for Sensors”32 enables users to connect various sensor devices
and publish their observations for free. The data is publicly accessible, shareable and reusable by

28https://52north.org/software/software-projects/sos/
29https://github.com/FraunhoferIOSB/FROST-Server
30https://geographica.com/en/showcase/cedus-city-enabler/
31https://www.opensensors.com/
32https://www.wired.com/2014/12/the-internet-of-anything-opensensorsio/

2.2 Review of existing standards for the listed requirements 31

and for anyone. The platform provides real-time and historical access to public and private data
through the API and in-browser data view. The Things Network (TTN)33 is a relatively new initiative
aiming at building a network for the Internet of Things by creating abundant data connectivity. The
network focuses on a technology called LoRaWAN34 which allows for things to talk to the Internet
without 3G or WiFi, so no WiFi codes and mobile subscriptions are required. It features low battery
usage, long-range and low bandwidth, which is ideal for the IoT devices. The Things Network also
supports publishing observations to other platforms such as TTN-OpenSensors-Integration35 and
TTN-OGCSWE-Integration36. Such integration makes discovering, analysing, and visualising sensor
observations even easier. The weather has a major influence on city systems ranging from energy and
water, to sanitation, transportation, health care, to disaster management. Weather Underground37 is
a commercial weather service providing real-time weather information via the Internet. It provides
weather reports for most major cities across the world on its website. It also uses observations from
members with automated personal weather stations (PWS). Weather Underground currently uses
observations from over 250,000 personal weather stations worldwide. Similarly, HawaDawa38, a
relatively new company based in Germany, provides a well-defined API for measuring air quality
parameters over a city. With this data, a city could, for example, opt to change how it routes traffic to
minimise vehicle exhausts in particularly polluted streets and monitor how changes are impacting the
air. HawaDawa’s data currently covers over 20 cities across Germany, Switzerland, and the UK.

2.2.2 Representation and management of time-series

As discussed in the previous section, most sensor and IoT standards provide comprehensive structures
to represent and manage time-series data obtained from sensors. However, time-series data is also
generated in different simulations such as solar potential simulations and energy demand estimations.
In many scenarios, such time-series data are also stored in databases. Traditional relational database
management systems such as Oracle 39, MySQL40, and PostgreSQL41 are widely used for managing
time-series data. They provide standard SQL functions to query and analyse time-series. Big Data
creates a demand for efficient time-series data analysis. TimescaleDB42 and InfluxDB43 are good
examples of Open Source time-series databases which are being used in the fields of IoT and real-time
analytics. When it comes to managing more heterogeneous data generated by millions of devices
and applications, each with their own data structures, databases require new levels of flexibility,
agility, and scalability. In this environment, NoSQL databases such as MongoDB44 are proving their
value. Another new concept in this direction is the Data Stream Management System (DSMS). Such
management systems continuously process arriving data without having to persist them, this speeds
up the data evaluation process, achieving more timely results in comparison to traditional DBMSs.

33https://www.thethingsnetwork.org/
34https://www.thethingsnetwork.org/docs/lorawan/
35https://www.thethingsnetwork.org/docs/applications/opensensors/
36https://github.com/52North/ttn-ogcswe-integration
37https://www.wunderground.com/
38https://hawadawa.com/
39https://www.oracle.com/index.html
40https://www.mysql.com/
41https://www.postgresql.org/
42https://www.timescale.com/
43https://www.influxdata.com/
44https://www.mongodb.com/

32 2 Background

(Anjos et al. 2014) explore the feasibility of Data Stream Management Systems (DSMSs) to support
Energy Management applications, pointing out how to implement an Energy Management System
capable of real-time data processing. In many scenarios, especially, when observations are not very
highly frequent, time-varying data are stored in external files such as Comma Separated Values
(CSV) and Excel sheets. Such files are usually generated once for a specific scenario and do not
update continuously. There are also cloud-based systems such as Google Spreadsheet45, and Microsoft
OneDrive46 which allow users to store such time-series data in a cloud environment.

For representing time-series, the Open Geospatial Consortium (OGC) also provides verious stand-
ards. The Observations and Measurements (O&M) is a generic information model for describing
observations for specific timestamps. The observation is modelled as a Feature within the context of
the General Feature Model (ISO 19101). An observation feature binds a result to a feature of interest,
upon which the observation was made. The observed property is a property of the feature of interest.
An observation uses a procedure to determine the value of the result, which may involve a sensor or an
observer, analytical procedure, simulation or other numerical process. As mentioned in the previous
section, O&M is one of the core standards in the OGC Sensor Web Enablement suite, providing the
response model for the OGC Sensor Observation Service (SOS) and the OGC SensorThings API. Wa-
terML 2.0 (Taylor 2014) is also an OGC standard for the representation of hydrological observations
data with a specific focus on time-series structures. This standard is implemented as an application
schema of the GML version 3.2.1, making use of the OGC Observations and Measurements standards.
The standard allows defining time-series as discrete coverages, which means, an instance of such
a coverage would be a set of ordered time instances where each time instance is associated with a
single value from the attribute space. This association is often represented using time value pairs or a
domain range. It also allows to define interpolation types ’per point’ within time-series, establishing
the relationship between time instants and the recorded values.

OGC also provides the TimeseriesML 1.0 (Tomkins and Lowe 2016) for representation and
exchange of observation data as time-series. It is an extension of the work initially undertaken within
the WaterML standard. However, this standard aims to provide a domain-neutral model for the
representation and exchange of time-series data. The TimeseriesML schema supports two types of
encodings. The first encoding is the interleaved time-value pair encoding, whereby the time and value
are coupled together, and the coupling explicitly represents the mapping. The second encoding is the
domain-range encoding, where the domain and range are encoded separately, with a mapping function
that allows looking up the range value for a given domain value.

2.2.3 Managing alerts and events

ESRI ArcGIS GeoEvent Server47 is a well-known commercial solution which allows enabling real-
time event-based data streams to be integrated as data sources. The GeoEvent Server is capable of
consuming event data from multiple real-time data streams. At the same time, users can filter, process,
and subscribe to event data streams and automatically be alerted when a specific condition occurs,
all in real-time. It helps users to respond faster with increased awareness whenever and wherever
change occurs. The new OGC Publish/Subscribe 1.0 standard (also known as PubSub) (Braeckel et al.
2016) provides asynchronous communication across OGC service interfaces and data types, including
coverages, features, and observations and enables users to subscribe to the real-time data streams. The

45https://www.google.com/sheets/about/
46https://onedrive.live.com
47https://www.esri.com/en-us/arcgis/products/arcgis-geoevent-server

2.2 Review of existing standards for the listed requirements 33

PubSub is a relatively new standard, and its first experiments have been performed in the application
domains of Sensor Web and Aviation.

Message Queuing Telemetry Transport (MQTT) (Banks et al. 2019) is also a publish/subscribe,
straightforward, and lightweight messaging protocol designed specifically for constrained devices with
low-bandwidth. Hence, it is considered a right solution for IoT applications. The design principles are
to minimise network bandwidth and device resource requirements while also attempting to ensure
reliability and some degree of assurance of delivery. The MQTT extension is supported by major
interfaces such as OGC SensorThings API48, The Things Network49, ThingSpeak50, Amazon IoT51,
and Microsoft Azure52 allowing users to publish the data and subscribe to specific events in a real-time
manner. There are also applications such as Eclipse Mosquitto53 enabling to set up message brokers
implementing the MQTT protocol. Furthermore, to perform real-time processing for geospatial data,
an extension of the MQTT protocol called GeoMQTT (Herle et al., 2016) has been developed. This
extension includes new message types to support spatio-temporal tagging and filtering of events.
It still uses a publish/subscribe interaction scheme although not exclusively topic-based but also
timestamp and geometry-based. However, the topic mechanism is inherited from MQTT. Subscribers
can specify their interests in geo events by the use of the topic, spatial and temporal filter. The broker
only forwards the so-called GeoPublish message to subscribers if all three filters are satisfied.

2.2.4 Representation of moving objects

As discussed in section 2.1.3, applications such as traffic simulations and navigation involve objects
changing their locations with time. The data format such as GPS Exchange Format (GPX)(GPX 2004)
provides an XML schema for describing waypoints, tracks, and routes. Location data, along with
other information like elevation and time, is stored in tags and can be interchanged between GPS
devices and software applications. Keyhole Markup Language (KML) (Burggraf 2015) is a widely
known international standard maintained by the Open Geospatial Consortium (OGC). This format
also provides an XML schema for representing and exchanging geographic information such as points,
lines, and polygons, and image overlays over Google Maps and Google Earth. The KML also supports
changing their locations over time. Another new data format Cesium Modelling Language (CZML)54

developed by Analytics Graphics Inc, is gaining a lot of attention due to its lightweight structure. The
CZML standard is based on JSON and allows representing time-dynamic aspects of the geographical
objects such as points, lines, billboards, 3D models, and imageries. The CZML files can be exchanged
and visualised over web-browser based virtual globe Cesium.

OGC Moving Features (Asahara et al. 2015) is a relatively new standard, which defines an abstract
model for encoding moving feature data. Based on a conceptual model, it also includes an XML
encoding in the form of an OGC Geography Markup Language (GML) application schema, and a
simple CSV (comma-separated value) encoding format. The standard allows representing (i) Discrete
phenomena which exist only on a set of instants, such as road accidents, (ii) Step phenomena where the
changes of locations are abrupt at an instant, such as administrative boundaries, and (iii) Continuous

48https://developers.sensorup.com/tutorials/mqtt/
49https://www.thethingsnetwork.org/docs/applications/mqtt/
50https://blogs.mathworks.com/iot/2017/01/20/use-mqtt-to-send-iot-data-to-thingspeak/
51https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html
52https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-mqtt-support
53https://mosquitto.org/
54https://github.com/AnalyticalGraphicsInc/czml-writer/wiki/CZML-Guide

34 2 Background

phenomena whose locations move continuously for a period in time, such as vehicles, typhoons,
or floods. The ability of the Moving Features standard to attribute time-varying properties to an
object (rather than just varying its location or trajectory), has utility and value in many current
application areas, including Location Based Services, Intelligent Transportation Systems, Disaster
Risk Management Systems, and Smart City Applications. For example, the traffic congestion on roads
and ’hotspots’ of air pollution are typical moving features seen in the real world.

DATEX II55 is the European standard for the exchange of traffic-related data. It is a unified
XML-based format allowing data exchange between service providers, traffic control centres, and
road operators. It enables representing traffic and travel information such as traffic flow and density,
traffic measures, roadworks, accidents, and parking. For mobility related applications, the Mobility
Data Specification56 (MDS) comprises of a set of APIs focused on real-time information about
e-scooters, bicycles, mopeds, and carshare. MDS provides a standardised way for municipalities or
other regulatory agencies to ingest, compare and analyse data from mobility service providers, and
to give municipalities the ability to express regulation in machine-readable formats. Another similar
specification named the General Transit Feed Specification57 (GTFS) by Google defines a standard
format for public transportation schedules and associated geographic information. GTFS "feeds" let
public transit agencies publish their transit data and developers write applications that consume that
data in an interoperable way.

Apart from mobility data representation and exchange formats, many software solutions are being
used for performing mobility simulations. Simulation of Urban Mobility (SUMO) (Behrisch et al.
2011) is an open-source solution providing continuous road traffic simulation package designed to
handle large road networks. SUMO allows modelling of intermodal traffic systems including road
vehicles, public transport and pedestrians, and supports various tools for route finding, visualisation,
network import and emission calculation. Another popular solution is PTV VISSIM58 developed
by PTV Planung Transport Verkehr AG in Karlsruhe, Germany. PTV VISSIM is a microscopic
multi-modal traffic flow simulation used for transportation planning and operation analysis. It helps
users to realistically simulate and balancing roadway capacity as well as traffic and transport demand.

2.2.5 History and Version Management

Versioning is not a new concept and is a well-established term in the field of computer programming.
There are several Version Control Systems (also termed as Revision Control Systems) such as
Git59, Mercurial60, Concurrent Versions System (CVS) (Vesperman 2003), and Subversion61 (SVN).
Version Control Systems (VCS) were developed primarily to support parallel development within a
single project. Although there are operational and architectural differences between these systems,
they all maintain versions of collections of files comprising a project. These collections are often
organised in a tree structure, similar to a directory hierarchy within a computer file system. A VCS
has the representational power to manage changes, parallel updates, and merges of versions. However,
versions always represent the change in the forward direction of time. The collection maintained

55https://www.datex2.eu/
56https://github.com/openmobilityfoundation/mobility-data-specification
57https://developers.google.com/transit/gtfs
58https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
59https://mirrors.edge.kernel.org/pub/software/scm/git/docs/user-manual.html
60https://www.mercurial-scm.org/
61http://subversion.apache.org/

2.3 Evaluation of city modelling standards for the listed requirements 35

by a VCS is rooted in an original version, that is, the versions form a rooted directed acyclic graph
(DAG). The original version is the oldest, and it is not possible to create versions earlier than the
root. It is important in the context of 3D city models, especially for applications related to history
and archaeology, where a given date may be a starting point to imagine the past and constructing the
possible scenarios.

The concept of versions has successfully been incorporated by Oracle using the Oracle Workspace
Manager (Beauregard and Speckhard 2014). The Oracle Workspace Manager allows managing
multiple versions of the data in the same Oracle Relational Database Management System in the form
of workspaces. A workspace is a virtual copy of the data, which separates the collection of changes in
the different versions from the live (production) data. The version-enabled data are stored in separate
tables with additional columns representing the version metadata. Such additional columns contain
the version and workspace of each data row along with the date and time of each update. The database
view is created on the version-enabled table and triggers are defined to enable SQL operations such
as insert, delete, and update. This approach allows preservation of the structure of the original table
and shows the data of only the particular version. The Oracle Workspace Manager also provides the
management of historical data by using savepoints and the means for resolving possible conflicts
during the merging of the different versions. Similarly, versions can also be managed within ESRI
ArcSDE Geodatabases (ESRI 2004). ESRI also supports managing history, performing “what-if”
analysis and conflict detection and resolution. However, there are no interoperable exchange formats
related to both Oracle and ESRI which would allow exchanging all versions of a repository as one
dataset, nor which would allow the use of the same dataset by both Oracle and ESRI.

2.3 Evaluation of city modelling standards for the listed requirements

As mentioned in Chapter 1, there are already several organisations and standard working groups,
who provide semantic data models for cities and their objects. These data models not only describe
spatial and graphical aspects of the city objects, but also provide the ontological structure including
thematic classes, attributes, and their interrelationships. For this reason, such models make it possible
for applications and simulation tools to distinguish urban objects (like buildings and streets) and use
their rich thematic and geometric information for queries, statistical computations, simulations, and
visualisations. As the research in this thesis work focuses on Semantic 3D City Models, this section
reviews the current state of three popular semantic information models for representing 3D city objects
and evaluates up to which degree these standards cover the key requirements for time-dependent
properties identified in section 2.1. The standards considered in the study are: OGC CityGML (version
2.0), buildingSMART IFC (version 4), and INSPIRE. The evaluation results are summarised in the
table 2.3

2.3.1 CityGML 2.0

The most recent version of the CityGML standard CityGML v2.0 (Gröger et al. 2012) was adopted in
2012 and provides limited support for handling and managing time-dependent properties. For example,
the CityGML Building model consists of attributes such as yearOfConstruction and yearOfDemolition
for defining the lifespan of an object. Considering many use cases and applications, the requirement
of supporting time-dependent properties with city objects was included as one of the core work
packages for the next version of the standard CityGML 3.0 (Kutzner et al. 2020). As a result, many

36 2 Background

No. Requirements IF
C

4
IN

SPIR
E

City
GM

L2.0

R1 Integrating sensor observations with
city object properties

o o o

R2 Managing events and alerts o

R3 Integration and overlay of dynamics of
moving objects

+ o

R4 In-line support of Timeseries + + o

R5 Complex Patterns and schedules

R6 Managing historic versions o o o

R7 Managing alternative versions o o

Table 2.3: Evaluation of 3D city modelling standards for the listed requirements.The evaluation was
performed by reviewing the specification official documentations. ’+’ sign denotes that
the standard provides complete support of the requirement, and ’o’ sign denotes that a
limited support of the requirement is provided by the standard specification or the related
extension. The details are given in section 2.3.

researchers covered different aspects for extending the CityGML standard providing explicit support
of time-dependent properties.

CityGML 2.0 does not provide any explicit class to deal with sensor information. However, a
number of research work have been carried out in the direction of linking sensor observations with
city objects. An approach proposed by (Zhu et al. 2016) allows integrating city models based on the
CityGML standard and spatio-temporal air quality data retrieved using the standard OGC Sensor
Observation Service (SOS). The demonstration allows visualising dynamic variations of pollutants
together with static city objects. Similarly, another architecture developed by (Santhanavanich et al.
2018) supports integration of heterogeneous sensor data with CityGML based models. The sensor
data included pedelec usage from Smart Electric Bike, user fitness level from a Smart Watch, and
weather data from an Open Weather Portal and integrated and visualised with city objects using
the OGC SensorThings API standard. Both studies successfully demonstrate coupling real-time
observations with city objects using open and interoperable standards, and visualise time-dependent
properties with city objects. From the management perspective, the recently proposed CityThings
concept (Santhanavanich and Coors 2019) also allows integrating dynamic sensor observations with
city objects in very simple ways utilising the SensorThings API and CityGML standards. The concept
enables defining the unique identifier (called gml_id) of the CityGML object within the SensorThings

2.3 Evaluation of city modelling standards for the listed requirements 37

API and allows managing sensor and city model data in separate management systems making the
solution easier to maintain. However, in this way, we can define the sensor’s relation only with the
city object and not with the property of the city object. As specified by the requirement [R1], it is also
essential to define explicit links to real-time observations within the city object. That would allow,
first of all, querying 3D city models to determine which city objects have sensors installed within
them. At the same time, that would also make city object properties dynamic by overriding them
according to the observations retrieved from the sensors and IoT devices. It is also very important to
consider that apart from OGC, there are also many other standards and APIs related to sensors and
IoT which are being used in different Smart City applications. Some of the APIs are open such as
BIG-IoT and FIWARE, whereas, others are proprietary such as Microsoft Azure IoT and AWS IoT.
The explicit linking to such standards and APIs within the city object give more flexibility to users
and applications to define relation between the city object property and the heterogeneous API details
from which the observations are retrieved.

Although CityGML does not explicitly support managing alerts and notifications, the integration
with modern interfaces such as OGC SensorThings API may allow achieving Publish/Subscribe capab-
ilities. Such interfaces already supports standard protocols like MQTT allowing users to subscribe to
specific data streams. However, no implementation with the CityGML standard currently demonstrates
the Publish/Subscribe functionalities so far.

The architecture proposed by (Santhanavanich et al. 2018) allows representing varying locations
of the e-bike with the help of the OGC SensorThings API. The SensorThings API supports entities
Location and HistoricalLocation for recording variations in location over time. The integration of
SensorThings API with the visualisation application allowed the authors to visualise moving objects
with the CityGML based models. The master’s thesis (Ruhdorfer 2017) also proposes an architecture
to integrate and visualise traffic simulation results from the simulation tool PTV VISSIM with city
models based on the CityGML standard. The proposed concept also allows for an automatic derivation
of road networks for the PTV VISSIM from city models in CityGML format. In the context of dam
monitoring, (Baghdoust 2017) proposes a framework to visualise the varying water level information.
The framework is based on the integration of CityGML WaterBody objects and the OGC Sensor
Observation Service measuring the dynamic height observation data. All the mentioned studies
successfully demonstrate representation of moving objects by coupling the sensor observations with
the city models, however, the city object properties still remain static. For example, WaterBody object
in the dam monitoring scenario should be dynamic and vary its height or change its shape of water
over the time. This is not feasible with the current version of CityGML.

The CityGML standard does not allow representing in-line time-series data. However, an extension
of the CityGML standard has been proposed by the Energy Application Domain Extension (ADE)
Working Group to support time-series data explicitly (Agugiaro et al. 2018). The data model distin-
guishes between regular and irregular timeseries. In regular timeseries, the values have a defined start
and end time and a constant time increment. In irregular timeseries, each value has an individual
timestamp. The timeseries values itself may either be stored directly in-line within the CityGML
document or in a separate file with table structure such as CSV. However, the concept focuses on
varying physical values related to only energy based applications and simulations. The representation
of timeseries using domain-neutral standards such as OGC TimeseriesML 1.0 may open the door to
cover more applications.

Although complex patterns are not supported in the CityGML standard, the CityGML Energy ADE
extends CityGML 2.0 classes by modelling four different types of schedules: (i) ConstantValueS-
chedule, specifying only one value for the complete time interval regarded, (ii) DualValueSchedule

38 2 Background

defining two different values, one for operating times and one for idle times, (iii) DailyPatternSchedule
specifying different time periods within a year where each period is related with schedules for specific
days of the week (e.g. week day, weekend, or a specific day of the week), and (iv) TimeSeriesSchedule,
where any (regular or irregular) time series may be used.

The versioning concept is not directly addressed within the CityGML standard. CityGML 2.0
already allows CityGML object properties creationDate and terminationDate. These can be used to
represent multiple instances of the same real-world object for different time periods in the same file.
However, that would require different gml:id for each instance. A modification has been proposed to
the CityGML schema by adding temporal information on buildings (Pfeiffer et al. 2013). However,
this method allows registering only definite states. CityGML schema modification and possible
standardised exports are not discussed. Another method proposed by (Morel and Gesquière 2014)
takes into account the possibility for a city object to change and the time value which fixes this change
in the city life-cycle. However, this method does not support the possibility of having parallel or
alternative scenarios.

2.3.2 IFC v4

The IFC specification also provides limited support in terms of time-dependent properties and does
not deal with all the changes as identified in the previous section. The first version of IFC was adopted
in 1996 and the latest version (IFC version 4 with 2nd Addendum) was released in 2016.

Although IFC does not provide any in-built module to deal with Sensor and IoT data, many
researchers have made developments in this direction. A web based system called "Otaniemi3D"
(Dave et al. 2018) provides information about energy usage, occupancy and user comfort by integrating
BIMs and IoT devices through open messaging standards (O-MI and O-DF) and IFC models. Another
conceptual web information service framework, proposed by (Wang et al. 2013), demonstrates the
idea for Smart Building by combining live sensor data based on the OGC standards with IFC models.
By knowing the building status at any given time and location, which is largely unseen to most
users, it is possible to change occupant behaviour, improve building safety, avoid unnecessary energy
consumption and facilitate better working environments. Another case study (Gunduz et al. 2017)
demonstrates how a facility in the BIM environment is displayed in two dimensions on Google Maps,
and real-time data from the sensors can be provided and tracked from the web browser. The approach
helps facility managers, particularly in view of facility comfort analysis by real-time analysis and
visualisation of the data coming from the sensors. However, no implementation currently demonstrates
the Publish/Subscribe capabilities for managing alerts and events.

IFC does not provide support for moving objects and trajectories. The integration with other
standards such as SensorThings API might create possibilities for supporting moving objects, however,
to the best of our knowledge, no such implementations exist.

IFC provides the support of time-series using the in-built IfcTimeseries module. It allows a natural
association of data collected over intervals of time. Within the specification, time-series can be regular
or irregular. In regular timeseries, data arrive predictably at predefined intervals. In irregular timeseries,
some or all time stamps do not follow a repetitive pattern and unpredictable bursts of data may arrive
at unspecified points in time. The modelling of buildings and their performance involves data that are
generated and recorded over a period of time. Such data cover a large spectrum, from weather data to
schedules of all kinds to status measurements to reporting to everything else that has a time related
aspect. Their correct placement in time is essential for their proper understanding and use, and the

2.3 Evaluation of city modelling standards for the listed requirements 39

IfcTimeseries subtypes provide the appropriate data structures to accommodate these types of data.
However, IfcTimeseries cannot be used to make arbitrary buildings or object properties dynamic.

IFC does not provide data structures to model complex patterns and schedules based on available
time-series.

The concept of temporal version is not currently implemented in IFC, but some extensions have
been proposed. For example, the proposal by (Zada et al. 2014) suggests six existing entities from the
IFC standard to be modified to represent as new entities within the IFC schema to support the idea of
object versioning that holds the history of changes to objects of the BIM model. (Nour and Beucke
2010) also propose an approach in which both object versioning and IFC model are integrated together
in an open multidisciplinary collaborative environment. Object versioning gives the possibility to have
several versions of the content (attributes’ values) of an object. The development of design in terms
of addition of new objects, deletion of objects or modifications of attributes’ values of pre-existing
objects can be captured in a graph structure.

2.3.3 EU INSPIRE

The EU INSPIRE Directive came into force in 2007. The thematic scope of the Directive covers 34
interdependent spatial data themes, however, some data themes such as Environmental Monitoring
Facilities require handling time-dependent properties which is not fully supported by the Directive.

Considering the popularity of RESTful architectures, an extension has been proposed for the
OGC SensorThings API standard to be considered as a solution that meets the legal obligations
stemming from the INSPIRE Directive, thus simplifying the process for extending existing spatial
data infrastructures to the IoT (Kotsev et al. 2018). The proposal shares perspective on what should be
done with regards to: (i) data encoding; and (ii) the use of SensorThings API as a download service for
INSPIRE. The proposed integration with the OGC SensorThings API makes it possible for supporting
MQTT protocols allowing users to subscribe to specific events and receive alert notifications.

The specialized observation from the INSPIRE guideline TrajectoryObservation allows representing
a series of measurements along a trajectory, for example, along a ship’s track. Each measurement is
made at a separate point along the trajectory and at a separate time. The extensions from (Kotsev et al.
2018) also explore methods for grouping a set of features, as such a mechanism would provide easier
handling for client applications.

The INSPIRE data models provide a ’Specialized Observation’ package which define ten specializ-
ations of observations of the O&M specification. All the specialized Observation types essentially
add ‘constraints’ to the underlying O&M model which characterise the result of the observation
and the sampling regime used. One of specializations is the PointTimeSeries Observation, which
represents a series of measurements at the same point, e.g. timeseries having regular measurements by
a fixed station. Similarly, the MultiPointObservation is a specific type of Point-based observation. It is
intended for cases in which measurements are made at a set of discrete points at the same time. For
example, a sensor network reporting temperature at 10am. The points themselves are not on a grid but
may be distributed in any manner, for example unevenly spaced around a coastline.

INSPIRE does not provide data structures to modern complex patterns and schedules based on
available timeseries.

INSPIRE defines several requirements and recommendations for modelling life-cycle information
of spatial objects which include UML stereotypes and properties allowing for bi-temporal modelling
of geospatial objects. Furthermore, a separate property exists for denoting a specific version of a

40 2 Background

geospatial object. However, currently only exchanging the last version of spatial objects is supported
by INSPIRE; historic versions cannot be provided yet (and especially not within one data file).

Chapter 3

Methodology

This chapter defines the methodology for extending semantic 3D city models. Firstly, it is identified
what the properties of city objects that may change with time are. Secondly, the discussions determine
how these changes take place. Accordingly, two major classifications of changes: (i) slower changes,
and (ii) highly dynamic changes are proposed. The city model extensions: (i) Versioning concept, and
(ii) Dynamizer concept are developed for supporting slower and highly dynamic changes, respectively.
The newly defined concepts are implemented for the CityGML standard. This chapter briefly discusses
the overview of the CityGML 2.0 and introduces how these extensions are developed for the CityGML
standard in the remaining parts of this thesis.

Some of the discussions have been presented in the published paper:

Chaturvedi, K. and Kolbe, T. H. (2019). ‘A Requirement Analysis on extending Semantic
3D City Models for supporting Time-dependent properties.’ In: ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences IV-4/W9, pp. 19–26. URL: https:
//www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/

https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/

42 3 Methodology

3.1 Time-dependent properties in the context of 3D city models

3.1.1 Identification of city object properties affected by time

Cities comprise several topographic objects, including built structures, elevations, vegetations, water
bodies, bridges, tunnels, and more. Semantic 3D city models define classes and relations to represent
each topographic object with its geometrical, topological, thematic, and appearance properties (Figure
3.1). For instance, a city object can be defined using a geometrical primitive: a zero-dimensional
object is a point (e.g. location of a bus stop), a one-dimensional a curve such as a line string (e.g.
representation of a street), two-dimensional a surface such as a polygon (e.g. a water body), and
a three-dimensional a solid (e.g. a building). Each geometry can be defined using its coordinate
reference system and with an appropriate level of detail. Similarly, for many use cases, topological
correctness of the object geometries is of high importance. Topology represents the sharing of
geometry objects between features or other geometries. For example, a building and an adjacent
garage may be represented by two solids. The surface, describing the area where both solids touch,
maybe represented only once and both solids reference it. Similarly, a geometry defining a wall of a
building may be referenced twice: by the solid geometry defining the geometry of the building, and
by the wall feature.

Furthermore, semantic 3D city models allow defining an arbitrary number of spatial and non-spatial
attributes for geographic features. For example, in the CityGML standard, the pivotal class of the
building model is AbstractBuilding from which the two non-abstract classes Building and BuildingPart
are derived. These three classes follow the general composite design pattern (Gamma et al. 1995): a
Building may contain BuildingParts, and as the latter class is also derived from AbstractBuilding a
(recursive) aggregation hierarchy of arbitrary depth may be realised. For example, a building can be
decomposed into different (main) building parts like walls, stairs, etc. and these may again consist
of parts like windows or doors. Furthermore, a Building or BuildingPart is described by optional
(non-spatial) attributes: function, usage, and class, year of construction and demolition, roof type,
measured height, number and individual heights of storeys above and below ground. Building and
BuildingPart can also be assigned multiple postal addresses and descriptions. In addition to spatial and
thematic properties, semantic 3D city models allow defining appearances (i.e. observable properties)
of the features’ surfaces. Appearances represent visual data like materials, textures, and colours on
the wall and roof surfaces. Appearances also represent arbitrary categories using themes for infra-red
radiation, noise pollution, or earthquake-induced structural stress.

In general, current generation semantic 3D city models provide only static representations of the
physical environment reflecting the state of an object and its properties at a specific point in time.
However, in reality, these properties are not static and change with time. For instance, as proposed
by (De Luca et al. 2010), a building may undergo different kinds of transformations such as : (i)
creation (addition of a new building), (ii) demolition (destruction of an existing building), (iii) union,
(iv) division, (v) reconstruction, and (vi) modification. These transformations may result in changes
in (i) geometrical or spatial properties such as addition of a new floor in the building, (ii) topology
within a building (e.g. division of a big room into two smaller rooms by the creation of a new wall),
(iii) appearance of a building (such as materials, textures, and colours on the wall and roof surfaces),
and (iv) semantics of a building (e.g. changing the building’s type from residential to commercial).
Similar changes can also be observed with other city objects. For example, in an autonomous driving
scenario (Schwab and Kolbe 2019), a moving car on street results in changes in its geometrical
properties such as car’s location and orientation. However, the output from a traffic camera may lead to

3.1 Time-dependent properties in the context of 3D city models 43

Figure 3.1: Different properties of topographic objects within semantic 3D city models.

changes in appearances, e.g. recording videos of moving traffic over definite intervals. The geometry
of an object can be further classified according to its shape, location, and extent, which can also be
changed over time. For instance, a flooding incident in an urban area leads to overflow of water that
submerges land such as streets, vegetation and buildings. From the 3D city modelling perspective, the
representation of such flood inundation scenarios result in changes in the location, extent, and shape
of water bodies (Amirebrahimi et al. 2016). More examples are provided in table 3.1. Hence, the
extensions of semantic 3D city models must support the representation of time-dependent properties
associated with geometrical, topological, thematic, and appearance properties of city objects.

3.1.2 Classification of changes in cities

The city object properties mentioned in the previous section can also change according to different
frequencies. Some of the changes can be sudden. For instance, changing the owner of a house is a
sudden event. On the other hand, changes may also be gradual and progressive. The demolition of a
building is a gradual but comparatively shorter event. But the construction of a Gothic cathedral is
a very long event that lasts several centuries. Similarly, historical building deteriorations may take
centuries or millennia. The changes in city object properties can also be discrete or continuous. The
evolution of a city can be represented as a series of time-stamped snapshots whereby each snapshot
represents the state of city features at a specific point in time. Such snapshots are linear and discrete.
On the other hand, rising water during a flood event is continuous.

Therefore, changes in cities can be classified according to the rate at which they change. This thesis
classifies such changes according to two broad categories (Table 3.1):
1. Slower Changes: Some of the changes are slower, e.g. evolution of a city over a longer period.

These changes may include addition, modification, or demolition of buildings and other objects
over time. The urban planning scenario may also involve developing parallel or alternative versions
of city models. Such slower changes include features that begin or cease to exist over different
periods.

2. Highly Dynamic Changes: The other classification of changes represent high frequent or dynamic
variations of object properties, e.g. variations of (i) thematic attributes such as changes of physical
quantities (energy demands, temperature, solar irradiation levels), (ii) spatial properties such as
change of a feature’s location (moving objects), (iii) real-time observations from sensors and

44 3 Methodology

N
o.

R
equirem

ent
E

xam
ple

U
se

C
ases

GeometryThematic
Topology
AppearanceSlower Changes
Dynamic Changes

R
1

L
inking

Sensors
and

IoT
w

ith
city

objects
Sm

artM
eters

m
onitoring

B
uilding

E
nergy

+

M
onitoring

B
ridge

D
eform

ation
+

+
+

Traffic
C

am
eras

recording
num

bers
ofcars

+
+

R
2

M
anaging

E
vents

and
A

lerts
W

aterlevelexceeding
a

threshold
+

+
+

+

A
irQ

uality
exceeding

the
dangerous

lim
it

+
+

E
nergy

consum
ption

breaching
the

allow
ed

usage
+

R
3

M
oving

O
bjects

A
irQ

uality
Sensors

m
ounted

on
a

car
+

+

Pedestrians
m

oving
into

oroutofa
building

+
+

+

R
4

In-line
SupportofTim

eseries
SolarIrradiation

forB
uilding

R
oofSurface

+
+

E
nergy

D
em

and
E

stim
ation

ofa
building

+
+

Flood
Inundation

Sim
ulation

+
+

+
+

R
5

C
om

plex
Patterns

and
Schedules

W
eekly

patterns
ofenergy

consum
ption

+

H
eating

schedule
ofenergy

system
s

+

R
epeating

trajectories
forbus

lines
+

+
+

R
6

M
anaging

H
istoric

V
ersions

D
ocum

entation
ofchanges

overtim
e

+
+

+
+

R
econstruction

ofthe
pastevents

+
+

+
+

M
ultiple

representations
ofthe

past
+

+
+

+

R
7

M
anaging

A
lternative

V
ersions

Planned
alternative

structures
forcom

parison
by

U
rban

Planners
+

+
+

+

Table
3.1:C

lassification
ofslow

erand
highly

dynam
ic

changes.T
he

firsttw
o

colum
ns

referto
the

requirem
ents

listed
in

C
hapter2.

3.2 Overview of the CityGML standard 45

IoT devices. Such changes are often determined by discrete recordings or by using interpolation
functions and can be defined as a function of time. For example, varying energy consumption
values of a building can be determined for specific points of time (i) in the past by querying a
database for historical data, (ii) in the present by querying a real-time sensor, and (iii) in the future
by simulation software.

Both slower and highly dynamic changes are fundamentally different from each other. Slower changes
involve features that begin or cease to exist over different time intervals. If a new building is added in
the city model at a certain point or period in time, it is not possible to query it before that specified
time as there was no existence of the feature. Similarly, the planning scenarios involve a comparison of
multiple versions of the same city model by different planners. Hence, such changes require different
versions of the city models having completely new or modified features. On the other hand, highly
dynamic changes are mostly associated with city object properties and can be defined as a function
of time. In this case, only some of the properties of otherwise static objects need to represent such
time-varying values. For example, the energy consumption of a building determined by a Smart Meter
installed in the same building requires only one specific property (e.g. "energy_consumption") of
the building to be dynamic, while other properties (e.g. "building_roof_type") remain static. More
examples are provided in table 3.1. Hence, this thesis considers both slower and highly dynamic
changes separately and proposes different extensions to represent and manage them.

3.2 Overview of the CityGML standard
The concepts developed in this thesis have been realised for the CityGML standard. However, in
general, they can also be applied to other standards like IFC, EU INSPIRE, and the German cadaster
standard ALKIS. This sub-section gives a brief overview of the CityGML standard, its data modelling
aspects, and several applications and software systems supporting the CityGML standard.

3.2.1 Data Modelling with CityGML

CityGML (Gröger et al. 2012) defines a conceptual schema for describing relevant entities of urban
objects such as buildings, roads, railways, tunnels, bridges, city furniture, water bodies, vegetation,
and the terrain. This conceptual schema specifies how and into which parts and pieces physical
objects of the real world should be decomposed and classified. All objects can be represented with
their semantics, 3D geometry, 3D topology, and appearances information. The objects can further be
represented using five predefined levels of details (LOD 0-4 with increasing accuracy and structural
complexity). The relevant city objects are defined using the Unified Modelling Language (UML) and
with an XML schema for the file exchange format.

The classes and data types in CityGML are grouped into several thematic modules. Most thematic
classes are the sub-classes of _Feature and _FeatureCollection, the basic notions defined in the OGC
Geography Markup Language (GML) (Cox et al. 2004) for the representation of spatial objects and
their aggregations. Features include spatial as well as non-spatial attributes which are mapped to GML
feature properties with corresponding data types. Geometric properties are represented as associations
to the geometry classes for the respective thematic module. The thematic model also comprises
different types of interrelationships between feature classes like aggregations, generalisations and
associations.

The most important module is the Core module (Figure 3.2), which defines the basic CityGML
components and is, hence, a mandatory package that must always be referenced by the packages

46 3 Methodology

of the other modules. CityGML 2.0 comprises the thematic modules including Building, Bridge,
Transportation, CityObjectGroup, Appearance, Generic, CityFurniture, Relief, Vegetation, Tunnel,
LandUse, and WaterBody. In order to ensure that all the modules support the recommended time-
dependent properties, it is important to first understand the basics of the CityGML Core module.

Figure 3.2: UML diagram of CityGML 2.0 Core module.

The core module defines the base class of all thematic classes within CityGML’s data model, which
is an abstract class called _CityObject and all the previously mentioned thematic feature types are
types of _CityObject. _CityObject provides a creation date and a termination date for the management
of histories of features as well as the possibility to model external references to the same object in
other data sets. Furthermore, two qualitative attributes relativeToTerrain and relativeToWater are
provided, which enable to specify the feature’s location with respect to the terrain and water surface.

_CityObject is a subclass of the GML class _Feature, thus it inherits the metadata property (which
can be e.g. information about the lineage, quality aspects, accuracy, local CRS) and name property
from the superclass _GML. The previously mentioned CityGML thematic classes are subclasses of
_CityObject and may have further subclasses with relations, attributes and geometry. Features of the
specialised subclasses of _CityObject may be aggregated to a single CityModel, which is a feature
collection with optional metadata. Generally, each feature has the attributes class, function, and usage,
unless it is stated otherwise.

CityGML already defines many feature classes and attributes which are useful for a broad range
of applications. However, in practical scenarios, it is often necessary to store and exchange extra
attributes or even 3D objects which do not belong to any of the predefined classes. For these cases,
CityGML generally provides two different ways of extensions. The first is the usage of generic
city objects and generic attributes; both defined within the module generics. Any CityObject may
have an arbitrary number of additional generic attributes. For each generic attribute of an object, the

3.2 Overview of the CityGML standard 47

name, type, and value have to be given within the CityGML dataset. Supported data types are string,
integer, real, date, and URI (as shown in Figure 3.2). A GenericCityObject may be assigned arbitrary
geometries (or CityGML ImplicitGeometry). As they are derived from CityObject they may also be
assigned generic attributes.

The second concept for extending CityGML is the Application Domain Extension (ADE). An ADE
specifies systematic extensions of the CityGML data model. These comprise the introduction of new
properties, e.g. the energy-relevant attributes, to existing CityGML classes. The difference between
ADEs and generic objects and attributes is that an ADE has to be defined within an additional XML
schema definition file with its namespace. This file has to explicitly import the XML Schema definition
of the extended CityGML modules. ADEs can be defined (and even standardised) by information
communities which are interested in specific application fields. There are already many CityGML
ADEs such as the Energy ADE (Agugiaro et al. 2018) and the Utility Network ADE (Kutzner et al.
2018) being used for different applications. A comprehensive list of CityGML ADEs is provided by
(Biljecki et al. 2018).

3.2.2 Management of CityGML-based city models

Several software systems already support reading and processing CityGML files. Feature Manipulation
Engine (FME62) is a commercial ’Extract Transform Load’ (ETL) tool. It allows creating workbenches
to read, write, and transform arbitrary CityGML datasets. Similarly, other commercial platforms such
as Autodesk’s InfraWorks63 and ESRI 3D Cities Information Model (Reitz and Schubiger-Banz 2014)
also support processing CityGML files. azul64 is an open-source application developed by TU Delft
for visualising CityGML models on the macOS operating system.

CityGML files can be huge as they often represent the entire city, state or even country-wide 3D
geospatial data. For example, the New York City 3D Building model65 based on CityGML 2.0 includes
approx. 1.1 million 3D buildings. Similarly, the CityGML based 3D Building model66 of the state
North Rhine-Westphalia of Germany includes approx. 10.1 million 3D buildings. Besides, such large
city models are also used for various complex GIS simulation and analysis tasks, which go far beyond
pure 3D visualisation. Hence, such large files with geometric and semantic information must be
efficiently stored and managed in database management systems allowing users to perform querying
and analysis. The generic support for GML application schema is already provided by Open Source
software frameworks such as deegree67 and the OpenGIS Simple Features Reference Implementation
(OGR) by GDAL68 as well as the commercial software packages CPA SupportGIS69 and Snowflake
GO LOADER / GO PUBLISHER 70 offer generic support for GML application schemas. Since
CityGML is a GML application schema, these software systems can automatically create database
schemas for storing CityGML data for various database management systems like Oracle Spatial or
PostgreSQL/ PostGIS, using the CityGML XML Schema definition files. Additionally, GeoRocket71

62https://www.safe.com/
63https://www.autodesk.com/products/infraworks/overview
64https://github.com/tudelft3d/azul
65https://www1.nyc.gov/site/doitt/initiatives/3d-building.page
66https://www.virtualcitysystems.de/aktuelles/458-3d-landesmodell-nrw
67https://www.deegree.org/
68https://gdal.org/drivers/vector/gmlas.html
69http://www.cpa-software.de/
70https://snowflakesoftware.com/geospatial-products/
71https://georocket.io/

48 3 Methodology

is also a free and Open Source tool, which decomposes CityGML XML files and stores the XML
fragments in a (distributed) file system like Amazon S3 or MongoDB. Furthermore, CityGML data
can also be stored using the graph database Neo4j72 as presented by (Nguyen et al. 2017).

The 3D City Database (3DCityDB)(Yao et al. 2018) is also an Open Source software which stores,
represents, and manages the large CityGML datasets on top of a standard spatial relational database
management systems such as Oracle Spatial and PostgreSQL/PostGIS. It provides a Java front-end
application named ’3DCityDB Importer/Exporter’, which allows for high performance importing and
exporting the CityGML datasets of arbitrary file sizes. It also allows exporting the contents in the
form of different visualisation formats such as KML, COLLADA, glTF, and 3D Tiles allowing the 3D
objects to be viewed and interactively explored in web applications. For integration into an OGC Web
Service environment, the 3DCityDB contains a Web Feature Service (WFS) interface, using which
the CityGML features can be requested in standardised ways. Thematic and generic attributes of city
objects can be exported from 3DCityDB in tabular forms such as a CSV file or a Google Spreadsheet
Document. Besides, thematic attributes can also be queried directly from the PostgreSQL REST API.
Furthermore, 3DCityDB also provides functionality to validate CityGML documents.

For high-performance 3D visualisation and interactive exploration of arbitrarily large semantic
3D city models based on the CityGML standard, there are different web-based visualisation clients
available. 3DCityDB-Web-Map-Client Pro (Chaturvedi et al. 2015) developed by the Chair of Geoin-
formatics, Technical University of Munich, is a web-based front-end client of 3DCityDB, which not
only allows exploring and interacting with large semantic 3D city models, but also provides thematic
querying capabilities on the 3D objects. For example, queries such as "retrieving all the buildings ob-
jects located at a specific street" and "computing the total energy consumption of a specific residential
area" can be performed and results can be visualised directly on the 3DCityDB-Web-Map-Client Pro.
It supports linking the 3D visualisation models (KML/glTF) with the cloud-based Google Spreadsheet
documents allowing for querying the thematic data of every 3D object. virtualcityMAP73 is a com-
mercial web-based visualisation client with similar functionalities for working with large semantic 3D
city models. This application has been developed by the company virtualcitySYSTEMS GmbH based
in Berlin, Germany. 3DCityDB-Web-Map-Client 74 is a free and Open Source visualisation client
developed by the Chair of Geoinformatics, the Technical University of Munich in cooperation with
virtualcitySYSTEMS GmbH (Yao 2020). This client provides rich 3D visualisation and interactive
exploration of arbitrarily large semantic 3D city models based on the CityGML standard. However, it
does not support querying capabilities, unlike previously mentioned visualisation clients.

All of the visualisation clients use the Cesium75 virtual globe as their visualisation engines. Cesium,
developed by the Analytical Graphics, Inc., is an Open Source JavaScript package supporting the
presentation and visualisation of 3D contents directly within web browsers. It enables users to
dynamically switch between 3D globe visualisations and 2D map projections. It utilises the standards
HTML5 and WebGL that allow hardware acceleration for loading 3D contents without any requirement
to install additional plug-ins. Hence, it allows applications to be used as cross-platform, cross-browser,
and cross-device.

72https://neo4j.com/product/
73https://www.virtualcitysystems.de/en/products/virtualcitymap
74https://github.com/3dcitydb/3dcitydb-web-map
75https://cesium.com/

3.3 Realisation of the concepts with the CityGML standard 49

3.3 Realisation of the concepts with the CityGML standard

3.3.1 Data Models

As discussed in section 3.1, due to the fundamental difference between slower and highly dynamic
changes, this thesis recommends extending semantic 3D city models for dealing with both types
of changes in two different ways. Part I of the thesis introduces conceptual data models for the
CityGML standard and describes how these data models support the requirements [R1-R7], which
were identified in Chapter 2. The Versioning concept (c.f. Chapter 4) deals with slower changes and
allows representing historic and parallel versions of 3D city models. The Dynamizer concept (c.f.
Chapter 5) deals with highly dynamic changes and allows representing as well as linking city object
properties with numerous sources of highly dynamic time-dependent properties. The Dynamizer
concept also provides a method for injecting dynamic variations of city object properties into the
static representation making city objects truly dynamic.

Figure 3.3: Addition of two new modules Versioning and Dynamizer (shown as green) for CityGML.
The vertical boxes show the different thematic module. Horizontal modules specify
concepts that are applicable to all thematic modules.

Both concepts have been proposed in a way that they apply to all the thematic modules (Figure 3.3).
For example, a Versioning module allows representing multiple versions of different thematic modules
such as buildings and streets. Similarly, a Dynamizer module allows linking a real-time sensor stream
to a property of any city object like a building or a city furniture. For applicability with CityGML 2.0,
the Versioning and Dynamizer concepts have been implemented as Application Domain Extensions
(ADEs). However, they are also planned to become a part of the next version of CityGML (CityGML
3.0) (Kutzner et al. 2020).

50 3 Methodology

3.3.2 Data Management

This thesis presents the management of both Versioning and Dynamizer modules using the software
3D City Database (3DCityDB). 3DCityDB is an Open Source software, is maintained regularly, and
already supports all the classes and schema for CityGML 2.0. One of the other primary reasons to
select 3DCityDB for this thesis is that it includes an ADE Plugin Manager for its Importer/Exporter.
The ADE Plugin Manager allows dynamically extending a 3DCityDB instance to facilitate the
storage and management of arbitrary ADEs. The Versioning and Dynamizer concepts within this
thesis have been proposed for CityGML 3.0. However, they can also be implemented as ADEs for
CityGML 2.0. Hence, the 3DCityDB is an ideal software to apply and demonstrate the newly added
functionalities. However, 3DCityDB currently manages only static properties of city objects. Part II
of the thesis presents concepts for managing time-dependent properties along with static properties
using 3DCityDB. This thesis provides a relational database model (c.f. Chapter 6) for storing and
managing time-dependent properties for the city objects. Further, the CityGML objects along with
their corresponding time-series data (e.g. a building along with the monthly solar irradiation values or
monthly energy consumption values) can be imported and exported in standardised ways.

Figure 3.4: Data Management of new CityGML modules within 3DCityDB.

One more advantage of using 3DCityDB for this study is that it comes with a Web Feature Service
(WFS) interface which allows CityGML features to be accessed in a distributed environment (e.g.
in a Spatial Data Infrastructure) as shown in Figure 3.4. The WFS interface is also beneficial for
visualisation applications allowing to interpret and visualise geometry and semantics of city objects.
However, a WFS is not suitable to query dynamic/time-series data. This thesis also presents a novel
concept called InterSensor Service (c.f. Chapter 7), which allows integrating dynamic information with
city objects and their properties without needing to store them in 3D city databases. This functionality

3.3 Realisation of the concepts with the CityGML standard 51

is highly suitable for working with sensors and IoT devices, generating a massive amount of time-
series data (e.g. observations every minute or every second). The InterSensor Service is a lightweight
application and is provided as Open Source software.

3.3.3 Proof of concept

Part III of the thesis provides proofs of concepts that have been developed in the previous two parts.
Chapter 8 provides implementations for the integrated and unified visualisation of time-dependent
properties along with static properties of city objects. The proposed framework enables applications
(such as 3D city model viewers) to access static data and dynamic data in an integrated fashion.
Several demonstrations are presented covering the use cases of real-world Smart City projects.

Furthermore, Chapter 9 highlights the fact that security is a crucial component in a distributed
environment. The chapter provides solutions for securing the overall access and management of
distributed applications and services by giving a demonstration example in a Smart City project.
The concept facilitates privacy, security and controlled access to all stakeholders and the respective
components by establishing proper authorisation and authentication mechanisms.

Part I

Integration of Time-dependent Properties

Chapter 4

Modelling Slower Changes

This chapter focuses on changes that are slower such as (i) history or evolution of cities [R6] and
(ii) planned alternatives by urban planners [R7]. A novel concept called the Versioning concept is
introduced to extend the CityGML data model and its exchange format to support different versions
and version transitions to allow identification and organisation of multiple states in a city model. The
approach helps to deal with two critical facets of multi-representation of semantic 3D city models. The
first facet is the maintenance of the complete history or evolution of the city model, which is supported
by version transitions. The transitions include bi-temporal attributes, which help in answering the
questions such as “How did the city look like at a specific point in time?” and “How did the city model
look like at a specific point in time?”. The second facet of multi-representation is managing parallel
alternative designs of the objects at the same time. The approach allows different versions to be used
in an interoperable exchange format and exchanging all the versions of a repository as one dataset.
Furthermore, this single dataset can be used by different software systems to visualise, compare, and
work with all the versions.

This chapter is based on the published paper and is a joint effort by the authors mentioned as follows:

Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T. and Kolbe, T. H. (2017). ‘Managing
Versions and History Within Semantic 3D City Models for the Next Generation of CityGML’.
In: Advances in 3D Geoinformation. Ed. by Abdul-Rahman, A. Cham: Springer International
Publishing, pp. 191–206. URL: https://doi.org/10.1007/978-3-319-25691-7 11

https://doi.org/10.1007/978-3-319-25691-7_11

56 4 Modelling Slower Changes

4.1 Versioning in semantic 3D city models

As we learnt previously, semantic 3D city models are an essential source of information in applications
related to urban planning, architecture, business development, tourism, history, and archaeology. These
areas of application often involve studying the evolution of cities representing how city objects change
over a long period. For example, for a time sequence, a building may be constructed, modified,
demolished and replaced by other ones. Similar needs can also be identified in serious game projects
where objects of a scene may evolve according to a given scenario. For instance, a building may be
represented in different states like “destroyed”, “burned” or “partially destroyed” that can be called by
the application in coordination with user actions (Figure 4.1). These changes are slower and involve
features that begin or cease to exist over different periods. For example, if a new building feature is
constructed after a specific time, it is not possible to query the building before the specified time as
there was no existence of this feature. Hence, such changes can be managed using historic or linear
versions of city models, including up-to-date information about newly added, modified, or demolished
objects.

V3V2V1

Field Church Pile of stones Auditorium

Construction Destruction Modification

V4

Figure 4.1: An illustration of historical succession. Image adapted from (Pfeiffer et al. 2013)

Semantic 3D models also play a crucial role in the documentation and reconstruction of both
historical and contemporary events. Examples include crime scene and accident reconstructions
(Wolff and Asche 2009), representation of battles and other past events, archival descriptions of
ancient structures before demolition, documentation of construction and demolition of buildings
(Pfeiffer et al. 2013). Such events involve a sequence of versions of a “reality” at a specific time
or in a particular time sequence. Events are often reconstructed from conflicting and incomplete
evidence, and a complete reconstruction must allow branching to handle the alternative possibilities.
For example, figure 4.2 shows three alternative versions of a city model, labelled within circles as

4.1 Versioning in semantic 3D city models 57

V1a, V1b, and V1c, of a model based on different facts and information. A version of a city model is
a snapshot representing the state of all features of the entire city models at a specific point in time.
Based on more information and data collection for each fact, parallel and alternative versions, possibly
managed by different authorities, are represented corresponding to the earlier versions. For example,
the authority A manages a workspace to reconstruct subsequent versions from ’V1a’ and updates them
to versions V2a followed by V3a, and V4a. Over a period, changes in these versions are represented
by transitions shown by the arrows in the figure. In the end, the alternatives versions, managed by
different authorities are merged to form the final version with in the main trunk. More details on
version transitions and merging approaches are given in section 4.1.1.

V1a V2a V3a V4a

V1b V2b V3b

V1c V2c V3c V4c

Vf

Facts a

Facts b

Facts c

Reconstruction a

Reconstruction b

Reconstruction c

V4b

Figure 4.2: Reconstruction of events to handle alternative models.

There are also scenarios in Urban Planning requiring backward compatibility to handle multiple
representations of the past of a city. A given date may be a starting point to imagine the past and
constructing several scenarios. As shown in figure 4.3, the version V1 indicates the current state
(version) of the entire city model. Two different past states of the city model are denoted as versions
V0 and V0’. The version transition, in this case, is shown as Historical Succession (more details on
naming the version transitions is given in section 4.2.3). The different planning authorities can also
work with alternative planned versions at the same time to insert a newly generated object or delete
or update any existing object. As shown in figure, the main version V1 is forked by two different
authorities or workers at the same time. After completion of their respective changes (concurrent
editing) within their respective workspaces, the versions can be merged to form the final version.
More details on version transitions and merging approaches are given in section 4.1.1.

58 4 Modelling Slower Changes

V0 V2 V2a

V0‘ V3 V3a

V4

Workspace A

Workspace B

V1

Figure 4.3: Managing parallel or alternative versions.

4.1.1 Requirements for modelling the new Versioning concept

As already described in Chapter 2, Versioning is not a new concept and there are already several
Version Control Systems such as Git, Mercurial, Concurrent Version System (CVS) and Subversion
(SVN) (details and references of these systems are given in section 2.2.5). The Version Control
Systems (VCS) have the representational power to manage changes, parallel updates, and merges of
versions of CityGML models with one exception: versions always represent change in the forward
direction of time. The collection maintained by a VCS is rooted in an original version, that is, the
versions form a rooted directed acyclic graph (DAG). The original version is the oldest version and
it is not possible to create versions earlier than the root. In addition to the problem of forward-only
temporality, a VCS also has a designated node in the DAG, usually called the head, and a distinguished
path in the DAG, from the root to the head, usually called the "trunk" or "main branch". Neither of
these is required for maintaining versions of CityGML models. Although it might be possible to gain
the needed representational power by piecing together multiple VCS projects, which share a common
root, it would be awkward, at best.

The concept of versions has also successfully been incorporated by database management systems
such as Oracle Workspace Manager and ESRI ArcSDE Geodatabases (c.f. section 2.2.5). The Oracle
Workspace Manager allows managing multiple versions of the data in the same Oracle Relational
Database Management System in the form of workspaces. A workspace is a virtual copy of the data,
which separates the collection of changes in the different versions from the live (production) data. The
version-enabled data are stored in separate tables with additional columns representing the version
metadata. Such additional columns contain the version and workspace of each data row along with
the date and time of each update. The database view is created on the version-enabled table and
triggers are defined to enable SQL operations such as insert, delete, and update. This approach allows
preservation of the structure of the original table and shows the data of only the particular version. The
Oracle Workspace Manager also provides the management of historical data by using savepoints and

4.1 Versioning in semantic 3D city models 59

the means for resolving possible conflicts during the merging of the different versions. Similarly, ESRI
ArcSDE Geodatabases also supports managing history, performing “what-if” analysis and conflict
detection and resolution. However, there are no interoperable exchange formats related to both Oracle
and ESRI which would allow exchanging all versions of a repository as one dataset, nor which would
allow the use of the same dataset by both Oracle and ESRI.

The other standards for semantic data models for city objects such as INSPIRE also provide
the concept of chronological versioning (details are given in section 2.3). INSPIRE defines several
requirements and recommendations for modelling life-cycle information of spatial objects which
include UML stereotypes and properties allowing for bi-temporal modelling of geospatial objects.
Furthermore, a separate property exists for denoting a specific version of a geospatial object. However,
currently only exchanging the last version of spatial objects is supported by INSPIRE; historic versions
cannot be provided yet (and especially not within one data file).

Based on the above-mentioned discussions by reviewing other standards, tools, and database
management systems, the following requirements were gathered to be included in the proposed new
approach:
• None of the standards supports managing multiple historic versions. INSPIRE supports exchanging

only the last version of spatial objects. The proposed methodology should allow supporting multiple
historic versions within one data file.

• The existing approaches allow only forward-temporality. The proposed approach should allow
backward compatibility to handle multiple representations of the past of a city.

• Although the DBMS systems such as Oracle or ESRI ArcSDE Geodatabases already support
versions and conflict managements, the proposed approach within CityGML documents would
allow exchanging all versions of a repository as one dataset and furthermore, the same dataset
would be used by DBMS systems such as Oracle and ESRI.

Figure 4.4: Representation of Version Transitions.

Another important aspect to be considered is the management of versions and their transitions. As
shown in the previous section, a version of a city model is a snapshot representing the state of all
features of the entire city model at a specific point in time. Over a period, changes in versions are
represented by transitions. Version transitions document the causal relationship between the version
snapshots (Figure 4.4). For example, a version transition can be a historical succession representing the
evolution of a city over a time period. The transition can also be a planning activity where authorities

60 4 Modelling Slower Changes

work in parallel with different workspaces to insert, delete, or modify objects. Similarly, the transition
can also be merge where parallel workspaces are merged to form the final version. Similarly, in
the design stages, the transitions can also be planned and realized, indicating the alternative plans
suggested to be included in the versions and later realization of the suggestions after the planning.
Hence, versions and version transitions together allow identifying and organising multiple states
of a city model at different points in time. Each version transition involves a list of transactions
representing what kind of changes occur within a transition, for example, whether a new feature is
added, replaced, or modified.

A critical aspect with version transitions is the merging of two different versions, which may lead
to possible conflicts. For all such convergence situations, it must be ensured that the members of
the converged version/state can be determined unambiguously. For example, in the figure 4.3, two
authorities work in parallel on their respective workspaces to add, delete, or modify an object. It is
important to ensure that both the transitions should be able to detect who has changed an object and
whether there are any conflicts. The easiest and safest way within the new modelling approach is to
require that at maximum, one of the incoming transitions has transactions. In this way, at most one
transaction can be performed at a time for all the incoming transition avoiding any possible conflict.

Version 1 Version 2

Requires change in
Feature 1

Requires change in
Sub-feature 1

Change in
Sub-feature 2

Feature 1

Sub-feature 1

Sub-feature 2

Figure 4.5: Issues with versioning of aggregated features. Image adapted from (Stadler and Kolbe
2007).

Another vital aspect to consider is that 3D city model standards such as CityGML allow features to
have aggregated sub-features. For example, a Building feature can have boundary surface features

4.2 Modelling the Versioning concept within the CityGML standard 61

(e.g., WallSurface), which may further consist of sub-features such as WindowSurface or DoorSurface.
However, in case of a change in any of the sub-features, the model would require changing all the
parent features in the aggregation levels above because aggregate objects point to their parts. If a new
version replaces the building part with a new gml:id, the pointer in the aggregate object also will have
to be updated. This change will create a new object version for the aggregate object too, and so on,
following up the aggregation hierarchy. For example, the window in figure 4.5 has been replaced by a
new window with insulated glazing and a new frame. In the updated version, the window will have
to be changed along with its parent features. This problem should also be avoided by an appropriate
modelling approach.

4.2 Modelling the Versioning concept within the CityGML standard
The following sub-sections describe the development of the UML model of the Versioning concept
based on the gathered requirements.

4.2.1 Versionable Features

CityGML 2.0 allows defining the life cycle of objects using the attributes creationDate and termina-
tionDate. However, these attributes only refer to the period a specific city object is a part of the city
model. To represent the complete evolution, it is also essential to document the period spanning the
validity of city objects in the real world. The complete history or evolution of the city model can be
supported by version transitions having bi-temporal attributes (Jensen and Snodgrass 1999). They may
be helpful in answering the questions such as "How did the city look like at a specific point in time?"
and "How did the city model look like at a specific point in time?". In the Versioning concept, a new
abstract subclass VersionableAbstractFeature of the class AbstractFeature is introduced allowing all
geo-object types to become versionable (Figure 4.6). The class VersionableAbstractFeature contains
four time attributes for expressing a bi-temporal existence model for versions. Apart from the already
existing attributes creationDate and terminationDate reflecting the transaction time, the class intro-
duces two new attributes validFrom and validTo for reflecting the actual world time. This approach
is similar to the existing INSPIRE model where these attributes can be used to query how the city
model looks like at a specific point in time and how the actual city looks like at a specific point in
time. These attributes can be defined as an extension to the CityGML core module and can replace the
existing attributes yearOfCreation and yearOfDemolition attributes in the CityGML building module.

In addition, the city object is now assigned a stable object identifier for its entire life-cycle. This
stable identifier is termed as "major ID". This stable identifier is supported by GML3.2.1 through
the element gml:identifier in the class AbstractGML, which is used for providing globally unique
identifiers. Furthermore, an extension to this "major ID" is given in the form of a "minor ID" to
distinguish different versions of the same real-world entity. The combination of "major ID" and "minor
ID" allows the representation and exchange of not only the current version but also the entire history
of a city model in the same dataset, because it avoids conflicts of having multiple instances with
the same object ids (the different versions of the same real-world object) in the same file/database.
A separator symbol "_" is introduced to separate the stable identifier from the individual version.
For example, the specific version of a city object can be denoted as Building1020_Version1, where
Building1020 is the gml:identifier representing the global unique "major ID" and Version1 is the
"minor ID" to represent the specific version of the building object Building1020. This concatenated
form (Building1020_Version1) is used as the gml:id to distinguish the different versions of the same

62 4 Modelling Slower Changes

<<type>>
gmlBase::AbstractGML

+ description: CharacterString[0..1]
+ descriptionReference:: URI[0..1]
+ name: GenericName[0..*]
+ identifier: ScopedName [0..1]

<<FeatureType>>
feature::AbstractFeature

+ boundedBy: GM_Envelope[0..1]

<<FeatureType>>
VersionableAbstractFeature

+ creationDate: DateTime[0..1]
+ terminationDate: DateTime[0..1]
+ validFrom: DateTime[0..1]
+ validTo: DateTime[0..1]

<<FeatureType>>
Core::AbstractCityObject

+ relativeToTerrain: RelativeToTerrainType[0..1]
+ relativeToWater: RelativeToWaterType[0..1]

<<FeatureType>>
Core::CityModel

* *

+cityObjectMember
<<Property>>

Figure 4.6: Versionable Features of CityGML.

real-world object. One CityGML instance document can, therefore, include multiple versions of the
same real-world object having different gml:id but identical gml:identifier values. This approach also
allows determining the different versions even if they are created in the same dates. For example, if we
have 3 alternative versions of the same object at the same point in time, then "majorId_creationDate"
representation would not work. However, the representation "majorId_creationDate_Version1" would
allow to form a unique gml:id of the object even if different versions of this object are created on the
same date. The idea of "minor ID" and "major ID" has been adopted from the German AAA model
(AAA 2014) and the INSPIRE Data Specifications (INSPIRE 2013). Referencing objects by either
their "minor ID" or their "major ID" is inspired from the Solid Earth and Environment GRID (Cox
2006).

4.2 Modelling the Versioning concept within the CityGML standard 63

<<FeatureType>>
VersionableAbstractFeature

+ creationDate: DateTime[0..1]
+ terminationDate: DateTime[0..1]
+ validFrom: DateTime[0..1]
+ validTo: DateTime[0..1]

* *

+cityObjectMember
<<Property>>

<<FeatureType>>
Version

+ tag: CharacterString[0..]
0..*

0..*

+versionMember

<<FeatureType>>
Core::CityModel

<<FeatureType>>
Core::AbstractCityObject

+ relativeToTerrain: RelativeToTerrainType[0..1]
+ relativeToWater: RelativeToWaterType[0..1]

<<type>>
gmlBase::AbstractGML

+ description: CharacterString[0..1]
+ descriptionReference: URI[0..1]
+ name: GenericName[0..*]
+ identifier: ScopedName[0..1]

<<FeatureType>>
feature::AbstractFeature

+ boundedBy: GM_Envelope[0..1]

Figure 4.7: Introduction of the new Version feature.

4.2.2 Version - a new Feature Type

The class Version is introduced to manage a specific version representing the state of the city model
at a specific point in time (Figure 4.7). This class allows each version to be denoted by a set of
user-defined keywords named as tag. With the help of such tag attributes, a user can perform searches
based on specific keywords, e.g., "search for a version developed by worker A". Each version contains
the city objects or a group of city objects by using the association versionMember. By using this
association, each city object can be referenced by a specific version. The city objects within each
version can be referenced in two ways: (i) by using a simple XLink to the gml:id of the referenced
object which references a specific version of a real-world object, or by using the XML Path Language
(XPath)76. XPath in conjunction with XLink allows referencing an object element in a remote XML
document (or GML object repository) using the gml:identifier property of that object (Cox 2006). The
XPath-XLink approach provides a general reference to a real-world object by its "major ID" and does

76http://www.w3.org/TR/xpath20/

64 4 Modelling Slower Changes

not take into account a specific version. This approach allows selecting multiple instances with the
same gml:identifier value, but with a different gml:id. For example, by using a single XPath-XLink
query, the user can retrieve multiple versions of the CityGML building parts within the same version
of the building. However, the application must determine which specific version of the real world
object representation should be used. The attributes creationDate, terminationDate, validFrom, and
validTo can then be used to choose the appropriate version that was valid at a specific database or real-
world time, respectively. Additionally, referencing the "major ID" attribute using the XPath-XLink
mechanism also resolves the versioning of aggregated features. An illustration example for managing
such versions is given in section 4.3.

0..1<<FeatureType>>
VersionableAbstractFeature

+ creationDate: DateTime[0..1]
+ terminationDate: DateTime[0..1]
+ validFrom: DateTime[0..1]
+ validTo: DateTime[0..1]

* *

+cityObjectMember
<<Property>>

<<FeatureType>>
Version

+ tag: CharacterString[0..]
0..*

0..*

+versionMember

<<FeatureType>>
VersionTransition

+ reason: CharacterString[0..1]
+ clonePredecessor: Boolean
+ type: TransitionValue[0..1]

<<dataType>>
Transaction

+ type: TransactionValue

0..*
+transaction

<<Property>>

<<enumeration>>
TransitionValue

planned
realized
historical succession
fork
merge

<<FeatureType>>
Core::CityModel

<<FeatureType>>
Core::AbstractCityObject

+ relativeToTerrain: RelativeToTerrainType[0..1]
+ relativeToWater: RelativeToWaterType[0..1]

0..1

0..1

+newfeature
<<Version>>

+oldfeature
<<Version>>

<<enumeration>>
TransactionValue

insert
delete
replace

<<type>>
gmlBase::AbstractGML

+ description: CharacterString[0..1]
+ descriptionReference: URI[0..1]
+ name: GenericName[0..*]
+ identifier: ScopedName[0..1]

<<FeatureType>>
feature::AbstractFeature

+ boundedBy: GM_Envelope[0..1]

0..1

0..1

+from
<<Property>>

+to
<<Property>>

Figure 4.8: Introduction of the new VersionTransition feature.

4.2.3 Version Transitions

To represent each transition, they are modelled as a separate feature type named VersionTransition
(Figure 4.8). The class contains the following attributes:
• reason reflecting the reason for the change in version. The reason can be defined as a CharacterString

and acts as a metadata information about the specific transition. The authorities/users can document
here the reason for making the edits in the respective version of the city model.

4.2 Modelling the Versioning concept within the CityGML standard 65

• clonePredecessor is of type Boolean and accepts values in the form of "true" or "false". If it is "true",
it means that all features from the predecessor version are also member of the successor version. Only
those features, for which there are additional transactions associated with the VersionTransition, will
be modified. If this attribute is "false", it means that the set of members of the predecessor version
is not copied and that the successor version only will contain those features, that are explicitly
enumerated by their versionMember associations. The advantage is that with the help of the
clonePredecessor attribute, we can choose whether the members of the successor version are to be
modified from the predecessor version just by some incremental changes, i.e. the transactions. Or if,
for the successor version, every member instance will be explicitly enumerated. If clonePredecessor
is "false", it does not make sense to have transactions listed for that VersionTransition.

• type indicating what is the type of this transition. As shown in figure 4.3, there may be different types
of transitions depending on the requirement of the specific users or authorities. The new model lists
different possible types of transitions in the enumeration TransitionValue. It accepts the values as (i)
planned indicating the alternative plans suggested or to be included in the versions, (ii) realized
indicates the realization of the suggestions after the planning stage, (iii) historicalSuccession
indicates the changes or modifications in the city objects as a succession of the previous version
allowing to represent historical city developments, (iv) fork indicates the forking or creating a new
sub-branch from the main trunk by the user to perform the required modifications, and (v) merge
indicates the merging of the branches in the main truck to form the final version.

Each VersionTransition is associated to two specific Versions by the associations from and to. This
association allows mapping the relationship between versions within a transition. For each Version-
Transition, the transaction type can be defined by using the DataType Transaction. The Transaction
type allows determining the type of changes within the features. The attribute type is enumeration
TransactionValue and accepts values as (i) insert indicating addition of new features, (ii) delete
indicating removal of existing features, and (iii) replace indicating modifications of existing features.
The Transaction type also defines mapping to the affected features by associations oldFeature and
newFeature. Versions and their respective transitions form non-cyclic directed graphs.

The main advantage with VersionTransition is that this approach requires low memory and storage
requirements. It is similar to the combination of full back-ups and incremental back-ups. Incremental
back-ups are the back-ups of all the changes since the last full or incremental back-up. The defined
attributes within the class VersionTransition allow changes to be expressed incrementally. That means,
it is possible to determine the exact changes since the previous version. It helps avoiding creating, and
further managing, a complete new version if only parts of a city model or parts of a complex object,
like a building or roads, are updated.

4.2.4 Complete UML Model of the Versioning concept

Based on the developments of individual feature types, the new Versioning concept is presented in this
thesis work as shown in figure 4.9. Classes shown in green and yellow are from GML and CityGML
respectively. Classes shown in orange are newly introduced classes of the Versioning concept. The
Versioning concept has been developed for the next version of the CityGML standard (version 3.0)
and has been proposed to the OGC CityGML Standard Working Group for its adoption. However, the
proposed concept can also be implemented as a CityGML Application Domain Extension (ADE) by
using the "hook" mechanism (Gröger et al. 2012). It would allow Versions and Version Transitions to
be used with the current version of the CityGML standard (version 2.0).

66 4 Modelling Slower Changes

0..1<<FeatureType>>
VersionableAbstractFeature

+ creationDate: DateTime[0..1]
+ terminationDate: DateTime[0..1]
+ validFrom: DateTime[0..1]
+ validTo: DateTime[0..1]

* *

+cityObjectMember
<<Property>>

<<FeatureType>>
Version

+ tag: CharacterString[0..]
0..*

0..*

+versionMember

<<FeatureType>>
VersionTransition

+ reason: CharacterString[0..1]
+ clonePredecessor: Boolean
+ type: TransitionValue[0..1]

<<dataType>>
Transaction

+ type: TransactionValue

0..*
+transaction

<<Property>>

<<enumeration>>
TransitionValue

planned
realized
historical succession
fork
merge

<<FeatureType>>
Core::CityModel

<<FeatureType>>
Core::AbstractCityObject

+ relativeToTerrain: RelativeToTerrainType[0..1]
+ relativeToWater: RelativeToWaterType[0..1]

0..1

0..1

+newfeature
<<Version>>

+oldfeature
<<Version>>

<<enumeration>>
TransactionValue

insert
delete
replace

<<type>>
gmlBase::AbstractGML

+ description: CharacterString[0..1]
+ descriptionReference: URI[0..1]
+ name: GenericName[0..*]
+ identifier: ScopedName[0..1]

<<FeatureType>>
feature::AbstractFeature

+ boundedBy: GM_Envelope[0..1]

0..1

0..1

+from
<<Property>>

+to
<<Property>>

Figure 4.9: Complete UML model of the CityGML Versioning concept. Classes shown in green and
yellow are from GML and CityGML respectively. Classes shown in orange are newly
introduced classes of the Versioning concept.

4.3 Illustration of the Concept
This section explains an example scenario for managing different versions using the CityGML
Versioning concept. Figure 4.10 shows a simple scenario where a building undergoes changes at
different points in times. At time "t1", the building has function property as "Office" and roofType as
"Flat". At time "t2", the office property changes to residential property and hence, the function of the
building changes to "Living". At time "t3", it is observed that the building exists at the same location;
however, after a significant renovation, the roof structure has changed. Hence, the roofType property
changes to "Saddle" at the time "t3". Thus, the city object within a city model can be represented as
version V1 at the time "t1", version V2 at the time "t2", and version V3 at the time "t3".

4.3.1 Using new CityGML identifiers

Listing 4.1 shows an example representing city objects of different versions using the combination of
"major ID" and "minor ID" in a single CityGML instance dataset. As shown in figure 4.10, the Building
object can be defined with a "major ID" B1020. This identifier is stable and is valid for all the different

4.3 Illustration of the Concept 67

Building : B1020

function = ‘Living‘

BuildingPart : BP12

roofType = ‘Saddle‘

Building : B1020

function = ‘Office‘

BuildingPart : BP12

roofType = ‘Flat‘

Version 1

02-Aug-2017

Time (t2)Time (t1) Time (t3)

Timeline

Version 2

10-Oct-2018

Version 3

04-Jun-2019

Figure 4.10: An instance example of versions representing modifications of a building.

versions. This Building object has a BuildingPart object for its roof structure. The BuildingPart object
is defined with the "major ID" BP12. For specific versions, the "minor ID" is associated to the "major
ID" which can be considered as gml:id for the specific versions. As shown in the below listing, in
version 1, the gml:id of the Building object is "B1020_version1" with function attribute defined as
"Office". Similarly, the BuildingPart object has gml:id "BP12_version1" with roofType attribute as
"Flat". In the similar ways, in version 2, the Building object as gml:id as "B1020_version2" where the
function attribute changes to "Living". However, in version 2, there was no change in the BuildingPart
object which changed in version 3. Hence, there is no BuildingPart object associated with the minor
ID version 2. Please note that each Building object contains a link to the respective BuildingPart object
using a single XPath-XLink query. In this listing, it is represented as "//identifier[text()=’BP12’]".
In this XPath-Xlink query, the expression "//identifier" allows selecting nodes in the document from
the current node that match the selection identifier no matter where they are. Further, the expression
"[text()=’BP12’]" allows querying the identifier node whose value string matches with ’BP12’. In this
way, this XPath-XLink query allows selecting multiple instances of the same "major ID" (’BP12’ in
this case) and hence, "minor ID" is not associated with "major ID" in such queries. The applications
can determine which specific version of the real world object representation should be used. The
attributes creationDate, terminationDate, validFrom, and validTo can also be used to choose the
appropriate version that was valid at a specific database or real world time, respectively.

68 4 Modelling Slower Changes

Listing 4.1: Representation of multiple object versions within one single CityGML dataset

<!-- XML namespaces have been omitted in this listing -->
<cityObjectMember>
<Building gml:id="B1020_version1">
<identifier>B1020</identifier>
<consistsOfBuildingPart>
<BuildingPart xlink:href="//identifier[text()=’BP12’]"/>

</consistsOfBuildingPart>
<creationDate>2017-08-02</creationDate>
<terminationDate>2018-10-10</terminationDate>
<function>Office</function>

</Building>
</cityObjectMember>
<cityObjectMember>
<Building gml:id="B1020_version2">
<identifier>B1020</identifier>
<consistsOfBuildingPart>
<BuildingPart xlink:href="//identifier[text()=’BP12’]"/>

</consistsOfBuildingPart>
<creationDate>2018-10-10</creationDate>
<function>Living</function>

</Building>
</cityObjectMember>
<cityObjectMember>
<BuildingPart gml:id="BP12_version1">
<identifier>BP12</identifier>
<creationDate>2017-08-02</creationDate>
<terminationDate>2019-06-04</terminationDate>
<roofType>Flat</roofType>

</BuildingPart>
</cityObjectMember>
<cityObjectMember>
<BuildingPart gml:id="BP12_version3">
<identifier>BP12</identifier>
<creationDate>2019-06-04</creationDate>
<roofType>Saddle</roofType>

</BuildingPart>
</cityObjectMember>

4.3.2 Using Version and Version Transitions

In the above illustration (as shown in figure 4.10), it is also possible to manage different versions
and version transitions within a single CityGML document. For the same Building and BuildingPart
objects, the Version and VersionTransitions can be represented as shown in listing 4.2.

4.3 Illustration of the Concept 69

Listing 4.2: Representation of version transitions within one single CityGML dataset. This listing
extends Listing 4.1.

<!-- XML namespaces have been omitted in this listing -->
<cityObjectMember>
<ver:Version gml:id="version1">
<ver:tag>Developed by Worker A</ver:tag>
<ver:versionMember>
<bldg:Building xlink:href="//identifier[text()=’B1020’]"/>
</ver:versionMember>
</ver:Version>
</cityObjectMember>
<cityObjectMember>
<ver:Version gml:id="version2">
<ver:tag>Developed by Worker A</ver:tag>
<ver:versionMember>
<bldg:Building xlink:href="//identifier[text()=’B1020’]"/>
</ver:versionMember>
</ver:Version>
</cityObjectMember>
<cityObjectMember>
<ver:Version gml:id="version3">
<ver:tag>Developed by Worker A</ver:tag>
<ver:versionMember>
<bldg:Building xlink:href="//identifier[text()=’B1020’]"/>
</ver:versionMember>
</ver:Version>
</cityObjectMember>
<cityObjectMember>
<ver:VersionTransition gml:id="transition1">
<ver:reason>Change of Building Function</ver:reason>
<ver:clonePredecessor>true</ver:clonePredecessor>
<ver:type>historicalSuccession</ver:type>
<ver:from xlink:href="#version1"/>
<ver:to xlink:href="#version2"/>
<ver:transaction>
<ver:Transaction>
<ver:type>replace</ver:type>
<ver:oldFeature xlink:href="#B1020_version1"/>
<ver:newFeature xlink:href="#B1020_version2"/>
</ver:Transaction>
</ver:transaction>
</ver:VersionTransition>
</cityObjectMember>
<cityObjectMember>
<ver:VersionTransition gml:id="transition2">

70 4 Modelling Slower Changes

<ver:reason>Change of Building Part</ver:reason>
<ver:clonePredecessor>true</ver:clonePredecessor>
<ver:type>historicalSuccession</ver:type>
<ver:from xlink:href="#version2"/>
<ver:to xlink:href="#version3"/>
<ver:transaction>
<ver:Transaction>
<ver:type>replace</ver:type>
<ver:oldFeature xlink:href="#BP12_version1"/>
<ver:newFeature xlink:href="#BP12_version3"/>
</ver:Transaction>
</ver:transaction>
</ver:VersionTransition>
</cityObjectMember>
<!-- Building and BuildingPart features from Listing 4.1
are to be added here -->

This listing shows different Versions and VersionTransitions represented within a single CityGML
dataset. Each Version is defined using a specific gml:id, e.g Version1. By using the tag attribute, we
can define a user-defined tag, for example, version developed by a specific worker or department.
Each Version includes a specific VersionMember, which refers to the specific versions of the Building
object B1020 in this case. The VersionTransition is also defined with a specific gml:id and includes
the appropriate values for the required attributes, for example, reason, clonePredecessor, and type of
the transitions as mentioned in the listing. In our example, first transition is defined with the gml:id
transition1 and changes from version1 to version2 as defined within the fields from and to. Each
transition has a specific transaction. In the case of transition1, the function value of the Building object
is changed. Hence, the transition takes place from the feature B1020_version1 to B1020_version2,
which is defined within the fields oldFeature and newFeature. The attributes for transition2 are defined
in the similar ways.

4.4 Discussions

This chapter presents a novel versioning concept supporting the management of historic versions [R6]
and alternative versions [R7] within CityGML. The advantage of this approach is that it not only
facilitates the data model for supporting different versions but also allows the different versions to
be used in an interoperable exchange format and the exchange of all versions of a repository within
one dataset. Such a dataset can be used by different software systems to visualise and work with all
the versions. The approach not only addresses the implementation of versionable CityGML models
but also considers new aspects to previous work, such as managing multiple histories or multiple
interpretations of the past of a city. The UML model of the Versioning concept handles versions and
version transitions as feature types, which allows the version management to be handled entirely using
the OGC Web Feature Service. No extension of other OGC standards is required. The Versioning
concept has already been adopted and further extended in the research work by (Samuel et al. 2018).

The concept already addresses the possibility that every feature of CityGML can be made version-
able. However, in the future, it might also be required to make individual geometry objects within

4.4 Discussions 71

city models versionable. It is possible to introduce the versioning of objects at a higher level in
the class hierarchy of GML just below AbstractObject. In this way, every object of CityGML (and
of GML in general) would become versionable. However, this would require changes in the GML
specification, which is out of the scope of the OGC CityGML standards working group (CityGML
SWG). In the presented form, the concept is entirely modelled within the framework of the CityGML
application schema. The CityGML SWG can standardise it without changing other OGC or ISO
specifications. For implementation, this concept also does not require a database or GIS with specific
version management capabilities.

As mentioned earlier in this chapter, the Versioning concept has been developed for the next
version of the CityGML standard (version 3.0) and has been proposed to the OGC CityGML Standard
Working Group for its adoption. However, the proposed concept can also be implemented as a
CityGML Application Domain Extension (ADE) by using the "hook" mechanism. It would allow
Versions and Version Transitions to be used with the current version of the CityGML standard (version
2.0).

Chapter 5

Modelling Highly Dynamic Changes

This chapter focuses on changes that represent high frequent or dynamic variations of the object
properties. Such variations may be related to (i) thematic attributes such as changes of physical
quantities (energy demands, temperature, solar irradiation levels), (ii) spatial properties such as change
of a feature’s position (moving objects), and (iii) appearances such as building textures or colours. In
this case, only some of the properties of otherwise static objects need to represent such time-varying
values. This chapter presents a new concept called "Dynamizer", which allows extending static 3D
city models by supporting variations of individual feature properties and associations over time. The
Dynamizer concept fulfils the requirements [R1-R5]. It provides a data structure to represent dynamic
values in different and generic ways. Such dynamic values may be given by tabulation of time/value
pairs; patterns of time/value pairs; by referencing an external file; or by retrieving observations from
sensor and IoT devices. In principle, Dynamizers inject dynamic variations of city object properties
into the static representation. These variations are supported for thematic, geometry, and appearance
properties of city objects. The conceptual details of Dynamizer represented by the UML model of the
CityGML standard are presented in this chapter.

Some of the discussions in this chapter have been presented in the published papers

Chaturvedi, K. and Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report - OGC Doc. No. 16-
098. Tech. rep. Open Geospatial Consortium. URL: http://docs.opengeospatial.org/per/16-098.html
Chaturvedi, K., Willenborg, B., Sindram, M. and Kolbe, T. H. (2017). ‘Solar Potential Analysis
and Integration of the Time-dependent Simulation Results for Semantic 3D City Models using
Dynamizers’. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences IV-4/W5, pp. 25–32. URL: https://doi.org/10.5194/isprs-annals-IV-4-W5-25-2017
Chaturvedi, K. and Kolbe, T. H. (2016). ‘Integrating Dynamic Data and Sensors with Semantic
3D City Models in the context of Smart Cities’. In: ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences IV-2/W1, pp. 31–38. URL: https://doi.org/10.5194/
isprs-annals-IV-2-W1-31-2016
Chaturvedi, K. and Kolbe, T. H. (2015). ‘Dynamizers - Modeling and Implementing Dynamic
Properties for Semantic 3D City Models’. In: Eurographics Workshop on Urban Data Modelling
and Visualisation. Ed. by Biljecki, F. and Tourre, V. The Eurographics Association. URL: http:
//dx.doi.org/10.2312/udmv.20151348

http://docs.opengeospatial.org/per/16-098.html
https://doi.org/10.5194/isprs-annals-IV-4-W5-25-2017
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
http://dx.doi.org/10.2312/udmv.20151348
http://dx.doi.org/10.2312/udmv.20151348

74 5 Modelling Highly Dynamic Changes

5.1 Making 3D City Models Dynamic

As we learnt in Chapter 3, individual city object properties (such as geometry, topology, semantic, and
appearance) change over time. In many scenarios, these changes are highly dynamic and associated
with only one attribute of city objects. For example, a solar potential simulation generates monthly
irradiation values for a building roof or wall surface, for example named "globalRadMonth". These
monthly values are associated with only one attribute of the building roof surface. Similarly, a Smart
Meter API providing real-time energy consumption readings are associated with only one attribute
of the building object, for example named "electricityConsumption". Most often, these changes are
recorded as a time-series represented by a tabulation of timestamps and property values. However,
such time-series may belong to different data sources; for example, electricity consumption readings of
a building can either be determined from a sensor API or can also be recorded in a CSV file. Similarly,
solar potential simulation results can be stored in a database, and a moving vehicle’s locations can be
mapped in a GPS file. Hence, from the data modelling perspective, the following aspects need to be
considered:
• Representation of time-series data: As the dynamic data may belong to different sources, the

new approach should enable representing the time-series data in different and standardised ways.
The simulation-specific time-series data can be represented in-line with city objects allowing the
exchange of city objects along with accurate description and metadata of the time-series. In some
cases, such simulation results can also be imported in a tabulated file such as CSV. However, in other
scenarios, the frequency of time-series can be very high. For example, an indoor sensor, measuring
air humidity every 30 seconds inside the living room of a building, produces a considerable amount
of observations. It can be cumbersome for the 3D city model management systems. Moreover, the
sensor and IoT standardised solutions such as OGC SensorThings API (Liang et al. 2015) and OGC
Sensor Observation Service (Bröring et al. 2012) already provide sophisticated data models and
management solutions for representing, storing, and querying sensor metadata and raw observations.
In such cases, it is not required to represent such huge time-series observations in-line with city
objects. However, an explicit link from the city object property to the sensor API would be more
efficient. This approach would allow defining a connection of the city object to the physical sensor
device, which is associated with the respective city object. At the same time, this link would also
make a connection to the city object property, which is being measured by the sensor device and the
sensor API querying the raw observations for the respective city object property.

• Overriding the specific property values: The dynamic values are associated with a specific object
property of a city feature. Therefore, the data model should allow referring to that particular property
whose value can be then overridden by the dynamic value specified by the sources as mentioned
earlier. For example, a building can have multiple thematic attributes such as an address, owner,
number of floors, building height etc. These attributes are mostly static. However, if a new attribute
electricity_consumption is defined for the same building and the real-time measurements of this
attribute are obtained from a sensor device installed in the building, that would make this attribute
dynamic. An energy application may require to perform temporal queries based on the attribute
electricity_consumption of the building. For example, "computing the total electricity consumption
of the building between 6 pm and 7 pm on a specific day" , "comparing the energy levels between
weekdays and weekends", "notifying the building owner if the energy consumption breaches a
specified threshold value", and so on. Such queries would require that the attribute values of the
building property "electricityConsumption" can be overridden by the time-series data obtained from
its source. Hence, from the modelling perspective, only dynamic attributes would be changed by

5.2 Modelling the Dynamizer concept within the CityGML standard 75

this approach, while the static attributes would remain unaffected. In that way, there would be no
need to make the entire model dynamic (c.f. section 5.2).

• Periodic and repetitive patterns: As highlighted in section 2.1.2.2, the dynamic data are often
provided by a means for the tabulation of measured data. However, it is not sufficient in many
applications as they may require patterns to represent dynamic variations of properties based on
statistics and general rules. For example, energy applications can be used to study patterns in the
energy consumption of a building for weekdays, weekends, public holidays, or even customised
period (e.g. between 6 pm and 10 pm). In these cases, time may be defined for a non-specific year
(e.g. averages over many years), but still classified by the relative time of a year. For example,
January monthly summaries for the energy consumption of a building might be described as ”all-
Januaries 2001-2010”. Similarly, the energy consumption values may reflect generic patterns for
individual weekdays/weekends in a week or a month. Another example scenario may also be
determining patterns for specific seasons (such as spring, summer, autumn and winter) over ten
years. In different simulations, such time-series can also be used as a basis for defining schedules.
For example, schedules in the energy simulations may be required for specifying setpoint values
for the heating and cooling systems, or for setting the operational schedules of energy systems,
ventilation, lighting, and electrical appliances. Similarly, in the cases of traffic analysis, a public bus
line following a schedule can also have a repeating trajectory. Hence, the new data model should
represent complex patterns that could be based on statistics and general rules. A working example
is demonstrated in section 5.3.3.
Based on the outlined requirements, the Dynamizer concept has been developed as a part of this

thesis work. This concept allows modelling and integrating dynamic properties within semantic 3D
city models.

As shown in figure 5.1, Dynamizer serves three main purposes:
1. Dynamizer is a data structure to represent dynamic values in different and generic ways. Such

dynamic values may be given by tabulation of time/value pairs; patterns of time/value pairs;
by referencing an external file. These values can be obtained from sensors, simulation specific
databases, and also external tabulated files such as CSV or Excel sheets.

2. Dynamizer delivers a method to enhance static city models by dynamic property values. It refer-
ences a specific property (e.g. spatial, thematic or appearance properties) of an object within a 3D
city model providing dynamic values overriding the static value of the referenced object attribute.

3. Dynamizer objects establish explicit links between sensor/observation data and the respective
properties of city model objects that are measured by them. By making such explicit links with
city object properties, the semantics of sensor data become implicitly defined by the city model.
In this way, Dynamizer can be used to inject dynamic variations of city object properties into an

otherwise static representation. The advantage of using such an approach is that it allows only selected
properties of city models to be made dynamic. If an application does not support dynamic data, it
simply does not include these particular types of features.

5.2 Modelling the Dynamizer concept within the CityGML standard
The following sub-sections describe the development of the UML model of a Dynamizer based
on the gathered requirements. Similar to the Versioning concept, the Dynamizer concept has been
developed for the next version of the CityGML standard (version 3.0) and has been proposed to the
OGC CityGML Standard Working Group for its adoption. However, the proposed concept can also be
implemented as a CityGML Application Domain Extension (ADE) by using the "hook" mechanism

76 5 Modelling Highly Dynamic Changes

Figure 5.1: Conceptual illustration of CityGML Dynamizers. This concept allows (i) the representa-
tion of time-variant values from sensors, simulation specific databases, and external files
and (ii) enhancing the properties of city objects by overriding their static values.

(Gröger et al. 2012). It allows Dynamizer to be used with the current version of the CityGML standard
(version 2.0).

5.2.1 Dynamizer - a new Feature Type

CityGML 2.0 is based on the Geography Mark-up Language (GML) version 3.1.1 and CityGML 3.0
will be based on the version GML 3.2. GML 3.2 already allows expressing temporal developments of
the features using the so-called history property. The history property of a dynamic feature contains a
sequence of time slices, which captures the evolution of a feature over time. Since CityGML is based
on GML, this functionality becomes the obvious choice to include dynamic features in CityGML.
However, this would require that we redefine the property data types of all features to use the GML
dynamic data mechanism. That would result in a total replacement of the existing CityGML data
model. The GML dynamic data schema would have to be generally supported by all systems, even

5.2 Modelling the Dynamizer concept within the CityGML standard 77

if none or only very few attributes had time-varying properties. Moreover, GML has no support for
representing repetitive patterns.

Hence, Dynamizer is defined as a new FeatureType which is a sub-class of the GML AbstractFeature.
In addition, AbstractCityObject has an additional association dynamizer to the Dynamizer FeatureType.
This allows all city objects such as buildings, roads, vegetation, etc. to include their Dynamizer features
either in-line or as links to their respective dynamizer features (see Figure 5.2).

<<FeatureType>>
feature::AbstractFeature

+ boundedBy: GM_Envelope[0..1]

<<FeatureType>>
Core::AbstractCityObject

+ relativeToTerrain: RelativeToTerrainType[0..1]
+ relativeToWater: RelativeToWaterType[0..1]

<<FeatureType>>
AbstractDynamizer

<<FeatureType>>
Dynamizer

+ attributeRef: CharacterString
+ startTime: TM_Position[0..1]
+ endTime: TM_Position[0..1]

+dynamizer

+sensorConnection

*

0..1+dynamicData

+sensorLocation

0..*

0..1

0..1

<<FeatureType>>
CompositeTimeseries

0..*

<<DataType>>
SensorConnection

<<FeatureType>>
AbstractTimeseries

<<FeatureType>>
AtomicTimeseries

Figure 5.2: Dynamizer modelled as a new FeatureType.

The class Dynamizer consists of three attributes: (i) attributeRef, (ii) startTime, and (iii) endTime.
attributeRef refers to a specific property of a static CityGML feature which value will then be
overridden or replaced by the (dynamic) values specified in the Dynamizer feature. In this way,
attributeRef allows referring to the city object’s very specific property which can be related to its
geometry, semantics, or even appearances and overriding its values without affecting other static
properties. The reference to the specific attribute of a city object is provided by XPath77, which is a

77https://www.w3.org/TR/xpath-30/

78 5 Modelling Highly Dynamic Changes

W3C recommendation used to navigate through the elements and attributes within an XML document.
startTime and endTime are absolute time points denoting the time span for which the Dynamizer
provides dynamic values. The time points are modelled as TM_Position defined by the standard
ISO 1910878, and are referenced to a specific time reference system (e.g. Gregorian Calendar). For
implementation purposes, it is a good practice to treat startTime and endTime using the Half-Open
Interval79 approach where the startTime is inclusive and the endTime is exclusive. For example, in order
to define a range of one calendar year, the startTime may be assigned as "2017-01-01T00:00:00" and
endTime may be assigned as "2018-01-01T00:00:00". The Half-Open approach includes the entirety of
2017-01-01, but excludes 2018-01-01. For date-time with a fractional second, this approach eliminates
the problem of trying to capture last moment as various systems may use various granularities such as
milliseconds, microseconds, or nanoseconds. With the Half-Open approach, a day, for example, starts
at the first moment of the day and runs up to, but does not include, the first moment of the following
day. It is also true for other granularities. For example, a week starting on a Monday runs up to, but
does not include, the following Monday. A month starts on the 1st and runs up to, but does not include,
the first of the following month thereby ignoring the challenge of determining the number of the last
day of the month, which may also be the February 29th in a Leap Year.

Dynamizer allows representing dynamic data in the following two ways:
• Direct links from city object properties to their respective sensor data: One option is to establish

direct links to a sensor or IoT API measuring the required dynamic data using the DataType
SensorConnection (c.f. section 5.2.2). SensorConnection allows defining the connection parameters
to a specific API using its well-defined properties. In this way, Dynamizer establishes a direct link
to a specific property measured by a sensor API. At the same time, using the attibuteRef attribute,
Dynamizer overrides the same property defined within the city object. The SensorConnection also
provides a direct association sensorLocation to the AbstractCityObject. This association allows
specifying to which city object this sensor belongs. For example, a solar panel installed on a building
roof surface could be used as a sensor providing the currently generated electrical power. In this
case, the DataType SensorConnection would not only provide direct links to the sensor description
and observations but also specify the link to the roof surface of the CityGML building object on
which the solar panel is installed.

• Representing time-series in-line with city objects in standardised ways: The second possibility
is to represent a time-series within the Dynamizer Feature. This is modelled as the AbstractTimeser-
ies class. The time-series can be modelled in two ways: AtomicTimeseries (c.f. section 5.2.3)
representing tabulation of timestamps and property values in different and generic ways, and Com-
positeTimeseries (c.f. section 5.2.4) representing repetitive patterns based on statistics and general
rules. Based on the defined time-series values, using the attibuteRef attribute, Dynamizer overrides
the property value defined within the city object.

5.2.2 SensorConnection

The DataType SensorConnection allows defining connection details to arbitrary APIs managing
different kinds of sensor data. These APIs can be open and based on international standards such as
OGC SensorThings API and OGC Sensor Observation Service. The APIs can also be proprietary and
belong to specific companies such as MathWorks Thingspeak, IBM Weather Underground, Microsoft
Azure IoT. The detailed discussion on such APIs is given in section 2.2.1. The SensorConnection type

78https://www.iso.org/standard/26013.html
79https://mathworld.wolfram.com/Interval.html

5.2 Modelling the Dynamizer concept within the CityGML standard 79

provides different attributes for (i) establishing connections to these APIs based on HTTP requests, (ii)
subscribing to a specific data stream using MQTT parameters, and (iii) if required, providing security
parameters depending on different authentication protocols. Hence, this class fulfils the requirements
[R1-R2].

<<CodeList>>
SensorConnectionValue

ogc_sos_2.0, ogc_sta_1.0, mqtt_3.1.1, mqtt_3.1.1_tls,
mqtt_5, mqtt_5_tls, wunderground_1.0, thingspeak_1.0,
opensensors_1.0, twitter_6.0, azure_iot_1.3, aws_iot_1.0

<<DataType>>
SensorConnection

+ connectionType: SensorConnectionValue
+ observationProperty: CharacterString
+ uom: CharacterString[0..1]
+ sensorID: CharacterString[0..1]
+ sensorName: CharacterString[0..1]
+ observationID: CharacterString[0..1]
+ datastreamID: CharacterString[0..1]
+ baseUrl: URI[0..1]
+ authType: AuthenticationValue[0..1]
+ mqttServer: CharacterString[0..1]
+ mqttTopic: CharacterString[0..1]
+ linkToObservation: CharacterString[0..1]
+ linkToSensorDescription: CharacterString[0..1]

<<CodeList>>
AuthenticationValue none, basic, oAuth2, apiKey, accessToken

Figure 5.3: Representation of the data type SensorConnection, allowing to define the details of sensor
based services within the CityGML document.

As shown in figure 5.3, the sensorConnection type includes the following key attributes:

1. connectionType defines the type of the sensor API. The different possibilities of a connection
type are defined within the «CodeList» SensorConnectionValue such as OGC Sensor Observation
Service, OGC SensorThings API, MQTT v3.1.1 and so on.

2. observationProperty defines the name of property which is being measured by the specific API and
which the Dynamizer refers. For example, a weather station API usually measures temperature,
humidity, wind speed, humidity, and precipitation. Similarly, a Smart Meter installed in a building
may record electricity or gas consumption of the building.

80 5 Modelling Highly Dynamic Changes

3. uom is the unit of measurement specified in the API for the defined observed property. For example,
the unit of measurement of temperature is Celsius, relative humidity is Percentage, electricity
consumption is kWh, and so on.

4. sensorID is the unique identifier of the sensor device registered at the specific API. In some cases,
this identifier can be defined by a unique number or a digit. In other cases, it can also be defined as
a string value. Hence, the data type of this attribute is CharacterString.

5. sensorName is the name of the sensor device registered with the web service. Some standards
(such as OGC Sensor Observation Service) allow querying the observations based on the sensor
name.

6. datastreamID is the unique identifier of the datastream. The term Datastream is defined as a
collection of observations measuring the same observed property and produced by the same sensor.
For example, an indoor sensor installed in a living room of a building measuring the properties
temperature and humidity of the room involves two datastreams for temperature and humidity
having a unique identifier for each datastream.

7. observationID is the unique identifier for an individual observation within a datastream. Many
APIs also allow querying based on individual observation IDs.

8. baseURL is the resource locator at the root level. Every API request contains a base URL which is
appended by the specific parameters such as sensorID, ObservedProperty, temporal range, and so
on. The baseURL attribute can be defined once and the subsequent parameters can dynamically be
assigned by the users.

9. authType is the type of the authentication protocol. The sensor APIs, most often, involve different
authentication protocols to ensure secure access to trusted users. Dynamizer already provides dif-
ferent possibilities for authentication to the APIs. Basic Authentication80 is a simple authentication
scheme built into the HTTP protocol. The client sends HTTP requests with the Authorisation
header that contains the word ’Basic’ followed by space and a base64-encoded string "user-
name:password". OAuth 2.0 81 is an open standard that allows enabling access delegation from the
resource owner (i.e. user) for a trusted application to access the protected user resources without
disclosing the master credentials. It leverages access tokens for the actual access delegation aspect.
OAuth 2.0 is considered to be state-of-the-art for web and mobile applications and is supported
by numerous big players of Web 2.0 (e.g. Twitter, Google, and Facebook). Many sensors and
IoT APIs have already adopted OAuth 2.0 for authentication. In some cases, APIs also require
an "API Key"82 for accessing its resources. An API Key is a unique identifier or a secret token
given to a user to authenticate and generally defines a set of access rights on the API associated
with it. The key can usually be appended to the API request or can also be defined as the request
header. In some cases, Access Tokens83 are also used, allowing an application to access an API.
The application receives an Access Token after a user successfully authenticates and authorises
access, then passes the Access Token as a credential when it calls the target API. The passed token
informs the API that the bearer of the token has been authorised to access the API and perform
specific actions specified by the scope that was granted during authorisation.

10. mqttServer defines the URL of the server where the MQTT Broker runs. An MQTT broker receives
messages from the clients and then routes the messages to the appropriate destination client.

80https://tools.ietf.org/html/rfc7617
81https://oauth.net/2/
82https://swagger.io/docs/specification/authentication/api-keys/
83https://auth0.com/docs/tokens/access-tokens

5.2 Modelling the Dynamizer concept within the CityGML standard 81

11. mqttTopic is the name of the topic. In MQTT, the word topic refers to an UTF-8 string that the
broker uses to filter messages for each connected client. The topic consists of one or more topic
levels (more details are given in example).

12. linkToObservation represents the complete URL of the operation requesting for the observations
based on the specified parameters.

13. linkToSensorDescription represents the complete URL of the operation requesting for the descrip-
tion and metadata of the sensor or IoT device.
Various illustrations of the class SensorConnection for linking to numerous sensors and IoT

platforms are given in section 5.3.1.

5.2.3 Atomic Timeseries

With Dynamizers, it is possible to enrich any CityGML feature by time-series data. The time-series
can be (i) the result of some simulation (e.g. the computed solar irradiation values on a building
façades over a year, or the traffic density at a road section over a day) and (ii) the input to some
simulation (e.g. the standard load profile for electrical energy consumption). In many scenarios, as
outlined in [R4], such time-series data is required to be represented in-line with city objects allowing
the exchange of city object along with accurate description and metadata of the time-series. As shown
in figure 5.4, Atomic Timeseries of Dynamizer is defined as AbstractAtomicTimeseries and allows 3
different ways to represent time-series: (i) StandardFileTimeseries, (ii) TabulatedFileTimeseries, and
(iii) GenericTimeseries. Each time-series contains common metadata attributes: observedProperty
indicating the name of the property such as monthly_heat_demand and uom indicating the unit of
measurement such as kWh. The additional attributes are firstTimestamp and lastTimestamp representing
the temporal range of the individual time-series. However, these two attributes are part of the class
AbstractTimeseries because these attributes are also useful for CompositeTimeseries (c.f. section
5.2.4). By keeping these attributes on a higher generalisation hierarchy, they will be inherited by both
Atomic and Composite Timeseries.

5.2.3.1 Standard File Timeseries

The StandardFileTimeseries allows representing time-series data utilising the open and international
standards such as OGC TimeseriesML 1.0 (Tomkins and Lowe 2016) and OGC Observations &
Measurements (O&M) (Cox 2013). As already described in section 2.2, TimeseriesML 1.0 is an OGC
standard providing a domain-neutral model for the representation and exchange of time-series data.
The TimeseriesML schema supports two types of encodings. First is the interleaved time-value pair
encoding, whereby the time and value are coupled together, and the coupling explicitly represents
the mapping. The second is the domain-range encoding, where the domain and range are encoded
separately, with a mapping function that allows looking up the range value for a given domain value.
The advantage with this international standard is that it allows defining interpolation and aggregation
types for each point in the time-series. It also helps in mapping missing values or multiple values to
specific time points.

Apart from TimeseriesML, Dynamizers also allow referencing a file encoded with the O&M data.
O&M is a generic information model for describing observations. It is one of the core standards in the
OGC Sensor Web Enablement suite, providing the response model for Sensor Observation Service
(SOS) and SensorThings API. Like TimeseriesML, the O&M standard also allows representing rich
metadata of time-series.

82 5 Modelling Highly Dynamic Changes

<<FeatureType>>
AbstractTimeseries

+ firstTimestamp: TM_Position[0..1]
+ lastTimestamp: TM_Position[0..1]

<<FeatureType>>
AbstractAtomicTimeseries

+ observedProperty: CharacterString
+ uom: CharacterString[0..1]

<<FeatureType>>
TabulatedFileTimeseries

<<FeatureType>>
StandardFileTimeseries

<<FeatureType>>
GenericTimeseries

Figure 5.4: Representation of the feature type AtomicTimeseries, supporting different representations
of time-series in the forms of (i) TabulatedFileTimeseries, (ii) StandardFileTimeseries,
and (iii) GenericTimeseries.

The Atomic Timeseries can be represented by embedding the well-defined OGC standards Timeser-
iesML and O&M. Both the standards provide a comprehensive description and rich metadata for
time-series and individual time points. However, their implementation would require to implement
the entire concepts of these two OGC standards in the context of management systems as well as
visualization applications, which is not practical. Hence, using the class StandardFileTimeseries,
Dynamizers allow linking to an external file that is compliant to one of these standards.

As shown in figure 5.5, the StandardFileTimeseries class includes the following key attributes:
1. fileLocation allows defining the location where the file compliant to OGC standards is located.
2. fileType represents which type of standard is the file compliant to. The different possibilities of a

standard file type are defined within the CodeList StandardFileType such as OGC TimeseriesML
1.0 and OGC O&M 2.0.

3. mimeType indicates the nature and format of the document or file. MIME Type84 (known as
Multipurpose Internet Mail Extensions) allows defining the type of data in a standardised way so
that the applications and software systems know how to handle the data. In general, the MIME-type
consists of a type and a subtype divided by a slash (/) character, for example, the MIME-type
application/pdf indicates that the file type is pdf and the software can launch an application such
as Adobe Reader to open the pdf file. Similarly, the MIME-type text/html indicates that this is an
HTML document, and the application can render it internally without using any external software.

84https://tools.ietf.org/html/rfc6838

5.2 Modelling the Dynamizer concept within the CityGML standard 83

<<FeatureType>>
StandardFileTimeseries

+ fileLocation: URI
+ fileType: StandardFileType
+ mimeType: CharacterString[0..1]

<<CodeList>>
StandardFileType

timeseries_1.0,o&m_2.0

Figure 5.5: Representation of the StandardFileTimeseries class. It allows linking to an external file
that is compliant to OGC TimeseriesML 1.0 or OGC Observations & Measurements
standards.

Since TimeseriesML and O&M provide XML encoding for GML Application Schema, their
MIME-type is application/gml+xml.

5.2.3.2 Tabulated File Timeseries

Dynamizer also supports representing time-series data stored in external tabulated data files such as
CSV, Microsoft Excel, Google spreadsheets etc. Such files are widely used for storing different kinds
of data in a structured way. The TabulatedFileTimeseries class allows linking to files that contain
time-series data in tabular form (Figure 5.6).

The TabulatedFileTimeseries class includes the following key attributes:
1. fileLocation defines the location where the file is located.
2. fileType indicates the type of the file being used. The different possibilities of the file types

are defined using the CodeList TabulatedFileType such as CSV, Microsoft Excel, and Google
Spreadsheet.

3. mimeType indicates the nature and format of the file such as application/csv, application/xls, and
so on.

4. valueType represents the data type of the value in the defined time-series. For example, a time-series
generated by a weather station for temperature recordings is most likely of datatype double, a
time-series from a traffic camera for counting the number of cars at a junction is an integer, and
another time-series retrieved from a moving GPS a point object. The different data types are listed
in the enumeration TimeseriesValueType.

5. numberOfHeaderLines allows defining if there are any header lines present in the file. In general,
the tabulated files comprise a header line defining the names of each of the columns. However, in a
few cases, when a tabulated file is generated from software or an API, the exported file contains
only the values and not the header line. Hence, users can specify the presence of header lines by
defining the appropriate value in the numberOfHeaderLines attribute.

84 5 Modelling Highly Dynamic Changes

<<FeatureType>>
TabulatedFileTimeseries

+ fileLocation: URI
+ fileType: TabulatedFileType
+ mimeType: CharacterString[0..1]
+ valueType: TimeseriesValueType
+ numberOfHeaderLines: Integer[0..1]
+ fieldSeparator: CharacterString
+ decimalSymbol: Character[0..1]
+ idColumnNo: Integer[0..1]
+ idColumnName: CharacterString[0..1]
+ idValue: CharacterString[0..1]
+ timeColumnNo: Integer[0..1]
+ timeColumnName: CharacterString[0..1]
+ valueColumnNo: Integer[0..1]
+ valueColumnName: CharacterString[0..1]

<<enumeration>>
TimeseriesValueType

+ integer
+ double
+ string
+ geometry
+ uri
+ bool
+ implicitGeometry
+ appearance

<<CodeList>>
TabulatedFileType

 csv, xsl,
 google_spreadsheet

Figure 5.6: Representation of the TabulatedFileTimeseries class. It allows linking to an external file
that contain timeseries data in a tabular form.

6. fieldSeparator defines which character is used for field separation. In tabulated files (especially
CSV files), field separators are used to separate individual fields and columns. Most often, the
comma character (’,’) is used for this purpose. However, there might also be other characters, such
as semi-colon (’;’). The type of the field separator character can be defined using the fieldSeparator
attribute, which may help applications and software systems in interpreting the tabulated file
structure correctly.

7. decimalSymbol specifies the symbol used to separate the integer part from the fractional part of
a number written in decimal form. The most commonly used decimal symbols are dot (’.’) and
comma (’,’) characters.

8. idColumnNo indicates the column number specifying the identifier (id) of the city object. One
single tabulated file may store time-series values for multiple city objects, for example, solar
potential simulation’s monthly results for 100 buildings in a district. The idColumnNo attribute
defines which column holds the identifier (e.g. gml_id) of the city object.

9. idColumnName indicates the column name specifying the identifier (id) of the city object. It allows
users the choice to refer to a specific column in a tabulated data file by the name of the column.

10. idValue specifies that only those rows from the file are being selected where the value in the
idColumn matches the specified idValue. It allows, for example, to have a large CSV file that has,
e.g. the solar irradiation values for all thematic surfaces of a city model for each month in a year.
In this case, a Dynamizer can be created for each RoofSurface or WallSurface feature, which all

5.2 Modelling the Dynamizer concept within the CityGML standard 85

refer to the same CSV file, but using a different idValue to select the proper rows from the file for
the respective RoofSurface and WallSurface.

11. timeColumnNo indicates the column number in the file which specifies timestamps.
12. timeColumnName indicates the column name (instead of column number) in the file specifying

timestamps.
13. valueColumnNo indicates the column number which specifies values corresponding to individual

timestamps.
14. valueColumnName indicates the column name (instead of column number) in the file specifying

values corresponding to individual timestamps.
The representation of attributes within the TabulatedFileTimeseries class requires a condition that

details about the time column, value column, and id column are specified. These details may be
provided either by using the column number or column name. However, one of either field must be
provided. This condition can formally be expressed by using the Object Constraint Language (OCL85)
in the data model. OCL is a declarative language for describing rules that apply to UML models. The
constraint can be defined as shown in the listing 5.1.

Listing 5.1: OCL expression for defining that either column number or column name must be provided
for time and value columns

context TabulatedFileTimeseries inv:
(timeColumnNo->notEmpty() or timeColumnName->notEmpty()) and
(valueColumnNo->notEmpty() or valueColumnName->notEmpty()) and
(idValue->notEmpty() implies

idColumnNo->notEmpty() or idColumnName->notEmpty()
)

5.2.3.3 Generic Timeseries

Dynamizer also allows representing time-series data using a basic structure within the GenericTimeser-
ies class. The advantage with GenericTimeseries is that a simple time-series data can be encapsulated
within the city model dataset, making the dataset complete and self-sufficient. Additionally, it avoids
the need for database management systems to store time-series data compliant to the before-mentioned
external standards. However, unlike such external time-series standards, GenericTimeseries is not cap-
able of mapping missing values or multiple values in time-series using interpolation and aggregation
functions. Hence, the intention to use GenericTimeseries is to map simple time-series data.

As shown in figure 5.7, each GenericTimeseries object allows defining individual time points using
the association timeValuePair. The type TimeValuePair defines timestamp and the corresponding
values. Based on the type of the timeseries values defined in the «CodeList» TimeseriesValueType,
values of the following data types can be defined within the Generic Timeseries:
1. intValue defines the values of the type integer. Various scenarios require a time-series dealing with

an integer value, for example, a time-series from a traffic camera for counting the number of cars
at a junction, a time-series representing the number of visitors during a football match in a stadium,
and so on.

85https://www.omg.org/spec/OCL/

86 5 Modelling Highly Dynamic Changes

<<FeatureType>>
GenericTimeseries

+ valueType: TimeseriesValueType

<<enumeration>>
TimeseriesValueType

+ integer
+ double
+ string
+ geometry
+ uri
+ bool
+ implicitGeometry
+ appearance

<<DataType>>
TimeValuePair

+ timestamp: TM_Position
+ intValue: Integer[0..1]
+ doubleValue: Real[0..1]
+ stringValue: CharacterString[0..1]
+ geometryValue: GM_Object[0..1]
+ uriValue: URI[0..1]
+ boolValue: Boolean[0..1]
+ implicitGeometryValue: ImplicitGeometry[0..1]
+ appearanceValue: Appearance[0..1]

1..*+timeValuePair

Figure 5.7: Representation of the GenericTimeseries class. It allows representing basic time-series
and its metadata data in-line with city objects.

2. doubleValue defines the values of the type double. For example, a time-series generated by
a weather station for temperature recordings is likely of type double. Similarly, a time-series
generated by a Smart Meter for gas consumption is of type double.

3. stringValue defines the values of the type string. It enables representing time-series with qualitative
or categorical observations. For example, time-series representing the air quality in a district over a
day by using the categories: (i) Very Good, (ii) Good, (iii) Bad, and (iv) Very Bad.

4. geometryValue defines the values of the type geometry. It allows representing time-series involving
any geometric object such as point, line, polygon, and so on. For example, a time-series retrieved
from the GPS of a moving car involve varying points (coordinates) of the car object.

5. uriValue defines the values of the type uri. Such time-series enable representing variations based on
the results available on a web repository which can be accessed by a web link (URL). For example,
an animation of varying pollutants within a city district over a day may involve a time-series having
timestamps and corresponding links to the raster images visualising the pollutant levels.

6. boolValue defines the values of the type boolean. For example, a time-series for a whole year
indicating whether a football match on a specific day in a stadium is scheduled ("true") or not
scheduled ("false").

7. implicitGeometryValue represents the values of the type ImplicitGeometry of CityGML. In some
scenarios, it is essential to represent objects changing their locations as well as orientation with time,
for example, a moving car turning at junctions. The ImplicitGeometry object allows representing
the shape of a 3D object as well as instancing at an anchor point plus further transformations like

5.2 Modelling the Dynamizer concept within the CityGML standard 87

rotation and scaling using a transformation matrix. The GenericTimeseries class allows overriding
ImplicitGeometry objects over different time intervals.

8. appearanceValue defines the values of the type Appearance of CityGML. CityGML appearances
can be overridden for different time intervals by providing (i) URIs to different texture files within
an Appearance object, or (ii) completely different Appearance objects.

The GenericTimeseries class requires a condition that only one type of time-series can be represented
within a single feature. This condition can formally be expressed by OCL as shown in the listing 5.2.

Listing 5.2: OCL expression for defining that only one type of time-series value can be represented
within a single GenericTimeseries and only one type of encoding is represented by
TimeValuePair

context GenericTimeseries inv:
if valueType = TimeseriesValueType::integer
then timeValuePair->forAll(c|c.intValue->size()=1)
else if valueType=TimeseriesValueType::double
then timeValuePair->forAll(c|c.doubleValue->size()=1)
else if valueType=TimeseriesValueType::string
then timeValuePair->forAll(c|c.stringValue->size()=1)
else if valueType=TimeseriesValueType::geometry
then timeValuePair->forAll(c|c.geometryValue->size()=1)
else if valueType=TimeseriesValueType::uri
then timeValuePair->forAll(c|c.uriValue->size()=1)
else if valueType=TimeseriesValueType::bool
then timeValuePair->forAll(c|c.boolValue->size()=1)
else if valueType=TimeseriesValueType::implicitGeometry
then timeValuePair->forAll(c|c.implicitGeometryValue->size()=1)
else if valueType=TimeseriesValueType::appearance
then timeValuePair->forAll(c|c.appearanceValue->size()=1)
endif

context TimeValuePair inv:
self.intValue->size()+
self.doubleValue->size()+
self.stringValue->size()+
self.geometryValue->size()+
self.uriValue->size()+
self.boolValue->size()+
self.implicitGeometryValue->size()+
self.appearanceValue->size()=1

5.2.4 Composite Timeseries

Dynamizers support absolute start and end time points referencing a specific time reference system.
The absolute time points can be mapped to the attribute values and can be represented as a tabulation

88 5 Modelling Highly Dynamic Changes

of the measured data. One typical example illustrating such a scenario is mapping of the energy
consumption values of a building for every hour in a day. However, in many applications, it is not
sufficient to provide a means for the tabulation of time-value pairs. The applications may require
patterns to represent dynamic variations of properties based on statistics and general rules. In such
scenarios, time cannot be described by absolute positions, but relative to the absolute positions. In
these cases, time may be defined for a non-specific year (e.g., averages over many years), but still
classified by the relative time of a year. For example, January monthly summaries for the energy
consumption of a building might be described as ”all-Januaries 2001-2010”. Similarly, the energy
consumption values may reflect generic patterns for individual weekdays/weekends in a week or a
month. Another example scenario may also be determining patterns for specific seasons (such as
spring, summer, autumn, and winter) over ten years.

+component

<<FeatureType>>
AbstractTimeseries

+ firstTimestamp: TM_Position[0..1]
+ lastTimestamp: TM_Position[0..1]

<<DataType>>
TimeseriesComponent

+ repetitions: Integer
+ additionalGap: TM_Duration[0..1]

<<FeatureType>>
CompositeTimeseries

0..11

1..*

+timeseries

{ordered}

Figure 5.8: Representation of Composite Timeseries, allowing representing patterns of dynamic
variations of properties.

To support such patterns, Dynamizer includes the concept of Composite Timeseries, as shown in
figure 5.8. The CompositeTimeseries class is modelled in such a way that it composes of an ordered
list of AbstractTimeseries. CompositeTimeseries includes a component called component, which
denotes the number of repetitions for a time-series component. repetitions is an integer type which
determines how many times the nested time-series requires to be iterated. For example, to determine
the pattern of a building’s electricity consumption for weekdays, a CompositeTimeseries may include
five repetitions of AtomicTimeseries of a single weekday consumption. It also contains an attribute
additionalGap, which is of type TM_Duration. It allows defining customised patterns by providing
the gaps within the existing time-series. For instance, for an entire monthly time-series of energy
consumption for all days of a week, the gaps can be provided for the weekends to define the patterns
of energy consumption only for the weekdays. Furthermore, this attribute also allows connecting
non-overlapping time-series that have been separately collected to make a single time-series. For
example, if the latest two months of time-series data is transferred from one system to a major archive,
the series must be connected to make a full series over which the patterns can be determined (e.g., to
determine yearly patterns). However, for a CompositeTimeseries, it is necessary to model the time
positions according to a relative time reference system. According to ISO 19108, they may be defined
as TM_OrdinalEras within the TM_OrdinalReferenceSystems. The use of CompositeTimeseries allows

5.2 Modelling the Dynamizer concept within the CityGML standard 89

<<FeatureType>>
feature::AbstractFeature

+ boundedBy: GM_Envelope[0..1]

<<FeatureType>>
Core::AbstractCityObject

+ relativeToTerrain: RelativeToTerrainType[0..1]
+ relativeToWater: RelativeToWaterType[0..1]

<<FeatureType>>
AbstractDynamizer

<<FeatureType>>
Dynamizer

+ attributeRef: CharacterString
+ startTime: TM_Position[0..1]
+ endTime: TM_Position[0..1]

+dynamizer

+sensorConnection

*

0..1+dynamicData

+sensorLocation

<<DataType>>
SensorConnection

+ connectionType: SensorConnectionValue
+ observationProperty: CharacterString
+ uom: CharacterString[0..1]
+ sensorID: CharacterString[0..1]
+ sensorName: CharacterString[0..1]
+ observationID: CharacterString[0..1]
+ datastreamID: CharacterString[0..1]
+ baseUrl: URI[0..1]
+ authType: AuthenticationValue[0..1]
+ mqttServer: CharacterString[0..1]
+ mqttTopic: CharacterString[0..1]
+ linkToObservation: CharacterString[0..1]
+ linkToSensorDescription: CharacterString[0..1]

0..*

0..1

0..1

<<FeatureType>>
AbstractAtomicTimeseries

+ observationProperty: CharacterString
+ uom: CharacterString[0..1]

<<FeatureType>>
CompositeTimeseries

<<DataType>>
TimeseriesComponent

+ repetitions: Integer
+ additionalGap: TM_Duration[0..1]

0..1
1

+timeseries

1..*
+component {ordered}

<<FeatureType>>
StandardFileTimeseries

+ fileLocation: URI
+ fileType: StandardFileType
+ mimeType: CharacterString[0..1]

<<FeatureType>>
TabulatedFileTimeseries

+ fileLocation: URI
+ fileType: TabulatedFileType
+ mimeType: CharacterString[0..1]
+ valueType: TimeseriesValueType
+ numberOfHeaderLines: Integer[0..1]
+ fieldSeparator: CharacterString
+ decimalSymbol: Character[0..1]
+ idColumnNo: Integer[0..1]
+ idColumnName: CharacterString[0..1]
+ idValue: CharacterString[0..1]
+ timeColumnNo: Integer[0..1]
+ timeColumnName: CharacterString[0..1]
+ valueColumnNo: Integer[0..1]
+ valueColumnName: CharacterString[0..1]

<<FeatureType>>
GenericTimeseries

+ valueType: TimeseriesValueType

<<DataType>>
TimeValuePair

+ timestamp: TM_Position
+ intValue: Integer[0..1]
+ doubleValue: Real[0..1]
+ stringValue: CharacterString[0..1]
+ geometryValue: GM_Object[0..1]
+ uriValue: URI[0..1]
+ boolValue: Boolean[0..1]
+ implicitGeometryValue: implcitGeometry[0..1]
+ appearanceValue: Appearance[0..1]

1..*
+timeValuePair

0..*

<<FeatureType>>
AbstractTimeseries

+ firstTimestamp: TM_Position[0..1]
+ lastTimestamp: TM_Position[0..1]

Figure 5.9: Complete UML model of the Dynamizer concept. Newly introduced classes are shown in
orange. Classes shown in green and yellow are from GML and CityGML respectively.
The OCL expressions and Code Lists (mentioned in the respective sub-sections) are not
shown in this figure due to the limited page width.

90 5 Modelling Highly Dynamic Changes

defining local reference systems for the specific use cases. An illustration of the CompositeTimeseries
concept is shown in section 5.3.3.

5.2.5 Complete UML Model of Dynamizer

Based on the developments of individual features, the complete UML class diagram of the Dynamizer
concept is shown in figure 5.9. Classes shown in green and yellow are from GML and CityGML
respectively. The OCL expressions and Code Lists (mentioned in the respective sub-sections) are not
shown in this figure due to the limited page width. The Dynamizer concept has been developed for the
next version of the CityGML standard (version 3.0) and has been proposed to the OGC CityGML
Standard Working Group for its adoption. However, the proposed concept can also be implemented as
the CityGML Application Domain Extension (ADE) by using the "hook" mechanism. It would allow
Dynamizers to be used with the current version of the CityGML standard (version 2.0).

5.3 Illustration of the Concept
This section describes the illustration of different functionalities of the Dynamizer concept based on
the CityGML version 3.0. The following sub-sections show different scenarios for using CityGML
Dynamizers for (i) linking city object properties with their respective sensor data, (ii) representing
timeseries and its metadata in-line with a city object, and (iii) representing repetitive patterns within
CityGML objects.

Building1

Figure 5.10: Dynamizer SensorConnection linking to different sensor platforms.

5.3 Illustration of the Concept 91

5.3.1 Integrating city object properties with real-time sensors

Dynamizer allows integrating city object properties with real-time sensor data streams available at
numerous platforms (figure 5.10). At the same time, it allows overriding the property values based on
the dynamic sensor values. For this purpose, Dynamizer SensorConnection type is used.

5.3.1.1 Example 1: ThingSpeak platform

This example illustrates a scenario in which a room within a building has an indoor sensor DHT2286

installed. This sensor measures air temperature, and humidity for the room and the observations are
available on the ThingSpeak platform (c.f. section 2.2.1). As shown in figure 5.10, this building is
represented as a CityGML object having a unique building id "building1" and the specific room,
where the sensor is located, is defined using a unique id "room1". The object may have several static
attributes such as building function, roof type, address, and so on. However, this room has a generic
attribute named temperature, which is dynamic and changes with time (see listing 5.3). The value of
the temperature attribute is retrieved from the ThingSpeak platform. CityGML Dynamizer can be used
to override the value of the temperature attribute based on the direct queries from the ThingSpeak
platform shown in listing 5.4.

Listing 5.3: Illustration of a CityGML Building object having a generic attribute ’temperature’

<core:cityObjectMember>
<bldg:Building gml:id="building1">
<bldg:buildingRoom>
<bldg:BuildingRoom gml:id="room1">
<core:genericAttribute>
<gen:DoubleAttribute>
<gen:name>temperature</gen:name>
<gen:value>20.2</gen:value>

</gen:DoubleAttribute>
</core:genericAttribute>

</bldg:BuildingRoom>
</bldg:buildingRoom>

</bldg:Building>
</core:cityObjectMember>

An example query to request data from the ThingSpeak platform looks like as follows (the request
is a single line without any linebreak and spaces):

https://thingspeak.com/channels/64242/fields/1.json?start=
2019-10-08T00:00:00Z&end=2019-10-09T00:00:00Z

The request above retrieves all the observations between ’2019-10-08T00:00:00Z’ and ’2019-
10-09T00:00:00Z’ for a specific field ID (’1’) from a registered ThingSpeak channel. ThingSpeak

86https://www.adafruit.com/product/385

92 5 Modelling Highly Dynamic Changes

manages each registered sensor using a unique channel ID (e.g. 64242 in this example). The query
to each channel ID responds with the details of the sensor device as well as available datastreams.
In this case, the datastreams available are temperature and humidity registered with field ID 1 and
2, respectively. Hence, to link the building property to the temperature observation of the specific
ThingSpeak datastream, the Dynamizer is defined as follows:

Listing 5.4: Dynamizer defined within the CityGML 3.0 document having direct links to sensor
observations available at ThingSpeak platform

<bldg:Building gml:id="building1">
<core:dynamizer>
<dyn:Dynamizer gml:id="room1_Dynamizer">
<dyn:attributeRef>

<!--Single line without any linebreak and space-->
//bldg:BuildingRoom[@gml:id=’room1’]/core:genericAttribute
/gen:DoubleAttribute[gen:name=’temperature’]/gen:value

</dyn:attributeRef>
<dyn:startTime>2019-10-08T00:00:00Z</dyn:startTime>
<dyn:endTime>2019-10-09T00:00:00Z</dyn:endTime>
<dyn:sensorConnection>
<dyn:SensorConnection>
<dyn:connectionType>thingspeak_1.0</dyn:connectionType>
<dyn:observationProperty>Temperature</dyn:observationProperty>
<dyn:uom>Celsius</dyn:uom>
<dyn:sensorID>64242</dyn:sensorID>
<dyn:sensorName>DHT22</dyn:sensorName>
<dyn:datastreamID>1</dyn:datastreamID>
<dyn:baseURL>https://thingspeak.com</dyn:baseURL>
<dyn:authType>none</dyn:authType>
<dyn:linkToObservation>

<!--Single line without any linebreak and space-->
%baseURL%/channels/%sensorID%/fields/%datastreamID%.json
?start=%startTime%&end=%endTime%

</dyn:linkToObservation>
<dyn:sensorLocation

xlink:href="#room1"></dyn:sensorLocation>
</dyn:SensorConnection>
</dyn:sensorConnection>
</dyn:Dynamizer>

</core:dynamizer>
<!-- The element <bldg:BuildingRoom>...</bldg:BuildingRoom>
from Listing 5.3 has to be embedded here -->
</bldg:Building>

As shown in listing 5.4, various parameters to link with the ThingSpeak platform can be defined
using the Dynamizer SensorConnection. The listing shows that the Dynamizer "room1_Dynamizer"

5.3 Illustration of the Concept 93

can be defined for the specific room for which the the real-time observations are retrieved from
the ThingSpeak platform. The attributeRef shows an XPath expression, which refers to the specific
generic attribute temperature in the BuildingRoom with the gml:id room1. The generic attribute tem-
perature is dynamic in nature and requires to be overridden by time-depending values retrieved from
the specific ThingSpeak channel. The attributes startTime and endTime represent the entire temporal
extent for the dynamic values. The attributes defined within SensorConnection allow connecting
to an arbitrary ThingSpeak datastream. The connectionType indicates the type of the connection,
which is thingspeak_1.0 in this listing. The values of different types of connections are encoded
in the CodeList SensorConnectionValue as shown in Figure 5.3. As mentioned above, the obser-
vationProperty of our interest in this listing is Temperature, its associated datastreamID is 1, and
the uom is Celsius. The baseURL for all the channels available on the ThingSpeak platform is
https://thingspeak.com. Since the mentioned sensorID is publicly available and requires no authentic-
ation, the attribute authType is mentioned as none. The different types of authentication values are
mentioned in the CodeList AuthenticationValue as shown in Figure 5.3. Furthermore, the attribute
linkToObservation allows the possibility to encode the URL string for establishing direct links to
the observations of the specific datastream. The URL strings are generated using the combination of
the attributes of the Dynamizer SensorConnection class and any other static strings. For example, in
this listing, the dynamic variables are represented as %baseURL%, %sensorID%, %datastreamID%,
%startTime%, and %endTime%. The values of these variables defined in the SensorConnection class
are used in combination with the static strings to generate the complete URL string for the spe-
cific datastream. For example, the attribute substitution in the given listing corresponds to the URL
string "https://thingspeak.com/channels/64242/fields/1?start=2019-10-08T00:00:00Z&end=2019-10-
09T00:00:00Z". The attribute SensorLocation refers to the specific BuildingRoom id room1, indicating
that the sensor from the ThingSpeak channel is located within this specific room.

5.3.1.2 Example 2: OGC SensorThings API

This example illustrates the same building room as shown in listing 5.3 with the same indoor sensor
DHT22 installed in it. This sensor measures air temperature, and humidity for the room. However,
the sensor observations are stored in a FROST Server and, hence, can be queried using the OGC
SensorThings API. More details on OGC SensorThings API are given in section 2.2.1. An example
request using the OGC SensorThings API looks like as follows (the request is a single line without
any linebreak and spaces):

http://127.0.0.1:8080/FROST-Server/v1.0/Datastreams(1)/Observations
?$filter=during(phenomenonTime,2019-04-12T10:00:00.000Z/
2019-04-12T10:30:00.000Z)

The above-mentioned request retrieves all the observations between ’2019-04-12T10:00:00.000Z’
and ’2019-04-12T10:30:00.000Z’ for a specific Datastream ID (’1’) registered at the FROST Server
installed on the machine ’127.0.0.1:8080’. The Datastream ID (’1’) represents the temperature property
in our case. According to the SensorThings API, Observations are always aligned with the Datastreams.
Based on a Datastream ID, all the other properties can be queried, e.g.

http://127.0.0.1:8080/FROST-Server/v1.0/Datastreams(1)/Observations

94 5 Modelling Highly Dynamic Changes

The above-mentioned request allows us retrieving all the Observations associated to the sepe-
cific Datstream ID (’1’). Similarly, the below-mentioned request allows us retrieving the details
of the Sensor associated to the Datastream ID (’1’). Many more possibilities of such queries over
SensorThings API have been presented in detail by (Liang et al. 2015).

http://127.0.0.1:8080/FROST-Server/v1.0/Datastreams(1)/Sensor

Hence, in order to link the building property to the temperature observation available over the
specific FROST Server, the Dynamizer is defined as shown in listing 5.5.

Listing 5.5: CityGML Dynamizer having direct links to sensor observations available at the FROST
Server

<bldg:Building gml:id="building1">
<core:dynamizer>
<dyn:Dynamizer gml:id="room1_Dynamizer">
<dyn:attributeRef>
<!--Single line without any linebreak and space-->
//bldg:BuildingRoom[@gml:id=’room1’]/core:genericAttribute
/gen:DoubleAttribute[gen:name=’temperature’]/gen:value
</dyn:attributeRef>
<dyn:startTime>2019-04-12T10:00:00.000Z</dyn:startTime>
<dyn:endTime>2019-04-12T10:30:00.000Z</dyn:endTime>
<dyn:sensorConnection>
<dyn:SensorConnection>
<dyn:connectionType>ogc_sta_1.0</dyn:connectionType>
<dyn:observationProperty>Temperature</dyn:observationProperty>
<dyn:uom>Celsius</dyn:uom>
<dyn:datastreamID>1</dyn:datastreamID>
<dyn:baseURL>

http://127.0.0.1:8080/FROST-Server/v1.0
</dyn:baseURL>
<dyn:authType>none</dyn:authType>
<dyn:linkToObservation>
<!--Single line without any linebreak and space-->
%baseURL%/Datastreams(%datastreamID%)/Observations?
$filter=during(phenomenonTime,%startTime%/%endTime%)

</dyn:linkToObservation>
<dyn:linkToSensorDescription>
%baseURL%/Datastreams(%datastreamID%)/Sensor

</dyn:linkToSensorDescription>
<dyn:sensorLocation xlink:href="#room1"></dyn:sensorLocation>
</dyn:SensorConnection>
</dyn:sensorConnection>
</dyn:Dynamizer>
</core:dynamizer>

5.3 Illustration of the Concept 95

<!-- The element <bldg:BuildingRoom>...</bldg:BuildingRoom>
from Listing 5.3 has to be embedded here -->

</bldg:Building>

The above-mentioned listing shows how a Dynamizer SensorConnection class can be used to
define parameters to connect to a specific datastream over the FROST Server. The attributeRef refers
to the generic attribute temperature in the BuildingRoom with gml:id room1 as shown in Listing
5.3. The time-depending values for the temperature property are retrieved from the Datastream
ID (’1’) of the before-mentioned FROST Server. Within the class SensorConnection, the required
parameters can be defined. The connectionType in this case is ogc_sta_1.0 representing the OGC
SensorThings API version 1.0. This value is encoded in the CodeList SensorConnectionValue as
shown in Figure 5.3. Similar to Listing 5.4, the observationProperty is Temperature, its associated
datastreamID is 1, and the uom is Celsius. The baseURL for the running FROST Server in this
listing is http://127.0.0.1:8080/FROST-Server/v1.0. It indicates that the FROST Server version
1.0 is running on a machine 127.0.0.1 at port 8080. This base URL may differ for FROST
Servers running on different machines or Cloud environment. Unlike a ThingSpeak channel, it
is not mandatory to mention a Sensor ID to retrieve observations of a specific Datastream. The
Datastream ID is sufficient for this purpose. Hence, in this listing, the Sensor ID is not mentioned.
Since there is no authentication required for accessing the service in this listing, the attribute
authType is mentioned as none. The linkToObservation attribute allows specifying the URL string
with the combination of dynamic variables and static strings in order to retrieve observations
from the specified Datastream. For example, the attribute substitution within the linkToObser-
vation attribute in this listing corresponds to the URL string "http://127.0.0.1:8080/FROST-
Server/v1.0/Datastreams(1)/Observations?$filter=during(phenomenonTime,2019-04-
12T10:00:00.000Z/2019-04-12T10:30:00.000Z)". Similarly, the attribute substitution within the linkTo-
SensorDescription attribute in this listing corresponds to the URL string "http://127.0.0.1:8080/FROST-
Server/v1.0/Datastreams(1)/Sensor". It allows us to retrieve the sensor details corresponding to the
specified Datastream. The attribute sensorLocation refers to the specific BuildingRoom id room1,
indicating that the sensor from the FROST Server is located within this specific room.

5.3.1.3 Example 3: Weather Underground API with authentication

This example illustrates the building shown in listing 5.6. A personal weather station is installed
on top of the building, measuring the weather-related properties (e.g. outside_temperature, relative
humidity, wind speed, etc.). The personal weather station is registered on the Weather Underground
platform (c.f. section 2.2.1) with an identifier "MyPWS1".

Listing 5.6: Illustration of a CityGML RoofSurface object having a generic attribute named ’out-
side_temperature’

<core:cityObjectMember>
<bldg:Building gml:id="building1">
<con:RoofSurface gml:id="building1_roof">
<core:genericAttribute>
<gen:DoubleAttribute>
<gen:name>outside_temperature</gen:name>

96 5 Modelling Highly Dynamic Changes

<gen:value>23.3</gen:value>
</gen:DoubleAttribute>
</core:genericAttribute>
</con:RoofSurface>
</bldg:Building>
</core:cityObjectMember>

An example request to the Weather Underground platform looks like as follows:

http://api.wunderground.com/api/******/conditions/q/pws:MyPWS1.json

Weather Underground API requires a unique API Key for every user allowing to authenticate to a
running sensor ID. The building object has a generic attribute outside_temperature which is dynamic.
To link the generic attribute to the outside_temperature observation from the weather station registered
on the Weather Underground, the Dynamizer is defined as shown in listing 5.7.

Listing 5.7: CityGML Dynamizer having direct links to sensor observations available at the Weather
Underground platform

<bldg:Building gml:id="building1">
<core:dynamizer>
<dyn:Dynamizer gml:id="building1_roof_Dynamizer">
<dyn:attributeRef>
<!--Single line without any linebreak and space-->
//con:RoofSurface[@gml:id=’building1_roof’]/core:genericAttribute
/gen:DoubleAttribute[gen:name=’outside_temperature’]/gen:value
</dyn:attributeRef>
<dyn:startTime>2019-01-01T10:00:00.000Z</dyn:startTime>
<dyn:endTime>2019-02-01T00:00:00.000Z</dyn:endTime>
<dyn:sensorConnection>
<dyn:SensorConnection>
<dyn:connectionType>wunderground_1.0</dyn:connectionType>
<dyn:observationProperty>Temperature</dyn:observationProperty>
<dyn:uom>Celsius</dyn:uom>
<dyn:sensorID>MyPWS1</dyn:sensorID>
<dyn:baseURL>http://api.wunderground.com/api</dyn:baseURL>
<dyn:authType>apiKey</dyn:authType>
<dyn:linkToObservation>
%baseUrl%/%authType%/conditions/q/pws:%sensorID%.json

</dyn:linkToObservation>
<dyn:sensorLocation

xlink:href="#building1_roof"></dyn:sensorLocation>
</dyn:SensorConnection>
</dyn:sensorConnection>

5.3 Illustration of the Concept 97

</dyn:Dynamizer>
</core:dynamizer>
<!-- The element <con:RoofSurface>...</con:RoofSurface>
from Listing 5.6 has to be embedded here -->
</bldg:Building>

The above-mentioned listing shows a Dynamizer SensorConnection class for connecting to the
Weather Underground API for retrieving the observations of the property outside_temperature of
the personal weather station with the identifier "MyPWS1". The attribute attributeRef represents
an XPath expression for referring to the value of the generic attribute outside_temperature of the
RoofSurface with the gml:id building1_roof. The connectionType in this case is wunderground_1.0
(also encoded in the CodeList SensorConnectionValue). The observationProperty is indicated as
Temperature as it is also defined with the same name in the Weather Underground channel. The uom
is Celsius and the SensorID is MyPWS1. The baseURL is http://api.wunderground.com/api. Since the
API requires a unique API Key to connect to the server, the attribute authType is mentioned as apiKey.
This is also indicated in the CodeList AuthenticationValue. The attribute linkToObservation allows
users to specify the attribute values with the help of dynamic variables. For example, the variable
%authType% allows users to assign their secret unique key dynamically without representing it within
the CityGML Dynamizers. With the help of the combination of such dynamic variables and static
strings, the complete URL string can be formed allowing users to provide the attribute values on
request. The attribute sensorLocation refers to the specific RoofSurface id building1_roof, indicating
that the sensor from the Weather Underground API is located on this specific roof surface.

5.3.1.4 Example 4: Subscribing to real-time datatreams using the MQTT protocol

This example illustrates the same building room as shown in listing 5.3 with the same DHT22 sensor
installed in it; however, the observations are available on The Things Network platform (c.f. section
2.2.1). The Things Network supports the MQTT protocol and allows users to subscribe to its data
streams. An example request to connect to the Things Network via MQTT looks like as follows:

Server: eu.thethings.network
Topic: +/devices/tumgis-dragino-shield-with-gps/up/temperature
Username: **********
Password:**********

Here, Server represents the URL of the machine where the server is deployed. MQTT requires
Topic to connect to the individual data stream (in some cases, all the datastreams). The authentication
details are provided as username and password. These details are required as separate attributes by an
MQTT broker and hence, cannot be provided within the single URL. To link the generic attribute to
the temperature observation using MQTT, the Dynamizer is defined as shown in listing 5.8.

98 5 Modelling Highly Dynamic Changes

Listing 5.8: CityGML Dynamizer subscribing to a sensor data stream using the MQTT protocol

<bldg:Building gml:id="building1">
<core:dynamizer>
<dyn:Dynamizer gml:id="room1_Dynamizer">
<dyn:attributeRef>
<!--Single line without any linebreak and space-->
//bldg:BuildingRoom[@gml:id=’room1’]/core:genericAttribute
/gen:DoubleAttribute[gen:name=’temperature’]/gen:value
</dyn:attributeRef>
<dyn:startTime>2019-01-01T00:00:00.000Z</dyn:startTime>
<dyn:endTime>2020-01-01T00:00:00.000Z</dyn:endTime>
<dyn:sensorConnection>
<dyn:SensorConnection>
<dyn:connectionType>mqtt_3.1.1</dyn:connectionType>
<dyn:observationProperty>Temperature</dyn:observationProperty>
<dyn:uom>Celsius</dyn:uom>
<dyn:authType>basic</dyn:authType>
<dyn:mqttServer>eu.thethings.network</dyn:mqttServer>
<dyn:mqttTopic>
+/devices/tumgis-dragino-shield-with-gps/up/temperature

</dyn:mqttTopic>
<dyn:sensorLocation xlink:href="#room1"></dyn:sensorLocation>
</dyn:SensorConnection>
</dyn:sensorConnection>
</dyn:Dynamizer>

</core:dynamizer>
<!-- The element <bldg:BuildingRoom>...</bldg:BuildingRoom>
from Listing 5.3 has to be embedded here -->
</bldg:Building>

The above-mentioned listing shows a Dynamizer SensorConnection class for connecting to an
MQTT Server subscribing to the observations of the property temperature available over The Things
Network. The attribute attributeRef represents an XPath expression for referring to the value of the
generic attribute temperature of the BuildingRoom with the gml:id room1. The connectionType in this
case is mqtt_3.1.1 (also encoded in the CodeList SensorConnectionValue). It shows the version of the
MQTT protocol as 3.1.1. The observationProperty is indicated as Temperature and the uom is Celsius.
The attribute authType is indicated as basic, which means that a basic authentication (with a username
and a password) is required to establish this connection. For establishing a connection to an MQTT
Server, the SensorConnection class provides two attributes mqttServer and mqttTopic for providing
the server and topic details respectively. The server and topic names are mentioned before in this
sub-section. The attribute sensorLocation refers to the specific BuildingRoom id room1, indicating
that the time-depending values from the MQTT Topic correspond to this specific room.

5.3 Illustration of the Concept 99

5.3.2 Representing timeseries values in-line within city objects

As discussed in section 2.1.2, most of the simulations involve time-dependent attributes, for example,
monthly values of solar irradiations or energy demand estimations for a building. To perform detailed
realistic simulations, for instance, cross-domain exchanging of simulation results with city objects for
enhancing disaster management or energy assessment, it is essential to model the precise description
of the time-series. The Dynamizer AtomicTimeseries allows time-series data to be exchanged with
appropriate metadata. It enables correct machine interpretation and thus proper use for further analysis.

This section illustrates examples of using Dynamizer AtomicTimeseries for representing time-series
in-line with city objects. For the illustration, the results of the solar potential simulation on building
surfaces are shown. The Solar Potential Analysis Tool developed by the Chair of Geoinformatics,
Technical University of Munich is widely used for assessing and estimating solar energy production
for the roofs and façades of 3D building objects in different ways. The simulation tool operates on the
semantic 3D city models defined according to the CityGML standard (Willenborg et al. 2017). By
combining a transition model, sun position calculation, and an approximation of the skydome, the
solar power from direct, diffuse, and global sunlight irradiation are estimated for individual months
and years.

As shown in listing 5.9, a building wall surface (having an id "building1_wall1") has a generic
attribute named "globalRadMonth" representing the global irradiation value for different months. The
attribute "globalRadMonth" is dynamic in nature and changes its value every month in the simulation
results.

Listing 5.9: Illustration of a CityGML Building WallSurface having a generic attribute to record
monthly solar irradiation value

<con:WallSurface gml:id="building1_wall1">
<core:genericAttribute>
<gen:DoubleAttribute>
<gen:name>globalRadMonth</gen:name>
<gen:value>4293.446</gen:value>

</gen:DoubleAttribute>
</core:genericAttribute>

</con:WallSurface>

The results of the solar potential simulation can be stored in other sources such as an external CSV file
or can also be represented in-line. The following sub-sections show different possibilities of managing
the solar potential simulation results in various data sources as shown in figure 5.11.

5.3.2.1 Example 1: TabulatedFileTimeseries

This example illustrates that the monthly simulation results for the building roof surface are exported
in a CSV file named results.csv. The CSV file includes a header line showing the column names.
The first column is "Surface_ID" mentioning the gml:id of the building surfaces. The second column
is "Time" showing the timestamp for each irradiation value. The timestamp includes year followed
by month digits (YYYY-MM). For example, 2015-01 represents the irradiation value computed for
January 2015. The next column is "Uom" representing the unit of measurement, which is Kilowatt-

100 5 Modelling Highly Dynamic Changes

TimeseriesML

CSV

WallSurface1Building1

Figure 5.11: Representation of time-series in-line using Atomic Timeseries.

hour (kWh) in this example. The next three columns represent the computed Diffuse, Direct, and
Global irradiation levels for the individual building surfaces. In the given CSV file, the field separator
character is the comma (’,’) and the decimal symbol is the dot (’.’).

Surface_ID,Time,Uom,Diffuse,Direct,Global
building1_wall1,2015-01,kWh,1454.653,3315.214,4293.446
building1_wall1,2015-02,kWh,1866.883,4002.232,5563.502
.......................................
.......................................
building1_wall1,2015-12,kWh,1341.543,3001.412,4010.239
building1_wall2,2015-01,kWh,1313.344,3112.122,4109.742
.......................................
.......................................

Hence, to override the generic attribute "globalRadMonth" of the building wall surface "build-
ing1_wall1" based on the results stored in the given CSV file, the Dynamizer can be defined as shown
in listing 5.10.

5.3 Illustration of the Concept 101

Listing 5.10: CityGML Dynamizer TabulatedFileTimeseries referring to time-series stored in an
external CSV file

<dyn:Dynamizer gml:id="global_irradiation_Dynamizer">
<dyn:attributeRef>
<!--Single line without any linebreak and space-->
//con:RoofSurface[@gml:id=’building1_wall1’]
/core:genericAttribute
/gen:DoubleAttribute[gen:name=’globalRadMonth’]
/gen:value

</dyn:attributeRef>
<dyn:startTime>2015-01-01T00:00:00Z</dyn:startTime>
<dyn:endTime>2016-01-01T00:00:00Z</dyn:endTime>
<dyn:dynamicData>
<dyn:TabulatedFileTimeseries>
<dyn:firstTimestamp>2015-01-01T00:00:00Z</dyn:firstTimestamp>
<dyn:lastTimestamp>2016-01-01T00:00:00Z</dyn:lastTimestamp>
<dyn:observationProperty>
GlobalIrradiationPerMonth

</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:fileLocation>
file:///C:/Folder1/results.csv

</dyn:fileLocation>
<dyn:fileType>csv</dyn:fileType>
<dyn:mimeType>application/csv</dyn:mimeType>
<dyn:valueType>double</dyn:valueType>
<dyn:numberOfHeaderLines>1</dyn:numberOfHeaderLines>
<dyn:fieldSeparator>,</dyn:fieldSeparator>
<dyn:decimalSymbol>.</dyn:decimalSymbol>
<dyn:idColumnNo>1</dyn:idColumnNo>
<dyn:idValue>building1_wall1</dyn:idValue>
<dyn:timeColumnNo>2</dyn:timeColumnNo>
<dyn:valueColumnNo>6</dyn:valueColumnNo>
</dyn:TabulatedFileTimeseries>
</dyn:dynamicData>
</dyn:Dynamizer>

In the listing 5.10, the attribute attributeRef refers to the generic attribute globalRadMonth of the
RoofSurface with the gml:id building1_wall1. The attributes startTime and endTime represent the
entire temporal extent for the dynamic values. The TabulatedFileTimeseries allows us to provide details
of the CSV file which includes the simulation results. The attributes firstTimestamp and lastTimestamp
represent the temporal extent specified within the CSV file. The observationProperty is specified
as GlobalIrradiationPerMonth and uom is kWh. The attribute fileLocation specifies the location
where the CSV file is stored. The fileType is csv and the associated mimeType is application/csv. The

102 5 Modelling Highly Dynamic Changes

simulation results recorded in the CSV file are of type double. Hence, the valueType is mentioned
as double. In the mentioned CSV file, there is one header line indicating the names of the columns.
Hence, the attribute numberOfHeaderLines is 1. In case, there is no header line in the CSV file, it
can be shown as 0. The attributes fieldSeparator and decimalSymbol represent the type of separator
and decimal symbol in the file, which are ’,’ and ’.’ respectively in this case. This listing uses the
column numbers for retrieving the values from the fields Surface_ID, Time, and Global value. Hence,
the specific values for column numbers are given in the attributes idColumnNo, timeColumnNo, and
valueColumnNo. Alternatively, it is possible to use column names instead of column numbers which
is illustrated in listing 5.11. The attribute idValue indicates the value of the id required for querying.
For example, in the mentioned CSV file, the simulation results are stored for different building ids
such as building1_wall1, building1_wall2, building1_wall3 etc. Since the attributeRef refers to the
RoofSurface building1_wall1 in this example, the idValue is set to building1_wall1. It allows to define
that only the Surface_ID building1_wall1 is used from this TabulatedFileTimeseries.

Listing 5.11: Alternative representation of CityGML Dynamizer TabulatedFileTimeseries

<dyn:Dynamizer gml:id="global_irradiation_Dynamizer">
<!-- same as Listing 5.10 -->
<dyn:dynamicData>
<dyn:TabulatedFileTimeseries>
<dyn:firstTimestamp>2015-01-01T00:00:00Z</dyn:firstTimestamp>
<dyn:lastTimestamp>2016-01-01T00:00:00Z</dyn:lastTimestamp>
<dyn:observationProperty>
GlobalIrradiationPerMonth

</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:fileLocation>
file:///C:/Folder1/results.csv

</dyn:fileLocation>
<dyn:fileType>csv</dyn:fileType>
<dyn:mimeType>application/csv</dyn:mimeType>
<dyn:valueType>double</dyn:valueType>
<dyn:numberOfHeaderLines>1</dyn:numberOfHeaderLines>
<dyn:fieldSeparator>,</dyn:fieldSeparator>
<dyn:decimalSymbol>.</dyn:decimalSymbol>
<dyn:idColumnName>Surface_ID</dyn:idColumnName>
<dyn:idValue>building1_wall1</dyn:idValue>
<dyn:timeColumnName>Time</dyn:timeColumnName>
<dyn:valueColumnName>Global</dyn:valueColumnName>
</dyn:TabulatedFileTimeseries>
</dyn:dynamicData>
</dyn:Dynamizer>

5.3 Illustration of the Concept 103

5.3.2.2 Example 2: Generic Timeseries

The solar potential simulation results (as shown in the previous listings) can also be represented in-line
using the GenericTimeseries class. It allows defining the necessary metadata of the time-series. The
Dynamizer GenericTimeseries can be defined as shown in listing 5.12.

Listing 5.12: CityGML Dynamizer GenericTimeseries representing time-series in-line

<dyn:Dynamizer gml:id="global_irradiation_Dynamizer">
<!-- same as Listing 5.10 -->
<dyn:dynamicData>
<dyn:GenericTimeseries>
<dyn:firstTimestamp>2015-01-01T00:00:00Z</dyn:firstTimestamp>
<dyn:lastTimestamp>2016-01-01T00:00:00Z</dyn:lastTimestamp>
<dyn:observationProperty>
GlobalIrradiationPerMonth

</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:valueType>double</dyn:valueType>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>2015-01</dyn:timestamp>
<dyn:doubleValue>4293.446</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>2015-02</dyn:timestamp>
<dyn:doubleValue>5563.502</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<!-- TimeValuePair for all 12 months are shown here -->

</dyn:GenericTimeseries>
</dyn:dynamicData>
</dyn:Dynamizer>

It is also possible to represent the time-series values according to international standards such as
OGC TimeseriesML 1.0 using the StandardFileTimeseries class. A working illustration is shown in
Chapter 8.

5.3.3 Representing complex periodic patterns using Dynamizers

Dynamizers already support AtomicTimeseries based on absolute time points within which the values
of the attributes can be mapped and can be represented as a tabulation of measured data. One typical
example illustrating such a scenario is the mapping of energy values of a building for every hour in a

104 5 Modelling Highly Dynamic Changes

day. The hourly consumption readings for a working day, a Saturday, and a Sunday can be represented
as individual AtomicTimeseries (represented by A, B, and, C respectively in figure 5.12).

Figure 5.12: Example of composing AtomicTimeseries to a pattern.

Now, a CompositeTimeseries may contain five repetitions of AtomicTimeseries A to reflect a
pattern of energy consumption values for all weekdays. However, energy demand estimations may
require separate patterns for weekdays and weekends requiring the composition of multiple variation
behaviours. Such complex behaviours may be expressed using the CompositeTimeseries, wherein a
weekly pattern can be defined containing the energy values for all seven days of a week (represented
as ’AAAAABC’). The advantage in using such CompositeTimeseries is that it allows the study
of customised patterns; for example, patterns for only weekdays (’AAAAA’) or patterns of only
weekends for four weeks (’BCBCBCBC’). Similarly, more complex patterns of arbitrary depths such
as weekly, monthly and yearly, can be defined using this approach (as shown later in figure 5.13).
It is also possible to express time-varying data for an arbitrarily long period by combining various
patterns. For example, if we need to determine the pattern for energy consumption values for evening
hours on weekdays, an AtomicTimeseries can be defined for 6 hours (e.g. from 6 PM to midnight).
Further, the CompositeTimeseries allows connecting an additional 6 hours for all weekdays in a
week. To represent a weekly pattern (shown above as ’AAAAABC’) based on five repetitions of
weekday values followed by one repetition of each of Saturday and Sunday values, the Dynamizer
CompositeTimeseries can be defined as shown in listing 5.13.

5.3 Illustration of the Concept 105

Listing 5.13: CityGML Dynamizer CompositeTimeseries representing periodic patterns of energy
consumption values

<!-- Only the Dynamizer feature is shown in this listing -->
<dyn:Dynamizer gml:id="electricity_consumption">
<dyn:attributeRef>
<!-- XPath expression to the city object property -->
</dyn:attributeRef>
<!-- ISO 8601 Week Date Representation showing absolute

timestamps-->
<dyn:startTime>2015-W01-01</dyn:startTime>
<dyn:endTime>2015-W02-01</dyn:endTime>
<dyn:dynamicData>
<dyn:CompositeTimeseries>
<!-- Component for Weekdays-->
<dyn:component>
<dyn:TimeseriesComponent>
<dyn:repetitions>5</dyn:repetitions>
<dyn:timeseries>
<dyn:GenericTimeseries gml:id="Weekdays">
<!-- ISO 8601 Time Representation showing relative

timestamps-->
<dyn:firstTimestamp>T00:00:00</dyn:firstTimestamp>
<dyn:lastTimestamp>T24:00:00</dyn:lastTimestamp>
<dyn:observationProperty>ElecConsump</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:valueType>double</dyn:valueType>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T00:00:00</dyn:timestamp>
<dyn:doubleValue>1.32</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T01:00:00</dyn:timestamp>
<dyn:doubleValue>1.41</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T02:00:00</dyn:timestamp>
<dyn:doubleValue>1.53</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<!-- values for all 24 hours in a weekday -->

106 5 Modelling Highly Dynamic Changes

</dyn:GenericTimeseries>
</dyn:timeseries>
</dyn:TimeseriesComponent>
</dyn:component>
<!-- Component for Saturday-->
<dyn:component>
<dyn:TimeseriesComponent>
<dyn:repetitions>1</dyn:repetitions>
<dyn:timeseries>
<dyn:GenericTimeseries gml:id="Saturday">
<!-- ISO 8601 Time Representation showing relative

timestamps-->
<dyn:firstTimestamp>T00:00:00</dyn:firstTimestamp>
<dyn:lastTimestamp>T24:00:00</dyn:lastTimestamp>
<dyn:observationProperty>ElecConsump</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:valueType>double</dyn:valueType>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T00:00:00</dyn:timestamp>
<dyn:doubleValue>1.39</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T01:00:00</dyn:timestamp>
<dyn:doubleValue>1.44</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T02:00:00</dyn:timestamp>
<dyn:doubleValue>1.52</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<!-- values for all 24 hours in a weekday -->
</dyn:GenericTimeseries>
</dyn:timeseries>
</dyn:TimeseriesComponent>
</dyn:component>
<!-- Component for Sunday-->
<dyn:component>
<dyn:TimeseriesComponent>
<dyn:repetitions>1</dyn:repetitions>
</dyn:timeseries>
<dyn:GenericTimeseries gml:id="Sunday">

5.3 Illustration of the Concept 107

<!-- ISO 8601 Time Representation showing relative
timestamps-->

<dyn:firstTimestamp>T00:00:00</dyn:firstTimestamp>
<dyn:lastTimestamp>T24:00:00</dyn:lastTimestamp>
<dyn:observationProperty>ElecConsump</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:valueType>double</dyn:valueType>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T00:00:00</dyn:timestamp>
<dyn:doubleValue>1.30</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T01:00:00</dyn:timestamp>
<dyn:doubleValue>1.46</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<dyn:timeValuePair>
<dyn:TimeValuePair>
<dyn:timestamp>T02:00:00</dyn:timestamp>
<dyn:doubleValue>1.59</dyn:doubleValue>
</dyn:TimeValuePair>
</dyn:timeValuePair>
<!-- values for all 24 hours in a weekday -->
</dyn:GenericTimeseries>
</dyn:timeseries>
</dyn:TimeseriesComponent>
</dyn:component>
</dyn:CompositeTimeseries>
</dyn:dynamicData>
</dyn:Dynamizer>

The listing shows that a Dynamizer CompositeTimeseries can be defined including the individual
AtomicTimeseries for weekdays, saturdays, and sundays. The attribute attributeRef can be defined to
refer to a specific generic attribute which requires to be overridden by the dynamic time-depending
values as shown in the previous listings. The attributes startTime and endTime represent the overall
temporal extent of the Dynamizer feature. In this example, the Dynamizer CompositeTimeseries
includes the overall extent of one week. This is represented using the ISO 8601 Week Date Represent-
ation87. This representation is defined using the string "YYYY-Www-D", where [YYYY] is the year,
[Www] is the week number prefixed by the letter W, from W01 through W53, and [D] is the weekday
number, from 1 through 7, beginning with Monday and ending with Sunday. Therefore, the string
"2015-W01-01" in this listing indicates Monday of the week number 1 of the year 2015. Similarly,

87https://www.iso.org/iso-8601-date-and-time-format.html

108 5 Modelling Highly Dynamic Changes

the string "2015-W01-07" indicates Sunday of the week number 1 of the year 2015. In this way, the
values of attributes startTime and endTime represent the temporal extent of one week including all
the days of that particular week. As already mentioned in section 5.2.1, the startTime and endTime
follow the Half-Open interval, which means the startTime is inclusive and the endTime is exclusive.
The attribute CompositeTimeseries includes 3 components in this listing, representing Weekdays,
Saturdays, and Sundays respectively. The component for Weekdays includes a GenericTimeseries
with the gml:id Weekdays indicating all the time/value pairs for electricity consumption values for
every hour in a day. Within this GenericTimeseries, the attributes firstTimestamp and lastTimestamp
are relative timestamps, and represent the temporal extent for all the weekdays, starting at 0 am and
ending at 0 am the next day. The duration of the GenericTimeseries is 24 hours, and this is repeated
five times leading to a total duration of five days. Each observation is represented using TimeValuePair
where the timestamp is a time value relative to the absolute value defined within the temporal extent.
For each iteration, the combination of this relative timestamp and the absolute timestamp give a
complete timestamp including the date and time values. The attribute repetitions has a value 5 for
this component to represent 5 iterations for all the weekdays in the week. In a similar way, the other
components for Saturday and Sunday can be defined using the repetitions value as 1 to ensure only 1
iteration.

Figure 5.13: Example of complex CompositeTimeseries.

Listing 5.13 is just a representation for a CompositeTimeseries representing periodic patterns of
electricity consumption values for a week. Depending on the use cases, more complex Composite-
Timeseries can be defined in similar ways (as shown in figure 5.13). For example, the Composite-
Timeseries defined in Listing 5.13 can be repeated 52 times to represent such patterns for the entire
year. Similarly, the CompositeTimeseries can have the components only for weekdays to represent the
patterns only for weekdays.

5.4 Discussions 109

5.4 Discussions
This chapter presents the novel Dynamizer concept extending static 3D city models by supporting
variations of individual feature properties and associations over time. It provides a data structure
to represent dynamic values in different and generic ways. Such dynamic values may be given by
retrieving observations from sensor-based services [R1]; subscribing to a real-time data streams for
alerts [R2]; tabulation of time/value pairs for varying geometries, topologies, semantic, and appearance
attributes [R3-R4]; and patterns of time/value pairs [R5].

The Dynamizer concept has been developed for the next version of the CityGML standard (version
3.0) and has been proposed to the OGC CityGML Standard Working Group for its adoption. However,
the proposed concept can also be implemented as a CityGML Application Domain Extension (ADE)
by using the "hook" mechanism. The implementation and examples of CityGML Dynamizers as
an ADE have already been shown in the Engineering Report of the project OGC Future City Pilot
Phase 1 (Chaturvedi and Kolbe 2017). This implementation allows using such Dynamizer features
with the current version of CityGML 2.0. The advantage of this approach is that it enables selected
properties of city models to become dynamic without changing the original CityGML data model. If
an application does not support dynamic data, it does not include these particular types of features.
Dynamizer is a feature type, which even allows users and applications to use it with the OGC Web
Feature Service. No extension of other OGC standards is required.

Part II

Management of Time-dependent Properties

Chapter 6

Management on the level of databases

This chapter discusses the approaches for managing the newly added modules of CityGML in database
management systems such as the 3DCityDB. The Versioning and Dynamizer concepts are developed
for CityGML 3.0, however, they can also be implemented as CityGML ADEs. In order to manage the
ADEs in the 3DCityDB, the 3DCityDB ADE Plugin Manager is utilised. The extended schema of
3DCityDB includes the relevant tables and relations for storing Versioning and Dynamizer modules.
However, the current version of 3DCityDB manages only static properties of city objects. The dynamic
properties such as time-series are not supported. Hence, this chapter presents a new relational database
model for storing and managing dynamic properties along with static properties within the 3DCityDB.

This chapter is based on the published paper

Chaturvedi, K., Yao, Z. and Kolbe, T. H. (2019). ‘Integrated Management and Visualization of
Static and Dynamic Properties of Semantic 3D City Models’. In: ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W17, pp. 7–14.
URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W17/7/2019/

https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W17/7/2019/

114 6 Management on the level of databases

6.1 Managing CityGML ADEs within databases
The 3D City Database (3DCityDB) software suite comprises (i) a database schema built on top
of standard relational database schema such as PostgreSQL and Oracle, (ii) an Importer/Exporter
allowing importing and exporting of CityGML data to/from the database schema, and (iii) a Web
Feature Service allowing to retrieve CityGML features using standardised web requests. However,
CityGML also provides an extension mechanism called “Application Domain Extension (ADE)” . The
ADE mechanism allows third parties to dynamically and systematically extend the existing CityGML
data models by attaching new application schemas which can contain additional feature classes and
attribute properties defined for specific application domains. For example, the Energy ADE (Agugiaro
et al. 2018) introduces new attributes specific to energy use cases. Similarly, the UtilityNetwork ADE
(Kutzner et al. 2018) provides new features for mapping underground structures. Since ADEs are
diverse and completely different from each other, it has been a challenge to extend the database
schema to newly defined feature classes and attribute properties belonging to individual ADEs. For
this purpose, the current release of the 3D City Database software suite (version 4.2) includes a tool
called "ADE Plugin Manager". The ADE Plugin Manager allows dynamically extending a 3DCityDB
instance to facilitate the storage and management of arbitrary CityGML ADEs. Its concept was
developed by (Yao and Kolbe 2017). The ADE Plugin Managyer provides two-step solutions:

Figure 6.1: Transformation Workflow of the 3DCityDB ADE Plugin Manager. Image taken from
(Yao and Kolbe 2017).

• Dynamically extending the 3DCityDB to manage ADEs. This implementation is based on the
Open Source Attributed Graph Grammar (AGG) transformation engine88. As shown in figure 6.1,
the AGG transformation engine enables automatic transformation from the XML application schema
(XSD) of a CityGML ADE to a compact relational database schema which includes necessary

88https://www.user.tu-berlin.de//o.runge/agg/agg-docu.html

6.1 Managing CityGML ADEs within databases 115

tables, indexes, and constraints. Besides, an XML-based schema mapping file is also automatically
generated, which contains the relevant meta-information about the derived database schema. The
mapping file also defines explicit mapping relationships between the source and target schemas. It
allows developers to implement applications for managing and processing the ADE data contents
stored in a 3DCityDB instance.

• Extending the Importer/Exporter to import and export ADE data. Once the ADE is registered
with the 3DCityDB, the Importer/Exporter requires an extension to import or export ADE data
to/from the new ADE tables. The Importer/Exporter does not provide generic ADE support yet;
hence, an ADE extension89 needs to be implemented for the ADE API manually for each ADE.

In this way, the ADE Plugin manager not only extends the database schema but also allows importing
the ADE elements in the database tables (see figure 6.2). The existing Web Feature Service extension
of the 3DCityDB already allows retrieving ADE elements using standardised requests.

Figure 6.2: Management of CityGML ADEs within the 3DCityDB.

Using the concepts and implementations developed within the ADE Plugin Manager, the newly
developed ADEs, Versioning ADE and Dynamizer ADE, can also be managed dynamically in the
3DCityDB. The following sub-sections discuss approaches to extend the 3DCityDB for storing both
ADEs and retrieving the newly developed features using web services.

6.1.1 Managing the Versioning ADE within the 3DCityDB

The extension of the 3DCityDB for a specific ADE requires the XML Application Schema (XSD)
for that particular ADE. The ADE is developed using the Unified Modelling Language (UML), and
the UML model can be transformed into the XSD file dynamically using the tool ShapeChange90.
ShapeChange is an open-source Java tool, which can process UML models for geographic information
according to the ISO 19100 standards family and derives the GML application schemas (and other
transfer formats) from these UML models. The tool can directly read the UML models created using
the software Enterprise Architect (EA) via the EA Java API. The guidelines and examples for how

89https://github.com/3dcitydb/extension-test-ade
90https://shapechange.net/

116 6 Management on the level of databases

to derive the XML schemas from the EA file and for how to create the ADEs and to derive the
corresponding XML schema using ShapeChange are given by (Kutzner 2016). The CityGML instance
files can be validated against the XSD file using tools such as FME91 and NetBeans92.

Once the XSD file is available, the ADE Plugin Manager can be used to extend the 3DCityDB
schema to create tables and relations dynamically. In the case of the Versioning ADE, new tables
and relations are created for Version and VersionTransition features. Once the database schema is
extended, the Importer/Exporter tool is configured to allow the import and export of valid CityGML
files using the Versioning ADE. The guidelines for using the ADE Plugin Manager for arbitrary ADEs
are provided in the 3DCityDB official documentation93.

CityGML datasets with
Versioning ADE data

3DCityDB
Importer/
Exporter

G
e

tF
e

a
tu

re

CityGML Viewer

Versioning ADE

3DCityDB

V1 V2 V3

G
e

tF
e

a
tu

re

CityGML Module

OGC Web Feature Service

Access Visualisation Model Access Thematic Attributes

Figure 6.3: Version Management in the 3DCityDB using the Versioning ADE.

Figure 6.3 shows a conceptual illustration of how CityGML instance datasets with three versions of
a city model (same as listing 4.1) can be managed in the 3DCityDB and further queried using an OGC
Web Feature Service by external applications. As shown in listing 4.1, Version 1 contains a building
with roof type "Flat" and function "Office". In Version 2, the function changes to "Living". In version
3, the roof type changes to "Saddle". The ADE Plugin Manager of the Importer/Exporter allows
the possibility of deriving the relational schema of the Versioning ADE and registering them in the
3DCityDB. As described by (Yao and Kolbe 2017), an additional code has to be programmed further
to implement the import/export capabilities for the ADE data. After performing this implementation,
the CityGML file with all the versions can be imported to the 3DCityDB where all versions with links

91https://www.safe.com/
92https://netbeans.org/
93https://www.3dcitydb.org/3dcitydb/documentation/

6.1 Managing CityGML ADEs within databases 117

to their city objects and properties and version transitions are stored in the respective tables. This
enables performing queries (e.g. SQL operations) not only on city objects and properties but also
on the versions and their transitions. Since all the Versions and Version Transitions are accessible
as FeatureType, they can also be accessed by the OGC Web Feature Service of the 3DCityDB. It is
possible to perform queries, e.g. "retrieve all available versions of the city model". With the Versioning
concept, each object now also supports bi-temporal attributes: creationDate and terminationDate
reflecting database transaction time and validFrom and validTo reflecting actual world time. Hence,
these attributes could be used by a WFS query to choose the appropriate version that was valid at
a specific database or real world time respectively. It enables querying "How did the city look like
at a specific point in time?" or "How did the city model look like at a specific point in time?". The
appropriate query can determine all the features and attributes based on the temporal attributes defined
for each attribute.

6.1.2 Managing the Dynamizer ADE within the 3DCityDB

Using the ADE Plugin Manager, the Dynamizer ADE can also be registered in the 3DCityDB. As
described in Chapter 5, Dynamizer is defined as a FeatureType, which (i) has a direct link to an
external sensor-based web service using the SensorConnection type or (ii) has time-series represented
in-line with city objects using AtomicTimeseries or CompsiteTimeseries or (iii) uses external files.
The Dynamizer concept was initially implemented as an ADE within the project OGC Future City
Pilot Phase 1 (Chaturvedi and Kolbe 2017). Similar to the Versioning ADE (as described in section
6.1.1), the UML model of the Dynamizer ADE can be transformed into valid XSD files using the
ShapeChange tool. Further, using the ADE Plugin Manager of the Importer/Exporter, it is possible
to derive the relational schema of the Dynamizer ADE and to register them in the 3DCityDB. This
allows extending the 3DCityDB schema to support tables and relations for new Dynamizer features
including (i) SensorConnection, (ii) AtomicTimeseries, and (iii) CompositeTimeseries. In order to
better manage and query on specific time-value pairs, new modules have been introduced for the
relational data model for the Dynamizer ADE (more details in section 6.2). Furthermore, after the
database schema is extended, using an additional programmable code as mentioned by (Yao and
Kolbe 2017), the Importer/Exporter tool can be configured to allow import and export of the CityGML
datasets with the Dynamizer ADE data (more details in section 6.3).

The benefit with the proposed methodology is that it enables the management of time-series
information represented within the Dynamizer data at the database level. For example, in the case
of solar potential simulation results represented in-line as GenericTimeseries within a building wall
surface (as shown in section 5.3.2), an SQL query on the 3DCityDB can determine the irradiation
value for a specific month or the average of irradiation values in summer over the last five years.

This methodology also allows retrieving Dynamizer features using the OGC Web Feature Service.
For example, it is possible to determine "which city objects have Dynamizers associated with them?",
"which rooms have sensors of type Smart Meters installed?", "which building roofs have solar panels
on top of them", "which traffic junctions have inductive loops located beneath them?" and so on.
However, problems arise when we access such time-value pairs using the Web Feature Service as
shown in Figure 6.4. The issue is that the Web Feature Service is not suitable for querying time-series
information. For example, in the case of solar potential simulation results represented in-line as
Generic Timeseries within a building wall surface, it is not optimal for a WFS to query the irradiation
values for a specific month. Although CityGML applications can access thematic information of a
CityGML data using a Web Feature Service, there is no concrete way for such applications to access

118 6 Management on the level of databases

CityGML datasets with

Dynamizer ADE data
3DCityDB

Importer/

Exporter

CityGML Viewer

OGC Web Feature Service

Access Visualisation Model Access Thematic Attributes

Dynamizer ADE – Atomic Timeseries

3DCityDB

CityGML Module

WFS is not suitable to
query time-series

How to access time-series
from 3DCityDB?

Figure 6.4: Issues with the access of Dynamizer AtomicTimeseries by CityGML Viewers.

CityGML datasets with
Dynamizer ADE data

3DCityDB
Importer/
Exporter

Weather

Stations

Smart

Meters

Indoor

Sensor

Environment

Sensor

Events

Heterogeneous Sensor APIs

CityGML Module

Dynamizer ADE

SensorConnection

3DCityDB

CityGML Viewer

OGC Web Feature Service

Access Visualisation Model Access Thematic Attributes

WFS is not suitable to
query time-series

How to query time-series from
many different sensor platforms?

Figure 6.5: Issues with the access of Dynamizer SensorConnection by CityGML Viewers.

and interpret time-series information from the same CityGML dataset. Similarly, if Dynamizer has a
SensorConnection, although it avoids storing time-series values in the database, objects can be linked

6.2 New Relational Data Model for the Dynamizer ADE 119

with any external API. It is still an issue of how results from different APIs can be interpreted in
common ways by CityGML applications (as shown in Figure 6.5). These two issues are discussed in
detail and solutions are provided accordingly in Chapter 7.

The following section introduces a relational database model for storing and managing the Dynam-
izer ADE along with its time-series within the 3DCityDB. Further, the research work proposes an
extension of the 3DCityDB Importer/Exporter to import and export CityGML documents, including
Dynamizer ADE data. It enables managing dynamic data (such as time points within time-series)
associated with city objects, which can further be queried and used with standard SQL operations.
The concepts have also been developed for querying sensor data from heterogeneous APIs in common
and standardised ways (discussed in Chapter 7).

6.2 New Relational Data Model for the Dynamizer ADE

This section proposes a high-level architecture for managing and visualising the time-dynamic
properties along with static properties of Semantic 3D City Models. The architecture extends the 3D
City Database (3DCityDB) to store and manage dynamic properties encoded within the CityGML
Dynamizer ADE by defining a new relational data model.

Figure 6.6: High Level Overview of the implementation of the Dynamizer ADE within the 3DCityDB.

As shown in figure 6.6, the 3DCityDB is extended for supporting the Dynamizer ADE. The
implementation employs the 3DCityDB ADE Plugin Manager, which provides an automatic way for
dynamically extending the 3DCityDB to support the storage and management of CityGML models
with ADEs. However, to improve the query performance, the relational data model of Dynamizer
ADE has been developed by defining three separate modules. The first module is the Dynamizer Core
Module for storing the core attributes of Dynamizer (such as unique ID, reference attribute, etc.). The
second module is the Timeseries Metadata Module for storing the metadata of Timeseries such as
Timeseries type, Unit of Measurement etc. The third module is the Timeseries Module for storing
raw time point values. The advantage of keeping the Timeseries module separate from the Dynamizer
module is that this approach allows making Timeseries module re-usable, for example, by storing

120 6 Management on the level of databases

time-series from other ADEs such as the Energy ADE. Furthermore, the 3DCityDB Importer/Exporter
is extended to facilitate import and export of CityGML documents with Dynamizer ADE data. It
enables managing dynamic data (such as time points within time-series) associated with city objects,
which can further be queried and used using standard SQL operations. The framework also allows
accessing and retrieving static and dynamic data in an integrated way.

Figure 6.7 shows the relational logical model for the Dynamizer ADE. The relational schema is
designed in a way to unify the different representations of time-series into a single representation. As
mentioned in Chapter 5, Dynamizers support various possibilities in the forms of SensorConnection,
AtomicTimeseries, and CompositeTimeseries. Furthermore, it allows various representations of Atomic-
Timeseries in the form of GenericTimeseries, TabulatedFileTimeseries, and StandardFileTimeseries.
The unified representation within the relational schema allows importing and managing different kinds
of metadata and time-value pairs using the same structure. More details on which attributes from the
Dynamizer schema are mapped onto which attributes in the relational schema are described in the
following sub-sections:

6.2.1 Dynamizer Core Module

The class Dynamizer from the UML model consists of the following core attributes: (i) Dynamizer_id,
(ii) attributeRef, (iii) startTime, and (iv) endTime. attributeRef refers to a specific (dynamic) attribute
of a city object property by using an XPath expression. startTime and endTime are absolute time points
denoting the time span for which the Dynamizer provides dynamic values. These core attributes are
stored in the table DYN_DYNAMIZER. In addition, Dynamizer also provides direct explicit links to
external sensor and IoT based services by using the class SensorConnection. As already described
in detail in section 5.2.2, the SensorConnection includes the following attributes (i) connectionType
defines the type of the sensor API (ii) observationProperty defines the name of property which is being
measured by the specific API and which the Dynamizer refers, (iii) uom is the unit of measurement
specified in the API for the defined observed property, (iv) sensorID is the unique identifier of the
sensor device registered at the specific API, (v) sensorName is the name of the sensor device registered
with the web service, (vi) datastreamID is the unique identifier of the datastream, (vii) observationID
is the unique identifier for an individual observation within a datastream, (viii) baseURL is the resource
locator at the root level, (ix) authType is the type of the authentication protocol, (x) mqttServer defines
the name of the server where the MQTT Broker runs, (xi) mqttTopic is the name of the topic, (xii)
linkToObservation represents the complete URL of the operation requesting for the observations based
on the specified parameters, and (xiii) linkToSensorDescription represents the complete URL of the
operation requesting for the description and metadata of the sensor or IoT device. These attributes of
the SensorConnection class are also stored in the table DYN_DYNAMIZER.

6.2.2 Timeseries Metadata Module

Dynamizer also supports defining time-series in-line within city objects. The in-line time-series
within Dynamizers can be modelled in two ways: (i) AtomicTimeseries, and (ii) CompositeTimeseries.
As we learnt in chapter 5, an AtomicTimeseries allows 3 different ways to represent time-series:
(i) StandardFileTimeseries for representing OGC standards such as TimeseriesML and Observa-
tions & Measurements, (ii) TabulatedFileTimeseries for representing time-series data stored in ex-
ternal tabulated files such as CSV, and (iii) GenericTimeseries for representing time-series data
using a basic structure. Based on the type of AtomicTimeseries, the respective metadata of the

6.2 New Relational Data Model for the Dynamizer ADE 121

Figure 6.7: Relational Logical Model of the Dynamizer ADE. The relational model shows the
relations between entities. Each entity box represents different sections indicating (from
top to bottom): (i) name of the table, (ii) column names and their data types, (iii) primary
key, and (iv) foreign keys. The letters ’P’ and ’F’ against specific column names indicate
Primary and Foreign Keys. The relationship between each entity is shown by association
arrows according to the Bachman notation. Due to limited page-width, the complete
representations for ImplicitGeometry, SurfaceGeometry, and Appearances are not shown
in the figure; only their references are shown using respective Foreign Keys.

122 6 Management on the level of databases

time-series are mapped to the table DYN_TIMESERIES. For example, if the StandardFileTimeser-
ies includes the data according to the TimeseriesML standard, the attributes stored in the table
are: FILE_LOCATION, FILE_TYPE, and MIME_TYPE. There may also be other metadata asso-
ciated to a TimeseriesML file. For example, if it contains a specific interpolation type, its val-
ues can be mapped to the attribute INTERPOLATION_TYPE. Similarly, in the case of Tabulated-
FileTimeseries, the attributes stored in the table are: (i) FILE_LOCATION, (ii) FILE_TYPE, (iii)
MIME_TYPE, (iv) VALUE_TYPE, (v) NUMBER_OF_HEADER_LINES, (vi) FIELD_SEPERATOR,
(vii) DECIMAL_SYMBOL, (viii) ID_COLUMN_NO, (ix) ID_COLUMN_NAME, (x) ID_VALUE,
(xi) TIME_COLUMN_NO, (xii) TIME_COLUMN_NAME, (xiii) VALUE_COLUMN_NO, and (xiv)
VALUE_COLUMN_NAME. In the case of GenericTimeseries, the attributes stored in the table is:
VALUE_TYPE.The flag IS_ATOMIC is used to determine whether the time-series is atomic or com-
posite.

In order to manage CompositeTimeseries, the database structure is inspired from the already existing
SURFACE_GEOMETRY table in the 3DCityDB. The representation of the geometry stored in the
table SURFACE_GEOMETRY differs substantially from the UML chart explained in the CityGML
specification; however, it offers about the same functionality. It contains various attributes to manage
aggregations of multiple surfaces. For example, in case of a LoD1 building, a closed volume is
bounded by a CompositeSurface which consists of single polygons. As shown in figure 6.8, the
aggregation of multiple surfaces, e.g. F1 to Fn (IDs 6 to 10) is realised in a way that the newly created
surface tuple Fn+1 (ID 2) is not assigned a geometry. Instead, the PARENT_ID of the surfaces F1 to Fn
refer to the ID of Fn+1. In addition, a further tuple (ID 1) is introduced, which represent the solid and
defines the root element of the whole aggregation structure. Each surface references to its root, using
the ROOT_ID attribute. Apart from that, the flags IS_SOLID distinguishes between surface (0) and
solid (1), and IS_COMPOSITE defines whether this is an aggregate (e.g. MultiSolid, MultiSurface) or
a composite (e.g., CompositeSolid, CompositeSurface).

In a similar way, since CompositeTimeseries composes of an ordered list of AbstractTimeseries,
several Atomic or Composite Timeseries can be aggregated to form a CompositeTimeseries. Each
nested time-series references to its root using the ROOT_ID attribute. This information has a big
influence on the system performance, as it allows to avoid recursive queries. If, e.g. the retrieval of all
time-series forming a specific CompositeTimeseries is of importance, simply those IDs have to be
selected which contain the related PARENT_ID and ROOT_ID. For instance, in energy applications, an
AtomicTimeseries may be defined for a working day, a Saturday, and a Sunday (represented by A, B,
and C respectively). Now, to reflect a pattern of energy consumption of the entire week (represented as
Wx), a CompositeTimeseries may contain five repetitions of AtomicTimeseries ’A’ followed by single
representations of AtomicTimeseries B and C (represented as ’AAAAABC’). Similarly, for reflecting
a pattern of the entire month (Mx), the CompositeTimeseries may contain four representations of the
time-series W (represented as W1, W2, W3, W4). And lastly, for reflecting a pattern of the entire year
(Yx), the CompositeTimeseries may contain 12 repetitions of the time-series M (represented as M1,
M2,...M12). Hence, in this case, the Timeseries Y would have ID = 1 and ROOT_ID = 1; Timeseries
M1 would have ID = 2, PARENT_ID = 1, and ROOT_ID = 1; Timeseries W1 would have ID = 3,
PARENT_ID = 2, and ROOT_ID = 1; and so on.

6.2.3 Timeseries Module

This module is responsible for storing the raw time-series values (time-value pairs). Depending on
the source and type, time-series can be represented according to different data types. For example, a

6.2 New Relational Data Model for the Dynamizer ADE 123

Figure 6.8: Geometry hierarchy managed within the table SURFACE_GEOMETRY for a LoD1 solid
geometry. Image taken from the 3DCityDB official documentation version 4.2 available
at https://www.3dcitydb.org/3dcitydb/documentation/

time-series generated by a weather station for temperature recordings is a double, a time-series from
a traffic camera for counting the number of cars at a junction is an integer, and another time-series
retrieved from a moving GPS a Geometry (e.g. a Point).

In order to manage timeseries of different types, the 3DCityDB is extended by individual tables:
DYN_TS_INT (Timeseries Integer), DYN_TS_DOUBLE (Timeseries Double), DYN_TS_STRING

(Timeseries String), DYN_TS_GEOM (Timeseries Geometry), DYN_TS_URI (Timeseries External
Link), DYN_TS_BOOL, (Timeseries Boolean), DYN_TS_APPEARANCE (Timeseries Appearance),
and DYN_TS_IMPLICITGEOM (Timeseries Implicit Geometry). The tables DYN_TS_APPEARANCE

and DYN_TS_IMPLICITGEOM include the attribute VALUE, which acts a Foreign Key to the
3DCityDB tables APPEARANCE and IMPLICIT_GEOMETRY respectively. Similarly, the table
DYN_TS_GEOM also includes an attribute VALUE_BREP, which acts a Foreign Key to the 3DCityDB
table SURFACE_GEOMETRY. In this way, either attribute VALUE has a non-B-Rep geometry or
VALUE_BREP has a reference to the SURFACE_GEOMETRY table in each row of the table. What is
not shown in figure 6.7 (due to limited page-width) are the complete representations of the 3DCityDB
tables IMPLICIT_GEOMETRY, SURFACE_GEOMETRY, and APPEARANCE. The table APPEARANCE

https://www.3dcitydb.org/3dcitydb/documentation/

124 6 Management on the level of databases

in the 3DCityDB contains attributes for managing the information about the appearances. Since
each city model or city object may store its own appearance data, this table is put in relation to the
base classes CityObject and CityModel by two foreign keys which may be used alternatively. An
appearance is composed of data for each surface geometry object. Information on the data types and
its appearance are stored in the table SURFACE_DATA. Similarly, attributes for mapping textures to
objects (point list or transformation matrix) which are defined by the CityGML classes _TexturePara-
meterization, TexCoordList, and TexCoordGen are stored in the table TEXTUREPARAM. Apart from
appearances, in the database schema, the geometry consists of planar surfaces which correspond each
to one entry in the table SURFACE_GEOMETRY. The surface-based geometry is stored as attribute
GEOMETRY. The implicit geometry is stored as attribute IMPLICIT_GEOMETRY. The volumetric
geometry is stored as attribute SOLID_GEOMETRY and its boundary surfaces (outer shell) are stored
as attribute GEOMETRY as well. More details on these specific tables are given in the 3DCityDB
official documentation version 4.2 available at https://www.3dcitydb.org/3dcitydb/documentation/.

6.3 Import and Export of Dynamizer ADE data to/from the 3DCityDB

Once the relational database model is developed, the next step is to extend the Import and Export
functionality of the 3DCityDB to map CityGML documents with Dynamizer ADE contents onto
the appropriate tables. The CityGML Dynamizer ADE files can be imported to the 3DCityDB by
following four major steps.
1. Mapping the XML Schema definition of the ADE to a relational schema that integrates with the

3DCityDB core schema
2. Creating an XML-based schema mapping file that captures the mapping between elements of the

XML schema and elements of the relational schema
3. Registering the ADE with the metadata tables of the 3DCityDB
4. Implementing specific import/export stubs in Java for the Dynamizer ADE elements

The ADE Plugin Manager automates these steps. It reads the XML schema and applies a rule-
based transformation to derive a relational schema for the ADE that seamlessly integrates with the
3DCityDB. In other words, the ADE Plugin Manager automatically creates the tables and joins
based on the classes and their relations defined in the GML application schema/XSD files. Users
can redefine default rules or even add new rules, and thus have full control over the mapping result.
However, as mentioned in the previous section, to improve querying efficiency, the relational database
model of the Dynamizer ADE involves only three independent modules: Dynamizer Core Module,
Timeseries Metadata Module and Timeseries Module. This approach gives the flexibility to re-use
existing time-series modules with other ADEs such as Energy ADE and UtilityNetwork ADE. Hence,
the structure of the relational database model is different from the UML model. For this reason, it
is proposed to include the Timeseries and Metadata modules as an integrated part of 3DCityDB.
However, in the future, the ADE Plugin Manager will be extended to map the Dynamizer UML model
in such a way that the Dynamizer core attributes are mapped onto the Dynamizer core table, and the
associated time-series are mapped onto the Timeseries and Metadata modules.

Once the ADE is registered with the 3DCityDB by performing the above steps, the 3DCityDB
Importer/Exporter tool requires extensions to (i) import time-series data from Dynamizer ADE to
the new Dynamizer ADE tables, and (ii) export time-series data from Dynamizer ADE tables to the
CityGML documents. For this purpose, the 3DCityDB provides the Importer/Exporter tool. Since
the Importer/Exporter does not provide generic ADE support yet, the Dynamizer ADE extension

https://www.3dcitydb.org/3dcitydb/documentation/

6.4 Discussions 125

is required to be developed against the ADE API of the Importer/Exporter. The Dynamizer ADE
extension can be developed by performing the following steps:
1. Creating an ADE module for citygml4j for parsing and writing CityGML with Dynamizer ADE.
2. Implementing the ADEExtension interface of the ADE API and providing code for reading and

writing data into the ADE tables.
By performing these steps, the functionalities of the Importer/Exporter can be extended for import-

ing and exporting the time-series data from the CityGML Dynamizer ADE. The implementation of
this code was beyond the research frame of this thesis and these steps are mentioned here as a starting
point for a future implementation.

6.4 Discussions
In Chapter 6, it was shown how to extend the 3DCityDB for managing the Versioning as well
as the Dynamizer ADE. The management of the Versioning schema can be done with the ADE
Plugin Manager, which allows dynamically extending the relational database schema for managing
versions and version transitions. Since Version and VersionTransitions are defined as FeatureTypes,
the WFS can retrieve each version and version transition, which can be accessed and visualised by
CityGML applications. Unlike the Versioning schema, the management of the Dynamizer ADE is not
straightforward. The ADE Plugin manager can extend the relational database schema for managing
Dynamizer features. However, Dynamizers may represent time-series, and it requires to store, manage,
and perform queries based on the time-value pairs. Hence, the relational database model has been
extended for supporting time-series, including metadata and raw time-value pairs. In this way, the
extended relational database schema allows performing queries on time-series data. However, as
shown in figure 6.4 and figure 6.5, the WFS is not capable of querying time-series values stored in
the 3DCityDB. Furthermore, a Dynamizer can also contain links to external sensor APIs, which may
be diverse and heterogeneous. It is an issue of how CityGML applications can interpret such diverse
and heterogeneous sensor observations in unified ways. The solutions for this issue are discussed in
Chapter 7.

Chapter 7

Management of Dynamic City Models on the level of SDIs

This chapter discusses how time-dependent properties of city objects can be retrieved along with the
static properties using web services. For this purpose, the chapter presents the concept of Spatial
Data Infrastructures (SDI) and describes ways to access time-series data using open and international
standards. Further, the chapter introduces a new concept called InterSensor Service allowing to
retrieve time-series data from CityGML Dynamizers and translates them "on-the-fly" according to the
international standards. Besides, the service can also retrieve time-series data from arbitrary sensor
and IoT platforms, databases, and external tabulated files and perform such translations. In this way,
time-series data from heterogeneous data sources can be retrieved and accessed in a unified way.

Some of the discussions in this chapter have been presented in the following published papers:

Chaturvedi, K. and Kolbe, T. H. (2019). ‘Towards Establishing Cross-Platform Interoperability for
Sensors in Smart Cities’. In: Sensors 19.3. URL: https://www.mdpi.com/1424-8220/19/3/562
Chaturvedi, K. and Kolbe, T. H. (2018). ‘InterSensor Service: Establishing Interoperability over
Heterogeneous Sensor Observations and Platforms for Smart Cities’. In: 2018 IEEE International
Smart Cities Conference (ISC2), pp. 1–8. URL: https://doi.org/10.1109/ISC2.2018.8656984

https://www.mdpi.com/1424-8220/19/3/562
https://doi.org/10.1109/ISC2.2018.8656984

128 7 Management of Dynamic City Models on the level of SDIs

7.1 Spatial Data Infrastructures (SDI)

CityGML Dynamizers allow representing time-series data in-line with city objects as well as enable
establishing direct links to heterogeneous sensor and IoT platforms and APIs. Although the proposed
extensions to database management systems such as 3DCityDB allow managing such dynamic
information, access and retrieval of such dynamic information is still a significant issue. As described
in the previous chapter, the OGC Web Feature Service can be used to request static information
of city objects; however, it is not suitable to query time/value pairs. As we have already learned
before, city objects can be linked to multiple sensors and IoT platforms depending on the use cases.
In most scenarios, these sensors and IoT platforms belong to various stakeholders and companies.
These stakeholders usually are interested in specific applications or simulations and collect data
for their purposes. For example, an energy provider company participating in a project owns the
energy consumption data for buildings. In general scenarios, this data is meant to be used with the
application owned by the same energy provider company. Most often, the structure of the data is not
standardised and lacks explicit semantics. Hence, its structure might be different from other datasets,
making it difficult to interpret by common applications. It is typically also the case for sensor and
IoT platforms being used in such projects. In most scenarios, stakeholders use their sensors which
are built for specific purposes and are based on particular platforms. These platforms may be open
or proprietary; however, most of the time, they are not standardised. Another challenge is that the
APIs associated with these platforms are subsequently changed often without notifying the users.
Moreover, the observations retrieved from these sensors are not always associated with an API. In
many scenarios, such time-series observations are the results of simulations (Willenborg et al. 2017)
which are stored in databases or even simple files. It leads to a significant challenge to work in unified
ways with a wide variety of data sources and their data types which are entirely different from each
other.

It shows that such distributed systems are complex involving multiple stakeholders, diverse applica-
tions, a multitude of sensor and IoT platforms and data sources. It is imperative to achieve a proper
data integration strategy for making well-informed decisions. Such integration strategies must allow
working with heterogeneous data sources and platforms in a common operational framework. In this
way, joint analytics can be performed to manage aspects of how a city functions and is managed, e.g.
by using smart city dashboards (Kitchin 2014) as shown in Figure 7.1. However, as highlighted by
(Moshrefzadeh et al. 2017), due to data privacy concerns and competition between several stakehold-
ers, it does not make sense to try to collect all available data resources within a central data repository.
Instead, the data should remain with their owners and should be combined flexibly according to
specific applications or stakeholders.

Spatial Data Infrastructures (SDI) (Aalders and Moellering 2001) play an essential role in linking
and integrating various distributed data and systems. SDIs facilitate the discovery, access, management,
distribution and reuse of digital geospatial resources. In general, SDIs establish service-oriented
architectures (SOA), allowing unified access to distributed resources using well-defined web services
and interfaces. Such service-oriented SDIs are essential for distributed systems. They allow the data
to remain with their respective owners and stakeholders and to be accessed by applications and users
via well-defined interfaces. However, it requires interoperability over the connected components and
systems to deal with the different types of data and systems. Interoperability can be achieved by using
open and international standards. These standards, on the one hand, allow modelling and representing
the data sources and, on the other hand, provide interfacing with the distributed components that give
access to data, visualisations, and analytical tools.

7.2 Establishing cross-platform interoperability for sensor and time-series data 129

Platform 1 Platform 2 Platform 3 Database 1

Air Quality

Sensors
Smart

Meters

Solar Potential

Simulation Tool

Application 1 Application 3Application 2

Surveillance

Camera

Database 2 GPS File CSV File

Flood Simulation

Software

Moving

Objects

Events

Smart City Dashboard Visualization ToolAnalytical Tool

Figure 7.1: Illustration of heterogeneous data sources for sensor and time-series data. The requirement
is to integrate and use them in a unified way over different applications.

7.2 Establishing cross-platform interoperability for sensor and time-
series data

The interoperability over the heterogeneous sensor and time-series data can be achieved using
international standards. As discussed in section 2.2.1, there are many standard frameworks like OGC
Sensor Web Enablement (SWE) (Bröring et al. 2011), FIWARE (FIWARE 2018), BIG-IoT (Bröring
et al. 2017), VICINITY (Mynzhasova et al. 2017), and SenML (Jennings et al. 2018). Since this thesis
is based on the OGC CityGML standard, it discusses the approaches for establishing cross-platform
sensor interoperability using the OGC Sensor Web Enablement (SWE) standard suite. However,
interoperability using other mentioned initiatives can also be achieved in similar ways.

As already described before, the OGC SWE standards suite comprises well-defined information
models such as (i) SensorML (Botts 2014), which not only represents sensor description and metadata,
but also sensor calibration records and accuracy and precision information, and (ii) Observations
and Measurements (O&M) (Cox 2013) for describing real-time sensor observations. The SWE
also provides comprehensive interface models and web services such as the Sensor Observation
Service (SOS) (Bröring et al. 2012) and the SensorThings API (Liang et al. 2015) for retrieval of
sensor descriptions and observations with the help of standardised requests. In comparison to SOS,
SensorThings API is a relatively new standard, which is REST-ful, lightweight, and based on JSON.

130 7 Management of Dynamic City Models on the level of SDIs

Observations

OGC SensorML

<sensorDescription>

<!--Identifier-->

<!--Geographic position-->

<!--List of properties-->

<!--Sensor Owner-->

<!--Other metadata -->

</sensorDescription>

Sensor Description

OGC Observations & Measurements

<OM_Observation>

<!--Observation property-->

<!--Observation time-->

<!--Observation value-->

</OM_Observation>

Air Quality

Sensors

Smart

Meters

Surveillance

Camera

Moving

Objects

Figure 7.2: Interoperability of sensor and time-series data using the OGC Sensor Web Enablement
standard suite.

Such sensor web infrastructures play an essential role in establishing interoperability for heterogen-
eous sensors. They allow encoding sensor description and observations using well-defined standards
as well as accessing them using standardised interfaces. In this way, applications and tools can be
developed based on these standards without worrying about what different kinds of sensors and
interfaces they use (Figure 7.2). Multiple sensors can be attached to these infrastructures, and their
interfaces will always be common for different applications.

The following sections describe ways to achieve interoperability using OGC SWE standards.

7.2.1 OGC Sensor Observation Service

The Sensor Observation Service (SOS) is one of the oldest standards, which defines a web service
interface for querying observations, sensor metadata, as well as representations of observed features.
Further, this standard supports transactional operations allowing new sensors to be registered and the
existing ones to be removed. Also, it defines operations to insert new sensor observations depending
on the frequency of the property observed. The SOS standard defines these functionalities according to
two bindings: a Key-Value-Pair (KVP) binding and a Simple Object Access Protocol (SOAP) binding.

The SOS standard structures all the operations in three major categories:

7.2 Establishing cross-platform interoperability for sensor and time-series data 131

Core Operations (core profile)
• GetCapabilities returns the description of the service, which includes information about the interface

and available sensor data. For example, the response includes the period for which sensor data is
available, sensors that produce the measured values, and phenomena that are observed like humidity
and temperature.

• GetObservation returns the observed values, along with their metadata. The response is encoded
according to the Observations and Measurements format (O&M).

• DescribeSensor provides the sensor description. The response includes information about the
identifier, its location and the list of phenomena the sensor observes. It also includes the details of
calibration data. The response is encoded according to the SensorML standards.

Transactional operations (transactional profile)
• RegisterSensor allows to register a new sensor in a deployed SOS.
• InsertObservation can be used to insert data for already registered sensors in the SOS.

Extended operations (enhanced profile)
• GetResult provides the ability to query for sensor readings without the metadata given consistent

metadata (e.g. sensor, observed object).
• GetFeatureOfInterest returns the geoobject whose properties are monitored by sensors in Geography

Markup Language encoding.
• GetFeatureOfInterestTime provides time periods in which measurements of an observed object in

the SOS are available.
• DescribeFeatureType returns the type of the observed geoobjects (XML Schema).
• DescribeObservationType returns the type of observation (XML Schema), such as

om:Measurement).
• GetObservationById allows to query a specific observation using an identifier returned by the

service as response to an InsertObservation operation.
• DescribeResultModel provides the XML Schema of the measured value, which is particularly

important for complex measurements, such as multi-spectral data.

7.2.1.1 Tools for supporting the OGC SOS standard

52◦North GmbH is a company based in Germany, which provides a complete SOS implementation.
The implementation is free and available as Open Source software94. The software provides the
following key components:
• 52◦North SOS, a Java-based reference implementation for the OGC SOS standard. It enables users

to perform all the SOS operations in a standardised way. The implementation can very easily be
deployed using a WAR file on a web application server.

• Relational Data Model allowing creating tables and relations for managing sensor and time-series
data on top of standard relational database management systems like PostgreSQL/PostGIS, Oracle,
and MySQL.

• Timeseries API provides a REST-ful web binding to the OGC Sensor Observation Service to be
easily queried and visualised by lightweight web and mobile clients.

94https://github.com/52North/SOS

132 7 Management of Dynamic City Models on the level of SDIs

Platform 1 Platform 2 Platform 3 Database 1

Air Quality

Sensors
Smart

Meters

Solar Potential

Simulation Tool

52°°°°North Helgoland Client

Surveillance

Camera

Database 2 GPS File CSV File

Flood Simulation

Software

Moving

Objects

Events

OGC Sensor Observation Service

Import data

Figure 7.3: Interoperability of sensor and time-series data using the OGC SOS standard.

• Helgoland Client is a lightweight web application to explore, analyse, and visualise running SOS
instances via the Timeseries API. The client allows visualising sensor locations on a map as well as
time-series graphs and charts for the sensor observations. It also supports temporal zooming and
panning.

In a nutshell, the 52◦North SOS implementation provides a complete suite of applications allowing
to bring multiple sensors and their observations to a common operational framework. As shown in
figure 7.3, heterogeneous sensor observations can be imported to a running SOS server. 52◦North
already provides a free tool called SOS Importer95 for this purpose. It allows inserting sensor observa-
tions from CSV files available locally or remotely (e.g. provided via FTP/HTTP Server). Alternatively,
the schedulers such as FME Server96 and NodeRED97 can also be used to prepare workflows. These
workflows enable (i) retrieving the observations directly from a sensor platform, (ii) creating the
appropriate InsertObservation requests, and (iii) inserts them into a running SOS server in regular
intervals. Once the observations are stored in the database, the implementation provides an automated
Timeseries API interface for visualising observations in unified ways on client applications like the
Helgoland client.

95https://52north.org/software/software-projects/sos-importer/
96https://www.safe.com/fme/fme-server/
97https://nodered.org/

7.2 Establishing cross-platform interoperability for sensor and time-series data 133

7.2.2 OGC SensorThings API

OGC SensorThings API is a relatively new standard, which provides an open and unified framework
to interconnect IoT sensing devices and their real-time observations over the web. The standard is
lightweight, follows REST principles, the JSON encoding, and the OASIS OData protocol98 and URL
conventions. In addition to HTTP, it also has an MQTT extension allowing users/devices to publish
and subscribe updates from devices.

The SensorThings API specification defines two parts for handling two main functionalities. The
two profiles are (i) the Sensing part and (ii) the Tasking part. The Sensing part manages and retrieves
observations and metadata from heterogeneous IoT sensor systems in a standardised way. Like the
Sensor Observation Service, the SensorThings API is also based on the OGC Observations and
Measurements (O&M) model. The Tasking part is used for parametrising - also called tasking - IoT
devices, such as sensors or actuators.

Observation

+phenomenonTime: TM_Object
+resultTime: TM_Instant
+result: Any
+resultQuality: DQ_Element[0..*]
+validTime: TM_Period[0..1]
+parameters: NamedValue[0..*]

Thing

+description: CharacterString
+properties: JSON_Object[0..1]

Datastream

+description: CharacterString
+observationType: ValueCode
+unitOfMeasurement: JSON_Object
+observedArea: GM_Envelope[0..1]
+phenomenonTime: TM_Period[0..1]
+resultTime: TM_Period[0..1]+datastreams

0..*

+thing
1

ObservedProperty

+name: CharacterString
+definition: URI
+description: CharacterString

+observedProperty1

+datastreams0..*

Sensor

+description: CharacterString
+encodingType: ValueCode
+metadata: Any

+sensor
1

+datastreams

0..* +datastream

1

+observations

0..*

FeatureOfInterest

+description: CharacterString
+encodingType: ValueCode
+feature: Any

+observations
0..*

+featureOfInterest1

HistoricalLocation

+time: TM_Instant

Location

+description: CharacterString
+encodingType: ValueCode
+location: Any

+things

1

+historicalLocations0..*

+location

1..*

+historicalLocations0..*

+things0..*

+locations0..*

«CodeList»
ValueCode

Figure 7.4: Official UML Data Model of the OGC SensorThings API standard (Liang et al. 2015).

As shown in figure 7.4, SensorThings API defines several resources for retrieving different inform-
ation. SensorThings is a RESTful web service; hence, each entity can be created, retrieved, deleted,
and modified using different HTTP operations such as POST, GET, PATCH, and DELETE.
• Thing: A physical or a virtual object capable of being identified and integrated into communication

networks.
• Locations: Locates the Thing or the Things it associated with.

98https://www.oasis-open.org/committees/odata/

134 7 Management of Dynamic City Models on the level of SDIs

• HistoricalLocations: A set providing the current (i.e., last known) and previous locations of the
Thing with their time.

• Datastream: A collection of observations measuring the same observed property produced by the
same sensor.

• ObservedProperty: Specifies the phenomenon of an observation
• Sensor: A device that observes a property with the goal of producing an estimate of the value of the

property.
• Observation: Act of measuring or otherwise determining the value of a property.
• FeatureOfInterest: An observation results in a value being assigned to a phenomenon. The phe-

nomenon is a property of a feature, the latter being the feature of interest of the observation.

7.2.2.1 Tools for supporting the OGC SensorThings API standard

SensorThings API is widely gaining its popularity due to its lightweight nature. There are several
implementations available, allowing users to install and work with the SensorThings API.

• SensorUp Inc.99 provides a complete implementation of the SensorThings API. It makes information
from all different kinds of sensors accessible in a single platform, by using open standards to connect
the sensors. Although this implementation is not Open Source, SensorUp provides free deployment
platforms for testing and demonstration of the API.

• FROST Server100 is an Open Source server implementation of the OGC SensorThings API de-
veloped by the Fraunhofer Institut IOSB in Germany. It is a full implementation of the entire
specification including the extensions for HTTP and MQTT protocols. The application is written in
Java and can be easily deployed in Tomcat or Wildfly. The implementation is also available as a
Docker image which can be deployed in the cloud environment.

• GOST101 (Go-SensorThings) is an IoT platform written in Golang (Go). It implements the Sensing
profile (Part 1) of the OGC SensorThings API, including the MQTT extension. It also provides an
in-built dashboard application for visualising data streams in a real-time manner.

• Whiskers102 is an OGC SensorThings API framework consisting of a JavaScript client and a
lightweight server for IoT gateways (e.g., Raspberry Pi). Besides the client library, Whiskers,
provides a SensorThings server module for IoT gateways, running e.g. on a Raspberry Pi. It enables
developers to make several IoT gateways compliant according to the SensorThings API standard so
that they can easily be connected with spatial data servers worldwide that implement the full array
of OGC Sensor Web Enablement (SWE) standards.

• CGI Inc. provides a server implementation of the SensorThings API named Kinota Server103.
Kinota Server mostly focuses on Big Data applications allowing to store sensor data from an
arbitrary number of sensors collecting data up to every 500 milliseconds. Kinota allows a cloud-
friendly architecture, which is horizontally scalable and provides flexibility to choose between cloud
providers like Microsoft Azure, Amazon Web Service, and Google Cloud.

99https://sensorup.com/
100https://github.com/FraunhoferIOSB/FROST-Server
101https://www.gostserver.xyz/
102https://github.com/eclipse-archived/whiskers.js
103https://github.com/kinota/SensorThingsServer

7.2 Establishing cross-platform interoperability for sensor and time-series data 135

• SensorThings Dashboard 104 provides easy-to-use client-side visualisation of IoT sensor data
retrieved using OGC SensorThings API requests. The dashboards can be created by arranging
various types of widgets. It is a web application and can be embedded into any website.

• Grafana105, a widespread dashboard application, provides a plugin106 enabling the visualisation and
location of sensor data from running OGC SensorThings API servers.

Platform 1 Platform 2 Platform 3 Database 1

Air Quality

Sensors
Smart

Meters

Solar Potential

Simulation Tool

Grafana Dashboard

Surveillance

Camera

Database 2 GPS File CSV File

Flood Simulation

Software

Moving

Objects

Events

OGC SensorThings API

Import data

Figure 7.5: Interoperability of sensor and time-series data using the OGC SensorThings API standard.

As shown in figure 7.5, heterogeneous sensor observations can be imported to a running Sensor-
Things API server and can further be queried and visualised on common dashboard applications.
There are several importer tools provided, for example, by Fraunhofer107 and HfT Stuttgart108,
allowing to insert sensor observations from CSV files. Alternatively, schedulers such as FME
Server, NodeRED, or Mosquitto MQTT Broker can also be used to set up workflows. Once the
observations are stored in the database, they can be retrieved and visualised on dashboard applica-
tions like Grafana. The complete description of this workflow is provided in a GitHub repository
https://github.com/tum-gis/iot-frost-ecosystem prepared by the author of this thesis. This workflow

104https://github.com/SensorThings-Dashboard/SensorThings-Dashboard
105https://grafana.com/
106https://grafana.com/grafana/plugins/linksmart-sensorthings-datasource
107https://github.com/FraunhoferIOSB/SensorThingsImporter
108https://github.com/JoeThunyathep/SensorThings-Importer

https://github.com/tum-gis/iot-frost-ecosystem

136 7 Management of Dynamic City Models on the level of SDIs

is already being used in several projects such as Digital Twin Munich 109, Smart District Data
Infrastructure 110, and the Digital Twin of the Agricultural Landscape (Moshrefzadeh et al. 2020).

7.2.3 Further recommendations on working with the OGC SWE standards

Both SOS and SensorThings APIs cover a wide range of applications and are successfully used in many
industries and applications. New sensors can be attached to the implementations and observations can
be visualised in simple ways using common applications and dashboards. However, while working
with distributed smart city applications, there are a few observations:
• The implementations of all of the approaches (e.g. 52◦North SOS Server and FROST Server)

always require a data storage (e.g. a database repository) for storing sensor description and their
observations. The interfaces and web services can query and retrieve sensor data and observations
from such data storages. In a distributed environment, multiple stakeholders and sensor owners are
involved with proprietary sensors. However, in some cases, not all of the stakeholders would be
willing to inject their proprietary data into such third-party data storages in the sensor web. One
such example of a proprietary Smart Meter platform is shown in section 8.2. Moreover, the need
of always having another data storage for the sensor web will require regular maintenance of the
storage infrastructure. It will also increase complexity while moving the infrastructure to different
locations, for example, from one server to another or into the cloud.

• The implementations require importing the observations from the original platform and storing
them in their data storages. The issue with such an approach is that it leads to data redundancy.
The respective platform, such as ThingSpeak already stores observations in its own data storage.
Another challenge is that in some cases, these platforms may also be proprietary. In this case, the
owners would like to avoid storing their proprietary data in third-party data storage.

• Currently, there is no Sensor Web Enablement implementation which allows retrieving time-series
data directly from external files such as CSV files and CityGML Dynamizer files. The 52◦North
SOS Implementation and FROST Server support importing the time-series data from a CSV file;
however, the data is first imported to their data storage which again leads to the above two issues.

In such cases, it is essential to have an intermediate service which can connect to a specific data source
and encodes the observations "on-the-fly" according to the standardised OGC SWE interfaces without
worrying about the data storage and multitude of data sources (see Figure 7.6). In other words, this
intermediate service should be like a "Babel Fish" from The Hitchhiker’s Guide to the Galaxy (Adams
1979) which is a "universal translator that neatly crosses the language divide between any species".

7.3 Introduction to the InterSensor Service

This thesis provides solutions for the issues named in section 7.2.3 by introducing the lightweight
InterSensor Service. This service offers several data adapters for establishing connections to different
data sources such as IoT platforms, external databases, CSV files, Cloud-based spreadsheets, GPS
feeds, and real-time Twitter feeds. Once the connection is established, the service allows users to
retrieve the observations directly from the data source based on query parameters. Furthermore, the
observations are encoded "on-the-fly" according to the international standardised interfaces like the
OGC Sensor Observation Service and OGC SensorThings API. In this way, applications compliant to

109https://muenchen.digital/twin/
110https://www.lrg.tum.de/en/gis/projects/smart-district-data-infrastructure/

7.3 Introduction to the InterSensor Service 137

Platform 1 Platform 2 Platform 3 Database 1

Air Quality

Sensors
Smart

Meters

Solar Potential

Simulation Tool

Application 1 Application 3Application 2

Surveillance

Camera

Database 2 GPS File CSV File

Flood Simulation

Software

Moving

Objects

Events

OGC Sensor Observation Service OGC SensorThings API52°°°°North Timeseries API

Import data Import data
Establishes

connection
Retrieves

data

Encodes “on-the-fly”

to the OGC SWE standards

InterSensor Service

Figure 7.6: Motivation of developing the InterSensor Service. The implementations of OGC Sensor
Observation Service and SensorThings API require importing the observations to their
respective data storages. This thesis introduces a lightweight intermediate service named
InterSensor Service (shown in dark green) allowing connecting to the respective platform,
retrieving observations and encoding them "on-the-fly" according to the OGC SWE
standardised interfaces.

such OGC standardised interfaces can interact with these heterogeneous observations without worrying
about their data storage. The main reasons for initial development for the responses according to
the OGC SWE interfaces are as follows. First, the OGC SWE framework is completely based on
released and published Open Standards adopted internationally. When implementing something that
is not standardised, there is a high risk that the developed encodings or APIs will be abandoned,
replaced, or vanish after the project is over. Second, in distributed infrastructures, a lot of other data
and presentation services such as web maps, 3D visualisations, data with geographic coverages like
weather data, air quality, wind fields etc. are provided by Spatial Data Infrastructures (SDIs). All of
these services are also offered using OGC standards. Hence, sensor and IoT based interfaces add
another category of web service to SDIs, and it is beneficial to make the IoT service compliant to SDIs
such that they can be used with similar protocols and tools already used in the framework of SDIs.
Third, it also makes the observations suitable to be visualised and managed with the other numerous
OGC geospatial standards such as CityGML (Gröger et al. 2012). Also, no other implementation yet
provides such "on-the-fly" interfaces for international OGC SWE standards. However, the concept is
not limited to only the OGC standards. In the future, interfaces can also be developed according to
other standards/protocols such as FIWARE. The InterSensor Service is a Java-based application and
is available for free as Open Source software111.

111http://www.intersensorservice.org/

138 7 Management of Dynamic City Models on the level of SDIs

7.3.1 Architecture

As shown in Figure 7.7, the architecture comprises of three layers:

Figure 7.7: The three-layer architecture of the InterSensor Service. The service can be instantiated
for individual data sources using adapters and provides standardised external interfaces.

7.3.1.1 Data Adapters

The Data Adapter layer establishes the connection to multiple data sources. The data sources can be
the existing sensor and IoT platforms such as ThingSpeak, OpenSensors, The Things Network, and
OGC SWE standards. Users can also connect to running databases such as Oracle, PostgreSQL, and
TimescaleDB. Similarly, time-series data associated with any external files can also be used for such
connections. These external files may be CSV and Excel sheets, GPX file (or GPS feeds embedded
in a KML or CZML file), Google Fusion Tables, and CityGML Dynamizer files. These files can be
located on a local machine, remote server, or cloud environments.

7.3.1.2 Standardised External Interfaces

This layer encodes the queried observations according to well-defined interfaces such as the OGC
Sensor Observation Service (SOS) and the SensorThings API. As we learned before, the SOS interface
includes several operations for querying sensor-related data, e.g. DescribeSensor to retrieve sensor
metadata according to the SensorML standard and GetObservation to query sensor observations
according to the O&M format. This layer of the InterSensor Service encodes the queried data

7.3 Introduction to the InterSensor Service 139

"on-the-fly" according to the responses of DescribeSensor and GetObservation requests. In this
way, an application compliant to the SOS standard can interpret and visualise the data queried by
the InterSensor Service. Another interface provided by the InterSensor Service is the Timeseries
API (TimeseriesAPI 2018) , which is not an international standard but was specified by 52◦North
providing a RESTful web binding to the SOS. Using the Timeseries API interface, the sensor data and
observations retrieved using the InterSensor Service can be queried and visualised over the so-called
Helgoland web client (Helgoland 2018). Similarly, the InterSensor service also allows observations to
be encoded and queried according to the SensorThings API interface. In this way, all applications
compliant to the OGC SensorThings API (such as Grafana Dashboard) can be used for visualising the
data obtained using the InterSensor Service. The illustrations of each of the interfaces are shown in
section 7.4.

7.3.1.3 InterSensor Service

This is an intermediate layer acting as a "Babel Fish" between the data sources and the interfaces.
This middle layer allows establishing connections to the individual data sources using the specified
data adapters. Once the connection is successfully established, the service maps the data according
to the resources defined in the data model (c.f. section 7.3.2). Furthermore, multiple interfaces can
read the observations from this layer and encodes the data according to the desired interface. In this
way, the InterSensor Service can query observations from heterogeneous and distributed data sources
and map them using common and simple objects. At the same time, the service encodes observations
using standardised interfaces to analyse and visualise them together in a unified way.

7.3.2 Data Model

DataSource

+ id: int
+ dataSourceConnection: DataSourceConnection
+ coordinates: geometry[0..1]
+ timeseriesList: arrayList<Timeseries>[1..*]

Timeseries

+ id: int
+ name: String
+ description: String
+ dataSourceType: String
+ observationProperty: String
+ firstObservation: timestamp
+ lastObservation: timestamp
+ observationType: String
+ unitOfMeasure: String

Observation

+ time: timestamp
+ intValue: int[0..1]
+ doubleValue: double[0..1]
+ stringValue[0..1]
+ geomValue[0..1]
+ uriValue[0..1]
+ booleanValue[0..1]

1..*

1

1 1..*

Figure 7.8: Key resources of the InterSensor Service.

140 7 Management of Dynamic City Models on the level of SDIs

The InterSensor Service includes distinct classes to connect to the individual data sources. These
classes contain specific attributes which can be used to connect to a particular data source. After
successful connection to the data sources, the InterSensor Service forms three resources named
DataSource, Timeseries, and Observation as shown in Figure 7.8. DataSource contains all the details
of a specific data source whose link can be established using DataSourceConnection The details of
each class are mentioned as follows:

7.3.2.1 DataSourceConnection

As shown in Figure 7.9, this class allows users to specify parameters to connect to individual data
sources. It contains metadata attributes such as name and description of the data source, what type of
connection it is (e.g., a CSV file, JDBC connection, a web service, etc.). Further, it contains subclasses
to connect to different resources. ExternalFilesConnection provides connection details to external
files such as CSV, GPX, KML and CZML, and also to Cloud-based documents such as a Google
Fusion Table. DatabaseConnection contains parameters to connect to a specific database. In similar
ways, the InterSensor Service can also be used to connect to CityGML Dynamizer datasets using
DynamizerConnection.

DataSourceConnection

ExternalFileConnection

DatabaseConnection DynamizerConnection

PlatformConnection

CSV GoogleCloud

GPX KML

ThingSpeak OpenSensors

Wunderground Twitter

OGC SOS OGC STA

Figure 7.9: Representation of types of data sources which can be used by the InterSensor Service.

PlatformConnection is designed for connecting to different sensor and IoT platforms. This class
has further subclasses for each platform, for example, ThingSpeak, OpenSensors, OGC Sensor-
Things, OGC Sensor Observation Service, and Twitter. Each subclass contains specific properties
for the connection to be established. For example, in case of the SensorThings API, ThingId is
a unique ID to determine the details and metadata of a “Thing” (e.g., a weather station) such as
https://example.sensorup.com/v1.0/Things(8774755). One "Thing" can deliver different observations
(e.g. temperature, humidity etc.). Each observation can be determined by a DatastreamId such as
https://example.sensorup.com/v1.0/Datastreams(8774757).

Hence, in order to add a timeseries property from the above-mentioned data stream from the Sensor-
Things API, the minimal inputs required are: a baseURL such as https://example.sensorup.com/v1.0,
ThingId such as 8774755 and DatastreamId such as 8774757. Similarly, a valid ThingSpeak channel
consists of a baseURL, a channelID, and fieldID. By providing these details, the InterSensor Service
generates valid request calls and establishes a connection to the ThingSpeak channel.

7.4 Illustration of the concept 141

7.3.2.2 DataSource

After configuring the data source connection details, the InterSensor Service validates the connection
and instantiates three resources. DataSource creates a unique ID for the data source and contains the
details of DataSourceConnection. It also contains a list of available time-series associated with it.

7.3.2.3 Timeseries

Each DataSource can have multiple Timeseries. For example, if a data source is a ThingSpeak channel
with two time-series associated with it: (i) temperature and (ii) humidity. In this case, the InterSensor
Service creates two time-series (one for temperature and the other for humidity) with two unique
time-series IDs associated with a common data source ID. However, depending on the requirements,
it is also possible to establish a connection to a specific time-series from a data source connection (for
example, only to the temperature stream on the ThingSpeak channel).

7.3.2.4 Observations

Both DataSource and Timeseries classes contain properties to connect to the data source. By provid-
ing query filters such as a period between two timestamps, the InterSensor Service establishes the
connection to the data source, retrieves observations depending on the filter and maps them using
the Observation class. It means that for a single query, relevant observation objects are dynamically
created without storing them in a local data storage. This functionality allows encoding all kinds of
observations in a common way irrespective of the type of the data source. Such common representa-
tions of the observations can be used further by the individual interfaces allowing joint analysis and
visualisations.

The observations from a sensor can be of different data types depending on the sensor type,
scenario, use case, and application. For example, a temperature observation is a number while a single
observation from a GPS feed is a location. As shown in Figure 7.8, the Observations class allows
encoding observations with different data types and hence providing flexibility to users to encode
many possible kinds of observations.

7.4 Illustration of the concept

The InterSensor Service is a Java application based on the Spring framework112. It has been released
as Open Source software, and is available at https://github.com/tum-gis/InterSensorService. It includes
distinct classes for each of the mentioned resources. The service can be installed easily as a standalone
application using JAVA JAR commands and can also be deployed on a running server using WAR
files.

7.4.1 Adding a data source

The deployment of an instance of the InterSensor service requires establishing a data source connection
as a first step. The connection details can be provided in a configuration file. These configuration
files allow defining all the required parameters to connect to a specific data source. For example,

112https://spring.io/

https://github.com/tum-gis/InterSensorService

142 7 Management of Dynamic City Models on the level of SDIs

one publicly available ThingSpeak channel is https://thingspeak.com/channels/64242, which can be
connected to the InterSensor Service as shown in listing 7.1.

Listing 7.1: Example of configuring the data source connection to a ThingSpeak channel

{
datasource-connection:
name: "Thingspeak_Humidity_Sensor"
description: "New thingspeak connection recording Humidity"
connectionType: "Thingspeak"
observationProperty: "Humidity_Thingspeak"
observationType: "OM_Measurement"
unitOfMeasure: "Percent"
serviceName: "Thingspeak"
serviceType: "JSON"
channel: 64242
field: 2

}

It shows a DHT22 sensor located in Munich, Germany and comprises two observation properties:
Field 1 (Temperature) and Field 2 (Humidity). The configuration mentioned above allows adding a
specific property (e.g. Field 2 - Humidity) from the Thingspeak channel (with the id 64242) to the
InterSensor Service.

Listing 7.2: Example of configuring the data source connection to a Twitter channel

{
datasource-connection:
name: "TwitterConnection"
description: "Geo-Tagged Tweets around a location"
connectionType: "Twitter"
observationType: "JsonString"
unitOfMeasure: "Tweet"
serviceName: "Twitter API"
serviceType: "JSON"
baseUrl: "https://api.twitter.com/1.1/search/tweets.json"
apiKey: "**********"
apiSecret: "**********"
accessToken: "**********"
accessTokenSecret: "**********"
latitude: 51.54347 #Location of a point
longitude: -0.01652 #Location of a point
radius: 1 #Radius in km
}

7.4 Illustration of the concept 143

Some of the data sources may also require authentication parameters such as username/passwords or
an OAuth 2.0 access token. The listing 7.2 shows an example of a connection to the Twitter API, which
requires authentication parameters such as apiKey, apiSecret, accessToken, and accessTokenSecret in
order to retrieve the tweets. The Twitter API supports querying geotagged tweets using the geocode
parameter. It requires a point location (latitude, longitude) and a radius (e.g. 1 km) around that point.
Additionally, even a search keyword can also be provided; however, it can be left blank for retrieving
all the tweets. Such parameters can directly be provided in the configuration files.

Listing 7.3: Example of configuring the data source connection to a Dynamizer stored in 3DCityDB

{
datasource-connection:
name: "DynamizerConnection"
description: "Connection to a Dynamizer AtomicTimeseries"
connectionType: "Dynamizer"
databaseType: "PostgreSQL"
ipAddress: "127.0.0.1"
port: 5432
databaseName: "3DCityDB"
username: "user"
password: "**********"
dynamizerId: "building_01_dyn_01"

}

In similar ways, the InterSensor Service can also be used to connect to the CityGML Dynamizer
time-series stored in a 3DCityDB. Assuming that the 3DCityDB is installed on top of PostgreSQL,
listing 7.3 shows the configuration parameters to connect to the Dynamizer time-series. Likewise,
connections to arbitrary data sources such as external databases, different IoT platforms (for example,
OpenSensors, Weather Underground, SensorThings API) and various file systems can also be es-
tablished in more straightforward ways using the pre-defined configuration files. There might be
scenarios (c.f. section 8.2), where the time-series data is stored in simple tabulated files such as CSV.
In these cases, the configuration details can be specified accordingly by providing the file path, and the
columns for timestamps and their respective values. Additionally, the information can also be given
for other metadata such as the unit of measurement being used and geo-location of the sensor device.

Alternatively, new data sources can be added to a running instance of the InterSensor Service
using an HTTP POST request. Such requests can be performed with the help of any REST client,
cURL commands or using software systems such as "HTTP Caller" from the ETL software Feature
Manipulation Engine (FME) being very popular in the geospatial domain.

7.4.2 Automated generation of the standardised interfaces

Upon successful establishment of the connection to a data source, the InterSensor Service generates
instances of the three primary classes DataSource, Timeseries, and Observation. These three classes act
as an intermediate layer to connect to a data source, retrieve observations and encode observations "on-
the-fly" according to the standardised interfaces OGC SensorThings API and OGC Sensor Observation

144 7 Management of Dynamic City Models on the level of SDIs

Service, and the open-source Timeseries API. Upon a successful connection, the interfaces for the
standards as mentioned above with appropriate classes are automatically generated.

Assuming the server hostname is 127.0.0.1, and the port is 8080, the three classes can be accessed
and queried with the help of the following HTTP GET requests:

Listing 7.4: Illustration of the InterSensor Service resource endpoints generated for each data source
connection

#Base URL
http://127.0.0.1/inter-sensor-service/

#Accessing DataSource details
http://127.0.0.1/inter-sensor-service/datasources/{id}

#Accessing Timeseries metadata
http://127.0.0.1/inter-sensor-service/timeseries/{id}

#Accessing Observations
http://127.0.0.1/inter-sensor-service/timeseries/{id}/observations

7.4.2.1 OGC SensorThings API

The SensorThings API includes a well-defined data model (figure 7.4) with different resources such
as Thing, Locations, Datastream etc. The InterSensor Service translates the connected data source
details according to the SensorThings API data model, which can simply be accessed as follows:

Listing 7.5: Illustration of the OGC SensorThings API endpoints automatically generated for each
data source connection

#Base URL for the SensorThings API standard
http://127.0.0.1/OGCSensorThingsApi/v1.0
#Thing
http://127.0.0.1/OGCSensorThingsApi/v1.0/Things
#Location
http://127.0.0.1/OGCSensorThingsApi/v1.0/Locations
#HistoricalLocation
http://127.0.0.1/OGCSensorThingsApi/v1.0/HistoricalLocations
#Datastream
http://127.0.0.1/OGCSensorThingsApi/v1.0/Datastreams
#Sensor
http://127.0.0.1/OGCSensorThingsApi/v1.0/Sensors

7.4 Illustration of the concept 145

7.4.2.2 OGC Sensor Observation Service

In similar ways, the InterSensor Service generates the interfaces for the Sensor Observation Service
(SOS). The SOS comprises of operations such as DescribeSensor to retrieve sensor description
according to the SensorML standard and GetObservation to retrieve real-time observations according
to the Observations and Measurements (O&M) standard. For example, the observations from an
established InterSensor Service can be queried according to the O&M format by simply using the
following GetObservation request:

Listing 7.6: Illustration of the OGC Sensor Observation Service endpoints automatically generated
for each data source connection

#GetObservation Request interface generated by InterSensor Service

http://127.0.0.1/OGCSensorThingsApi/v1.0/ogc-sos-webapp/service?
service=SOS&version=2.0.0
&request=GetObservation
&temporalFilter=om:phenomenonTime,
2018-08-05T00:00:00/2018-08-05T18:00:00

7.4.2.3 52◦North Timeseries API

Listing 7.7: Illustration of the 52◦North Timeseries API endpoints automatically generated for each
data source connection

#Base URL for the Timeseries API
http://127.0.0.1/52n-rest-api/
#Services
http://127.0.0.1/52n-rest-api/services
#Stations
http://127.0.0.1/52n-rest-api/stations
#Timeseries
http://127.0.0.1/52n-rest-api/timeseries
#Offerings
http://127.0.0.1/52n-rest-api/offerings
#Procedures
http://127.0.0.1/52n-rest-api/procedures
#Features
http://127.0.0.1/52n-rest-api/features
#Phenomena
http://127.0.0.1/52n-rest-api/phenomena

The Timeseries API developed by 52◦North is a REST-ful web binding to the OGC Sensor
Observation Service. While it is not a standard, we decided to support this API, because it allows

146 7 Management of Dynamic City Models on the level of SDIs

querying and visualising sensor locations and their observations using the so-called Helgoland Open
Source web client. Like the SensorThings API, the Timeseries API also comprises of a well-defined
data model. The observations from an established InterSensor Service can be queried according to the
Timeseries API by using the standardised requests shown in listing 7.7.

The querying of the data using the standardised requests and responses allow them to be used on
the OGC SWE compliant applications. For example, by providing these requests to the Helgoland
application, the sensor information can be visualised irrespective of its platform. This is later illustrated
in figure 8.8.

CityGML datasets with

Dynamizer ADE data
3DCityDB

Importer/

Exporter

Dynamizer ADE – Atomic Timeseries

3DCityDB

CityGML Module

CityGML Viewer

OGC Web Feature Service

Access Visualisation Model Access Thematic Attributes

OGC Sensor Web Enablement

InterSensor Service

Access Dynamic Attributes

Figure 7.10: Resolving the issue of accessing Dynamizer AtomicTimeseries shown in figure 6.4 by
the InterSensor Service.

7.5 Discussions
In this way, the OGC SWE standards can be used with the extensions of CityGML models for
supporting time-dynamic properties. As discussed in chapter 6, since WFS is not suitable for retrieving
and querying time-series values, the OGC SWE standards can be used for that. In the case of sensors,
they can be attached to the OGC SWE implementations such as the OGC Sensor Observation Service
and the OGC SensorThings API. If data storage is an issue, the InterSensor Service can be used to
directly connect to the respective APIs and retrieve their observations without storing their results in a
database. The InterSensor Service is also beneficial for working with virtual sensors such as Twitter

7.5 Discussions 147

API, or time-series stored in CityGML Dynamizer files. As shown in figure 7.10, the adapters of
InterSensor Service can be developed for CityGML Dynamizer representing an AtomicTimeseries.
The time-series data and its metadata can be stored in the 3DCityDB using a new relational database
model (c.f. chapter 6). The InterSensor Service can read the Dynamizer time-series data and encodes
them "on-the-fly" according to the OGC SWE interfaces.

In another illustration (as shown in figure 7.11), a Dynamizer can have links to different types
of sensor and IoT platforms. These sensor platforms may completely be different from each other,
and may run on different APIs. The InterSensor Service can be used with such heterogeneous sensor
platforms and provide unified access according to the OGC SWE interfaces. These concepts have been
applied in real-world Smart City projects. The results are mentioned in chapter 8. As the InterSensor
Service establishes direct connections to the data source, a limitation is that it is not suitable for
performing very large queries on the source data (e.g. retrieving the readings per second for the
duration one year). It may affect the performance of the application. Hence, it is also not suitable
to perform analytics on such large datasets. Such analytics should directly be managed within the
data sources. The current implementation of the InterSensor Service is read only. The write access
could be developed too, however that would require additional data fields in the data model of the
data sources and their implementations.

CityGML datasets with
Dynamizer ADE data

3DCityDB
Importer/
Exporter

Weather

Stations

Smart

Meters

Indoor

Sensor

Environment

Sensor

Events

Heterogeneous Sensor APIs

CityGML Module

Dynamizer ADE

SensorConnection

3DCityDB

CityGML Viewer

OGC Web Feature Service

Access Visualisation Model Access Thematic Attributes

OGC Sensor Web Enablement

InterSensor Service

Access Dynamic Attributes

Figure 7.11: Resolving the issue of accessing observations from heterogeneous sensor platforms
shown in figure 6.4 by the InterSensor Service.

Part III

Proof of Concept

Chapter 8

Using Dynamic 3D City Models in Smart Cities

This chapter discusses the implementations of the developed concepts such as Dynamizers and
InterSensor Service in the context of two real-world Smart City projects: OGC Future City Pilot
Phase 1 and the Smart District Data Infrastructure Demonstrator. The chapter describes the goals
and objectives of these two projects and demonstrates how Dynamizers and InterSensor Service are
used for supporting their use cases. In the OGC Future City Pilot Phase 1, CityGML Dynamizer
AtomicTimeseries is used for representing solar potential simulation results with the 3D city model of
the district Bruz in Rennes, France. In another use case, Dynamizer SensorConnection is used for
linking with real-time sensor data with the 3D city model of the Greenwich district in London, U.K.
However, the use case requires a connection to only a single sensor device accessible using the OGC
Sensor Observation Service. The complexity arises when dealing with multiple heterogeneous sensors
and IoT platforms, belonging to numerous stakeholders and running on different platforms. Such
cross-platform interoperability of time-series data is achieved using the InterSensor Service within the
project Smart District Data Infrastructure (SDDI) Demonstrator. Such unified representations improve
decision-making in Smart City scenarios. Various demonstrations in the Queen Elizabeth Olympic
Park, London, U.K. are shown in this chapter.

Some of the results in this chapter have been presented in the published papers

Chaturvedi, K., Yao, Z. and Kolbe, T. H. (2019). ‘Integrated Management and Visualization of
Static and Dynamic Properties of Semantic 3D City Models’. In: ISPRS - International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W17, pp. 7–14.
URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W17/7/2019/
Chaturvedi, K. and Kolbe, T. H. (2019). ‘Towards Establishing Cross-Platform Interoperability for
Sensors in Smart Cities’. In: Sensors 19.3. URL: https://www.mdpi.com/1424-8220/19/3/562
Chaturvedi, K. and Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report - OGC Doc. No. 16-
098. Tech. rep. Open Geospatial Consortium. URL: http://docs.opengeospatial.org/per/16-098.html
Chaturvedi, K., Willenborg, B., Sindram, M. and Kolbe, T. H. (2017). ‘Solar Potential Analysis
and Integration of the Time-dependent Simulation Results for Semantic 3D City Models using
Dynamizers’. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences IV-4/W5, pp. 25–32. URL: https://doi.org/10.5194/isprs-annals-IV-4-W5-25-2017

https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W17/7/2019/
https://www.mdpi.com/1424-8220/19/3/562
http://docs.opengeospatial.org/per/16-098.html
https://doi.org/10.5194/isprs-annals-IV-4-W5-25-2017

152 8 Using Dynamic 3D City Models in Smart Cities

8.1 OGC Future City Pilot Phase 1

The Future City Pilot Phase 1 (FCP1) is an OGC Interoperability Program initiative in collaboration
with buildingSMART International (bSI). The pilot aimed at demonstrating and enhancing the ability
of spatial data infrastructures to support the quality of life, civic initiatives, and urban resilience.
The objective of the OGC pilot project was to demonstrate how the use of geospatial technologies
including international standards such as CityGML (Gröger et al. 2012) and Industry Foundation
Classes (IFC) (IFC 2016) can provide stakeholders with information, knowledge and insight which
enhances financial, environmental, and social outcomes for citizens living in cities. During the pilot,
a series of scenarios were set up based on real-world requirements that can serve as blueprints
for other cities to modify and apply in their context. The pilot focused on four scenarios related
to the following areas: Urban Planning, Urban Flood Mapping, Adult Social Care, and Dynamic
Resource Modelling. These scenarios were put forward by the pilot sponsors: Sant Cugat del Vallès
(Barcelona, Spain), Ordnance Survey Great Britain (UK), virtualcitySYSTEMS GmbH (Germany),
and Institut National de l’Information Géographique et Forestière - IGN (France). Scientific solutions
for the proposed scenarios were developed and demonstrated by the pilot participants: University
of Melbourne (Australia), Remote Sensing Solutions, Inc. (USA), and Chair of Geoinformatics,
Technische Universität Munchen (Germany). The pilot was considered a big success in utilising
international standards for various demonstrations. The demonstrations of the OGC Future City Pilot
Phase 1 are documented in several Engineering Reports available at https://www.ogc.org/projects/
initiatives/fcp1 and are presented in a YouTube Video https://youtu.be/aSQFIPwf2oM.

The Dynamizer concept was implemented as an Application Domain Extension (ADE) for CityGML
and used for two scenarios in this pilot. The following sub-sections describe the details of the use
cases, challenges, and solutions by using CityGML Dynamizers. The details of the solutions are
documented in an OGC Engineering Report (Chaturvedi and Kolbe 2017).

8.1.1 Integrating city object properties with real-time sensor data

One of the objectives of the pilot was to demonstrate “how dynamic city models can provide better
services to the citizens as well as can help to perform the better analysis?”. This objective was set up
by Ordnance Survey, Great Britain’s National Mapping Agency, together with the Royal Borough of
Greenwich. The goals were to demonstrate (i) how the use of dynamic data can support the provision
of services to citizens and stakeholders; (ii) how officials and those who deliver and coordinate
services can share and coordinate data more effectively and use smarter working practices; and (iii)
how agencies/boroughs can improve collaboration through the creation and use of interoperable data,
content, and insight. The pilot, in general, highlighted that the use of interoperable data, content,
and insight built upon open standards has potential to create opportunities for cross-department
collaboration and sharing, and this could be achieved through the development of platforms, portals
and data exchanges. This particular use case was aimed at developing a Digital Twin of the Greenwich
area by including the city’s static data such as buildings or houses with elderly citizens having special
needs integrated with dynamic data such as outside temperature or air humidity. Such potential
integration within council-owned assets can lead to better decision making in case of extreme weather
or other emergency scenarios matching human needs to the right housing/resources.

https://www.ogc.org/projects/initiatives/fcp1
https://www.ogc.org/projects/initiatives/fcp1
https://youtu.be/aSQFIPwf2oM

8.1 OGC Future City Pilot Phase 1 153

8.1.1.1 Creation of CityGML datasets

The 3D building objects were created according to the CityGML LoD1 specification. The dataset
includes 265,000 building objects generated using the Ordnance Survey MasterMap113 building
footprints. The dataset was further enriched by various thematic properties such as building address,
details of residents living in buildings, adult care, and housing stock information. The CityGML
documents were validated and stored in a database using the software 3DCityDB.

8.1.1.2 Working with sensors

For the demonstration purpose, the real-time observations were retrieved from a weather station
installed in the area. The weather stations are named after Intel Collaborative Research Institute
(ICRI)114 as ICRI_0001, ICRI_0002, and ICRI_0003 and measure 15 properties in the area including
temperature, humidity, wind speed, etc. The frequency of each observation is one minute. The sensor
details and observations are accessed from Intel’s platform via a Hypercat registry115 and encoded
using the SenML format (Jennings et al. 2018). The sensors and observations were brought to the OGC
Sensor Web Enablement environment for working with them in an interoperable way. In this project,
the 52◦North SOS server implementation was used, and the observations were imported to the SOS
server in regular intervals (by using the steps mentioned in section 7.2). In this way, the observations
could be accessed using standardised SOS operations such as DescribeSensor and GetObservation.

The GetObservation request looks like as follows (the request should be formed in a single line
without any linebreak and spaces):

http://127.0.0.1:8080/weather-sensors-sos-webapp/service
?SERVICE=SOS
&VERSION=2.0.0
&REQUEST=GetObservation
&PROCEDURE=ILONDON577
&OBSERVEDPOPERTY=Temp
&TEMPORALFILTER=om:phenomenonTime,

2019-10-08T00:00:00Z/2019-10-09T00:00:00Z

The above request retrieves all the temperature observations from the sensor "ILONDON577" between
the timestamps "2019-10-08T00:00:00Z" and "2019-10-09T00:00:00Z". The SOS server runs on the
machine 127.0.0.1:8080. Similarly, an example DescribeSensor request for the same sensor looks like
as follows (the request should be formed in a single line without any linebreak and spaces):

http://127.0.0.1:8080/weather-sensors-sos-webapp/service
?REQUEST=DescribeSensor
&SERVICE=SOS
&VERSION=2.0.0
&PROCEDURE=ILONDON577
&procedureDescriptionFormat=http://www.opengis.net/sensorML/1.0.1

113https://www.ordnancesurvey.co.uk/business-government/products/mastermap-topography
114https://www.icri-cars.org/
115https://www.iotone.com/organisation/hypercat/o153

154 8 Using Dynamic 3D City Models in Smart Cities

Listing 8.1: Illustration of Dynamizer SensorConnection to link to a weather station sensor running
over the OGC SOS

<bldg:Building gml:id="building1">
<core:dynamizer>
<dyn:Dynamizer gml:id="building1_Dynamizer">
<dyn:attributeRef>
<!-- Single line without linebreak and space -->
//bldg:Building[@gml:id=’building1’]
/core:genericAttribute
/gen:DoubleAttribute[gen:name=’temperature’]
/gen:value

</dyn:attributeRef>
<dyn:startTime>2019-01-01T00:00:00Z</dyn:startTime>
<dyn:endTime>2020-01-01T00:00:00Z</dyn:endTime>
<dyn:sensorConnection>
<dyn:SensorConnection>
<dyn:connectionType>ogc_sos_2.0</dyn:connectionType>
<dyn:observationProperty>Temp</dyn:observationProperty>
<dyn:uom>Celsius</dyn:uom>
<dyn:sensorID>ILONDON577</dyn:sensorID>
<dyn:baseURL>
http://127.0.0.1:8080/weather-sensors-sos-webapp/service

</dyn:baseURL>
<dyn:authType>none</dyn:authType>
<dyn:linkToObservation>
<!-- Single line without linebreak and space -->
%baseURL%
?service=SOS
&version=2.0.0
&request=GetObservation
&procedure=%sensorID%
&observedProperty=%observationProperty%
&temporalFilter=om:phenomenonTime,%startTime%/%endTime%
</dyn:linkToObservation>
<dyn:linkToSensorDescription>
<!-- Single line without linebreak and space -->
%baseURL%
?REQUEST=DescribeSensor
&SERVICE=SOS
&VERSION=2.0.0
&PROCEDURE=%sensorID%
&procedureDescriptionFormat
=http://www.opengis.net/sensorML/1.0.1
</dyn:linkToSensorDescription>

8.1 OGC Future City Pilot Phase 1 155

<dyn:sensorLocation
xlink:href="#building1"></dyn:sensorLocation>

</dyn:SensorConnection>
</dyn:sensorConnection>

</dyn:Dynamizer>
</core:dynamizer>
........
........

</bldg:Building>

8.1.1.3 Representing direct sensor links using CityGML Dynamizers

In order to link the building attribute to the running Sensor Observation Service, the Dynamizer can
be defined as shown in listing 8.1. The illustration shows a Dynamizer SensorConnection linking to
a running SOS by providing the required parameters. At the same time, the reference to a specific
attribute of the CityGML building object can also be defined, allowing to override this attribute based
on the values retrieved from the sensor connection.

Figure 8.1: Thematic attributes of a buiding including description and links for sensor based services.

Figure 8.1 shows different panels of the 3DCityDB Web-map-client Pro (Chaturvedi et al. 2015),
allowing users to visualise and interact with 3D building geometries as well as thematic attributes of

156 8 Using Dynamic 3D City Models in Smart Cities

Figure 8.2: Timeseries graph visualisation of real-time sensor observations. Screenshot taken from
the Helgoland client. The graph shows outside temperature and humidity retrieved from
the weather station on the 3rd of July 2016 overlaid within the same view.

the buildings. As shown, the GMLID is the unique ID of the building which is based on the TOID
provided by the Ordnance Survey Mastermap. The sensor-related attributes have been defined based
on the dynamizer class. Sensor_ID is the unique ID for the specific sensor. ServiceType shows the
type of service being used by the sensor (SOS 2.0 in this case). Further, LinkToSensorDescription
is the request URL for the SOS DescribeSensor operation, which returns the sensor descriptions
and metadata encoded in the SensorML format. LinkToObservation is the request URL for the SOS
GetObservation operation, which returns the sensor observations encoded in the OGC O&M format.
LinkToSensorClient is an additional generic attribute showing the URL for the sensor visualisation
client, which shows the sensor observations in the form of timeseries graphs as shown in figure 8.2.

The Dynamizer implementation is considered as a successful first attempt in integrating real-time
sensor observations with static city objects. However, the pilot focused only on one sensor data
source which could easily be brought to the OGC SWE environment. There are other scenarios which
require dealing with not only one sensor but multiple heterogeneous sensors belonging to different
stakeholders, different APIs, and different platforms. Such complex scenarios have been observed in
other projects described in section 8.2.

8.1 OGC Future City Pilot Phase 1 157

8.1.2 Enriching city object properties with solar potential simulation time-series

This use case was set up by IGN and virtualcitySYSTEMS GmbH and was based in the commune of
Bruz, located 11 km southwest of Rennes in Brittany, France and is a part of Rennes Metropole. The
main objective was to provide interactive and detailed information on solar irradiation of buildings to
the citizens and the energy planners by making sophisticated solar potential analysis. The use case
aimed at answering questions such as (i) "How many buildings have solar irradiation of more than a
specific unit (e.g. 5000 kWh)?", (ii) "Which buildings are well suited for installing solar panels?", and
(iii) "How does the irradiation for individual buildings varies through the year?".

8.1.2.1 Creation of CityGML datasets

During the project, 3D building objects were created based on the CityGML standard according to
Ref3DNat recommendations 116, which is an IGN reference specification proposed for 3D city models
in France. The CityGML dataset includes approximately 5500 building objects in the Level of Detail
2 (LoD2). The dataset was further enriched by solar irradiation values computed by a Solar Potential
Analysis tool for semantic 3D city models (Zahn 2015) developed at the Chair of Geoinformatics at
the Technical University of Munich. The simulation tool (c.f. section 2.1.2) estimates the solar power
from direct, diffuse, and global sunlight irradiation for individual months of the year.

Listing 8.2: Representation of monthly solar irradiation values as individual generic attributes in the
current version of CityGML 2.0

<bldg:WallSurface gml:id="building1_wall1">
<gen:doubleAttribute name="globalRadYear">
<gen:value>77004.913</gen:value>

</gen:doubleAttribute>
<gen:doubleAttribute name="globalRadMonth_01">
<gen:value>4293.446</gen:value>

</gen:doubleAttribute>
<gen:doubleAttribute name="globalRadMonth_02">
<gen:value>5563.502</gen:value>

</gen:doubleAttribute>
<gen:doubleAttribute name="globalRadMonth_03">
<gen:value>7010.33</gen:value>

</gen:doubleAttribute>
<gen:doubleAttribute name="globalRadMonth_04">
<gen:value>7180.839</gen:value>

</gen:doubleAttribute>
<!-- all months in a year -->
<!-- -->
<gen:doubleAttribute name="globalRadMonth_12">
<gen:value>4010.239</gen:value>

</gen:doubleAttribute>
<!-- diffuse radiation -->

116http://professionnels.ign.fr/doc/DC_Ref3DNat_1-0-2_charteIGN-1.pdf

158 8 Using Dynamic 3D City Models in Smart Cities

<!-- direct radiation --->
</bldg:WallSurface>

To be able to perform profound analyses, the values are stored as attributes in the city model in
addition to the purely visual representation of the solar irradiation values as textures. Based on the
point grid results, the different temporal resolutions for direct, diffuse and global irradiation are
computed and stored as generic attributes for each spatial aggregation level (wall, roof surfaces and
building) in the city model. Currently, the temporal classification of a simulation result parameter
is encoded in the attribute name as a suffix. For instance, an attribute named globalRadMonth_01
denotes the aggregate global irradiation estimate on a specific feature for January. Similarly, individual
generic attributes can be defined for storing the irradiation values for individual months. In the same
way, the attributes can be defined for the aggregate global irradiation estimate on a specific feature
for the entire year such as globalRadYear. The code representation in listing 8.2 is an excerpt of a
wall surface of a building in a CityGML instance file for the corresponding attributes. However, this
illustration shows that the monthly results are represented as multiple static values. The attributes are
not dynamic. The following subsections show how a Dynamizer can be used to replace the Listing 8.2.
Utilising the Dynamizer AtomicTimeseries class, it is possible to override one single static CityGML
attribute based on the dynamic solar potential simulation results.

As shown below, a building wall surface (having an id "building1_wall1") has a genericAttribute
named "globalRadMonth" representing the global irradiation value for different months. In this cse,
the attribute "globalRadMonth" is dynamic and changes its value every month depending on the
simulation results. The following sub-sections show how a Dynamizer can be used to replace Listing
8.2.

<bldg:WallSurface gml:id="building1_wall1">
<core:genericAttribute>
<gen:DoubleAttribute>
<gen:name>globalRadMonth</gen:name>
<gen:value>4293.446</gen:value>

</gen:DoubleAttribute>
</core:genericAttribute>

</bldg:WallSurface>

8.1.2.2 Representing in-line time-series using international standards

The timeseries generated by the solar potential simulation results can either be stored in external files
such as CSV or can also be represented along with its rich metadata using international standards such
as OGC TimeseriesML 1.0 (as shown in section 5.3.2). During the pilot, the simulation results were
encoded according to the TimeseriesML standard.

Listing 8.3 illustrates that the monthly simulation results for the building wall surface are represented
according to the OGC TimeseriesML 1.0 standard. In this illustration, the TimeseriesML file represents
the time-series for the simulation results using well-defined metadata attributes. The temporal extent
of the time-series is "2015-01-01T00:00:00Z" and "2016-01-01T00:00:00Z". Since the time-series is
regularly spaced, it is defined by the combination of the attributes tsml:baseTime and tsml:spacing.

8.1 OGC Future City Pilot Phase 1 159

The values indicate that starting from the timestamp "2015-01-01T00:00:00Z", the values are regularly
spaced by "1 Month". Besides, the standard also allows defining other metadata such as the unit of
measurement (UoM), quality of time-series, and interpolation type. After specifying the required
metadata attributes, the values of the time-series are defined using the tsml:point object. In the
mentioned example, the values are of type tsml:MeasurementTVP and contain values for each month
of the specific year. The advantage in using well-defined standards like TimeseriesML is that it allows
providing rich metadata and accurate description of the time-series enabling better interpretation for
users and applications.

Listing 8.3: Illustration of monthly solar irradiation values represented according to the OGC Timeser-
iesML 1.0 standard

<tsml:TimeseriesTVP>
<gml:description>
Example of RegularTimeSeries object with values every month

</gml:description>
<tsml:metadata>
<tsml:TimeseriesMetadata>
<tsml:temporalExtent>
<gml:TimePeriod>
<gml:beginPosition>2015-01-01T00:00:00Z</gml:beginPosition>
<gml:endPosition>2016-01-01T00:00:00Z</gml:endPosition>

</gml:TimePeriod>
</tsml:temporalExtent>
<tsml:baseTime>2015-01-01T00:00:00Z</tsml:baseTime>
<tsml:spacing>P1M</tsml:spacing>

</tsml:TimeseriesMetadata>
</tsml:metadata>
<tsml:defaultPointMetadata>
<tsml:PointMetadata>
<tsml:quality xlink:title="Good"/>
<tsml:uom code="kWh"/>
<tsml:interpolationType xlink:title="Continuous"/>

</tsml:PointMetadata>
</tsml:defaultPointMetadata>
<tsml:point>
<tsml:MeasurementTVP>
<tsml:value>4293.446</tsml:value>

</tsml:MeasurementTVP>
</tsml:point>
<tsml:point>
<tsml:MeasurementTVP>
<tsml:value>5563.502</tsml:value>

</tsml:MeasurementTVP>
</tsml:point>
<!-- -->

160 8 Using Dynamic 3D City Models in Smart Cities

<!-- -->
</tsml:TimeseriesTVP>

8.1.2.3 Interpreting time-series data using CityGML Dynamizers

The TimeseriesML data (as mentioned in the listing 8.3) are stored in a file named results.xml. With the
help of a Dynamizer Atomic Timeseries, it is possible to override the static attribute "globalRadMonth"
of the building wall surface "building1_wall1" based on the simulation results stored in an external
TimeseriesML file. Dynamizer can be defined for this purpose as shown in listing 8.4. This example
shows that reference to the file results.xml is given using the attribute fileLocation, which allows
interpreting the TimeseriesML file accordingly.

Listing 8.4: Illustration of a Dynamizer AtomicTimeseries representing dynamic solar irradiation
values for a specific Building Wall Surface

<dyn:Dynamizer gml:id="global_irradiation_Dynamizer">
<dyn:attributeRef>
<!-- Single line without linebreak and space -->
//con:WallSurface[@gml:id=’building1_wall1’]
/core:genericAttribute
/gen:DoubleAttribute[gen:name=’globalRadMonth’]
/gen:value

</dyn:attributeRef>
<dyn:startTime frame="#ISO-8601">
2015-01-01T00:00:00Z

</dyn:startTime>
<dyn:endTime frame="#ISO-8601">
2016-01-01T00:00:00Z

</dyn:endTime>
<dyn:dynamicData>
<dyn:StandardFileTimeseries>
<dyn:firstTimestamp>2015-01-01T00:00:00Z</dyn:firstTimestamp>
<dyn:lastTimestamp>2016-01-01T00:00:00Z</dyn:lastTimestamp>
<dyn:observationProperty>
GlobalIrradiationPerMonth

</dyn:observationProperty>
<dyn:uom>kWh</dyn:uom>
<dyn:fileLocation>
file:///C:/Folder1/results.xml

</dyn:fileLocation>
<dyn:fileType>timeseriesml_1.0</dyn:fileType>
<dyn:mimeType>application/xml</dyn:mimeType>

</dyn:StandardFileTimeseries>
</dyn:dynamicData>

</dyn:Dynamizer>

8.1 OGC Future City Pilot Phase 1 161

8.1.3 Integrated management and visualisation of static and dynamic properties

Although the Dynamizer ADE data were not managed in the 3DCityDB during the pilot, the CityGML
files can be imported and stored in the 3DCityDB using the concepts developed in Chapter 6 and
Chapter 7. As discussed in previous sub-sections, two CityGML files were created during the OGC
Future City Pilot Phase 1. One file for the Greenwich district contains Dynamizer SensorConnection for
linking to real-time sensor observations retrieved from OGC Sensor Observation Service (SOS). The
other CityGML data for the Bruz district includes the Dynamizer AtomicTimeseries for representing
the monthly solar irradiation values using the standard OGC TimeseriesML 1.0. The 3DCityDB can
be extended for the Dynamizer ADE using the ADE Plug-in Manager. As shown in figure 8.3, both
the CityGML files can be imported to the 3DCityDB and the relevant features and attribute values can
be mapped to the respective tables and relations in 3DCityDB according to the new relational data
model proposed in Chapter 6.

3DCityDB

CityGML Viewer

OGC Web Feature Service

Access Visualisation Model Access Thematic Attributes

OGC Sensor Web Enablement

Access Dynamic Attributes

CityGML Module

Dynamizer ADE

Dynamizer Core Module

Timeseries Metadata Module

Timeseries Module

Dynamizer A with
AtomicTimeseries

3DCityDB
Importer/
Exporter

InterSensor Service

Dynamizer B with
SensorConnection

Figure 8.3: Management of CityGML Dynamizer ADEs for Future City Pilot Phase 1.

Once the CityGML file is imported into the 3DCityDB, its thematic attributes can be retrieved using
the OGC Web Feature Service. Further, its time-series and dynamic attributes can be retrieved using
the OGC Sensor Web Enablement standards with the help of the Open Source InterSensor Service.
The data source connections to the individual Dynamizers can be configured as shown in listing 7.3.
Figure 8.4 shows an illustration of a CityGML Viewer (3DCityDB Web Map Client), allowing to
retrieve and visualise static and dynamic data from CityGML file in an integrated fashion.

162 8 Using Dynamic 3D City Models in Smart Cities

OGC Web Feature ServiceOGC Sensor Web Enablement

Visualizing static attributesVisualizing dynamic attributes

Dynamizer A Dynamizer B Thematic Attributes

Figure 8.4: Integrated management and visualisation of static and dynamic properties of CityGML
Dynamizers.

8.2 Smart District Data Infrastructure (SDDI)
The Smart District Data Infrastructure (SDDI) is a framework coined by (Moshrefzadeh et al. 2017)
developed within the Smart Sustainable Districts Program of the Climate-KIC of the European Institute
for Innovation and Technology (EIT). The framework focuses on district-level solutions and provides a
way to integrate heterogeneous resources such as actors and stakeholders, applications, urban analytic
toolkits, sensors and IoT devices with a Virtual District Model (VDM). The VDM is a 3D spatial
and semantic representation of the physical reality of the district. It consists of relevant objects like
buildings, streets, vegetations, water bodies and networks based on the CityGML standard. The SDDI
framework is designed based on open and international OGC standards which comprise well-defined
information models such as CityGML for semantic 3D city models and SensorML for defining sensor
and IoT devices. The SDDI framework also utilises mature and well-supported web services according
to OGC standards such as the Web Feature Service (WFS) (Vretanos 2010) to retrieve CityGML
objects and other object-based datasets, the Sensor Observation Service (SOS) (Bröring et al. 2012)
and Sensor-Things API (Liang et al. 2015) to retrieve real-time sensor observations, and (iv) the
Catalogue Service for the Web (Douglas et al. 2014) allowing registering and discovering registered
resources using standardised metadata (Figure 8.5). The use of international standards allows linking
and managing different components in a unified and stable way and across manufacturers.

One of the first implementations of the SDDI framework was developed for Queen Elizabeth
Olympic Park in London. Within the project, the London Legacy Development Corporation (LLDC117),

117https://www.queenelizabetholympicpark.co.uk/our-story/the-legacy-corporation

8.2 Smart District Data Infrastructure (SDDI) 163

Figure 8.5: Joint usage of standardised web services in the Smart District Data Infrastructure.

have identified different use cases related to the reduction of resource and energy usage, reduction
of waste, reduction of emissions, improvements of well-being, mobility, and in general concerning
efficiency.

As shown in Figure 8.6, for different use cases, the district has access to multiple sensors and IoT
devices owned by various stakeholders and partners. For example, two weather stations are located in
the park determining the real-time environmental properties such as outside temperature, humidity,
wind speed etc. These weather stations are registered with the Weather Underground platform118.
As a part of the Nature-Smart Cities program119, a network of 15 bat monitors is installed across
the Olympic Park. The program assumes that bats are considered to be a good indicator species,
reflecting the general health of the natural environment. So, a healthy bat population correlates with
healthy biodiversity in the local area. Hence, the smart bat monitors are installed in different habitats
across the park and continuously capture data on bat species and activity levels. The observations
from these bat monitors are accessed using another platform called the OpenSensors120. There are
smart meters installed in important buildings such as the Aquatic Center and the Copper Box Arena.
These Smart Meters are used for determining real-time energy consumption (e.g. electricity and
gas usage) for the buildings. These meters belong to the company Engie and are managed within a
proprietary platform called C3NTINEL 121. Similarly, a use case also requires to gather the visitor’s

118https://www.wunderground.com/
119www.naturesmartcities.com
120https://www.opensensors.com/
121https://www.c3ntinel.com/

164 8 Using Dynamic 3D City Models in Smart Cities

sentiments or experiences by studying the Twitter activity around the park. For this use case, access to
the Twitter API122 was required to retrieve real-time geo-tagged tweets around the park. For another
use case, the park administrators need to assess the impact of scheduled events in the park on the other
properties. For example, "if a football match is scheduled in the stadium, what is its impact on the
gas consumption of the stadium on that particular day?". The information of such scheduled events
is listed in external CSV files, which can also be treated as a data source with a time-series in this
context.

Figure 8.6: Implementation scenario of the InterSensor Service (ISS) establishing interoperability for
different sensor platforms and observations in the district Queen Elizabeth Olympic Park,
London.

As mentioned, these data sources are heterogeneous in a way that they (i) belong to different
stakeholders, (ii) are used for various purposes, (iii) based on different platforms and APIs, and
(iv) provide different types of observations. However, it is essential to analyse them together for
making well-informed decisions. To bring all of them within a common operational framework, the
InterSensor Service (c.f. Chapter 7) is used to connect to all of them. It allows encoding all sensors,
their descriptions, metadata and recorded real-time observations using common and mature standards,
as well as querying and analysing them using common interfaces on the OGC Sensor Web Enablement
(SWE) compliant applications.

8.2.1 Deployment options for the InterSensor Service

In the distributed working scenarios having many stakeholders, it is crucial to consider the interests
of the stakeholders and types of their platforms before connecting them to the InterSensor Service.
It is essential to determine whether (i) the platform is open or proprietary, (ii) the platform requires

122https://developer.twitter.com/en/docs

8.2 Smart District Data Infrastructure (SDDI) 165

(a) (b)

Figure 8.7: Deployment of the InterSensor Service. An InterSensor Service can be deployed (a) by a
user connecting to different data sources, as well as (b) by a stakeholder by setting up a
trusted connection within same organisation.

establishing trust by authentication mechanisms, (iii) the stakeholder is willing to share their in-
formation to all the users or only to a specific group of users, and so on. The InterSensor Service
provides several deployment possibilities to meet the interests of different types of stakeholders. The
InterSensor Service allows users to configure a data source connection by extending the existing or
a new IoT platform by using simple Java classes. A medium skilled Java programmer is capable of
implementing a new adapter within a day based on the already provided examples. It would allow
the user retrieving sensor observations from all the connected data sources. The provision of the
additional standardised interfaces by the InterSensor Service enables users to visualise and analyse the
various sensor locations and observations within an application in a homogeneous and integrated way
as shown in figure 8.7(a). Such implementations are ideal for scenarios where the involved platforms
are open and do not require establishing a trusted, i.e. a secured, connection between the stakeholder
and the user.

However, there might be scenarios when a data source, e.g. the C3NTINEL platform, is proprietary
and contains confidential and secure information. In such cases, it is necessary to establish trust
between the stakeholder and the user. The platform requires secure credentials which may be in the
form of username/password or OAuth 2.0 access tokens. Due to privacy concerns, the stakeholder
would like to avoid revealing the security credentials to the users of the InterSensor Service. In such
cases, the respective stakeholder can configure an instance of the InterSensor Service by using the
appropriate security credentials and allow real-time observations to be accessed by the standardised
interfaces (as shown in figure 8.7(b)). In this case, without revealing the credentials to a user, the
observations can jointly be analysed with other properties. In this way, it is also possible to configure
an additional layer of security facade for providing the appropriate access control. This access control

166 8 Using Dynamic 3D City Models in Smart Cities

layer allows the stakeholder to configure whether a set of users are allowed to retrieve the observations
or not. Such additional security layers can be set up on the OGC based web services by using an
approach proposed in Chapter 9.

8.2.2 Joint visualisation and analysis of heterogeneous sensor data

After establishing the connections to multiple heterogeneous data sources, the sensor data and
observations could be retrieved according to the external interfaces such as OGC Sensor Observation
Service, OGC SensorThings API, and 52◦North Timeseries API. It allows applications supporting
such OGC SWE interfaces to retrieve the sensor information being retrieved from multiple sensors
and IoT platforms.

Figure 8.8: Joint visualisation of observations being retrieved directly from heterogeneous data
sources: (i) electricity consumption from the proprietary C3NTINEL platform in pink,
(ii) Outside Temperature readings from the Weather Underground platform in blue, and
(iii) scheduled event and visitor count from a CSV file in green. Screenshot taken from
the Helgoland web client application.

Figure 8.8 shows a screenshot taken from the Helgoland application developed for visualising
and interacting with sensor data based on the 52◦North Timeseries API. The interface from the
InterSensor Service can directly be used with the Helgoland application allowing us to interact
with observations being retrieved directly from a weather station (outside temperature retrieved from
Weather Underground platform), Smart Meter located in a prominent building (electricity consumption
per minute retrieved from the proprietary C3NTINEL platform) and scheduled events in the same

8.2 Smart District Data Infrastructure (SDDI) 167

important building (visitor counts during the scheduled event retrieved from a CSV file). Such joint
visualisations help to determine the correlation between different properties, e.g., "what is the impact
of the weather or any scheduled event on the electricity consumption of a building?". Of course, such
a common standard-based API will also be very valuable for any other kind of application or analysis
tool.

8.2.3 Integrated management and visualisation of static and dynamic properties

The real-time observations from different sensor platforms can also be visualised along with static
properties of 3D city models. One use case in the project requires the demonstration of an Energy
Management System with the 3D city model of the park. As mentioned earlier, Smart Meters, running
on the Engie C3NTINEL platform, are installed in some of the buildings in the park. The administrators
required a real-time notification system alerting to the fact that an energy efficiency threshold has
been breached.

Engie C3NTINEL

OGC SOSRequest SOS

Retrieve value from SOS

Figure 8.9: Real-time energy notification system for buildings within Queen Elizabeth Olympic Park.
The green colour indicates that the total energy consumption is under threshold. The
yellow colour indicates that the energy consumption is approaching a threshold. The red
colour shows that the total consumption has breached the threshold. Screenshot taken
from the 3DCityDB-Web-Map application.

As shown in figure 8.9, the green colour indicates that the total energy consumption is below the
threshold. The yellow colour indicates that the energy consumption is approaching a threshold. The

168 8 Using Dynamic 3D City Models in Smart Cities

red colour shows that the total consumption has breached the threshold. For this demonstration, the
InterSensor Service was used to connect to the Engie C3NTINEL platform. The consumption values
can be determined by the web application in regular intervals. The screenshot shows that the values
are retrieved using the OGC Sensor Observation Service. However, using the InterSensor Service,
other interfaces such as OGC SensorThings API can also be used. Similarly, an MQTT protocol
can also be used in such scenarios for subscribing to the data stream and be notified as soon as the
specified threshold is breached.

Figure 8.10: Joint visualisation of geo-tagged tweets retrieved by the InterSensor Service along with
CityGML based 3D building objects in the district Queen Elizabeth Olympic Park,
London. Screenshot taken from the 3DCityDB-Web-Map application.

For a different use case in the Queen Elizabeth Olympic Park, it is required to visualise real-time
twitter feeds around the park to study sentiments and experience of visitors. Using the InterSensor
Service, a secure connection to the Twitter API could be established to retrieve geo-tagged tweets
around the park. The response, according to the OGC SWE interfaces, makes it suitable to be visualised
together with other OGC standards compliant datasets. One such example is shown in figure 8.10,
where the geo-tagged tweets are retrieved using the InterSensor Service and visualised along with
the 3D city objects which are represented according to the OGC CityGML standard. This figure is a
screenshot taken from the 3DCityDB-Web-Map application, which allows visualising and interacting
with large-scale CityGML based objects directly within web browsers. The 3DCityDB-Web-Map

8.2 Smart District Data Infrastructure (SDDI) 169

application is extended for this work to support the OGC SWE interfaces making the application more
dynamic. In this way, arbitrary sensor observations can be visualised along with city objects to which
they are associated with.

Figure 8.11: Joint visualisation of available rental car information being retrieved by the InterSensor
Service along with CityGML based 3D building objects in the city of Augsburg in
Germany. Screenshot taken from the 3DCityDB-Web-Map application.

Another similar implementation has been done for the city of Augsburg in Germany where the
InterSensor Service is used to connect to a proprietary car sharing application. The car-sharing
application is based on an open interface called the Interface for X-Sharing Information (IXSI) 123.
With the help of its defined API, it is possible to retrieve information about available rental cars
throughout the city in a real-time manner. The InterSensor Service is used to connect to this interface
and retrieve the responses according to the OGC SWE interfaces. The standardised response by using
the InterSensor Service made it suitable to be visualised along with CityGML based 3D objects using
the 3DCityDB-Web-Map application (see figure 8.11).

8.2.4 Easy deployment of interoperable solutions

Another use case within the project is to demonstrate the developed concepts within SDDI along with
a highly detailed visualisation models of the Olympic Park in London. For this purpose, an external

123https://github.com/RWTH-i5-IDSG/ixsi

170 8 Using Dynamic 3D City Models in Smart Cities

visualisation solution, offered by the company VU.City124, is used. The use case involves in-depth
discussions between the SDDI Demonstrator team and VU.City for identifying potential synergies,
leading to two parallel approaches. The first approach is to bring the VU.City high resolution models
on the already developed SDDI web-based platform. VU.City provides models in game engine formats
such as Unity. By bringing the VU.City model on the existing SDDI web-based platform, the high
resolution objects can be used with other thematic and real-time sensor information, as shown in
figure 8.12. For this purpose, the VU.City model is converted into the CityGML standard using FME
workbenches. It allows the models to be used with the 3D CityDB Web Map client, which is the
primary viewer for 3D city models in the SDDI Demonstrator project.

Figure 8.12: Illustration of the SDDI functionalities with highly detailed models provided by external
visualisation solution providers. The CityGML-based 3D model is converted from a
game engine format provided by VU.City. Screenshot taken from the 3DCityDB-Web-
Map application.

The second approach is to access the SDDI components by the proprietary VU.City platform.
VU.City software runs as a standalone application (using a game engine like Unity). Hence, it needs
to be installed locally on a machine. Advantages of the VU.City platform are that it can be used with
gaming applications, Virtual Reality (VR) applications, and interactive touch screens. The platform
can, thus, run some of the use cases with external park stakeholders, particularly those related to
planning and public outreach. The solutions developed within the SDDI Demonstrator project utilise
open, international, and interoperable standards. As discussed previously, the 3D city model is based
on the OGC CityGML standard. Its thematic properties can be retrieved using the OGC Web Feature
Service standard. The real-time information from numerous sensors, IoT platforms, and other data
sources can be interpreted according to the OGC Sensor Web Enablement interfaces utilising the
InterSensor Service. The standards and their respective implementations are open-source, and can

124https://vu.city/

8.2 Smart District Data Infrastructure (SDDI) 171

easily be deployed to the servers and cloud environments. In this way, the web services can easily be
interpreted by the 3rd party proprietary software systems (VU.City platform in this case). As shown
in figure 8.13, the thematic attributes of city objects can easily be retrieved by the VU.City platform.

Figure 8.13: Illustration of the SDDI functionalities with an external visualisation platform. The
thematic attributes of the CityGML model are parsed and retrieved by the VU.City
platform. Screenshot taken from the VU.City application.

Chapter 9

Securing Data Infrastructures for Smart Cities

Based on the open and international standards of the Open Geospatial Consortium (OGC), the Smart
District Data Infrastructure (SDDI) concept integrates different sensors, IoT devices, simulation tools,
and 3D city models within a common operational framework. However, such distributed systems,
if not secured, may cause a significant threat by disclosing sensitive information to untrusted or
unauthorised entities. Also, various users and applications prefer to work with all the systems in
convenient ways using Single-Sign-On. This chapter presents a novel concept for securing distributed
applications and services in such data infrastructures for Smart Cities. The concept facilitates privacy,
security and controlled access to all stakeholders and the respective components by establishing
proper authorization and authentication mechanisms. The approach facilitates Single-Sign-On (SSO)
authentication by a novel combination in the use of the state-of-the-art security concepts such as
OAuth2 access tokens, OpenID Connect user claims and Security Assertion Markup Language
(SAML). This chapter shows an implementation of the concept for the district Queen Elizabeth
Olympic Park, London, U.K. All of the implemented components are now available as Open Source
software at https://github.com/tum-gis/sddi-security-federation-framework. The implementation is
also available as an online demonstration at https://www.3dcitydb.org/demos/sddi-security-demo.

This chapter is based on published papers and is a joint effort by the authors mentioned as follows:

Chaturvedi, K., Matheus, A., Nguyen, S. H. and Kolbe, T. H. (2019). ‘Securing Spatial Data
Infrastructures for Distributed Smart City applications and services’. In: Future Generation
Computer Systems 101, pp. 723 –736. URL: http://www.sciencedirect.com/science/article/pii/
S0167739X18330024
Chaturvedi, K., Matheus, A., Nguyen, S. H. and Kolbe, T. H. (2018). ‘Securing Spatial Data
Infrastructures in the Context of Smart Cities’. In: 2018 International Conference on Cyberworlds
(CW), pp. 403–408. URL: https://doi.org/10.1109/CW.2018.00078

https://github.com/tum-gis/sddi-security-federation-framework
https://www.3dcitydb.org/demos/sddi-security-demo
http://www.sciencedirect.com/science/article/pii/S0167739X18330024
http://www.sciencedirect.com/science/article/pii/S0167739X18330024
https://doi.org/10.1109/CW.2018.00078

174 9 Securing Data Infrastructures for Smart Cities

9.1 Securing the Smart District Data Infrastructure (SDDI)

Smart City data infrastructures such as the SDDI can increase productivity and efficiencies for citizens
and governments. However, they may have a severe problem when they lack proper security mechan-
isms. Smart City solutions can facilitate access to sensitive information from different stakeholders
and citizens, and hence are vulnerable to information and privacy leakage by outside attackers (Zhang
et al. 2017). For example, Smart Meters and other types of ubiquitous sensors, pedestrian/traffic
movement, simulation databases must be considered confidential data. It would cause a significant
threat to disclose such information to untrusted or unauthorised entities in both the physical and com-
munication worlds. Another challenging issue is data sharing and access control. For example, within
a common infrastructure with various stakeholders, it is crucial to establish appropriate access policies
and enable privacy-preserving data sharing among the collaborators. It also requires proper identity
and privacy management to authorise only trusted users to access the system (Bartoli et al. 2011). As
local governments pursue Smart City initiatives realising the full potential of these digitally connected
communities, it is critical to implement security best practices by extending existing systems. Partners
and stakeholders will only conduct business if their rights, trust and security requirements are met.
There are also several other studies, such as proposed by (Cui et al. 2018; Sookhak et al. 2019;
Gharaibeh et al. 2017; Biswas and Muthukkumarasamy 2016), which highlight various security and
privacy-related issues in the context of Smart Cities.

This chapter identifies key requirements of developing and securing Spatial Data Infrastructures
(SDI) for Smart City scenarios based on the proposed Smart District Data Infrastructure (SDDI)
framework. Furthermore, it presents a novel concept for securing the data access and integration of
distributed Smart City applications, services, simulation and analytical tools, sensors and IoT devices,
and geographic information to meet the identified key requirements. The concept facilitates privacy,
security and controlled access and provides ways to authorise and authenticate these distributed
components without the need for repetitive logins. At the highest level, the approach combines the
use of modern standards such as OAuth2 (Hardt 2012) access tokens, OpenID Connect user claims
(Sakimura et al. 2014) and Security Assertion Markup Language (SAML) (Cantor et al. 2005) based
Single-Sign-On (SSO) authentication. The combination of such best practice security standards also
enables easy integration with external authentication services such as publicly accessible providers
like Google and Facebook as well as with Academic Federations (allowing the solutions to be used
by academic users). For modern, security-aware spatial data infrastructures, this is a state-of-the-art
concept.

The chapter also shows a demonstration implementation of the concept for a specific scenario
carried out within the district Queen Elizabeth Olympic Park in London. The demonstrator application
is conformant to the EU General Data Protection Regulation (GDPR) 125 and allows to link different
components such as 3D buildings with semantic information, weather stations, and Smart Meters in
open, standardised and secure ways. This demonstration application supports individual access rights
for different types of user groups including (i) public Google account, and (ii) academic users from
universities and research institutes. It allows handling of various identity providers.

As described in Chapter 8, since SDDI is a complex distributed system involving heterogeneous
resources, this demonstration aims to establish a proper security layer for all the components to ensure
authorisation, authentication and Single-Sign-On capabilities. Such security layer enables secure and

125https://eur-lex.europa.eu/eli/reg/2016/679/oj

https://eur-lex.europa.eu/eli/reg/2016/679/oj

9.2 Gathering requirements for securing the infrastructure 175

Figure 9.1: Illustration of secure and controlled access to the distributed applications and services
within the SDDI framework.

controlled access to the distributed applications and services, as shown in figure 9.1. For illustration
purposes in a simplified scenario, only a small subset is shown as follows:

• Virtual District Model based on the CityGML standard. It comprises of semantic 3D building and
street models with spatial and thematic information stored in a 3D geodatabase.

• Web Feature Service allowing users to retrieve as well as modify objects from the Virtual District
Model using interoperable interfaces.

• Sensor Observation Service 1 retrieving real-time observations from a weather station installed in
the park. The weather station records properties such as temperature, humidity, wind speed etc.

• Sensor Observation Service 2 retrieving real-time observations from Smart Meters installed in
important buildings such as the stadium and the Aquatic Center. The Smart Meters are managed
within a proprietary platform of the company Engie and record electricity and gas consumptions for
the buildings.

• 3DCityDB Web Map Client is a web-based front-end for the 3D City Database for 3D visualisation
and interactive exploration of large semantic 3D city models in CityGML.

9.2 Gathering requirements for securing the infrastructure

Before establishing such security layers, this chapter identifies requirements which are critical for
securing the SDIs for Smart Cities. The focus of this chapter lies in the intersection of the fields
Smart Cities, Spatial Data Infrastructures (SDI) and Security (see figure 9.2). Hence, the significant
requirements considered for this study are as follows:

176 9 Securing Data Infrastructures for Smart Cities

Figure 9.2: Venn Diagram illustrating the key focus of the research contribution.

9.2.1 Smart Cities

Requirement SR1: Different stakeholders. Typically, Smart City infrastructures involve distributed
systems which may have different stakeholders or end-users such as citizens, municipalities, utility
and transportation service providers, real estate firms etc. These stakeholders are usually the group of
people and organisations for which the infrastructure offers services and applications. The infrastruc-
ture must consider the needs and requirements of these different stakeholders, and as a consequence,
not all data can and will be stored/maintained within a single system/platform.
Requirement SR2: Distributed applications. It should be possible for stakeholders to register and
interact with distributed applications. These applications usually implement the logics according to
specific tasks and make use of different sets of data, sensor observations or simulation results involved,
for example, City Dashboards, Energy Portals, Mobility Applications, and Disaster Management
Portals.
Requirement SR3: Simulation/Analytical Tools. There may be simulation tools or analytical
toolkits, which are software components developed for specific scenarios. These scenarios may
include, for example, estimating the energy demands or potentials of solar energy production for all
buildings, simulating road traffic and pedestrian flows, or performing noise propagation or flooding
simulations. The results of these simulations can not only be provided to the applications but also be
used for planning and forecasting. Furthermore, the results of one simulation can be used by multiple
applications, or one application can use results from various simulations. Hence, such simulation tools
should be registered and operated separately from the applications.
Requirement SR4: Sensors and IoT. Ubiquitous sensors and IoT devices are essential parts of several
Smart City infrastructures providing detailed information by (real-time or near real-time) sensing the
environment. These sensors can be stationary such as Smart Meters and weather stations. Some of the
sensors can also be mobile such as moving sensors for measuring air quality. It is essential to register
such sensors and IoT devices in the infrastructure enabling their observations to be integrated with
applications or analytical tools.
Requirement SR5: Inclusion of geographic information. Nearly all Smart City concepts focus
on mainstream Information and Communication Technologies (ICT) such as the Internet of Things
(IoT), Big Data, Cloud Computing, and so on. However, it is also important to consider geographic

9.2 Gathering requirements for securing the infrastructure 177

information as a key element. Many of the simulations or planning scenarios for the cities need to
work with models of the physical reality. Hence, semantic 3D city models (Kolbe 2009) act as an
important complementary asset. These 3D city models represent both spatial and semantic information
of physical objects such as buildings, roads, water bodies etc. Furthermore, semantic 3D city models
provide a means for interactive and spatio-semantic queries and aggregations. It is important to
consider other geographic data such as maps and coverages too, but also Building Information Models
(BIM) (Borrmann et al. 2015).

9.2.2 Spatial Data Infrastructures (SDI)

Requirement SR6: Interoperability. To deal with the different and heterogeneous data, applications,
sensor and IoT devices, and simulation tools within a common operational framework, the interoperab-
ility over various connected components and systems is essential. Interoperability facilitates accessing
and retrieving data, services, and applications by using standardised and, therefore, stable interfaces.
Requirement SR7: Open International Standards. The information models and interface models
must be based on Open Standards adopted internationally, for example, standards issued by the Open
Geospatial Consortium (OGC). In the case of non-standardised Open APIs and models, there is a high
risk that the encodings/APIs will be abandoned, replaced by, e.g. big Internet Companies, or vanish
after the project that suggested them is over.
Requirement SR8: Linked Components. The use of standardised interfaces such as the ones issued
by the OGC also allows managing and accessing different components linked to each other. Dealing
with such linked components is also an essential requirement for a distributed system. For example, if
a Smart Meter is installed in a building, a web service (such as the Web Feature Service) can retrieve
the building’s semantic information. This semantic information may further include a link to the
running web service (such as the Sensor Observation Service) of the Smart Meter, which is measuring
real-time gas consumption.

9.2.3 Security

Requirement SR9: Authentication and Authorisation. In a complex distributed infrastructure, the
most basic requirement is to protect access to the data and functionalities. Thus, authentication and
authorisation of users play an essential role. The term authentication means that an individual identifies
himself/herself unambiguously. Typically, a username and password are used for authentication.
Authorisation describes the process of checking whether a user has access rights to a specific resource.
However, it is not practical to use different login credentials for various resources.

Hence, modern standards, such as OAuth2 (Hardt 2012) are used to secure applications. OAuth2
allows enabling access delegation from the resource owner (i.e. user) for a trusted application to
access the protected user resources without disclosing the master credentials. It leverages access
tokens for the actual access delegation aspect. OAuth2 is considered to be state-of-the-art for web and
mobile applications and is supported by numerous big players of Web 2.0 (e.g. Twitter, Google, and
Facebook). However, authentication and exchange of user assertions are out of scope for the OAuth2
framework.
Requirement SR10: User Information. Another important aspect is user privacy. The OpenID
Connect community standard (Sakimura et al. 2014) has been designed as an extension to the
OAuth2 framework to be able to link user assertions (user claims) with access tokens. The granularity
of personal information included in the claims, linked to an access token, depends upon the user’s

178 9 Securing Data Infrastructures for Smart Cities

approval, which is a crucial aspect of being compliant with user privacy. Moreover, the implementation
using OpenID Connect allows the easy integration with external authentication services such as Google
and Facebook making the application suitable for usage involving plenty of users worldwide.
Requirement SR11: Single-Sign-On. In the cases of distributed systems where resources are linked,
setting up a security facade for each component is cumbersome. It is not user friendly to authenticate
every interface separately. Thus, it is an essential requirement to have the Single-Sign-On (SSO)
functionality, which allows a user to access different applications and services without the need for
repetitive logins.

An example of achieving Single-Sign-On is by the unique identification of users in a distributed
system, for example, as implemented in Academic Federations like eduGAIN126. The eduGAIN
federation is based on the international standard Security Assertion Markup Language version 2
(SAML2) (Cantor et al. 2005), which is an OASIS standard to define assertion structures and protocols
for exchanging assertions about users between trusted entities in a distributed system. The asserting
party is the Identity Provider (IdP), and the relying party is the Service Provider (SP). Attribute
assertions allow exchanging personal information about a user and authorisation assertions can
describe the access rights of a user on a given resource.
Requirement SR12: Single-Sign-On with delegated authorisation. Modern standards such as
OAuth2 already support delegated authorisation allowing a trusted application to access a protected
resource without disclosing the master credentials. However, to achieve Single-Sign-On, federated
authentication is required, which is not supported by the OAuth2 framework. Hence, it is essential
to integrate OAuth2 with the popular standards for federated authentication such as SAML2 and
OpenID. An extension to the OAuth2 framework is already available as OpenID Connect user claims,
allowing easy integration with authentication services like Facebook and Google. However, large
Academic federations such as eduGAIN are based on SAML2. Hence, it is necessary to combine
SAML2 authentication with the OAuth2 Authorisation Server.

This powerful combination enables to operate an OpenID Connect compliant Authorisation Server
to honour the needs for modern security and web applications but also create and maintain an identity
federation as operated in Academic Federations worldwide each day with hundreds of millions of
users.

To the best of the knowledge of the author of this thesis, no research work fulfils all the requirements
listed previously. A comprehensive literature review for this aspect is already given in the published
paper (Chaturvedi et al. 2019). The modern standards such as SAML, OAuth, and OpenID are being
used in different studies for authorisation, authentication, and Single-Sign-On capabilities. However,
it is equally crucial to ensure that such security mechanisms can be established for distributed and
heterogeneous resources in a unified and standardised way.

9.3 Demonstration scenario for securing the SDDI framework

Based on the requirements listed in the previous section, this chapter focuses on securing the Smart
District Data Infrastructure (SDDI) framework implemented in the Queen Elizabeth Olympic Park,
London. In this scenario (as shown in figure 9.3), all the services and resources are combined in
an integrated application within the 3DCityDB Web Map Client (Yao et al. 2018). The building
objects of the Olympic Park are represented according to the CityGML standard. When the user
clicks on a building, its thematic data such as the building name and address are retrieved from

126https://edugain.org/

https://edugain.org/

9.3 Demonstration scenario for securing the SDDI framework 179

the Web Feature Service (WFS). The WFS response also includes direct links to both the Sensor
Observation Services giving access to Smart Meters and weather stations. For accommodating the
security demonstration scenario, the infrastructure involves multiple distributed resources which are
linked together in different ways.

Figure 9.3: Representation of chaining of distributed resources in the SDDI framework. Image taken
from (Chaturvedi et al. 2019).

This concept aims to fulfil the security requirements [SR9-SR12] by providing
• security layers to all of the resources, so that no resource can be accessed without proper authentica-

tion and authorisation,
• federated login and Single-Sign-On access using different Identity Providers. This functionality

is demonstrated by showing that users can log in using academic identity federations (such as
eduGAIN service supporting approximately 2758 university identity providers worldwide) and
public accounts (such as Google accounts) to all the secured resources hosted on distributed systems
without repetitive logins, and

• access control to all the secured resources. Users can log in via two different classes of identity
providers: (i) a valid public account (e.g. Google) and (ii) a valid academic organisation account
linked to eduGAIN. In the scenario, if a user is not logged in, he or she can view the 3D models
but cannot connect to any further resource. Users logged in using the Google Identity Provider
can access all resources except Sensor Observation Service 2 for Smart Meters. In contrast, users
logged in using an eduGAIN based research organisation’s Identity Provider will be able to access
all resources. In the illustrations, users from the Technical University of Munich (TUM), also linked
to eduGAIN, can access all the resources (see figure 9.4).

180 9 Securing Data Infrastructures for Smart Cities

Figure 9.4: Illustration of the security demonstration scenario showing that users identified by differ-
ent identity providers can access the distributed components. Green arrows mean "Access
Granted" and red dashed arrows mean "Access Denied" to specific components.

9.4 Implementations
Figure 9.5 gives an overview of the security demonstrator architecture. For simplicity, the figure
illustrates only the relevant components including (i) the 3DCityDB Web Map Client, (ii) Web Feature
Service, (iii) Sensor Observation Service 1 for a weather station, and (iv) Sensor Observation Service
2 for a proprietary Smart Meter platform. However, other applications and web services can also be
secured by using the steps mentioned in the following sub-sections.

9.4.1 Implementing Single-Sign-On

SAML2 specifies a web browser Single-Sign-On (SSO) Profile which involves an Identity Provider
(IdP) and a Service Provider (SP). As described by (Cantor et al. 2005), the session initiation is
triggered by the Service Provider (SP) based on HTTP redirects. This way of initiating a session
is limited to native web browser interactions. It is important to note that redirects require that a
session cookie is transported with the interactions. The first request from the client to the SP creates a
temporary session which gets referred to in a cookie. It is also essential that this cookie is sent on the
second redirect to ensure that the SP can create a real session and issue another cookie, referencing
the full session. Afterwards, the session is referred to by all requests initiated by the web browser that
contains the session cookie.

As we know, the 3DCityDB Web Map Application is written in the JavaScript programming
language. Trying to adopt this SAML2 protocol behaviour for a JavaScript-based web application may
result in a conflict with the Same Origin Policy. This policy safeguards the content loading in a web

9.4 Implementations 181

Figure 9.5: An overview of the security demonstrator architecture. The notations "A", "B" and
"C" in the figure refer to sections 9.4.1, 9.4.2 and 9.4.3 respectively. Image taken from
(Chaturvedi et al. 2019).

browser by intercepting network requests initiated by JavaScript and XMLHTTPRequest object or
Asynchronous JavaScript and XML (AJAX). Regardless of the technology, the web browser verifies
the conditions under which the network request is initiated based on the W3C Cross-Origin Resource
Sharing (CORS) (Kesteren 2014) recommendation. Without going into details, any JavaScript applica-
tion gets loaded from a web server of which its hostname is considered the origin of the code. If a
network request gets initiated to another hostname which is not in the same domain or sub-domain,
the receiving web server must reply with particular HTTP headers. According to the W3C CORS
recommendation, the origin changes to the literal ’null’ after any HTTP redirect. It means that for
the SAML2 session initiation via the web browser SSO Profile, the redirect ending at the IdP will
carry origin ’null’. It disables the intended use of that HTTP header, i.e. determining the trust of the
JavaScript code based on the hostname from which the code is loaded. Based on ’null’, the typical
whitelisting can no longer be applied. Therefore, the IdP blindly trusts the redirected request, which it
should not. At this point, the interaction to initiate a new session with the SAML2 SP fails to assume
a proper validation of the origin.

The OAuth2 framework general protocol (Hardt 2012) suggests that the session initiation is
different compared to SAML2. In particular, no two-way HTTP round-trip is required to instantiate
a new session. A session is referred to via an access token. The application does interact with the
Authorisation Server to obtain an access token leveraging one of the different protocols (grant types)
that are designed to work well with the web browser Same Origin Policy and web applications. Once
the application has received an access token, it can be used for any calls to the protected resources
hosted at the Resource Servers.

9.4.2 Linked Protected Data

As shown in figure 9.4, the major interaction takes place between the user and the 3DCityDB Web
Map Client. The client loads the CityGML based 3D city model and renders the information. Also,

182 9 Securing Data Infrastructures for Smart Cities

the application extracts URLs to additional resources (such as the Web Feature Service and Sensor
Observation Services), linked from the CityGML response. For example, the 3D building model data
contain the links to those sensor services giving access to the sensors operated within the building.
However, these links to other resources are protected. Such a connection cannot contain any security
context as that would be insecure. Therefore, it must either be the application or the web browser that
can add information to the link when it is followed. At this point, it is crucial to know whether the
web browser or the web application is going to follow the link. The first link is from the rendered
3D model to additional information about each building. This information is available to the user by
clicking on each building. The 3DCityDB Web Map Client initiates the network call, which causes
the web browser to inspect the call towards CORS. This is the first fact to note when implementing
the security to the Web Feature Service (WFS).

9.4.2.1 Securing the WFS Interface

The securing of the WFS must leverage OAuth2 access tokens as the 3DCityDB Web Map Client
follows the link to fetch the information from the WFS. Therefore, the WFS must be protected as an
OAuth2 Resource Server (RS) accepting OAuth2 access tokens. The interface behaviour for an RS is
defined in the OAuth2 Bearer Token Usage (Jones 2012). According to that specification, the RS must
accept the access token either as part of the URL (parameter access_token) or as part of the HTTP
header named Authorisation using the scheme ’Bearer’. After the access token is isolated from the
incoming request, the RS must validate the access token. Because access tokens are of type bearer, the
RS must request validation by the Authorisation Server (AS) that issued the token. For supporting
this interaction in an interoperable fashion, the AS for this prototype implements the OAuth2 Token
Introspection (Richer 2015).

Assuming the RS has successfully verified the access token, it could undertake access control based
on the token metadata received from the introspection endpoint or based on the user information that
the RS can request from the OAuth2 assuming it is OpenID compliant. For the implementation of this
prototype, no further access control is implemented. It means that the detailed building information
from the WFS can be obtained only by the authenticated users.

9.4.2.2 Securing the SOS Interface

The next level of linking is based on the links included in the WFS response: the FeatureCollection.
Each geographic feature contains detailed information about a building including different types of
links, but all are pointing to the protected endpoints. For this level of linked data, the URIs can resolve
to different resource types. The first kind of link would return a web application which is used to
visualise sensor readings. The second kind of link would return the responses of sensor description
and sensor observations in simple XML format.

The link that refers to the sensor visualisation application (Helgoland Client, in this case) must be
resolved directly by the web browser. Therefore, the SAML2 session initiation must be implemented
on this endpoint. The link that refers to sensor observations connects to an OGC SOS initiating
the GetObservation operation. The SAML2 session management is also sufficient for this sensor
visualisation application, as it is loaded from the same hostname and path as the actual sensor readings.
In the general case, where the sensor visualisation application and the sensor readings are not hosted
on the same machine, the session and access management can be based on OAuth2 access tokens.

9.4 Implementations 183

The access controls were implemented based on the login origin of the user. As described earlier,
when a user is logged in using a Google account, he or she can access only the sensor reading from
Sensor Observation Service 1. When the user is logged in using an arbitrary eduGAIN account
(like the user account from TU Munich), he or she can access sensor readings from both the Sensor
Observation Services.

9.4.2.3 Modifying the Web3D Application

Based on the chosen security for the WFS and SOS interfaces, the 3DCityDB Web Map Client need
only to be enabled to use OAuth2. It can be achieved by integrating any open source library that
supports OAuth2. The library chosen in this work is HelloJS127. The application is registered to enable
the 3DCityDB Web Map Client to obtain access tokens from the Authorisation Server. Since the
application is considered ’non-confidential’, it must leverage the OAuth2 Implicit Grant.

9.4.2.4 Modifying the Sensor Visualisation Application

This application was not modified, as SAML2 session instantiation is implemented with the SOS
interfaces. As discussed, the session initialisation is done by the web browser itself following the
SAML2 SSO web browser profile when loading the application. Once the session is established, the
application is loaded and can then fetch sensor readings from the same SOS leveraging the existing
session referenced by the HTTP cookie.

9.4.3 Setting up the core security services

In addition to adapting the web application and the services to support the required security interfaces,
there need to be ’core’ services as illustrated in fig. 9.5. First of all, there needs to be Identity Providers
to allow the user to log in with, e.g. Google and TUM. For the latter one, the TUM Identity Provider
registered with eduGAIN is used. The IdP for supporting Google login is a SAML2 gateway that is
based on a standard SimpleSAMLPHP128 deployment which is Open Source. In case there is more
than one IdP, an IdP Discovery Service must implement the SAML2 IdP Discovery Profile. To support
Single-Sign-On, the central Discovery Service129 is used. A Coordination Centre is also created
that maintains and signs the SAML2 metadata representing this mini federation. The IdP bridge is
registered as an application with Google in order to work with the Google IdP bridge.

The protection of the SOS is based on the Shibboleth Service Provider implementation that is open
source and also commonly used in the Academic Federations around the world.

All of the deployments for creating the federation are Open Source and are available at the
GitHub repository https://github.com/tum-gis/sddi-security-federation-framework. The basic OAuth2
/ OpenID Connect library, available from Github (Shaffer 2018), was extended to support the SAML2
federation login.

Setting up the Resource Server to protect the access to the WFS, a typical web server stack is used:
the Internet-facing web server is an Apache that is also configured to support HTTPS. It is important
to note that all communication is via HTTPS. The actual services got deployed on Tomcat, the defacto
default hosting for Java-based services beside Jetty and JBoss. For protecting the service endpoints, a

127https://github.com/MrSwitch/hello.js
128https://simplesamlphp.org/
129https://www.switch.ch/aai/support/tools/wayf/

https://github.com/tum-gis/sddi-security-federation-framework

184 9 Securing Data Infrastructures for Smart Cities

simple PERL handler is created that implements the OAuth2 Bearer Token Usage (Jones 2012). The
handler, loaded as an Apache module, intercepts service requests and interacts with the Authorization
Server to validate the received access token.

Finally, the support for the W3C CORS recommendation is implemented as another module inside
the Apache 2.4 deployment. For returning HTTP headers to support CORS, the whitelisting for the
JavaScript code is not used. The reason is that the service endpoints are protected as OAuth2 Resource
Servers and can only be accessed with a valid access token. However, one must keep in mind that an
HTTP request with submitting the access token as an HTTP Bearer header causes the web browser to
execute a so-called pre-flight request to check the response headers before actually submitting the
intercepted request. The pre-flight request is an HTTP OPTIONS request, and even though a GET and
POST request requires an access token, the Options request does not. This specific CORS behaviour
was configured into the Apache webserver.

9.5 Illustration of the Concept

Based on the methodology and implementations described in the previous section, the security and
access control layers are successfully set up on all implemented resources. The secured interfaces
are developed for the 3DCityDB Web Map application, the 3DCityDB Web Feature Service (WFS),
Sensor Observation Service (SOS1) for the weather station, and Sensor Observation Service (SOS2)
for a proprietary Smart Meter platform. The additional security facades allow ensuring that (i) no
resource can be accessed without proper authentication, (ii) federated login and Single-Sign-On access
to all the secured resources hosted on distributed systems with one login, and (iii) access control with
proper rights, roles, and grants to all the secured resources.

Figure 9.6: Selection of the appropriate Identity Provider to access the resources.

The Security demonstrator described in this chapter is publicly available 130. The application utilises
the powerful combination of SAML2 and OAuth2. It enables to operate an OpenID Connect compliant
Authorisation Server to login using valid public accounts (in this case, Google). At the same time, it

130www.lrg.tum.de/en/gis/projects/smart-district-data-infrastructure/#c604

www.lrg.tum.de/en/gis/projects/smart-district-data-infrastructure/#c604

9.5 Illustration of the Concept 185

also creates and maintains an identity federation as practised in Academic Federations worldwide (e.g.
organisational accounts through eduGAIN service) as shown in figure 9.6.

The login access can then be provided based on required authorisation. When a user logs in using
a specific credential, based on the valid authentication and authorisation rules, access tokens are
generated for the protected services. The Resource Server requests validation by the Authorisation
Server that issued the token. Upon successful validation of the access token, appropriate access
control is given based on user information that the Resource Server requests from the OpenID
Connect User Information endpoint which is a part of the OAuth2 Authorization Server operated
for the demonstration. In the case of the WFS, there is no further access control, which means any
authenticated user can obtain building information from the WFS. In the cases of SOS1 and SOS2,
access controls were implemented based on the login origin of the user.

According to the proposed scenarios, the demonstrator application showcases three scenarios:
1. When a user is not logged in, he/she can view the 3D city model, but cannot connect to the

protected WFS and further SOS1 and SOS2 to retrieve thematic and sensor data.
2. When a user is logged in using a valid Google account, he/she can access the WFS and SOS1

(which is a service running on a public weather station). However, SOS2 (which is a service
running on a proprietary Smart Meter) is not accessible to this user group.

3. When a user is logged in using an organisational account (in this case any account supported
through eduGAIN service), he/she can access the WFS as well as both SOS1 and SOS2 as shown
in figure 9.7.

Figure 9.7: SOS2 can only be accessed by the user with a valid eduGAIN login.

Upon successful validation of credentials and access control roles, the user can connect to the
respective resource and retrieve the information. In this way, the application fulfils the Requirements
[SR9-SR12]. It ensures (i) that no resource can be accessed without proper authentication, (ii) federated
login and Single-Sign-On access to all the secured resources hosted on distributed systems with one
login, and (iii) access control with proper rights, roles, and grants to all the secured resources can be
performed.

186 9 Securing Data Infrastructures for Smart Cities

Besides, the application is compliant with the new EU General Data Protection Rights (GDPR)
to regulate the processing of personal data. The amount of personal data that can be collected by
the application can be configured while registering the application at the Authorisation Server. It is
possible to display the amount of personal data collected by the application by (i) registering with a
particular level, and (ii) by choosing a login for a specific level. Personal data is only processed after
the user’s approval.

Chapter 10

Conclusions and future work

10.1 Thesis Summary
The work described in this thesis successfully extends current generation semantic 3D city models by
providing explicit support of various kinds of time-dependent properties. The thesis, first of all, reviews
multiple application domains of semantic 3D city models and identifies seven key requirements for
temporal extensions of city object properties. The research classifies the listed requirements according
to two broad categories: slower changes and highly dynamic changes. Accordingly, two new concepts:
(i) the Versioning concept, and (ii) the Dynamizer concept are introduced. The Versioning concept
deals with slower changes and allows representing historic and parallel versions of 3D city models.
The Dynamizer concept deals with highly dynamic changes and allows representing as well as linking
city object properties with numerous sources of highly dynamic time-dependent properties, including
real-time sensor and IoT devices. The Dynamizer concept also provides a method for injecting
dynamic variations of city object properties into the static representation making city objects truly
dynamic. Considering the practical requirements, the thesis provides a complete "ecosystem", which
not only allows extending semantic 3D city models using the conceptual data models, but also offers
ways to (i) implement, (ii) manage, and (iii) use them in the applications. For this purpose, the thesis
is divided into three separate parts.

Part I provides the in-depth details of the Versioning concept (chapter 4) and the Dynamizer
concept (chapter 5). The discussions include the details of the UML models incorporating the listed
requirements and several illustrations of how these concepts can be represented within CityGML
files. Part II describes novel approaches for managing the extended 3D city models within a database
management system (in this thesis, the open-source software 3DCityDB is used). For storing the
time-series and time-series metadata associated with the Dynamizers, a new extension of the relational
data model for the 3DCityDB is introduced (chapter 6). For the interoperable access and retrieval
of the time-series and sensor observations associated with Dynamizers, a new concept called Inter-
Sensor Service is introduced (chapter 7). This services retrieves time-series data (either stored in the
3DCityDB or managed using arbitrary sensor platform) and translates them "on-the-fly" according to
the standardised interfaces such as OGC Sensor Observation Service and OGC SensorThings API.
The successful demonstrations of the CityGML Dynamizers and the InterSensor Service are applied
in real-world Smart City projects such as OGC Future City Pilot Phase 1 and the Smart District
Data Infrastructure (SDDI) Demonstrator as shown in Part III. The results are discussed in chapter 8.
Furthermore, chapter 9 highlights the importance of security in distributed Smart City projects (such
as SDDI) and demonstrates a scenario of how individual components including the 3D city model

188 10 Conclusions and future work

and all the sensors can be accessed using proper authorisation, authentication with Single-Sign-On
functionality.

The concepts presented in the thesis are developed for the CityGML standard. However, they can
also be applied to other GML-based application schemas including the European INSPIRE data themes
and national standards for topography and cadasters like the British Ordnance Survey Mastermap or
the German cadaster standard ALKIS. The concepts can also be applied to other standards such as
IFC and IndoorGML.

10.2 Discussion of the results
After this general overview summarising the individual contributions achieved in each chapter, this
section presents answers to the research questions and hypotheses stated in section 1.3.

Question 1.1: What are time-dependent properties in the context of semantic 3D city models?

Semantic 3D city models allow defining classes and relations to represent each topographic object for
its geometrical, topological, thematic, and appearance properties. This thesis highlights that any such
property, which changes with time, becomes a time-dependent property. For example, as described
in section 3.1, a building may undergo several transformations, which may result in changes in (i)
geometrical or spatial properties such as the addition of a new floor in the building, (ii) topology
within a building (e.g. division of a big room into two smaller rooms by the creation of a new wall),
(iii) appearance of a building (such as materials, textures, and colours on the wall and roof surfaces),
and (iv) semantics of a building (e.g. changing the building’s type from residential to commercial).
Furthermore, this section outlines that these changes may occur in different frequencies. Some of the
changes can be sudden. For instance, changing the owner of a house is a sudden event. On the other
hand, changes may also be gradual and progressive. The demolition of a building is a gradual but
comparatively shorter event. But the construction of a Gothic cathedral is a very long event that lasts
several centuries. Similarly, historical building deteriorations may take centuries or millennia. The
changes in city object properties can also be discrete or continuous. The evolution of a city can be
represented as a series of time-stamped snapshots whereby each snapshot represents the state of city
features at a specific point in time. Such snapshots are linear and discrete. On the other hand, rising
water during a flood event is continuous. Therefore, changes in cities can be classified according to
the rate at which they change. This thesis classifies such changes according to two broad categories:
(i) slower changes, and (ii) highly dynamic changes.

Question 1.2: What kinds of time-dependent properties are required in various applications of
semantic 3D city models?

The thesis provides a comprehensive review (c.f. chapter 2) of significant application domains of
semantic 3D city models including (i) Smart Cities and Digital Twins, (ii) Urban simulations, (iii)
Mobility, and (iv) Urban development. Numerous use cases of these application domains are studied
to gather essential requirements for dealing with different types of time-dependent properties. Based
on the systematic analysis, seven key requirements are identified including (i) establishing direct links
of city object properties with external sensors and IoT platforms, (ii) enabling city object properties to
link with alerts and event management systems, (iii) integration and overlay of static city objects with

10.2 Discussion of the results 189

the dynamics of moving objects, (iv) representing and exchanging time-series and its metadata in-line
with city objects, (v) representing and exchanging complex patterns based on statistics and general
rules, (vi) managing and exchanging alternative versions, and (vii) managing and exchanging historic
versions. The identified requirements with several use cases are further categorised to determine (i)
whether they are slower changes or highly dynamic changes, and (ii) which city object property gets
affected by such changes. Such analysis helps to develop the extensions for semantic 3D city models
in a systematic way.

Question 1.3: How can existing data models be extended to support the identified time-dependent
properties?

The discussions in chapter 2 and chapter 3 help concluding that both slower and highly dynamic
changes are fundamentally different from each other. Slower changes involve features that begin or
cease to exist over different time intervals. For example, if a new building is added in the city model
at a certain point or period in time, it is not possible to query it before that specified time as there
was no existence of the feature. Similarly, the planning scenarios involve a comparison of multiple
versions of the same city model by different planners. Hence, such changes require different versions
of the city models having completely new or modified features. On the other hand, highly dynamic
changes are mostly associated with city object properties and can be defined as a function of time. In
this case, only some of the properties of otherwise static objects need to represent such time-varying
values. For example, the energy consumption of a building determined by a Smart Meter installed in
the same building requires only one specific property (e.g. "energy_consumption") of the building
to be dynamic, while other properties (e.g. "building_roof_type") remain static. Hence, this thesis
considers both slower and highly dynamic changes separately and proposes different extensions to
represent and manage them.

Based on this classification, this thesis recommends extending semantic 3D city models for dealing
with both types of changes in two different ways. Part I of the thesis introduces conceptual data
models for the CityGML standard and describes how these data models support the requirements
[R1-R7] identified in chapter 2. The Versioning concept (c.f. chapter 4) deals with slower changes
and allows representing historic and parallel versions of 3D city models. The Dynamizer concept (c.f.
chapter 5) deals with highly dynamic changes and allows representing as well as linking city object
properties with numerous sources of highly dynamic time-dependent properties. The Dynamizer
concept also provides a method for injecting dynamic variations of city object properties into the
static representation making city objects truly dynamic.

Depending on the requirements, these two different types of changes can also be represented
together. For example, there are two indoor sensors from two different sensor providers installed
in the same room, and both of them measure the same property within the building (e.g. "in-
door_air_quality"). In this case, two alternative versions of the dataset can represent building objects
referring to alternative sensor sources. In similar ways, one version may link to a sensor source and
the other one may link to simulation results.

Hypothesis 1.4: Existing modelling standards for representing various time-dependent properties can
be utilised in extending semantic 3D city models.

190 10 Conclusions and future work

Section 2.2 includes a comprehensive literature review and lists the already existing standards for
each gathered requirement [R1-R7]. For example, in relation to sensors and IoT data access and
management, this section reviews well-established standards such as the OGC Sensor Web Enablement,
FIWARE, BIG_IoT, VICINITY, and so on. Similarly, for representing time-series and its metadata, the
section reviews popular international standards such as OGC TimeseriesML and OGC Observations
& Measurements. Since these standards are stable, well-defined, and are used worldwide, they have
been utilised in the developed data models. For instance, CityGML Dynamizer provides functionality
to link a specific city object property directly with arbitrary sensor and IoT web services such as the
OGC Sensor observation Service, the OGC SensorThings API, ThingSpeak, The Things Network, and
so on. Furthermore, such links can be established using either HTTP or MQTT protocols. Similarly,
Dynamizer Atomic Timeseries also utilise OGC TimeseriesML 1.0 for representing and exchanging
city objects along with the associated time-series and time-series metadata.

During the development of extensions of the CityGML standard, the author of this thesis
participated in multiple meetings and conferences with the standardisation committees including (i)
regular OGC Technical Committee Meetings for the standards CityGML and TimeseriesML 1.0, (ii)
OGC SensorThings API Summit (in 2018) for the SensorThings API, and (iii) Geospatial Sensor Web
Conference (in 2016 and 2018) for discussions for the OGC Sensor Observation Service.

Question 1.5: How can we manage time-dependent properties along with static properties of 3D city
models?

There are already sophisticated database management systems such as the 3DCityDB, which allow
importing, managing, and exporting semantic 3D city models based on the CityGML standard.
They enable applications to query as well as to access city objects and their properties using query
languages and standardised web services. As highlighted in the thesis, current versions of such
databases manage only the static properties of city objects. Part II introduces several ways for
managing time-dependent properties of city objects along with their static properties. Chapter 6
presents how the newly introduced modules Versioning and Dynamizer can be managed within the
3DCityDB using its ADE Plugin Manager. It allows storing as well as retrieving the new features.
Since Dynamizers represent time-series data associated with city object properties, Chapter 6 presents
a new extension of the relational database model for 3DCityDB. This relational model offers new
tables and relations for mapping time-series and its metadata values. In this way, it is also possible to
perform temporal queries associated with city object properties.

Hypothesis 1.6: It is not always required to store time-dependent properties along with the static
properties of city objects in database management systems.

In many scenarios (especially in distributed applications), the dynamic and time-series data may
belong to different stakeholders and companies. These stakeholders may be owners, sensor operators,
solution providers, citizens, and visitors. The data may also belong to numerous data sources such as
databases, sensor web services, IoT platforms, and simple tabulated files. To make well-informed
decisions using such distributed and heterogeneous dynamic data, it is crucial to achieving a proper
data integration strategy. This strategy must allow working with heterogeneous data sources and
platforms in a common operational framework, which requires interoperability. Such interoperability

10.2 Discussion of the results 191

can be achieved by using international open standards. These standards allow modelling and
representing the data using well-defined information models. At the same time, such standards allow
interfacing the distributed components using well-defined interface models (web services). In such
complex distributed systems, the concept of Spatial Data Infrastructures (SDIs) is often utilised. With
the help of such infrastructures, it is possible to retrieve the time-varying information from remote
and distributed resources such as external databases, Application programming interfaces (APIs) or
files using web services. This approach avoids data to be stored in centralised databases together with
the 3D city models. It is also beneficial, especially in the cases of sensors and IoT data, when the
frequency of time-series data is very high (e.g. up to milliseconds). Hence, the hypothesis is true that
it is not always required to store such time-series and dynamic data in the 3D city modelling database
management systems. Chapter 7 highlights the importance of interoperable OGC Sensor Web
Enablement standards for retrieving time-series information associated with city object properties.

Question 1.7: How can we achieve cross-platform interoperability for heterogeneous data sources of
time-dependent properties?

SDIs play an important role in establishing interoperability for heterogeneous data sources and are
considered as one of the keys to work in distributed scenarios. They allow encoding sensor descriptions
and observations using well-defined standards as well as accessing them using standardised interfaces.
In this way, applications and tools can be developed based on these standards without worrying about
what different kinds of data sources they use. Multiple sources can be attached to these infrastructures,
and their interfaces will always be common for different applications. Chapter 7 demonstrates several
approaches for establishing cross-platform interoperability using the OGC SWE standards such as the
Sensor Observation Service (SOS) and the SensorThings API.

However, Chapter 7 also highlights that both the SOS and SensorThings API always involve data
storage to store their metadata and time-series observations, based on which web services can query
and retrieve data and observations. The issue, in such cases, is that in a distributed environment,
where multiple stakeholders and owners are involved with proprietary platforms, not all of them
would be willing to inject their proprietary data into a third-party data storage. Moreover, in a running
distributed system having another data storage will require regular maintenance. It can also be a
complex affair while moving the infrastructure to different locations, for example, from one server
to another or into the cloud. In such cases, it is essential to have an intermediate service which
can connect to a specific data source and encodes the observations "on-the-fly" according to the
standardised OGC SWE interfaces without worrying about the data storage and multitude of data
sources. For this purpose, chapter 7 introduces the lightweight InterSensor Service. This service
provides several data adapters which can be used for establishing connections to not only different IoT
platforms, but also to external databases, CSV files, CityGML Dynamizers, Cloud-based spreadsheets,
GPS feeds, and real-time Twitter feeds. While querying, the service opens a data source connection
and retrieves the observations based on querying parameters directly from the data source. The service
encodes these observations "on-the-fly" according to the international standardised interfaces such as
the OGC Sensor Observation Service and OGC SensorThings API. In this way, applications compliant
to such OGC standardised interfaces can be used to interact with heterogeneous observations without
worrying about their data storage.

192 10 Conclusions and future work

Question 1.8: How can city modelling applications achieve integrated access to static as well as
dynamic properties of city models?

The InterSensor Service plays a crucial role in accessing dynamic properties from the time-series
values stored, (i) in a CityGML database such as 3DCityDB, (ii) in an external Sensor or IoT platform,
(iii) in an external file such as a CSV. As demonstrated in chapter 8, the extensions of the InterSensor
Service allow to establish connections to the specific Dynamizers stored in the 3DCityDB and
querying and visualising the dynamic properties using international standards such as the OGC
SensorThings API and OGC SOS. At the same time, the static features from the same 3DCityDB can
be accessed with the existing OGC Web Feature Service. In this way, one application can access
and visualise both the static and dynamic properties from one database instance using open and
international standards.

Question 1.9: How can we have a unified visualisation for multiple heterogeneous time-dependent
properties using the same framework?

Chapter 8 demonstrates a scenario using the InterSensor Service to access and visualise multiple
and heterogeneous data sources. As described in the architecture, the service provides several data
adapters for establishing connections to different IoT platforms, external databases, CSV files,
Cloud-based spreadsheets, GPS feeds, and real-time Twitter feeds. While querying, the service opens
a data source connection and retrieves the observations based on querying parameters directly from
the data source. The service encodes these observations "on-the-fly" according to the international
standardised interfaces such as the OGC Sensor Observation Service and OGC SensorThings API. It
enables observations from heterogeneous data sources to be visualised and interpreted on common
dashboard applications (e.g. the Helgoland client for the OGC SOS and Grafana Dashboards for the
OGC SensorThings API). Chapter 8 demonstrates a number of scenarios in the project Smart District
Data Infrastructure (SDDI) Demonstrator for visualising and interacting with sensor data based on the
52◦North Timeseries API. The interface from the InterSensor Service can directly be used with the
Helgoland application allowing users to interact with observations being retrieved directly from (i) a
weather station (outside temperature retrieved from Weather Underground platform), (ii) Smart Meter
located in a prominent building (electricity consumption per minute retrieved from the proprietary
platform), and (iii) scheduled events in the same important building (visitor counts during the planned
event extracted from a CSV file). Such joint visualisation helps to determine the correlation between
different properties, e.g., "what is the impact of the weather or any scheduled event on the electricity
consumption of a building?". Of course, such a common standard-based API will also be very
valuable for any other kind of application or analysis tool. Similarly, another data adapter developed
for the Twitter API allows visualising geotagged tweets with the static 3D city model.

Question 1.10: What are secure ways allowing users and applications to access static and dynamic
properties of semantic 3D city models?

Chapter 9 provides solutions for securing the overall access and management of distributed applications
and services. The proposed concept facilitates privacy, security and controlled access to all stakeholders
and the respective components by establishing proper authorisation and authentication mechanisms.

10.3 Scientific Contributions 193

The approach facilitates Single-Sign-On (SSO) authentication by a novel combination in the use of
the state-of-the-art security concepts such as OAuth2 access tokens, OpenID Connect user claims
and Security Assertion Markup Language (SAML). The chapter also shows a demonstration of
implementation for the concept for a specific scenario carried out within the district Queen Elizabeth
Olympic Park in London. The demonstrator application is conformant to the EU General Data
Protection Regulation (GDPR). It allows linking different components such as 3D buildings with
semantic information, weather stations, and Smart Meters in open, standardised and secure ways.
The demonstration application supports individual access rights for different types of user groups
including (i) public Google account, and (ii) academic users from universities and research institutes.

10.3 Scientific Contributions
The research work in this thesis makes contributions in the field of 3D Geoinformation Science and
moves the entire field forward in multiple ways. The developed concepts have opened doors to many
new research fields that were not available before:

1. Versioning in semantic 3D city models. Versioning has been a well-established term in
the field of computer programming. There are several Version Control Systems such as Git,
Mercurial, Concurrent Versions Systems, and Subversion. Similarly, the concept of versions
has been incorporated successfully in database management systems such as Oracle Workspace
Manager and ESRI ArcSDE Geodatabases. However, they lack significant functionalities
from the perspective of semantic 3D city models. The INSPIRE and German AAA standards
support versioning in its basic form. For example, INSPIRE supports exchanging only the last
version of spatial objects. However, none of the standards supports managing multiple historical
versions. The Versioning concept (c.f. chapter 4) developed within this thesis allows supporting
multiple historical versions within one data file. Similarly, the earlier approaches allowed only
forward-temporality. The Versioning concept allows backward compatibility to handle multiple
representations of the past of a city. Although the DBMS systems such as Oracle or ESRI ArcSDE
Geodatabases already support versions and conflict management, the CityGML Versioning
approach allows exchanging all versions of a repository in an interoperable way, even within a
single dataset.

2. Dynamic aspects in semantic 3D city models This thesis introduces the Dynamizer concept
enabling 3D city objects to override object properties dynamically. These properties may be
spatial, thematic, or even appearances. The Dynamizer approach allows dynamics to be explicitly
represented and managed in a coherent framework. Hence, 3D city models with Dynamizers can be
used in multiple application domains, including (i) Smart Cities and Digital Twins by establishing
explicit links with real-time sensors and IoT devices using HTTP and MQTT protocols, (ii)
mobility applications by enabling a moving object to communicate with static objects in a real-time
manner, (iii) numerous urban simulations such as representing and exchanging solar irradiation
levels, complex periodic patterns of energy usage, and many more.

3. Spatial Data Infrastructures This thesis also contributes to the field of Spatial Data Infrastructures
(SDI): First of all, it highlights the importance of SDIs in managing complex distributed datasets,
including semantic 3D city models, sensors and IoT devices and simulations in Smart City
applications. The thesis describes the Smart District Data Infrastructure (SDDI) concept, which

194 10 Conclusions and future work

was developed by (Moshrefzadeh et al. 2017). The author of the thesis was responsible for
implementing the SDDI in the district Queen Elizabeth Olympic Park, London (as described in
Chapter 8). The thesis describes different ways of managing and accessing time-series data along
with the static data of the city objects using open, international, and interoperable standards. The
thesis introduces the concept of InterSensor Service for this purpose. The InterSensor Service
has been implemented by the author of this thesis and is provided as a free and Open Source
application.
Furthermore, this thesis also highlights the importance of security in the SDIs for Smart Cities
(such as SDDI). Chapter 9 introduces a concept that facilitates privacy, security and controlled
access to all stakeholders and the respective components by establishing proper authorisation
and authentication mechanisms. The approach facilitates Single-Sign-On (SSO) authentication
by a novel combination in the use of the state-of-the-art security concepts such as OAuth2 access
tokens, OpenID Connect user claims and Security Assertion Markup Language (SAML). An
implementation of this concept for the district Queen Elizabeth Olympic Park in London is shown
in this thesis and is also provided as an online demonstration. The thesis provides references to a
comprehensive literature review indicating that such access control and security federation based
realisation has not been considered in spatial data infrastructures for Smart Cities before.

10.4 Outlook and future prospects

From the discussions and outcomes of this thesis, the following possible topics for future research can
be derived:

1. Indoor modelling The concepts developed in this thesis are implemented for the OGC CityGML
standard. The new data models are defined using the Unified Modelling Language (UML), and the
new datasets are represented using Geography Markup Language (GML). Therefore, the concepts
can also be partially or fully applied to other standards utilising model-driven transformations.
Although CityGML already allows representing the indoor environment, there are also other
standards such as IFC and IndoorGML. These standards are prevalent and are used worldwide for
numerous indoor modelling applications such as construction, evacuation management, indoor
navigation, robot navigation, Industry 4.0, and Smart Factory. It will be interesting to apply the
new concepts of CityGML to the other standards like IFC and IndoorGML and enable them to be
used in indoor and BIM applications.

2. Artificial Intelligence in Smart Cities Artificial Intelligence (AI) is considered as one of the
significant components in Smart City and Digital twin applications. AI algorithms analyse
extensive data feeds and make projections into the future. Several new fields such as Traffic
Management, Waste Management, and Smart Parking rely on AI algorithms to make accurate
predictions and hence, prepare the government, city authorities, and citizens for the future.
However, for performing data analysis, AI algorithms rely majorly on real-time data streams (e.g.
from sensors and IoT devices) and historical data (e.g. retrievable from a database, an external
files, or an API). The Dynamizer concept (developed in this thesis) already allows associating
real-time as well as historical time-series data with individual city object properties. Hence, such
dynamically enriched 3D city models can also be used with AI algorithms. For example, city
objects changing their properties in real-time may benefit an AI algorithm for an autonomous

10.4 Outlook and future prospects 195

vehicle enabling the vehicle to see, hear, analyse, and make a decision just like human drivers do.

3. Geo-visualisation It is also essential to determine the ways how 3D city modelling visualisation
clients interpret such dynamic 3D city models more efficiently. There is an already well-established
OGC standard called 3D Tiles131 allowing visualising arbitrary geospatial datasets such as 3D
models, point clouds, imagery etc. in a very efficient way. 3D Tiles is already being extended for
supporting time-dynamic streaming. It will be interesting to see how time-dynamic 3D Tiles can
interpret CityGML Dynamizers within the Cesium virtual globe.

131https://github.com/CesiumGS/3d-tiles/blob/master/3d-tiles-overview.pdf

BIBLIOGRAPHY

AAA (2014). Dokumentation zur Modellierung der Geoinformationen des amtlichen Vermessungswe-
sens (GeoInfoDok), Version 7.0. Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder
der Bundesrepublik Deutschland (AdV). URL: http://www.adv-online.de/AAA-Modell/ (visited on
22/12/2019).

Aalders, H. and Moellering, H. (2001). ‘Spatial data infrastructure’. In: Proceedings of the 20th
international cartographic conference. Beijing, China, pp. 2234–2244. URL: http://www.gdmc.nl/
publications/2001/Spatial data infrasructure.pdf.

Adams, D. (1979). The Hitchhiker’s Guide to the Galaxy. London: Pan Books.
Agugiaro, G. (2016). ‘Energy planning tools and CityGML-based 3D virtual city models: experiences

from Trento (Italy)’. In: Applied Geomatics 8.1, pp. 41–56. URL: https://doi.org/10.1007/s12518-
015-0163-2.

Agugiaro, G., Benner, J., Cipriano, P. and Nouvel, R. (2018). ‘The Energy Application Domain Exten-
sion for CityGML: enhancing interoperability for urban energy simulations’. In: Open Geospatial
Data, Software and Standards 3.1, p. 2. URL: https://doi.org/10.1186/s40965-018-0042-y.

Almeida, J. E., Rossetti, R. J. F. and Coelho, A. L. (2013). ‘Crowd Simulation Modeling Applied to
Emergency and Evacuation Simulations using Multi-Agent Systems’. In: CoRR abs/1303.4692.
URL: http://arxiv.org/abs/1303.4692.

Amirebrahimi, S., Rajabifard, A., Mendis, P. and Ngo, T. (2016). ‘A framework for a microscale flood
damage assessment and visualization for a building using BIM–GIS integration’. In: International
Journal of Digital Earth 9.4, pp. 363–386. URL: https://doi.org/10.1080/17538947.2015.1034201.

Anjos, D., Carreira, P. and Francisco, A. P. (2014). ‘Real-Time Integration of Building Energy Data’.
In: 2014 IEEE International Congress on Big Data, pp. 250–257. URL: https://doi.org/10.1109/
BigData.Congress.2014.44.

Asahara, A., Shibasaki, R., Ishimaru, N. and Burggraf, D. (2015). OGC Mov-
ing Features Encoding Part I: XML Core, OGC Document No. 14-083r2. ht-
tps://www.opengeospatial.org/standards/movingfeatures. (Visited on 09/09/2019).

Ayele, E. D., Meratnia, N. and Havinga, P. J. M. (2018). ‘Towards a New Opportunistic IoT Network
Architecture for Wildlife Monitoring System’. In: 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1–5. URL: https://doi.org/10.1109/NTMS.2018.
8328721.

Baghdoust, A. (2017). ‘Visualizing dynamic spatial height information in a dam monitoring context’.
Master’s Thesis. Chair of Geoinformatics, Technische Univerisität München. URL: https://mediatum.
ub.tum.de/doc/1374648/.

http://www.adv-online.de/AAA-Modell/
http://www.gdmc.nl/publications/2001/Spatial_data_infrasructure.pdf
http://www.gdmc.nl/publications/2001/Spatial_data_infrasructure.pdf
https://doi.org/10.1007/s12518-015-0163-2
https://doi.org/10.1007/s12518-015-0163-2
https://doi.org/10.1186/s40965-018-0042-y
http://arxiv.org/abs/1303.4692
https://doi.org/10.1080/17538947.2015.1034201
https://doi.org/10.1109/BigData.Congress.2014.44
https://doi.org/10.1109/BigData.Congress.2014.44
https://doi.org/10.1109/NTMS.2018.8328721
https://doi.org/10.1109/NTMS.2018.8328721
https://mediatum.ub.tum.de/doc/1374648/
https://mediatum.ub.tum.de/doc/1374648/

198 Bibliography

Banks, A., Briggs, E., Borgendale, K. and Gupta, R. (2019). MQTT Version 5.0 - an OASIS Standard.
URL: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html (visited on 09/09/2019).

Bartoli, A, Hernández-Serrano, J, Soriano, M, Dohler, M, Kountouris, A and Barthel, D (2011).
‘Security and privacy in your smart city’. In: Proceedings of the Barcelona smart cities congress.
Vol. 292. URL: https://pdfs.semanticscholar.org/a8eb/00601cdb94ff6bbfc03118f3fcb7575ba07a.
pdf.

Batty, M. (2018). ‘Digital twins’. In: Environment and Planning B: Urban Analytics and City Science
45.5, pp. 817–820. URL: https://doi.org/10.1177/2399808318796416.

Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., Ouzounis,
G. and Portugali, Y. (2012). ‘Smart cities of the future’. In: The European Physical Journal Special
Topics 214.1, pp. 481–518. URL: https://doi.org/10.1140/epjst/e2012-01703-3.

Beauregard, B. and Speckhard, B. (2014). Oracle Database Workspace Manager Developer’s Guide,
12c Release 1 (12.1) E17893-07. URL: https://docs.oracle.com/database/121/ADWSM/title.htm
(visited on 02/11/2019).

Becker, T., Nagel, C. and Kolbe, T. H. (2009). ‘A multilayered space-event model for navigation in
indoor spaces’. In: 3D geo-information sciences. Springer, pp. 61–77. URL: https://doi.org/10.1007/
978-3-540-87395-2 5.

Behrisch, M., Bieker, L., Erdmann, J. and Krajzewicz, D. (2011). ‘SUMO–simulation of urban
mobility: an overview’. In: Proceedings of SIMUL 2011, The Third International Conference on
Advances in System Simulation. ThinkMind. URL: https://elib.dlr.de/71460/.

Beil, C. and Kolbe, T. H. (2017). ‘CityGML and the streets of New York- A proposal for detailed Street
Space Modelling’. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences IV-4/W5, pp. 9–16. URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-
sci.net/IV-4-W5/9/2017/.

Benevolo, C., Dameri, R. P. and D’Auria, B. (2016). ‘Smart Mobility in Smart City’. In: Empowering
Organizations. Ed. by Torre, T., Braccini, A. M. and Spinelli, R. Cham: Springer International
Publishing, pp. 13–28. URL: https://doi.org/10.1007/978-3-319-23784-8 2.

Bertolini, L. and Le Clercq, F. (2003). ‘Urban development without more mobility by car? Lessons
from Amsterdam, a multimodal urban region’. In: Environment and planning A 35.4, pp. 575–589.
URL: https://doi.org/10.1068/a3592.

Biljecki, F., Heuvelink, G. B. M., Ledoux, H. and Stoter, J. (Dec. 2015a). ‘Propagation of positional
error in 3D GIS: Estimation of the Solar Irradiation of building roofs’. In: International Journal of
Geographical Information Science 29.12, pp. 2269–2294. URL: http://doi.org/10.1080/13658816.
2015.1073292.

Biljecki, F., Kumar, K. and Nagel, C. (2018). ‘CityGML application domain extension (ADE):
overview of developments’. In: Open Geospatial Data, Software and Standards 3.1, p. 13. URL:
https://doi.org/10.1186/s40965-018-0055-6.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S. and Çöltekin, A. (2015b). ‘Applications of 3D
city models: State of the art review’. In: ISPRS International Journal of Geo-Information 4.4,
pp. 2842–2889. URL: https://doi.org/10.3390/ijgi4042842.

Biswas, K. and Muthukkumarasamy, V. (2016). ‘Securing Smart Cities Using Blockchain Tech-
nology’. In: 2016 IEEE 18th International Conference on High Performance Computing and
Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 1392–1393. URL: https:
//doi.org/10.1109/HPCC-SmartCity-DSS.2016.0198.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://pdfs.semanticscholar.org/a8eb/00601cdb94ff6bbfc03118f3fcb7575ba07a.pdf
https://pdfs.semanticscholar.org/a8eb/00601cdb94ff6bbfc03118f3fcb7575ba07a.pdf
https://doi.org/10.1177/2399808318796416
https://doi.org/10.1140/epjst/e2012-01703-3
https://docs.oracle.com/database/121/ADWSM/title.htm
https://doi.org/10.1007/978-3-540-87395-2_5
https://doi.org/10.1007/978-3-540-87395-2_5
https://elib.dlr.de/71460/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W5/9/2017/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W5/9/2017/
https://doi.org/10.1007/978-3-319-23784-8_2
https://doi.org/10.1068/a3592
http://doi.org/10.1080/13658816.2015.1073292
http://doi.org/10.1080/13658816.2015.1073292
https://doi.org/10.1186/s40965-018-0055-6
https://doi.org/10.3390/ijgi4042842
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0198
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0198

Bibliography 199

Borning, A., Waddell, P. and Förster, R. (2008). ‘Urbansim: Using Simulation to Inform Public
Deliberation and Decision-Making’. In: Digital Government: E-Government Research, Case Studies,
and Implementation. Ed. by Chen, H., Brandt, L., Gregg, V., Traunmüller, R., Dawes, S., Hovy, E.,
Macintosh, A. and Larson, C. A. Boston, MA: Springer US, pp. 439–464. URL: https://doi.org/10.
1007/978-0-387-71611-4 22.

Borrmann, A., König, M., Koch, C. and Beetz, J. (2015). ‘Building Information Modeling’. In:
Technologische Grundlagen Und Industrielle Anwendungen: Vieweg+ Teubner Verlag. URL: https:
//www.springer.com/de/book/9783658056056.

Bosson, C. and Lauderdale, T. A. (2018). ‘Simulation evaluations of an autonomous urban air mobility
network management and separation service’. In: 2018 Aviation Technology, Integration, and
Operations Conference, p. 3365. URL: https://doi.org/10.2514/6.2018-3365.

Botts, M. (2014). Sensor Model Language (SensorML) | OGC Document No. 12-000. URL: http:
//www.opengeospatial.org/standards/sensorml (visited on 22/12/2019).

Braeckel, A., Bigagli, L. and Echterhoff, J. (2016). OGC Publish/Subscribe Interface Standard 1.0
- Core, OGC Document No. 13-131r1. URL: https://www.opengeospatial.org/standards/pubsub
(visited on 09/09/2019).

Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S. and Lemmens,
R. (2011). ‘New Generation Sensor Web Enablement’. In: Sensors 11.3, pp. 2652–2699. URL:
https://doi.org/10.3390/s110302652.

Bröring, A., Schmid, S., Schindhelm, C.-K., Khelil, A., Kabisch, S., Kramer, D., Le Phuoc, D.,
Mitic, J., Anicic, D. and Teniente López, E. (2017). ‘Enabling IoT ecosystems through platform
interoperability’. In: IEEE software 34.1, pp. 54–61. URL: https://doi.org/10.1109/MS.2017.2.

Bröring, A., Stasch, C. and Echterhoff, J. (2012). Sensor Observation Service Interface Standard
(SOS) | OGC Document No. 12-006. URL: http://www.opengeospatial.org/standards/sos (visited on
22/12/2019).

Burggraf, D. (2015). OGC Keyhole Markup Language (KML) 2.3) | OGC Document No. 12-007r2.
http://www.opengeospatial.org/standards/kml. (Visited on 17/09/2019).

Cantor, S., Kemp, J., Philpott, R. and Maler, E. (2005). Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0. URL: https://docs.oasis-open.org/security/saml/
v2.0/saml-core-2.0-os.pdf (visited on 30/04/2018).

Chaturvedi, K. and Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report - OGC Doc. No. 16-
098. Tech. rep. Open Geospatial Consortium. URL: http://docs.opengeospatial.org/per/16-098.html
(visited on 20/10/2017).

Chaturvedi, K., Matheus, A., Nguyen, S. H. and Kolbe, T. H. (2019). ‘Securing Spatial Data Infrastruc-
tures for Distributed Smart City applications and services’. In: Future Generation Computer Systems
101, pp. 723 –736. URL: http://www.sciencedirect.com/science/article/pii/S0167739X18330024.

Chaturvedi, K., Yao, Z. and Kolbe, T. H. (2015). ‘Web-based Exploration of and Interaction with
Large and Deeply Structured Semantic 3D City Models using HTML5 and WebGL’. In: Bridging
Scales - Skalenübergreifende Nah- und Fernerkundungsmethoden, 35. Wissenschaftlich-Technische
Jahrestagung der DGPF. Ed. by Kersten, T. P. Vol. 24. Deutsche Gesellschaft für Photogrammetrie,
Fernerkundung und Geoinformation e.V. Köln: Deutsche Gesellschaft für Photogrammetrie, Fern-
erkundung und Geoinformation e.V. URL: https://www.dgpf.de/src/tagung/jt2015/proceedings/
papers/34 DGPF2015 Chaturvedi et al.pdf.

Chu, H., Yu, J., Wen, J., Yi, M. and Chen, Y. (2019). ‘Emergency Evacuation Simulation and
Management Optimization in Urban Residential Communities’. In: Sustainability 11.3. URL:
https://www.mdpi.com/2071-1050/11/3/795.

https://doi.org/10.1007/978-0-387-71611-4_22
https://doi.org/10.1007/978-0-387-71611-4_22
https://www.springer.com/de/book/9783658056056
https://www.springer.com/de/book/9783658056056
https://doi.org/10.2514/6.2018-3365
http://www.opengeospatial.org/standards/sensorml
http://www.opengeospatial.org/standards/sensorml
https://www.opengeospatial.org/standards/pubsub
https://doi.org/10.3390/s110302652
https://doi.org/10.1109/MS.2017.2
http://www.opengeospatial.org/standards/sos
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.opengeospatial.org/per/16-098.html
http://www.sciencedirect.com/science/article/pii/S0167739X18330024
https://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
https://www.dgpf.de/src/tagung/jt2015/proceedings/papers/34_DGPF2015_Chaturvedi_et_al.pdf
https://www.mdpi.com/2071-1050/11/3/795

200 Bibliography

Cousins, S. (2017). ‘3D mapping Helsinki: How mega digital models can help city planners’. In:
Construction Research and Innovation 8.4, pp. 102–106. URL: https://doi.org/10.1080/20450249.
2017.1396747.

Cox, S, Daisy, P, Lake, R, Portele, C and Whiteside, A (2004). OpenGIS Geography Markup Language
(GML 3.1), Implementation Specification Version 3.1.0, Recommendation Paper, OGC Doc. No.
03-105r1. URL: http://www.ogc.org/standards/gml (visited on 09/09/2019).

Cox, S. (2006). Object identifiers in GML. URL: https://www.seegrid.csiro.au/wiki/AppSchemas/
GmlIdentifiers (visited on 12/12/2018).

Cox, S. (2013). Observations and Measurements (O&M) | OGC Document No. 10-004r3. URL:
http://www.opengeospatial.org/standards/om (visited on 17/09/2019).

Cui, L., Xie, G., Qu, Y., Gao, L. and Yang, Y. (2018). ‘Security and Privacy in Smart Cities: Challenges
and Opportunities’. In: IEEE Access 6, pp. 46134–46145. URL: https://doi.org/10.1109/ACCESS.
2018.2853985.

Czerwinski, A., Sandmann, S., Stöcker-Meier, E. and Plümer, L. (2007). ‘Sustainable SDI for EU
noise mapping in NRW-best practice for INSPIRE’. In: International Journal of Spatial Data
Infrastructures Research 2.2, pp. 90–111. URL: https://ijsdir.sadl.kuleuven.be/index.php/ijsdir/
article/view/63.

Dave, B., Buda, A., Nurminen, A. and Främling, K. (2018). ‘A framework for integrating BIM
and IoT through open standards’. In: Automation in Construction 95, pp. 35 –45. URL: https:
//doi.org/10.1016/j.autcon.2018.07.022.

Davila Delgado, J. M., Butler, L. J., Gibbons, N., Brilakis, I., Elshafie, M. Z. E. B. and Middleton, C.
(2017). ‘Management of structural monitoring data of bridges using BIM’. In: Proceedings of the
Institution of Civil Engineers - Bridge Engineering 170.3, pp. 204–218. URL: https://doi.org/10.
1680/jbren.16.00013.

De Luca, L., Busarayat, C., Stefani, C., Renaudin, N., Florenzano, M. and Véron, P. (2010). ‘An
Iconography-Based Modeling Approach for the Spatio-Temporal Analysis of Architectural Herit-
age’. In: 2010 Shape Modeling International Conference, pp. 78–89. URL: https://doi.org/10.1109/
SMI.2010.28.

Deal, B. (2006). ‘A Spatially Explicit Urban Simulation Model: Landuse Evolution and Impact
Assessment Model (LEAM)’. In: Smart growth and climate change. Ed. by Ruth, M. New horizons
in regional science. E. Elgar, pp. 181–203.

Douglas, N., Voges, U. and Bigagli, L. (2014). Catalogue Services 3.0 - General Model | OGC
Document No. 12-168r6. URL: http://docs.opengeospatial.org/is/12-168r6/12-168r6.html (visited
on 22/12/2015).

ESRI (2004). Versioning White Paper. URL: http://support.esri.com/es/knowledgebase/whitepapers/
view/productid/19/metaid/721. (visited on 02/11/2019).

FIWARE (2018). Open source Platform for the Smart Digital Future. URL: https://www.fiware.org/
(visited on 16/05/2018).

Frontoni, E., Loncarski, J., Pierdicca, R., Bernardini, M. and Sasso, M. (2018). ‘Cyber Physical Sys-
tems for Industry 4.0: Towards Real Time Virtual Reality in Smart Manufacturing’. In: Augmented
Reality, Virtual Reality, and Computer Graphics. Ed. by De Paolis, L. T. and Bourdot, P. Cham:
Springer International Publishing, pp. 422–434. URL: https://doi.org/10.1007/978-3-319-95282-
6 31.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional.

https://doi.org/10.1080/20450249.2017.1396747
https://doi.org/10.1080/20450249.2017.1396747
http://www.ogc.org/standards/gml
https://www.seegrid.csiro.au/wiki/AppSchemas/GmlIdentifiers
https://www.seegrid.csiro.au/wiki/AppSchemas/GmlIdentifiers
http://www.opengeospatial.org/standards/om
https://doi.org/10.1109/ACCESS.2018.2853985
https://doi.org/10.1109/ACCESS.2018.2853985
https://ijsdir.sadl.kuleuven.be/index.php/ijsdir/article/view/63
https://ijsdir.sadl.kuleuven.be/index.php/ijsdir/article/view/63
https://doi.org/10.1016/j.autcon.2018.07.022
https://doi.org/10.1016/j.autcon.2018.07.022
https://doi.org/10.1680/jbren.16.00013
https://doi.org/10.1680/jbren.16.00013
https://doi.org/10.1109/SMI.2010.28
https://doi.org/10.1109/SMI.2010.28
http://docs.opengeospatial.org/is/12-168r6/12-168r6.html
http://support.esri.com/es/knowledgebase/whitepapers/ view/productid/19/metaid/721.
http://support.esri.com/es/knowledgebase/whitepapers/ view/productid/19/metaid/721.
https://www.fiware.org/
https://doi.org/10.1007/978-3-319-95282-6_31
https://doi.org/10.1007/978-3-319-95282-6_31

Bibliography 201

Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P. and Wasielewska, K. (2016). ‘Semantic
Technologies for the IoT - An Inter-IoT Perspective’. In: 2016 IEEE First International Conference
on Internet-of-Things Design and Implementation (IoTDI), pp. 271–276. URL: https://doi.org/10.
1109/IoTDI.2015.22.

Gharaibeh, A., Salahuddin, M. A., Hussini, S. J., Khreishah, A., Khalil, I., Guizani, M. and Al-Fuqaha,
A. (2017). ‘Smart Cities: A Survey on Data Management, Security, and Enabling Technologies’.
In: IEEE Communications Surveys Tutorials 19.4, pp. 2456–2501. URL: https://doi.org/10.1109/
COMST.2017.2736886.

Gojmerac, I., Reichl, P., Podnar Žarko, I. and Soursos, S. (2016). ‘Bridging IoT islands: the symbIoTe
project’. In: e & i Elektrotechnik und Informationstechnik 133.7, pp. 315–318. URL: https://doi.org/
10.1007/s00502-016-0439-1.

GPX (2004). GPS Exchange Format (GPX) 1.1 Schema Documentation. URL: www.topografix.com/
GPX/1/1/ (visited on 02/11/2019).

Grieves, M. and Vickers, J. (2017). ‘Digital Twin: Mitigating Unpredictable, Undesirable Emergent
Behavior in Complex Systems’. In: Transdisciplinary Perspectives on Complex Systems: New
Findings and Approaches. Ed. by Kahlen, F.-J., Flumerfelt, S. and Alves, A. Cham: Springer
International Publishing, pp. 85–113. URL: https://doi.org/10.1007/978-3-319-38756-7 4.

Gröger, G., Kolbe, T. H., Nagel, C. and Häfele, K.-H. (2012). City Geography Markup Language
(CityGML) v 2.0, OGC Doc. No. 12-019. http://www.opengeospatial.org/standards/citygml. (Visited
on 09/09/2019).

Gunduz, M, Isikdag, U and Basaraner, M (2017). ‘Integration of BIM, Web Maps and IoT for
Supporting Comfort Analysis.’ In: ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences IV-4/W4. URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-
sci.net/IV-4-W4/221/2017/isprs-annals-IV-4-W4-221-2017.pdf.

Hagemann, R., Corsmeier, U., Kottmeier, C., Rinke, R., Wieser, A. and Vogel, B. (2014). ‘Spatial
variability of particle number concentrations and NOx in the Karlsruhe (Germany) area obtained
with the mobile laboratory ‘AERO-TRAM’’. In: Atmospheric Environment 94, pp. 341 –352. URL:
http://www.sciencedirect.com/science/article/pii/S1352231014003987.

Hancke, G. P., Silva, B. D. C. e. and Hancke Jr., G. P. (2013). ‘The Role of Advanced Sensing in
Smart Cities’. In: Sensors 13.1, pp. 393–425. URL: https://www.mdpi.com/1424-8220/13/1/393.

Hardt, D. (2012). The OAuth 2.0 Authorization Framework. URL: https://www.ietf.org/rfc/rfc6749.txt
(visited on 30/04/2018).

Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E. and Chiroma,
H. (Oct. 2016). ‘The Role of Big Data in Smart City’. In: Int. J. Inf. Manag. 36.5, 748–758. URL:
https://doi.org/10.1016/j.ijinfomgt.2016.05.002.

Helgoland (2018). Sensor Web Client for Visual Exploration and Analysis of Sensor Web Data.
https://github.com/52North/helgoland. (Visited on 16/05/2018).

IFC (2016). Industry Foundation Classes Version 4 - Addendum 2. URL: http://www.buildingsmart-
tech.org/ifc/IFC4/Add2/html/ (visited on 09/09/2019).

INSPIRE (2013). Generic Conceptual Model of the INSPIRE data specifications. URL: https://inspire.
ec.europa.eu/documents/inspire-generic-conceptual-model (visited on 22/12/2019).

IRCELINE (2018). Air Quality Belgium App. URL: https://github.com/irceline/air-quality-belgium-
app (visited on 16/05/2018).

Isikdag, U., Zlatanova, S. and Underwood, J. (2013). ‘A BIM-Oriented Model for supporting indoor
navigation requirements’. In: Computers, Environment and Urban Systems 41, pp. 112–123. URL:
https://doi.org/10.1016/j.compenvurbsys.2013.05.001.

https://doi.org/10.1109/IoTDI.2015.22
https://doi.org/10.1109/IoTDI.2015.22
https://doi.org/10.1109/COMST.2017.2736886
https://doi.org/10.1109/COMST.2017.2736886
https://doi.org/10.1007/s00502-016-0439-1
https://doi.org/10.1007/s00502-016-0439-1
www.topografix.com/GPX/1/1/
www.topografix.com/GPX/1/1/
https://doi.org/10.1007/978-3-319-38756-7_4
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W4/221/2017/isprs-annals-IV-4-W4-221-2017.pdf
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W4/221/2017/isprs-annals-IV-4-W4-221-2017.pdf
http://www.sciencedirect.com/science/article/pii/S1352231014003987
https://www.mdpi.com/1424-8220/13/1/393
https://www.ietf.org/rfc/rfc6749.txt
https://doi.org/10.1016/j.ijinfomgt.2016.05.002
http://www.buildingsmart-tech.org/ifc/IFC4/Add2/html/
http://www.buildingsmart-tech.org/ifc/IFC4/Add2/html/
https://inspire.ec.europa.eu/documents/inspire-generic-conceptual-model
https://inspire.ec.europa.eu/documents/inspire-generic-conceptual-model
https://github.com/irceline/air-quality-belgium-app
https://github.com/irceline/air-quality-belgium-app
https://doi.org/10.1016/j.compenvurbsys.2013.05.001

202 Bibliography

Jazayeri, M. A., Liang, S. H. L. and Huang, C.-Y. (2015). ‘Implementation and Evaluation of Four
Interoperable Open Standards for the Internet of Things’. In: Sensors 15.9, pp. 24343–24373. URL:
http://www.mdpi.com/1424-8220/15/9/24343.

Jennings, C., Shelby, Z., Arkko, J., Keranen, A. and Bormann, C. (2018). Media types for Sensor
Measurement Lists (SenML). URL: https://tools.ietf.org/html/draft-ietf-core-senml-13 (visited on
16/05/2019).

Jensen, C. S. and Snodgrass, R. T. (1999). ‘Temporal data management’. In: IEEE Transactions on
knowledge and data engineering 11.1, pp. 36–44.

Jirka, S., Broering, A. and Stasch, C. (2009). ‘Applying OGC sensor web enablement to risk mon-
itoring and disaster management’. In: GSDI 11 World Conference : Spatial data infrastructure
convergence : building SDI bridges to address global challenges, p. 13. URL: http://www.gsdi.org/
gsdiconf/gsdi11/papers/pdf/96.pdf.

Jirka, S., Wieman, S, Brauner, J. and Jürrens, E. H. (2011). ‘Linking Sensor Web Enablement and
Web Processing Technology for Health-Environment Studies’. In: Proceedings of the Integrating
Sensor Web and Web-based Geoprocessing Workshop at the AGILE. URL: http://ceur-ws.org/Vol-
712/paper9.pdf.

Jones, M. (2012). The OAuth 2.0 Authorization Framework: Bearer Token Usage. URL: https://www.
ietf.org/rfc/rfc6750.txt (visited on 30/04/2018).

Kaden, R. and Kolbe, T. H. (2013). ‘City-Wide Total Energy Demand Estimation of Buildings using
Semantic 3D City Models and Statistical Data’. In: Proc. of the 8th International 3D GeoInfo
Conference. Vol. II-2/W1. URL: https://mediatum.ub.tum.de/doc/1185881/1185881.pdf.

Kang, Y., Kim, H. and Han, S. (2015). ‘Visualization of the Synthetic Environment Data Representa-
tion & Interchange Specification data for verifying large-scale synthetic environment data’. In: The
Journal of Defense Modeling and Simulation 12.4, pp. 507–518. URL: https://doi.org/10.1177%
2F1548512914548601.

Kesteren, A. van (2014). Cross-Origin Resource Sharing. URL: https://www.w3.org/TR/cors/ (visited
on 30/04/2018).

Khan, A. A. (2015). ‘Constraints and concepts for the support of different locomotion types in
indoor navigation’. PhD Thesis. Chair of Geoinformatics, Technische Universität München. URL:
https://mediatum.ub.tum.de/1233285.

Kim, J.-S., Yoo, S.-J. and Li, K.-J. (2014). ‘Integrating IndoorGML and CityGML for Indoor Space’.
In: Web and Wireless Geographical Information Systems. Ed. by Pfoser, D. and Li, K.-J. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 184–196. URL: https://doi.org/10.1007/978-3-642-
55334-9 12.

Kitchin, R. (2014). ‘The real-time city? Big data and smart urbanism’. In: GeoJournal 79.1, pp. 1–14.
URL: https://doi.org/10.1007/s10708-013-9516-8.

Knapp, S. and Coors, V. (2007). ‘The use of eParticipation systems in public participation: the
VEPs example’. In: Urban and Regional Data Management. CRC Press, pp. 105–116. URL:
https://www.taylorfrancis.com/books/e/9780429224096/chapters/10.4324/9780203931042-10.

Kolbe, T. H. (2009). ‘Representing and Exchanging 3D City Models with CityGML’. In: 3D Geo-
Information Sciences. Ed. by Lee, J. and Zlatanova, S. Berlin, Heidelberg: Springer Berlin Heidel-
berg, pp. 15–31. URL: https://doi.org/10.1007/978-3-540-87395-2 2.

Kolbe, T. H., Gröger, G. and Plümer, L. (2008). ‘CityGML–3D city models and their potential for
emergency response’. In: Geospatial information technology for emergency response. Taylor &
Francis: London, UK, pp. 257–274.

http://www.mdpi.com/1424-8220/15/9/24343
https://tools.ietf.org/html/draft-ietf-core-senml-13
http://www.gsdi.org/gsdiconf/gsdi11/papers/pdf/96.pdf
http://www.gsdi.org/gsdiconf/gsdi11/papers/pdf/96.pdf
http://ceur-ws.org/Vol-712/paper9.pdf
http://ceur-ws.org/Vol-712/paper9.pdf
https://www.ietf.org/rfc/rfc6750.txt
https://www.ietf.org/rfc/rfc6750.txt
https://mediatum.ub.tum.de/doc/1185881/1185881.pdf
https://doi.org/10.1177%2F1548512914548601
https://doi.org/10.1177%2F1548512914548601
https://www.w3.org/TR/cors/
https://mediatum.ub.tum.de/1233285
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/978-3-642-55334-9_12
https://doi.org/10.1007/s10708-013-9516-8
https://www.taylorfrancis.com/books/e/9780429224096/chapters/10.4324/9780203931042-10
https://doi.org/10.1007/978-3-540-87395-2_2

Bibliography 203

Köninger, A. and Bartel, S. (1998). ‘3D-GIS for urban purposes’. In: Geoinformatica 2.1, pp. 79–103.
URL: https://doi.org/10.1023/A:1009797106866.

Kotsev, A., Schleidt, K., Liang, S., Schaaf, H. Van der, Khalafbeigi, T., Grellet, S., Lutz, M., Jirka, S.
and Beaufils, M. (2018). ‘Extending INSPIRE to the Internet of Things through SensorThings API’.
In: Geosciences 8.6. URL: https://doi.org/10.3390/geosciences8060221.

Krukar, J., Schwering, A. and Anacta, V. J. (2017). ‘Landmark-based navigation in cognitive systems’.
In: KI - Künstliche Intelligenz 31, pp. 121–124. URL: https://doi.org/10.1007/s13218-017-0487-7.

Kutzner, T. (2016). ‘Geospatial Data Modelling and Model-driven Transformation of Geospatial Data
based on UML Profiles’. PhD Thesis. Chair of Geoinformatics, Technische Universität München.
URL: https://mediatum.ub.tum.de/1341432.

Kutzner, T., Chaturvedi, K. and Kolbe, T. H. (2020). ‘CityGML 3.0: New Functions Open Up New
Applications’. In: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science,
p. 19. URL: https://doi.org/10.1007/s41064-020-00095-z.

Kutzner, T., Hijazi, I. and Kolbe, T. H. (2018). ‘Semantic Modelling of 3D Multi-utility Networks for
Urban Analyses and Simulations – The CityGML Utility Network ADE’. In: International Journal
of 3-D Information Modeling (IJ3DIM) 7.2, pp. 1–34. URL: https://doi.org/10.4018/IJ3DIM.
2018040101.

Kwak, H.-J. and Park, G.-T. (2012). ‘Study on the Mobility of Service Robots’. In: International
Journal of Engineering and Technology Innovation 2.2, pp. 97–112. URL: http://ojs.imeti.org/index.
php/IJETI/article/view/84.

Lee, J., Li, K.-J., Zlatanova, S., Kolbe, T. H., Nagel, C. and Becker, T. (2014). OGC Indoor GML:
OGC Doc. No. 14-005r3. URL: http://docs.opengeospatial.org/is/14-005r3/14-005r3.html (visited
on 12/05/2016).

Liang, S., Huang, C.-Y. and Khalafbeigi, T. (2015). SensorThings API Part 1: Sensing | OGC
Document No. 15-078r6. URL: http://docs.opengeospatial.org/is/15-078r6/15-078r6.html (visited
on 22/12/2019).

Luginger, L. (2016). ‘Success Factors of Integrated Multimodal Mobility Services’. Master’s Thesis.
Chair of Urban Structure and Transport Planning, Technische Universität München. URL: https:
//mediatum.ub.tum.de/doc/1446938.

Mäs, S., Reinhardt, W. and Wang, F. (2006). ‘Conception of a 3D geodata web service for the support
of indoor navigation with GNSS’. In: Innovations in 3D geo information systems. Springer, pp. 307–
316. URL: https://doi.org/10.1007/978-3-540-36998-1 24.

Maureira, M. A. G., Oldenhof, D. and Teernstra, L. (2014). ThingSpeak-an API and Web Service for
the Internet of Things. URL: https://staas.home.xs4all.nl/t/swtr/documents/wt2014 thingspeak.pdf
(visited on 16/08/2019).

Mohammadi, N. and Taylor, J. E. (2017). ‘Smart City Digital Twins’. In: 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 1–5. URL: https://doi.org/10.1109/SSCI.2017.8285439.

Morel, M. and Gesquière, G. (2014). ‘Managing Temporal Change of Cities with CityGML’. In:
Eurographics Workshop on Urban Data Modelling and Visualisation. Ed. by Besuievsky, G. and
Tourre, V. The Eurographics Association. URL: http://dx.doi.org/10.2312/udmv.20141076.

Moshrefzadeh, M., Chaturvedi, K., Hijazi, I., Donaubauer, A. and Kolbe, T. H. (2017). ‘Integrating and
Managing the Information for Smart Sustainable Districts - The Smart District Data Infrastructure
(SDDI)’. In: Geoinformationssysteme 2017 – Beiträge zur 4. Münchner GI-Runde. Ed. by Kolbe,
T. H., Bill, R. and Donaubauer, A. Wichmann Verlag. URL: https://mediatum.ub.tum.de/doc/
1350813/46723.pdf.

https://doi.org/10.1023/A:1009797106866
https://doi.org/10.3390/geosciences8060221
https://doi.org/10.1007/s13218-017-0487-7
https://mediatum.ub.tum.de/1341432
https://doi.org/10.1007/s41064-020-00095-z
https://doi.org/10.4018/IJ3DIM.2018040101
https://doi.org/10.4018/IJ3DIM.2018040101
http://ojs.imeti.org/index.php/IJETI/article/view/84
http://ojs.imeti.org/index.php/IJETI/article/view/84
http://docs.opengeospatial.org/is/14-005r3/14-005r3.html
http://docs.opengeospatial.org/is/15-078r6/15-078r6.html
https://mediatum.ub.tum.de/doc/1446938
https://mediatum.ub.tum.de/doc/1446938
https://doi.org/10.1007/978-3-540-36998-1_24
https://staas.home.xs4all.nl/t/swtr/documents/wt2014_thingspeak.pdf
https://doi.org/10.1109/SSCI.2017.8285439
http://dx.doi.org/10.2312/udmv.20141076
https://mediatum.ub.tum.de/doc/1350813/46723.pdf
https://mediatum.ub.tum.de/doc/1350813/46723.pdf

204 Bibliography

Moshrefzadeh, M., Machl, T., Gackstetter, D., Donaubauer, A. and Kolbe, T. H. (2020). ‘Towards
a Distributed Digital Twin of the Agricultural Landscape’. In: Journal of Digital Landscape
Architecture 5. URL: https://mediatum.ub.tum.de/1540127.

Mynzhasova, A., Radojicic, C., Heinz, C., Kölsch, J., Grimm, C., Rico, J., Dickerson, K., García-
Castro, R. and Oravec, V. (2017). ‘Drivers, standards and platforms for the IoT: Towards a digital
VICINITY’. In: 2017 Intelligent Systems Conference (IntelliSys), pp. 170–176. URL: https://doi.
org/10.1109/IntelliSys.2017.8324287.

Nedkov, S. (2012). ‘Knowledge-based optimisation of three-dimensional city models for car navigation
devices’. Master’s Thesis. Department of GIS Technology, TU Delft. URL: http://resolver.tudelft.nl/
uuid:b429e899-9955-4a23-9ceb-66ffb6210b30.

Nguyen, S. H., Yao, Z. and Kolbe, T. H. (2017). ‘Spatio-semantic comparison of large 3D city
models in CityGML using a graph database’. In: Proceedings of the 12th International 3D GeoInfo
Conference 2017, pp. 99–106. URL: https://doi.org/10.5194/isprs-annals-IV-4-W5-99-2017.

Nobis, C. (2006). ‘Carsharing as key contribution to multimodal and sustainable mobility behavior:
Carsharing in Germany’. In: Transportation Research Record 1986.1, pp. 89–97. URL: https :
//doi.org/10.1177/0361198106198600112.

Nour, M. and Beucke, K. (2010). ‘Object versioning as a basis for design change management within
a BIM context’. In: Proceedings of the 13th international conference on computing in civil and
building engineering (ICCCBE-XIII), Nottingham, UK. URL: http://www.engineering.nottingham.
ac.uk/icccbe/proceedings/pdf/af74.pdf.

Okaya, M. and Takahashi, T. (2013). ‘Evacuation Simulation with Guidance for Anti-disaster Plan-
ning’. In: RoboCup 2012: Robot Soccer World Cup XVI. Ed. by Chen, X., Stone, P., Sucar, L. E.
and Zant, T. van der. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 202–212. URL: https:
//doi.org/10.1007/978-3-642-39250-4 19.

Oulasvirta, A., Estlander, S. and Nurminen, A. (2009). ‘Embodied interaction with a 3D versus 2D
mobile map’. In: Personal and Ubiquitous Computing 13.4, pp. 303–320. URL: https://doi.org/10.
1007/s00779-008-0209-0.

Partescano, E., Brosich, A., Lipizer, M., Cardin, V. and Giorgetti, A. (2017). ‘From heterogeneous
marine sensors to sensor web: (near) real-time open data access adopting OGC sensor web en-
ablement standards’. In: Open Geospatial Data, Software and Standards 2.1, p. 22. URL: https:
//doi.org/10.1186/s40965-017-0035-2.

Patel, S., Uday Kumar R.Y. and Prasanna Kumar B. (2016). ‘Role of smart meters in smart city
development in India’. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent
Control and Energy Systems (ICPEICES), pp. 1–5. URL: https://doi.org/10.1109/ICPEICES.2016.
7853363.

Pfeiffer, M., Carré, C., Delfosse, V., Hallot, P. and Billen, R. (2013). ‘Virtual Leodium: from an
Historical 3D City Scale Model to an Archaeological Information System’. In: ISPRS Annals–
Volume II-5/W1, 2013. URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-
5-W1/241/2013/isprsannals-II-5-W1-241-2013.pdf.

Pfeil, M., Bartoschek, T. and Wirwahn, J. A. (2015). ‘OPENSENSEMAP - A Citizen Science Platform
For Publishing And Exploring Sensor Data as Open Data’. In: Free and Open Source Software for
Geospatial (FOSS4G) Conference Proceedings. Vol. 15. URL: https://doi.org/10.7275/R56971SW.

Quarati, A., Clematis, A., Roverelli, L., Zereik, G., D’Agostino, D., Mosca, G. and Masnata, M. (2017).
‘Integrating Heterogeneous Weather-Sensors Data into a Smart-City App’. In: 2017 International
Conference on High Performance Computing Simulation (HPCS), pp. 152–159. URL: https://doi.
org/10.1109/HPCS.2017.33.

https://mediatum.ub.tum.de/1540127
https://doi.org/10.1109/IntelliSys.2017.8324287
https://doi.org/10.1109/IntelliSys.2017.8324287
http://resolver.tudelft.nl/uuid:b429e899-9955-4a23-9ceb-66ffb6210b30
http://resolver.tudelft.nl/uuid:b429e899-9955-4a23-9ceb-66ffb6210b30
https://doi.org/10.5194/isprs-annals-IV-4-W5-99-2017
https://doi.org/10.1177/0361198106198600112
https://doi.org/10.1177/0361198106198600112
http://www.engineering.nottingham.ac.uk/icccbe/proceedings/pdf/af74.pdf
http://www.engineering.nottingham.ac.uk/icccbe/proceedings/pdf/af74.pdf
https://doi.org/10.1007/978-3-642-39250-4_19
https://doi.org/10.1007/978-3-642-39250-4_19
https://doi.org/10.1007/s00779-008-0209-0
https://doi.org/10.1007/s00779-008-0209-0
https://doi.org/10.1186/s40965-017-0035-2
https://doi.org/10.1186/s40965-017-0035-2
https://doi.org/10.1109/ICPEICES.2016.7853363
https://doi.org/10.1109/ICPEICES.2016.7853363
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W1/241/2013/isprsannals-II-5-W1-241-2013.pdf
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W1/241/2013/isprsannals-II-5-W1-241-2013.pdf
https://doi.org/10.7275/R56971SW
https://doi.org/10.1109/HPCS.2017.33
https://doi.org/10.1109/HPCS.2017.33

Bibliography 205

Randt, B, Bildstein, F and Kolbe, T. H. (2007). ‘Use of virtual 3d landscapes for emergency driver
training’. In: Proc. of the Int. Conference on Visual Simulation IMAGE. Vol. 2. URL: http : / /
www.redaktion.tu-berlin.de/fileadmin/fg227/Publications/IMAGE2007-RDE-DrivingSim-5-
Letter.PDF.

Reitz, T and Schubiger-Banz, S (2014). ‘The Esri 3D city information model’. In: IOP Conference
Series: Earth and Environmental Science 18, p. 012172. URL: https://doi.org/10.1088%2F1755-
1315%2F18%2F1%2F012172.

Richer, J. (2015). OAuth 2.0 Token Introspection. URL: https://www.ietf.org/rfc/rfc7662.txt (visited on
30/04/2018).

Robert, J., Kubler, S., Kolbe, N., Cerioni, A., Gastaud, E. and Främling, K. (2017). ‘Open IoT
Ecosystem for Enhanced Interoperability in Smart Cities—Example of Métropole De Lyon’. In:
Sensors 17.12. URL: http://www.mdpi.com/1424-8220/17/12/2849.

Roche, S. (2014). ‘Geographic Information Science I: Why does a smart city need to be spatially
enabled?’ In: Progress in Human Geography 38.5, pp. 703–711. URL: https://doi.org/10.1177/
0309132513517365.

Ruhdorfer, R. (2017). ‘Kopplung von Verkehrssimulation und semantischen 3D-Stadtmodellen in
CityGML’. Master’s Thesis. Chair of Geoinformatics, Technische Universität München. URL:
http://mediatum.ub.tum.de/node?id=1396796.

Ruohomäki, T., Airaksinen, E., Huuska, P., Kesäniemi, O., Martikka, M. and Suomisto, J. (2018).
‘Smart City Platform Enabling Digital Twin’. In: 2018 International Conference on Intelligent
Systems (IS), pp. 155–161. URL: https://doi.org/10.1109/IS.2018.8710517.

Sakimura, N., Bradley, J., Jones, M., Medeiros, B. de and Mortimore, C. (2014). OpenID Connect
Core 1.0 incorporating errata set 1. URL: https://openid.net/specs/openid-connect-core-1\ 0.html
(visited on 30/04/2018).

Salimzadeh, N., Vahdatikhaki, F. and Hammad, A. (2018). ‘BIM-based surface-specific solar simu-
lation of buildings’. In: ISARC. Proceedings of the International Symposium on Automation and
Robotics in Construction. Vol. 35. IAARC Publications, pp. 1–8. URL: https://doi.org/10.22260/
ISARC2018/0124.

Samuel, J., Servigne, S. and Gesquière, G. (2018). ‘URBANCO2FAB: Comprehension of Concurrent
Viewpoints of Urban Fabric based on GIT.’ In: ISPRS Annals of Photogrammetry, Remote Sensing
& Spatial Information Sciences-Volume IV-4/W6, pp. 65–72. URL: https://doi.org/10.5194/isprs-
annals-IV-4-W6-65-2018.

Santhanavanich, T. and Coors, V. (2019). ‘CityThings: A concept to integrate Dynamic Sensor data
in a CityGML 3D City Model using OGC Sensorthings API.’ In: Proceedings of the second
international conference on Urban Informatics 2019, Hong Kong.

Santhanavanich, T., Schneider, S., Rodrigues, P. and Coors, V. (2018). ‘Integration and Visualization
of Heterogeneous Sensor Data and Geospatial Information.’ In: ISPRS Annals of Photogrammetry,
Remote Sensing & Spatial Information Sciences-Volume IV-4/W7, pp. 115–122. URL: https://doi.
org/10.5194/isprs-annals-IV-4-W7-115-2018.

Schilling, A., Coors, V. and Laakso, K. (2005). ‘Dynamic 3D maps for mobile tourism applications’.
In: Map-based Mobile Services. Springer, pp. 227–239. URL: https://link.springer.com/chapter/10.
1007/3-540-26982-7 15.

Scholl, J. (2019). ‘Integration of BIM-based pedestrian simulations in the early design stages’.
Bachelor’s Thesis. Chair of Computational Modeling and Simulation, Technische Universität
München. URL: https://publications.cms.bgu.tum.de/theses/bachelor thesis janik scholl 2019.pdf.

http://www.redaktion.tu-berlin.de/fileadmin/fg227/Publications/IMAGE2007-RDE-DrivingSim-5-Letter.PDF
http://www.redaktion.tu-berlin.de/fileadmin/fg227/Publications/IMAGE2007-RDE-DrivingSim-5-Letter.PDF
http://www.redaktion.tu-berlin.de/fileadmin/fg227/Publications/IMAGE2007-RDE-DrivingSim-5-Letter.PDF
https://doi.org/10.1088%2F1755-1315%2F18%2F1%2F012172
https://doi.org/10.1088%2F1755-1315%2F18%2F1%2F012172
https://www.ietf.org/rfc/rfc7662.txt
http://www.mdpi.com/1424-8220/17/12/2849
https://doi.org/10.1177/0309132513517365
https://doi.org/10.1177/0309132513517365
http://mediatum.ub.tum.de/node?id=1396796
https://doi.org/10.1109/IS.2018.8710517
https://openid.net/specs/openid-connect-core-1_0.html
https://doi.org/10.22260/ISARC2018/0124
https://doi.org/10.22260/ISARC2018/0124
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018
https://doi.org/10.5194/isprs-annals-IV-4-W7-115-2018
https://doi.org/10.5194/isprs-annals-IV-4-W7-115-2018
https://link.springer.com/chapter/10.1007/3-540-26982-7_15
https://link.springer.com/chapter/10.1007/3-540-26982-7_15
https://publications.cms.bgu.tum.de/theses/bachelor_thesis_janik_scholl_2019.pdf

206 Bibliography

Schulte, C. and Coors, V. (2009). ‘Development of a CityGML ADE for dynamic 3D flood informa-
tion’. In: Applied Geoinformatics for Society and Environment 103, p. 10.

Schwab, B. and Kolbe, T. H. (2019). ‘Requirement Analysis of 3D Road Space Models for Automated
Driving’. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
IV-4/W8, pp. 99–106. URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-
4-W8/99/2019/.

Shaffer, B. (2018). A library for implementing an OAuth2 Server in php. URL: https://github.com/
bshaffer/oauth2-server-php (visited on 30/04/2018).

Slingsby, A. and Raper, J. (2008). ‘Navigable space in 3D city models for pedestrians’. In: Advances
in 3D geoinformation systems. Springer, pp. 49–64. URL: https://doi.org/10.1007/978-3-540-
72135-2 3.

Sookhak, M., Tang, H., He, Y. and Yu, F. R. (2019). ‘Security and Privacy of Smart Cities: A Survey,
Research Issues and Challenges’. In: IEEE Communications Surveys Tutorials 21.2, pp. 1718–1743.
URL: https://doi.org/10.1109/COMST.2018.2867288.

Stadler, A. and Kolbe, T. H. (2007). ‘Spatio-semantic coherence in the integration of 3D city models’.
In: Proceedings of the 5th International ISPRS Symposium on Spatial Data Quality ISSDQ 2007
in Enschede, The Netherlands, 13-15 June 2007. Ed. by Stein, A. ISPRS Archives. ISPRS. URL:
http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper Stadler.pdf.

Strzalka, A., Bogdahn, J., Coors, V. and Eicker, U. (2011). ‘3D City modeling for urban scale
heating energy demand forecasting’. In: HVAC&R Research 17.4, pp. 526–539. URL: https://www.
tandfonline.com/doi/abs/10.1080/10789669.2011.582920.

Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G. and Suciu, V. (2013). ‘Smart Cities Built on
Resilient Cloud Computing and Secure Internet of Things’. In: 2013 19th International Conference
on Control Systems and Computer Science, pp. 513–518. URL: https://doi.org/10.1109/CSCS.2013.
58.

Taylor, P. (2014). WaterML 2.0: Part 1 - Timeseries, OGC Document No. 10-126r4. URL: http :
//www.opengeospatial.org/standards/waterml (visited on 15/10/2019).

Thingful (2018). A Search Engine for the Internet of Things. URL: http://www.thingful.net/ (visited on
16/05/2018).

TimeseriesAPI (2018). A RESTful web binding to OGC Sensor Observation Service.
http://sensorweb.demo.52north.org/sensorwebclient-webapp-stable/api-doc/index.html. (Visited on
16/05/2018).

Toma, D. M., Rio, J. del, Jirka, S., Delory, E., Pearlman, J. and Waldmann, C. (2015). ‘NeXOS
smart electronic interface for sensor interoperability’. In: OCEANS 2015 - Genova, pp. 1–5. URL:
https://doi.org/10.1109/OCEANS-Genova.2015.7271586.

Tomkins, J. and Lowe, D. (2016). Timeseries Profile of Observations and Measurements, OGC Docu-
ment No. 15-043r3. URL: http://www.opengeospatial.org/standards/tsml (visited on 09/09/2019).

Tomko, M. and Winter, S. (2019). ‘Beyond digital twins – A commentary’. In: Environment and
Planning B: Urban Analytics and City Science 46.2, pp. 395–399. URL: https://doi.org/10.1177/
2399808318816992.

Vesperman, J. (2003). Essential CVS. O’Reilly Media, Inc. URL: http://shop.oreilly.com/product/
9780596004590.do.

Vretanos, P. (2010). OpenGIS Web Feature Service 2.0 Interface Standard (WFS) | OGC Document
No. 12-100. URL: http://www.opengeospatial.org/standards/wfs (visited on 22/12/2015).

Wang, H., Gluhak, A., Meissner, S. and Tafazolli, R. (2013). ‘Integration of BIM and live sensing
information to monitor building energy performance’. In: The CIB 30th International Conference

https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/99/2019/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W8/99/2019/
https://github.com/bshaffer/oauth2-server-php
https://github.com/bshaffer/oauth2-server-php
https://doi.org/10.1007/978-3-540-72135-2_3
https://doi.org/10.1007/978-3-540-72135-2_3
https://doi.org/10.1109/COMST.2018.2867288
http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf
https://www.tandfonline.com/doi/abs/10.1080/10789669.2011.582920
https://www.tandfonline.com/doi/abs/10.1080/10789669.2011.582920
https://doi.org/10.1109/CSCS.2013.58
https://doi.org/10.1109/CSCS.2013.58
http://www.opengeospatial.org/standards/waterml
http://www.opengeospatial.org/standards/waterml
http://www.thingful.net/
https://doi.org/10.1109/OCEANS-Genova.2015.7271586
http://www.opengeospatial.org/standards/tsml
https://doi.org/10.1177/2399808318816992
https://doi.org/10.1177/2399808318816992
http://shop.oreilly.com/product/9780596004590.do
http://shop.oreilly.com/product/9780596004590.do
http://www.opengeospatial.org/standards/wfs

Bibliography 207

on Applications of IT in the AEC Industry. URL: http://architektur-informatik.scix.net/pdfs/w78-
2013-paper-146.pdf.

Willenborg, B., Sindram, M. and Kolbe, T. H. (2017). ‘Applications of 3D City Models for a better
understanding of the Built Environment’. In: Trends in Spatial Analysis and Modelling. Ed. by
Behnisch, M. and Meinel, G. Vol. 19. Geotechnologies and the Environment 19. Berlin, Heidelberg:
Springer International Publishing, pp. 167–191. URL: https://doi.org/10.1007/978-3-319-52522-
8 9.

Wolff, M. and Asche, H. (2009). ‘Towards Geovisual Analysis of Crime Scenes – A 3D Crime
Mapping Approach’. In: Advances in GIScience. Ed. by Sester, M., Bernard, L. and Paelke, V.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 429–448.

Wupperverband (2017). TaMIS - Development of a Dam Surveillance and Information System
for the Management of Natural Hazards. URL: https : / / 52north . org / references / tamis -
talsperrenmessinformationssystem/ (visited on 16/05/2018).

Yang, L., Dam, K. H. van, Majumdar, A., Anvari, B., Ochieng, W. Y. and Zhang, L. (2019). ‘Integrated
design of transport infrastructure and public spaces considering human behavior: A review of
state-of-the-art methods and tools’. In: Frontiers of Architectural Research 8.4, pp. 429 –453. URL:
http://www.sciencedirect.com/science/article/pii/S209526351930072X.

Yang, L., Zhang, L., Stettler, M. E., Sukitpaneenit, M., Xiao, D. and Dam, K. H. van (2020). ‘Sup-
porting an integrated transportation infrastructure and public space design: A coupled simulation
method for evaluating traffic pollution and microclimate’. In: Sustainable Cities and Society 52,
p. 101796. URL: http://www.sciencedirect.com/science/article/pii/S2210670719309667.

Yao, Z. (2020). ‘Domain Extendable 3D City Models – Management, Visualization, and Interaction’.
PhD Thesis. Chair of Geoinfromatics, Technische Universität München. URL: https://mediatum.ub.
tum.de/1574231.

Yao, Z. and Kolbe, T. H. (2017). ‘Dynamically Extending Spatial Databases to support CityGML
Application Domain Extensions using Graph Transformations’. In: Kulturelles Erbe erfassen und
bewahren - Von der Dokumentation zum virtuellen Rundgang, 37. Wissenschaftlich-Technische
Jahrestagung der DGPF. Ed. by Kersten, T. P. Vol. 26. Publikationen der Deutschen Gesellschaft
für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V. Würzburg: Deutsche
Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation e.V., pp. 316–331. URL: http:
//www.dgpf.de/src/tagung/jt2017/proceedings/proceedings/papers/30 DGPF2017 Yao Kolbe.
pdf.

Yao, Z., Nagel, C., Kunde, F., Hudra, G., Willkomm, P., Donaubauer, A., Adolphi, T. and Kolbe, T. H.
(2018). ‘3DCityDB - a 3D geodatabase solution for the management, analysis, and visualization of
semantic 3D city models based on CityGML’. In: Open Geospatial Data, Software and Standards
3.1, pp. 1–26. URL: https://doi.org/10.1186/s40965-018-0046-7.

Yin, C., Xiong, Z., Chen, H., Wang, J., Cooper, D. and David, B. (2015). ‘A Literature Survey on
Smart Cities’. In: Science China Information Sciences 58.10, pp. 1–18. URL: https://doi.org/10.
1007/s11432-015-5397-4.

Zada, A. J., Tizani, W and Oti, A. (2014). ‘Building Information Modelling (BIM)—versioning for
collaborative design’. In: Computing in Civil and Building Engineering (2014), pp. 512–519. URL:
https://ascelibrary.org/doi/abs/10.1061/9780784413616.064.

Zahn, W. (2015). ‘Sonneneinstrahlungsanalyse auf und Informationsanreicherung von großen 3D-
Stadtmodellen im CityGML-Schema’. Master’s Thesis. Chair of Geoinformatics, Technische
Universität München. URL: http://mediatum.ub.tum.de/node?id=1276236.

http://architektur-informatik.scix.net/pdfs/w78-2013-paper-146.pdf
http://architektur-informatik.scix.net/pdfs/w78-2013-paper-146.pdf
https://doi.org/10.1007/978-3-319-52522-8_9
https://doi.org/10.1007/978-3-319-52522-8_9
https://52north.org/references/tamis-talsperrenmessinformationssystem/
https://52north.org/references/tamis-talsperrenmessinformationssystem/
http://www.sciencedirect.com/science/article/pii/S209526351930072X
http://www.sciencedirect.com/science/article/pii/S2210670719309667
https://mediatum.ub.tum.de/1574231
https://mediatum.ub.tum.de/1574231
http://www.dgpf.de/src/tagung/jt2017/proceedings/proceedings/papers/30_DGPF2017_Yao_Kolbe.pdf
http://www.dgpf.de/src/tagung/jt2017/proceedings/proceedings/papers/30_DGPF2017_Yao_Kolbe.pdf
http://www.dgpf.de/src/tagung/jt2017/proceedings/proceedings/papers/30_DGPF2017_Yao_Kolbe.pdf
https://doi.org/10.1186/s40965-018-0046-7
https://doi.org/10.1007/s11432-015-5397-4
https://doi.org/10.1007/s11432-015-5397-4
https://ascelibrary.org/doi/abs/10.1061/9780784413616.064
http://mediatum.ub.tum.de/node?id=1276236

208 Bibliography

Zhang, K., Ni, J., Yang, K., Liang, X., Ren, J. and Shen, X. S. (2017). ‘Security and Privacy in
Smart City Applications: Challenges and Solutions’. In: IEEE Communications Magazine 55.1,
pp. 122–129. URL: https://doi.org/10.1109/MCOM.2017.1600267CM.

Zhu, W., Simons, A., Wursthorn, S. and Nichersu, A. (2016). ‘Integration of CityGML and Air
Quality Spatio-Temporal Data Series via OGC SOS’. In: Proceedings of the Geospatial Sensor
Webs Conference (GSW), Münster, Germany, pp. 29–34. URL: http://ceur-ws.org/Vol-1762/Zhu.pdf.

Zlatanova, S. and Holweg, D. (2004). ‘3D Geo-information in emergency response: a frame-
work’. In: Proceedings of the 4th International Symposium on Mobile Mapping Technology
(MMT’2004), March, pp. 29–31. URL: http : / / www. gdmc . nl / publications / 2004 / 3D Geo -
information Emergency Response.pdf.

https://doi.org/10.1109/MCOM.2017.1600267CM
http://ceur-ws.org/Vol-1762/Zhu.pdf
http://www.gdmc.nl/publications/2004/3D_Geo-information_Emergency_Response.pdf
http://www.gdmc.nl/publications/2004/3D_Geo-information_Emergency_Response.pdf

ORIGINAL PUBLICATIONS

1. Kutzner, T., Chaturvedi, K. and Kolbe, T. H. (2020). ‘CityGML 3.0: New Functions Open Up New
Applications’. en. In: PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation
Science, p. 19. URL: https://doi.org/10.1007/s41064-020-00095-z

2. Chaturvedi, K., Yao, Z. and Kolbe, T. H. (2019). ‘Integrated Management and Visualization of
Static and Dynamic Properties of Semantic 3D City Models’. In: ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W17, pp. 7–14.
URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W17/7/2019/

3. Chaturvedi, K. and Kolbe, T. H. (2019). ‘A Requirement Analysis on extending Semantic
3D City Models for supporting Time-dependent properties.’ In: ISPRS Annals of Photogram-
metry, Remote Sensing and Spatial Information Sciences IV-4/W9, pp. 19–26. URL: https:
//www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/

4. Chaturvedi, K. and Kolbe, T. H. (2019). ‘Towards Establishing Cross-Platform Interoperability
for Sensors in Smart Cities’. In: Sensors 19.3. URL: https://www.mdpi.com/1424-8220/19/3/562

5. Chaturvedi, K., Matheus, A., Nguyen, S. H. and Kolbe, T. H. (2019). ‘Securing Spatial Data
Infrastructures for Distributed Smart City applications and services’. In: Future Generation
Computer Systems 101, pp. 723 –736. URL: http://www.sciencedirect.com/science/article/pii/
S0167739X18330024

6. Chaturvedi, K. and Kolbe, T. H. (2018). ‘InterSensor Service: Establishing Interoperability over
Heterogeneous Sensor Observations and Platforms for Smart Cities’. In: 2018 IEEE International
Smart Cities Conference (ISC2), pp. 1–8. URL: https://doi.org/10.1109/ISC2.2018.8656984

7. Chaturvedi, K., Matheus, A., Nguyen, S. H. and Kolbe, T. H. (2018). ‘Securing Spatial Data
Infrastructures in the Context of Smart Cities’. In: 2018 International Conference on Cyberworlds
(CW), pp. 403–408. URL: https://doi.org/10.1109/CW.2018.00078

8. Chaturvedi, K. and Kolbe, T. H. (2017). Future City Pilot 1 Engineering Report - OGC Doc. No.
16- 098. Tech. rep. Open Geospatial Consortium. URL: http://docs.opengeospatial.org/per/16-098.
html (visited on 20/10/2017).

9. Chaturvedi, K., Willenborg, B., Sindram, M. and Kolbe, T. H. (2017). ‘Solar Potential Analysis
and Integration of the Time-dependent Simulation Results for Semantic 3D City Models using
Dynamizers’. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information
Sciences IV-4/W5, pp. 25–32. URL: https://doi.org/10.5194/isprs-annals-IV-4-W5-25-2017

10. Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T. and Kolbe, T. H. (2017). ‘Managing
Versions and History Within Semantic 3D City Models for the Next Generation of CityGML’.
In: Advances in 3D Geoinformation. Ed. by Abdul-Rahman, A. Cham: Springer International
Publishing, pp. 191–206. URL: https://doi.org/10.1007/978-3-319-25691-7 11

https://doi.org/10.1007/s41064-020-00095-z
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W17/7/2019/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-4-W9/19/2019/
https://www.mdpi.com/1424-8220/19/3/562
http://www.sciencedirect.com/science/article/pii/S0167739X18330024
http://www.sciencedirect.com/science/article/pii/S0167739X18330024
https://doi.org/10.1109/ISC2.2018.8656984
https://doi.org/10.1109/CW.2018.00078
http://docs.opengeospatial.org/per/16-098.html
http://docs.opengeospatial.org/per/16-098.html
https://doi.org/10.5194/isprs-annals-IV-4-W5-25-2017
https://doi.org/10.1007/978-3-319-25691-7_11

210 Original publications

11. Moshrefzadeh, M., Chaturvedi, K., Hijazi, I., Donaubauer, A. and Kolbe, T. H. (2017). ‘In-
tegrating and Managing the Information for Smart Sustainable Districts - The Smart District
Data Infrastructure (SDDI)’. en. In: Geoinformationssysteme 2017 – Beiträge zur 4. Münch-
ner GI-Runde. Ed. by Kolbe, T. H., Bill, R. and Donaubauer, A. Wichmann Verlag. URL:
https://mediatum.ub.tum.de/doc/1350813/46723.pdf .

12. Chaturvedi, K. and Kolbe, T. H. (2016). ‘Integrating Dynamic Data and Sensors with Semantic
3D City Models in the context of Smart Cities’. In: ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences IV-2/W1, pp. 31–38. URL: https://doi.org/10.5194/
isprs-annals-IV-2-W1-31-2016

13. Yao, Z., Chaturvedi, K. and Kolbe, T. H. (2016). ‘Browser-basierte Visualisierung großer
3DStadtmodelle durch Erweiterung des Cesium Web Globe’. de. In: Geoinformationssysteme
2016 - Beiträge zur 3. Münchner GI-Runde. Ed. by e.V., R. T. G. Runder Tisch GIS e.V. München:
Wichmann Verlag, pp. 77–89. URL: https://mediatum.ub.tum.de/node?id=1296408

14. Chaturvedi, K. and Kolbe, T. H. (2015). ‘Dynamizers - Modeling and Implementing Dynamic
Properties for Semantic 3D City Models’. In: Eurographics Workshop on Urban Data Modelling
and Visualisation. Ed. by Biljecki, F. and Tourre, V. The Eurographics Association. URL: http:
//dx.doi.org/10.2312/udmv.20151348

15. Chaturvedi, K., Yao, Z. and Kolbe, T. H. (2015). ‘Web-based Exploration of and Interaction
with Large and Deeply Structured Semantic 3D City Models using HTML5 and WebGL’. en. In:
Bridging Scales - Skalenübergreifende Nah- und Fernerkundungsmethoden, 35. Wissenschaftlich-
Technische Jahrestagung der DGPF. Ed. by Kersten, T. P. Vol. 24. Deutsche Gesellschaft für
Photogrammetrie, Fernerkundung und Geoinformation e.V. Köln: Deutsche Gesellschaft für Pho-
togrammetrie, Fernerkundung und Geoinformation e.V. URL: https://mediatum.ub.tum.de/node?
id=1245285

https://mediatum.ub.tum.de/doc/1350813/46723.pdf
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016
https://mediatum.ub.tum.de/node?id=1296408
http://dx.doi.org/10.2312/udmv.20151348
http://dx.doi.org/10.2312/udmv.20151348
https://mediatum.ub.tum.de/node?id=1245285
https://mediatum.ub.tum.de/node?id=1245285

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Semantic 3D City Models
	1.2 Motivation and Problem Statement
	1.3 Research Hypotheses and Questions
	1.4 Outline of the thesis
	1.4.1 Part I: Integration of time-dependent properties
	1.4.2 Part II: Management of time-dependent properties
	1.4.3 Part III: Proof of Concept

	1.5 Projects
	1.6 Open Source Solutions

	2 Background
	2.1 Time-dependent properties in the applications of 3D city models
	2.1.1 Smart Cities and Digital Twins
	2.1.1.1 Requirement R1: Integration of sensor observations with city object properties
	2.1.1.2 Requirement R2: Managing events and alerts

	2.1.2 Urban Simulations
	2.1.2.1 Requirement R3: Supporting time-series in-line within city objects
	2.1.2.2 Requirement R4: Supporting complex patterns and schedules

	2.1.3 Mobility
	2.1.3.1 Requirement R5: Integration and overlay of dynamics of moving objects

	2.1.4 Urban Development
	2.1.4.1 Requirement R6: Managing historic versions
	2.1.4.2 Requirement R7: Managing alternative versions

	2.1.5 Requirements Summary

	2.2 Review of existing standards for the listed requirements
	2.2.1 Sensor and IoT data access and management
	2.2.2 Representation and management of time-series
	2.2.3 Managing alerts and events
	2.2.4 Representation of moving objects
	2.2.5 History and Version Management

	2.3 Evaluation of city modelling standards for the listed requirements
	2.3.1 CityGML 2.0
	2.3.2 IFC v4
	2.3.3 EU INSPIRE

	3 Methodology
	3.1 Time-dependent properties in the context of 3D city models
	3.1.1 Identification of city object properties affected by time
	3.1.2 Classification of changes in cities

	3.2 Overview of the CityGML standard
	3.2.1 Data Modelling with CityGML
	3.2.2 Management of CityGML-based city models

	3.3 Realisation of the concepts with the CityGML standard
	3.3.1 Data Models
	3.3.2 Data Management
	3.3.3 Proof of concept

	I Integration of Time-dependent Properties
	4 Modelling Slower Changes
	4.1 Versioning in semantic 3D city models
	4.1.1 Requirements for modelling the new Versioning concept

	4.2 Modelling the Versioning concept within the CityGML standard
	4.2.1 Versionable Features
	4.2.2 Version - a new Feature Type
	4.2.3 Version Transitions
	4.2.4 Complete UML Model of the Versioning concept

	4.3 Illustration of the Concept
	4.3.1 Using new CityGML identifiers
	4.3.2 Using Version and Version Transitions

	4.4 Discussions

	5 Modelling Highly Dynamic Changes
	5.1 Making 3D City Models Dynamic
	5.2 Modelling the Dynamizer concept within the CityGML standard
	5.2.1 Dynamizer - a new Feature Type
	5.2.2 SensorConnection
	5.2.3 Atomic Timeseries
	5.2.3.1 Standard File Timeseries
	5.2.3.2 Tabulated File Timeseries
	5.2.3.3 Generic Timeseries

	5.2.4 Composite Timeseries
	5.2.5 Complete UML Model of Dynamizer

	5.3 Illustration of the Concept
	5.3.1 Integrating city object properties with real-time sensors
	5.3.1.1 Example 1: ThingSpeak platform
	5.3.1.2 Example 2: OGC SensorThings API
	5.3.1.3 Example 3: Weather Underground API with authentication
	5.3.1.4 Example 4: Subscribing to real-time datatreams using the MQTT protocol

	5.3.2 Representing timeseries values in-line within city objects
	5.3.2.1 Example 1: TabulatedFileTimeseries
	5.3.2.2 Example 2: Generic Timeseries

	5.3.3 Representing complex periodic patterns using Dynamizers

	5.4 Discussions

	II Management of Time-dependent Properties
	6 Management on the level of databases
	6.1 Managing CityGML ADEs within databases
	6.1.1 Managing the Versioning ADE within the 3DCityDB
	6.1.2 Managing the Dynamizer ADE within the 3DCityDB

	6.2 New Relational Data Model for the Dynamizer ADE
	6.2.1 Dynamizer Core Module
	6.2.2 Timeseries Metadata Module
	6.2.3 Timeseries Module

	6.3 Import and Export of Dynamizer ADE data to/from the 3DCityDB
	6.4 Discussions

	7 Management of Dynamic City Models on the level of SDIs
	7.1 Spatial Data Infrastructures (SDI)
	7.2 Establishing cross-platform interoperability for sensor and time-series data
	7.2.1 OGC Sensor Observation Service
	7.2.1.1 Tools for supporting the OGC SOS standard

	7.2.2 OGC SensorThings API
	7.2.2.1 Tools for supporting the OGC SensorThings API standard

	7.2.3 Further recommendations on working with the OGC SWE standards

	7.3 Introduction to the InterSensor Service
	7.3.1 Architecture
	7.3.1.1 Data Adapters
	7.3.1.2 Standardised External Interfaces
	7.3.1.3 InterSensor Service

	7.3.2 Data Model
	7.3.2.1 DataSourceConnection
	7.3.2.2 DataSource
	7.3.2.3 Timeseries
	7.3.2.4 Observations

	7.4 Illustration of the concept
	7.4.1 Adding a data source
	7.4.2 Automated generation of the standardised interfaces
	7.4.2.1 OGC SensorThings API
	7.4.2.2 OGC Sensor Observation Service
	7.4.2.3 52°North Timeseries API

	7.5 Discussions

	III Proof of Concept
	8 Using Dynamic 3D City Models in Smart Cities
	8.1 OGC Future City Pilot Phase 1
	8.1.1 Integrating city object properties with real-time sensor data
	8.1.1.1 Creation of CityGML datasets
	8.1.1.2 Working with sensors
	8.1.1.3 Representing direct sensor links using CityGML Dynamizers

	8.1.2 Enriching city object properties with solar potential simulation time-series
	8.1.2.1 Creation of CityGML datasets
	8.1.2.2 Representing in-line time-series using international standards
	8.1.2.3 Interpreting time-series data using CityGML Dynamizers

	8.1.3 Integrated management and visualisation of static and dynamic properties

	8.2 Smart District Data Infrastructure (SDDI)
	8.2.1 Deployment options for the InterSensor Service
	8.2.2 Joint visualisation and analysis of heterogeneous sensor data
	8.2.3 Integrated management and visualisation of static and dynamic properties
	8.2.4 Easy deployment of interoperable solutions

	9 Securing Data Infrastructures for Smart Cities
	9.1 Securing the Smart District Data Infrastructure (SDDI)
	9.2 Gathering requirements for securing the infrastructure
	9.2.1 Smart Cities
	9.2.2 Spatial Data Infrastructures (SDI)
	9.2.3 Security

	9.3 Demonstration scenario for securing the SDDI framework
	9.4 Implementations
	9.4.1 Implementing Single-Sign-On
	9.4.2 Linked Protected Data
	9.4.2.1 Securing the WFS Interface
	9.4.2.2 Securing the SOS Interface
	9.4.2.3 Modifying the Web3D Application
	9.4.2.4 Modifying the Sensor Visualisation Application

	9.4.3 Setting up the core security services

	9.5 Illustration of the Concept

	10 Conclusions and future work
	10.1 Thesis Summary
	10.2 Discussion of the results
	10.3 Scientific Contributions
	10.4 Outlook and future prospects

	Literaturverzeichnis
	Bibliography
	Original publications

