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Abstract

The aim of this work is to develop a novel computational approach to facilitate

the modeling of angiogenesis during tumor growth. The preexisting vascula-

ture is modeled as a 1D inclusion and embedded into the 3D tissue through

a suitable coupling method, which allows for nonmatching meshes in 1D

and 3D domain. The neovasculature, which is formed during angiogenesis, is

represented in a homogenized way as a phase in our multiphase porous

medium system. This splitting of models is motivated by the highly complex

morphology, physiology, and flow patterns in the neovasculature, which are

challenging and computationally expensive to resolve with a discrete, 1D

angiogenesis and blood flow model. Moreover, it is questionable if a discrete

representation generates any useful additional insight. By contrast, our model

may be classified as a hybrid vascular multiphase tumor growth model in the

sense that a discrete, 1D representation of the preexisting vasculature is

coupled with a continuum model describing angiogenesis. It is based on an

originally avascular model which has been derived via the thermodynamically

constrained averaging theory. The new model enables us to study mass trans-

port from the preexisting vasculature into the neovasculature and tumor tissue.

We show by means of several illustrative examples that it is indeed capable of

reproducing important aspects of vascular tumor growth phenomenologically.

KEYWORDS

1D‐3D coupling, angiogenesis, multiscale models, nonconforming coupling, vascular tumor growth
1 | INTRODUCTION

Multiscale mass transport and its deregulation have been identified as one of the underlying physical principles of can-
cer.1,2 Many of the so‐called hallmarks of cancer coined by Hanahan and Weinberg,3,4 such as inducing angiogenesis,
the invasion of healthy tissue, metastasis, and proliferative signaling, are essentially mass transport phenomena. One
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of the most important aspects of cancer is that its governing mass transport phenomena may span multiple scales rang-
ing across the organism to tissue, cellular, and molecular levels. Especially, transport of nutrients or growth signals
across multiple scales and various biological barriers plays a crucial role in tumor growth. Concurrently, also drugs have
to be transported across these scales and overcome these barriers which is still an inhibiting factor to efficient drug
delivery and, hence, therapeutic success.

Tumor growth is commonly divided into three distinct stages, namely the avascular, the vascular, and the metastatic
phase.5 In the first avascular phase, tumor growth is confined to a size of approximately 1‐2mm36,7 since pure diffusion
of nutrients is not enough to sustain the vast consumption by tumor cells (TCs). However, solid tumors can acquire the
capability to trigger angiogenesis, which is the formation of new capillaries from the preexisting vasculature. A new
blood vessel network evolves which supplies the tumor with nutrients and, thus, enables rapid growth. This so‐called
angiogenic switch8,9 from avascular to vascular growth is crucial for the tumor to become harmful. Therefore, a sophis-
ticated cancer model able to provide clinically relevant data has to take angiogenesis and vascular tumor growth into
account.

The main objective of this work is the development of a novel coupling method to investigate angiogenesis and the
multiscale transport of species from the preexisting vasculature through the tumor neovasculature (NV) to tumor tissue.
We want to combine a discrete, 1D representation of the preexisting vasculature with the continuous or homogenized
representation of the NV based on the theory of porous media, which we have recently introduced in our multiphase
tumor growth model.10 Most vascular tumor growth models incorporate a discrete angiogenesis model into a continuum
representation of tumor tissue resulting in a hybrid vascular tumor growth model according to the common classifica-
tion of models.5,11,12 Note that we employ the term discrete also to describe angiogenesis models that aim for a full res-
olution of capillaries and blood flow therein. These models are mainly adapted from the work of Anderson and
Chaplain,13 see also the review papers14-16 and the representative examples of such hybrid models.17-23 More recent
state‐of‐the‐art fully resolved blood vessel network models20,24-27 are based on an integrative framework for vascular
remodeling16 including angiogenesis as well as vessel regression, dilation, and collapse during tumor progression.
Thereby, the initial arterio‐venous vasculature in host tissue develops into a tumor‐specific vessel network.

The reason why we favor a combined approach over a full resolution of preexisting and NV is the abnormal structure
and mechanics of tumor NV. It is well‐established that tumor‐induced angiogenesis results in a tortuous, dilated blood
vessel network with variable vessel lengths and diameters and without the usual vascular hierarchy of arterioles, cap-
illaries, and venules.28,29 This causes highly heterogeneous blood flow.30 While at first sight, discrete models seem to
offer more insight into the formation of the specific network and its structure, this can and should also be challenged.
It appears virtually impossible to resolve the complex morphology of the network and the full spatial and temporal het-
erogeneity of blood flow inside tumors where almost no relationship between vessel diameter and flow velocity is pres-
ent.31,32 Furthermore, it is more than questionable if a fully resolved blood vessel network offers more information on
the actual quantities of interest especially when considering the inherently stochastic nature of angiogenesis and tumor
vasculature remodeling which precludes predicting the specific in vivo network topology. Relevant quantities which
could be obtained from in silico models and can actually be acquired through imaging are microvascular densities,
hotspots of vascularization or very badly vascularized regions inside the tumor, and averaged transport properties to
detect hypoxic and drug resistant areas.33,34 To obtain this information from resolved models, averaging over several dif-
ferent simulations is necessary.25 Therefore, we adopt a homogenized or smeared representation of the NV while resolv-
ing the preexisting larger vessels, for which information about structure and blood flow might be available, with a
discrete, 1D flow and species transport model. This may be classified as a hybrid formulation according to the definition
of Vilanova et al.5

A similar approach for mass transport in tissue has been pursued in the so‐called composite smeared finite element
method developed by Kojic et al.35-37 In the latter two contributions, the authors have coupled fluid flow and species
transport between 1D capillaries with a homogenized or smeared representation of the capillary bed and tissue domain.
By means of several examples, they have demonstrated that a homogenized and a resolved representation of the capil-
lary bed yield comparable results for blood flow and passive scalar transport. However, one restriction of their approach
is that the 1D and the 3D domain cannot be discretized independently. This is a major drawback of the method because
it only allows to couple spatially conforming discretizations. If a more complex microvascular geometry is considered,
the meshing procedure may become quite intricate. This effort can be considerably reduced by allowing arbitrary 1D
and 3D configurations. Such embedded multiscale approaches in the context of diffusion‐reaction scenarios have been
theoretically studied by D'Angelo and Quarteroni38,39 and further applied to drug delivery to tumors40,41 and
nanoparticle‐mediated hyperthermia cancer treatment.42,43
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To enforce the coupling between the embedded and the homogenized vasculature with independent 1D and 3D
discretizations, we have developed two line‐based penalty methods, namely a Gauss‐point‐to‐segment (GPTS) and a
mortar penalty (MP) scheme. In addition, a large deformation approach is adopted throughout allowing also deforma-
tions of the embedded fluid network. The main purpose for which we have developed our nonconforming coupling
method is vascular tumor growth. However, it is not restricted to this specific problem but may be applied to any mass
transport phenomenon involving a coupling between 1D and 3D domains, particularly if a part of the domain can be
considered in a homogenized sense because the full morphology of smaller scales is not of interest. Such problems
might be other biological mass transport phenomena involving the microcirculation but also geomechanical applica-
tions. Moreover, a coupling between 1D slender objects embedded into an enclosing 3D structure as appearing in many
engineering materials could be realized.

The remainder of this paper is structured as follows: in Section 2, we demonstrate how the embedded 1D fluid net-
work can be incorporated into our vascular multiphase tumor growth model. Especially, the coupling between the
preexisting vasculature and the NV formed through angiogenesis will be addressed. Two different strategies to enforce
this coupling are introduced in Section 3. After space discretization with finite elements and time discretization with the
one‐step‐theta scheme, the entire framework is solved with a monolithic coupling scheme. We show the principal appli-
cability of the novel formulation to vascular tumor growth by means of several illustrative examples in Section 4. Sec-
tion 5 contains a short summary of our findings and possible future extensions.
2 | INCORPORATION OF THE EMBEDDED 1D FLUID NETWORK INTO THE
VASCULAR TUMOR GROWTH MODEL

Our mathematical model is based on distinguishing two domains: a 1D inclusion representing the preexisting capillary
network described in Section 2.1 and a 3D continuum corresponding to the surrounding tissue including the NV, see
Section 2.2. These two domains are fully coupled via transcapillary exchange terms but also through tissue deformation,
as sketched in Figure 1.

Before going into detail about the governing equations of the model and their derivation, we want to present its gen-
eral layout. For that, we have collected all entities (phases and species) and their interaction through mass exchange
terms in Figure 2. The model comprises five phases:10 The extracellular matrix (ECM) is a deformable, porous solid
phase; three liquid phases, namely tumor cells (TCs), host cells (HCs), and the interstitial fluid (IF) flow in the pores
of the ECM; and the vasculature, which we either resolve as an embedded 1D fluid network (preexisting vasculature
FIGURE 1 Notation for 1D‐3D

coupling

(A) (B)

FIGURE 2 Schematic overview of the model and mass transfer relations
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(PRE)) or as a homogenized additional pore space inside the ECM (neovasculature (NV)). Blood, which is also modeled
as a liquid, flows in the vasculature. The lymphatic system is not present as an additional phase, but the drainage of
excessive fluid from the IF is taken into account through a suitable mass transfer relation.

Furthermore, each phase can consist of multiple species. In general, we can specify an arbitrary number of species,
but here, only the ones depicted in Figure 2B are considered. Oxygen is transported in the vasculature and may pass the
blood vessel wall into the IF. It is then consumed by TCs and HCs. TCs can be either necrotic or viable. Therefore, the
TC phase is composed of two species: necrotic tumor cells (NTCs) and living tumor cells (LTCs). The last species are so‐
called tumor angiogenic factors (TAF), which are produced during hypoxia by LTCs and diffuse in the IF to trigger
angiogenesis.13
2.1 | Governing equations for blood flow and species transport in 1D vasculature domain

We begin with blood flow and species transport in the 1D blood vessel domain Λt corresponding to the preexisting vas-
culature. The computational effort for solving these equations can be tremendously reduced under the simplifying
assumptions of Poiseuille flow. However, this 1D model is often also applied even when the simplifications are strictly
speaking not valid, eg, when transcapillary flow is present but small compared to axial flow, see Nabil and Zunino43 for
a short discussion. Recent experimental data44 suggests that the deformation of blood vessel networks in the brain sub-
ject to mechanical stress exerted by growing tumors may be significant. Therefore, we adopt a large deformation
approach of the tissue, ie, the ECM as well as the embedded network. In the following, we will discuss our assumptions
and their impact on the model formulation in an Arbitrary Lagrangian‐Eulerian (ALE) setting. The main assumptions
are as follows:

1. The deformation of the blood vessel network is completely described through the deformation of the underlying
porous medium domain.

2. Blood vessel segments have negligible stiffness compared to the ECM.
3. The area of the blood vessel segments remains constant under deformation.

Our approach could also be extended to remove one or all of the above assumptions, but as they appear reasonable
for our problems of interest, they are introduced to not artificially complicate the method. The first two assumptions are
based on the fact that we only consider small capillaries. Then, the surrounding ECM acts as a scaffold which provides
mechanical integrity to the enclosed capillary.45 If the scaffolding material deforms, the blood vessel deforms equally.
Furthermore, we neglect any contribution of these small capillaries to the stiffness of the surrounding ECM since the
capillary wall does not consist of smooth muscle cells but only a thin basement membrane which provides structural
integrity.46 The third assumption is a major simplification of the formulation because lateral deformation of blood ves-
sels induced through the deformation of the ECM is neglected. For example, axial elongation of a blood vessel will not
evoke any radial constriction. However, we believe that this effect is insignificant compared with the much more sub-
stantial influence of blood vessel constriction and collapse during tumor growth. It is well‐known that the growing
tumor mass and high interstitial pressure lead to blood vessel compression or even collapse. This could easily be
included through a suitable constitutive law20,47 and will be a topic of future research. However, the main focus of this
contribution lies on the development of a hybrid, alternative treatment of angiogenesis, which could serve as a less
costly yet accurate alternative to classical fully resolving models.

The notation of the problem is depicted in Figure 1. We denote the 1D vasculature and the 3D tissue domain in ref-
erence configuration as Λ0 and Ω0, respectively. Their counterparts in spatial configuration are termed Λt and Ωt.
Assumption 1 from above holds if a point XΛ∈Λ0 on the 1D vasculature reference configuration and a reference point
XΩ∈Ω0 of the 3D domain, which are at the same location in reference configuration, share a common point
xΛ XΛ
� � ¼ xΩ XΩ

� �
also in spatial configuration xΛ∈Λt resp. x

Ω∈Ωt throughout the deformation. Hence, the superscripts
for the distinct domains can be dropped. Furthermore, we refer to the arc‐length coordinate of each vessel segment in
reference configuration as S and in spatial configuration as s. The two are related through the deformation of the
domain via

sðSÞ ¼ ∫
S

0
F x X S′

� �� �� �
·t0ðS′Þ

�� ��dS′; (1)



KREMHELLER ET AL. 5 of 33
with unit tangent vector in reference configuration t0 and deformation gradient

F ¼ ∂x
∂X

: (2)

The corresponding unit tangent vector in spatial configuration follows as

tt ¼ F·t0
F·t0k k: (3)

In the following, quantities such as pressures or velocities defined in the vasculature domain will be identified by

superscript ·ð Þbv .

2.1.1 | Blood flow in the 1D vasculature domain

The mass conservation equation for an incompressible fluid in the vasculature domain may be written as48

∂A
∂t

����
x

þ
∂ Avbv� �

∂s
¼ M

l→bv
ρbv on Λt × t0; tE½ �; (4)

with blood vessel area A, area‐averaged fluid velocity vbv , and blood density ρbv . The considered time interval is denoted
as t0; tE½ �. Furthermore, a generic right‐hand side term has been defined. In our notation, it expresses a possible mass
transfer term between the 1D vasculature and the IF. For example, this term can be employed to model leakage of fluid
over the blood vessel wall into the interstitium. All mass transfer terms are written in generic form in the model formu-
lation. Their exact form will be given in Section 2.4, see also Remark 1. Assuming cylindrical blood vessels with constant
radius R (Assumption 1) and the Poiseuille relation

vbv − tt·vs ¼ −
R2

8μbv ∂p
bv

∂s
s ∈ Λt; (5)

the balance of mass can be rewritten as

πR2∂ tt·vsð Þ
∂s

−
πR4

8μbv ∂
2pbv
∂s2

¼ M
l→bv
ρbv on Λt × t0; tE½ �: (6)

In the Poiseuille Equation (5), we have included the projection of the skeleton velocity vs in current tangential seg-
ment direction tt in order to account for the underlying solid phase movement. Hence, this term is similar to the Darcy
equation in a porous medium. The pressure gradient in the capillaries induces a flow relative to the solid phase move-
ment in axial vessel direction. Blood viscosity μbv is assumed constant in the following. In reality, however, blood

behaves as a non‐Newtonian fluid due to the presence of red blood cells. Therefore, the viscosity depends on blood ves-
sel radius R and hematocrit, ie, the volume fraction of red blood cells within blood. Constitutive relationships for the
apparent viscosity of blood based on experimental data49,50 could easily be integrated.
2.1.2 | Species transport in the 1D vasculature domain

Blood flow in the vascular network can transport several species such as oxygen, anticancer drugs, or nanoparticles.
These are advected by the flow and may cross the vessel walls into the IF. The mass balance of a species i dispersed

in the blood vessel network with mass fraction ωibv may be written as
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πR2∂ω
ibv

∂t

�����
x

þ πR2 ∂
∂s

vbv ·ωibv − Dibv ∂ωibv
∂s

 !
¼ M

il→ibv
ρbv on Λt × t0; tE½ �: (7)

Such 1D diffusion‐advection‐reaction equations with diffusivity Dibv have been used previously in related work.41-43

However, here the formulation is in terms of a species mass fraction ωibv rather than a concentration which makes it
easier to couple it to our multiphase model where species are generally identified by mass fractions. Again, the right‐
hand side represents a generic species mass transfer term from species i in the IF to the considered species i in the
preexisting vasculature bv. Note that we have omitted any intra‐phase reaction terms as those are not present in the cur-
rent model. We invoke the relation

∂ ·ð Þ
∂t

����
x

¼ ∂ ·ð Þ
∂t

����
X

− tt·vs·
∂ ·ð Þ
∂s

on Λt (8)

to transform the temporal derivative on the 1D domain to a derivative w.r.t. the reference configuration. As in (5), the
solid velocity vs projected in current tangential segment direction tt is employed. Inserting into (7) and applying the
product rule for the convective term yields an ALE equation

πR2∂ω
ibv

∂t

�����
X

− πR2tt·vs·
∂ωibv
∂s

þ πR2vbv · ∂ωibv
∂s

− πR2Dibv ∂2ωibv
∂s2

¼ 1

ρbv M
il→ibv

− ωibv Ml→bv !
on Λt × t0; tE½ �: (9)

Herein, the balance of mass of blood (4) under the assumption of constant area has been invoked. The convective
term in ALE form can then be replaced by the Poiseuille law (5), which yields the final mass balance equation for spe-
cies i

πR2∂ω
ibv

∂t

�����
X

−
πR4

8μbv ∂p
bv

∂s
·
∂ωibv
∂s

− πR2Dibv ∂2ωibv
∂s2

¼ 1

ρbv M
il→ibv

− ωibv Ml→bv !
on Λt × t0; tE½ �: (10)

Equations (6) and (10) are the governing equations for fluid flow and species transport in the preexisting vascular
network. They are coupled in three ways to our multiphase tumor growth model for the surrounding 3D tissue. First,
in a one‐way coupling, the deformation of the ECM induces also deformation of the embedded blood vessels. Second,
fluid flow and species transport in the preexisting vasculature and in the surrounding IF are two‐way coupled via
transvascular exchange over the blood vessel wall. Third, fluid flow and species transport in the preexisting vasculature
and the NV formed during angiogenesis are coupled through suitable constraints, see Section 2.3.
2.2 | Governing equations of the vascular multiphase tumor growth model

The coupling with the embedded 1D fluid network requires some minor additions to our vascular multiphase tumor
growth model, which we have introduced in Kremheller et al.10 It is based on the original tumor growth model of
Sciumé et al,51 which has been derived on the basis of thermodynamically constrained averaging theory (TCAT). This
intricate mathematical procedure guarantees physical, thermodynamical, and mathematical consistency between mul-
tiple scales.52,53 Hence, at continuum scale, where the model is formulated, the macroscale variables are explicitly and
precisely defined as averages of microscale variables. Over recent years, this TCAT tumor growth model has been
enhanced to include three‐phase flow,54 a deformable ECM55 and cell lysis and matrix deposition.56 Microstructural
and biomechanical features of the ECM have been studied in Santagiuliana et al.57

As stated above, the vascular multiphase model comprises five phases:10 The ECM, TCs, HCs, the IF, and the NV.
The NV is modeled in a homogenized way as an additional pore space in the ECM, which develops during angiogenesis
and in which blood flow takes place. The composition of a typical representative elementary volume at the microscale is
sketched in Figure 3. Here, single phases and their interfaces are clearly discernible. However, at the macroscopic scale
where our equations are valid, several phases α with corresponding volume fractions εα are juxtaposed. For instance,
single blood vessels of the NV are not modeled explicitly but in an averaged sense with volume fraction or capillary den-
sity εv. Effectively, the formulation results in a double‐porosity model with two separate porous networks, which are the



FIGURE 3 Components of the vascular multiphase system on the microscale
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pores of the ECM and the NV. In the following, the solid phase will be denoted with superscript s, the IF with l, HC with
h, TC with t, and the NV with v. The sum of all volume fractions has to satisfy

εs þ εv þ εl þ εh þ εt ¼ 1: (11)

In addition, multiple species are present. In the TCAT framework, a generic species i which is dissolved in a specific

phase α is described by its mass fraction ωiα in this phase. For example, oxygen (or nutrient) may be present in the NV

with a mass fraction ωnv and in the IF with a mass fraction ωn l . As in previous versions of the model, the TCs partition

into LTCs and NTCs. Therefore, NTCs constitute the second species with mass fraction ωN t . Then, the mass fraction of

LTCs follows as ωL t ¼ 1 − ωN t , so that we do not explicitly have to solve the balance of mass of LTCs. The third species

are the aforementioned TAF, which diffuse in the IF with mass fraction ωTAF l . The model equations for all phases and
species are introduced in the following. In principle, additional types of cells such as cancer stem cells or cancer‐
associated fibroblasts could be introduced as additional phases or species into the model.
2.2.1 | Angiogenesis and blood flow in the neovasculature

Due to the vast consumption of oxygen by proliferating TCs, the tumor microenvironment can easily become hypoxic.
Then, some tumors can form their own vasculature through angiogenesis, that is, the formation of blood vessels from a
preexisting vasculature. This is achieved through the secretion of TAF, which triggers endothelial cell migration from
the preexisting vasculature toward the tumor. Subsequently, these endothelial cells proliferate and sprout until a new
vascular network, the NV, emerges, which provides oxygen and other nutrients to the tumor. As mentioned before,
the NV exhibits abnormal and heterogeneous structure. Hence, we do not want to account for every single blood vessel
but treat it in a homogenized or averaged sense. We assume that the volume fraction of the NV εv follows an evolution
equation

∂εv

∂t

����
X

þ εv∇·vs − ∇· Dv∇εvð Þ þ ∇· εvεSlχ ωTAF l
� �

∇ωTAF l
� �

¼ 0 in Ωt × t0; tE½ �; (12)

which we have introduced in Kremheller et al.10 This equation is an adaption of a very prominent formulation of angio-
genesis originally proposed by Anderson and Chaplain.13 It establishes a mathematical description of angiogenesis in a
continuum sense. The main trigger of angiogenesis is the chemotactic response on a TAF gradient, which is modeled by

the fourth term on the left‐hand side of the equation with chemotactic coefficient χ ωTAF l
� �

, see also Equation (A7).

Random motility of endothelial cells is included as a diffusive term. We want to emphasize that the previous equation
is not a mass balance equation but rather a constitutive equation which describes the evolution of the NV volume frac-
tion due to endothelial cell migration.
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Previously, blood flow in the NV has been neglected by assuming constant blood pressure.10 Now, also blood flow in
the NV is modeled. This enables us to couple the model with the preexisting vasculature and study blood flow and spe-
cies transport in the NV. It is crucial to include mass transport in the NV because of its importance during tumor pro-
gression: nutrients can be transported from preexisting into NV and to the tumor more efficiently than through
diffusion in the IF such that the tumor has improved access to nutrients, which is why vascular tumor growth pro-
gresses much more rapidly. To model these phenomena, we introduce the balance of mass of blood in the NV in
ALE form

∂ρvεv

∂t

����
X

þ ρvεv∇·vs þ ∇· ρvεv vv − vsð Þð Þ ¼ ∑
κ ∈ Icv

M
κ→v

in Ωt × t0; tE½ �; (13)

with blood velocity vv. Assuming constant blood density ρv and a Darcy equation with (isotropic) NV permeability ten-
sor kv and blood viscosity μv, the equation may be rewritten as

∂εv

∂t

����
X

þ εv∇·vs − ∇·
kv

μv
∇pv

� 	
¼ ∑κ∈Icv M

κ→v

ρv
in Ωt × t0; tE½ � (14)

in terms of blood pressure in the NV pv. This equation constitutes a homogenized model for blood flow in the NV. In
conclusion, our porous medium model for the NV comprises two equations: the first (12) governs angiogenesis, and
the second one (14), blood flow. Therefore, the volume fraction of the NV εv and its blood pressure pv are two primary
variables of the vascular tumor growth model.

However, in the current model, only the emergence of new vessels is considered in (12) but no vessel remodeling, eg,
through blood vessel regression, collapse, or dilation.16 In fully resolving vasculature models, these phenomena are usu-
ally taken into account quite naturally through suitable constitutive equations for the blood vessel radius.20,24,26,27 In
our homogenized treatment of the NV, vascular remodeling could also be incorporated as an additional effect in Equa-
tion (12), for instance, via a right‐hand side term, which induces a decrease in vessel volume fraction based on the pres-
sure exerted by the tumor on the NV. Similarly, remodeling effects could also be considered in the equation for blood
flow (14) through a constitutive law for the permeability including effects of anisotropy.
2.2.2 | Tumor cells, host cells and the interstitial fluid

In the vascular model, we have defined two separate porous networks, see also Figure 3. The first one is the NV with
blood flow. Cells and the IF occupy a second porous network, namely the space between the ECM fibers, that is, the
pores of the ECM. Their volume fraction ε is given by

ε ¼ εl þ εh þ εt: (15)

From that, saturations of TCs, HCs, and the IF are readily obtained as

Sα ¼ εα

ε
; α ¼ l; h; t; (16)

which have to fulfill

∑
α¼t; h; l

Sα ¼ 1: (17)

The mass balance equations for TCs, HCs, and the IF read as
for α=t,h:

ε ∑
β¼t; h; l

∂Sα

∂ψβ

∂ψβ

∂t

����
X

− Sα
∂εv

∂t

����
X

þ Sα 1 − εvð Þ∇ ·vs − ∇·
kα

μα
∑

β¼t; h; l

∂pα

∂ψβ∇ψ
β

 !

¼ ∑κ∈Icα M
κ→α

ρα
þ Sα

∑κ∈Ics M
κ→s

ρs
in Ωt × t0; tE½ �; (18)
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for α=l:

−
∂εv

∂t

����
X

þ 1 − εvð Þ∇ ·vs − ∑
γ¼t; h; l

∇·
kγ

μγ
∑

β¼t; h; l

∂pγ

∂ψβ∇ψ
β

 ! !

¼ ∑
γ¼t; h; l

∑κ∈Icγ M
κ→γ

ργ

0@ 1Aþ∑κ∈Ics M
κ→s

ρs
þ δΛt

M
bv→l

ρl
in Ωt × t0; tE½ �: (19)

These equations are equivalent to the ones derived in Kremheller et al.10 Herein, ψα denotes the generic primary var-
iable of phase α, which can be either its saturation Sα, its pressure pα, or a pressure difference pαβ to another phase β.
Furthermore, incompressible fluid and solid phases have been assumed. The equations above represent the balance of
mass of TCs, HCs, and the IF. The first two (18) are simply the balance of mass of TCs and HCs, and the last one (19)
can be obtained by summing up the mass balance equation of the three phases such that several terms cancel out due to
the relation for saturations (17). The mass balance equations (18) and (19) have to be closed by an appropriate pressure‐
saturation relationship and the balance of mass of the solid phase in reference configuration, see Appendix A. In addi-
tion, a generalized Darcy law with isotropic permeability k and viscosity μ has been employed as in previous versions of
the model. The right‐hand side represents mass transfer between different phases.

The major modification due to the coupling with the 1D blood flow model is the addition of the mass transfer term
scaled with the Dirac measure δΛt located on Λt in (19). This term is the counterpart of the right hand side mass transfer
in the balance of mass of blood (4) and expresses the coupling between flow in the embedded 1D domain and the sur-
rounding tissue, typically through an outflow of fluid from the vascular network into the IF. In other words, the 1D
problem is represented as a distributed Dirac source term embedded into the 3D problem. This singularity may lead
to suboptimal convergence rates.39,58 Recently, a different approach has been proposed58: Instead of prescribing the
source term as a Dirac measure on the middle line of the inclusion, the coupling can be evaluated on the actual physical
boundary, that is, the outer surface of the 1D vessels. Thus, the regularity of the solution is increased by lifting the
dimension by one. An alternative would be to approximate the Dirac measure by smearing the term over a finite
length.26

38,39
Remark 1. The numerical discretization of the formulation proposed by D'Angelo and Quarteroni is
quite intricate since it involves evaluating the average value of quantities from the 3D domain w.r.t. a circle
with the actual radius of the embedded domain. This local average of a generic quantity u for every point s
of the embedded domain at a specific segment with radius R is defined via the integral

u sð Þ: ¼ 1
2π

∫
2π

0
u xΩðsÞ þ Rn s; θð Þ� �

dθ: (20)

Herein, n s; θð Þ is employed to describe the unit circle around Λt(s) perpendicular to the segment direction
tt. For practical problems with h>R, the integral can be approximated by

u sð Þ ≈ u xΩðsÞ� �
; (21)

as proposed by D'Angelo,59 which is equivalent to our method.
2.2.3 | Species transport

For every species i dissolved in a phase α with mass fraction ωiα , the balance of mass reads as

εα
∂ωiα

∂t

����
X

−
kα

μα
∇ pα·∇ωiα − ∇· εαDiα

eff∇ω
iα

� �

¼ 1
ρα

∑
κ ∈ Icα

M
iκ→iα þ εαriα − ωiα ∑

κ ∈ Icα

M
κ→αþδΛt · M

ibv→iα
− ωiα M

bv→α
 ! !

in Ωt × t0; tE½ �

(22)

with
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εα ¼ εv or εα ¼ εSα; α ¼ l; h; t (23)

and effective diffusivityDiα
eff . Compared with the previous formulation,10 we have now also included species transport in

the NV, specifically of oxygen, see also Figure 3. In the aforementioned paper, the oxygen mass fraction in the NV has
simply been assumed as constant. The first three mass transfer terms on the right‐hand side are a generic mass transfer
term from all species i in all phases κ to the considered species i in phase α, an intra‐phase reaction term, and a term
which arises when applying the product rule. The last two terms are due to the exchange of species from the embedded
blood vessels to species in the IF, ie, these terms arise only for α=l in (22). Once more, they are represented as Dirac
source terms δΛt on the 1D manifold Λt. Species such as oxygen can pass the blood vessel wall into the IF. This exchange
is included by mass transfer terms in the balance of species mass in the 1D vascular network (10) which is coupled to
species mass transport in the 3D domain through the embedded multiscale method and the corresponding distribution
of Dirac source terms in (22).
2.2.4 | Solid phase

We model the solid phase, ie, the ECM as the skeleton of the porous medium, where Terzaghi's principle of effective
stress

σs
eff ¼ σs

tot þ psI (24)

can be applied. Herein, the solid pressure

ps ¼ ε
ε þ εv

∑
α¼t; h; l

Sαpα þ εv

ε þ εv
pv (25)

is defined as a weighted average of the involved phases.10 This formulation recovers the definition of the solid pressure
as a weighted sum of TC, HC, and IF pressures with their saturations51,60 if no NV is present. If angiogenesis occurs,
that is, a second porous network is present, it is similar to the definition in multiple poroelastic network theory.61 Pulled
back into the material configuration Ω0, the balance of momentum of the solid phase can then be written as

∇0· F·S
s
eff − F· JF−1·F−Tps

� � ¼ 0 in Ω0 × t0; tE½ �; (26)

with the material divergence operator ∇0. Herein, body and dynamic forces have been neglected.
2.3 | Coupling between 1D (resolved) and 3D (homogenized) representation of
vasculature

The complexity of blood vessel networks in humans can be enormous.36 Especially, the NV formed by tumors during
angiogenesis is characterized by its chaotic structure and morphology accompanied with irregular flow patterns.28-30

Hence, Kojic et al36 have established an approach termed the composite smeared finite element method. Here, larger
vessels are represented as 1D inclusions, while the capillary bed is smeared or homogenized. The parallels to our
homogenized representation of the NV lie at hand. However, the two domains are coupled via so‐called connectivity
elements at spatially matching nodes of the two grids.36 Therefore, the main benefit of the embedded multiscale
method, which is the complete independence of 1D and 3D grids, is lost. In analogy to mesh tying in solid mechanics,
we propose an alternative approach based on a nonconforming coupling between the embedded vasculature and the 3D
domain, more precisely the homogenized vasculature. We define the constraint between the embedded and the sur-
rounding domain as

g ¼ φbv xΛ; t
� �

− φv xΩ; t
� � ¼ 0 on Λt × t0; tE½ � (27)

with

φbv ¼ pbv and φv ¼ pv (28)
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for coupling of blood flow or

φbv ¼ ωibv and φv ¼ ωi v (29)

for coupling of species transport. Herein, a “gap” g between pressures or species mass fractions in the 1D domain w.r.
t. the 3D domain has been introduced. It has to vanish in order to couple blood flow or species transport of the embed-
ded blood vessel with the homogenized NV. Blood flow in the preexisting vasculature on Λt is governed by Equation (6),
while the corresponding equation for the NV in Ωt is Equation (14). The two domains are coupled via the constraint (27).
The same holds for species transport in the preexisting vasculature (10) and the NV (22) with εα=εv. In Section 3.2, we
will elaborate how to enforce this coupling between the two distinct domains with two penalty‐based methods, a GPTS,
and a MP approach.
Remark 2. The nonconforming coupling between preexisting and NV (27) is enforced along the axis of the
preexisting vessels. This is motivated by the origination of angiogenesis laterally from a preexisting blood
vessel through angiogenic sprouting followed by growth radially away from the pre‐existing vessel and sub-
sequent network formation.62 In Section 4.2, we demonstrate how angiogenesis can be triggered from the
preexisting vessel with our method. For alternative applications, where a vessel network originates from
the tip of a major vessel, a formulation with a constraint on the tip of the resolved vessel and a homoge-
nized continuation of a tree‐like vessel network is also feasible.
2.4 | Constitutive mass transfer relations and oxygen transport model

In this section, we want to summarize the mass transfer relations sketched in Figure 2, which we employ to model vas-
cular tumor growth. Several of the terms from the previous version of the multiphase model10,51,54,55,63 have been reused
and are listed in Appendix A. A summary of all relations has been collected in Table 1. Note that some terms which are
of minor importance have been neglected, mostly the ones which would appear for species transport due to the appli-

cation of the product rule in (10) and (22). For the five phases of the model, the terms for tumor growth M
l→t

growth, leakage

of fluid from the NV into the IF M
v→l

leak, and drainage of excessive fluid by the lymph system M
l→ly

drainage have not been
modified, see Appendix A. One addition for the multiphase model is that blood flow in the NV is now explicitly modeled
through Equation (14). Thus, the leakage of fluid (A8) also appears as a mass transfer term in this equation. It is well‐
known that the NV inside tumors is leaky, which might contribute to increased IF pressure inside tumors together with
inefficient lymphatic drainage.64,65 Furthermore, there is also leakage of fluid from the preexisting vasculature into the
IF, which can be considered by the Starling equation

M
bv→l

leak ¼ ρbv·2πR·L
p;bv · peff−pl
 �

þ; (30)

with hydraulic conductivity L
p;bv . Blood plasma leaks from the preexisting vasculature into the IF if the effective pressure

peff ¼ pbv − ωosm πblood − πl
� �

(31)

is larger than the IF pressure pl. In the previous equation, the average osmotic reflection coefficient is denoted by ωosm

and the osmotic pressures of the plasma and the IF by πblood and πl, respectively. Macaulay brackets ·h iþ have been
employed to allow only outflow of fluid. Please note that here and in the following mass transfer terms involving the
preexisting vasculature, we have made use of the approximation (21).

For the three considered species, we have also adopted the mass transfer terms for consumption of oxygen by TCs

M
nl→t

cons, the intra‐phase reaction term εtrNt for necrosis, and the production of TAF by hypoxic TCs M
TAFt→TAFl

prod. The
arithmetic expressions for these terms are again given in Appendix A. Consumption of oxygen by HCs has so far been
neglected. Here, we include it with a similar term as the consumption of TCs (A12). The oxygen consumption by HCs is
defined as



TABLE 1 Mass transfer terms for vascular tumor growth

Entity Rhs equation Term

Extracellular matrix ‐ =0

Host cells (18) =0

Tumor cells (18) ¼ 1
ρt

M
l→t

growth

� 	
Interstitial fluid (19)

¼ 1
ρl

M
v→l

leak − M
l→ly

drainage þ δΛt ·M
bv→l

leak

 !
Neovasculature (14) ¼ 1

ρv
−M

v→l

leak

� 	
Necrotic tumor cells (22) ¼ 1

ρt
εtrNt − ωN t M

l→t

growth

� 	
Oxygen in IF (22)

¼ 1
ρl

− M
nl→t

cons − M
nl→h

cons þ M
nv→nl

tv − ωn l −M
l→t

growth

� 	
þ δΛt · M

nbv→nl

tv

 !
Oxygen in NV (22) ¼ 1

ρv
− M

nv→nl

tv

� 	
Tumor angiogenic factors (22) ¼ 1

ρl
M

TAFt→TAFl

prod

� 	
Preexisting vasculature (6)

¼ 1

ρbv −M
bv→l

leak

 !
Oxygen in preexisting vasculature (10)

¼ 1

ρbv − M
nbv→nl

tv

 !

Abbreviations: IF, interstitial fluid; NV, neovasculature; rhs, right‐hand side.
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M
nl→h

cons ¼ M
nl→nh ¼ γnh0 ·sin

π
2
ωn l

ωnl
env

 !
·εSh: (32)

Herein,ωnl
env is the normal mass fraction of oxygen dissolved in the human plasma and γnh0 is a model constant related

to the oxygen demand of HCs.
In Kremheller et al,10 we have not taken oxygen transport in the NV into account. In this contribution, oxygen trans-

port both in the preexisting and in the NV is included through the mass balance equations (10) and (22), respectively.
However, in our TCAT framework, the primary variable is the mass fraction of oxygen instead of oxygen concentrations

per unit volume of plasma or tissue Cnα ½mlO2=ml� or oxygen partial pressures Pα
oxy ½mmHg� as commonly used for oxy-

gen transport models.27,66-69 Hence, we need to convert mass fractions to partial pressures in order to reuse the mass
transfer relations which are normally applied. The mass fraction of oxygen in the IF in terms of oxygen partial pressure

in the IF Pl
oxy is given by Henry's law as

ωn l Pl
oxy

� �
¼ ρn

ρl
·Cnl ¼ ρn

ρl
·αlPl

oxy; (33)

where αl is the solubility of oxygen in the IF and ρn and ρl are the respective densities of oxygen and the IF. Oxygen
transport in blood follows a more complex mechanism27 since it can be either dissolved in the blood plasma or bound

to hemoglobin. Hence, the mass fraction of oxygen in blood (either ωn v or ωnbv) may be written as

ωnv Pv
oxy

� �
¼ ρn

ρv
·Cnv ¼ ρn

ρv
· αv;effPv

oxy þHD·Cnv
0 ·S Pv

oxy

� �� �
: (34)
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As in (33), the first term represents the dissolved oxygen with effective solubility αv,eff, while the second one stands

for the oxygen bound to hemoglobin (whose contribution to the total amount of oxygen is actually much larger). So,ωnv

stands for the total mass fraction of oxygen which is dissolved in plasma and bound to hemoglobin. The same applies for

ωnbv . Furthermore, HD is the discharge hematocrit, that is, the volume flux of red blood cells divided by total blood vol-

ume flux50 and Cnv
0 the concentration of oxygen at maximum saturation. We do not consider a heterogeneous distribu-

tion of hematocrit due to diverging bifurcations50 as in other numerical models27,68,70 but constant discharge
hematocrit, see Table 4. For the binding of oxygen to hemoglobin, the Hill equation

S Pv
oxy

� �
¼

Pv
oxy

� �n
Pv
oxy

� �n
þ Pv

oxy;50

� �n (35)

is typically applied. Here, the Hill exponent n and the partial pressure Pv
oxy; 50 at 50% oxygen saturation have been intro-

duced. As stated above, mass fractions of oxygen are the primary variable of our oxygen transport model, so we actually
need the inverses of (33) and (34) to get the oxygen partial pressure at a specific mass fraction. For oxygen in the IF (33),
this is trivial; however, the relation for oxygen in blood (34) has to be inverted numerically by a small local Newton
algorithm. For transvascular oxygen exchange from the preexisting vasculature into the IF, we then employ the relation

M
nbv→nl

tv ¼ bγtvðRÞ·ρn·2πR· Pbvoxy − Pl
oxy

� �
(36)

in terms of partial pressures of oxygen which has been proposed by Welter et al27 based on earlier works of Hellums
et al.71 Basically, the parameter bγ tv Rð Þ models the radial transport resistance of oxygen. Such a radial resistance71 has
also been employed elsewhere.66-68 Here, a phenomenological fit for varying radii is reused, see appendix S1 of Welter
et al.27 For oxygen exchange from the NV into the IF, we use an equivalent relation

M
nv→nl

tv ¼ γtv·ρ
n·

S
V

� 	
v

· Pv
oxy−P

l
oxy

D E
þ
·εv: (37)

We assume that oxygen mass exchange is proportional to the volume fraction of the NV εv and its surface‐to‐volume
ratio S=Vð Þv. Macaulay brackets are employed to allow only oxygen transfer from the NV into the IF and not vice versa.
3 | NUMERICAL DISCRETIZATION AND COMPUTATIONAL FRAMEWORK

The framework developed for the vascular multiphase model10 within our high‐performance computing platform72 has
been enhanced with the embedded multiscale method. We employ the finite element method to discretize the system of
equations in space and the one‐step‐theta scheme for time discretization. The space discretization of the multiphase sys-
tem including species transport and structure deformation has been described in detail in Sciumé et al,55 while the
discretization of the 1D embedded domain is trivial. Therefore, we will focus on the interaction terms between the
domains, namely the transcapillary mass transfer terms and the two proposed constraint enforcement strategies.
3.1 | Treatment of transcapillary exchange terms

We will only outline the discretization of the mass transfer relations between embedded vasculature and IF for the sake
of brevity. A generic mass transfer term in our formulation may be written as

M
ðiÞbv→ðiÞl

¼ f φbv ; φl
� �

(38)

with

φbv ¼ pbv and φl ¼ pl (39)
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for fluid mass transfer or

φbv ¼ ωibv and φl ¼ ωi l (40)

for species mass transfer with function f ·ð Þ. When brought to the left side, the contribution of the mass transfer term to
the weak form of fluid flow resp. species transport in the embedded domain Λt is given by

δφbv ; M
ðiÞbv→ðiÞl

 !
Λt

¼ δφbv ; f φbv ;φl
� �� �

Λt

; (41)

while the contribution to the weak form of the equation for the surrounding tissue reads as

− δφl; δΛt · M
ðiÞbv→ðiÞl

 !
Ωt

¼ − δφl; M
ðiÞbv→ðiÞl

 !
Λt

¼ − δφl; f φbv ;φl
� �� �

Λt

: (42)

Herein, test functions δφbv ∈ H1
0 Λtð Þand test functions δφl ∈ H1

0 Ωtð Þhave been employed.58 Only piecewise linear ele-
ments on Λt and bi‐, respectively, trilinear elements in Ωt are used in the following. Furthermore, ·; ·ð Þ denotes the stan-
dard inner product on either Λt or in Ωt. Spatially discretizing this term requires Gauss integration of products of shape
functions along the length of the inclusion as described in Section 3.4.
3.2 | Constraint enforcement strategies

In the following, we show how the constraint (27) for coupling blood flow and species transport between preexisting
and NV can be fulfilled through two different constraint enforcement strategies, a GPTS, and a penalized mortar‐type
method, which have been adapted from mesh tying and contact formulations in solid mechanics. These two methods
perfectly fit into the finite element discretization of the transcapillary mass transfer terms as described above.
3.2.1 | Gauss‐point‐to‐segment approach

Our first choice to fulfill the constraint (27) of equal pressures or species mass fractions is through a GPTS approach. For
that, we define a penalty potential as

Πpen ¼ 1
2
ϵGPTS·∫

Λt

g2ds on Λt × t0; tE½ �: (43)

The weak formulation of (43) follows as

δΠpen ¼ ϵGPTS δφbv ;φbv−φv
� �

Λt

− ϵGPTS δφv; δΛt · φbv−φv
� �� �

Ωt

¼ ϵGPTS δφbv ;φbv−φv
� �

Λt

− ϵGPTS δφv;φbv−φv
� �

Λt

;
(44)

with corresponding test functions δφbv and δφv as above. The major benefit of this GPTS approach is that it can easily be
combined with the embedded multiscale method by adding (44) to the weak form of the 1D‐3D problem which is
already two‐way coupled through the mass transfer terms with similar form to (44), that is, Equations (41) and (42).
Indeed, the coupling term may be interpreted as a mass exchange term between preexisting and NV

M
ðiÞbv→ðiÞv

¼ ϵGPTS φbv − φv
� �

; (45)

with very large permeability ϵGPTS such that pressures and species in the two domains immediately equalize. We have
termed it GPTS approach here since evaluating (44) in its discretized form will ultimately require Gauss integration of
the term along the vessel centerline, see also Section 3.4. The drawback of such GPTS methods is the choice of the
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penalty parameter ϵGPTS. A too low value will not fulfill the constraint with sufficient accuracy, while a too high value
will lead to an overconstrained problem, see also Section 4.1.
3.2.2 | Mortar approach with penalty regularization

An alternative constraint enforcement scheme, which does not suffer from the aforementioned shortcomings, is the
Lagrange multiplier (LM) method whose contribution to the weak form can be written as

δΠLM ¼ λ; δφbv−δφv
� �

Λt

: (46)

Again, this allows interpreting the (scalar‐valued) Lagrange multiplier λ defined on the embedded domain Λt as a

mass exchange term between embedded vasculature and NV, ie, λ ¼ M
ðiÞbv→ðiÞv

. Typically, a LM formulation transforms
the resulting system of equations into a saddle point problem meaning that its solution will be a maximum with respect
to the LMs and aminimumwith respect to the primary variables. In the context of solid mechanics mesh tying and contact
algorithms, such a formulation with a discretization of the LM field is usually termed mortar method.73 The nodal
Lagrange multipliers enter the system of equations as additional unknowns or are condensed out via a dual approach.74,75

However, here we pursue a different strategy with a penalty regularization of the LM method similar to Yang et al,76

which we term mortar penalty method in the following. The spatial discretization of (46) may be written as

δΠLM;h ¼ ∑
j ∈ S

∑
k ∈ S

λjDjkδφbvk − ∑
j ∈ S

∑
l ∈ M

λjMjlδφv
l ; (47)

with the well‐known mortar matrices

D j; k½ � ¼ Djk ¼ ∫
Λt;h

bΦj bNk ds (48)

and

M j; l½ � ¼ Mjl ¼ ∫
Λt;h

bΦjNl ds: (49)

In the spatially discretized form of (47), we have introduced a nodal LM λj as well as nodal variations of the primary

variables δφbvk on the discretized 1D domain Λt,h and nodal variations of the primary variables δφv
l in the discretized 3D

domain Ωt,h. The indices j and k identify nodes on the discretized 1D domain, while l is employed for nodes in the 3D
domain. S and M denote the subsets of nodes on the 1D domain, respectively, in the 3D domain, which actually form

the discrete interface Λt,h. Shape functions in those domains are denoted with bNk and Nl, respectively. Furthermore, the

LM shape function at a node belonging to the 1D discretization is bΦj. We assume that every node of the 1D domain
carries a nodal LM with corresponding shape function, which has to be chosen from a suitable function space to ensure
inf‐sup stability.73 In the following, we exclusively apply linear shape functions for both primary variables and Lagrange

multiplier interpolation on the 1D domain, that is, bΦj ¼ bNj. For the penalty regularization of the constraint, we define
the discretized weighted pressure or species gap at node j of the discretized 1D domain as

gj : ¼
1
κj

∑
k
Djkφbvk − ∑

l
Mjlφv

l

� 	
(50)

with

κj ¼ ∫
Λt;h

bΦj ds: (51)

As in Yang et al,76 the scaling with the inverse of (51) guarantees consistent units of the weighted gap gj. It can be
employed for a penalty regularization of the nodal Lagrange multiplier λj as
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λj ¼ ϵMP·gj (52)

with (mortar) penalty parameter ϵMP. This definition is then inserted into (47) to eliminate the LMs from the global
problem. Again, the penalty parameter determines how accurately the constraint will be fulfilled. However, as we will
show in Section 4.1, the MP method is not prone to overconstrainment as opposed to the GPTS scheme.

Finally, we want to emphasize that the dimensions of the mass transfer equations defined on the embedded domain
and the surrounding tissue are different. The balance of mass of blood (6) and species (10) are written in terms of
[length]2/[time], while the ones of the 3D tissue domains (14), (18), (19), and (22) are formulated in terms of
1/[time]. The coupling between the equations is achieved via the Dirac term δΛt , whose dimensions are actually
1/[length]2.41 Hence, the units of the penalty parameters ϵGPTS and ϵMP are [length]2/[time·pressure] for the coupling
of pressures and [length]2/[time] for the coupling of species, which makes their interpretation as permeabilities straight-
forward. From a modeling point of view, such finite permeabilities might even be advantageous. For instance, they
could be employed to account for the partition of red blood cell flux between preexisting and NV. Red blood cells might
preferentially follow the higher blood flow in the preexisting, developed vasculature such that hematocrit and corre-
spondingly the oxygen mass fraction in the NV is lower.50

Remark 3. Alternatively, the formulation of the mesh tying constraint (27) could also be written w.r.t. the

averaged quantity from the 3D domain φv according to (20). Then, the weak form for both schemes would
have been equivalent to the formulation of Köppl et al58 with a mass transfer term between preexisting and
NV with large permeability living on the boundary of the inclusion.
3.3 | Discretized system of equations and computational algorithm

After space and time discretization, the nodal primary variables defined on the discretized embedded domain Λt,h at
time step n+1 are

bpbvnþ1 ∈ Rbnnodes and bωnþ1 ∈ Rbnnodes·bnspec ; (53)

that is, nodal pressures and nodal species mass fractions. Here, a total of bnspec species is transported in the preexisting
vasculature, which is discretized with bnnodes nodes. For the surrounding tissue domain, the respective nodal primary var-
iables are defined by

ds
nþ1 ∈ Rnnodes·ndim ; ψt;h;l

nþ1 ∈ Rnnodes·3; ϵvnþ1 ∈ Rnnodes ; pv
nþ1 ∈ Rnnodes ; ωnþ1 ∈ Rnnodes·nspec (54)

as nodal displacements, nodal generic primary variables of TCs, HCs, and the IF, the nodal NV volume fraction, the
nodal NV pressure, and nodal species mass fractions with nspec species in the multiphase model. Furthermore, ndim
denotes the number of spatial dimensions and nnodes the number of nodes in the tissue domain. We can then define
a coupled system of discrete nonlinear residuals R at time step n+1 as

bRbvnþ1 ds
nþ1; ψ

t;h;l
nþ1; p

v
nþ1; bpbvnþ1

� 	
¼ 0 with bRbvnþ1 ∈ Rbnnodes ; (55)

bRspec
nþ1 ds

nþ1; ωnþ1; bpbvnþ1; bωnþ1

� 	
¼ 0 with bRspec

nþ1 ∈ Rbnnodes·bnspec ; (56)

Rs
nþ1 ds

nþ1 ; ψ
t;h;l
nþ1; ϵ

v
nþ1; p

v
nþ1

� �
¼ 0 with Rs

nþ1 ∈ Rnnodes·ndim ; (57)

Rv;t;h;l
nþ1 ds

nþ1; ψ
t;h;l
nþ1 ; ϵ

v
nþ1 ; p

v
nþ1 ; ωnþ1; bpbvnþ1

� 	
¼ 0 with Rv;t;h;l

nþ1 ∈ Rnnodes·5; (58)

Rspec
nþ1 ds

nþ1; ψ
t;h;l
nþ1; ϵ

v
nþ1; p

v
nþ1; ωnþ1 ; bωnþ1

� �
¼ 0 with Rspec

nþ1 ∈ Rnnodes·nspec ; (59)
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where the primary variable of each equation has been underlined. Equation (55) corresponds to the Hagen‐Poiseuille
equation for blood flow in the preexisting vasculature (6), while (56) constitutes the discretized form of species transport
in the preexisting vasculature (10). Furthermore, the balance of linear momentum (26) is entering the system through
the discrete residual (57). The multiphase system with the evolution equation for the NV volume fraction (12), the bal-
ance of mass of blood in the NV (14), and the balance of mass of TCs, HCs, and the IF (18) and (19) is represented
by (58). Finally, species transport (22) in the multiphase system is described through (59).

In our previous publication,10 we have shown that a fully monolithic algorithm is the most efficient choice to solve
the strongly coupled problem of the vascular multiphase model. Hence, we will exclusively apply a monolithic solution
algorithm with a single Newton‐Raphson loop per time step to the coupled problem (55) to (59). For that, the nonlinear
system is fully linearized with the exception of the first two residuals w.r.t. to the solid phase displacement ds, ie, the
deformation of the 1D network following the underlying porous medium. Neglecting this term did not show any signif-
icant influence on the convergence of the Newton scheme for typical deformations occuring during tumor growth in the
model. A linear system of equations with 5×5 block structure corresponding to the five discrete residual blocks has to be
solved for each Newton step. To apply a standard GMRES iterative solver, sophisticated preconditioners are required.
For the TCAT tumor model, we reuse the ones developed by Verdugo and Wall,77 more specifically the AMG‐BGS var-
iant, which proved more efficient when coupling the model with the embedded blood vessel network than the previ-
ously employed BGS‐AMG scheme.10
3.4 | Remarks on the implementation

In general, we study the embedding of 1D inclusions into 3D domains. However, for certain examples, we can also
consider an interaction of 1D inclusions with 2D domains. After spatial discretization, our nonconforming 1D‐2D/3D
coupling requires the numerical integration of products of shape functions defined on the embedded discretized domain
Λt,h. These can be either shape functions on the 1D domain or the 2D/3D domain. Also, the MP approach requires a
similar integration of LM shape functions and shape functions of the surrounding domain, comp. (48) and (49). We
have chosen to apply a so‐called segment‐based integration to minimize the error of the numerical integration.78 The
general concept is sketched in Figure 4. The considered 1D element interacts with three elements of the 2D domain.
Hence, the integration is split into three segments, where Gauss points are defined on the 1D domain. This avoids inte-
gration over weak discontinuities of shape functions across the (2D/3D) element boundaries. The proposed approach
involves projecting a Gauss point of the 1D element into the 2D/3D domain to find its counterpart in the parameter
space of the interacting 2D/3D element. If the surrounding tissue domain is discretized with a regular grid and bi‐
respectively trilinear shape functions, the mapping of Gauss points is trivial. However, if distorted elements are present,
it might become nonlinear. This can especially occur during deformation where initially straight blood vessel segments
become distorted. In that case, a local Newton algorithm is applied to map Gauss points from the 1D discretization into
the 3D mesh.

Another important aspect is the treatment of the equations for blood flow (14) and species transport in the NV ((22)
with εα=εv). Since the NV only develops during the simulation, there are certain areas in the computational domain
without any NV, ie, εv=0. Naturally, the two aforementioned equations are not valid here but only in the part of the
domain with εv>0. In our implementation, we decide element‐wise if the corresponding equations can be solved if
the NV volume fraction inside the element from the last time step is bigger than a threshold value of εv=0.01. Only
in these elements the aforementioned equations are solved while in the rest of the domain they are not evaluated. This
is equivalent with a no‐flux boundary condition at the interface between the areas in which NV is already present and
FIGURE 4 Sketch of segment‐based integration (in 2D)
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where angiogenesis has not yet occurred. Considering the underlying physical problem, this assumption states that
there is no flux of species or fluid across the sprout tips during angiogenesis, which seems reasonable. The element‐wise
treatment is only a very crude approximation of the actual interface but showed to be sufficient here.

We want to conclude this section with some qualitative considerations about the computational cost of a fully
resolved vasculature model as compared with a hybrid or homogenized approach. First of all, it is important to empha-
size that our proposed coupling does not introduce any significant computational overhead into the formulation since
the domains are already coupled through transcapillary exchange terms along the blood vessel network. In terms of
computational cost of a homogenized formulation compared with a fully resolved blood vessel network, several factors
play a role such as the relative cost of evaluating a 1D element as compared with a 3D homogenized element, the cost of
the coupling method between the two distinct domains, and how many 1D elements can potentially be replaced by a
homogenized description with a 3D element. It is hard to argue which effects dominate without performing a compar-
ison which was not the main interest of this contribution. Nevertheless, one potential major computational advantage of
a homogenized or hybrid approach persists, which is the fact that it could possibly eliminate the need of several simu-
lation runs on the same setup, eg, Welter and Rieger25,26 performed 15 simulation runs to obtain information about
microvascular densities and other averaged quantities.
4 | NUMERICAL EXAMPLES

The primary aim of this paper is the formulation of the coupling between the TCAT tumor growth model and the
embedded multiscale method, especially our proposed hybrid treatment of angiogenesis. A detailed validation with
experimental data is beyond its scope. However, the following numerical examples have been designed to demonstrate
the principal applicability of the novel model to vascular tumor growth.
4.1 | Comparison between GPTS and MP constraint enforcement

A validation and comparison of the GPTS and MP constraint enforcement strategies is performed in this section. For
that, we have simplified the model by neglecting any deformability and solving only the equations

−
πR4

8μbv ∂
2pbv
∂s2

¼ 0 on Λ0; (60)

which is a simplified version of (6), and

−∇·
kv

μv
∇pv

� 	
¼ 0 in Ω0; (61)

which is a simplified version of (14), together with the constraint

g ¼ pbv xΛ; t
� �

− pv xΩ; t
� � ¼ 0 on Λ0; (62)

ie, the constraint equation (27) for pressures. Figure 5 depicts the computational domain which is used to solve these
equations. A blood vessel is embedded into a porous block with dimensions 1×1×1. The straight blood vessel with radius
R=0.005 passes through the origin of the domain in the middle of the block. Its endpoints are [−0.5,−0.35,−0.35] and
[0.5,−0.35,−0.35] such that it lies close to the diagonal axis. The permeability of the block is set to kv=1·10−7, and the
viscosities are μv ¼ μbv ¼ 1:0. A Neumann boundary condition is applied on the lower left end of the vessel in Figure 5,

and on the upper right end, the pressure is set to zero. The 3D block only carries no‐flux boundary conditions. It is
discretized with a regular grid of 10×10×10 trilinear elements while the 1D domain is discretized with 23 equally spaced
linear elements such that the two discretizations are nonconforming.

Figure 5 illustrates the pressure distribution in both domains. For a more detailed investigation, we have plotted the

pressures on the 1D domain pbv and in the 3D domain pv along the inclusion Λ0,h in Figure 6 for the two different
methods. Please note that the chosen penalty parameters are at least two orders larger than the characteristic order
of magnitude defined by the permeability kv, which leads to good fulfilment of the constraint for all depicted values.



FIGURE 5 Computational domain and

pressure solution of porous block with

straight inclusion. Mortar penalty (MP)

approach with ϵMP=10
−1 is applied to

couple pressures on both sides (radius of

1D elements not to scale)

FIGURE 6 Comparison of coupling approaches with different penalty parameters (red circles denote 1D nodal values)
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The advantage of the MP formulation compared with the GPTS approach becomes evident from these plots. For very
large values of the penalty parameter, the latter formulation becomes overconstrained due to a lack of inf‐sup stability.
When increasing the penalty parameter, it converges toward a collocation method where the discrete constraint has to
be fulfilled at every Gauss point. In this case, the number of discrete constraints is too high for the number of discrete
degrees of freedom.79 No convergence toward a physically reasonable result can be expected for ϵGPTS→∞ due to the
overconstraint. Indeed, if the penalty parameter is chosen even higher than the values shown in Figure 6A, a linear
pressure drop from inflow to outflow emerges since this is the only solution which satisfies the constraint (62) at every
Gauss point. By contrast, the MP method converges to the solution of the LM method. No visible difference in the result
is present for penalty parameters larger than ϵMP=0.1 (not shown here). Still, in the range of moderate penalty param-
eters, both methods perform with similar accuracy such that the GPTS approach seems applicable especially when a
very high accuracy for fulfilling the constraints (27) for species and pressures is not needed. Indeed, from an
implementational point of view, the GPTS approach can also be integrated more easily into the embedded multiscale
method since the additional terms can be evaluated on element level together with the mass exchange terms. By contrast,
the penalized LM method requires a global assembly of the mortar matrices and only then the LMs can be eliminated.
Nevertheless, we will apply the MP method in the following due to its theoretical advantages outlined in this section.
4.2 | Two‐dimensional growth of a tumor close to a preexisting blood vessel

We study the growth of an initially avascular tumor which is located close to a preexisting blood vessel from which
angiogenesis can occur. By means of this simple case, we want to exemplify the coupling between the discrete
preexisting vasculature and the NV and how angiogenesis can be triggered from the preexisting network in our model.
The 2D domain with the embedded simple blood vessel network is sketched in Figure 7 where also initial and boundary



FIGURE 7 Geometry of the example for 2D vascular tumor growth
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conditions are listed. This setup corresponds to a vessel‐ingrowth scenario where the whole tumor vasculature grows
from outside into the tumor.16 While this situation with a distance of the initial tumor spheroid of 0.4 mm to the nearest
blood vessel is nonphysiological, the numerical example which has been designed similar to corresponding discrete
models13,18,22 enables us to methodologically investigate our proposed approach.

For this case, we consider the full five‐phase model as described in Section 2 including the proposed hybrid
embedded/homogenized treatment of the vasculature. The primary variables for TCs, HCs, and IF are chosen as pth,
phl, and pl, that is, the pressure difference between TCs and HCs, the pressure difference between HCs and the IF,
and the IF pressure. In addition, four species are present, namely oxygen in the IF, oxygen in the vasculature
(preexisting and NV), TAF in the IF, and NTCs as a part of TCs. At the beginning of the simulation, the tumor covers
a circular area with radius 0.05mm. The outline of the 2D domain is fixed but the tissue inside is assumed to be deform-
able. At the inflow on the left end of the 1D inclusion, we set a Dirichlet boundary condition for the pressure in the

preexisting vasculature pbv and the oxygen mass fraction in the preexisting vasculature ωnbv . At the two outflows of
the vessel domain, the pressure is also fixed. Angiogenesis occurs from the preexisting blood vessel network which
has a constant radius of R=0.015mm. For that, we assume a boundary condition of εv=0.1 along the 1D network. To
trigger angiogenesis from the location of the preexisting blood vessel, this value is applied on all 2D elements which

are “cut” by the blood vessels. The pressure in the NV pv and the oxygen mass fraction in the NV ωnv are coupled with
the values in the 1D domain with the mortar penalty approach developed in Section 3.2.2. We employ a penalty param-
eter ϵMP ¼ 1·10−10m2= Pasð Þ for the coupling of pressures and ϵMP ¼ 1·10−5m2=s for the coupling of species.

Both domains are discretized in space completely independent from each other, which is the major advantage of our
embedded coupling. The 2D domain is meshed with a regular grid of 210×140 bilinear elements. The 1D vasculature is
represented by 805 linear elements. We consider the growth of the tumor over 24 days and employ a one‐step‐theta
scheme with θ=0.5 and a time step size of Δt=900 s.

All parameters of the model are listed in Tables 2 to 6. They have been taken either from previous contributions on
the TCAT model or from values reported in the literature. Some parameters have been estimated, which is highlighted
through the footnotes in the corresponding tables. The ECM is modeled with a Neo‐Hookean material law, whose
parameters are summarized in Table 2.
TABLE 2 Parameters for the ECM

Quantity Symbol Value Unit Equations

Intrinsic permeability of the ECM10 k 1·10−15 m2 (18), (19), (22), and (A5)

Poisson's ratio54 ν 0.4 − (26)

Young's modulus10 E 800 Pa (26)

Abbreviation: ECM, extracellular matrix.



TABLE 3 Parameters for TCs, HCs, and IF

Quantity Symbol Value Unit Equations

Density of TCs, HCs, and IF54 ρl, ρh, ρt 1000 kg/m3 (18), (19)

HC‐IF interfacial tension54 σhl 72 mN/m (A3)

TC‐HC interfacial tension54 σth 36 mN/m (A3)

TC‐IF interfacial tension54 σtl 108 mN/m –

Coefficient a in saturation‐pressure relationship54 a 590 Pa (A2), (A3)

Coefficient b in saturation‐pressure relationship54 b 1 − (A2), (A3)

Dynamic viscosity of IF54 μl 0.001 Pa·s (18), (19)

Dynamic viscosity of HCs and TCs55 μh, μt 20 Pa·s (18), (19)

Exponent in the relative permeability law for IF54 Al 4 − (A5)

Exponent in the relative permeability law for HCs and TCs54 Ah, At 2 − (A5)

Growth coefficient of tumor cells55 γtgrowth 4·10−2 kg/(m3s) (A11)

Abbreviations: HC, host cell; IF, interstitial fluid; TC, tumor cell.

TABLE 4 Parameters for oxygen transport and exchange

Quantity Symbol Value Unit Equations

Density of oxygen ρn 1.429 kg/m3 (33), (34), (36), (37)

Solubility of oxygen in the IF80 αl 3·10−5 mmHg−1 (33)

Effective solubility of oxygen in blood27 αv,eff 3.1·10−5 mmHg−1 (34)

Discharge hematocrit27 HD 0.45 ‐ (34)

Concentration of oxygen at maximum saturation27 Cnv
0

0.5 ‐ (34)

Hill exponent69 n 2.7 ‐ (35)

Partial pressure at 50% oxygen saturation69 Pv
oxy;50 37 mmHg (35)

Coefficient for transvascular oxygen exchange27 bγ tv 1.131·10−8a m/(mmHg s) (36)

γtv 1.429·10−8b m/(mmHg s) (37)

Diffusion coefficient of oxygen in blood Dnbv , Dnv 2.775·10−11c m2/s (10), (22)

aValue for a radius of 0.015 mm according to the fit employed by Welter et al,27 Appendix S1.
bSince we regard the neovasculature in a homogenized way, we assume that the average radius of the blood vessels in the neovasculature is 0.01 mm. The value
for γtv is then calculated with the fit employed by Welter et al,27 Appendix S1.
cThis value is a simple approximation. It has been obtained from the value of oxygen diffusion in blood plasma ofDp ¼ 2:75·10−9m2=s.27 In our model, the mass

fractions ωnv resp. ωnbv represent both the oxygen dissolved in plasma and bound to hemoglobin. At an oxygen partial pressure of Pv
oxy ¼ Pv

oxy; 50 ¼ 37mmHg,

the ratio of the mass fraction of dissolved oxygen to the mass fraction of the total oxygen present is approximately 0.01. Hence, we have scaled the value for Dp
27

by this factor to only include diffusion of the oxygen dissolved in the plasma and not the one bound to hemoglobin. Therefore, our oxygen transport model is
similar to the one of Beard and Bassingthwaighte81 and Fang et al.82
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The example of this section has been designed to imitate the classical model for the angiogenic switch.62 If we did not
allow angiogenesis to occur from the preexisting blood vessel, the initial tumor of this example would not grow any fur-
ther since a steady state of proliferation and TC death due to the hypoxic conditions is reached. By contrast, in the case
studied here, the onset of angiogenesis enables rapid tumor growth. The evolution of the LTC volume fraction

εLTC ¼ εSt 1 − ωN t
� �

is shown in Figure 8 as well as the NV volume fraction εv which is visualized with white contour

lines. The preexisting blood vessels are plotted in red. After 6 to 12 days, a slightly unsymmetrical growth toward the
preexisting blood vessels can be observed. Oxygen is provided by the preexisting network and diffuses in the IF, which
is why the tumor grows toward the blood vessel with higher nutrient availability. A necrotic region develops in the part
of the tumor further away from the vessels. Its outline is shown in Figure 8 by the black contour line. Concurrently, the



TABLE 6 Parameters for blood flow, angiogenesis, and transcapillary and lymphatic exchange

Quantity Symbol Value Unit Equations

Density of blood ρv, ρbv 1060 kg/m3 (6), (14)

Viscosity of blood41 μv, μbv 0.004 Pa·s (6), (14)

Diffusion coefficient of neovasculature or EC Dv 5·10−15a m2/s (12)

Chemotactic coefficient χ0 7.5·10−3b m2/s (12), (A7)

Constant for receptor‐kinetic law13
ωTAFl
χ0=2

1·10−10 − (12), (A7)

(Isotropic) permeability of the neovasculature kv 1·10−17c m2 (14)

Osmotic pressure difference20 ωosm πblood − πl
� �

1333 Pa (31), A9)

Hydraulic conductivity for transcapillary flow83 Lp,v 2.1·10−11d m/(Pa s) (A8)

L
p;bv 2.7·10−12d m/(Pa s) (30)

Surface‐to‐volume ratio for transcapillary flow83 S=Vð Þv 2·104 m−1 (37), (A8)

Hydraulic conductivity for lymphatic drainage84 Lp;ly· S=Vð Þly 1.04·10−6 (Pa s)−1 (A10)

Threshold for lymphatic vessel collapse10 ptcoll 500 Pa (A10)

aHalf the value of Anderson and Chaplain.13

bWe have estimated this value10 to obtain plausible results. The value employed here lies within the range used in Kremheller et al.10

cEstimated as two orders of magnitudes smaller than the permeability of the ECM from Table 2 due to the high irregularity and tortuosity of the NV.
dFor L

p;bv (preexisting vasculature), we employ the value for normal vasculature,83 while for Lp,v (neovasculature), we employ the value for tumor vasculature.83

TABLE 5 Parameters for species transport

Quantity Symbol Value Unit Equations

Diffusion coefficient of oxygen in IF54 Dnl
0

3.2·10−9 m2/s (22), (A6)

Coefficient δ for nonlinear diffusion law of oxygen in IF54 δ 2 − (22), (A6)

Diffusion coefficient of TAF in IF13 DTAFl 2.9·10−11a m2/s (22)

Diffusion coefficient of NTCs in TCs51 DNt 0 m2/s (22)

Normal mass fraction of oxygen in tissue55 ωnl
env

4.2·10−6 − (32), (A11), (A12)

Critical mass fraction of oxygen55 ωnl
crit

1.0·10−6 − (A11), (A12)

Limit mass fraction of oxygen for hypoxia63 ωnl
hyp

4.0·10−6 − (A14)

Necrosis coefficient55 γtnecrosis 1·10−2 kg/(m3s) (A13)

Consumption related to growth54 γntgrowth 2.4·10−4b kg/(m3s) (A12)

Consumption related to normal metabolism of TCs54 γnt0 6·10−4b kg/(m3s) (32)

Consumption related to normal metabolism of HCs γnh0 2·10−4c kg/(m3s) (32)

Production rate of TAF under hypoxia γTAFproduction 1·10−10a kg/(m3s) (A14)

Abbreviations: HC, host cell; IF, interstitial fluid; NTC, necrotic tumor cell; TAF, tumor angiogenic factors; TC, tumor cell.
aIn earlier publications,10,63 a value of DTAFl=3.5·10−4 was used, which is the nondimensional value employed by Anderson and Chaplain.13 Here, we employ

the correct dimensional value. Therefore, the production rate of TAF under hypoxia γTAFproduction has been reduced accordingly compared to Kremheller et al.10 and
Santagiuliana et al.63

bThese parameters have previously been denoted as γnlgrowth and γnl0 , respectively.
54

cThis value has been estimated based on the rate of consumption by TCs of the earlier contributions on the model. We have assumed that HCs consume only

one third of the oxygen needed by TCs.
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hypoxic TCs constantly produce TAF which triggers endothelial cell migration toward the tumor from the preexisting
vasculature where the boundary condition on the NV volume fraction has been set. Please note that a small NV volume
fraction is also present below the preexisting blood vessel due to the diffusive term in the formulation for



FIGURE 8 Evolution of living tumor cells (in color), neovasculature (white contour lines), and necrotic region (inside black contour line

with value εNTC ¼ εStωN t ¼ 0:05), the tumor's initial center of mass is denoted by white cross and current center of mass by black cross
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angiogenesis (12). After 18 days, both angiogenesis and tumor growth have continued such that the NV has reached the
region with a high proliferation of TCs. A characteristic bulge of the NV volume fraction toward the tumor starts to
develop since the TAF concentration is highest there. The higher availability of oxygen enables rapid tumor progression
in the interval between 18 and 24 days. After 24 days, the tumor has grown in a half‐moon shape toward the preexisting
blood vessels which is also visualized by the motion of its center of mass. In the period from 18 to 24 days, it moves with
an average velocity of 0.013mm/d in direction of the vessel. At the same time, the increased TC and IF pressure in the
LTC region leads to a deformation of the ECM. Under our assumption that the blood vessel network completely follows
the movement of the underlying ECM, this induces also a slight deformation of the initially straight blood vessels which
are, in this case, slightly pushed away from the tumor.

To elucidate the coupling between preexisting vasculature and NV, pressures in the preexisting vasculature pbv and in
the NV pv after 24 days are depicted in Figure 9. Clearly, the constraint of equal pressures on the embedded domain Λt,h

is fulfilled such that flow in preexisting and NV are coupled. As stated in Section 3.4, the balance of mass of blood in the
NV (14) is only valid in the area the NV has already reached, which explains the shape of the pressure distribution pv in
Figure 9 including the area below the blood vessel. Only those elements where we can actually solve the aforemen-
tioned equation are depicted. In the rest of the domain, the equation is not evaluated, which is equivalent to a no‐flux
boundary condition at the edge of the NV. A considerable pressure drop from the preexisting vasculature toward the
edge of the NV can be observed which is due to the large leakage of fluid from the NV into the IF.

Also, species transport of oxygen in the preexisting and NV are coupled via the MP approach. The corresponding dis-
tributions are shown in Figure 10. Again, species transport of oxygen in the NV can only be solved in the portion of the



FIGURE 9 Pressure in preexisting (left) and neovasculature (right) after 24 days

FIGURE 10 Mass fraction of oxygen in preexisting (left) and neovasculature (right) after 24 days
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domain where NV is present. As described in Section 3.4, the respective equation is only evaluated in elements with a
threshold value of εv>0.01 resulting in a no‐flux boundary condition across the edge of the NV. The proposed approach
worked well in capturing the shape of the NV domain in this case, but for different scenarios, the threshold value could
be defined as a certain percentage of the degree of vascularization over the whole domain. Transcapillary exchange of
oxygen from the preexisting and the NV into the IF cause the depicted oxygen distributions. In the tumor area, a lot of
oxygen is required due to the vast oxygen consumption by proliferating TCs. At the beginning of tumor progression,
oxygen is provided from the preexisting vasculature into the IF through transcapillary exchange. Diffusion in the IF
is necessary to reach the tumor. During angiogenesis, the developing NV enables a more efficient transport of oxygen.
Oxygen can now also be transported from the preexisting into the NV due to the coupling of species transport and then
from the NV into the IF much closer to the site of the tumor. This behavior is augmented by the pressure drop in the
NV, which develops due to the large leakage of fluid, such that oxygen is advected from the inflow through the vascu-
lature. Still, the high oxygen demand leads to very low oxygen mass fractions in both the NV and the IF, see also
Figure 11 (left). Also in the IF, most of the oxygen is present close to the preexisting vasculature while a hypoxic region
emerges inside the tumor. In the right part of Figure 11, also the TAF mass fraction in the IF which is produced during
hypoxia by LTCs and triggers angiogenesis is shown.

With this numerical example for 2D vascular tumor growth, we have demonstrated that our treatment of angiogen-
esis with a homogenized representation of the NV and a discrete representation of the preexisting vasculature is able to
produce biologically and physically reasonable results. The information about the structure of the preexisting vascula-
ture can be preserved, while not every single capillary segment of the NV has to be resolved as in most other hybrid
vascular tumor growth models. At least qualitatively, the results are in good agreement with ingrowth simulations using



FIGURE 11 Mass fraction of oxygen in interstitial fluid (IF) (left) and tumor angiogenic factor (TAF) in IF (right) after 24 days
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discrete vasculature models.18,22 It becomes evident how angiogenesis completely shifts the supply of the tumor with
nutrients from diffusion in the IF to the more efficient transport in the NV. One drawback of the model is the difficulty
to initiate sprouts from the preexisting vasculature. For now, we have set a Dirichlet boundary condition on the
preexisting vasculature to trigger angiogenesis.

For this example, preexisting and NV are of comparable scale. Hence, our motivation for representing one as a 1D
inclusion and the other in a homogenized way is not scale separation but rather structure/morphology and function
of tumor NV, as described in the introduction. Due to these complexities and the associated heterogeneity, we believe
that our homogenized approach for modeling the NV with a blood vessel density rather than single blood vessel seg-
ments is more suitable than a resolved approach. Naturally, quantities of interest such as microvascular density or aver-
age blood flow and species transport in the NV are available. Another possible application of the formulation apart from
angiogenesis might be the modeling of larger tissue domains at the scale of a whole organ. Here, it might also be pos-
sible to model only the larger vessels patient‐specifically as 1D inclusions and treat the smaller blood vessels, ie, the cap-
illary bed in a homogenized sense as in the composite smeared finite element method.36 In contrast to their approach,
the major advantage of our formulation is that the 1D and the 3D grid can be completely independent.

Compared with the experimental results shown for brain tissue by Seano et al,44 the deformation of the preexisting
vasculature during tumor growth is actually quite small due to the chosen material parameters and boundary condi-
tions. Hence, it might be justified to neglect the deformability of blood vessels in this case and simply evaluate the
respective terms in reference configuration. Especially, the solid velocity term in (6) is insignificant since time scales
during tumor growth are quite large.
4.3 | Three‐dimensional growth of a tumor along a preexisting blood vessel network

The final example for the coupling of the TCAT tumor growth model with the embedded 1D fluid network is the growth
of a tumor inside a 3D preexisting blood vessel network. In the previous section, we have considered a case inspired by
the classical model of angiogenesis where the tumor first grows avascularly and then angiogenesis occurs from nearby
vessels. However, a different mechanism of growth is possible for certain tumor types such as astrocytomas.62,85,86 They
can first acquire access to blood circulation by co‐opting preexisting blood vessels and growing along them, which
makes them a non‐angiogenic but nevertheless well‐vascularized tumor. Subsequently, the preexisting vasculature
regresses such that a necrotic core inside the tumor evolves due to lack of nutrients. Only then angiogenesis at the
tumor boundary is initiated to enable further tumor growth.86 We will show how our model can capture this behavior.

For that, we consider the computational domain of Figure 12. The depicted blood vessel network has been obtained
from R3230AC mammary carcinoma in rat dorsal skin flap preparation by Secomb et al87 and has been employed in
several other publications to study oxygen transport,67 drug delivery,40,41 and hyperthermia treatment.42,43 The network
topology is publicly available.88 We have enlarged the enclosing 3D tissue domain in z‐direction by 0.056mm on the top
and bottom of the domain as compared with the dimensions of the network geometry. The 3D domain is discretized
uniformly in space with 55×52×30 trilinear elements and the 1D network with 8298 linear elements. Again, the meshes



FIGURE 12 Geometry of the example for 3D vascular tumor growth

26 of 33 KREMHELLER ET AL.
of both domains are completely independent. Note that the 1D network is discretized rather finely compared with the
3D domain to avoid instabilities due to convection‐dominated oxygen transport in this example. Following Nabil
et al,42,43 we assume a uniform radius of R=0.00764mm in the entire network. The growth process is simulated for a
time period of 360hours. For time discretization, the one‐step‐theta scheme with θ=0.5 and a time step size of
Δt=1800 s is applied.

For this example, angiogenesis is not present because we only want to simulate the first growth stage along the blood
vessel network as described above. For the TCAT multiphase system, this reduces the model to a three‐phase model of
TCs, HCs, and the IF along with two species, namely NTCs and oxygen in the IF. In the 1D embedded domain, we solve
for blood pressure and oxygen mass fraction. Furthermore, deformations of the surrounding ECM and, hence, also the
blood vessels are neglected. Consequently, only a simplified version of the model without angiogenesis and structural
deformation, that is, without Equations (12), (14), and (26) is considered here. Nevertheless, the model is still fully
coupled with the embedded vasculature via the appropriate exchange terms of Table 1. Only the terms for the NV, oxy-
gen in the NV, and TAF are not considered because these phases and species are not taken into account. Moreover, no
coupling between NV and preexisting blood vessels is performed since angiogenesis is not present. Boundary and initial
conditions for the example are given in Figure 12. Initially, a spherical tumor with radius r0=0.03mm around the point
[0.25,0.25,0.11] is present inside the domain. Primary variables for TCs, HCs, the IF, and for necrotic TCs are fixed on
the entire boundary of the cuboid ΓΩ. Nine open ends of the network are identified as inflows ΓΛ,i (denoted by red
arrows) where pressure and mass fraction of oxygen in the 1D network are fixed. The remaining eight open ends are
outflows ΓΛ,o (denoted by blue arrows) with fixed pressure. This approach has been proposed to prescribe the pressure
drop along the network such that a physiologically reasonable blood velocity is obtained.40-42

The parameters employed in this example are the same as given in Tables 2 to 6 apart from the coefficient for
transvascular oxygen exchange and the coefficients for oxygen consumption. The factor for transvascular oxygen

exchange27 is simply calculated for the given radius as bγtv ¼ 1:61·10−8m=ðmmHgsÞ. In addition, we have elevated the
oxygen consumption rate w.r.t. the example from the previous section under the assumption that the tissue considered
here is well‐vascularized, which implies a heavy oxygen or nutrient demand. Therefore, the consumption by TCs has
been increased to γntgrowth ¼ 9:6·10−4 kg=ðm3sÞ and γnt0 ¼ 2:4·10−3 kg=ðm3sÞ and for HCs to γnh0 ¼ 1·10−3 kg=ðm3sÞ com-

pared with the values of Table 5. Note that all the values applied for oxygen consumption lie in the physiological range
of oxygen consumption rates of 0.01−0.3min−1 (in terms of oxygen concentration).89

The results for tumor growth over the considered time span are visualized in Figure 13. As stated above, we aim to
demonstrate that our model can capture the initial blood vessel co‐option by TCs during growth. However, we have not
included the compression by excessive TC pressure or blood vessel regression. Nevertheless, the influence of these phe-
nomena on the growth of the tumor can be imitated if the exchange terms between preexisting vasculature and IF, that
is, the mass transfer terms for leakage and oxygen exchange are switched off once the tumor has reached a specific
embedded 1D element. This approach has been applied to obtain the results of Figure 13. Initially, the tumor grows
radially. Then, a necrotic core starts to appear due to lack of oxygen in its interior since nutrient diffusion from the
outside to the inside of the tumor is a limiting factor. Nevertheless, tumor growth can continue along the vasculature
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FIGURE 13 3D growth of a tumor along a preexisting blood vessel network (outline of tumor is visualized in grey with isosurface St=0.05,

outline of necrotic core is visualized in olive green with isosurface ωN t ¼ 0:05)
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by co‐option of the blood vessels because this is the region with the highest oxygen concentration in the IF which is
provided by the vasculature there and consumed by TCs during growth.

The goal of this example was to highlight the capabilities of the nonconforming coupling to represent the complexity
of in vivo vessel networks and their interaction with the TCAT multiphase tumor growth model. Here, the major advan-
tage of nonmatching meshes for the 1D and the 3D domain becomes evident. Therefore, the proposed methodology for
embedding arbitrary blood vessel networks into surrounding tissue could in principle also be applied for fully resolving
tumor vasculature. However, we are aware that this is only the first step toward a more realistic description of in vivo
tumor growth. For instance, we have excluded the second stage of angiogenesis on the tumor boundary occurring after
blood vessel regression. In addition, blood vessel regression, compression by TCs, and adaption is not modeled
satisfactorily yet.
5 | CONCLUSION

Capturing the complexity of cancer through mathematical models requires cutting‐edge numerical algorithms. In this
contribution, we have introduced a holistic framework which allows for studying vascular tumor growth. The
preexisting blood vessels are represented as 1D inclusions in the surrounding 3D tissue domain. In the 1D vessels, blood
flow and species transport as well as adequate mass exchange with the enclosing tissue are considered. A major novelty
is the coupling between blood flow and species transport in a smeared or homogenized representation of the vasculature
and the resolved (1D) part of the domain. This has been realized by two different penalty‐based approaches, a GPTS, and
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a mortar scheme with penalty regularization, which allow for dissimilar meshes on both domains, the main advantage
of the embedded multiscale method. In principle, both methods work but if a higher accuracy is necessary, the LM
scheme should be the method of choice especially also because of its sound mathematical properties. Our
nonconforming approach can not only be applied to vascular tumor growth but might have numerous applications in
other mass transfer problems of biological interest as well, where a full resolution of the capillary bed is not necessary.

The main problem for which we have applied the developed methods is vascular tumor growth. The complexity of
the tumor NV formed during angiogenesis is enormous. Together with its structural and functional abnormalities, a
homogenized treatment of blood flow and species transport lies at hand. Discrete or fully resolving angiogenesis models
claim to provide more insight into the specific network structure. We question that this is necessary because quantitities
of interest are rather the degree of vascularization as expressed by a (neo‐)vasculature volume fraction, information
about regions which are especially highly or badly vascularized or (time‐ and space‐)averaged information about blood
flow and species transport in the tumor micro‐environment. Our model inherently offers these quantities while discrete
models require a similar kind of homogenization via an average over an ensemble of simulations. Qualitatively, our
results are comparable with earlier fully resolved models. Nevertheless, it might be interesting to compare results
between our continuous representation of the NV with corresponding discrete models. An advantage of the latter ones
is that vessel remodeling and regression can be treated quite naturally, while those significant phenomena are still miss-
ing in homogenized formulations. Our hybrid approach is a sensible compromise because the geometry of the
preexisting vasculature is still contained in the model while we do not aim to fully resolve every capillary of the NV.
While information about larger blood vessels and transport therein might be available through suitable imaging tech-
niques which would enable a patient‐specific model, the smallest vessels can usually only be characterized through their
vascular density and average transport therein. To make the model applicable to larger scales with a dense capillary net-
work, it might also be possible to model the smaller scales of the capillary bed and the NV with the homogenized
approach and couple it to the larger, resolved vessels with the methods developed here.

We have shown the capabilities of the TCAT tumor growth model including the proposed hybrid
embedded/homogenized approach for the study of vascular tumor growth in silico with three illustrative examples.
The first one has been employed to study our coupling schemes. The second one is based on the classical model of
an angiogenic switch where at first avascular growth is succeeded by angiogenesis from preexisting blood vessels. We
have demonstrated how angiogenesis deregulates mass transport in the tumor micro‐environment in favor of rapid
tumor growth. The third example has been tailored to simulate co‐option of preexisting vasculature by invasive tumor
growth in well‐vascularized tissue. However, these examples have not been validated with experimental data but prove
only that we can phenomenologically model tumor growth under these circumstances. A detailed verification and val-
idation with experimental data will be the main focus of further research. A logical next step is also the inclusion of
drugs or nano‐particles as additional species transported by the (neo‐)vasculature and the IF to study drug delivery with
the model.
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APPENDIX A

ADDITIONAL CONSTITUTIVE EQUATIONS AND MASS TRANSFER TERMS

For the sake of completeness, we summarize all constitutive relations and mass transfer terms in this appendix. The
volume fraction of the pores of the ECM (15) can be derived from the balance of mass of the solid phase in reference
configuration as10
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ε ¼ 1 − εv −
1 − ε0 − εv0

J
; (A1)

with the Jacobian of the deformation gradient J and the initial volume fractions ε0 and εv0, respectively. This relation is
needed to close the balance of mass of TCs, HCs, and the IF, ie, Equations 18 and (19) together with the pressure‐
saturation relationships of Sciumé et al,54 which read as

phl Sl
� � ¼ ph − pl ¼ a·tan

π
2

1−Sl
� �bh i

(A2)

and

pth Stð Þ ¼ pt − ph ¼ a
σth

σhl
·tan

π
2
Stð Þb

h i
: (A3)

Herein, a and b are model constants and σαβ the interfacial tension between fluids α and β. The relation for HCs can
be derived as

Sh pth; phl
� � ¼ 1 − Sl phl

� �
− St pth

� �
(A4)

from (17). An important aspect is the definition of Dirichlet boundary or initial conditions, which we usually want to
specify in terms of saturations, see Figures 7 and 12. The chosen primary variables phl, pth, and pl offer us the flexibility
to specify two saturations (the third one follows from (17)). The values for the primary variables can then be obtained
from (A2) and (A3). Furthermore, the interstitial fluid pressure pl can be specified as a boundary or initial condition.
The (isotropic) permeability of the ECM w.r.t. a fluid phase α is given by

kα ¼ kαrel·k·I ¼ Sαð ÞAα ·k·I; α ¼ t; h; l: (A5)

Herein, the relative permeabilities kαrel of TCs, HCs, and the IF are modeled with the power law of Sciumé et al54 with

Aα>1. The effective diffusivity Dnl
eff of oxygen in the IF is calculated with a similar power relationship,54,55 namely

Dnl
eff ¼ Dnl

0 εSl
� �δ

: (A6)

Furthermore, for the chemotactic coefficient χ ωTAF l
� �

of Equation (12), a receptor‐kinetic law

χ ωTAF l
� �

¼ χ0
ωTAFl
χ0=2

ωTAFl
χ0=2

þ ωTAF l
(A7)

is applied, which considers a decreasing sensitivity of endothelial cells if the TAF mass fraction increases.13

Eventually, we present the additional mass transfer relations given in Table 1, which have not been changed w.r.t.
Kremheller et al10 and the earlier papers on the avascular model.51,54,55,63 Transcapillary leakage of fluid from the
neovasculature into the IF is modeled with a Starling equation

M
v→l

leak ¼ ρv· Lp
S
V

� 	
v

· peff−pl

 �

þ·ε
v; (A8)

with hydraulic conductivity Lp and surface‐to‐volume ratio S/V for transcapillary flow.20,90 If the effective pressure

peff ¼ pv − ωosm πblood − πl
� �

(A9)

is bigger than the IF pressure, leakage occurs. This term is almost identical to the outflow of fluid from the preexisting
vasculature into the IF (30) but takes into account the homogenized treatment of the neovasculature. The lymph system
is not considered as a distinct phase. However, we model drainage of excessive fluid from the IF via the relation
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M
l→ly

drainage ¼ ρl· Lp
S
V

� 	
ly

· pl−ply

 �

þ· 1−
pt

ptcoll

� 

þ
; (A10)

similar to Wu et al20 with lymph pressure ply≈0. During growth, tumor cells consume nutrients and water from the IF,
for which we employ

M
l→t

growth ¼ γtgrowth
ωn l−ωnl

crit

ωnl
env−ω

nl
crit

* +
þ

 !
1 − ωN t
� �

εSt: (A11)

Oxygen is the only nutrient which we explicitly study. Its uptake is modeled through the mass transfer relation for
oxygen

M
nl→t

cons ¼ M
nl→nt ¼ γntgrowth

ωn l−ωnl
crit

ωnl
env−ω

nl
crit

* +
þ
þ γnt0 sin

π
2
ωn l

ωnl
env

 ! !
1 − ωN t
� �

εSt: (A12)

Note that the coefficients γntgrowth and γnt0 have previously been denoted as γnlgrowth and γnl0 . We have renamed them to

avoid confusion with the consumption coefficient of HCs γnh0 . The intra‐phase term for necrosis reads as

εtrNt ¼ γtnecrosis
ωnl
crit−ω

n l

ωnl
env−ω

nl
crit

* +
þ

1 − ωN t
� �

εSt: (A13)

The production of TAF by hypoxic TCs is incorporated with the term

M
TAFt→TAFl

prod ≈ εtrTAFt ¼ 1 − ωN t
� �

εSt·γTAFproduction·H ωnl
hyp − ωn l

� � 1
2
þ 1
2
cos π

ωn l

ωnl
hyp

 !" #
; (A14)

where H ·ð Þ denotes the heaviside function.
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