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Abstract

This thesis deals with the multiphysics problem of wind-
structure interaction of civil engineering structures, including vi-
bration mitigation systems, to reduce wind-induced vibrations.
The work is subdivided into two major parts.

The first part presents the solution of the general fluid-
structure-control interaction problem by an iterative, partitioned
approach, utilizing Gauss-Seidel formulations. Therefore, the
fluid-structure interaction (FSI) problem is extended by a control
unit, which is actively influencing the dynamics of the structure.
The behavior and sensitivity of the fluid-structure-control inter-
action problem are investigated by a simplified model problem.
Based on this simplified model problem, three different algorith-
mic variants for the coupling of fluid flow, structure, and con-
troller in a partitioned way by a Gauss-Seidel scheme are derived.
Finally, the resulting algorithms are applied to a complex, non-
linear, multi-degree of freedom problem. This benchmark prob-
lem is well-tested for FSI and is thus extended to fluid-structure-
control interaction. It is demonstrated, that the flow-induced
structural vibrations can be reduced significantly by actively in-
fluencing the structure’s dynamics with a controller.

In the second part, the newly developed methods and general
findings from the first part are applied to high-rise, tower-like
structures from civil engineering subjected to wind. Those struc-
tures are a television tower and an elevator test tower. To further
validate the simulation environment, the results of fully coupled
FSI simulations for the television tower are compared to on-site
measurements. Finally, the findings from the numerical studies
for the television tower, combined with the best variant of the al-
gorithms presented in the first part of this work, are applied to
the elevator test tower simulation. This tower is equipped with
a hybrid mass damper, which is utilized to reduce wind-induced
vibrations but can also be used to actively excite tower oscilla-
tions. Different configurations of the elevator test tower are mod-
eled and investigated by the algorithms and concepts developed
throughout this work.





Zusammenfassung

Diese Arbeit behandelt das multiphysikalische Problem der
Wind-Struktur-Interaktion von Strukturen des Bauingenieur-
wesens, inklusive Systemen zur Reduktion windinduzierter
Schwingungen. Die Arbeit ist in zwei wesentliche Teile
gegliedert:
Im ersten Teil wird die Lösung des generellen Fluid-Struktur-
Regelungs-Interaktions Problems mit einem iterativen, parti-
tionierten Ansatz unter der Verwendung einer Gauß-Seidel-
Formulierung vorgestellt. Dafür wird das FluidStruktur-
Interaktions (FSI) Problem mit einem Regler, der aktiv die Dy-
namik der Struktur beeinflusst, erweitert. Das Verhalten und
die parametrische Sensitivität des Problems der Fluid-Struktur-
Regelungs-Interaktion (FSCI) wird anhand eines vereinfachten
Modellproblems untersucht. Auf Basis dieses vereinfachten Mod-
ellproblems werden drei verschiedene Varianten für einen Algo-
rithmus zur partitionierten Kopplung von Fluid, Struktur und
Regelung mit einem Gauß-Seidel Verfahren abgeleitet. Let-
ztlich werden diese Algorithmen auf ein komplexes, nichtlineares
Mehrfreiheitsgrad Problem angewandt. Bei diesem Problem han-
delt es sich um ein vollumfänglich getestetes Beispiel aus dem
Bereich der FSI, das entsprechend für die FSCI erweitert wird.
Es wird gezeigt, dass die fluid-induzierten Strukturschwingun-
gen durch die aktive Beeinflussung der Strukturdynamik durch
einen Regler stark reduziert werden können.
Im zweiten Teil werden die neu entwickelten Verfahren und
generellen Ergebnisse aus dem ersten Teil auf hohe, turmar-
tige Strukturen aus dem Bauingenieurwesen unter Windein-
wirkung angewandt. Es handelt sich dabei um einen Fernse-
hturm und einen Aufzugstestturm. Zur weiteren Validierung
des Simulationskonzepts werden die Ergebnisse von voll gekop-
pelten FSI Simulationen für den Fernsehturm mit Messungen
vor Ort verglichen. Schließlich werden die Erkenntnisse der nu-
merischen Studien für den Fernsehturm in Kombination mit der
besten Variante des Algorithmus, der im ersten Teil dieser Ar-
beit vorgestellt wurde, für die Simulation des Aufzugstestturms
verwendet.



Dieser Testturm ist mit einem hybriden Massendämpfer ausges-
tattet, der zur Reduktion windinduzierter Schwingungen einge-
setzt wird. Der hybride Massendämpfer kann aber auch dazu
verwendet werden, den Turm aktiv zu Schwingungen anzuregen.
Verschiedene Konfigurationen des Aufzugstestturms werden mit
den in dieser Arbeit entwickelten Verfahren modelliert und un-
tersucht.
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Chapter 1

Introduction

1.1 Background and Motivation

Especially in civil engineering, ongoing climate change will cause
new challenges soon. This work examines the field of computa-
tional wind engineering (CWE), which is one of those areas af-
fected by climate change and where it will have an essential in-
fluence. The unfavorable effects of wind mostly play a role in
high-rise and slender civil engineering structures, particularly
sensitive to wind effects. The trend in recent years is the in-
crease of height and length of those types of structure. Addi-
tionally, the reduction of material used also for smaller buildings
to save resources and costs comes more into play and is one of
the future challenges. Those developments lead to an increased
sensitivity of such structures and, in combination with climate
change, increases the importance of focusing more on assessing
the wind effects. The aim must be to design structures with
adequate stiffness and damping characteristics, which meet the
safety and habitability requirements. In the case of high-rise civil
engineering structures, according to [91] several techniques exist
that make those structures meet those requirements in the con-
text of wind. Fig. 1.1 depicts the most followed approaches. They
include a) the application of additional damping and motion con-
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trol devices, b) the modification of the structural system, and c)
aerodynamic modifications. In practice, often, a combination of

uS(t)Wind

Damping and motion
control

Structural system
modifications

Aerodynamic
modifications

a) b) c)

Figure 1.1: Techniques for the control and reduction of wind-
induced vibrations, adopted from [91] p. 379.

methods a), b), and c) will lead to the best result. This work fo-
cuses on method a), which is the application of auxiliary damping
and motion control devices.

1.2 Previous Related Studies

Starting from [107] and [56] to [70] and finally [4], several inves-
tigations concerning the numerical treatment of wind effects on
different civil engineering structures on the way to a numerical
wind tunnel have been carried out. Particular investigations for
high-rise buildings were, for example, conducted in [74].

In the works of [107], and [56], the first investigations con-
cerning computational wind-structure interaction were made. Al-
though at that time, generally large scale FSI simulations of
practically relevant problems from civil engineering were hardly
possible because of limited computational resources and the lack
of an appropriate software environment. Thus only basic assess-
ments were possible. In [70] first serious investigations on com-
putational wind-structure interaction, including a numerically
generated wind field for a lightweight civil engineering structure,
were made. The advantage here was an extensive measurement

2



1.3. Starting Point and Goals of the Thesis

campaign on-site and in the physical wind tunnel. Those mea-
surements provided the necessary data for the numerical gener-
ation of the wind field. The simulations conducted within this
work were compared to the experiments from the physical wind
tunnel. The modeling of the fluid flow herein was conducted with
a finite volume solver. In [4] further investigations concerning
the numerical modeling of natural wind were made. Addition-
ally, in contrast to [70], finite elements were used to model the
fluid flow. In the wind-structure interaction simulations for a so-
lar trough collector performed therein, the structure was mod-
eled by a single degree of freedom model in a 3D simulated wind
field. Nevertheless, the extensive experimental validation and
the cross-comparison between the numerical approaches showed
good results. For a further review of the development in CWE
and especially the numerical wind tunnel, over the past years,
the reader is referred to [108].

Besides the CWE community’s developments, the develop-
ment in the community of coupled problems tends to deal with
multiphysics problems containing more than two physical fields.
One of the first contributions to the partitioned treatment of such
issues has been made in [37], which gives a general overview
of the treatment of coupled problems by a partitioned approach.
More recent developments are, for example, fluid-structure inter-
action with electromagnetics [10], fluid-structure-contact interac-
tion [67] or general n-field coupling [87] and [18]. [18] and [87]
mostly focus on the theoretical algorithmic treatment and not on
practical applications, especially not for wind effects on civil en-
gineering structures. This links to the concept of a digital twin,
which is referred to as the connection of a physical system (”real
world”) with a digital representation (”virtual world”) and the in-
teraction between each other [81]. The digital twin is just now of
significant interest in other disciplines, e.g., the mechanical engi-
neering community or in supply chain management, but will gain
more importance in the civil engineering context.

1.3 Starting Point and Goals of the Thesis

The aim of this thesis is the coupled simulation of the wind-
structure interaction problem in combination with damping and
motion control devices. The open-source software Kratos Multi-

3
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physics [27], [53] is employed. The Kratos serves as a basis for
the simulations conducted and as a platform for new implemen-
tations in this thesis’s context. The research within the present
thesis is devoted to the following topics:

a) Numerical treatment of complex wind-structure interaction
problems of civil engineering structures.

b) The general algorithmic extension of the partitioned FSI
problem by open- or closed-loop control devices.

c) The combination of a) and b) for the simulation of a complex,
high-rise, tower-like structure in natural wind conditions,
including a vibration mitigation system.

1.4 Present Contributions

Considering the described goals, this thesis comprises the follow-
ing contributions to the simulation of multiphysics problems, the
modeling of mechatronic systems and the field of CWE:

a) Development of a robust and practically applicable ap-
proach for numerically dealing with complex wind-structure
interaction problems in civil engineering, on basis of an
open-source software (in this case [53]).

– Assessment of different structural finite elements for
their application for the simulation of nonlinear dy-
namic problems of practical relevant size in civil engi-
neering and extension of the StructuralMechanicsAp-
plication of [53].

– Implementation of a MeshMotionApplication in [53],
containing different, robust and efficient mesh motion
strategies which are also applicable for problems be-
yond the body fitted FSI context (e.g., in node based
structural optimization).

– Extension of the inclusion of the numerical inlet gen-
erator [5] into the simulation approach concerning the
application of the numerically generated wind as an in-
let condition of the fluid domain.

4



1.4. Present Contributions

– Concise schematic concept for the numerical genera-
tion of realistic natural wind conditions for civil engi-
neering structures on basis of on-site measurements,
values from surrounding measurement stations, nu-
merical meteorological simulations, design codes, and
their combination. Including the identification of the
important statistic quantities, which are reasonable for
a comparison of the values coming from the different
sources.

– Validation of the developed approach by fully coupled
wind-structure interaction simulations for a physical
time of 41 min. and comparison of their results with
on site measurements of reaction moments for a com-
plex, high-rise, civil engineering structure. This also
includes the error development over simulation time of
important statistic measures in CWE.

– Evaluation of different coupling strategies (im-
plicit/explicit) for partitioned FSI in the context of effi-
cient and robust simulation of practical wind-structure
interaction problems and confirmation of the findings
of [4].

b) Algorithmic extension of the partitioned FSI problem by
open- or closed-loop control, utilizing a Gauss-Seidel pat-
tern. The algorithm is generally applicable to all types of
partitioned FSI problems.

– Evaluation of existing algorithms for the coupling of
multiple physical problems concerning the inclusion of
control into FSI.

– Developed algorithms and the ideas behind them are
a contribution to the CoSimulationApplication imple-
mented in [53].

– Derivations of the algorithms for fluid-structure-
control interaction from a simplified model problem,
which is easily accessible.

– Application of the developed algorithms to a well-
known benchmark problem from FSI with large defor-
mations, extended by a controller.

5
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– Modeling approach, which is different from the stan-
dard procedure in control of mechanic structures,
which simulates a fully nonlinear high fidelity model
of the structure and the interaction between the me-
chanic structure, the disturbances and the controller.
This inherits the exchange of information between all
system parts in every time step.

c) Application of the combination of a) and b) to a complex,
high-rise civil engineering structure in natural wind condi-
tions, including a vibration mitigation system, which is ca-
pable of actively influencing the dynamics of the structure.

– Thorough FSI studies of different structural configu-
rations and the identification of the main excitation
mechanism.

– Modeling of the hybrid mass damper (HMD) as a pen-
dulum and its implementation into [53], including the
interaction properties, i.e., information transfer, with
the structural system.

– Coupled, partitioned simulation of the structure and
the HMD, where the HMD excites the structure to
forced vibrations.

– Coupled, partitioned simulation of the wind-structure
interaction problem including the HMD for vibration
mitigation.

1.5 Outline of the Thesis

The remaining Chapters of this thesis are organized as follows:
CHAPTER 2 offers a short introduction into the theoretical
background and the assumptions necessary to understand the
content of this work and the results of the simulations. The
reader also finds references to literature for additional informa-
tion concerning the different subproblems and their coupling.
CHAPTER 3 shows the partitioned algorithmic treatment of a
general FSI problem, which is extended by an open- or closed-
loop control device, by a Gauss-Seidel pattern. It is added for
completeness and summarizes the content published in [72] and
[104].

6
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CHAPTER 4 introduces the numerical wind tunnel and its
application to high-rise, tower-like civil engineering structures
subjected to wind. It contains a validation study comparing
simulation and measurements for the Olympic Tower in Munich.
It shows how to find the prevailing wind conditions from mea-
surements and generate those wind conditions with the synthetic
inlet generator developed in [4]. Finally, the best variant of the
algorithm from CHAPTER 3 and the previous findings from
CHAPTER 4 are applied to the simulation of the thyssenkrupp
elevator test tower in Rottweil, including a hybrid mass damper
(HMD).
CHAPTER 5 summarizes the outcomes of this work and gives
some recommendations for future research.
APPENDIX A shows the algorithms developed in CHAPTER 3 in
pseudo-code notation.
APPENDIX B summarizes the basic methods of discrete, descrip-
tive statistics, which are applied in this work.
APPENDIX C offers a short introduction into integral transform
methods.
APPENDIX D exercises the two different modeling approaches
in control theory for dynamic systems on a simple mechanical
problem.

7





Chapter 2

Theoretical Background

This Chapter contains the fundamental governing equations, as-
sumptions, and definitions necessary to understand this thesis’s
content. This thesis deals with the multiphysics problem of fluid-
structure-control interaction (FSCI), making it essential to give
the reader a fundamental idea of the subproblems involved. This
chapter can only provide a rough overview. Hence the reader is
referred to the literature, which is cited in the respective subsec-
tions for more detailed information. The FSCI problem is treated
by a partitioned approach, which means it can be subdivided into
three subproblems in the following called subsystems:

a) Computational structural dynamics (CSD)

b) Computational fluid dynamics (CFD)

c) Structural control (SC)

The subsystems can be solved independently and are coupled by
appropriate coupling conditions on their common interfaces. This
also means the theory of the different subsystems can be pre-
sented in the following independently of each other. While the
subsystems CFD and CSD are field problems, the SC subsystem
is a signal problem. A field has a coherence in space and time,
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whereas signals do not have the spatial coherence. The condi-
tional equations for the CFD and CSD subsystem are derived
from the balance equations of continuum mechanics, which can
be found in every textbook for basic continuum mechanics like
[63], [66] or [44]. To be able to solve the problems resulting from
the balance equations; they are discretized in space by the finite
element method (FEM). The basics for the FEM can be found, for
example, in [7]. In the following a short overview for the CSD
subsystem is given in section 2.1, for the CFD subsystem in sec-
tion 2.2 and for the SC subsystem in section 2.3.

2.1 Computational Structural Dynamics (CSD)

The CSD subsystem is generally formulated in terms of dis-
placements denoted by the vector dS(t), with its components
[uS, vS, wS]T . The labeling with (t) might be omitted for better
readability if appropriate. The kinematics of the structural dy-
namics problem is described by the the total Lagrangian formu-
lation in a Cartesian coordinate system. Therefore, the basic
initial-boundary value problem for structural dynamics in total
Lagrangian kinematics can be expressed by the balance of linear
momentum as

ρSd̈S −∇ · (σ + σ0)− ρSb = 0 in ΩS × [0, T ), (2.1)

in a structural domain ΩS. Herein ρS is the density of the struc-
ture, σ the stress tensor, σ0 the prestress tensor and b the vector
of body forces. ˙(·) and (̈·) denote the first and second derivative
w.r.t. time. On the boundary ΓS of ΩS, which consists of a Neu-
mann part ΓS,N and a Dirichlet part ΓS,D as well as the respective
initial conditions can be defined as:

dS = dinit
S in ΩS for t = T0,

ḋS = ḋinit
S in ΩS for t = T0

(2.2)

and the boundary conditions as:

dS = 0 on ΓS,D,

σ · n = t on ΓS,N .
(2.3)

Herein dinit
S are the initial displacements and ḋinit

S the initial ve-
locities of the domain ΩS. All or one component of dS on ΓS,D

10
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can be set to zero or to a prescribed value and n represents the
outer normal vector with t being the traction vector on ΓS,N . For
the strains the Green-Lagrangian (GL) strain measure is chosen,
which is defined for the general non-linear case as

εGL =
1

2
·
(
∇dS + (∇dS)T

︸ ︷︷ ︸
εlin

+∇dS · ∇dS

)
. (2.4)

It can be linearized by neglecting the last two terms. The en-
ergy conjugated stress measure to the GL strains are the second
Piola-Kirchhoff (PK2) stresses. Stresses and strains are related
throughout this work by the St. Venant-Kirchhoff constitutive
law as

σPK2 = C : εGL. (2.5)

Herein C denotes the fourth order material tensor, which repre-
sents a linear elastic, isotropic material. The equilibrium is ful-
filled weakly by applying the principle of virtual work (PVW) to
Eq. (2.1). Generally, the PVW is defined as

δW = δWint − δWext + δWkin = 0. (2.6)

Therein, the overall virtual work δW consists of the internal vir-
tual work δWint, the external virtual work δWext and the kinetic
virtual work δWkin. The weak form of Eq. (2.1) is

δW =

∫

ΩS

δdS · ρSd̈S dΩS

︸ ︷︷ ︸
δWkin

+

∫

ΩS

δε : (σPK2 + σ0) dΩS

︸ ︷︷ ︸
δWint

−
∫

ΩS

δdS · ρSb dΩS −
∫

ΓS,N

δdS · t dΓS,N

︸ ︷︷ ︸
δWext

.

(2.7)

It contains the virtual displacements δdS and the virtual strains
δε. The weak form in Eq. (2.7) is discretized in space by the
FEM. The straight forward approach in structural mechanics is
a purely displacement based formulation. Therefore, the contin-
uous functions for dS and δdS are chosen on a discrete subspace.
The space is formulated on element level and is spanned by a
set of shape functions N i. The continuous displacements dS and

11
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their temporal derivatives are approximated by the nodal quan-
tities dS,i, δdS,i, ḋS,i and d̈S,i as

dhS(X, t) =

Ndof∑

i=1

dS,iN i(X), δdhS(X) =

Ndof∑

i=1

δdS,iN i(X),

ḋhS(X, t) =

Ndof∑

i=1

ḋS,iN i(X), d̈hS(X, t) =

Ndof∑

i=1

d̈S,iN i(X).

(2.8)

Herein i is the counter for the Ndof number of degrees of freedom
and X denotes the reference to the undeformed configuration.
Applying the approximation of Eq. (2.8) to Eq. (2.7), performing
a numerical integration by Gaussian quadrature in space, assem-
bling quantities on element level to system matrices and applying
the boundary conditions, the semidiscrete system of equations
can be written in matrix form as

Md̈S +CḋS + f int

(
dS

)
= f ext, (2.9)

for the general non-linear case. Herein M denotes the system
mass matrix, C the system damping matrix, f int is a non-linear
function of dS containing the system stiffness matrix K and f ext

the system vector of external forces. The nonlinearity of f ext

is neglected, because taking it into account would be numeri-
cally very costly and also thwarts the partitioned concept fol-
lowed later. It is possible to obtain a lumped or a consistent ver-
sion of M . Throughout this work, the lumped version is applied.
Eq. (2.9) is a system of nonlinear ordinary differential equations
(ODEs), which is still continuous in time. This system has to
be linearized and discretized in time in order to solve it for the
nodal unknowns dS. The time integration is performed by the
BDF2 method, which is presented in section 2.5. A detailed re-
view and assessment of time integration schemes for CSD can
be found in [55]. Applying the time integration scheme to Eq.
(2.9) leads to a modified system of the semi-discrete equations,
which is a non-linear system of algebraic equations (AE). There-
fore, a linearization of K is necessary, which results in the tan-
gential system stiffness matrix KT . KT can be subdivided into
KT = Ke + Kg + Ku, where Ke is the linear part, Kg the ge-
ometric system stiffness matrix and Ku the initial system dis-
placement matrix. Finally, this gives an incremental system of

12
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equations to be solved in every time step, which is

Keff∆dS = R. (2.10)

Herein Keff = KT +Kdyn, in which Kdyn contains the dynamic
parts of the system depending on the time integration scheme ap-
plied. R is the residual vector defined as f ext − f int. The system
is solved iteratively by a Newton-Raphson scheme updating ∆dS

in every nonlinear iteration. More details about the solution pro-
cedure can, for example, be found in [7] p. 755 ff., and p. 826.
The damping matrix C is approximated by the Rayleigh damp-
ing approach [82]. Therein, the damping matrix is created by a
linear combination of mass and stiffness as

C = αRM + βRKT . (2.11)

The coefficients αR and βR can be obtained by the first two angu-
lar eigenfrequencies ω1, ω2 and the damping ratio D as

[
αR
βR

]
=

2D

(ω1 + ω2)
·
[
ω1 · ω2

1

]
. (2.12)

The structural damping is generally not known. In practice it is
possible to measure the logarithmic decrement Λ defined as

Λ =
1

k
· ln
( dnS,i
dn+k
S,i

)
. (2.13)

Therefore the amplitude of one component i of dS is measured for
a certain number of subsequent oscillations k. The damping ratio
D can be determined from Λ as

D =
Λ√

4π2 + Λ2
. (2.14)

This has been a short overview of the basics for discretization
and solution of the CSD problem and how it has been basically
performed throughout this work. For more detailed information
the reader is referred to [109], [10] or [11].

2.1.1 Dynamic Eigenvalue Analysis
The structures treated in this work are only lightly damped.
Thus the eigenfrequencies and eigenforms can be calculated from

13
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the general eigenvalue problem by a numerical Eigenvalue anal-
ysis, solving the equation:

(Ke − ω2M)ϕ = 0. (2.15)

Herein M is the system mass matrix and Ke is the linear part of
the system stiffness matrix resulting from the finite element dis-
cretization of the system. The solution results in n eigenvectors
ϕi and n circular eigenfrequencies ωi. The eigenvectors are nor-
malized and and summarized columnwise in the modal matrix
Φ.

The eigenfrequencies fi result from the eigen angular fre-
quencies ωi by:

fi =
ωi
2π
. (2.16)

The dynamic eigenvalue problem presented above is solved by
the algorithm in [8], which recently has been enhanced in [50].

2.1.2 Finite Element Formulations

Civil engineering structures generally consist of plate, shell, or
beam like construction components like slabs, columns, or gird-
ers. Thus the general balance equations for the continuum can
be spatially reduced by applying certain assumptions to better
match those construction components. In the case of a FEM, this
means the discretization by shell and beam elements, also called
structural elements. Those types of elements often suffer from
problems, mostly caused by stiffening effects called ”locking.” A
detailed summary of all types of locking effects is given in [51]
p. 59-81 and [12] p. 99-124. Subsequently, shell and beam ele-
ment formulations used for calculating the results in this work
are shortly presented. The case for plates in bending is covered
as a part of the shell elements. For shell and beam elements
in this work, another type of Lagrangian kinematics, the coro-
tational (CR) approach, is applied. In the CR kinematics, the
deformation is split into a rigid body motion and a deformational
motion. The CR approach can be modified such that it leads to an
element-independent corotational (EICR) formulation, which is
implemented in [53] and is described in detail in [36]. In [36] one

14
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can find the major derivations of this type of kinematics, a dif-
ferentiation from total and updated Lagrangian kinematics, and
a detailed historical review. One of the advantages of the EICR
formulation is the possibility of re-using small-strain elements
for large deformations. Hence for most civil engineering struc-
tures, it offers a reasonable balance between practical accuracy
and computational speed.

2.1.2.1 Shell Elements

The shell elements applied for the simulations throughout this
work are based on a five parameter Reissner-Mindlin shell the-
ory. For further insight into different parameterizations of shell
formulations and for a general overview of the different types of
shell modeling, the reader is referred to [13]. For the spatial dis-
cretization, triangular elements with linear shape functions and
six degrees of freedom at each node, i.e., three displacements and
three rotations, are used. As mentioned in section 2.1.2 those
purely displacement-based structural elements face locking prob-
lems. The locking problem also occurs for this type of element
when the shell slenderness ratio increases. The locking phe-
nomenon occurring here is transverse shear locking. The exact
theory behind this phenomenon is described for example in [51]
p. 72, ff. Different approaches exist as remedies for the trans-
verse shear locking problem. Here, the Discrete Shear Gap (DSG)
method proposed by [14] is utilized. Shortly summarized, the
DSG applies an enhanced shear strain formulation to mitigate
the locking. Additionally, the performance of the DSG element is
improved by the approach first presented in [62] for MITC-4 ele-
ments as proposed in [13] and [101] p. 253-263. The details of the
implementation can be found in [53] or in [103] p. 55-67, where
the element was also tested in detail.

2.1.2.2 Beam Elements

In this work, the kinematics of the beam element is also formu-
lated in the EICR formulation. The rigid body rotation is, in this
case, calculated by quaternions [43]. Those have the advantage
above other rotation strategies of not having the risk of singular
results for particular angles and are more compact and numeri-
cally stable than, for example, rotation matrices. Furthermore,
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full circle rotations can be modeled because only half of the ro-
tation angle is taken into account for the calculations. Further
insights concerning the calculation of the quaternion parameters
can be gained in [54] p. 63-68. Since the EICR is applied, it
is possible to utilize a linear beam formulation in which the geo-
metric nonlinearity is obtained by the motion of the local element
coordinate system. The beam element used throughout this work
has been implemented according to [54] p. 100 - 139. It is based
on a Timoshenko beam theory and applies linear shape functions
for the interpolations of longitudinal deformations, torsion (St.
Venant torsion), and for the curvatures. Like for the shell ele-
ments mentioned in section 2.1.2.1, the element also suffers from
the transverse shear locking problem. In [54] p. 91, 92, this is
taken into account more in detail, and on p. 94-96, it is suggested
how to solve the problem by applying modified bending and shear
stiffness parameters. Looking closer at this approach, this has
the same effect as interpolating the curvatures by cubic shape
functions. The exact implementation of the element can be found
in the code of [53] or in [84] p. 49 - 97, where the element was
also tested in detail.

2.1.2.3 Plane Stress Plate Elements

Structures in two dimensions are discretized by a fully in-
tegrated, quadrilateral plane stress elements with total La-
grangian kinematics. The derivation and implementation of this
element follow the standard approach, which can be found at the
beginning of this section and every classical FEM textbook e.g.,
[7] p. 355, ff.

2.2 Computational Fluid Dynamics (CFD)

This thesis investigates the wind-effects on civil engineering
structures. Airflow is a Newtonian fluid flow, which means it has
a linear, viscous flow behavior. It follows that the properties of
the fluid flow depend on the viscosity of the fluid and its density.
Furthermore, under certain circumstances, air can be treated as
an incompressible fluid flow. The validity can be examined by the
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dimensionless Mach number, which is defined as

Ma =
uF
cair

. (2.17)

Herein cair is the speed of sound in air, depending on the density
and thus on the temperature and uF is the component of the flow
velocity in streamwise direction of the undisturbed flow. The ef-
fects of compressibility of air can be generally neglected as long
as Ma < 0.3. For natural wind the most unfavorable value for
Ma will occur during a winter storm, where the temperature is
low and the flow velocity is high. Thus for a temperature of -
25 ◦C, the speed of sound in air cair is approximately 315 m/s and
the maximum velocity is assumed to be 70 m/s, which corresponds
to the highest measured wind speed until now during hurricane
”Lothar” on the Wendelstein at a height of 1838 m AMSL in the
year 1999 [32]. Inserting those values into Eq. (2.17) results in
Ma = 0.22. This clearly shows for this worst case scenario that
air can be treated as an incompressible flow, when modeling wind
effects on civil engineering structures.

From the considerations above it follows that the fluid flow
can be modeled by the incompressible Navier-Stokes equations
(NSE). For consistency with the remainder of this work, deal-
ing with body fitted FSI, the NSE are written in the following in
arbitrary Eulerian-Lagrangian (ALE) formulation. More details
about the different coordinate systems in the ALE formulation
can be found in [33] p. 8-12 and p. 18 or in [34]. Its application
to the NSE is for example described in [100] p. 136. The NSE for
an incompressible fluid flow consist of equations for the balance
of linear momentum and the balance of mass

ρF

(∂uF

∂t

∣∣∣
χ

+ (w · ∇)uF

)
+∇p− µF∆uF = f in ΩF × [0, T ),

∇ · uF = 0 in ΩF × [0, T ),
(2.18)

in a fluid domain ΩF. Herein, ρF is the fluid density, µF the dy-
namic viscosity, uF the fluid velocity vector with its components
[uF, vF, wF]T , p the pressure and f the external forces. Since the
ALE formulation is applied, the convective velocity w = uF − uM

between fluid flow and mesh motion is added, where uM is the
mesh velocity. Furthermore, the spatial description is applied,
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which means the spatial derivatives are calculated on the spa-
tial coordinate system and the time derivatives on the arbitrarily
moving reference coordinate system χ. Details concerning the
mesh motion are discussed in section 2.4. The problem can only
be solved by applying suitable boundary conditions. The domain
boundary of the fluid flow is denoted by ΓF. It can be subdivided
into a Dirichlet part ΓF,D and a Neumann part ΓF,N. It has to
hold that ΓF = ΓF,D ∪ ΓF,N and ΓF,D ∩ ΓF,N = ∅. With this, the
initial and boundary conditions can be expressed as:

uF = uinit
F in ΩF,t = 0, with : ∇ · uinit

F = 0, (2.19)
uF = uF,D on ΓF,D × [0, T ) and (2.20)

σ · n = t on ΓF,N × [0, T ). (2.21)

Herein, uinit
F is the initial velocity field, uF,D the imposed velocity

at the Dirichlet boundary, n is the outer normal vector, σ repre-
sents the stress tensor and t the imposed traction vector at the
Neumann boundary. Additionally, a boundary condition for the
moving boundary ΓI of the fluid domain due to the ALE formula-
tion has to be defined, which is

n · uF = n · uM in ΓI × [0,T). (2.22)

The NSE are discretized by a stabilized finite element formula-
tion on unstructured grids with triangular elements in 2D and
tetrahedral elements in 3D, both with linear shape functions.
The formulation is based on the variational multiscale method
(VMS), first introduced in [45] and [46]. The exact formulation
applied throughout this work and which is implemented in [53]
can be found in [26] chapter 2. The approaches shown there for
the standard NSE can be likewise applied to the ALE formula-
tion of the NSE in Eq. (2.18). In [26] also, several tests have
been conducted and the parallels of the VMS method to Large
Eddy Simulation (LES) are shown. For additional insights about
the parallels of the VMS method to LES the reader is referred
to [41], [80] and [25]. Furthermore, it is explained how the VMS
method can be interpreted as a turbulence model, which is the
reason why, throughout this work, no particular turbulence mod-
els are applied.

In the case of numerical simulations, additional boundary con-
ditions have to be defined. Those are the following:
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a) Inlet condition: The boundary where the fluid flow enters
the discretized fluid domain. Here a prescribed inlet veloc-
ity profile is applied.

b) Outlet condition: The boundary where the fluid flow leaves
the discretized fluid domain. In the cases treated through-
out this work, the pressure is set to zero at this boundary.

c) No-slip condition: The fluid-particle closest to the boundary
adheres to it. The velocity on this boundary is set to zero
for all components of the velocity vector. In the case of a
moving boundary FSI the fluid velocity is equal to the mesh
velocity.

d) Slip condition: The fluid-particle closest to the boundary
does not adhere to it. It follows that only the component
of the velocity vector normal to the boundary is set to zero.

The linearization and spatial discretization with the FEM, basi-
cally working the same way as described for the CSD part in sec-
tion 2.2, leads to the semi-discrete version of the transient sys-
tem of partial differential equations (PDEs), which is a system
of time-continuous (ODEs). This system of ODEs has to be dis-
cretized in time to obtain a system of algebraic equations (AEs),
which can be solved for the nodal unknowns of the fluid flow, uF

and p. When following this consistent or monolithic way of solv-
ing the fluid problem, i.e., solving the whole equation system for
uF and p at once, one may run into difficulties when dealing with
large systems of equations arising from ”real size” CFD problems.
Furthermore, additional numerical problems may occur due to
the ill-conditioning of the system of equations resulting from the
discretization of different variables and the stabilization terms.
Because of the high number of degrees of freedom, it is not pos-
sible to use direct solvers. Iterative solvers, made to solve large
systems of stiff equations, might also fail because of the poor con-
ditioning of the system.

To overcome this problem, the fractional-step method has
been developed ([21], [22] and [92]). It splits the problem into
two more steps. Different schemes are existing, but all of them
have in common, that they decouple pressure and velocity calcu-
lation to get smaller, well-conditioned systems of equations. The
method applied in this work and which is implemented in [53]
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has been published in [23] and [24]. The detailed algorithm can
be found in [4] p. 21, 22. More about the mathematical back-
ground of the fractional step method and its connection to the
monolithic approach can be found in [6].

Within the fractional step method, the integration in time is
performed by the BDF2 method presented in section 2.5. This re-
sults in a consistent application of time integration schemes for
the CSD and CFD subsystem.
Conclusively, it can be said, although the fractional step method
introduces an additional approximation, it can be seen as an op-
timal compromise between computational cost and numerical ac-
curacy, especially for the simulation of wind in the context of civil
engineering. A validation concerning this was carried out in [4]
and in this work in section 4.5.

2.3 Control Theory for Structural Systems (SC)

This subsection gives an overview of the control of mechanical
systems, also called mechatronics. The field of control theory and
mechatronics is vast and has many applications. Thus in this
subsection, only a rough overview with a focus on the main def-
initions, which are needed later in this work, can be given. For
more detailed information, the reader is referred to the litera-
ture, for example, [97], [96], [61], [60] and [40] for the basics of
control theory and to [73] for the special field of mechatronics.
In addition, APPENDIX C provides some basic information about
integral transform methods used in control theory. APPENDIX
D gives a short introduction into some modeling approaches for
dynamic systems applied in control theory.

2.3.1 Description of Mechatronic Systems
A mechatronic system is a dynamic system, which mainly con-
sists of the controlled system, i.e., a mechanical structure besides
a sensor (measuring element), a controller (controlling and com-
paring element), and an actuator as principally can be seen in
Fig. 2.2. In the case of a mechatronic system, the physical quan-
tities measured by the sensor are accelerations, velocities, dis-
placements or forces. Depending on the type of controller, not
only one but two or even all of those quantities are measured or
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calculated. The actuator element is a device applying a force to
the structure, e.g., electronic motors or pneumatic devices. The
controller consists of a device where the control law is imple-
mented and a comparing element. It is possible to realize the
controller in an analog or a digital way. The latter one is cur-
rently the common case and means the implementation of the
control law on a microprocessor. The block diagram notation is
handy to describe dynamic systems, which can be seen in Fig. 2.1
which shows the system concept with input and output quanti-
ties. Hereby scalar quantities are marked by single arrows and
vector or matrix quantities (in Fig. 2.1 b) and Fig. 2.4) with dou-
ble arrows. In the context of control theory, systems with scalar
inputs and outputs are referred to as single-input, single-output
systems (SISO), and with vector inputs and outputs as multiple-
input, multiple-output systems (MIMO). Concerning the control
theory aspect, i.e., the SC subsystems, only SISO systems are
taken into account in this work. Additionally, the SC subsystems
in this work are considered linear and time-invariant (LTI). This
means if the controlled CSD subsystem is nonlinear, the equa-
tions implemented for the SC subsystem are linear.

As mentioned above, the block diagram notation is a nice tool
to describe dynamic systems, thus it is also applied to the FSI
problem later in this Chapter and the FSCI problem in CHAPTER
3. Applying the block diagram notation to the CFD and CSD sub-
system results in contrast to the SC subsystem in MIMO systems.

2.3.2 Open- and Closed-Loop Control

The two principal control strategies applied to the mechatronic
system are open- and closed-loop control. Fig. 2.2 shows the prin-
ciple of closed-loop control in block diagram notation, sometimes
referred to as feedback, for a mechanical structure. In closed-
loop control, the output y(t) of the controlled system is compared
to the reference input w(t) and an error signal e(t) = w(t) − r(t)
is calculated and passed to the controlling element which applies
a correction by an actuator, as manipulation variable u(t), to the
controlled system. Fig. 2.2 is kept very general. In the case
of this work, the controlled system is mechanical. Since we are
dealing with dynamic systems, all quantities depend on the time
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dynamic
system

dynamic
system

u(t) y(t)

input quantity output quantity

u(t) y(t)

output quantityinput quantity

a)

b)

Figure 2.1: Symbolic presentation of the system concept for a
SISO system a) and a MIMO system b) according
to [97] p. 3.

t. If it is clear from the context, the addition (t) to the variables is
omitted for better readability. Examples of closed-loop controlled,
mechanical systems can be found in CHAPTER 3.

It exists an European standard for the naming in control the-
ory. Unfortunately, the basic literature hardly uses it. Thus in
this work, the notation, according to most of the standard litera-
ture, is applied. The variables in Fig. 2.2 are defined in Tab. 2.1.

w e controlling
element

m
actuator

u controlled
system

y

z

measuring
element

−
r

controlling system

comparing
element

controller

Figure 2.2: Block diagram for elementary closed-loop control
according to [97] p. 185.
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controlling
element

m
actuator

u controlled
system

y

zcontrolling system

w

Figure 2.3: Block diagram for elementary open-loop control.

Table 2.1: Variables and symbols for block diagrams.

w reference variable
e control difference variable
m controller output variable
u manipulation variable
z disturbance variable
y controlled variable
r feedback variable
• branching point
◦ summing point

Besides the closed-loop control, open-loop control, sometimes
called feedforward, is also applicable for certain systems treated
later in this work. The block diagram for open-loop control can
be seen in Fig. 2.3. The corresponding variables can be found in
Tab. 2.1. The main difference between open-loop and closed-loop
control is the feedback loop in the closed-loop case. This means
the open-loop control cannot react on arbitrary disturbances z(t)
acting on the controlled system. A remedy for this problem can
be found if a signal correlated to the disturbance is available. If
this is the case, adaptive filtering can be applied as suggested in
[79]. The major advantage in this case is, that open-loop control
does not necessarily need an explicit model of the system ([79] p.
10). The civil engineering structure which is investigated in Sect.
4.6 is an example of the type open-loop control described above.
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2.3.3 System Representation in the Frequency and
the Time Domain

A stable system might become unstable by applying the feedback
loop when selecting the wrong parameters to tune the controller.
Therefore, the controller design is a crucial part of influencing
the dynamics of the controlled system suitably. The controller
synthesis can either be performed in the frequency domain (clas-
sical approach) or in the time domain (modern approach).

In the time-continuous case, the Laplace-Transform is gener-
ally applied for the transformation into the frequency domain.
In the time-discrete case, the transform is performed by the z-
transform. Both types of transforms are shortly presented in
APPENDIX C. It is common practice to write down the system’s
transfer function G(s) (here in the time-continuous case), which
is defined as

G(s) =
Y (s)

U(s)
. (2.23)

It describes the relationship between the system output Y (s) and
its input U(s). From G(s) it is possible to determine the system’s
characteristic equation, which can be utilized to calculate the
system poles. This applies to the time-continuous and the time-
discrete case. The poles and zeros of the system can be depicted
in the s-plane and the z-plane. The transfer function concept of-
fers a basic platform for the analysis of the dynamic system and
also for the controller design. Investigating those here more in
detail would go far beyond the scope of this thesis, and the reader
is referred to the vast amount of literature available for this topic.
Some examples of this basic literature are cited at the beginning
of this Section.

In the time domain the the equation Eq. (2.9) for the dynamic
system can be written in state-space representation. This means
the transformation of an ODE of order n into a system of ODEs
with n equations of 1st order [73] p. 68. The basic state-space
representation for LTI systems is described by Eq. (2.24) and Eq
(2.25) and its representation in a block diagram notation is shown
in Fig. 2.4.

ẋ(t) = Ax(t) +Bu(t) (state equation), (2.24)
y(t) = Cx(t) +Du(t) (output equation). (2.25)
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Table 2.2: Variables and symbols for state-space representa-
tion.

A system matrix
B input matrix
C output matrix
D direct input-output matrix
u input vector
x state vector
x0 initial state vector
y output vector

The variables for the state-space representation are defined in
Tab. 2.2. When dealing with SISO systems, the controller de-

u

x
B

∫
C

D

A

y

x0

ẋ

Figure 2.4: Block diagram for state-space representation ac-
cording to [73] p. 69.

sign is possible in the frequency and time domain. When deal-
ing with MIMO systems, the controller design in the frequency
domain is very challenging, and the design in the time domain
by the state-space representation should be preferred ([73]). In
this work, both types of representation are applied. APPENDIXD
shows their application to a simple mechanical example.
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2.3.4 Controller Design
The choice of the control law and the selection of the controller
parameters (controller design) is problem dependent and thus
cannot be treated in a generalized way. Never the less, some
brief statements applying for mechatronic systems are possible.
The most common control law, which applies to most mechanic
systems, is according to [73] p. 151 ff. the PD controller. The
PD controller takes the control difference e(t) multiplying it by
a constant (P-Part) and also takes the first derivative w.r.t. time
of it, i.e., ė(t), multiplying it by a second constant (D-Part). An
example of this type of control law can be found later in Eq. (3.3).
Suppose the system is written in one of the ways presented in
APPENDIXD; in that case, several tools for finding the optimal
parameters to tune the controller, which can be found in the
standard literature cited at the beginning of this Section, can
be applied. One example of finding the optimal parameters for
a controller can be found in Sect. 3.4. The high fidelity CSD
model, simulated by the finite element method, can provide a
very detailed description of the mechanical system’s behavior. For
controller design, the high-fidelity model is too extensive. Thus
reduced-order models covering the most important dynamic as-
pects of the mechanical system (e.g., the first eigenmode), are
utilized for the controller design and the implementation of the
control law. An example of a basic reduced-order (low-fidelity)
model is shown in Sect. 3.4.

2.3.5 Stability Considerations and Important
Definitions

When manipulating a dynamic system, it is important to know
if the system is stable. Therefore different stability definitions
are of importance. We can distinguish between investigations in
the frequency and in the time domain. As mentioned before, the
system’s poles can be depicted in the complex s-plane for the time-
continuous case and in the z-plane for the time-discrete case.
Generally, the desired degree of stability d is present if the real
part of all poles si is smaller than −d. Fig. D.4 shows an ex-
ample of the system pole’s position in the s-plane with reference
to the system behavior in the time domain for a simple example.
A time-discrete system with the same degree of stability has only

26



2.3. Control Theory for Structural Systems (SC)

poles zi located in a circle with a radius e−dδt < 1. This is depicted
in Fig. 2.5

s-plane

-d Im

Re

Im

Re
e−dδt

z-plane

Figure 2.5: s-plane and z-plane

In the time domain, different stability criteria can be taken
into account. The first one is bounded input bounded output
(BIBO) stability, which is defined according to [60] p. 57 as fol-
lows:

Defintion 2.1: Bounded input bounded output (BIBO)
stability

A linear system is BIBO stable if the output signal

||y(t)|| < ymax ∀t > 0 (2.26)

remains bounded for vanishing initial values x0 and an arbi-
trarily bounded input signal

||u(t)|| < umax ∀t > 0. (2.27)

Another stability definition important in this work is the internal
stability of a LTI system and its special case of asymptotic stabil-
ity. The definition for internal stability is valid for linear, undis-
turbed systems, i.e. u(t) = 0, with the initial values x0 = xinit.
Applied to Eq. (2.24) this results in

ẋ(t) = Ax(t). (2.28)
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This system is in equilibrium xg, if ẋ = 0. It follows for non-
singular matrices A that xg = 0. This means exactly one equilib-
rium state exists for the undisturbed, linear system if detA 6= 0.
According to [61] p. 405 internal stability is defined as:

Defintion 2.2: Internal stability of LTI systems

The state of equilibrium xg = 0 of Eq. (2.28) is called stable
(according to Ljapunow) or internally stable if a number
α > 0 exists for each γ > 0, such that for an arbitrary initial
state, which fulfills the condition

||xinit|| < α, (2.29)

the proper motion of the system in Eq. (2.28) fulfills the con-
dition

||x(t)|| < γ ∀t > 0. (2.30)

The state of equilibrium is called asymptotically stable if it
is stable and if

lim
t→∞

||x(t)|| = 0 (2.31)

holds.

Besides the stability definitions for a dynamic system, it is im-
portant to know if the system to be controlled can be influenced
by an input vector u(t) in a prescribed way. The definition for the
controllability is given in the following according to [60] p. 64:

Defintion 2.3: Controllability

A system defined by Eq. (2.24) is fully controllable if it can
be transferred in a finite time interval T from any arbitrary
initial state xinit to an arbitrarily defined final state x(T ), by
applying an appropriately selected input vector u ∈ [0, T ].

In [60] p. 63 ff. also different ways for checking the controllability
of a system are presented.

Finally, it might not be possible for most mechanical systems
to measure all state variables of the system directly. It is often
only possible to measure the output vector y(t). The problem
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is called observability and is defined according to [60] p. 93 as
follows:

Defintion 2.4: Observability

A system defined by Eq. (2.24) and (2.25) is fully observable,
if the initial state of the system xinit can be determined from
a known distribution of the input vector u(t) ∈ [0, T ] and the
output vector y(t) ∈ [0, T ] over a finite time interval [0, T ].

Again more detailed information how to determine the observ-
ability of a system is for example provided in [60] p. 92 ff.

2.4 Fluid-Structure Interaction (FSI)

This subsection describes the theoretical background for solving
the coupled problem of fluid-structure interaction (FSI), i.e., cou-
pling of the subsystems, CFD and CSD. Furthermore, the no-
tation for coupled problems throughout this work is introduced,
which is needed in CHAPTER 3.

FSI means the fully coupled, transient solution of a fluid flow
interacting with a structure, in this work. In a physical con-
text, this means the fluid flow applies a traction force onto the
structure, the structure deforms, the fluid flow recognizes the de-
formed structure and adapts itself to the deformed geometry. Fig.
2.6 b) shows this concept, which is defined as two-way coupling.
For comparison Fig. 2.6 a) also shows one-way coupling. One-
way coupling treats the structure as a rigid object in the fluid
flow, where the dynamic forces are applied to the structure. Fig.
2.6 a) also includes a pure CFD analysis, where the structure is
not coupled to the fluid flow at all.

The next step describes how the problem defined above is ap-
proached numerically. The numerical solution can be either per-
formed in a monolithic or a partitioned way. Fig. 2.7 depicts both
possibilities. In FSI, monolithic means the coupled problem is for-
mulated on a continuous level and is consistently linearized and
discretized. This discretization results in one system of equations
to be solved. The partitioned approach keeps the solution of the
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Figure 2.6: Difference of one-way and two-way coupling: a)
one-way coupled FSI including pure CFD, b) two-
way coupled FSI.
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· =
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AF xn+1
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Figure 2.7: Scheme of a) monolithic and b) partitioned FSI. If
the interface iteration counter k = 0, b) is a stag-
gered solution scheme otherwise an iterative one.

subsystems involved independently of each other. The communi-
cation between the subsystems is shifted to the interface. In the
context of FSI forces and displacements are communicated at the
joint interfaces of fluid flow and structure. As can be seen in Fig.
2.7, additional conditions are necessary at the common interface
(I) of the subsystems to communicate the respective quantities.
Different ways of defining those conditions at the interface level
exist and a comparison of the different types of decomposition can
be found for a simple example [87] p. 60-65. The reader is also
referred to as the literature cited there.

In this work, the classical decomposition approach for FSI,
a Dirichlet-Neumann decomposition is applied, which means the
traction forces are transferred from the boundary of the CFD sub-
system to the CSD subsystem (Neumann condition) and displace-
ments are transferred from the boundary of the CSD subsystem
to the CFD subsystem (Dirichlet condition). As [87] p. 65 summa-
rizes, the choice of the best decomposition of a coupled problem
is highly problem dependent. The choice of Dirichlet-Neumann
coupling has shown to be the best for FSI (e.g. [100], [57], [18]).
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Furthermore, it is closest to the real physical problem of FSI and
thus needs no additional assumptions.

2.4.1 Communication Pattern

Another crucial part of the partitioned simulation of the FSI
problem is the communication pattern between the different sub-
systems. In [87] p. 58 and 59 and more in detail in [95] p. 31
the two fundamental communication patterns for partitioned FSI
are presented, named Gauss-Seidel (GS) and Jacobian (J) pat-
tern, following the naming of the splitting methods for solving
linear equation systems. Accordingly, in the J pattern, communi-
cation between the subsystems only occurs after all subsystems
have been solved. This offers the possibility of solving the sub-
systems in parallel but has the disadvantage of a slower conver-
gence rate. The GS pattern solves the subsystems subsequently,
and hence it is possible to transfer information between the sub-
systems throughout the solution process.

From the partitioning, an additional equation system is ex-
isting for the interface conditions. This system of equations has
to be solved, too. Independent of the the CFD properties and
the CSD problem, the interface equation system is a set of non-
linear equations. For solving this set of non-linear interface equa-
tions, different approaches are possible. The standard schemes
are fixed-point iterations with a convergence acceleration utiliz-
ing constant relaxation or a Newton scheme ([95] p. 37, Fig. 26
gives a good summary).

The general equation for a fixed point formulation can be writ-
ten as

k+1xn+1 = 1A
kxn+1 + bn. (2.32)

Herein 1A
k is the iteration matrix, bn is a vector remaining con-

stant throughout the iteration process, k is the iteration counter,
n the time step counter and x the vector of unknowns. Eq. (2.32)
can be accelerated by relaxation ([90] p. 652 to 659) and can be
rewritten as

k+1xn+1 = β
(

1A
kxn+1 + bn

)
+ (1− β) kxn+1,

k+1xn+1 = βA
kxn+1 + βbn.

(2.33)
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Herein β is a user-defined relaxation parameter and the relaxed
iteration matrix βA is defined as

βA = I + β(1A− I), (2.34)

which becomes
βA = 1 + β(1A− 1), (2.35)

in the case of a single degree of freedom system. In Eq. (2.33)
the convergence behavior only depends on the relaxed iteration
matrix βA. The relaxed iteration matrix itself depends on the re-
laxation parameter β and the unrelaxed iteration matrix 1A con-
taining the system parameters and the time step. Convergence is
guaranteed if in the multi-degree of freedom case if ρ(βA) < 1 for
the spectral radius ρ of the iteration matrix holds. For only one
degree of freedom, i.e. the scalar case, this boils down to |βA| < 1.
For the scalar case, the following, closed-form statements can be
derived:

2

(1− 1A)
= − 2

(1A− 1)
< β < 0, if 1A > 1 and

0 < β <
2

(1− 1A)
, if 1A < 1 .

(2.36)

Additionally, for the scalar case, a statement for an optimal re-
laxation factor β∗ can be deduced for 1A 6= 1 as

β∗ =
1

(1− 1A)
. (2.37)

This means by combining Eq. (2.37) with Eq. (2.33) the solution
of the iteration procedure is given as

lim
k→∞

{kxn+1} =
bn

(1− 1A)
, (2.38)

which corresponds to Eq. (22) in [47] on p. 762. From this it
can be concluded, if 1A 6= 1, a range of values for β, which lead to
convergence, exist. Furthermore, inside this amount of values for
β an optimal value β∗ exists, which leads to convergence within
one iteration.

For the fixed-point formulation, the relaxation parameter
is rather set to a fixed value, which only works for exceptional
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cases, or an optimal relaxation parameter can be computed. The
direct calculation of β∗ only works for very simple cases ([47], p.
769) and is hardly possible for multi-degree of freedom problems.

The computation of the relaxation parameter has been part of
active research in the past years. Examples are the Aitken accel-
eration proposed by [57] or more advanced schemes like the ones
presented in [29] or [15], belonging to the group of quasi-Newton
methods. Again [95] p. 36-37 provides a good summary and a
historical overview of all different techniques. The schemes for
computing the acceleration parameter can be applied to the GS
pattern as well as to the J pattern in the context of a fixed point
formulation. When solving the interface equation system by a
Newton scheme as presented in [87] p. 75, the major problem
is obtaining the interface Jacobian of the subsystems. Getting
the exact values is theoretically possible because both CFD and
CSD are discretized by the FEM. The information has to be con-
densed to the interface level by static condensation methods ([87]
p. 78-80). The static condensation is a numerically costly oper-
ation, which has to be performed in every iteration step. Fur-
thermore, the resulting condensed matrix is fully populated and
ill-conditioned. Additionally, a parallelization of this kind of prob-
lem in a distributed memory environment leads to difficulties
because the interface might belong to different computing par-
titions. Thus, additional communication throughout the solution
procedure is necessary. Therefore, a better alternative and more
efficient way is again applying quasi-Newton schemes to approx-
imate the interface Jacobian.

For practical problems in the civil engineering context, the
Aitken method is the most effective one. It is robust and is ac-
cessible to implement in the serial case but also for distributed
memory parallelism.

Besides the variety of iterative/strong/implicit coupling
schemes presented before, which perform an iteration at the in-
terface in each time step, making them fulfill all interface con-
straints strictly, explicit/staggered/loose coupling schemes exist.
No iterations at the interface are performed; hence the subsys-
tems are only solved once per time step. Therefore, a good pre-
dictor is necessary for the subsequent time step. Especially the
predictor presented in [31] has turned out to be a very robust and
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efficient alternative for practical problems, as it also has been
shown in [4].

Which of the techniques for the partitioned solution of the FSI
problem is to be applied is problem-dependent. The coupled prob-
lems in this work are solved by an explicit coupling approach us-
ing the predictor from [30] as long as possible. Otherwise, an im-
plicit approach applying a GS pattern with Aitken acceleration is
utilized.

2.4.2 Mapping
Following the partitioned approach for a coupled problem, here
FSI, the communication between the subsystems is shifted to
their common interface. The numerical solution of the subsys-
tems by the FEM results in discrete systems. For practical prob-
lems, the different subsystems’ discretizations do not coincide at
the interface in most cases. Therefore, a reasonable mapping be-
tween the surface meshes of the common interfaces of the dif-
ferent subsystems is necessary. Many different algorithms exist
for surface mapping operations ([28] and [38]) and a summary is
given in [102] p. 43-60. According to [102] p. 47, the mapping for
the example of the coupled FSI problem can be defined as

dI,F = HFSdI,S , (2.39)

for the displacement fields. Herein dI,F is the vector of the dis-
crete interface displacements of the CFD subsystem, HFS is the
displacement mapping matrix and dI,S is the vector of discrete
displacements on the interface of the CSD subsystem. This is
called a consistent mapping operation. For the mapping of the
traction forces besides the consistent also a conservative mapping
is possible. According to [102] p. 47 the conservative mapping op-
eration reads

f I,S = HT
FSf I,F , (2.40)

where f I,S is the vector of traction forces on the CSD interface,
HFS is the same mapping matrix as for the displacement field
and f I,F is the vector of traction forces on the CFD interface.
Eq. (2.40) is derived from the energy conservation equation and
guarantees the conservation of the sum of the resultant forces
and energy. [100] p. 48 gives no suggestion if consistent or con-
servative mapping should be applied to map the traction forces in

35



Chapter 2. Theoretical Background

FSI. The reason is each of the methods returns different results.
For the problems treated in this work only conservative mapping
leads to correct results. The reason is that the CFD and CSD
domain interface meshes generally show big differences in their
discretizations.

For building the mapping matrix, different algorithms exist.
This work applies the nearest element mapping. The details
about the algorithm, which is also implemented in [53], can be
found in [102] p. 48-50. [16] shows how to implement this algo-
rithm for distributed memory parallelism, which is necessary to
solve the large problems treated in CHAPTER 4.

2.4.3 Mesh Motion

The FSI simulations in this thesis work follow a body fitted ap-
proach. Following this approach has the consequence that the
fluid mesh has to be moved according to the displacements on the
common interface between the CFD and CSD domain. Therefore,
the NSE in section 2.2 have been formulated in ALE kinematics.
Several approaches exist to project and distribute the displace-
ment of the interface into the fluid domain. In [71] the possi-
bilities of performing this mesh updating are summarized. The
main prerequisites for a good mesh updating scheme are defined
as follows:

a) The mesh quality, especially in the regions where the flow
characteristics are to be modeled most accurately, should
be preserved as well as possible without re-meshing. The
region where the mesh quality has to be the best is, in most
cases, the region near the common interface of CFD and
CSD domain.

b) The scheme should be robust, i.e., the simulation should
not fail or produce wrong results due to inverted or poorly
shaped elements.

c) The scheme should be efficient in order not to increase the
overall computation time of the simulation severely. Addi-
tionally, it should easily be implementable for shared and
distributed memory parallelism.
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The scheme fulfilling each prerequisite and which is applied in
this work treats the mesh similar to a linear solid in 3D and uti-
lizes a plane stress formulation in 2D. The derivation directly fol-
lows the section 2.1. It is a modification of the scheme presented
in [89], which was tested in detail and implemented in parallel in
the context of [71] in [53]. It is repeated here for completeness.
The approach modifies the Lamé constants in the material tensor
the following way:

µM =
EM

2(1 + νM)
, λM =

νMEM

(1 + νM)(1− 2νM)
, (2.41)

with
EM = EM

( J0

detJ

)η
. (2.42)

Herein J0 is an arbitrary global scaling factor and detJ is the de-
terminant of the Jacobian of the fluid elements. The exponent
can be set as η ∈ [0, 2.0] and the mesh’s Poisson’s ratio can be
chosen in the interval νM ∈ [0, 0.5]. In the simulations conducted
throughout this work the mesh motion showed the most robust
behavior with the parameters EM = 1.0, νM = 0.3 and η = 2.0.
With the approach presented here, the elements are stiffened pro-
portionally to their element Jacobian matrix, making smaller ele-
ments behaving stiffer and larger elements behaving softer. The
solution to this additional linear problem is the mesh displace-
ment dM of the overall CFD domain. This means the additional
mesh solution projects the displacements on the interface into the
CFD domain. As can be seen in Eq. (2.18) the mesh velocity uM

has to be computed to get the convective velocity w. The com-
putation of w cannot be performed arbitrarily but has to fulfill
the geometric conservation laws (GCL), firstly mentioned in [93].
Those result from the minimum prerequisite that the CFD solu-
tion on the time-varying domain has to preserve a homogeneous
flow field’s trivial solution. A detailed literature review concern-
ing the GCL can be found in [100] p. 143, 144 and detailed infor-
mation in [35].

In this work, the nodal mesh velocity uM is computed consis-
tently with the time integration scheme of the CFD subsystem
from the nodal mesh displacements dM, i.e., by the BDF2. The
test calculations in [71] show this approach fulfills the GCL con-
ditions.
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2.4.4 Notation for Coupled Problems

Finally, the notation for coupled problems, followed in this work,
and which is also necessary to understand the contents of CHAP-
TER 3, is defined by the example of the FSI problem. The notation
is in the style of the block diagram notation commonly applied in
control theory, which has been introduced in Section 2.3. This
kind of notation is also applied in [59] and [104].

In a first step, the blocks of the CFD and the CSD subsystem
are presented with a description of their input and output quan-
tities.

The block for the CFD subsystem is shown in Fig. 2.8 a). The
CFD subsystem receives interface displacements yn+1

F as an in-
put. The CFD subsystem with all its degrees of freedom (p, u
and uM) contained in the vector xn+1

F , is described by the sys-
tem transfer operator GF. The CFD subsystem is solved for its
unknowns xn+1

F in dependency of the displacements yn+1
F on its

interface, given as an input, in order to gain the reaction forces
on the interface zn+1

F . Those reaction forces are then considered
as the CFD subsystem’s output.

For the CSD subsystem the same principle applies. The CSD
block receives a disturbance force zn+1

S as an input. The CSD
subsystem with all its degrees of freedom (d), contained in the
vector xn+1

S , can be described by the transfer operator GS. It is
solved in dependency on the forces on its interface zn+1

S . From
the solution of the CSD subsystem the interface displacements
yn+1

S can be gained, which are considered as the CSD subsystem’s
output.

It has to be emphasized again that the input and output quan-
tities of the blocks in Fig. 2.8 are to be interpreted as quantities
at the common interfaces of the subsystems. If the system only
has a single degree of freedom, i.e., the interface degree of free-
dom coincides with the system degree of freedoms, the reference
to the system quantities, indicated by the [ ] superscript for G, is
omitted for better readability.

After the description of the subsystems’ blocks, they are linked
by appropriate interface constraint equations summarized in the
interface constraint operator IFS. The index FS indicates the cou-
pling of CFD (index F) and CSD (index S) subsystem in this case.
Since a Dirichlet/Neumann coupling approach is followed here
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(Sect. 2.4), the interface constraint equations contained in IFS

are defined as follows:

yn+1
F − yn+1

S =0,

zn+1
F + zn+1

S =0.
(2.43)

This results in the compact notation with the interface con-
straint operator in IFS(yn+1

F ,yn+1
S , zn+1

F , zn+1
S ). The coupling of

the blocks shown separated in Fig. 2.8 by applying the interface
constraint operator is shown in Fig. 2.9 for the FSI case. The
notation presented here is used later in this work to describe the
extension of the FSI problem by an additional subsystem, i.e., a
controller influencing the dynamics of the CSD subsystem.

zn+1
F = G

[
xn+1

F

]
F

(
yn+1
F

)

yn+1
S = G

[
xn+1

S

]
S (zn+1

S )

fluid (CFD) subsystem

structural (CSD) subsystem
zn+1
S

disturbance
(forces)

yn+1
S

output
(displacements)

yn+1
F

input
(displacements)

zn+1
F

output
(reaction forces)

a)

b)

Figure 2.8: Single blocks for a) CFD and b) CSD subsystem
.

2.5 Time Integration

As mentioned in Section 2.1 and 2.2 the spatial discretization of
the time depended PDEs leads to a system of ODEs of the type
of Eq. (2.9), which is still continuous in time. For integrating
this system of ODEs, which is a numerical initial value problem,
the backward differentiation formulas (BDF) introduced in [42]
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yn+1
F zn+1

F zn+1
S yn+1

S

IFS (yn+1
F ,yn+1

S ,zn+1
F ,zn+1

S ) = 0

fluid (CFD) subsystem structural (CSD) subsystem

interface constraints

zn+1
F = G

[
xn+1

S

]
F

(
yn+1
F

)
yn+1
S = G

[
xn+1

S

]
S (zn+1

S )

Figure 2.9: Application of the block diagram notation to the
FSI problem.

can be applied. The BDF formulas can be characterized as an im-
plicit, stiffly stable, one-level, multi-step method. In the following
the BDF1 and BDF2, which are A-stable, are shortly introduced
for a general vector of unknowns q(t) ∈ RNdof . All strict mathe-
matical stability proves of the BDF formulas and details for their
derivation up to sixth order can be found in [42] p. 217, ff.
The BDF1 is defined as:

qn+1 = qn + δtq̇n+1,

q̇n+1 = q̇n + δtq̈n+1.
(2.44)

Rewriting those equations renders the approximation for the ve-
locity

q̇n+1 =
1

δt
(qn+1 − qn) (2.45)

and for the acceleration

q̈n+1 =
1

δt2
(qn+1 − 2qn + qn−1). (2.46)

Herein δt is the discrete time step size and qn+1, qn and qn−1 are
the discrete instances of the variable, its first derivative in time q̇
and its second derivative in time q̈ at time steps tn+1, tn and tn−1,
with n being the time step counter. In the context of mechanics
the first derivative w.r.t. time are the velocities and the second
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derivative w.r.t. time the accelerations. The initial conditions are
defined as

q0 = qinit (2.47)

and
q−1 = qinit − 1

δt
q̇init. (2.48)

The BDF1 has first order accuracy and suffers from numerical
damping. Thus for practical applications, the BDF2 is a bet-
ter choice. Accordingly, the approximation of the velocity by the
BDF2 is defined as

q̇n+1 =
1

δt

(3

2
qn+1 − 2qn +

1

2
qn−1

)
(2.49)

and the acceleration as

q̈n+1 =
1

δt2

(9

4
qn+1− 3qn +

3

4
qn−1

)
+

1

δt

(
− 2q̇n +

1

2
q̇n−1

)
. (2.50)

The BDF2 has second order accuracy and does not suffer from
numerical damping. In order to obtain the initial conditions qinit

and q̇init the first two time steps can be solved by the BDF1
method.

2.6 Software Environment and Simulation
Time

The main problems when dealing with partitioned multiphysics
simulations are the coupling of the software codes of the different
subsystems and the computation time. Most of the codes avail-
able cannot deal with multiphysics problems inherently but are
specialized in one type of physical problem. Thus in the past
years, plenty of research has been conducted to develop coupling
tools to couple those different types of software (e.g., [87], [95]).
The application of those independent coupling tools works well,
as long as the problems do not grow too large. As soon as real-
world problems, like in CHAPTER 4 should be solved, those tools
show their limits. Additionally, software development and solv-
ing multiphysics problems, especially in science, involves work-
ing in teams containing experts for the different subproblems.
Furthermore, most of the scientific projects are supported by pub-
lic funds and thus it should be evident that all outcomes of those
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projects, including the software code, should be accessible for ev-
eryone who is interested in them.

Hence for all simulations and developments carried out in the
context of this thesis work, the open-source framework Kratos
Multiphysics [27] was applied. The Kratos is freely accessible on
GitHub [53], is written in C++ and is designed to allow collabora-
tive development by large teams of researchers focusing on mod-
ularity as well as on performance. The Kratos features a ”core”
and ”applications” approach where ”standard tools” (databases,
linear algebra, search structures, etc.) come as a part of the core
and are available as building blocks in the development of ”appli-
cations” which focus on the solution of the problems of interest.
Its ultimate goal is to simplify the development of new numerical
methods.

The Kratos also works on cluster systems, which makes it pos-
sible to solve large coupled problems. The simulations in CHAP-
TER 4 in this thesis work were conducted on the LRZ SuperMUC-
NG cluster in the context of the project ”Wind-Structure Inter-
action Simulations for High-Rise, Wide-Span and Slender Civil
Engineering Structures” (project id: pn56ba). To obtain calcula-
tion time on the SuperMUC-NG, a proposal, which undergoes a
review by two independent experts in high-performance comput-
ing, was necessary. Besides basic project information, this pro-
posal also had to include studies concerning the Kratos’ parallel
performance. Those had been conducted for FSI problems testing
CSD and CFD solver separately, but also FSI. As test case served
the problem presented in Section 4.5, with up to 30e6 elements.
The Kratos shows good parallel scaling for such a case, whereby
the optimal number of elements per CPU core for CFD is approx-
imately 3e4 and for CSD with shell elements approximately 2e3.
This results in approximately 300 CPU cores for an optimal per-
formance of a typical FSI simulation with 10e6 fluid and 3e5 shell
elements. In this constellation the simulation time for a typical
physical time Tphys = 600 s with δt = 0.02 s is about 72 h, when
running the simulation on the SuperMUC-NG.
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Fluid-Structure-Control
Interaction

In this Chapter, the coupled problem of fluid-structure-control
interaction (FSCI) is treated in a partitioned way. This means
an open-loop or closed-loop control unit, which manipulates the
structure’s dynamics, is added to the well-known two field prob-
lem of fluid-structure interaction (FSI). This kind of problem
statement was first mentioned in [37] (p. 3262 and 3263), but
has not been followed in more detail. Also in [87], FSCI to re-
duce flow-induced structural displacements has been mentioned
as a side note in the context of testing the algorithm developed
therein.

In contrast to the present contribution, a rigid structure with
one degree of freedom with small displacements and a very sim-
ple control-law is shown. Furthermore, [87] utilizes a Jacobi pat-
tern instead of a Gauss-Seidel pattern.

The objective of applying a control unit to the FSI problem is
getting a minimum or at best zero displacements.

In the case of the FSCI problem, the partitioned approach
makes it simpler to add the controller to the problem. In the
partitioned approach, an important issue is the stability of the
overall simulation [10]. Analyzing the stability behavior of mul-



Chapter 3. Fluid-Structure-Control Interaction

tiphysics problems, the superposition of many different effects
may occur.

To get a good insight into the behavior of such complicated
problems in computational FSI, it became the well-established
practice to step back to highly simplified model problems for de-
tailed investigations of different solution schemes. Such simpli-
fied models only represent the relevant properties of the actual
FSI problem; thus, they give more insight and open the opportu-
nity to formulate closed-form formulations. Within this chapter,
such a simplified model problem, used for instance in [31] p. 4-6
and [48], p. 1365, is expanded. [31], Remark I p. 5-6 and conclu-
sion p. 20, 21 as well as [20] show that this simplified model prob-
lem is sufficient for the analysis of a broad spectrum of solution
schemes for FSI problems regarding properties like stability, con-
vergence behavior, accuracy, and high-frequency damping. Thus
the overall behavior of multi-degree of freedom, FSI problems, is
explained quite well ([47] and [48]). The essential findings and
algorithms obtained by the simplified model problem can be ap-
plied to more complex multi-degree of freedom examples.

The content and ideas of this Chapter, including figures and
tables, have been published first in a short version in [72] and
finally in their full version, including APPENDIX A in [104]. They
have also been part of [58] and [59], which were written under
essential scientific, technical and textual supervision of the au-
thor of this thesis. For the sake of completeness, the content of
the sources mentioned before is included in this thesis work, too.

3.1 The Simplified Model Problem

A generic control unit extends the simplified model problem in-
troduced by [31] and [48]. According to [31] and [48], the system
approximating the FSI scenario most simply is the combination
of a point mass, linear damper, and a linearly elastic spring. Fig.
3.1 illustrates this simplified model problem in in a monolithic
version a) and a partitioned version b). Fig. 3.1 b) visualizes the
decomposition into three subsystems and the explicit realization
of interfaces (each creating an interface constraint equation). Fig.
3.1 is described in more detail during this subsection. The newly
proposed simplified FSCI model problem’s features can be sum-
marized as follows: The coupling of a first-order ODE represent-
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ing the fluid flow and a second-order ODE representing the struc-
ture reproduces the FSI problem. The FSI problem is extended
to the FSCI problem by adding the algebraic ODE of the con-
troller. In the simplified model problem, the combination of vis-
cosity/inertia in one subsystem (fluid flow) and stiffness/inertia in
the other (structure) also corresponds to the main characteristics
of FSI problems. The FSI subproblem still dominates the physics
since inertia is limited to the fluid flow and the structure. The
controller is only adjusting the dynamics of the structure. Here
the iterative/strong/implicit coupling described in section 2.4 is
applied. The monolithic version in sub-figure a) results in the
well-known single degree of freedom (SDoF) system

mÿ(t) + cẏ(t) + ky(t) = u(t), (3.1)

with its initial conditions according to Eq. (2.2)

y(0) = yinit,

ẏ(0) = ẏinit.
(3.2)

This is the linear, scalar version of Eq. (2.9). The variable u(t)

−kR1 • −kR2•̇

u(t)

controller

y(t)

interface

structure

k c

fluid

αm (1− α)m

−kR1 • −kR2•̇

u(t)
y(t)

k

m

c

a) b)

Figure 3.1: Simplified model problem: a) monolithic, b) parti-
tioned.

on the right hand side represents the manipulation variable. Eq.
(3.1) is equivalent to [31] p. 5, enhanced by a generic, but repre-
sentative state-feedback controller. The state-feedback controller
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equation for w(t) = 0, which means, e(t) = w(t) − y(t) is defined
as

u(t) = − kR1e(t)− kR2ė(t). (3.3)

The constant factors kR1 for the displacement and kR2 for the ve-
locity in the manipulation variable u(t) are used to tune the con-
troller, which is the basic PD control law. Inserting Eq. (3.3) into
(3.1) one gets

mÿ(t) + (c+ kR2) ẏ(t) + (k + kR1) y(t) = 0, (3.4)

with the initial conditions from Eq. (3.2), which is a controlled
SDoF system. In the following this is referred to as simplified
model problem. The manipulation variable u(t) is treated as
Neumann boundary condition on the SDoF system, which corre-
sponds to a disturbing force in this case. Therefore no additional
displacement degree of freedom is added. This type of control re-
sults in pure force control, which also corresponds to the approach
followed in CHAPTER 4.

3.1.1 Monolithic Approach
For the temporal discretization of the monolithic model problem
the BDF1 (section 2.5) is applied. Applied to Eq. (3.4) this leads
to the time discrete monolithic expression of the coupled system.

(
m+ (c+ kR2) δt+ (k + kR1) δt2

)
yn+1

−
(
2m+ (c+ kR2) δt

)
yn +myn−1 = 0

(3.5)

and its discrete initial conditions

y−1 = yinit − δtẏinit,

y0 = yinit.
(3.6)

Thus it is subsequently possible to derive statements, which re-
flect the choice of the controller parameters kR1 and kR2 for which
the controlled system shows stable dynamics.

3.1.1.1 Analysis of the Time-Continuous Problem

The stability region Ωc for the time-continuous, monolithic sim-
plified model problem Eq. (3.4) is derived using its characteristic
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polynomial. The characteristic polynomial reads

p(s) = ms2 + (c+ kR2)s+ (k + kR1). (3.7)

This is Eq. (3.4) transformed to the complex s-plane by a Laplace
transform, where s is a complex number. The roots of Eq. (3.7)
are defined as

{s ∈ C | p(s) = 0}. (3.8)

In this case asymptotically and BIBO stability coincide. The
time-continuous stability region Ωc results in

Ωc =

{
kR1, kR2 ∈ R

∣∣∣∣max
i=1,2

{
Re{si}

}
≤ 0

}

=
{
kR1, kR2 ∈ R

∣∣kR1 ≥ −k ∧ kR2 ≥ −c
}

.

(3.9)

Herein si denote the two poles of the time-continuous problem,
which are specified by its eigenvalues.

3.1.1.2 Analysis of the Time-Discrete Problem

In a similar way, the stability region Ωd for the time-discrete,
monolithic model problem Eq. (3.5) is determined. Its character-
istic polynomial reads

p(z) =
(
m+ (c+ kR2) δt+ (k + kR1) δt2

)
z2

−
(
2m+ (c+ kR2) δt

)
z +m = 0.

(3.10)

This is Eq. (3.5) transformed to the complex z-plane by the Z-
Transform described in APPENDIX C. The roots of Eq. (3.10) are
defined as

{z ∈ C | p(z) = 0}. (3.11)

The disturbance force z(t) is not to be mixed up with the z from
the Z-transform.

The two basic stability conditions change for the time-discrete
case [40]. Consequently, the time-discrete region Ωd formulated
in the z-plane results in

Ωd =

{
kR1, kR2 ∈ R

∣∣∣∣max
i=1,2

{
|zi|
}
≤ 1

}
. (3.12)
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Mapped back to the s-plane with Eq. (C.15) this reads

Ωd = {kR1, kR2 ∈ R
∣∣∣∣

1

δt
ln

(
max
i=1,2

{
|zi|
})
≤ 0}

= {kR1, kR2 ∈ R
∣∣kR1 ≥ −k

∧ kR2 ≥ −c− δt(kR1 + k)}.

(3.13)

Herein zi denote the two poles of the time-discrete problem,
which are specified by its eigenvalues.

Clearly recognizable in Eq. (3.13) is the fact that the time-
continuous stability region Ωc representing real physics gets ex-
tended to an apparently larger, time-discrete stability region Ωd.
This has to be taken into account when conducting a simulation
based controller design. The stability considerations performed
here result in a stable system for all of the parameters of kR1 and
kR2 that fulfill the criteria stated in Eq. (3.9) or Eq(3.13), depend-
ing if we are looking at the time continuous or the time discrete
system. The selection of the optimal parameters, i.e. the con-
troller design, is not conducted here explicitly, because it is not
of interest for the following investigations. There exists a vast
amount of state of the art possibilities how to select the optimal
controller parameters for a PD controller in the literature (e.g.
[40] p. 180 ff). One possibility for a concrete example is shown in
the following in Sect. 3.4.

3.1.2 Partitioned Approach
The initial step of a partitioned approach is the decomposition
of the multiphysics problem into single physics subproblems and
appropriate interface constraints covering the interactions. The
division in subsystems is referred to as partitioning [9] and is
shown in Fig. 3.1 b).

A preparatory step for reaching a suitable partitioning of the
simplified model problem is the reformulation of the ODE Eq.
(3.1) as

(αm)ÿ(t) + ((1− α)m)ÿ(t) + cẏ(t) + kx(t)

= u(t) + z(t).
(3.14)

The disturbance force on the right hand side z(t) has to be split up
into zF(t) and zS(t), since Eq. (3.15) and (3.16), which are the par-
titioned equations, need a disturbance force each. In combination
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with Eq. (3.2) and Eq. (3.3) this leads finally to the partitioned,
simplified model problem:

(
(1− α)m

)
ÿF(t) + cẏF(t) = zF(t), (3.15)

is referred to as the fluid subsystem (index F),

(αm)ÿS(t) + kyS(t) = uS(t) + zS(t), (3.16)

as the structural subsystem (index S) and

uC(t) = − kR1yC(t)− kR2ẏC(t), (3.17)

as controller subsystem (index C). The physical interaction is
shifted to the interface constraints (index I)

yF(t)− yS(t) = 0,
zF(t) + zS(t) = 0,
yS(t)− yC(t) = 0,
uS(t)− uC(t) = 0.

(3.18)

The initial conditions for the structure are given with

yS(0) = yinit
S ,

ẏS(0) = ẏinit
S .

(3.19)

Thus, the structural domain is represented by the elastic spring
k and the point mass share αm, the fluid domain by the linear
damper c, and the point mass share (1− α)m. The interface con-
straints cover the interactions between these two domains (FSI)
and between structure and controller (SCI). y(t) describes the dis-
placement, which corresponds to the measured output. z(t) is the
disturbance (force) originating from the partitioning and u(t) the
manipulation variable. Eq. (3.18) formulate the interface con-
straint equations.

The parameter α ∈ [0, 1) describes the mass distribution be-
tween fluid and structural subsystem, i.e.

mS

m
= α and

mF

m
= 1− α, (3.20)

and allows to precisely quantify the added-mass effect [31], [20]
and [98], which also applies to FSCI problems. Other ”α”-
parameters regarding the damping c and the stiffness k would
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be feasible ([31] p. 5), too. At this stage only one parameter α
associated with the mass m is considered. In the dominating FSI
subproblem the convergence properties of the relaxed iteration
factor βA in the limit case δt→ 0 depend only on this one param-
eter [47] (section 3, p. 763).

The temporal discretization of the partitioned simplified
model problem Eq. (3.15), (3.16), (3.17), (3.18) and (3.19), with
the BDF1 scheme leads to the discrete, partitioned, simplified
model problem. It consists of the discrete fluid Eq. (3.21), struc-
tural Eq. (3.22) and controller subsystem Eq. (3.23):

zn+1
F =

(1− α)m+ cδt

δt2
yn+1

F

− (1− α)m+ cδt

δt2
ynF −

(1− α)m

δt
ẏnF,

zn+1
F =GF

(
yn+1

F

)
,

(3.21)

yn+1
S =

δt2

αm+ kδt2
zn+1

S +
δt2

αm+ kδt2
un+1

S

+
αm

αm+ kδt2
ynS +

αmδt

αm+ kδt2
ẏnS ,

yn+1
S = GS

(
zn+1

S , un+1
S

)
,

(3.22)

un+1
C = − kR1δt+ kR2

δt
yn+1

C +
kR2

δt
ynC,

un+1
C = GC

(
yn+1

C

) (3.23)
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and the discrete interface equations

yn+1
F − yn+1

S = 0,

i.e. IFS,y

(
yn+1

F ,yn+1
S

)
= 0,

(3.24)

zn+1
F + zn+1

S = 0,

i.e. IFS,z

(
zn+1

F ,zn+1
S

)
= 0,

(3.25)

yn+1
S − yn+1

C = 0,

i.e. ISC,y

(
yn+1

S ,yn+1
C

)
= 0,

(3.26)

un+1
S − un+1

C = 0,

i.e. ISC,u

(
un+1

S ,un+1
C

)
= 0.

(3.27)

The operators G and I describe the input-output relation for the
specific subsystem and the interface constraint for the specific
coupling, respectively.

The FSI subproblem, i.e. the coupling between fluid and struc-
ture, converges to the solution of Eq. (3.21), (3.22), (3.24) and
(3.25). The emerging system is the ”fluid-structure (FS) sub-
system”, GFS

(
un+1

S

)
. Accordingly, the converged solution of the

SCI subproblem, i.e. the coupling between structure and con-
troller fulfills Eq. (3.22), (3.23), (3.26) and (3.27). This leads to a
”structure-controller (SC) subsystem”, GSC(zn+1

S ).

3.2 Extension of the Notation for the FSCI
Problem

Before starting with further investigations concerning the FSCI
problem, the notation introduced for the FSI problem in Sect.
2.4.4 has to be extended. In this example the controlling sys-
tem is supposed to act with a force on a single node of the CSD
subsystem. Thus in a first step the block of the CSD subsystem
has to be extended. The extended block for the CSD subsystem is
shown in Fig. 3.2 a). The additional input quantity un+1

S denotes
the input force of the controller acting on the structure, which
is a scalar value in this case. The CSD subsystem, described by
the system transfer operator GS is now additionally depending on
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´

un+1
C = G

[
xn+1

C

]
C

(
yn+1
C

)

yn+1
S = G

[
xn+1

S

]
S (zn+1

S , un+1
S )

control (SC) subsystem

structural (CSD) subsystem
zn+1
S

disturbance
(forces)

yn+1
S

output
(displacements)

a)

un+1
S

manipulation variable
(force)

yn+1
S

meas. output
(displacement
component)

b)

yn+1
C

meas. output
(displacement

component)

manipulation variable
(force)

un+1
C

Figure 3.2: Single blocks for extended CSD a) and for SC b)
.

un+1
S . From the solution of the CSD subsystem the structural dis-

placements yn+1
S on the interface and the measured output yn+1

S

can be gained and are the output quantities of the CSD block.

Fig. 3.2 b) shows the single block of the new subsystem in-
volved now. The input to the SC subsystem is the measured out-
put of yn+1

C , which is a displacement component. The SC subsys-
tem is also described by its system transfer operator GC, which
depends on the measured output yn+1

C from its interface. The out-
put of the SC system, un+1

C , referred to as manipulation variable,
is a force. The description shown in Fig. 2.2 is consistent with
the example treated in Sect. 3.4, considering the SC subsystem
as a SISO and CFD and CSD subsystems as MIMO systems. Of
course, it is possible to apply this notation to an arbitrary combi-
nation of SISO and MIMO systems. This only changes the type
or arrows (double- or single-lined) used and if the quantities are
written with bold characters or not.

With this extension of the notation initiated in Sect. 2.4.4,
it is now possible to derive statements for the coupling for CFD,
CSD, and SC subsystem, by the block diagram notation.
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3.3 Alternatives of the Gauss–Seidel Pattern
for Three Different Physical Fields

Three different alternatives for the serial GS pattern for the FSCI
problem are described and applied to the partitioned simplified
model problem consisting of Eq. (3.21)–(3.27).

The resulting nonlinear interface equation system can be
solved in different ways. For each of those variants the limits
of the unrelaxed 1A and the relaxed βA iteration factors are de-
rived and the optimal relaxation parameter β∗ is calculated. The
algorithms in pseudocode notation for the different alternatives
can be found in APPENDIX A.

3.3.1 No Nesting FSCI
In the context of this subsection, the acronym FSCI also stands
for the more specific iterative coupling scheme illustrated in Fig.
3.3, where the Gauss-Seidel communication pattern is realized
without nesting of any subproblems, i.e., the coupled problem is
solved with a single fixed-point iteration loop. This means only
one interface equation system IFSC has to be solved. In the graph-
ical representation as a block diagram, each of the physical fields
and the interface equations are outlined by one of the blocks.
The arrows describe the input and output quantities, which are
passed between the blocks. Applying Eq. (2.32) to the parti-
tioned, simplified model problem the equations of the algorithm
condense down to

k+1yn+1
S

(3.22)
= GS

(
kzn+1

S , kun+1
S

)

(3.25),(3.27)
= GS

(
−kzn+1

F , kun+1
C

)

(3.21),(3.23)
= GS

(
−GF

(
kyn+1

F

)
,GC

(
kyn+1

C

))

(3.24),(3.26)
= GS

(
−GF

(
kyn+1

S

)
,GC

(
kyn+1

S

))
,

i.e. k+1yn+1
S =− (1− α)m+ (c+ kR2)δt+ kR1δt

2

αm+ kδt2
kyn+1

S + bn,

i.e. k+1yn+1
S =1AFSCI

kyn+1
S + bn.

(3.28)
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zn+1
F = GF

(
yn+1
F

)

yn+1
F zn+1

F

yn+1
C

un+1
C

yn+1
S

yn+1
S

zn+1
S

un+1
S

yn+1
S = GS(zn+1

S , un+1
S )

un+1
C = GC

(
yn+1
C

)
interface constraints
IFSCI

(
yn+1
F , yn+1

S ,

zn+1
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Figure 3.3: Block diagram for the FSCI scheme.

Herein bn is the part remaining constant during the iteration pro-
cess.

The limit of the iteration factor

lim
δt→0

{1AFSCI} =
α− 1

α
, (3.29)

shows pure dependency on the mass distribution α.

Supplemented by relaxation, the FSCI scheme shown in Eq.
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(3.28) is extended to
k+1yn+1

S = βGS

(
− GF(kyn+1

S ),GC(kyn+1
S )

)

+ (1− β) kyn+1
S ,

i.e. k+1yn+1
S = −

(β − α)m+ β
(
(c+ kR2)δt+ kR1δt

2
)
− (1− β)kδt2

αm+ kδt2

kyn+1
S + βbn,

i.e. k+1yn+1
S = βAFSCI

kyn+1
S + βbn.

(3.30)

The limit of the iteration factor

lim
δt→0

{
βAFSCI

}
=
α− β
α

, (3.31)

is now clearly determined by the mass distribution α and the re-
laxation parameter β.

According to Eq. (2.37) the optimal relaxation parameter be-
comes

β∗FSCI =
αm+ kδt2

m+ (c+ kR2) δt+ (k + kR1) δt2
. (3.32)

Each term in the denominator is positive, non-zero for physically
relevant parameters and stable controller settings according to
Eq. (3.9). Thus, it can always be found.

3.3.2 Nesting of the FSI Sub-Problem ([FS]CI)
The acronym [FS]CI denotes the specific iterative coupling
scheme illustrated in Fig. 3.4 depicts the GS communication pat-
tern with nesting of the FSI subproblem, which is indicated by
bracketing [FS]. The nesting of sub-problems corresponds to the
inclusion of bi-coupling schemes mentioned in [19]. As can be
seen in Fig. 3.4, two interface constraint equations are to be set
up. One for the FS subproblem (inner interface constraints) IFS

and one for the overall coupling between the FS subsystem with
the control subsystem (outer interface constraints) I[FS]C. At first
the FS loop is iterated with constant manipulation variable un-
til convergence. The converged values are used as information
for the iterations of the outer loop. If the outer loop does not
converge, the algorithm has to return to the inner loop. The in-
ner and outer iteration loop have to converge before proceeding
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to the next time step. The scheme is again applied to the par-
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Figure 3.4: Block diagram for the [FS]CI scheme.

titioned simplified model problem. Since the pure FSI is solved
in its iteration loop, it is possible to calculate the best relaxation
factor once for the FSI problem, involving two coupled fields and
for the complete FSCI problem involving three coupled fields.

The inner FSI fixed-point iteration of the algorithm condenses
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down to

l+1
kyn+1

S

(3.22)
= GS

(
l
kzn+1

S , kun+1
S = const.

)

(3.25)
= GS

(
−lkzn+1

F , kun+1
S = const.

)

(3.21)
= GS

(
−GF

(
l
kyn+1

F

)
, kun+1

S = const.

)

(3.24)
= GS

(
−GF

(
l
kyn+1

S

)
, kun+1

S = const.

)
,

i.e. l+1
kyn+1

S = − (1− α)m+ cδt

αm+ kδt2
l
kyn+1

S + kbn,

i.e. l+1
kyn+1

S = 1AFSI l
kyn+1

S + kbn.

(3.33)

Herein the iteration counter l is used for the inner iteration loop
and the iteration counter k for the outer iteration loop. For the
inner FSI fixed point iteration the constant part is kbn.

The limit of the inner iteration factor

lim
δt→0

{1AFSI} =
α− 1

α
, (3.34)

shows pure dependency on the mass distribution α.
Supplemented by relaxation the inner FSI part of the scheme

reads

l+1
kyn+1

S =βGS

(
− GF(l

kyn+1
S ), kyn+1

S = const.
)

+ (1− β)l
kyn+1

S ,

i.e. l+1
kyn+1

S =− (β − α)m+ cδt− (1− β)kδt2

αm+ kδt2
l
kyn+1

S + βkbn,

i.e. l+1
kyn+1

S =βAFSI l
kyn+1

S + βkbn.
(3.35)

The limit of the inner iteration factor

lim
δt→0

{
βAFSI

}
=
α− β
α

, (3.36)

now is obviously determined by the mass distribution α and the
relaxation parameter β.

The optimal relaxation parameter according to Eq. (2.37) be-
comes

β∗FSI =
αm+ kδt2

m+ cδt+ kδt2
. (3.37)
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It can always be found since each term in the denominator is
positive non-equal to zero for physically relevant parameters in-
dependent of the controller setting.

Assuming convergence, the inner FSI fixed-point iteration can
be substituted by the equivalent FS subsystem GFS

(
kun+1

S

)
for

analyzing the outer [FS]CI fixed-point iteration. Consequently,
this outer [FS]CI fixed-point iteration of the algorithm condenses
down to

k+1yn+1
S = GFS

(
kun+1

S

)

(3.27)
= GFS

(
kun+1

C

)

(3.23)
= GFS

(
GC

(
kyn+1

C

))

(3.26)
= GFS

(
GC

(
kyn+1

S

))
,

i.e. k+1yn+1
S = −kR2δt+ kR1δt

2

m+ cδt+ kδt2
kyn+1

S + bn,

i.e. k+1yn+1
S = 1A[FS]CI

kyn+1
S + bn.

(3.38)

Herein the factor bn remains constant during all iterations. The
limit of the outer iteration factor

lim
δt→0

{
1A[FS]CI

}
= 0, (3.39)

is always zero, independently of the parameter setting.
Supplemented by relaxation the outer [FS]CI part of the

scheme reads
k+1yn+1

S = βGFS

(
GC(kyn+1

S )
)

+ (1− β)kyn+1
S ,

i.e. k+1yn+1
S = − β(kR2δt+ kR1δt

2)− (1− β)(m+ cδt+ kδt2)

m+ cδt+ kδt2
kyn+1

S

+βbn,

i.e. k+1yn+1
S = βA[FS]CI

kyn+1
S + βbn.

(3.40)

The limit of the outer iteration factor

lim
δt→0

{
βA[FS]CI

}
= 1− β, (3.41)
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shows pure dependency on the relaxation parameter β.
The optimal relaxation parameter according to Eq. (2.37) be-

comes

β∗[FS]CI =
m+ cδt+ kδt2

m+ (c+ kR2) δt+ (k + kR1) δt2
. (3.42)

Each summand in the denominator is positive and non-equal to
zero for physically relevant parameters and stable controller set-
tings according to Eq. (3.9). Thus, it can always be found.

3.3.3 Nesting of the SCI Sub-Problem (F[SC]I)

The acronym F[SC]I denotes the specific iterative coupling
scheme illustrated in Fig. 3.5, where the GS communication pat-
tern is depicted with nesting of the SCI subproblem, which is
made clear by bracketing [SC]. Comparable to the [FS]CI prob-
lem, for the F[SC]I problem two interface equations are also to be
set up. ISC for the inner and IF[SC] for the outer iteration loop. As
already indicated, the solution procedure for the F[SC]I problem
is done just the other way around like in the [FS]CI problem.

Accordingly, first, the SC loop is iterated applying a constant
disturbance force until convergence. The converged values are
used as information for the iterations of the outer loop. If the
outer loop does not converge, the algorithm has to return to the
inner loop. Before proceeding to the next time step, the inner and
outer loop have to be converged. The scheme is again applied to
the partitioned simplified model problem. The inner SCI fixed-
point iteration of the algorithm condenses down to

l+1
kyn+1

S

(3.22)
= GS

(
kzn+1

S = const., l
kun+1

S

)

(3.27)
= GS

(
kzn+1

S = const., l
kun+1

C

)

(3.23)
= GS

(
kzn+1

S = const.,GC

(
l
kyn+1

C

))

(3.26)
= GS

(
kzn+1

S = const.,GC

(
l
kyn+1

S

))
,

i.e. l+1
kyn+1

S = −kR2δt+ kR1δt
2

αm+ kδt2
l
kyn+1

S + kbn,

i.e. l+1
kyn+1

S = 1ASCI l
kyn+1

S + kbn.

(3.43)
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Figure 3.5: Block diagram for the F[SC]I scheme.

Again the iteration counter l is used for the inner iteration loop
and the iteration counter k for the outer iteration loop. As defined
for the FSCI and the [FS]CI problem, kbn is the constant part of
the inner iteration loop.

The limit of the inner iteration factor

lim
δt→0

{1ASCI} = 0, (3.44)

is always zero independently of the parameter setting.

Supplemented by relaxation the inner SCI part of the scheme
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reads

l+1
kyn+1

S = βGS

(
kzn+1

S = const.,GC(l
kyn+1

S )
)

+ (1− β)l
kyn+1

S ,

i.e. l+1
kyn+1

S = − β(kR2δt+ kR1δt
2)− (1− β)(αm+ kδt2)

αm+ kδt2
l
kyn+1

S

+βkbn,

i.e. l+1
kyn+1

S = βASCI l
kyn+1

S + βkbn.
(3.45)

The limit of the inner iteration factor

lim
δt→0

{
βASCI

}
= 1− β, (3.46)

shows pure dependency on the relaxation parameter β.

The optimal relaxation parameter becomes according to Eq.
(2.37)

β∗SCI =
αm+ kδt2

αm+ kR2δt+ (k + kR1) δt2
. (3.47)

αm and (k + kR1) δt2 in the denominator are positive and non-
equal to zero for physically relevant parameters and stable con-
troller settings according to Eq. (3.9).

Thus, the optimal relaxation factor can always be found by
additionally requiring

kR2δt 6= −
(
αm+ (k + kR1) δt2

)
.

Assuming convergence, the inner SCI fixed-point iteration
can accordingly be substituted by the equivalent SC subsystem
GSC

(
kzn+1

S

)
for analyzing the outer F[SC]I fixed-point iteration.

Consequently, this outer F[SC]I fixed-point iteration of the algo-
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rithm condenses down to

k+1yn+1
S = GSC

(
kzn+1

S

)

(3.25)
= GSC

(
−kzn+1

F

)

(3.21)
= GSC

(
−GS

(
kyn+1

F

))

(3.24)
= GSC

(
−GF

(
kyn+1

S

))
,

i.e. k+1yn+1
S = − (1− α)m+ cδt

αm+ kR2δt+ (k + kR1)δt2
kyn+1

S + bn,

i.e. k+1yn+1
S = 1AF[SC]I

kyn+1
S + bn.

(3.48)
The limit of the outer iteration factor

lim
δt→0

{
1AF[SC]I

}
=
α− 1

α
, (3.49)

shows pure dependency on the mass distribution α.

Supplemented by relaxation the outer F[SC]I part of the
scheme reads

k+1yn+1
S = βGSC

(
−GF

(
kyn+1

S

))
+ (1− β)kyn+1

S ,

i.e. k+1yn+1
S = − (β − α)m+ βcδt− (1− β)(kR2δt+ (k + kR1)δt2)

αm+ kR2δt+ (k + kR1)δt2
kyn+1

S

+βbn,

i.e. k+1yn+1
S = βAF[SC]I

kyn+1
S + βbn.

(3.50)

And the limit of the outer iteration factor

lim
δt→0

{
βAF[SC]I

}
=
α− β
α

, (3.51)

now is obviously determined by the mass distribution α and the
relaxation parameter β.
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The optimal relaxation parameter becomes according to Eq.
(2.37)

β∗F[SC]I =
αm+ kR2δt+ (k + kR1) δt2

m+ (c+ kR2) δt+ (k + kR1) δt2
. (3.52)

It always exists since the denominator is positive and non-equal
to zero for physically relevant parameters and stable controller
settings according to Eq. (3.9).

From the simplified model problem, it can be concluded that
all three types of Gauss-Seidel schemes show unconditional sta-
bility for reasonable physical parameters and stable controller
settings. Furthermore, it was possible to derive the optimal re-
laxation parameters of β∗. It has to be kept in mind, that [31] p.
10 Eq. (48) states

lim
δt→0
α→0

{β∗} = lim
δt→0
α→0

{βcrit} = 0. (3.53)

This means a decreasing value of α, i.e., a decreasing amount of
the structural mass results in a smaller value for β. [31] p. 11
concludes that an increased sensitivity w.r.t. β may lead to an
increased number of iterations for small values of α, especially
in cases with more than one degree of freedom (vector case), for
which an optimal value of the relaxation parameter β∗ generally
cannot be found. This fact is also emphasized in [31] Section 4.4
for FSI and can be transferred to the FSCI case analogously. Af-
ter the successful derivations for the simplified model problem,
the schemes are subsequently applied to a multi-degree of free-
dom problem for further investigations, which have not been pos-
sible with the simplified model problem. This is especially con-
cerning the robustness of the algorithms for multi-degree of free-
dom problems. It is very likely that the findings from the sim-
plified model problem concerning stability also apply to multi-
degree of freedom problems. For the calculation of the relaxation
parameter the Aitken acceleration shortly mentioned in CHAP-
TER 2, proposed by [57] p. 66 for FSI is applied, which can be
seen more in detail in the algorithms in APPENDIX A also written
for the vector case.
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3.4 Numerical Results for a Multi-Degree of
Freedom FSCI Problem

The inspiration for the multi-degree of freedom FSCI experiment
were the numerical benchmarks proposed in [94] and [100] p.
195-197. Since the investigations should go beyond the pure FSI
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Figure 3.6: Dimensions and boundary conditions of the nu-
merical FSCI experiment.

effects study, the experimental setup had to be slightly modified.
All in all, the principle arrangement remains the same and can
be seen in Fig. 3.6.

In contrast to the rigid cylinder in [94], a square, as suggested
in [100], is placed in the channel. To this rigid square, an elas-
tic flag (characters R to E) is attached. The square and flag are
placed asymmetrically in the channel to stimulate a fast onset of
the excitation mechanism depicted in Fig. 3.9. The phenomenol-
ogy of the problem is described in [94] and [100].

In the following, we are actively trying to influence the dy-
namics of the structure, i.e., the CSD subsystem, by a controller,
extending the FSI to the FSCI problem. The main objective of
this is to reduce or in the best case entirely suppress the ampli-
tude of the end-point displacement at point E. Similar to the sim-
plified model problem, the manipulation variable is a Neumann
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boundary condition i.e. an external force, which is applied by the
SC subsystem at the root point of the flag R to the CSD subsys-
tem. For the design of the controller, a reduced order model is
necessary ([96], [60]), which is exemplary shown in Fig. 3.8. This
low-fidelity structural model was only used for the controller. In
the coupled FSCI simulation, the structure was simulated like in
classical FSI by the high-fidelity model depicted in Fig. 3.7.

3.4.1 Description of the Subsystems Involved
Just as mentioned before, the FSCI problem involves three
subsystems, namely a fluid flow, a structural mechanics part and
a controller.

At first the CFD subsystem is introduced. The main dimen-
sions and the boundary conditions of the problem can be seen in
Fig. 3.6. The time constant inlet velocity is described by the func-
tion

uF,in(y) = uF,max4
y

H

(
1− y

H

)
. (3.54)

This is a quadratic parabola with uF,max at its peak value. Herein

interface, disturbances

zero displacement

uS(t)

zS(x, t)
yS(x, t) vS(t)

ΩS, γρS, γES, νS

meas.
output
(displace-
ment)

x, uS

y, vS

manipulation
variable
(force)

Figure 3.7: High-fidelity model to be solved in the coupled
problem.

y is the coordinate running from the bottom of the channel to its
width H. The material parameters for the fluid flow are cho-
sen in accordance to the CFD3 specifications in [94], leading
to a strongly unsteady flow with vortex shedding. This vortex
shedding is additionally supported by the aforementioned eccen-
tric placement of the square in the channel. Thus the following
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specifications are chosen: ρF = 1000 kg/m3, µF = 1.0 kg·m/s2 and
uF,max = 2 m/s, which leads to a Reynolds number Re = 200. As
can be seen in Fig. 3.9 an unstructured mesh of triangular ele-
ments (12515 elements and 6503 nodes) is used for the calcula-
tions. The mean element size is 0.002 m near the square and the
flag and decreases to 0.02 m at the domain boundaries. It has to
be pointed out, that Fig. 3.9 does not show the full length of the
CFD domain. More information about the element formulation
can be found in Sect. 2.2. The time step size is δt = 0.01 s for all

interface
uS(t)

zS(x, t)
xS(y, t)

0

0

m

γc,γk

xS(t)

manipulation
variable

(force)

zS(t)

meas.
output
(dis-
place-
ment)

= vS(t)

γb0

x, uS

y, vS

Figure 3.8: Low-fidelity model for the controller design.

subsystems.
Next, the CSD subsystem is presented. The CSD subsystem

is represented by a high-fidelity multi-degree of freedom model,
which is the initially suggested CSD system as proposed in [94].
The specifications of the high-fidelity model can be seen in Fig.
3.7.

Herein, zS(x, t) is the disturbance force from the fluid flow
and yS(x, t) is the displacement of the structure at the interface.
Again one can see that the manipulation variable uS(t), which is
a force in this case, is applied only at the root point of the elas-
tic flag and the displacement component in y-direction vS(t) is
measured solely at its tip. The special aspect of the high-fidelity
model is the back part of the square (finely crosshatched), which
is originally assumed to be rigid in [94], but is considered elastic
in the current investigation. It is used to linearly distribute the
root point excitation along the backside of the square to match
the ALE boundary conditions of the fluid domain. Therefore a
pseudo material with νS = 0 and ρS = 0 is set, to avoid artifi-
cially introduced deformations and inertia effects at the back of
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8.05 s

8.10 s

8.15 s

8.20 s

8.25 s

Figure 3.9: Deformed structure with velocity contours and de-
formed finite element mesh for the numerical ex-
periment from 8.0 s to 8.25 s by snapshots in steps
of 0.05 s.
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the square. The problem is discretized by a structured mesh of
368 quadrilateral elements with an edge length of 0.005 m, which
are described in Sect. 2.1.2.3. The material parameters are cho-
sen as ρS = 1000 kg/m3, ES = 5.6e6 N/m2 and νS = 0.4. The values
applied for the simulations match the CSD2 benchmark of [94]
scaled by the factor of γ. The gravity constant is set to g = 2 m/s2

and is acting in x-direction. Fig. 3.9 shows an extract of the sim-
ulation results for 0.20 seconds by using the parameters for fluid
flow and structural model described in this subsection (γ = 1.0) in
order to show the deformation mechanism. The figure shows the
deformed mesh, the high-fidelity CSD model and the velocity con-
tours. The controller is not activated yet. The displacements at
point E with and without activated controller are plotted in Figs.
3.11 and 3.12. The meshes on the interface of fluid and struc-
ture subsystem coincide, thus no additional mapping operation is
necessary in this case.

The third subsystem consists of a low-fidelity CSD model im-
plemented in the controller and the control law itself. In the
low-fidelity CSD model, the overall structural dynamics are con-
densed to a SDoF system. The low fidelity model can be seen in
Fig. 3.8. It has been derived from the high-fidelity multi-degree
of freedom model. The structural model itself is approximated by
a simple second-order ODE, which matches the boundary condi-
tions of the high-fidelity model and is used by the controller to
calculate the force uS(t). The distributed displacements yS(x, t)
between points R and E are approximated by quadratic shape
functions, which renders a good enough assumption for the dom-
inant mode shape of the investigated problem (see Fig. 3.9). The
distributed disturbance forces zS(x, t) on the FSI interface are
summed up to a single disturbance force zS(t). If reduced-order
model would not satisfy the prerequisites for successfully con-
trolling the system (e.g., for more complex structures), a more
advanced model-order reduction approach would be necessary.
Since the major aim of the example presented here is to show the
algorithmic treatment of the problem the assumptions made here
are accurate enough, which also reflects in the results achieved
with the reduced order model selected here. They are defined as

Nu(x) = 1 −
(

x−xR/`
)2

for the manipulation variable uS(t) and

Nx(x) =
(

x−xR/`
)2

for the state variable xS(t). Thus, the real
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Figure 3.10: Block diagram for the controlled system with fol-
lowing state observer ([60] p. 334)

physics of the high-fidelity model reduces to

(γm)ẍS(t) + (γc)ẋS(t) + (γk)xS(t) = (γb0)uS(t) + zS(t). (3.55)

In the latter equation the single state xS(t) directly corresponds
to the measured output vS(t), which is the displacement compo-
nent in y-direction of the tip displacement at the end point E,
resulting in vS(t) = xS(t). The parameter b0, which is associated
with the manipulation variable at the root pointR, the force uS(t),
is used to replace the root point excitation, which avoids intro-
ducing an additional degree of freedom Since for this numerical
example, zero damping is assumed and thus damping is not mod-
eled in the CSD subsystem (high-fidelity model), it also follows
for the low-fidelity model c = 0. Applying the PVW with a dis-
tributed cross sectional mass µS = ρSwh, where w is the width,
h the height of the cross section and with ẼI is the distributed
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sectional stiffness, leads to

µS

∫ xE

xR

N2
x(x)dx ẍS(t) + ẼI

∫ xE

xR

N2
x(x)dx xS(t)

= µS

∫ xE

xR

Nx(x)Nu(x)dx ÿS(t)

+ẼI

∫ xE

xR

Nx(x)Nu(x)dx uS(t) +
∑

i

Nx(xi)zS,y(xi, t).

(3.56)

The last term of Eq. (3.56) denotes the discrete disturbance forces
coming from the nodes i on the interface mesh of the fluid domain
which are to be summed up here. The open parameters in Eq.
(3.55) can be obtained as:

m =
µS`

5
=
ρSwh`

5
, k = ẼI

`

5
=
ESwh3

4`3
,

b0 = −ẼI 2`

15
=
ESwh3

6`3
, zS(t) =

∑

i

(xi − xR
`

)2

zS,y(xi, t).
(3.57)

Those approximations are applied to the centerline of the struc-
ture and have to be projected to the surfaces of the flag by proper
projection operations. The time-discrete low-fidelity CSD model
is finally given with the adapted time discretization

(
Eq. (3.22)

)

from the simplified model problem. The equivalent values to
match the multi-degree of freedom model for m, c, k and b0 can
be found in Tab. 3.1. Those parameters can be scaled by the
parameter γ accordingly.

With the low-fidelity CSD model, the controller can be de-
signed. The Controller in this context means the control law,
which is implemented, for example, in a microprocessor (control-
ling element in Fig. 2.2). Between this microprocessor and the
actuator in the physical system, an amplifier device would be lo-
cated. In Fig. 3.10 the amplifier, the actuator, and the measuring
element are omitted because they are not necessary for the in-
vestigations made here. Although, the example shown here is a
purely numerical experiment from the FSI community, which was
utilized to test the algorithms developed for the simplified model
problem in a multi-degree of freedom case; it could principally be
build for a physical experiment. In this case, the input the actu-
ator could be placed, for example, in the form of a linear motor or
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a smart material applying the manipulation variable (force uS(t))
to the root point of the flag marked green in Fig. 3.7 or marked
by R in Fig. 3.6. The measurement of the flag’s tip displacement
(point E in Fig. 3.6) should be conducted contactless, so the dy-
namics of the flag are not influenced by the measurement device.
In the physical experiment, the actuator’s dynamics and the mea-
surement apparatus would have to be taken into account in the
controller design, which can be modeled by delay elements ([40]
p. 184). This is not necessary for the investigations in this work
thus optimal actuator and sensor dynamics are assumed.

In this work, a state-feedback control following state observer
is implemented, which is state of the art for modern methods for
controller design and is also used in the context of many applica-
tions in control theory. Herein, the controller state feedback ma-
trix is specified via a linear-quadratic regulator approach (LQR)
and the observer output-feedback matrix is set via pole place-
ment as generally described in [60] and [96]. The block diagram
can be seen in Fig. 3.10. The controlled system, which is seen by
the controller, is represented by the equation

(γm)v̈S(t) + (γc)v̇S(t) + (γk)vS(t) = (γb0)uS(t) + ezS(t), (3.58)

including the measured output vS(t) (displacement), the manip-
ulation variable uS(t) (force), the disturbance force zS(t) and the
scaling factor γ. The system is rewritten in state-space represen-
tation introduced in Section 2.3, with x1(t) := vS(t) and x2(t) :=
v̇S(t) being the entries in the state vector x(t) = [x1(t) x2(t)]T,
reading


ẋ1

ẋ2


 =


 0 1

− k
m − c

m




x1

x2


+


 0
b0
m


u(t) +


 0
e
m


 z(t),

i.e. ẋ = Ax+Bu(t) +Ez(t)

(3.59)

and the output equation

y(t) =
[
1 0

]

x1

x2


 ,

i.e. y(t) = Cx.

(3.60)

Since the system is fully controllable and fully observable, state-
feedback control and state observer are possible. Thus a control
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law similar to the one presented for the model problem can be
used. This is given by

u(t) = −kR1x1 − kR2x2 (3.61)

or in short notation as

u(t) = −KRx, (3.62)

with KR = [kR1 kR2] being the constant state feedback matrix.
Herein the constants in KR are determined with the LQR ap-
proach described in detail in [60] Chapter 7. This is done in the
general case by minimizing the quadratic cost functional

J(u,x0) =
1

2

∫ ∞

0

(xTQx+ uTRu)dt. (3.63)

It involves user-definable weights Q ∈ R2,2 related to state the x
and r ∈ R1,1 for manipulation variable, i.e., the force u(t). As it
can be seen, in this case the matrixR reduces to a scalar, because
the system has only one input u(t). With an appropriate choice
of Q 6= Q(γ) and r 6= r(γ) the state-feedback matrix becomes
independent of γ, because also A 6= A(γ), B 6= B(γ) and C 6=
C(γ).

Since the displacement vS(t), being state one, should be mea-
sured during the simulations, it is directly accessible

(
x1 = vS(t)

)
.

The second state should not be measured directly and thus needs
an approximation. This approximation x2 ≈ x̂2 is conducted from
measurements of state one by a reduced state observer. The
state-space representation, therefore, can be split up into one
part for the measurement vS(t) and a second one for the estima-
tion x̂2, by omitting the disturbance force z(t), in the following
way:

˙̂x = Ax̂+Bu,

i.e.


v̇S(t)

˙̂x2


 =


 0 1

− k
m − c

m




vS(t)

x̂2


+


 0
b0
m


u(t).

(3.64)

The reduced state observer equation can be written as follows:

˙̃x2 =− c

m
− kBx̃2 +

b0
m
u(t)− (

c

m
+ kB)kB −

k

m
x̂2 =x̃2 + kBvS(t)

(3.65)
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The value necessary for the output-feedback matrix kB , which is
a scalar value in this case, is calculated from a fictive system

ẋf =− c

m
xf + uf ,

uf =− kBxf ,

→ ẋf =−
( c
m

+ kB
)
xf .

(3.66)

By applying eigenvalue placement with the single eigenvalue of
this system this results in

kB = − c

m
− λB , where

λB < Re{λ} = − c

2m
≤ 0

(3.67)

has to hold, with λ being the eigenvalue of the fictive system.
Conducting the observer design and applying the BDF2

scheme results in

xn+1
1 = vn+1

S ,

[LHS] x̃n+1
2 = − 1

δt

(
− 2x̃n2 +

1

2
x̃n−1

2

)
+ [RHS] yn+1

S ,

x̂n+1
2 = x̃n+1

2 + kBy
n+1
S ,

un+1 = −kR1x
n+1
1 − kR2x̂

n+1
2 ,

(3.68)

where

[LHS] =
3

2δt
+

c

m
+ kB +

b0
m
kR2 and

[RHS] = −
(
c

m
+ kB

)
kB −

k

m
− b0
m

(kR1 + kR2kB) .
(3.69)

For a parameter exploration to design the controller and the ob-
server, the disturbance force zS(t) is applied from recorded FSI
simulations of the system. This results in the values summarized
in Tab. 3.1

3.4.2 Residual Calculation and Numerical Accuracy
The overall coupled partitioned FSCI problem and the fluid sub-
system were solved by an iterative approach. For the structural
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Table 3.1: Values selected for controller parameters.

component parameter value unit
controlled system m 0.0144 kg

c 0 Ns/m
k 2.400549 N/m
b0 −1.600366 N/m
e 0.01 1

state-feedback Q I —
r 1 —
kR1 −0.3028 1
kR2 −1.0027 s

state observer λB −2000 rad/s
kB 2000 rad/s

and the controller subsystem, a direct solver was used. For iter-
ative solution procedures, the residual calculation and the accu-
racy of the solution play an important role in order to gain cor-
rect results [30] p. 201. In the following, a closer look is taken to
the iterative solution of the interface equation system. For FSI,
[57] shows to achieve the desired accuracy for the coupled prob-
lem using an iterative approach, the numerical accuracy of the
solution of the subsystems has to be at least two orders of mag-
nitude higher than the desired numerical accuracy of the coupled
system. Thus, it makes sense to use the outcome of those inves-
tigations also for the FSCI problem.

Another crucial part is the calculation of the residual of the
interface equation system. Since we are dealing with Dirichlet-
Neumann coupling, it is obvious to calculate the residual vector
Ry from the interface displacements, which correspond to the
mesh displacements yF of the fluid domain. This means

kRy = kyF − k−1yF. (3.70)

The convergence at the interface is achieved if
∥∥∥kRy

∥∥∥
/√

Ndof,I ≤ εI. (3.71)

Where ||...|| denotes the L2 norm of the residual vector and εI is
the desired accuracy on the interface. The index k denotes the it-
eration counter. The residual is normalized by the square root of
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Table 3.2: Recommendation for the numerical accuracy of
solvers and interface iterations on basis of [57].

FSI FSCI [FS]CI F[SC]I
εF 10−(p+2) 10−(p+2) 10−(p+4) 10−(p+4)

εS 10−(p+2) 10−(p+2) 10−(p+4) 10−(p+4)

εinner
I 10−p 10−p 10−(p+2) 10−(p+2)

εouter
I −− −− 10−p 10−p

the number of degrees of freedom on the interface Ndof,I [57]. For
the results in the following simulations, the numerical accuracy
criteria can be found in Tab. 3.2. In this table, the proportions of
values for the stopping criteria of the coupled simulations for the
different variants of partitioned simulation patterns are listed.
At first the overall desired numerical accuracy, which finally is
to be achieved for the overall coupled simulation was selected in
this case to be p = 7, resulting in a value of εI = 10−7 for the in-
terface iterations. Afterwards the values of εF for the fluid solver
and εS for the structural solver as well as for the inner interface
iteration loop εinner

I and the outer interface iteration loop εouter
I ,

were adopted according to the criteria described above.

3.4.3 Presentation and Interpretation of the
Results

The simulations were conducted for 15 seconds and the measured
output, i.e. the tip displacement (point E) in y-direction vS of the
elastic flag, has been plotted. The result for a pure FSI and a
FSCI simulation with no nesting for a scaling factor γ = 102 and
γ = 104 can be seen in Figs. 3.11 and 3.13. Additionally the
results for the controlled system can be seen in an amplified ver-
sion for γ = 102 in Fig. 3.12. One can see that the controller
applied to the root point R of the flag can reduce the magnitude
of the tip displacement at point E in the order of magnitude of
almost 102. The vertical axes in Figs. 3.11 and 3.12 have a dif-
ferent scaling, but both figures show the same results for FSCI
with LQR. Furthermore, the remaining oscillation in Fig. 3.12 is
more regular than the one measured from the pure FSI simula-
tion. Although the parameter setting is chosen to be optimal for
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Figure 3.11: Displacement component vS at point E for FSI
and FSCI with LQR (γ = 102).
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Figure 3.12: Displacement component vS at point E for FSCI
with LQR (γ = 102) (Zoomed view).
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Figure 3.13: Displacement component vS at point E for FSI
and FSCI with LQR (γ = 104).
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Figure 3.14: Displacement component vS at point E for FSI
and FSCI with LQR (γ = 10−3).
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the γ = 102, the controller still works for the value of γ = 104 be-
cause the structure behaves more inertial and is stiffer. Regard-
ing the eigenvalues of the coupled system, this means that the
structure’s eigenfrequencies are dominating the overall behavior.
It also follows that the number of interface iterations decreases.
The added mass effect comes more into play by reducing the fac-
tor of γ, and the structural system becomes softer. This means
the eigenfrequencies of the fluid flow start to dominate the sys-
tem behavior, and the nonlinear behavior of the coupled system
becomes more influential. It follows that a new controller design
has to be conducted. For a value of γ ≤ 10−2, the structure is too
soft and light to control its behavior by a force applied at its root-
point R. Fig. 3.14 shows the results for such an example. Fig.
3.15 plots the overall number of interface iterations per time step
for the different schemes applied to the numerical test example
for the factor γ = 102 for the different coupling variants. For ex-
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Figure 3.15: Total number of iterations per time step (γ =
102).

ample, in the case of F[SC]I, we count the number of interface
iterations for the [SC] loop (inner loop) first and add the num-
ber of interface iterations between [SC] and F (outer loop). The
FSCI scheme needs a similar number of iterations as pure FSI.
Tab. 3.2 shows one reason for this. For the FSCI problem, the
number of coupling loops is the same as for the pure FSI prob-
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lem, and thus also the total number of interface iterations is al-
most equal. Looking closer at the number of interface iterations
one can see, that the FSCI even needs fewer iterations at specific
points than pure FSI. This is because the controller stabilizes the
system leading to a more homogeneous oscillation with a smaller
amplitude. Using the F[SC]I scheme increases the number of
iterations almost by a factor of three and using the [FS]CI by al-
most a factor of four. According to Tab. 3.2 an additional loop
and also a higher numerical accuracy in the solvers of the sub-
systems is needed, and the number of overall interface iterations
increases. The reason that the F[SC]I requires fewer interface
iterations than the [FS]CI version is the stabilizing behavior of
the controller, which positively influences the outer FS loop. Con-
versely, the contrary effect occurs for the [FS]CI scheme.

3.5 Chapter Summary

This chapter discusses the algorithmic treatment and solution
approaches to FSCI with iterative GS schemes. The aim was to
conduct a fully coupled co-simulation of the FSCI problem, with
the controller actively influencing the dynamics of the system.

The simplified model problem utilized in the first step is rep-
resentative of the convergence behavior and stability for struc-
tural force control. Thus, all three developed variants of the
Gauss-Seidel scheme prove unconditional stability for the simpli-
fied model problem in case of physically relevant parameters and
stable controller settings. Furthermore, an optimal relaxation
factor β∗ could be determined for the simplified model problem.
Hence, the simplified model problem is qualitatively capable of
constituting the basic properties of the FSCI problem concern-
ing stability and convergence. For the non-linear multi-degree
of freedom problem, this means one can conclude from the sim-
plified model problem that it should be possible to reduce the
displacement significantly by applying a controller with an ap-
propriate set of controller parameters. The schemes developed
are supposed to converge in the multi-degree of freedom case, be-
cause Aitken acceleration is utilized instead of a constant relax-
ation factor. However, the simplified model problem only covers
the main effects of the FSCI problem (e.g., the added mass ef-
fect), hence no detailed and quantitative conclusions concerning
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convergence patterns and stability issues can be drawn for the
multi-degree of freedom problem.

Applying the variants of the GS scheme, developed by the sim-
plified model problem, to a non-linear multi-degree of freedom
problem in a second step showed promising results. A significant
reduction of the flow-induced vibrations was possible. Simula-
tions for different material parameter settings of the CSD sub-
system also have shown the limits of the chosen controller type
and design. Furthermore, they show the limits for system’s con-
trollability by applying a force at the flag’s root point. Investigat-
ing the total number of iterations per time step illustrates that
the FSCI scheme with no nesting is the best variant for control-
ling the selected multi-degree of freedom problem presented in
this chapter.
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Chapter 4

The Numerical Wind
Tunnel for Civil
Engineering Structures

This Chapter deals with the numerical wind tunnel and its par-
ticular application to civil engineering structures. In contrast to
airplanes and cars, which are streamlined bodies, civil engineer-
ing structures are bluff bodies in most cases. When dealing with
civil engineering structures in natural wind conditions, one has
to keep an eye on the following points:

a) The turbulent characteristics of natural wind.

b) The large, spatial expansion of the object, i.e., building.

c) The possible interaction of the object with the fluid flow sur-
rounding it.

Those three points mentioned above can pose problems for phys-
ical wind tunnels. This is especially the case for issues b) and c).
For b) it is often not possible to fulfill all geometrical prerequi-
sites of the building in an appropriate way, which is, for example,
the case when dealing with thin and lightweight structures like
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membranes. To be able to investigate c), a fully elastic model is
necessary, which needs exact modeling of the mass and stiffness
distribution. This is possible with a numerical model but hardly
or only with a lot of effort possible by a miniaturized physical
model of the building. Additionally, only a limited number of mea-
surement points can be set in the physical wind tunnel, which
cannot be placed on arbitrary positions, because they might influ-
ence the fluid flow’s behavior. The main advantage of the physical
wind tunnel is the possibility of conducting many measurements
in a short period, once the model is built and calibrated.

In the past years, the main bottleneck for the numerical wind
tunnel has been the computation time. As shown in Section 2.6,
this bottleneck could be reduced by the software applied in this
thesis work. When looking at the increase in computation power
in the past years, the problem of computation time is going to
reduce even more in the next years. This is why the numerical
wind tunnel can offer a serious alternative to the physical wind
tunnel for the problems shown later in this chapter.

Although this work concentrates on the numerical wind tun-
nel, it has to be mentioned, that for a holistic approach in the
design of civil engineering structures in the natural wind, paral-
lel investigations with the strengths of both, the numerical and
the physical wind tunnel should be taken into account.

4.1 Characteristic Dimensionless Numbers
and Coefficients

This Section shortly introduces characteristic dimensionless
numbers and coefficients which can be applied to characterize the
behavior of the fluid flow or compare its action on an object. The
dimensionless numbers of importance are the Reynolds number

Re =
b · uF

νF
(4.1)

and the Strouhal number

St =
b · f
uF

. (4.2)

Herein b is a characteristic length, for example the diameter of
a cylinder, uF is the velocity component in streamwise direction
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in the undisturbed flow, f is the vortex shedding frequency and
νF is the kinematic viscosity of the fluid flow. By the Re num-
ber, it can be evaluated if the fluid flow shows turbulent or lam-
inar characteristics. In the case of wind on the civil engineering
structures treated in this work, typical values are in the region of
Re = 5e7, which means the fluid flow is in the transcritical regime
and shows highly turbulent characteristics. The St number is de-
fined for several geometrical entities, e.g., cylinders or rectangles,
and serves to investigate the vortex shedding frequency. In some
cases, it depends on the Re number.

Another characteristic coefficient relevant for civil engineer-
ing structures is the drag coefficient Cd. It is defined as

Cd =
2tx

ρFu2
FA

. (4.3)

Herein tx is the component of the traction vector in streamwise
direction, ρF is the fluid density, uF is the component of the veloc-
ity vector in streamwise direction in the undisturbed flow and A
is a reference area. Typically A is chosen as the front face of the
object the fluid flow is acting on. The drag coefficient depends on
the height of z in which uF is measured. Additionally, it can also
depend on the Re for specific geometries.

The dimensionless number describing the vulnerability of a
structure to vibrations is the Scruton number Sc. It describes
the ratio of the structural damping, the structural mass and the
mass of the air and is defined as

Sc =
2Λmi,e

ρF b2
. (4.4)

Herein Λ is the structural damping described by the logarithmic
decrement, mi,e is the equivalent structural mass per length, ρF
is the density of air and b is a characteristic length.

4.2 Numerical Generation of Natural Wind

To be able to simulate the wind loads on structures the wind ef-
fects of the atmospheric boundary layer (ABL) near the ground
have to be modeled. According to [49], this part of the atmosphere
is referred to as surface layer, is characterized by constant shear
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stress distribution in the vertical direction, and extends to ap-
proximately 100 m above ground level. In the boundary layer,
the shear stresses resulting from the friction of the earth and
the temperature gradient dominate the wind effects. The latter
are small compared to the friction forces at wind speeds, which
are of interest for wind loads on structures and thus can be ne-
glected. The terrain can be characterized by the roughness height
z0, which strongly influences the turbulent conditions near the
structure and the structural wind loads. For example [2] Tab.
NA.B.1 defines different terrain categories (I to IV) from which
the value of z0 can be specified. Since the temperature gradient
can be neglected, from a methodological point of view, the surface
layer can be meant to be neutrally stable. Applying the additional
assumption of a homogeneous surface roughness in the upstream
terrain, the variation of the mean velocity component uF can be
approximated over the height z by the power law

uF(z) = γ · uF(zref)
( z

zref

)α
. (4.5)

The values for γ, uF(zref) and α can be found for example in [2]
Fig. NA.A.1 and Tab. NA.B.1. If no design codes exist for the
country the building is located in, measurements from weather
stations nearby can be used to determine uF(zref). An alternative
for determining a value for α is a curve fit depending on z0 for a
logarithmic velocity profile, which is an alternative to the power-
law in Eq. (4.5).

The mean velocity profile in Fig. 4.9 describes the component
of the velocity in streamwise direction varying over hours or days.
This variation results from the changes in the weather. In or-
der to resolve the smaller time scales, i.e., minutes and seconds,
time-resolved fluctuations are superimposed on the mean veloc-
ity profile. The velocity fluctuations u′F are defined as

u′F(z, t) = uF(z, t)− uF(z). (4.6)

In order to describe the properties of natural wind and especially
of the fluctuating part, several characteristic statistic values can
be computed for each component of uF, e.g. in x-direction (refer
also to APPENDIX B). The first value is the turbulence intensity

Iu =
σu
uF
. (4.7)
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Table 4.1: Basic input parameters for [5].

wind field dimensions `x, `y, `z 70000 m, 600 m, 600 m
grid points ni = 2ri 4096, 256, 256
grid width ri 12 m, 8 m, 8 m
spectra Kaimal
reference height zref *)

Sect. 4.5.1 and 4.6.1roughness length z0 **)
mean velocity u at zref ***)

The second one is the characteristic length scale or turbulence
length

Lxu = uF

∫ τ

0

Ruudτ ∀Ruu > 0, (4.8)

where Ruu is the auto correlation, described in Sect. B.6. Addi-
tionally, the energy spectrum Suu(f) can be investigated.

Those statistic indices can be computed for a time series
gained from measurements or numerical simulations. Further-
more, [2] provides standard values for Iu and Lxu in Tab. NA.B.4
for the different terrain categories.

The fluctuating inlet components are generated by a synthetic
wind generator, which is presented in detail in [4] p. 8 -17 and is
based on [64] and [65]. It is accessible on GitHub [5]. The most
important input parameters for the inlet generator are:

*) zref : The reference height has to be specified as a positive
real number and influences the turbulence length. It cor-
relates with the turbulence length, i.e., for a higher turbu-
lence length a larger value for the reference height has to be
specified. Not to be confused with zref from the exponential
profile.

**) z0: The value of the roughness length z0 influences the tur-
bulence intensity.

***) u(zref): The mean velocity component at zref in flow direction
is used for initializing the parameters for the fluctuating
component generation and is stored for the generation of
the mean wind profile.
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The fundamental sketch of the numerical wind tunnel, i.e.,
the CFD domain, with its dimensions, can be seen in Fig. 4.1. The

zy x

≈ H

H

≈ H
≈ 3H

≈ 4H
≈

2.
5H

walls outlet

bottom

inlet

top
u(z)

u′(z, t)

Figure 4.1: Dimensions ot the numerical wind tunnel.

fluctuations are superposed to the mean velocity profile, which is
applied at the inlet. The boundary conditions are set to slip on
the walls and top and no-slip on the bottom and the interface of
the obstacle, i.e., the structure. At the outlet, the pressure is set
to zero. The distances from the structure to the boundaries of
the CFD domain are necessary to avoid spurious effects from the
boundary conditions and retain the blockage ratio below 2%. The
finite element mesh of the CFD domain with a sum of approx.
10e6 tetrahedral and triangular elements can be seen in Fig. 4.2.
It is subdivided into three refinement regions, which gradually

increase the mesh size from the near field of the structure, where
the fluid flow has to be modeled very detailed, to the far-field.
The extension of box 2 to the inlet is necessary to minimize the
numerical dissipation of the turbulent profile applied to the inlet
until it reaches the location of the structure. Tab. 4.2 lists the
mean element sizes. The table can only give a rough overview
because an unstructured meshing procedure has been applied,
which means the element size might be locally smaller, but not
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Figure 4.2: Fluid mesh with three refinement regions.

Table 4.2: Element sizes for the numerical wind tunnel. With
box 1 in the near to box 3 in the far field.

Type Mean element size
FSI interface 0.25 m
Box 1 2.0 m
Box 2 4.0 m
Box 3 16.0 m

larger than the sizes listed here. The mesh refinement has been
investigated by convergence studies, which will be presented in
detail in section 4.4.

In order to check the correct modeling of the wind conditions
in the numerical wind tunnel, a simulation with an empty CFD
domain, i.e., without any obstacle inside, was conducted. Except
for omitting the obstacle, the mesh characteristics are the same,
and a physical time of Tphys = 600 s was simulated. The statistical
data mentioned in Eq. (4.7), (4.8) and (B.7) can be computed for
several points over the height z at position x = 0 and y = 0.
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4.3 Wind Effects on High-Rise Civil
Engineering Structures

This section discusses the significant effects of wind on high-rise,
civil engineering structures. This section focuses on the effects
which can occur, for example, for tower-like structures, chimneys,
or skyscrapers. This work does not deal with bridges. Conse-
quently, the wind effects, which are only valid for bridges, are
omitted. [1] Appendix N provides a short overview of wind effects
on bridges.

a) Buffeting: Buffeting oscillations are oscillations of the
structure in the streamwise direction. Those oscillations
can be amplified if the gust frequency matches one of the
eigenfrequencies of the structure.

b) Vortex induced vibrations: A fluid flow, which is flowing
around a bluff body, can cause periodic vortex shedding,
which results in periodic forces. Fig. 3.9 shows an example
for such periodic vortex shedding. These forces especially
take effect in the cross-flow direction. If the vortex shed-
ding frequency coincides with one of the eigenfrequencies of
the structure, resonance effects can occur. As mentioned in
section 4.1, the vortex shedding frequency can be described
by the St number. By rewriting Eq. (4.2) to

uF,crit =
bfi,⊥
St

, (4.9)

the critical velocity in streamwise direction can be com-
puted. Herein the frequency fi,⊥ is the eigenfrequency of
the ith eigenmode orthogonal to the flow direction. In most
cases the lowest eigenfrequency is the critical one. For cer-
tain types of structures, [1] offers simplified formulas to cal-
culate the displacements and forces from vortex induced vi-
brations. The amplitude of vortex induced vibrations can be
reduced by adding damping to the structure.

c) Galloping: This type of wind effects are self-inducing vibra-
tions, which can arise if a structure surrounded and influ-
enced by a fluid flow sets itself in motion. This results in ad-
ditional flow forces further exciting the structural motion.
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In the case of galloping very large amplitudes are possi-
ble, which cannot be reduced by adding structural damping.
Galloping starts if the critical galloping velocity

uF,CG =
2Sc

aG
f1,⊥b, (4.10)

is attained. The Sc is defined in Eq. (4.4), f1,⊥ is the first
eigenfrequency in perpendicular to the flow direction, b is a
characteristic length and aG is a stability value depending
on the geometry. Values for aG are suggested in [1] Tab. E.7.
According to [1] galloping will not occur if:

uF,CG > 1.25uF(zCG). (4.11)

Herein uF(zCG) is the mean wind speed at the height where
the galloping excitation forces are expected to occur. Ad-
ditionally, an interaction of galloping with vortex induced
vibrations is possible. This might be the case if

0.7 <
uF,CG

uF,crit
< 1.5. (4.12)

If Eq. (4.12) holds, additional investigations, e.g. numerical
simulations, are necessary.

4.4 Basic Convergence and Validation Study

Before carrying out simulations within turbulent wind conditions
in this section, the results of a basic convergence and a valida-
tion study for the types of geometries investigated later are pre-
sented. This convergence study is an extension of the conver-
gence studies carried out in [4], which utilized the implementa-
tion from [53], too. The geometries of interest are a cylinder and
a hexagon. Fig. 4.3 shows a convergence study for St and Cd.
Therefore, CFD simulations with the geometry of the structure
presented in section 4.6 with the mean velocity profile shown in
Fig. 4.9 b) for Tphys = 600 s and up to a number of 22e6 elements
were performed. The angle of attack of the flow on the hexagon
hereby varies over the height z. Consequently, the mesh with 8e6
elements is applied for simulations with the hexagon geometry
and the mesh with 10e6 elements for the cylindrical geometries.
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Figure 4.3: Convergence study for Cd and St.

For an additional validation, a similar simulation with the same
fluid domain setup, but with the mean velocity profile shown in
Fig. 4.9 a) was performed for the geometries presented in sec-
tions 4.5 and 4.6. The results of both simulations are compared
to well-known measurements on real structures and in physical
wind tunnels summarized by [83]. Fig. 4.4 and Fig. 4.5 show
the St number and Cd coefficient in dependence of the Re num-
ber for a cylinder. The results for the St number and the Cd of
the numerical simulation are within the variation range of the
measurements. Not for all of the results in Fig. 4.4 and Fig. 4.5
measured in the physical wind tunnel, the reference point, where
the velocity component uF in the undisturbed flow was measured,
is known. For the on-site measurements for built structures, it is
documented. Here the reference velocity had been measured at
the height of the obstacle. For consistency, this approach is fol-
lowed for the simulations in this work, too.
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Figure 4.4: Strouhal number comparison from [83] p. 73.
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Figure 4.5: Drag coefficient comparison from [83] p. 73.
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4.5 The Olympic Tower in Munich

This section deals with the wind-structure interaction of the
Olympic Tower in Munich (OT). The OT was built from 1965 -
1968 and has a height of 291 m. Besides its usage as a televi-
sion tower, it also serves as a viewing tower and accommodates a
rotating restaurant.

This investigation serves as an additional validation case for
the overall setup for the modeling of wind-structure interaction
for high-rise, tower-like structures. The OT has been chosen, be-
cause in the years 1975 to 1984, very detailed studies concerning
wind loads on the tower-like structures, mainly focused on the
OT, had been carried out. Those studies also contained a very
elaborate measurement campaign, including wind speeds and re-
action moments. The results have been published as parts of
”Beiträge zur Anwendung der Aeroelastik im Bauwesen” [106].
In the following, one of these measurements’ wind characteris-
tics are modeled by the numerical inlet generator presented in
section 4.2 and are applied as an inlet condition to the numerical
wind tunnel. In the first step, the simulated results are com-
pared to the characteristic, statistic values for the empty numer-
ical wind tunnel. A detailed finite element model of the OT was
placed in the numerical wind tunnel, and a fully coupled FSI sim-
ulation was performed in a second step. Finally, the results of the
FSI simulation are compared to the measurements from [86] and
[75], which were parts of [106].

4.5.1 Numerical Wind Generation for the Wind
Acting on the Olympic Tower in Munich

For the numerical wind generation the velocities from ”Messung
50” (M50) in [86] p. 71 ff. from 13.11.1972 were analyzed at a
height of z = 152 m and z = 220 m. This measurement was cho-
sen because it has a high mean wind speed, the amplitude of the
measured reaction moments is large and the measurement du-
ration with Tphys = 41.5 min. is long. A basic sketch of the OT
with its major dimensions, a height scale, and the position of the
measurement devices is depicted in Fig. 4.6. The major wind
direction in M50 is 253◦, the ten minute mean wind speed at a
height of z = 220 m is 24.2 m/s and the maximum gust speed is
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Figure 4.6: Fundamental sketch of the Olympic Tower in Mu-
nich with positions of the measurement devices.

94



4.5. The Olympic Tower in Munich

37 m/s. Fig. 4.7 shows a basic map of the area around the OT. The
position of the OT is marked by †. On basis of Fig. 4.7 the location

B 2R

Olympic

Olympic

Olympic Mountain

Olympic Tower
†

564 m

100 m

Hall

Stadium

Figure 4.7: Map of the area around the Olympic Tower in Mu-
nich.

of the OT can be classified as a suburban or urban area, i.e. sur-
face category III or IV according to [2] Tab. NA.B.1. This results
in z0 = 0.30 m for category III and z0 = 1.05 m for category IV.
Those values also serve as basis for the generation of the velocity
fluctuations with the numerical inlet generator. For the power
law describing the mean profile in Eq. (4.5) the exponent is to be
set to α = 0.22 for surface category III or to α = 0.30 for category
IV. The value for uF(zref) = uF(220 m) is set to 24.2 m/s. Different
variants for different values of α of a numerical wind have been
generated and investigated by simulations with an empty numer-
ical wind tunnel. The results of the mean velocity superposed by
the fluctuation components generated by the inlet generator for
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the empty numerical wind tunnel are depicted in Fig. 4.8. The

Figure 4.8: Numerical wind-tunnel with mean velocity and
superposed fluctuating components.

characteristic statistical values for the results of the best match-
ing results at coordinate x = y = 0.0 of the simulations with M50
are shown in Figs. 4.9, 4.10 and 4.11.

Fig. 4.9 a) depicts the mean velocity profile with α = 0.30 from
the simulation at 50 points over the height z and also the theoret-
ical profiles from [2] and the values from M50. The location of the
building can be assigned to the terrain category IV, urban area.
Fig. 4.10 shows the velocity spectra at the heights of z = 152 m
and z = 220 m for the simulation and M50 and also includes the
theoretical values from [49]. Fig. 4.11 a) depicts Iu for measure-
ments and simulation compared to the theoretical values from
[2]. In this case, the distribution of M50 over height is a mixture
between the theoretical values from terrain cat. III and cat. IV,
which is also mimicked by the numerically generated wind. Fi-
nally, Fig. 4.11 b) shows Lxu. This type of characteristic statistical
value is hard to be matched numerically. The theoretical values
from [2] are, by far, not matching the values from M50. Two ap-
proaches are possible to deal with this kind of problem. The first
one is to fit the values of Lu at certain points, as it is for example
done in [4] p. 39 over time. In this case this could be conducted at
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a) b)

Figure 4.9: Mean velocity profiles for a) OT and b) TkT. EC:
Theoretical values from [2]; M50: Measurements
from [86].

b)a)

Figure 4.10: Velocity spectra for a) z = 151 m and b) z = 220
m for the OT. M50: Measurements from [86];
Kaimal: Theoretical spectrum according to [49];
f1,3: Eigenfrequencies of the structure.
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z = 152 m and z = 220 m. If this is done, the distribution between

Figure 4.11: Turbulence intensity and turbulence length for
the wind numerically generated for Munich. EC:
Theoretical values from [2]; M50: Measurements
from [86].

those points over z strongly varies, which is not realistic. The
second possibility is shown in Fig. 4.11 b). Here the values are
fitted the best way possible over z, which gave better results than
only fitting points decidedly. The best results also shown in the
figures in this section were obtained by setting the parameters
for the roughness z0 and reference height zref to 0.5 m and 80 m.

4.5.2 CSD Model of the Olympic Tower in Munich
The structural model of the OT is modeled by the FEM with the
shell and beam elements presented in sections 2.1.2.1 and 2.1.2.2.
The basis of the finite element model is the construction plans
of the OT provided by the ”Stadtwerke München” (SWM), which
contain several horizontal and one vertical cut. Those have been
used to generate a three dimensional model. Additional informa-
tion about the stiffness and mass distribution of the OT can be
found in [85] p. 23 and [77] p. 28. The components and the main
dimensions are depicted in Fig. 4.6 and Fig. 4.12 a) and b). It
has to be distinguished between the main part made of concrete
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(z = 0.0 − 248 m) and the antenna (z = 248 − 290 m) made of
steel. The concrete class according to [85] p. 21 is B450. Refer-
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Figure 4.12: Olympic Tower in Munich materials and sections(
a) and b)

)
and finite element mesh c).
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ring to [17] p. 29, this corresponds to the concrete class C30/37 in
the current European design code [3] with a mean secant Young’s
modulus Ecm,S = 33e3 MPa and νS = 0.20. For the steel part
ES = 21e4 MPa and νS = 0.30 is assumed. The shaft of the tower
consists of an inner and an outer part, which basically can be
seen in Fig. 4.6. The inner part is decoupled from the outer part
to prevent stresses from the outer part’s temperature changes.
Thus the load-bearing behavior of the OT is fully dominated by
the outer part, and the inner part does not need to be modeled.
The thickness of the shaft varies from 1.3 m at z = 0.0 m to 0.6 m
at z = 145 m. The variation of thickness is modeled by gradually
varying the thickness of the shaft segments depicted in Fig. 4.12
a) in constant steps. The foundation does not need to be modeled
explicitly, but as a Dirichlet boundary condition at z = 0.0 m, ro-
tations and displacements can be fixed. Detailed investigations
concerning the foundation were performed in [77], which are also
included in Tab. 4.3, showing that modeling the stiffness of the
foundation does not have a significant effect in the case of the OT.

Another crucial part for modeling the correct dynamic behav-
ior of a structure is the mass distribution. The self weight is cal-
culated inherently in the finite element implementation. There-
fore, the density of the concrete is set to ρS = 2600 kg/m3 and the
density of steel is set to ρS = 7850 kg/m3. The additional dead load
from building equipment and appliance as well as from non-load
bearing walls is set to 4 kN/m2. Furthermore, 30% of the maximal
assumed traffic load with 6 kN/m2 is applied to the slabs between
z = 152 m and z = 167 m and 4 kN/m2 for the rest of the slabs.
A dynamic eigenvalue analysis was performed to check the as-
sumptions for stiffness and mass distribution. The finite element
mesh consisting of 2.2e5 triangular shell elements is depicted in
Fig. 4.12 c). A detailed view on the non-matching meshes at the
interface between CFD and CSD subsystem for the OT are addi-
tionally visualized in Fig. 4.34 b). The results for the first five
eigenfrequencies and their comparison with the measured and
calculated reference values is summarized in Tab. 4.3. Because
of the structure’s symmetry, the first and second, and the third
and fourth eigenfrequencies, are the same. In addition, Fig. 4.13
shows the first four eigenforms. The first two eigenforms

(
Fig.

4.13 a) and b)
)

are dominated by the concrete part and the third
and fourth eigenforms

(
Fig. 4.13 c) and d)

)
are dominated by the
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Table 4.3: Eigenfrequency comparison for the Olympic Tower
in Munich.

Type Eigenfrequencies in [Hz]
1 and 2 3 and 4 5

measured [75] p. 104 0.182 0.795 1.019
calculated clamped [77] p. 31 0.185 0.763 1.045
calculated elast. supported [77] p. 31 0.182 0.755 1.034
simulated 0.186 0.793 1.017

steel part. The structural damping is modeled by the Rayleigh co-

y, vS

z, wS

a) b) c) d)x, uS

z, wS

y, vS

z, wS

x, uS

z, wS

Figure 4.13: Dynamic eigenforms of the Olympic Tower in Mu-
nich (a) first to d) fourth eigenform).

efficients (Eq.
(
2.12)

)
. The values for the logarithmic decrement,

the structural damping and the Rayleigh coefficients are summa-
rized in Tab. 4.4. The values for the log. decrement have been
suggested by [77], p. 34. The structure is lightly damped, and the
eigenfrequencies computed by the dynamic eigenvalue analysis
coincide with the damped eigenfrequencies. This coincidence has
also been cross-checked by a numerical simulation, whereby the
tower is deflected by a unit displacement of one meter applied on
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Table 4.4: Log. decrement, damping ratio and Rayleigh coeffi-
cients for the OT.

Part Λ D αR βR

concrete 0.06 0.0095 0.0109 0.0084
steel 0.0025 0.0040 0.0188 0.0084

the slab at z = 192 m letting the tower vibrate freely for several
periods. The log. decrement and the first eigenfrequency can be
measured. The values coincide with the proposed log. decrement
and the result from the dynamic eigenvalue analysis.

4.5.3 FSI Simulations of the Olympic Tower in
Munich

The simulation in the numerical wind tunnel is performed for a
physical time Tphys = 41.5 minutes. with a time step of δt = 0.02
s. A time series of the moments at the height z = 94 m is written
as an output in order to compare them with the measured values
from M50. Fig. 4.14 and Fig. 4.15 show the longitudinal moment
My and the lateral moment Mx for the simulation and M50. For
more detailed investigations, it is of advantage to have a look at
the frequency domain. A look at the frequency domain can be
achieved by the Power Spectral Density (PSD) function, which
is depicted for My in Fig. 4.16 and for Mx in Fig. 4.17 for the
simulation and M50. The plots clearly show the first and second
eigenfrequency. For the first resonance frequency, the simulation
matches the measurements. In the higher frequency range, the
spectrum of the simulation decreases a bit faster than the mea-
surements, but also, the difference in the second resonance fre-
quency is still acceptable. The first two eigenfrequencies domi-
nate the interaction phenomenon. Thus the simulation should be
able to map the behavior of the coupled problem accurate enough.
It has to be mentioned that the data of M50 had to be digitized
from the original publication. The result from this digitization
is a non-uniform step size between the data points, which also
influences the PSD’s accuracy. Further investigations can be
carried out by comparing the results of the simulation and mea-
surements statistically. In the first step, the data for My from the
simulation can be compared to the summary of measured values
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Figure 4.14: Longitudinal moment My of the simulation and
M50.
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Figure 4.15: Lateral moment Mx of the simulation and M50.
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Figure 4.16: PSD longitudinal moment My. The dotted, verti-
cal lines represent f1,f2 and f3,f4.
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Figure 4.17: PSD lateral moment Mx. The dotted, vertical
lines represent f1,f2 and f3,f4.
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shown in the figures in [75] p. 105 and p. 106, which are included
in this work as Fig. 4.18 for the mean value and Fig. 4.19 for the
max value. Both figures also contain a linear regression line, the
standard deviation σ, and the 95% fractile. The mean value of

Figure 4.18: Regression of the mean, measured, longitudinal
moment M = My according to [75] p. 105. Mea-
sured values ◦ and simulated value N.

the moments of the simulations in Fig. 4.18, with the wind prop-
erties from M50, matches perfectly the regression curve. The val-
ues for the maximal moment in Fig. 4.19 are just above the line
for 95% fractile, which is on the safe side.

Another question is, how much physical time Tphys has to be
simulated in order to get statistically stationary results. The
common consensus is, based on the energy spectrum of Van Der
Hoven [99], to set Tphys = 600 s. Those ten minutes capture
the micro meteorological effects, while the macro meteorologi-
cal effects are captured by the mean velocity profile. In the
case of the OT, simulated and measured data is available for
Tphys = 41.5 minutes. Thus it is possible to inspect how the rel-
ative error between measurements and simulation develops over
time. Fig. 4.20 compares the values for median, Root-Mean-
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Figure 4.19: Regression of the maximal, measured, longitudi-
nal moment maxM = My,max according to [75] p.
106. Measured values • and simulated value N.

Square (RMS) and min/max amplitude for Mx and My. As ref-
erence data for the relative error calculation serve the statistical
values calculated for the fully measured time of M50. Those are
compared to the statistical quantities from the simulation after
Tphys = {300; 600; 900; 1200; 1500; 1800; 2100; 2400} s.

The relative errors for all statistical quantities, except for M̃x

are 20% or below after 600 s except for the value of Mx,max. The
value of M̃x is slightly oscillating over time, but remains below
20%. The lateral moment Mx is oscillating around zero, which
can also be seen in Fig. 4.15. Whereby the values of the mea-
surement show a slight shift, and positive and negative values
are not distributed fully symmetric over time, as it is the case
with the simulated values. The oscillation around zero leads to
calculating the relative error with values close to zero, resulting
in oscillations for the error’s median value. Reasons for the slight
shift in the measured values can be imperfections of the tower
or deformations because of temperature, which can be significant
according to several investigations made in the context of [106].
These effects were not taken into account within the numerical
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simulations. Fig. 4.21 shows the difference between median and
mean value, where the mean and median value of the absolute er-
ror of the lateral moment Mx are compared over time. Because of
the shift in the measured values and also some outliers in those
values, the median value and not the mean value was utilized for
the investigations made in this thesis work. According to [52] p.
77, 78 the median value behaves more robust against outliers and
also more suitable if the values’ distribution is not symmetric, as
it is the case here.

All in all error between simulated and measured values of the
statistical quantities investigated here, shows a decreasing ten-
dency with increasing simulation time. Concerning the max/min
values, the error depends on when the max or min value of rele-
vance occurs in the dynamical process. Generally, it can be con-
cluded a longer simulated physical time results in a smaller rela-
tive error. If one opposes the requirements for computation time
and statistical accuracy, a value of the Tphys = 600 s, offers the
best compromise between them.

From the investigations carried out for the OT, it can be con-
cluded that the generated wind and the numerical models set up
can be applied to simulate the behavior of a tower-like structure
in the natural wind within a reasonable amount of accuracy.

4.5.4 Acknowledgments
The detailed modeling of the OT would not have been possible
without the help of Ms. Krikorian Maral from SWM, who pro-
vided the construction plans of the OT. Herewith her support is
gratefully acknowledged.

4.6 The thyssenkrupp Elevator Test Tower in
Rottweil

This section combines the algorithmic framework developed in
CHAPTER 3 and the validation studies investigated in section
4.5 and applies them to the elevator test tower built by the
thyssenkrupp elevator AG in Rottweil (Fig. 4.22).

The thyssenkrupp elevator test tower (TkT) has been de-
signed by Prof. Werner Sobek. It was built by Ed. Züblin AG from
2014 - 2017 and serves as a testing environment for express and
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high-speed elevators. It mainly consists of a concrete tube con-
taining several shafts for elevator testing and a hexagonal PTFE
glass fiber membrane facade, which is mounted on a construction
made of steel tubes. The transparency of the membrane changes
over the height of the tower. The TkT has an overall height of
246 m. With a height of 231 m it also offers the highest viewing
platform in Germany. Besides its architectural features, the TkT
is currently the tallest building in the world, which can actively
be stimulated to oscillate. The oscillations are initiated by a hy-
brid mass damper system (HMD) mounted at a height of 190 m
in the form of a pendulum. Additionally, the HMD is used, in its
passive mode, to reduce the structure’s wind-induced vibrations,
which provides a controlled testing environment for the elevators.

In this section the behavior of the TkT in natural wind condi-
tions and its combination with the HMD is investigated.

4.6.1 Wind Conditions for the thyssenkrupp
Elevator Test Tower

In contrast to the OT, no firm measurements of the wind con-
ditions are available for the TkT. A different approach is neces-
sary to find reasonable values for the natural wind, especially the
mean velocity and the major wind direction. Three measurement
points in the site’s proximity have been compiled, to gain the
macro meteorological data. Two of them are official measurement
stations of the ”Deutscher Wetterdienst” (DWD), in Freudenstadt
and Klippeneck. The raw data of the DWD’s measurement sta-
tions are accessible from [32]. The DWD stations provide mea-
surements for the hourly mean values for wind speed, gust speed,
and wind direction. The third one is the privately operated mea-
surement station of the ”Drachenfliegerverein Bösingen” (dfvb).
In contrast to the DWD stations, the dfvb station provides values
for the same data for a measurement interval of ten seconds. All
of the measurement stations measure their values at zref = 10
m. In addition to the measured data, simulated data provided
by [69] has been taken into account. Unfortunately, no detailed
information about the simulation concept is available. The simu-
lated wind data also provides mean wind speed, gust speed, and
wind direction at zref = 10 m as hourly mean values. The lo-
cation of the tower and the measurement stations is marked on
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Figure 4.22: The thyssenkrupp elevator test tower in Rottweil
(Pictures: Winterstein).

the conceptual map in Fig. 4.23 by †. The airfield of Bösingen
is located about six kilometers North-West of Rottweil and the
DWD station of the Klippeneck approximately ten kilometers in
the South-East. The DWD station of Freudenstadt is not on the
map, because it is located approximately 25 km in the North-West
of Rottweil. Concerning the macro meteorological aspects in this
region over a longer period, this combination should lead to good
results. This is also supported by the fact, that according to [2]
Fig. NA.A.1, the building, and all the measurement stations are
located in wind zone one. The raw wind data values provided by
the measurement stations have been evaluated for a period be-
tween 2012 and 2018 because for this period, the data for all data
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Figure 4.23: Map of the region around Rottweil. The impor-
tant locations are marked green.

sets are fully available. The results are plotted as the wind rose
plots in Fig. 4.24. The wind roses indicate the percentage occur-
rence of the daily mean velocity in each direction. The resolution
of the data available for the station in Bösingen is finer than for
the other stations, because of the shorter measurement interval.
The major wind direction is South-West, i.e., approximately 230◦.
Having a look at Fig. 4.23 this means the wind blows most of the
time across the town of Rottweil. The highest wind speeds are
occurring in this direction, too. Taking into account the rest of
the surrounding terrain this means terrain category III ([2] Tab.
NA.B.1) can be assumed. This results in α = 0.22 for the power
law in Eq. (4.5). Before being able to generate the mean profile
from the power law, a value for uF(zref) has to be defined. Here
the maximum measured mean value from 2012 - 2018 (Fig. 4.24)
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is uF(10 m) = 20 m/s, which almost matches the proposed value
from [2] Fig. NA.A.1, being 22.5 m/s for wind zone one. The dif-
ference can be explained, because the value proposed in [2] must
hold for a larger region in Germany, which is covered by wind
zone one. Since a more detailed investigation has been made in
this case, in the following uF(10 m) = 20m/s is defined as mean
norm velocity unorm. The terrain roughness near the structure in
the main wind direction is similar to the one near the OT (refer to
Fig. 4.7) and thus the same fluctuations generated by the numer-
ical inlet generator as for the OT can be superposed to the mean
profile proposed in this subsection. This turbulent fluctuations
were generated by setting the input parameters for the inlet gen-
erator to 0.5 m for the roughness z0 and 80 m for the reference
height zref .

In a first step a simulation for Tphys = 600 s with δt = 0.02 s for
an empty numerical wind tunnel was performed. The results at
x = y = 0.0 m can be seen in Fig. 4.9 b) for the mean velocity pro-
file in Fig. 4.25 for the turbulence intensity and the turbulence
length in streamwise direction. Fig. 4.26 additionally shows the
velocity spectra at z = 190 m and z = 246 m, including also the
structure’s first two eigenfrequencies as vertical lines. The mod-

Figure 4.25: Turbulence intensity and turbulence length for
the wind numerically generated for Rottweil. EC:
Theoretical values from [2]
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b)a)

Figure 4.26: Velocity spectra for a) z = 190 m and b) z = 246
m for the TkT. Kaimal: Theoretical spectrum
according to [49]; f1,2: Eigenfrequencies of the
structure.

eled mean velocity and turbulence intensity fit to the values pro-
posed by [2], but again the difference to the values from [2] in
the turbulence length can be observed. As it could be observed
in the validation studies in Section 4.5, this difference does not
have much impact on the results.

The numerical wind generated in this subsection can be ap-
plied in the following to the inlet of the numerical wind tunnel.

4.6.2 CSD Model of the thyssenkrupp Elevator Test
Tower

The planning of the TkT has had followed the building informa-
tion modeling (BIM) concept. BIM means a 3D model had been
generated, including all information about the building. From
this BIM model, the CSD finite element model was derived.

A conceptual sketch of the TkT with its major dimensions and
labelings of its most important parts is depicted in Fig. 4.27 a).
A more detailed view on the materials and cross sections can be
seen in Fig. 4.28. Fig. 4.28 a) shows the membrane made from
PTFE glass fiber fabrics and which is mounted on a supporting
construction made from steel tubes depicted in Fig. 4.28 b). As
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Figure 4.28: TkT cross-sections and materials.
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shown later, the membrane and the steel structure hardly im-
pact the overall dynamic behavior of the tower. However, they
have to be modeled, because they mainly influence the shape of
the building. The geometry of the building is important for its
interaction with the fluid flow surrounding it. The exact built-
in parts of the components of the fabric are confidential. It fol-
lows that typical values for an isotropic glass fiber fabric were
applied. Applying those common values is accurate enough be-
cause no detailed investigations for the membrane are carried out
in this work. The facade’s load-bearing behavior is dominated by
the steel structure. The material parameters for the membrane
are set to ES = 3000 MPa, νS = 0.22 and ρS = 700 kg/m3. The
isotropic prestress is set to 3 kN/m. It has shown to be of advan-
tage to model the membrane by the shell finite elements (2.1.2.1)
and not by membrane elements. The shell elements are more
robust to wrinkling problems occurring during the FSI simula-
tions at the connection between membrane and beam elements
(2.1.2.2), because of the bending part in the finite element formu-
lation of the shell elements. The small beams connecting the steel
structure with the concrete part are also modeled by beam finite
elements. The connections between the steel and concrete struc-
ture are modeled fully clamped, i.e., without hinges. Since the
overall dynamic behavior of the tower should be modeled and no
details of the steel structure, this assumption is accurate enough.
As shown later, it also does not have much impact on the global
dynamic behavior of the structure.

In Fig. 4.28 c), e) and f) the concrete parts of the tower with
their concrete classes according to [3] are depicted. The tower
consists of different concrete classes. The whole concrete part is
also modeled by the shell finite elements presented in 2.1.2.1. Fi-
nally Fig. 4.28 d) shows the complete structural model, which
was meshed by 231e3 shell and 4e3 beam finite elements. The
overall finite element mesh is depicted in Fig. 4.27 b). The tower
also extends to z = −29.5 m below ground level. This can be as-
sumed as a fully clamped support, and thus the corresponding
Dirichlet condition fixing displacement and rotation is applied to
the bottom lines of the model at z = ±0.0 m. By setting the secant
Young’s moduli Ecm,S defined in [3], the correct stiffness distribu-
tion of the structure can be modeled.

To model the correct mass distribution of the system, be-
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sides the self-weight of the load-bearing parts, the additional
load from, e.g., steel constructions for the elevators, loading from
building equipment and appliance, screed, and floor coverings
have to be taken into account. Those are considered by a value
of 4 kN/m2 on all of the ceilings. Additionally, the traffic load in
the building might also influence the eigenvalues of the struc-
ture. This type of loading is also considered by a value of 4 kN/m2.
This type of loading might vary in its magnitude, which results
in only considering 30% of this type of loading in the calculations.
Finally, the additional mass for the vibration reduction system
has to be taken into account. It is placed at a height of 190 m and
has a mass of 240 t.

The assumed mass and stiffness distribution is checked by dy-
namic eigenvalue analysis. The results are compared in Tab. 4.5
to measurements conducted by the GERB Schwingungsisolierun-
gen GmbH & Co. KG, published in [68] p. 90. Three different

Table 4.5: Eigenfrequency comparison for the thyssenkrupp
test tower.

Type Eigenfrequencies in [Hz]
1 2 3 4

w/o membrane and damper mass 0.231 0.250 1.137 1.208
w/o membrane w/- damper mass 0.233 0.252 1.137 1.208
w/- membrane and damper mass 0.225 0.242 1.129 1.153
measured ([68] p. 90) 0.225 0.245 – –

variants were simulated. It can be observed that the damper
mass and the facade construction do only have very little influ-
ence on the first four eigenfrequencies of the tower. The first four
eigenforms, depicted in Fig. 4.29, are also fully dominated by the
concrete part. In contrast to the OT, the TkT is not fully sym-
metric, due to its internal construction, which can be seen in Fig.
4.28 e) . To illustrate this, two cuts were set at the heights z = 80
m and z = 190 m. Those are depicted in Fig. 4.30. For those
cross-sections, the center of gravity S and the principal axes were
calculated. The principal axes differ with an angle of 10.3◦ from
the x and y-axis, which is oriented in East-West, i.e., North-South
direction. The slight difference in the internal structure over the
height of the tower, i.e., red and black lines in Fig. 4.30, does
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not have an effect on the angle between the coordinate systems.
The eigenforms act in the direction of the principal axes ξ and η.
When looking at the major wind directions, this leads to an unfa-
vorable combination for vortex-induced lateral oscillations. Thus
in the following, the simulations are performed w.r.t. the princi-
pal axes, i.e., the streamwise direction, is defined in ξ direction.

Before being able to carry out further numerical investiga-
tions, the structural damping has to be determined. The damp-
ing ratio with fixed damper has been measured in [68] p. 91 in
North-South direction between 1.0% and 1.3% and in East-West
direction between 1.2% and 1.3%. In the finite element model,
the damping is modeled by the Rayleigh damping approach. The
coefficients have been calculated for D = 1.0% for both principal
directions with αR = 0.0179 and βR = 8.0e−3. The verification for
the first two eigenfrequencies and the damping in both principal
directions was performed by applying a unit displacement of one
meter to the slab at z = 231 m. From several oscillation periods
of the free oscillation of the structure, the eigenfrequencies and
the logarithmic decrement can be measured. The results coincide
with the values in Tab. 4.5 for the eigenfrequencies and with the
values from [68] p. 91 for the damping.

4.6.3 Wind Effects on the thyssenkrupp Elevator
Test Tower

Resulting from its geometry, besides buffeting effects, the TkT
is sensitive to vortex-induced vibrations. The St number for the
cylindrical upper part, for Re = 5e7, which is valid here, is 0.17
(refer to Fig. 4.4). The potential critical velocity for the first
eigenfrequency f1 = 0.225 Hz and b = 20.25 m can be determined
by Eq. (4.9) as uF,crit = 26.80m/s. If this velocity is reached at a
height between 220 m and 231 m; the tower is subjected to vortex-
induced vibrations. For the hexagonal part, the St number varies
according to [88] p. 323 with the angle of attack, which varies
in this case depending on the height above ground level z. Thus
more detailed numerical investigations have to be carried out. In
order to determine uF,crit for the hexagonal part, several simu-
lations for Tphys = 600 s with δt = 0.02 s were performed with
the mean velocity profile shown in Fig. 4.9 b) without super-
posed fluctuations, varying the velocity at z = 190 m such that
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values for St = {0.13, 0.14, 0.15, 0.16, 0.18, 0.19} are obtained. The
lateral displacements vS over time at z = 231 m are shown in Fig.
4.31. To be able to find uF,crit the signals are compared in the
frequency domain by calculating the PSD. From Fig. 4.32 it can
be observed that the highest peak occurs for St = 0.13, i.e. for
uF(10 m) = 43.96m/s = uF,crit. Both values for uF,crit, i.e., for
the cylindrical and the hexagonal part, are likely to occur. Hence
further investigations are carried out in the following with both
values.

Before starting with extensive numerical studies a rough esti-
mate for the maximal amplitude of the vortex induced vibrations
can be obtained by Eq. (E7) from [1]. Inserting the values for the
tower, it results in vmax = 0.68 m at z = 231 m.

The critical wind speed for galloping, according to Eq. (4.10)
is 248.25 m/s. This wind speed is too high for the prevailing wind
conditions at the building site, and thus galloping is not neces-
sary to be taken further into account.

4.6.4 FSI Simulations thyssenkrupp Elevator Test
Tower

Several FSI simulations with smooth inlet profile and turbulent
inlet profile with different velocities and varying structural con-
figurations for Tphys = 600 s with δt = 0.02 s were performed in
order to find the most unfavorable combination. The basis have
been the preliminary studies carried out in 4.6.3. Before having
a closer look at the results of those simulations, an additional
remark concerning the modeling of the FSI interface, i.e., the in-
terface between CFD and CSD subsystem, is necessary. The CFD
domain needs a closed volume to produce correct results. Thus for
the fluid mesh, the thickness of the membrane was modeled ex-
plicitly. This was not necessary over the full height, but only in
the upper part of the tower. This assumption is applied because
recirculation effects relevant to the FSI are likely to occur mainly
in this area. The exact modeling can be seen in Fig. 4.33 and
the non matching meshes of CFD and CSD domain in Fig. 4.34
a). Mapping the fluid forces from both sides from the CFD mesh
to the CSD mesh in the upper part, the reaction forces from the
CFD mesh of both sides (”interface FSI membrane outside and
inside” in Fig. 4.33) are summed up before mapping them to the
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Figure 4.31: Structural displacement component vS at top-
level for different St numbers.
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Figure 4.32: PSD function for structural displacement compo-
nent vS at top-level for different St numbers.
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interface FSI membrane edge general FSI interface
interface FSI membrane outside
interface FSI membrane inside

interface no FSI

Figure 4.33: Detail of the fluid mesh for modeling the mem-
brane at the top of the tower.

CSD mesh. The displacements from the CSD domain are mapped
in the standard way, i.e. without summation. The reaction forces
from the upper edge (colored orange in Fig. 4.33) are ignored
and only displacements are mapped from the CSD to the CFD
domain. In the region of the ”general FSI interface” the standard
mapping procedure presented in Sect. 2.4 is applied. The region
”interface no FSI” is only needed for the CFD subsystem, to gain
a watertight surface of the overall FSI interface. A no-slip bound-
ary condition is applied to it. No mapping from the CFD to the
CSD domain and the other way around is performed. This region
has no fixed boundary conditions concerning the mesh motion but
can move freely throughout the simulation. The same applies at
the bottom part of the membrane, which is not depicted in Fig.
4.33. Furthermore, the membrane is assumed to be impermeable
for air in the CFD finite element model, which is not the case in
reality. Hence two limit value investigations have been carried
out. In one case the membrane is completely omitted, which cor-
responds to a utterly permeable membrane (w/o membrane). It
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a) b)

Figure 4.34: Non-matching meshes at interface level. Black
CFD and orange CSD mesh.

follows that only the concrete cylinder is simulated. In the other
case, the membrane is assumed impermeable, and the structure
is modeled with the membrane (w/- membrane).

The values which were applied to create the mean profile with
the power law in Eq. (4.5), are summarized in Tab. 4.6. Visual-
izations of the FSI simulations by setting a cut in the x-z plane of
the numerical wind tunnel can be seen in Fig. 4.35. Additionally,
the stream lines around the TkT at Tphys = 500 s are depicted
in Fig. 4.36. The results for the displacement component in η-

Table 4.6: Value summary for creating the mean profiles for
zref = 10 m.

Type uF(10 m) γ α
uF,norm 20.0m/s 0.77 0.22
uF,crit,hex 24.56m/s 1.0 0.22
uF,crit,cyl 13.50m/s 1.0 0.22
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Figure 4.35: Slice of the numerical wind tunnel in the x-z
plane. The motion of selected eddies is marked
by numbered crosses.

direction at z = 231 m for the simulations w/o membrane, i.e. for a
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Figure 4.36: Streamlines with turbulent inlet around the TkT
at Tphys = 500 s.

cylindrical geometry, are collected in Fig. 4.37 in the time domain
and in Fig. 4.38 in the frequency domain. Those were computed
with different velocity profiles applied to the inlet of the numer-
ical wind tunnel. In the frequency domain, it can be observed
that the critical velocity for the cylinder superimposed with the
fluctuations from the inlet generator, results in the largest am-
plitudes for the lateral displacement.

Figs. 4.39 and 4.40 show the same summary for the variant
with membrane, i.e. for a hexagonal geometry with varying at-
tack angle in the lower part and a cylindrical geometry in the
upper part.

Again different configurations of velocity profiles were applied
to the inlet of the numerical wind tunnel. The amplitudes for
the critical velocity for the cylindrical part and the norm velocity,
each superimposed with the fluctuations, show the largest val-
ues. In contrast to the critical velocity for the cylinder, the norm
velocity stimulates a broader frequency range to a higher extent
(Fig. 4.40). Furthermore, it is observable from Figs. 4.38 and
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Figure 4.37: Structural displacement component vS at z =
231 m w/o membrane. TN: turbulent inlet with
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turbulent inlet with uF,crit,cyl; C: non-turbulent
inlet with uF,crit,cyl.
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Figure 4.39: Structural displacement component vS at z =
231 m w/- membrane. TN: turbulent inlet with
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lent inlet with uF,crit,cyl.

132



4.6. The thyssenkrupp Elevator Test Tower in Rottweil

1
.0

1
.5

2
.0

2
.5

3
.0

fr
eq

ue
nc

y
fi

n
[H

z]
×

1
0
−

1

01234
amplitudein[-]

×
1
0
−

2

T
N

T
C

H
N T

C
C

Figure 4.40: FFT of structural displacement component vS at
z = 231 m w/- membrane. TN: turbulent inlet
with uF,norm; N: non-turbulent inlet with uF,norm;
TCH: turbulent inlet with uF,crit,hex; TCC: turbu-
lent inlet with uF,crit,cyl.

133



Chapter 4. The Numerical Wind Tunnel for Civil Engineering
Structures

4.40, that it is not enough, in this case, to perform simulations
with a mean profile with no fluctuations superposed to it, i.e., a
smooth profile. Looking at the absolute values of the amplitudes
in Figs. 4.37 and 4.39 the maximum value w/o membrane is 0.23
m and w/- membrane 0.18 m. This corresponds to about 30% of
the rough approximation calculated from [1], which shows that
those formulas lead to results far on the safe side.

4.6.5 CFD vs. FSI and Weak vs. Strong Coupling

Before dealing with the coupled simulation of fluid, structure and
HMD, two additional considerations might be of interest.

The first question is if it is enough to perform only CFD sim-
ulations or measurements on a rigid model in the physical wind-
tunnel. In the case of the numerical simulation, the code avail-
able might not be capable of performing FSI simulations. In the
physical wind tunnel modeling issues for a fully aeroelastic model
can occur. In both cases, one might be tempted not to perform
complex FSI simulations or measurements, but to perform only
pure CFD simulations or measurements on a rigid model. Com-
paring a pure CFD and an FSI simulation serves, to check if this
makes sense for such a structure like the TkT. The results for
the reaction forces at z = 0.0 m of this study can be seen in Fig.
4.41. The values of the reaction forces in the streamwise direc-
tion of the CFD simulation are more significant than the ones
for reaction forces for the FSI simulation, but all in all, both of
them show the same overall tendency. The reaction forces in the
cross-stream direction differ entirely. This is because the vortex-
induced vibrations are a the dynamic effect of the interaction be-
tween fluid flow and structure, which cannot be modeled without
taking into account the dynamic behavior of the structure, which
is the case in a CFD simulation or when measuring without an
aeroelastic model.

The second question is if the results are accurate enough if
only weakly coupled FSI simulations are performed in this case.
Therefore, one strongly and one weakly coupled simulation was
carried out with the smooth velocity profile with norm velocity
for Tphys = 600 s and δt = 0.02 s. The results for the displacement
component in η-direction at z = 231 m are depicted in Fig. 4.42 in
the frequency domain.
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Figure 4.41: Reaction force components at z = 0.0 m for
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In this case, the weak coupling is capable of modeling the pri-
mary frequency content, except for some smaller deviations. On
the one hand, it can be concluded from this subsection, that a
pure CFD analysis, which corresponds to a rigid model in the
physical wind tunnel is not capable of modeling all effects of wind
on a structure like the TkT. On the other hand, it is not neces-
sary to perform strongly coupled FSI simulations. The results
from section 4.5 also obtained for turbulent wind conditions by
weak coupling, emphasize this. Hence an FSI simulation with a
weak coupling applying the predictor proposed by [31] is accurate
enough for structures like the TkT. [4] also showed the excellent
performance of the predictor presented in [31] for a different type
of structure.

4.6.6 Artificial Oscillations and Oscillation
Reduction of the thyssenkrupp Test Tower

A special feature of the TkT is the HMD mounted in the form of
a pendulum with a mass of 240 t at the height of 190 m

(
marked

green in Fig. 4.28 f)
)
. The pendulum is incorporated for two

reasons. Firstly, it reduces the tower’s wind-induced vibrations,
acting as a passive system, to guarantee predictable testing con-
ditions for the elevators. Secondly, it can be used to excite the
tower to actively oscillate with amplitudes up to 0.20 m at z = 231
m in ξ or η direction, to test the elevators in those conditions. In
the passive mode, the HMD principally works like an open-loop
control with adaptive filtering, i.e., without a feedback loop. This
is why a reduced-order model of the system like in CHAPTER 3
is not necessary here ([79] p. 10). Although no feedback loop is
necessary for the investigations made in this work, the algorithm
implemented in the real structure has a feedback loop. Accord-
ing to [68] p. 89, the reason for the feedback-loop is the safety
concept applied for the HMD. Theoretically, the actuator force
is only strong enough to archive the desired tower oscillations.
Though the artificial oscillations in combination with the deflec-
tions caused by wind, might lead to deformations causing fatigue
issues. This is why an emergency shutdown is incorporated in the
control algorithm, which deactivates the actuators, and the HMD
switches to its passive mode. The emergency shutdown is based
on the control loop sensors measuring the tower displacements,
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making a feedback loop necessary. In the investigations made in
this work, the emergency shutdown system was not investigated
in detail, because no access to the explicit control algorithm of
the emergency shutdown system could be granted. In the case of
the HMD system’s mechanical failure, it is also possible to uncou-
ple the pendulum’s dampers from the structure. Fig. 4.44 shows
the block diagram for the principal control law of the TkT. The
feedback loop is grayed out, because it does not play a role for
the investigations in this work. This is, why the structural con-
trol system behaves like an open-loop control. The disturbance zC

acting on the HMD block is the tower displacement. In the best
case, the top displacement vS,top of the tower should be zero with
activated HMD, i.e. w = 0.0 m. This cannot be achieved by open-
loop control, because of the wind forces zS on the tower. Thus the
passive part of the HMD is designed by the empiric formulas in
Eq. (4.17) and Eq. (4.18), to get as close as possible to the desired
value of w.

A basic sketch of the HMD can be seen in Fig. 4.43. The
pendulum can be actively actuated by linear motors, with a max-
imum force of 40 kN and a maximum stroke of ±0.60 m, mounted
in the principal directions. The linear motors are connected

ϕ, ϕ̇, ϕ̈

m
k

c

xC, ẋC, ẍC

Fin

Ftan

Frad FG

F̂M (t)

`

zC

Fk Fc

zC

M

uC

Figure 4.43: Schematic model for hybrid mass damper (HMD).

hinged to the building and the center of gravity of the pendulum
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e

−
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Figure 4.44: Schematic block diagram for the control algo-
rithm of the TkT.

mass to avoid parasitic forces. The passive damper elements of
the HMD system are permanently activated, which makes the
passive system available in the case of power failures. [68] p. 86 -
89 offers more detailed information about the pendulum, its con-
trol algorithm, and the safety concept. The ODE of the HMD in
Eq. (4.14) can be derived from the sketch in Fig. 4.43 the follow-
ing way:

FG = m · g
Ftan = FG · sin(ϕ)

Frad = FG · cos(ϕ)

Fk = k · ` · sin(ϕ)

Fc = c · ` · sin(ϕ̇)

Fin = m · ϕ̈ · `

(4.13)

The sum of forces with assumption of small displacements (i.e.
sin(ϕ) ≈ ϕ, cos(ϕ) ≈ 1) leads to the differential equation depend-
ing on xC(t):

mẍC(t) + cẋC(t) +
(mg
`

+ k
)
xC(t)

= F̂M (t)−mz̈C(t) + cżC(t) + kzC(t).
(4.14)

The prescribed velocity żC can be calculated by time integration
from Eq. (2.45) from the prescribed displacement zC. The circular

138



4.6. The thyssenkrupp Elevator Test Tower in Rottweil

eigenfrequency of the freely oscillating pendulum is defined as:

ω =

√
g

`
. (4.15)

No additional spring elements are mounted to the system, which
results in k = 0. For the coupled simulation performed later,
the algorithm from CHAPTER 3 is applied. Hence the force from
the HMD subsystem is to be applied as a Neumann boundary
condition to the nodes of the CSD subsystem marked green in
Fig. 4.28 f). Therefore, the support force uC(t) of the pendulum
can be calculated as

uC(t) = mg
xC(t)

`
. (4.16)

This force is distributed uniformly to all nodes belonging to the
mesh of the slab in the CSD domain, the HMD is mounted to, i.e.
uS,i = uC. This is also indicated by the double arrow in Fig. 4.44.

The value of the mass is fixed to 240 t, which corresponds to
0.6% of the building’s overall mass. It follows that, the remaining
parameters to be selected for the HMD are the damping ratio
of the damper elements and the length of the pendulum. The
prerequisites for the selection of those parameters according to
[68] are:

a) Increase the structural damping to decrease the amplitude
of the wind-induced vibrations.

b) Constrain the motions the damper mass motions to a value
less than 0.60 m.

c) Gain the demanded top displacement of the tower of ±0.20
m by the maximum actuator forces of 40 kN.

The basic criteria for selecting the parameters to tune the pendu-
lum, i.e., calculating the damping coefficient c and the pendulum
length ` can be found in [78] p. 830. Those are:

Dopt =

√
3µ

8(1 + µ)2
(4.17)

and
`opt =

(1 + µ)g

4π2f2
1

. (4.18)
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Herein µ is the mass ratio between the mass of the building and
the mass of the damper, g is the gravity constant and f1 is the
first eigenfrequency of the structure. With µ = 0.6% this results
in Dopt = 0.05 and `opt = 4.93 m.

In a first step, the ±0.20 m oscillation of the tower in η-
direction at z = 231 m excited by the HMD was simulated. Fig.
4.45 shows the results for the displacement component and the
displacements of the HMD mass in this direction. The corre-
sponding forces applied to the HMD are depicted in Fig. 4.46.
This simulation was performed in a partitioned way, excluding
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Figure 4.45: Structural displacement component vS at z = 231
m and HMD displacement xC.

the CFD subsystem. In this case, a weak and a strong coupling
approach leads to the same results. It is possible to excite the
tower to the demanded amplitude, without exceeding the maxi-
mum admissible mass displacement of 0.60 m. Additionally, this
simulation can be taken into account to measure the structural
damping with locked and unlocked HMD. Fig. 4.47 shows the
amplification function and the phase shift for both cases. When
activating the HMD, the structural damping increases to 2.0%.
Finally, an FSCI simulation for the case of the tower with mem-
brane for uF,norm was performed. Therefore also a weak cou-
pling with the predictor from [31] was applied. For the case of
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Figure 4.46: Force applied to the HMD F̂M and reaction force
yC applied to the structure.

the TkT this leads to good results. An additional testing of the
FSCI algorithm from CHAPTER 3 with strong coupling for a pro-
totypical high-rise building was performed in [105] and [76]. Fig.
4.48 shows the results displacement component in η-direction at
z = 231 m w/- and w/o activated HMD. The same results trans-
formed to the frequency domain are depicted in Fig. 4.49.

The HMD fully annihilates the frequency of 0.225 Hz which
leads to a significant reduction of the top displacements of the
tower. When checking the displacements of the HMD itself in
Fig. 4.50 it can also be observed, that the displacements of the
HMD do not exceed the maximum admissible value of 0.60 m.
It can be concluded from this subsection it is possible to apply
the algorithm developed in CHAPTER 3 to a complex problem like
the TkT and to comply by a simulation that all the prerequisites
posed to the structure, and the HMD can be fulfilled.
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Figure 4.47: Amplification function and phase shift with
locked and unlocked HMD.

4.6.7 Procedure for the Numerical Wind
Generation

Summing up the experience from the wind generation for the OT
and the TkT, the schematic procedure shown in Fig. 4.51 can be
proposed. In the case on-site measurements are available, the
characteristic values (Lxu, Iu and u) are computed for the mea-
surement and from the design codes, because the measurement
values might only be available at certain points over the height.
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Figure 4.50: Displacement xC of the HMD mass, applying a
turbulent inlet profile with uF,norm.

Additionally, the values from the design codes ensure that typi-
cal problems with measurements (on-site measurements or from
measurement stations) can be identified at this point, which can
be, for example:

– outliers,

– wrong or unknown units,

– changes in the units throughout the measurement period,

– manipulation or failures of the measurement devices,

– errors in the data analysis,

– timestamp issues.

All of the examples listed above also arose in the context of this
work. If there are no on-site measurements available, other data
sources have to be used. The quality of such data sources is as-
sessed in Tab. 4.7. It can be observed that the design codes are
a solid basis, but do not provide any information about the major
wind direction. Thus it is suggested to utilize measurements from
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surrounding measurement stations or macro-meteorological sim-
ulations as additional data sources. Those provide information
for the major wind direction and often better data for the mean
wind speed u.
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4.7 Chapter Summary

This chapter applied the numerical wind tunnel to two types of
a slender, high-rise, tower-like structures: a television tower and
an elevator test tower. A basic convergence and validation study
for pure CFD, successfully extending and confirming the results
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Table 4.7: Means of assessment of numerically generated
wind.
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from [4] and [26]. Based on those studies, fully coupled FSI simu-
lations with a numerically generated wind-inlet were performed
for the television tower. Since a lot of measurement data is avail-
able, it was possible to utilize this data to generate a reasonable
inlet profile by the synthetic inlet generator [5]. The results of
the FSI simulations correspond well to the available on-site mea-
surements. Based on the studies on the television tower, a mean-
ingful wind-inlet was generated on the basis of measurements
from different measurement stations and one macro meteorolog-
ical simulation for the elevator test tower. Different FSI simula-
tions were performed for different configurations of the elevator
test tower, to find the most unfavorable configurations concern-
ing vortex-induced vibrations. Finally, a successful application
of the algorithm presented in CHAPTER 3 was possible for the
simulation of the elevator test tower, including an HMD device.
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Chapter 5

Conclusions and Outlook

In this thesis work, the multiphysics problem of the interaction of
high-rise, tower-like civil engineering structures with the natural
wind, including systems for vibration mitigation of wind-induced
vibrations was investigated, by a numerical approach.

Therefore, in a first step, the algorithmic treatment of the in-
teraction between fluid flow, structure, and an open or closed-
loop controller, based on a Gauss-Seidel pattern, is presented in
CHAPTER 3. It was successfully tested by the modification of a
well-known benchmark case from the FSI community. Thus its
applicability is not limited to civil engineering structures but is
generally possible for different types of FSCI problems.

In a second step the findings from CHAPTER 3 were applied in
CHAPTER 4 to the thyssenkrupp elevator test tower in Rottweil in
combination with the numerical wind tunnel, including the syn-
thetic inlet generator developed in [4]. The application to real-
world problems also contained a validation study conducted for
the Olympic Tower in Munich. This validation study compared
simulated results from the numerical wind tunnel with on-site
measurements, which had been conducted for the Olympic Tower.
The results from simulations and measurements match well. Ad-
ditionally, this study served as a successful test for the simulation
setup for multiphysics problems like FSI, implemented in [53].



Chapter 5. Conclusions and Outlook

Thus the same setup was applied to the thyssenkrupp eleva-
tor test tower combined with the algorithm for FSCI. Several FSI
studies concerning the critical wind speed and the influence of the
natural wind’s turbulent characteristics on the flow-induced vi-
brations of the thyssenkrupp elevator test tower were performed.
Those included the comparison of wind data from different mea-
surement stations with a macro meteorological simulation, to be
able to model reasonable wind conditions. The FSI simulations,
which were conducted, showed that it is not enough to perform
simulations with a smooth velocity inlet profile. Still, the tur-
bulent characteristics of natural wind have to be modeled to get
meaningful results. Furthermore, applying a weak coupling with
the predictor introduced in [31] resulted in the optimal combina-
tion between accuracy and computational cost for problems with
a small to medium added mass effect. Those results also sub-
stantiate the findings by [4], which had led in the same direction.
Finally, the algorithm for FSCI could successfully be applied to
the combination of the thyssenkrupp elevator test tower with
an HMD. The large number of coupled simulations performed
throughout this thesis work up to a physical time up to 41.5 min-
utes also showed that it is possible to conduct useful numerical
studies for those kinds of multiphysics problems with a manage-
able amount of computational cost.

A recommendation for future research is more validation
studies comparing numerical results with on-site measurements
and physical wind tunnel testing. For example, the data pub-
lished in [106] offers much potential for such studies. Addition-
ally, the coupling of macro and micrometeorological models and
the modeling of the surrounding terrain are of interest for a bet-
ter modeling of the wind conditions. Concerning the aspect of the
inclusion of structural control into FSI simulations, i.e., FSCI,
further investigations concerning more advanced control strate-
gies are possible. Furthermore, the extension of the SC sub-
system from a SISO to a MIMO system is worth to be investi-
gated. Additionally, the general concepts presented in CHAPTER
3, which were applied to an example from civil engineering, can
be applied for problems from other engineering disciplines, like,
for example, for problems from mechanical engineering.
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Appendix A

Algorithms

This Appendix shows the algorithms for FSCI, [FS]CI, and
F[SC]I in pseudo code notation, which is in accordance with Sect.
3.2.. Those have also been published in a slightly different no-
tation in [104]. The algorithms are written generically, to make
them applicable to general FSCI problems. Thus the measured
output and the quantities of the SC subsystem (index C) are writ-
ten as vectors in order to cover MIMO systems. As mentioned in
Sect. 2.3 in this work only SISO systems for the SC subsystem
are taken into account. This means vector quantity yn+1

S,meas and
the quantities of the SC subsystem (index C) in the pseudo-code
become scalar quantities.



Appendix A. Algorithms

Algorithm 1 Pseudocode for the partitioned FSCI scheme (no
nesting).

1: // initialize states, i.e. set ICs . . .
2: kendx0

F ←− xinit
F ; kendx0

S ←− xinit
S ; kendx0

C ←− xinit
C

3: time loop . . .
4: for n←− 0 to n←− nend − 1 do
5: // predict displacements and measured output . . .
6: 0yn+1

S ←− kendynS ; 0yn+1
S,meas ←− kendynS,meas

7: // interface iteration loop, i.e. FSCI loop . . .
8: for k ←− 0 to k ←− kmax do
9: // map displacements from solid to fluid . . .

10: // and copy measured output from solid to controller. . .
11: kyn+1

F ←−My

(
kyn+1

S

)
; kyC

n+1 ←− kyS,meas
n+1

12: // solve fluid and controller in parallel . . .

13: kzn+1
F ←− G[kxn+1

F ]
F

(
kyn+1

F

)

14: kun+1
C ←− G[kxn+1

C ]
C

(
kyn+1

C

)
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Algorithm 1 continued
15: // map forces from fluid to solid . . .
16: // and copy control input from controller to solid . . .
17: kzn+1

S ←−Mz

(
kzn+1

F

)
kun+1

S ←− kun+1
C

18: // solve solid . . .

19:

[
kyn+1

S
kyn+1

S,meas

]
←− G[kxn+1

S ]
S

(
kzn+1

S , kun+1
S

)

20: // calculate residuum of displacements
21: // and measured output . . .
22: kRn+1

y ←− kyn+1
S − k−1yn+1

S

23: kRn+1
ymeas

←− kyn+1
S,meas − k−1yn+1

S,meas

24: kRn+1
y,ymeas

:=
[
kRn+1

x
kRn+1

ymeas

]

25: // check for convergence . . .
26: kεn+1 ←−

∥∥∥kRn+1
y,ymeas

∥∥∥ /√ndof
27: if kεn+1 < maxε then
28: break
29: end if
30: // update Aitken factor
31: if k = 0 then
32: 0βn+1 ←− initβ
33: else
34: kβn+1 ←− k−1βn+1

k−1Rn+1
y,ymeas

T
(
k−1Rn+1

y,ymeas
−kRn+1

y,ymeas

)
‖k−1Rn+1

y,ymeas
−kRn+1

y,ymeas‖
2

35: end if
36: // update displacements and measured output . . .
37: k+1yn+1

S ←− kyn+1
S + kβn+1 kRn+1

y

38: k+1yn+1
S,meas ←− kyn+1

S,meas + kβn+1 kRn+1
ymeas

39: end for
40: end for
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Appendix A. Algorithms

Algorithm 2 Pseudocode for the partitioned F[SC]I scheme
(nesting of [SC] subsystem)

1: // initialize states, i.e. set ICs . . .
2: kendx0

F ←− xinit
F ; kend

lend
x0

S ←− xinit
S ; kend

lend
x0

C ←− xinit
C

3: // time loop . . .
4: for n←− 0 to n←− nend − 1 do
5: // predict displacements and measured output . . .
6: 0

lend
yn+1

S ←− kend

lend
ynS ; 0

lend
yn+1

S,meas ←−
kend

lend
ynS,meas

7: // outer interface iteration loop, i.e. F[SC]I loop . . .
8: for k ←− 0 to k ←− kmax do
9: // map displacements from solid to fluid . . .

10: kyn+1
F ←−My

(
k

lend
yn+1

S

)

11: // solve fluid . . .
12: kzn+1

F ←− G[kxn+1
F ]

F

(
kyn+1

F

)

13: // map forces from fluid to solid . . .
14: kzn+1

S ←−Mz

(
kzn+1

F

)

15: // predict measured output . . .
16: k

0y
n+1
S,meas ←− k

lend
yn+1

S,meas

17: // inner interface iteration loop, i.e. SCI loop . . .
18: for l←− 0 to l←− lmax do
19: // copy measured output from solid to controller . . .
20: k

ly
n+1
C ←− k

ly
n+1
S,meas

21: // solve controller . . .
22: k

lu
n+1
C ←− G[klx

n+1
C ]

C

(
k
ly
n+1
C

)

23: // copy control input from controller to solid . . .
24: k

lu
n+1
S ←− k

lu
n+1
C

25: // solve solid . . .

26:

[
k
ly
n+1
S

k
ly
n+1
S,meas

]
←− G[klx

n+1
S ]

S

(
kzn+1

S , klu
n+1
S

)

27: // calculate residuum of measured output . . .
28: k

lRn+1
ymeas

←− k
ly
n+1
S,meas − k

l−1y
n+1
S,meas

29: // check for inner convergence . . .
30: k

lε
n+1 ←−

∥∥∥klRn+1
ymeas

∥∥∥ /√ndof
31: if klεn+1 < maxε then
32: break
33: end if
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Algorithm 2 continued
34: // update inner Aitken factor . . .
35: if l = 0 then
36: k

0β
n+1 ←− initβ

37: else
38: if dim

{
k
lRn+1
ymeas

}
= 1 then

39: k
lβ
n+1 ←− k

l−1β
n+1

k
l−1R

n+1
ymeas

k
l−1R

n+1
ymeas−k

lR
n+1
ymeas

40: else
41: k

lβ
n+1 ←− k

l−1β
n+1

k
l−1R

n+1
ymeas

T
(

k
l−1R

n+1
ymeas

−k
lR

n+1
ymeas

)
∥∥∥ k
l−1R

n+1
ymeas

−k
lR

n+1
ymeas

∥∥∥2

42: end if
43: end if
44: // update measured output . . .
45: k

l+1y
n+1
S,meas ←− k

ly
n+1
S,meas + k

lβ
n+1 k

lRn+1
ymeas

46: end for
47: // calculate residuum of displacements . . .
48: kRn+1

y ←− k
lend
yn+1

S − k−1
lend
yn+1

S

49: // check for outer convergence . . .
50: kεn+1 ←−

∥∥∥kRn+1
y

∥∥∥ /√ndof
51: if kεn+1 < maxε then
52: break
53: end if
54: // update outer Aitken factor . . .
55: if k = 0 then
56: 0βn+1 ←− initβ
57: else
58: if dim

{
kRn+1

y

}
= 1 then

59: kβn+1 ←− k−1βn+1
k−1Rn+1

y

k−1Rn+1
y −kRn+1

y

60: else
61: kβn+1 ←− k−1βn+1

k−1Rn+1
y

T(k−1Rn+1
y −kRn+1

y )
‖k−1Rn+1

y −kRn+1
y ‖2

62: end if
63: end if
64: // update displacements and measured output . . .
65: k+1

lend
yn+1

S ←− k
lend
yn+1

S + kβn+1 kRn+1
y

66: k+1
lend
yn+1

S,meas ←− k
lend
yn+1

S,meas

67: end for
68: end for
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Appendix A. Algorithms

Algorithm 3 Pseudocode for the partitioned [FS]CI scheme
(nesting of [FS] subsystem)

1: // initialize states, i.e. set ICs . . .
2: kend

lend
x0

F ←− xinit
F ; kend

lend
x0

S ←− xinit
S ; kendx0

C ←− xinit
C

3: // time loop . . .
4: for n←− 0 to n←− nend − 1 do
5: // predict displacements and measured output . . .
6: 0

lend
yn+1

S ←− kend

lend
ynS ; 0

lend
yn+1

S,meas ←−
kend

lend
ynS,meas

7: // outer interface iteration loop, i.e. [FS]CI loop . . .
8: for k ←− 0 to k ←− kmax do
9: // copy measured output from solid to controller . . .

10: kyn+1
C ←− k

lend
yn+1

S,meas

11: // solve controller . . .
12: kun+1

C ←− G[kxn+1
C ]

C

(
kyn+1

C

)

13: // copy control input from controller to solid . . .
14: kun+1

S ←− kun+1
C

15: // predict displacements . . .
16: k

0y
n+1
S ←− k

lend
yn+1

S

17: // inner interface iteration loop, i.e. FSI loop . . .
18: for l←− 0 to l←− lmax do
19: // map displacements from solid to fluid . . .
20: k

ly
n+1
F ←−My

(
k
ly
n+1
S

)

21: // solve fluid . . .
22: k

lz
n+1
F ←− G[klx

n+1
F ]

F

(
k
ly
n+1
F

)

23: // map forces from fluid to solid . . .
24: k

lz
n+1
S ←−Mz

(
k
lz
n+1
F

)

25: // solve solid . . .

26:

[
k
ly
n+1
S

k
ly
n+1
S,meas

]
←− G[klx

n+1
S ]

S

(
k
lz
n+1
S , kun+1

S

)

27: // calculate residuum of displacements . . .
28: k

lRn+1
y ←− k

ly
n+1
S − k

l−1y
n+1
S

29: // check for inner convergence . . .
30: k

lε
n+1 ←−

∥∥∥klRn+1
y

∥∥∥ /√ndof
31: if klεn+1 < maxε then
32: break
33: end if
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Algorithm 3 continued
34: // update inner Aitken factor . . .
35: if l = 0 then
36: k

0β
n+1 ←− initβ

37: else
38: if dim

{
k
lRn+1
y

}
= 1 then

39: k
lβ
n+1 ←− k

l−1β
n+1

k
l−1R

n+1
y

k
l−1R

n+1
y −k

lR
n+1
y

40: else
41: k

lβ
n+1 ←− k

l−1β
n+1

k
l−1R

n+1
y

T( k
l−1R

n+1
y −k

lR
n+1
y )∥∥∥ k

l−1R
n+1
y −k

lR
n+1
y

∥∥∥2

42: end if
43: end if
44: // update displacements . . .
45: k

l+1y
n+1
S ←− k

ly
n+1
S + k

lβ
n+1 k

lRn+1
y

46: end for
47: // calculate residuum of measured output . . .
48: kRn+1

ymeas
←− k

lend
yS,meas

n+1 − k−1
lend
yS,meas

n+1

49: // check for outer convergence . . .
50: kεn+1 ←−

∥∥∥kRn+1
ymeas

∥∥∥ /√ndof
51: if kεn+1 < maxε then
52: break
53: end if
54: // update outer Aitken factor . . .
55: if k = 0 then
56: 0βn+1 ←− initβ
57: else
58: if dim

{
kRn+1

ymeas

}
= 1 then

59: kβn+1 ←− k−1βn+1
k−1Rn+1

ymeas
k−1Rn+1

ymeas−kRn+1
ymeas

60: else
61: kβn+1 ←− k−1βn+1

k−1Rn+1
ymeas

T
(
k−1Rn+1

ymeas
−kRn+1

ymeas

)
‖k−1Rn+1

ymeas
−kRn+1

ymeas‖
2

62: end if
63: end if
64: // update displacements and measured output . . .
65: k+1

lend
yn+1

S ←− k
lend
yn+1

S

66:
k+1

lend
yn+1

S,meas ←− k
lend
yS,meas

n+1 + kβn+1 kRn+1
ymeas

67: end for
68: end for
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Appendix B

Calculation of Descriptive
Statistics

This Appendix provides the definitions of discrete statistical data
for a time series {xk}N−1

k=0 . When applying B.4, B.5 and B.6 to a
time series of turbulent velocities, only the fluctuating part u′ is
to be used for the calculations.

B.1 Mean Value

The mean value is computed as

x =
1

N

N−1∑

k=0

xk. (B.1)

B.2 Median Value

The median value is computed as

x̃ =





xN−1
2

for N odd

0.5(xN
2 −1 + xN

2
) for N even

(B.2)
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B.3 Root Mean Square (RMS)

The quadratic mean is computed as

x2 =
1

N

N−1∑

k=0

x2
k (B.3)

and from this the Root Mean Square (RMS) is calculated as

RMS =
√
x2. (B.4)

B.4 Standard Deviation

The standard deviation is calculated as

σx =

√√√√
N−1∑

k=0

|xk|2
N

. (B.5)

B.5 Spectral Density

The spectral density can be calculated at f = m/T from the dis-
crete Fourier transform (DFT)

x̂m =
1

N

N−1∑

k=0

xkexp
(−2πimk

N

)
, m = 0 ... N − 1, (B.6)

as
Sxx,m =

1

2T
|x̂m|2 = Sxx(f) = S(f). (B.7)

According to [4] Sxx(f) is calculated by subdividing the total time
series into subintervals (usually eight to 16 values), evaluating
Eq. (B.6) on the subintervals and averaging its results after-
wards.

B.6 Auto Correlation

The auto correlation for τ = mδt is calculated as

Rxx,m =
1

σ2
xN

N−1∑

k=0

xkxm+k mod N . (B.8)
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Appendix C

Integral Transform
Methods

This Appendix gives a short introduction to the basic integral
transform methods commonly applied in control theory. It is only
possible to give a very rough overview, which, by far, cannot be
complete. For more details, the interested reader is referred to
[39], which is a very detailed textbook about integral transform
methods.

C.1 The Laplace-Transform

This is a short introduction into the Laplace-Transform on the
basis of [40] p. 401. The Laplace-Integral associates the func-
tion f(t), which is in most technical applications a function of
time, to the complex function F (s). This is referred to as Laplace-
Transform. f(t) is called original function and F (s) transformed
function. This relation is written as

F (s) = L{f(t)}. (C.1)

The transformation rule is

F (s) =

∫ ∞

0

f(t)e−stdt, (C.2)
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where s ∈ C is a complex number. The Laplace domain is also
referred to as the frequency domain and the original domain as
the time domain. In the context of the classical approach for con-
troller design in control theory, in general the design is entirely
performed in the frequency domain, and no transformation back
to the time domain is necessary. This is why the transformation
rule back to the time domain is not treated here.

Subsequently, two important examples for the application of
the Laplace-Transform are given, which are advantageous when
applying it to equations of dynamic systems.

C.1.1 Differentiation
f(t) is a continuous function. Its derivative is defined as f ′(t) =
d
dtf(t). The transformation is carried out by applying Eq. (C.2).
With ∫

u′v = [uv]−
∫
uv′, (C.3)

it follows
L[f ′(t)] =

∫ ∞

0

f ′(t)e−stdt

=− f(0) + s

∫ ∞

0

f(t)e−stdt

︸ ︷︷ ︸
sL[f(t)]

.
(C.4)

Thus the rule
L[f ′(t)] = sL[f(t)]− f(0), (C.5)

applies, which states that a derivative in the time domain results
in a multiplication in the Laplace domain. This also holds for
higher order derivatives and Eq. (C.5) can be generalized as

L[fn(t)] = snL[f(t)]−sn−1f(0)−sn−2f ′(0)−...−sfn−2(0)−fn−1(0).
(C.6)

C.1.2 Integration

g(t) is defined as the integral of f(t), with g(t) =
∫ t

0
f(τ)dτ and

g(0) = 0. Inserting g(t) into Eq. (C.5) one obtains:

L
[ ∫ t

0

f(τ)dτ
]

=
1

s
L[f(t)]. (C.7)
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C.2. The Z-Transform

Thus the integration is performed in the Laplace domain by car-
rying out divisions.

C.2 The Z-Transform

In analogy to the Laplace-Transform for continuous functions
f(t), for discrete sequences f(k) the Z-transform exists. This
section summarizes the most important aspects concerning this
work, from [60] Chapter 12. The sampled function f(k) is de-
scribed by a sequence of Dirac δ impulses as

f∗(t) =

∞∑

k=0

f(kT )δ(t− k∆t). (C.8)

Herein f∗(t) is a function of the continuous time t, which is only
different from zero at the sampling points t = k∆t. Applying the
Laplace transform to Eq. (C.8) it follows

F ∗(s) =

∞∑

k=0

f(kT )e−ks∆t. (C.9)

The values of e−ks∆t are complex numbers, depending on the sam-
pling time ∆t and the summation index k. es∆t is replaced by the
complex variable z, which results in

z = es∆t. (C.10)

is the sampling time, but in the context of numerical time inte-
gration the discrete time step is δt. Applying Eq. (C.10) to Eq.
(C.9) and introducing the new function

F (z) = F ∗(s)|es∆t=z, (C.11)

the Z-Transform is defined as

F (z) =

∞∑

k=0

f(k)z−k. (C.12)

In accordance to the Laplace transform this is often written as

F (z) = Z{f(k)}. (C.13)
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An additional important aspect is the relation of the system poles
si of the transfer function of the time continuous and time dis-
crete system zi. This relation is defined as

zi = esi∆t, (C.14)

which is the map between the s-plane and the z-plane and the
other way around

si =
1

∆t
ln(zi). (C.15)
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Appendix D

Dynamic System Modeling
in Control Theory

This Appendix gives a short introduction into the modeling of dy-
namic systems in control theory. Therefore, a simple, well-known
mechanical example is chosen, which is also shown in the stan-
dard literature (e.g., [40] p. 40 ff., [96] p. 2 ff. and [61] p. 290).
The block referred to in the following is the ”controlled system”
block in the basic block diagram in Fig. 2.2. When modeling dy-
namic systems in one of the forms presented in this Appendix,
in control theory, a lot of different tools for system assessment
and controller design exist, which are afterwards easily applica-
ble. The controller design, which corresponds to the ”controlling

k c

F̂ (t)

y(t)

m

Figure D.1: Mechanical example for a dynamic system.

element” block in Fig. 2.2 is not part of the explanations done
here, but can for example be seen in CHAPTER 3. The problem to
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be modeled is shown in Fig. D.1 with its differential equation

mÿ(t) + cẏ(t) + ky(t) = F̂ (t). (D.1)

The system output y(t) is the system displacement and the sys-
tem input u(t) is the external force F̂ (t). The two standard mod-
eling approaches (one in the frequency and one in the time do-
main) from control theory, which are physically equivalent, are
presented for this system in the following Sections.

D.1 Modeling in the Frequency Domain

The modeling of dynamic systems in the frequency domain is the
classical approach in control theory. It takes advantage of the
Laplace transform (APPENDIX C) and mostly is applied to SISO
systems. Additionally, several standard system types depending
on their differential equation, are defined. Since the system’s
type of ODE presented in Eq. (D.1) applies to many technical ap-
plications; this system can be characterized as one of those stan-
dard system types. It is referred to as PT2 element, or in words,
delay element of second order. In a first step the Eq. (D.1) is
transformed to the frequency domain by the Laplace transform.
It reads then

(ms2 + cs+ k)Y (s) = U(s). (D.2)

Eq. (D.2) is often written in the following generalized notation

(T 2s2 + 2DTs+ 1)Y (s) = KU(s), (D.3)

with

T =

√
m

k
; D =

c

2
√
mk

; K =
1

k
. (D.4)

From Eq. (D.4) the system transfer function can be obtained as

G(s) =
Y (s)

U(s)
=

K

T 2s2 + 2DTs+ 1
. (D.5)

After the system is written in this kind of notation, it is directly
possible to apply the tools for system analysis and controller de-
sign of control theory. Two examples of such tools are shown in
the following. Firstly it is directly possible to depict the system
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1
T

K
T

2D
K

1
K

−−

U(s) Y (s)

Figure D.2: Block diagram for the system in the frequency do-
main.

in block diagram notation, as shown in Fig. D.2. Secondly the
system behavior and a basic stability analysis can be performed.
For the purpose of the stability analysis, the system is subjected
to the load depicted in Fig. D.3, to investigate its step function re-
sponse. Inserting the angular eigenfrequency, defined as ω = 1/T ,
into Eq. (D.5) results in

G(s) =
Kω2

s2 + 2Dωs+ ω2
. (D.6)

The system poles, describing the system eigen behavior, can be

1

0 t

F̂ (t)

Figure D.3: Step function excitation.

calculated by solving the characteristic equation s2 +2Dωs+ω2 =
0. The system poles are for this example:

s1/2 = −ω(D ±
√
D2 − 1). (D.7)

The system poles can be depicted in the s-plane, which is shown
in Fig. D.4 for different values of the damping coefficient D. Fig.
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D.4 also shows the equivalent system reaction in the time do-
main for comparison. It can be seen; the system is stable if the
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Figure D.4: System behavior in the s-plane and time domain,
adapted from [97] p. 103.
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poles are located in the negative real half-plane of the s-plane.
Even if the system itself is stable, applying a closed-loop control
to the system will shift the system poles. In the best case, the
poles are shifted further into the negative real half-plane; in the
worst case, they are shifted to the positive real half-plane mak-
ing the system unstable. Several other additional techniques for
stability assessment exist (e.g., the Nyquist criterion), which can
be used for more detailed investigations, which are not necessary
to be applied in this work. Therefore, the reader is referred to
the literature. For most civil engineering structures, it is hardly
possible to make the system unstable by applying a closed-loop
control. The reason for this is that the necessary forces are, in
most cases, too high to be applied by a suitable actuator. This
is only likely to happen in combination with additional external
forces (like wind) acting in an unfavorable way on the structure.

D.2 Modeling in the Time Domain

A physically equivalent representation of the system in the time
domain is the state-space representation introduced in Section
2.3. Therefore Eq. (D.1) is rewritten with u(t) = F̂ (t) as

ÿ(t) =
1

m
(u(t)− cẏ − ky), (D.8)

which can be directly be depicted in block diagram notation as
shown in Fig. D.5. The state variables can be defined as

1
m

∫
−

u(t) y(t)ÿ(t) ∫ẏ(t)

c

k

−

Figure D.5: Block diagram for the system in the time domain.
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x1(t) =y(t) and

x2(t) =ẏ(t). (D.9)

The state variables have a physical meaning. x1(t) describes the
deformation and is thus a measure for the spring force, and x2(t)
is a measure for the damper force. With the definitions of the
state variables the system can be represented in state-space rep-
resentation as

ẋ1(t) =x2(t) and

ẋ2(t) =− k

m
x1(t)− c

m
x2(t) +

1

m
u(t), (D.10)

which reads in matrix notation

ẋ1

ẋ2


 =


 0 1

− k
m − c

m




x1

x2


+


 0

1
m


u(t),

i.e. ẋ = Ax+Bu

(D.11)

and the output equation

y(t) =
[
1 0

]

x1

x2


 ,

i.e. y = Cx.

(D.12)

The tools from literature for controller design, stability consider-
ations, and system analysis can be directly applied if the dynamic
system is written in this notation. Here a SISO system is shown,
but the principle can easily be applied to MIMO systems, which
is according to [73] one of the advantages of the state-space rep-
resentation.
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[40] O. Föllinger, U. Konigorski, B. Lohmann, G. Roppenecker,
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sowie einer Einführung in das Programmsystem MAT-
LAB. Lehrbuch. Springer, Berlin, 11., überarbeitete und
ergänzte auflage edition, 2016.

[62] M. Lyly, R. Stenberg, and T. Vihinen. A stable bilinear
element for the Reissner-Mindlin plate model. Computer
Methods in Applied Mechanics and Engineering, 110(3-
4):343–357, 1993.

177



Bibliography

[63] L. E. Malvern. Introduction to the mechanics of a contin-
uous medium. EPS, Prentice-Hall series in engineering of
the physical sciences. Prentice-Hall, Englewood Cliffs, NJ,
[nachdr.] edition, 1969.

[64] J. Mann. The spatial structure of neutral atmospheric
surface-layer turbulence. Journal of Fluid Mechanics,
273:141–168, 1994.

[65] J. Mann. Wind field simulation. Probabilistic Engineering
Mechanics, 13(4):269–282, 1998.

[66] J. E. Marsden and T. J. R. Hughes. Mathematical Founda-
tions of Elasticity. Dover Civil and Mechanical Engineer-
ing. Dover Publications, Newburyport, 2012.

[67] U. M. Mayer, A. Popp, A. Gerstenberger, and W. A. Wall.
3D fluid–structure-contact interaction based on a combined
XFEM FSI and dual mortar contact approach. Computa-
tional Mechanics, 46(1):53–67, 2010.

[68] C. Meinhardt. Applikation eines hybriden Tilgersystems für
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