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Abstract
Additive manufacturing (AM) technology has experienced an exponential growth over the last
decade. From aerospace industry to biomedical applications, from organic tissues to jewelry
production, the range of components that can be produced by means of additive technology
is extremely various. Nevertheless, AM is still far from being considered a mature technology.
Its limitation is mainly due to the lack of standardization and predictability of AM processes.
In fact, these processes involve complex physical phenomena which are extremely challenging
to be measured and modelled.
Within the field of AM, numerical methods can be effectively employed to improve the

understanding of the physical effects occurring during the manufacturing process, to optimize
the process parameters in order to minimize defects in the final artifact, and to develop optimal
design specifically suited for AM.
Starting from the above observations, this work aims at developing numerical methods and

models specifically tailored to be employed in AM applications. The objective of the present
work is to decline novel numerical techniques in the field of AM. To this end, we devote a
special effort in the experimental validation of the presented results, which is a necessary step
to assess the reliability of the proposed methodologies.
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Chapter 1

Introduction

1.1 Motivations

Additive Manufacturing (AM) technologies are undergoing an exponential growth in many
engineering fields, from aerospace to biomedical applications, from fashion to food industry.
The main benefit of this technology is the possibility to design the product such that it is
optimized for a specific function. The manufacturing constraints are in fact dramatically
reduced and the designer can finally focus more on the intended application of the part rather
than on its manufacturability [Gibson et al., 2015].
As a direct consequence of AM diffusion, there is an increasing demand for efficient and

reliable numerical technologies not only to enhance the understanding of the physical manu-
facturing process but also to generate optimal design of 3D printed structures. In the present
thesis we aim at investigating the applications of different numerical methods in the field of
both AM process of metal 3D-printing systems and optimal design for AM.

Additive manufacturing process simulations

A first classification of additive manufacturing systems can be made based on the material
used to build the product (metal, plastic, organic materials, etc.). Once a specific material is
chosen it can be manufactured using a large variety of AM systems which address different
applications, deliver specific surface finiture, and have also different production costs.
In this work we mainly focus on a specific metal 3D printing technology, namely laser pow-

der bed fusion (LPBF), alternatively known as selective laser melting (SLM, cf. figure 1.1a),
selective laser sintering (SLS), electron beam melting (EBM), direct metal laser sintering
(DMLS), or direct metal laser melting (DMLM). LPBF is an AM process consisting of a laser
beam which selectively melts a layer of metal powder, building the final product by means of a
layer-by-layer process, as depicted in figure 1.1b. Nowadays, most of the metal additive manu-
facturing systems employ a powder bed fusion technology due to the accurate surface finiture,
the lower porosity, and the better mechanical properties of the resulting part compared to
other AM technologies [King et al., 2015a].
In LPBF systems a single layer is ≈ 30µm thick and the typical laser beam radius

is 30 − 50µm, while the dimensions of the product are in the order of decimeters. This
multi-scale nature in space makes the simulation of such a process an extremely challenging
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(a) Selective Laser Melting metal 3D printer
(Renishaw AM400) located in the laborato-
ries of the University of Pavia (http://www-
4.unipv.it/3d/laboratories/3dmetalunipv/).

(b) Overview of a laser powder bed fusion system
(Selective Laser Sintering by 3D Systems, Inc.)

Figure 1.1: Laser powder bed fusion systems

task. Moreover, melting and solidification phenomena occur in few microseconds in a very
small region around the laser spot. Considering that a complete LPBF process lasts hours,
we can immediately understand that the computational costs for a high-fidelity simulation of
such a process easily becomes too expensive even for the most recent supercomputers (see,
e.g., [Heigel and Lane, 2017; King et al., 2015b; Lundbäck and Lindgren, 2011; Pal et al., 2016;
Papadakis et al., 2014]). In particular, we can identify three main open tasks in developing a
validated and reliable simulation tool for this kind of processes:

1. Develop a suitable physical and numerical model to represent the phenomena occurring
during the process [Dunbar et al., 2016; Lu et al., 2018];

2. Deliver accurate measurements of the physical parameters to validate the physical and
numerical model [Ghosh et al., 2018];

3. Develop a numerical technology which addresses the computational issues coming from
the multi-physics and multi-scale nature of the problem [Chiumenti et al., 2017a; Den-
linger et al., 2017].

Moreover, to obtain a real advance in the understanding and control of powder bed fusion
systems, all these different topics have to be linked together. To this end, numerical simula-
tions of 3D printing processes should aim at creating a bridge between the different research
areas of additive manufacturing, from design optimization to process control systems. In fact,
once an optimal design (e.g., minimizing the mass under a stress constraint) is found, it is
not straightforward to obtain the corresponding AM product matching the designed shape
and mechanical properties. For example, high residual stresses generated during the building
process may lead to strong deformations of the final artifact once removed from the building

http://www-4.unipv.it/3d/laboratories/3dmetalunipv/
http://www-4.unipv.it/3d/laboratories/3dmetalunipv/
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platform. Additionally, it may occur that local overheating due to critical geometrical features
leads to void inclusions in the microstructure, compromising the mechanical behavior of the
component. All these and other process-related issues can be potentially predicted by means
of numerical simulations. In this sense, reliable numerical models can lead to an actual im-
provement of the technology itself allowing to choose and control optimal process parameters
for specific AM processes.

Design for additive manufacturing

As initially mentioned, the true benefit behind the success of additive manufacturing is the
radical shift introduced in the design perspective. In fact, with AM technology, the classical
design for manufacturing, in which the designer has to take into account the manufacturing
constraints before the actual functionality of the product, can be now replaced by a functional
design, or design for additive manufacturing (DfAM), where the focus is now put on the
efficiency and functionality of a specific component with respect to its target application (see
e.g., figure 1.2).

Figure 1.2: Example of structures designed for AM. Left: an architectural spider bracket
(https://altairenlighten.com/). Right:crystallon, lattice structures in Rhino and Grasshopper
(https://noizear.com).

A large variety of numerical methods have been developed helping the designer to obtain
optimal shapes and topologies for mechanical and structural components, see [Allaire, 2015;
Eschenauer and Olhoff, 2001; Sigmund and Maute, 2013] for detailed reviews. All these meth-
ods have found in the additive manufacturing system their natural application, since AM
allows to directly produce the optimal design generated by the algorithm almost without any
limitation related to its complexity.
Within this framework, the so-called functionally graded material design (FGMD) addi-

tionally extends the design flexibility building performance-driven functionality directly into
the material micro-structure of the component. Contrary to the standard approach where an
homogeneous material is assigned to a pre-shaped domain, FGMD allows to vary in a contin-
uous fashion the material properties of the final product, enhancing material distribution at
the sub-millimeter scale.
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1.2 Objectives
The aim of the present thesis is to investigate the application of numerical methods in the field
of AM, showing their possible usage from a design stage up to machinery control. Validated
and reliable numerical methods can be effectively employed to optimize all the steps of AM
production, from optimal shape and topology design to the optimization of process parameters.
Before declining a numerical method in all its possible usages, we attach the utmost im-

portance to a thorough investigation of both numerical schemes and physical models able to
effectively capture the complex nature of the physical phenomena occurring during AM pro-
cesses. First, we aim at verifying and validating an isogeometric approach to thermal analysis
of AM together with the development of a robust yet minimal physical model. The goal of
this preliminary work is to provide a reliable numerical framework which could be later used
in practical applications. At the same time, we investigate another numerical method, the so-
called phase-field method, which we employ in topology optimization of functionally graded
components.
Among this broad range of applications we focused mainly on two fundamental problems:

thermal analysis of LPBF processes and FGM design. Thermal analysis of LPBF processes
is an extremely challenging topic which involves metrology, material, and numerical science
aiming at obtaining accurate measurements of the complex physical phenomena occurring dur-
ing AM processes. We consider both meso and macro-scale thermal simulations. The former
can be used, e.g., to predict the melt-pool shape behavior in presence of critical geometrical
features, or alternatively to obtain a reference solution which can be potentially employed for
real-time process control. The latter, is meant to predict macro-scale effects occurring during
LPBF processes and can be employed to estimate residual stresses in the final artifact. FGM
design is a recent topic which is gaining more and more importance among AM productions
since it allows to exploit the new design possibilities introduced by AM technology. Also
in this field, numerical methods can play a crucial role if we want to make use of all the
technological potential of AM. In fact, nowadays it is possible to obtain structural compo-
nents fulfilling the same time manufacturing constraints and optimal design only by means of
numerical procedures.
The fil rouge of the results presented within this thesis can be found in the desire to decline

non-standard numerical methods within the wide field of additive manufacturing, trying to
give new resources for the understanding of this exciting and powerful technology.

1.3 Outline
The outline of the thesis is structured as follows: chapter 2 presents an adaptive isogeometric
scheme suitable to simulate thermal problems with a localized heat source, i.e., the simplest
numerical model describing an LPBF process. This numerical method is applied to 2D exam-
ples to show its efficiency in solving highly localized thermal problems compared to standard
FEM and another adaptive isogeometric method present in literature. Chapter 3 introduces a
numerical model to predict melt-pool geometry based on an anisotropic thermal conductivity
definition. The model is validated employing the experimental results obtained at the National
Institute of Standards and Technology (NIST) within the context of the AMBench2018. Chap-
ter 4 presents a conversion procedure to obtain, from the simulated continuous temperature

https://www.nist.gov/ambench
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field, a corresponding digital signal in the field of view of a thermal camera, such that a pixel-
by-pixel comparison can be directly performed, potentially opening the door to real-time con-
trol of LPBF processes employing simulated results as ground-truth solution. In chapter 5 an
immersed numerical method based on the Finite Cell Method (FCM) is employed to perform
part-scale thermal analysis. The numerical procedure is applied to predict the thermal distri-
bution during the building process of an industrial component. Chapter 6 presents a topology
optimization procedure based on the phase-field method and asymptotic homogenization to
obtain FGM structures. The proposed numerical procedure is validated by means of a 3-point
bending test for a plane-stress structure. 3D computational results of the same problem are
also presented. Finally, in chapter 7 we draw the main conclusions of the thesis and possible
further outlooks for these researches. Finally, in the Appendices we report AMBench2018
experimental data, Inconel 625 and steel 316L thermal properties, and the main analytical
results and proofs for chapter 6.
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Chapter 2

Adaptive Isogeometric Analysis for
Heat Transfer Problems

Isogeometric analysis (IGA) [Cottrell et al., 2009; Hughes et al., 2005] is a paradigm to solve
partial differential equations employing smooth spline functions as basis for the analysis. The
classical isoparametric approach of the finite element method is reversed and the exact geom-
etry representation is now introduced within the analysis. The original idea underlying this
novel approach is to develop a tight connection between computer aided design (CAD) and
numerical analysis, with the aim of performing analysis directly from CAD models to avoid
tedious and time-consuming meshing processes. IGA has been so far successfully applied in
many engineering fields including, among others, structural analysis [Cottrell et al., 2007],
biomechanics [Kamensky et al., 2015], structural dynamics [Hughes et al., 2014], and contact
mechanics [De Lorenzis et al., 2014].
As CAD standard for spline representations, B-splines and non-uniform rational B-splines

(NURBS) are the most commonly used spline technologies in the isogeometric setting. Nev-
ertheless, due to their tensor product structure, they are not well suited to treat localized
phenomena. Hierarchical B-splines (HB-splines) [Forsey and Bartels, 1988; Kraft, 1997] is an
adaptive spline technology that enables the possibility to properly deal with local problems.
Its application in isogeometric analysis has been widely studied, see e.g. [Schillinger et al.,
2012; Scott et al., 2014; Vuong et al., 2011]. Based on the multi-level concept of HB-splines,
truncated hierarchical B-splines (THB-splines) [Giannelli et al., 2012], have also been pro-
posed as an effective tool to perform hierarchical refinement while reducing the interactions
between different levels in the spline hierarchy. The truncated basis has been successfully ap-
plied in different problems related to computer aided design [Bracco et al., 2018a; Kiss et al.,
2014] and isogeometric analysis [D’Angella et al., 2018; Giannelli et al., 2016; Hennig et al.,
2016; Marussig et al., 2018]. It is worth to mention that, while several papers investigated
refinement schemes for adaptive isogeometric methods in the last years, only very recently,
few authors also focused on the study of suitable and effective mesh coarsening [Hennig et al.,
2018; Lorenzo et al., 2017].
In this chapter we discuss a novel, adaptive numerical scheme, as introduced in Carraturo

et al. [2019a]. The proposed method is based on THB-splines defined on suitably graded
meshes to solve linear heat transfer problem including a localized heat source. The THB-spline
refinement routine follows the approach introduced in Buffa and Giannelli [2016], while the
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coarsening algorithm which automatically preserves the grading properties of the hierarchical
mesh configuration is newly introduced. Even if our simple model neglects many features
of the process, it still includes the spatial multi-scale issue present in LPBF processes. The
choice of employing an adaptive isogeometric scheme to solve the problem of a traveling laser
source is justified by the presence of high thermal gradients in the region surrounding the laser
beam. In Kollmannsberger et al. [2018] it is demonstrated that high-order schemes combined
together with adaptive mesh refinement and coarsening can optimally treat localized problems
involving steep gradients, motivating the choice of employing an adaptive isogeometric method
for this kind of applications.
We outline that, even if we consider a simple, linear, two-dimensional model, the presented

algorithms can be directly extended to 3D, non-linear, and multi-physics problems due to the
flexibility of the presented discretization technique.

2.1 Heat transfer problem
In this section the strong and the weak form of the governing equations of a heat transfer
problem are presented.
Assuming the material obeys the Fourier’s law of heat conduction with a Lagrangian ref-

erence frame, the problem can be written using the linear heat transfer model as described
in Bathe [2007]. Let us consider a temporal domain T ⊂ R and a spatial domain Ω ⊂ R2 with
Neumann boundaries ΓN such that ΓN = ∂Ω. The heat flow equilibrium in the interior of the
body gives:

Cpρ
∂θ(x, t)
∂t

−∇ · (k∇θ(x, t)) = f(x, t) in Ω× T, 2.1

where f is the external heat source, k is the thermal conductivity, Cp is the specific heat
capacity and ρ is the density of the solid material.
The problem in equation (2.1) is solved with respect to the temperature field θ = θ(x, t)

function of space and time, and defined under the following initial conditions

θ(x, 0) = θ0, in Ω, 2.2

and adiabatic boundary conditions

k∇θ(x, t) · n = 0, on ΓN × T, 2.3

where θ0 is the initial temperature of the body and n is the exterior unit normal vector.
Note that we consider a simple linear heat transfer model in order to focus on the spatial
discretization of the problem defined in equations (2.1) to (2.3). Consequently, we consider
only the adiabatic boundary conditions defined in equation (2.3) by neglecting radiation and
convection effects on the domain boundaries.
At time t the weak solution of the problem in equations (2.1) to (2.3) is obtained using the

principle of virtual temperature which can be written as follows:

Cpρ

∫
Ω
θ̃(x, t)∂θ

∂t
(x, t)dΩ + k

∫
Ω
∇θ̃(x, t) · ∇θ(x, t)dΩ =

∫
Ω
θ̃(x, t)f(x, t)dΩ 2.4

where θ̃ is the virtual temperature.
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2.2 Truncated hierarchical B-splines
This section presents the basic concepts of admissible adaptive isogeometric methods, by
exploiting truncated hierarchical B-splines Giannelli et al. [2012] defined on suitably graded
meshes as basis for the analysis. The definitions of this section mainly follow Buffa and
Giannelli [2016, 2017], where a sound mathematical theory for adaptive isogeometric methods
is fully developed, while related numerical results were recently presented in Bracco et al.
[2019].

2.2.1 Introduction to hierarchical spaces

Given a nested sequence of parametric domains Ω̂0 ⊇ . . . ⊇ Ω̂N−1, subsets of a closed hyper-
rectangle D ∈ Rd (d=2,3), we can construct the hierarchical B-spline space of depth N by
considering a hierarchy of nested tensor-product B-spline spaces of degree p, V̂ 0 ⊂ V̂ 1 ⊂ . . . ⊂
V̂ N−1. These spaces have associated the bases B̂` and a rectangular grid Ĝ` for each level `,
with ` = 0, 1, . . . , N − 1. We assume that the domain Ω̂` considered at level ` is the union of
cells of the previous level `−1. A hierarchical mesh Q̂ collects the active cells which represent
the elements of our discretization. It can be defined as

Q̂ :=
{
Q̂ ∈ Ĝ`, ` = 0, . . . , N − 1

}
,

where Ĝ` is the set of active cells of level `, namely

Ĝ` :=
{
Q̂ ∈ Ĝ` : Q̂ ⊂ Ω̂` ∧ Q̂ 6⊂ Ω̂`+1

}
.

Figure 2.1 shows an example of hierarchical mesh for d = 1. Figures 2.8 and 2.13 in section 2.5
instead illustrate several hierarchical mesh configurations for d = 2. In the present work we
consider only dyadic refinement, i.e., the children Q̂i, i = 1, . . . , 2d, of an active cell Q̂ are
obtained by bisection. We finally define the hierarchical B-spline basis Ĥ on the hierarchical
mesh Q̂ as:

Ĥ(Q̂) :=
{
β̂ ∈ B̂` : suppβ̂ ⊆ Ω̂` ∧ suppβ̂ 6⊆ Ω̂`+1, ` = 0, . . . , N − 1

}
, 2.5

where suppβ̂ denotes the intersection of the support of β̂ with Ω̂0. Hierarchical B-splines for
a univariate example are shown in figure 2.1.

2.2.2 The truncated basis
B-spline representations offer the possibility of suitably exploiting efficient refinement rules
when nested spline spaces are considered. We can then consider the representation of ŝ ∈
V̂ ` ⊂ V̂ `+1 with respect to the tensor-product B-spline basis B̂`+1,

ŝ =
∑

β̂∈B̂`+1

c`+1
β̂

(s)β̂,

and define the truncation of ŝ with respect to level `+ 1 as follows:

trunc`+1ŝ :=
∑

β̂∈B̂`+1,suppβ̂ 6⊆Ω̂`+1

c`+1
β̂

(s)β̂,
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Ĥ

Figure 2.1: Univariate hierarchical B-splines defined on three refinement levels. The elements
Q̂i are selectively activated to refine the discretization towards the right-end of the domain.
Active basis functions (solid lines) are shown together with inactive functions (dashed line).

where c`+1
β̂

(s) is the coefficient of the function ŝ with respect to the basis function β̂ at level
` + 1. By iteratively applying the truncation operation at the hierarchical basis functions in
Ĥ, we obtain the truncated hierarchical basis (see figure 2.2).

Definition 2.2.1:
The truncated hierarchical B-spline (THB-spline) basis T̂ with respect to the mesh Q̂ is defined
as

T̂ (Q̂) :=
{
Trunc`+1β̂ : β̂ ∈ B̂` ∩ Ĥ(Q̂), ` = 0, . . . , N − 2

}⋃
{
β̂N−1 : β̂N−1 ∈ B̂N−1 ∩ Ĥ(Q̂)

}
,

where Trunc`+1β̂ := truncN−1(truncN−2(. . . (trunc`+1(β̂)) . . .)), for any β̂ ∈ B̂` ∩ Ĥ(Q̂).

The key basic properties of the truncated basis are the following: non-negativity, linear
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Figure 2.2: Univariate truncated hierarchical B-splines defined on three refinement levels. The
elements Q̂i are selectively activated to refine the discretization towards the right-end of the
domain. Active truncated basis functions on each level are shown.

independence, partition of unity, and, in addition, span Ĥ = span T̂ (cfr. Giannelli et al.
[2012]).

2.2.3 Admissible meshes
In this work we use the definition of classes of admissible meshes introduced in Buffa and
Giannelli [2016].

Definition 2.2.2:
A mesh Q̂ is admissible of class m if the truncated basis functions in T̂ (Q̂) which take non-zero
values over any element Q̂ ∈ Q̂ belong to at most m successive levels.

This definition allows to consider hierarchical meshes where the number of THB-splines
acting on a single element does not depend on the total number of levels in the hierarchy, but
only on the parameter m.
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In order to implement the algorithms for admissible refinement and coarsening, see sec-
tions 2.4.2 and 2.4.3, we need to consider three additional sets of elements: the multilevel
support extension of an element, together with the so-called refinement and coarsening neigh-
borhoods.

Definition 2.2.3:
The multilevel support extension of an element Q̂ ∈ Ĝ` with respect to level k, with 0 ≤ k ≤ `,
is defined as:

S(Q̂, k) :=
{
Q̂′ ∈ Ĝk : ∃β̂ ∈ B̂k, suppβ̂ ∩ Q̂′ 6= ∅ ∧ suppβ̂ ∩ Q̂ 6= ∅

}
.

That is, the multilevel support extension is formed by the support of B-splines of level k,
such that they do not vanish on an element Q̂. By following Buffa and Giannelli [2016], we
now consider the neighborhood of an element for the refinement algorithm, which we rename
as refinement neighborhood to differentiate it from the analogous set used in coarsening.

Definition 2.2.4:
The refinement neighborhood Nr(Q̂, Q̂,m) of an element Q̂ of level ` with respect to the class
of admissibility m is defined as:

Nr(Q̂, Q̂,m) :=
{
Q̂′ ∈ Ĝ`−m+1 : ∃ Q̂′′ ∈ S(Q̂, `−m+ 2), Q̂′′ ⊆ Q̂′

}
.

Note that, when considering the element Q̂ of level ` to be refined into four elements of
level `+ 1, we want to guarantee that any THB-spline of level `−m+ 1 acting on Q̂ is fully
truncated with respect to level `−m+ 2, so that it will vanish on the children of Q̂ which will
be activated after the refinement of Q̂. By (recursively) refining the elements in the multilevel
support extension of level ` − m + 2 , as in the definition of the refinement neighborhood,
guarantees that the admissibility property is maintained. Note however that this choice is
conservative in nature, since we do not consider the real support of the THB-splines, but only
their truncation with respect to level `−m+ 2, while they could be truncated at intermediate
levels depending on the mesh configuration.
Finally, we introduce here the definition of coarsening neighborhood of an element, an addi-

tional set of elements required for admissible coarsening.

Definition 2.2.5:
The coarsening neighborhood Nc(Q̂, Q̂,m) of an element Q̂ of level ` with respect to the class
of admissibility m is defined as:

Nc(Q̂, Q̂,m) :={
Q̂′ ∈ Ĝ`+m : ∃ Q̂′′ ∈ Ĝ`+1 and Q̂′′ ⊂ Q̂, with Q̂′ ∈ S(Q̂′′, `+ 1)

}
.

The set Nc(Q̂, Q̂,m) includes the active elements of level ` + m that are contained in the
support extension of the children of Q̂. By starting from an admissible mesh of class m, when
considering the element Q̂ of level ` to be reactivated, to preserve the admissibility condition
we have to ensure that newly activated basis functions will vanish on the elements of level
`+m. This is guaranteed when the coarsening neighborhood is empty, because newly added
functions will be fully truncated with respect to level `+ 1. This property allows us to define
a fully automatic way to preserve admissibility of the mesh, that we exploit in the algorithm
of Section 2.4.3.
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2.3 Adaptive isogeometric analysis
In this section the discrete form of the problem of section 2.1 is derived.

2.3.1 Spatial discretization
In order to define the mesh and basis functions for the physical domain Ω we introduce the
isogeometric mapping F : Ω̂0 → Ω, such that:

x ∈ Ω, x = F(x̂) =
∑
τ̂∈T̂ 0

Cτ̂ τ̂ (x̂) ,

with x̂ ∈ Ω̂0, Cτ̂ ∈ Rd, and where T̂ 0 is the truncated basis defined on an initial tensor-product
mesh.
The corresponding hierarchical mesh in the physical domain can be written as:

Q =
{
Q = F(Q̂) : Q̂ ∈ Q̂

}
and, analogously,

Ω` = F(Ω̂`), G` =
{
Q ∈ Q : Q̂ ∈ Ĝ`

}
and G` =

{
Q ⊂ Ω : Q̂ ∈ Ĝ`

}
.

The weak form of the heat transfer problem equation (2.4) can now be written in a discrete
form applying the isogeometric expansion to the temperature field θ, such that:

θ(x, t) = N(x)θt,

where θt is the column vector of temperature degrees of freedom (DOFs) of the hierarchical
mesh Q at time t and N(x) is the row vector of the corresponding THB-spline basis functions.
We can now rewrite the integrals of equation (2.4) at a given instant in time in a matrix form,
such that:

Mθ̇t + Kθt = ft, 2.6

where

M = Cpρ

∫
Ω

NTNdΩ, K = k

∫
Ω

BTBdΩ,

and

ft =
∫

Ω
NTf(x, t)dΩ,

with B(x) = ∇N(x). Equation (2.6) presents the time derivative of the temperature vector,
therefore an additional discretization in time is required to numerically solve the problem.
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2.3.2 Time integration
The linear system in equation (2.6) is approximated in time using the unconditionally stable
backward Euler approach. At time t + ∆t, equation (2.6) can be written in terms of the
temperature increment ∆θt+∆t as:

M∆θt+∆t + ∆tK∆θt+∆t = ∆tft+∆t −∆tKθt, 2.7

where ∆t is the constant time increment at each time step and θt is the the solution vector
at the previous time step. Finally, we can iteratively solve the discrete problem defined
in equation (2.7) using the algorithms described in the next section.

2.3.3 Error estimator
Before describing the implementation of the numerical method, we introduce the error es-
timator used to drive our adaptive scheme. We employ a residual-based a posteriori error
estimator εQ defined as:

ε2
Q(θ,Q) =

∑
Q∈Q

ε2
Q, 2.8

where

ε2
Q = h2

Q

∫
Q

| ft+∆t − Cpρ
θt+∆t − θt

∆t +∇ · (k∇θt+∆t) |2 dQ

and hQ is the size of the element Q. For simplicity, since we are using homogeneous Neumann
boundary conditions, we neglect the boundary terms that should appear in the estimator.
Finally, to estimate the quality of the results with respect to a reference solution θt,ref , we

need to define the error with respect to a certain norm. To this end we employ two different
definitions of the energy of the system. Following O’Hara et al. [2011], we define the internal
energy of the system Ei(θt,θt) at time t as

Ei(θt,θt) = k

2

∫
Ω
∇θt · ∇θtdΩ,

whereas the total energy of the system ET (θt,θt) at time t is defined as

ET (θt,θt) = 1
2

(
k

∫
Ω
∇θt · ∇θtdΩ + Cpρ

∫
Ω
θt
∂θt
∂t
dΩ
)
.

We can then define the relative error in internal and total energy at a given instant in time t
as

εi =

√
| Ei(θt,ref ,θt,ref )− Ei(θt,θt) |2

| Ei(θt,ref ,θt,ref ) |2 and

εT =

√
| ET (θt,ref ,θt,ref )− ET (θt,θt) |2

| ET (θt,ref ,θt,ref ) |2
,

respectively.



2.4. Algorithms for admissible adaptivity 15

2.4 Algorithms for admissible adaptivity
This section presents the implementation of admissible adaptivity that we developed in
GeoPDEs starting from the algorithms previously implemented in the code and described
in [Bracco et al., 2018b; Garau and Vázquez, 2018]. The initial set of algorithms in Ga-
rau and Vázquez [2018] is now modified, since we aim here at solving the parabolic problem
of equation (2.7) by employing admissible adaptive discretizations.

2.4.1 Overview of the scheme
We are given an initial tensor-product mesh Q0, the corresponding truncated hierarchical B-
spline space T0, an initial solution vector θ0, a class of admissibility m, a maximum number
of refinement levels N , and a tolerance tol. With such a set of initial parameters algorithm 1
returns an approximated solution of the problem defined in section 2.1 employing a back-
ward Euler time integration scheme together with adaptive mesh refinement and coarsening
procedures fulfilling the admissibility requirements. In this way, the algorithm allows to con-
centrate the computational efforts where the estimated errors are higher and, at the same
time, to obtain an admissible mesh that gives the possibility to avoid undesired oscillations in
the solution. The algorithm can be split, at each time step, into two separate parts: first, we
refine the mesh iteratively, and, subsequently, we coarsen the mesh to generate the initial mesh
for the next time step, and project the solution of the previous time step onto the coarsened
space. These two parts are detailed in the following subsections.

Algorithm 1 solve_heat_transfer_problem
Input: Q0, T0, θ0, m, N , tol
Output: Θ := {θ0, . . . ,θtend}
1: t← 0
2: (Qt+∆t, Tt+∆t, εQ,θt+∆t)←adpt_iter_refine(Qt, Tt, θt, m, t, N , tol). algorithm 2 (1st

time step)
3: t← t+ ∆t
4: while t < tend do
5: (Qt+∆t, Tt+∆t, εQ,θt+∆t)←adpt_iter_refine(Qt, Tt, θt, m, t, 2, tol) . algorithm 2
6: Mc ←mark_min(εQ,Qt+∆t) . equation (2.10)
7: Qt+∆t ← coarsen(Qt+∆t,Mc,m) . algorithm 5
8: (Tt+∆t,θt+∆t)← project(Qt+∆t,Tt+∆t,θt+∆t). L2 projection onto the coarsened space
9: t← t+ ∆t
10: end while

2.4.2 Refinement
Algorithm 1 at each time step calls the function adpt_iter_refine defined in algorithm 2
to adaptively refine the mesh and the corresponding function space. The adpt_iter_refine
function returns a refined mesh and the corresponding function space together with the so-
lution vector and the estimated error on the refined space. Algorithm 2 starts by solving
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Algorithm 2 adpt_iter_refine

Input: Q0, T 0, θt, m, t, IMAX, tol
Output: (Q, T , εQ,θt+∆t)
1: i← 0
2: ∆θt+∆t ←solve(Qi, T i,θt) . equation (2.7)
3: θt+∆t ← θt + ∆θt+∆t
4: εQ ←estimate(θt+∆t,Qi, T i) . equation (2.8)
5: while i ≤ IMAX & εQ ≥ tol do
6: Mr ←mark_max(εQ,Qi) . equation (2.9)
7: Qi+1 ← refine(Qi,Mr,m) . algorithm 3
8: (T i+1,θt)← project(Qi+1,T i,θt) . knot insertion as described in [Garau and

Vázquez, 2018, Sec. 4.3]
9: i← i+ 1

10: ∆θt+∆t ←solve(Qi, T i,θt)
11: θt+∆t ← θt + ∆θt+∆t
12: εQ ←estimate(θt+∆t,Qi, T i)
13: end while
14: Q ← Qi, T ← T i

equation (2.7) on the mesh obtained in the previous time step Q0. Successively, the algorithm
estimates the element error and marks a set of active elements to be refined

Mr = mark_max (εQ(θt, Q)Q∈Q,Q) , 2.9
following the so-called Dörfler marking (cfr. Dörfler [1996]), i.e. by considering a fixed refine-
ment marking parameter αr ∈ (0, 1] such that

εQ(θt,Mr) ≥ αrεQ(θt,Q),
where θt is the discrete solution at time t.
The marked elements are then refined employing algorithms 3 and 4, previously introduced

in Buffa and Giannelli [2016], see also Bracco et al. [2018b] for a more detailed explanation of
these algorithms which generate admissible meshes. Note that the choice of the parameter m
naturally influences the grading of the the hierarchical meshes.

Algorithm 3 refine
Input: Q,Mr, m
Output: Q?
1: for Q ∈ Q ∩Mr do
2: Q ←refine_recursive
3: (Q,Q,m)
4: end for
5: Q? ← Q

Algorithm 4 refine_recursive
Input: Q, Q, m
Output: Q
1: for Q′ ∈ Nr(Q, Q,m) do
2: Q ←refine_recursive
3: (Q,Q′,m)
4: end for
5: if Q has not been subdivided then
6: subdivide Q and
7: update Q by replacing Q with its

children
8: end if
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Algorithm 2 is terminated when either a maximum number of iterations is reached or the
estimated error εQ is below a certain tolerance tol. In particular, in this work we iterate
the first time step until the maximum level of refinement N is achieved, while, for the re-
maining time steps, we set the maximum number of iterations equal to two, see the call to
adpt_iter_refine (algorithm 2) on line 5 of solve_heat_transfer_problem (algorithm 1).
This choice is justified by the small values of ∆t that are generally used in AM simulations
to discretize the problem in time. Even if for linear problems a different choice for the time
step size and, then, for the stopping criteria could be made, we aim at developing and verify
an algorithm suitable to be used in more complex AM applications. In these applications, in
fact, the time step increments are necessarily very small due to the strong non linearity of the
problem, therefore two consecutive meshes would not differ too much from each other.
At each iteration of algorithm 2 the temperature θt at the previous time step must be written

in terms of basis functions of the newly computed mesh. To guarantee the best accuracy this
could be done as in line 8 of algorithm 1, by applying a projection of the (fine) solution of the
previous time step onto the space associated with the new mesh, see the details in section 2.4.3.
In view of the above considerations, and to save computational time, this projection is only
applied onto the space defined on the coarse mesh Q0. For the refined meshes, instead of
computing a new projection we use again the projection onto the coarse space associated to
Q0, and to obtain its expression in terms of the basis functions of the refined space we take
advantage of the nestedness of the spaces, using knot insertion as described in Garau and
Vázquez [2018]. In other words, we always consider the temperature at the previous time θt
in the coarse mesh. In fact, with our choice we lose some accuracy each time we coarsen the
mesh, but, since we employ very small time steps, this approximation remains acceptable as
it will be shown in section 2.5.

2.4.3 Coarsening
In order to complete the time step routine we need to coarsen the hierarchical mesh, that will
be used in the next time step. Also in this case we first mark a set of active elements to be
coarsened

Mc = mark_min (εQ(θt, Q)Q∈Q,Q) , 2.10

fixing a coarsening marking parameter αc ∈ (0, 1] and considering the elements with the lowest
estimated error, such that

εQ(θt,Mc) ≤ αcεQ(θt,Q).

The last step is the coarsening of the mesh, which is described in algorithm 5. An important
issue is to decide, from the list of marked elements, the elements that should be reactivated. In
principle, the parents of all marked elements could be reactivated. However, since coarsening
implies a loss of information we have chosen to be conservative, and an element is reactivated
only if all its children are marked. In other words, elements that are not marked will remain
active. This is ensured by the first condition in line 6 of the algorithm. Moreover, to guaran-
tee that the coarsened mesh fulfills the admissibility property, we perform one more check on
the selected elements: the element can be reactivated only if the coarsening neighborhood is



18 2. Adaptive Isogeometric Analysis for Heat Transfer Problems

empty, otherwise the admissibility condition would be violated, as we have explained in sec-
tion 2.2.3. If the chosen element satisfies the two conditions, the last step, performed in line 7
of algorithm 5, updates the mesh by reactivating the element and removing its children.

Algorithm 5 coarsen
Input: Q,Mc, m
Output: Q
1: for Q ∈Mc do
2: Rc ← Rc∪ get_parent(Q)
3: end for
4: for Q ∈ Rc do . This loop must be done from the finest to the coarsest level
5: Qc ← get_children (Q)
6: if (Qc ⊂Mc & Nc(Q, Q,m) = ∅) then
7: update Q by activating Q and removing its children Qc

8: end if
9: end for

Once the mesh is coarsened, we need to project the solution from the fine space onto the
coarse one, and in this work we have chosen to do it by using a global L2 projection. With a
similar notation to the one used in section 2.3.1, with the c, f subindices referring to coarse
and fine spaces, respectively, the L2 projection is computed as the solution of the linear system

Mcθt,c = b, with Mc =
∫

Ω
NT
c NcdΩ and b =

∫
Ω

NT
c (Nfθt,f )dΩ.

Other alternatives to compute the projection with local operators are given by the quasi-
interpolant in Speleers and Manni [2016], or the Bézier projection as presented in Lorenzo
et al. [2017].
We remark that the coarsening algorithm for THB-splines that we propose differs from

other algorithms presented in previous papers. In particular, in Hennig et al. [2018] a global
a posteriori check for the admissibility of the mesh is performed after coarsening, which may
cause to refine again reactivated elements. In our algorithm this check is local and performed
before reactivating the elements. This guarantees an a priori automatic control which saves
computational time. In Lorenzo et al. [2017] the admissibility condition is replaced by a similar
concept, that the authors call function support balancing, that also guarantees a certain grading
of the mesh. As we will see in the numerical tests of section 2.5, the condition of admissibility
maintains the same accuracy as the function support balancing, while the obtained refinement
is more local for the former, which leads to spaces with many less degrees of freedom.

2.5 Numerical examples

2.5.1 2D Benchmarks
Two numerical examples are discussed in the following section. In the first example, de-
fined by a Gaussian heat source tavelling on a circular arc scan track, we compare the solution
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obtained using an admissible hierarchical mesh with the ones computed employing uniform re-
finement, non-admissible hierarchical refinement and the function support balancing algorithm
introduced in Lorenzo et al. [2017]. The second example consists of a Gaussian heat source
traveling on a multi-track source path. In this case we investigate the ability of the presented
admissible adaptive scheme to capture the influence of adjacent scan tracks on the temperature
evolution. Again we compare the solution of the admissible adaptive mesh with respect to the
results obtained with uniform and non-admissible adaptive refinement. In both the examples
we use standard Gauss integration to numerically approximate the integrals of equation (2.6)
and we set the admissibility parameter m equal to 2. The results are obtained using GeoPDEs
(cfr. de Falco et al. [1 12]; Vázquez [2016]), a MATLAB R© toolbox which implements, beside
classical tensor product IGA, also adaptive hierarchical discretizations Bracco et al. [2018b];
Garau and Vázquez [2018], on an Intel R© CoreTM i7-6700, CPU@3.40GHz, RAM 24Gb.

Circular arc scan track

The first example consists of a Gaussian heat source traveling along a circular arc on a 10×10
mm2 surface domain, as described in figure 2.3. The external heat source function f is modeled
using a Gaussian function defined as:

f = Pη exp
(
−
(
(x− x0)2 + (y − y0)2) /r2

h

)
, 2.11

where P is the heat source power, η the absorptivity of the material, rh the heat source spot
radius, while (x0, y0) is the position of the source at a given instant in time. In table 2.1 the
values adopted for the process and the material model parameters are reported. In this first
example we aim at comparing different discretization techniques without focusing on the real
physics of the process, justifying in such a way the choice of simple unitary values for the
material parameters.

Parameters Values
Laser power P 9× 105[W]
Laser speed 1.57 [mm/sec]

Absorptivity η 0.33
Source radius rh 100 [µm]
Conductivity k 1.0 [W/mm/K]

Specific heat capacity Cp 1.0 [J/kg/K]
Density ρ 1.0 [kg/mm3]

Initial temperature θ0 20.0 [◦C]

Table 2.1: Circular arc scan track: Process and material parameters.

For such a problem we generate an overkill solution obtained with B-spline of degree 4
defined on 29 × 29 isogeometric tensor-product elements, while adaptive IGA discretization
starts from a single knot span and is recursively bisected towards the regions with the highest
error, as indicated by the error estimator defined in equation (2.8) choosing αr = 0.1 and
αc = 0.25.
Figure 2.4 (right) shows the relative error in the internal energy norm εi with respect to the

reference solution for two different cubic admissible adaptive discretizations with seven and
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Figure 2.3: Circular arc scan track: Heat source moving on a circular arc, the red arrow
indicates the scan path (all distances are in mm).

eight levels of refinement (adm. adap. l = 7 and adm. adap. l = 8) and their corresponding
uniform meshes (unif. 26 × 26 and unif. 27 × 27), i.e. uniform meshes with elements of
the same size of the smallest element in the adaptive mesh. It can be observed that the
relative errors of the adaptive and the uniform discretization are almost identical for both
cases, whereas, as shown in figure 2.4 (left), the adaptive schemes require almost two orders
of magnitude less DOFs compared to uniform IGA meshes. We want to stress the fact that
this difference increases together with the maximum refinement level, i.e. the more localized
is the problem the smaller is the resulting linear system (and thus the memory consumption)
compared to the uniform case for the same level of accuracy. A similar behavior can also be
observed in figure 2.5, where the CPU time of the admissible adaptive discretization decreases
considerably compared to the corresponding uniform discretization when the maximum level
of refinement increases.
Finally, we investigate the behavior of the proposed algorithm with respect to the choice of

the admissibility class m, defined in section 2.2.3. We also compare the obtained results with
the ones for non-admissible grids, and for the function support balancing algorithm with the
function support balancing parameter set to 1 (for further details see Lorenzo et al. [2017,
Sec. 7]). To this end, we decrease the refinement Dörfler parameter αr to 0.059 in the non-
admissible case such that we can obtain a mesh with 8 levels of refinement at each time step
also for this grid, which otherwise (keeping αr = 0.1) would return a coarser grid than the
admissible one using the same number of time steps. Obviously, the same result for non-
admissible meshes can also be obtained increasing the maximum number of iterations, but we
prefer to modify the Dörfler parameter in an effort to obtain a fair comparison between the
different discretizations.
Figure 2.6 presents the comparison between the four different cases in terms of total number
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Figure 2.4: Circular arc scan track: DOFs (left) and relative errors (right) comparison at each
time step for different levels of refinement using adaptive THB-splines and uniform tensor-
product meshes.
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Figure 2.5: Circular arc scan track: CPU time comparison at each time step for different levels
of refinement using adaptive THB-splines and uniform tensor-product meshes.

of DOFs and relative error at each time step, respectively. We can observe that both the
function support balancing and the admissible adaptive discretization with m = 2 reach the
same level of accuracy, while the non-admissible grid and the admissible discretization with
m = 3 have a non constant behavior and present in many time steps a much higher error. We
notice that increasing the parameter m reduces the number of DOFs, but it strongly affects
the accuracy of the solution. Instead, the function support balancing provides the same ac-
curacy than the admissible adaptive scheme with m = 2, but with a higher number of DOFs.
Figure 2.7 reports the temperature distribution at different time steps using admissible grids,
in this case we cannot graphically observe any substantial difference between the admissible
and non-admissible results which is instead captured when we look at the relative energy error
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Figure 2.6: Circular arc scan track: DOFs (left) and relative errors (right) for the admissible
adaptive mesh with m = 2 and m = 3, the function support balancing [Lorenzo et al., 2017]
and a non-admissible mesh.

of figure 2.6. In any case we can observe how the steep temperature gradients in the proximity
of the laser spot can be optimally captured by means of high-order and highly continuous
approximation schemes, while the locality of the solution naturally calls for an adaptive dis-
cretization. The comparison of figure 2.8 between admissible and non-admissible grids shows
that we obtain much more graded meshes if admissibility requirements are matched. We can
conclude that the proposed algorithm leads to an excellent trade-off between accuracy and
number of DOFs (and consequently memory consumption and computational efficiency). In
fact, we obtain an error comparable with the uniform grid drastically reducing the total num-
ber of DOFs, while the function support balancing algorithm leads to a similar accuracy but
with almost two times more DOFs per time step. Finally, we want to remark that we observe
a similar behavior in terms of DOFs per time step also for hierarchical meshes with a higher
degree.

Alternate scan directions

In this second example we consider a moving heat source traveling along multiple, adjacent, 8
mm long tracks in alternate directions on a surface of 10× 10 mm2, as depicted in figure 2.9.
The external heat source is again defined using the Gaussian distribution of equation (2.11),
but here we consider a two times smaller radius. This scale ratio (between the domain and the
heat source radius) is close to the typical one we can find in LPBF applications. We set the
laser scan distance between two consecutive tracks (hatch distance) equal to the laser radius,
this is a typical choice in LPBF processes since it avoids gaps between solidified material
regions. For this example we set αr = 0.08 and αc = 0.25, while the other problem parameters
are reported in table 2.2.
We now compare an admissible adaptive mesh with 9 levels of refinement (adm. adap. l = 9)

with respect to a non-admissible adaptive mesh with the same maximum level of refinement
(non-adm. adap. l = 9) and the corresponding uniform mesh (unif. 28 × 28). Analogously to
what we did in the previous section, we set a different Dörfler parameter for the non-admissible
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Figure 2.7: Circular arc scan track: Evolution of the temperature distribution for admissible
meshes with m = 2 at time steps 1, 10 and 20.

discretization (αr = 0.07). Figure 2.10 shows the CPU time and the total number of DOFs
at each time step for three considered grids. We can observe that, compared to the uniform
mesh, in both cases we obtain a remarkable advantage when employing an adaptive mesh. This
improvement in terms of both DOFs and CPU time is not affecting the quality of the solution
and it is considerably higher than in the previous example due to the higher refinement level
required to capture a more localized heat source. In fact, as shown in figure 2.11, the values
of both the internal and the total energy at each time step do not present any substantial
difference between the uniform and the admissible adaptive case. On the other side, when we
adopt a non-admissible mesh, the internal energy value strongly oscillates from the reference
value, while we have a limited advantage in terms of both CPU time and number of DOFs
compared to the admissible mesh.
Finally, figures 2.12 and 2.13 report the temperature distributions and the corresponding

discretizations at different positions of the heat source along the path, comparing admissible
and non-admissible results. We note that, even if the solution is extremely localized, the
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Figure 2.8: Circular arc scan track: Evolution of the non-admissible (left) and admissible with
m = 2 (right) adaptive meshes at time steps 1, 10, 20 (from top to bottom).

admissible adaptive scheme allows to avoid any undesired oscillation in the solution, while this
feature is not maintained throughout the entire simulation when we adopt a non-admissible
discretization. In particular, see the solution at time steps 40 and 330 in figure 2.12.

2.6 Summary and further outlooks
We introduced a complete set of algorithms to perform admissible refinement and coarsen-
ing using THB-splines, and we successfully applied it to solve heat transfer problems with a
moving heat source. The numerical examples clearly show the advantages of the presented
admissible adaptive discretization, in terms of both memory consumption and computational
efficiency, with respect to uniform IGA mesh with the same level of accuracy. Moreover, we
demonstrated the importance of employing admissible meshes for these kinds of problems in
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Figure 2.9: Alternate scan directions: Heat source moving on multiple adjacent tracks (in red)
with alternate directions.

order to avoid undesired oscillations which might lead to nonphysical results. We also ob-
served that the proposed algorithms lead to an excellent trade-off between the accuracy of
the numerical results and the total number of DOFs of the system, showing better perfor-
mances compared to other schemes with different refinement and coarsening algorithms, with
or without taking into account grading parameters. Finally, the error estimator, together
with a robust admissible discretization, is able to capture the influence of multiple adjacent
tracks on the final temperature distribution, matching one of the main requisites required
by LPBF applications. As further outlooks of the presented results, we plan to extend the
application of the presented discretization to 3D, non linear, and multi-physics problems in
order to efficiently perform reliable simulations of AM processes.

Parameters Values
Laser power P 190[W]
Laser speed 0.8 [m/sec]

Absorptivity η 0.33
Laser radius rh 50 [µm]
Conductivity k 29.0× 10−3 [W/m/K]

Specific heat capacity Cp 650.0 [J/kg/K]
Density ρ 8440.0 [kg/m3]

Initial temperature θ0 25.0 [◦C]
Hatch distance 50 [µm]

Table 2.2: Alternate scan directions: Process and material parameters.



100 200 300 400 500
100

101

102

Time steps

T
im

e
[s
]

unif. 28 × 28

adm. adap. l = 9

non-adm. adap. l = 9

100 200 300 400 500
100

101

102

103

104

105

Time steps

D
O
F
s

unif. 28 × 28

adm. adap. l = 9

non-adm. adap. l = 9

Figure 2.10: Alternate scan directions: CPU time (left) and DOFs (right) comparison at each
time step between uniform, admissible and non-admissible adaptive meshes with 9 levels of
refinements.
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Figure 2.11: Alternate scan directions: Internal (left) and total (right) energy of the system at
each time step between uniform, admissible and non-admissible adaptive meshes with 9 levels
of refinements.



Figure 2.12: Alternate scan directions: Evolution of the non-admissible (left) and admissible
(right) temperature distributions at time steps 40, 150, 330, and 500 (from top to bottom)
with contour lines at 1000, 1500, 2000 and 2500◦C.



Figure 2.13: Alternate scan directions: Evolution of the non-admissible (left) and admissible
(right) adaptive meshes at time steps 40, 150, 330, and 500 (from top to bottom).
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Chapter 3

Numerical Modelling and
Experimental Validations

The shape and thermal history of the melt pool are key ingredient to determine the physical
properties of an artifact generated through a welding process. Therefore, the prediction of
weld pool dynamics has been a subject of intensive research in the last decades in both the
experimental and the numerical modeling community of welding; e.g., recent reviews of this
subject are provided in Fotovvati et al. [2018]; Svenungsson et al. [2015]. Furthermore, it is fun-
damental to observe that process-structure-property relationships are also tightly interlinked
and strongly determined by the characteristics of the weld pool in laser LPBF technologies
(see e.g., Smith et al. [2016]). Therefore, an accurate thermal analysis is a key ingredient in
the numerical simulations and predictions of LPBF processes as well.
To this end, many physical models have been proposed to obtain accurate and reliable

numerical approximations of melt pools. Although different in scale, the basic phenomena
in LPBF technology are similar to those in arc welding processes, see Goldak and Akhlaghi
[2005]; Lindgren [2007]; Tanaka [2004] for an overview. Recent summaries more specific to
LPBF processes are published in Megahed et al. [2016]; Schoinochoritis et al. [2017]; Smith
et al. [2016].
While particle based models [Khairallah et al., 2016] as well as Lattice Boltzmann type

approaches [Körner et al., 2011] exist, most common are continuum models based on the con-
servation of mass, momentum and energy [Yan et al., 2018]. Continuum approaches allow for
modeling the transient evolution of primal variables (temperatures, pressures, and velocities)
taking into account a large number of effects, such as the convection inside the melt pool,
also including the one caused by a gradient in the surface tension (Marangoni effect as well as
capillary effects), vaporization, momentum losses in mushy zones due to porous media effects,
etc.
All these models may deliver very accurate results, but the more effects they include, the

more computational power they require. Additionally, the abundance of models comes along
with a wealth of parameters: these may be material viscosity, density, thermal conductivity
and capacity, latent heat, etc., most of which show a non-negligible temperature dependence,
such that their accurate, experimental determination may be both crucial and critical. Fur-
ther modeling parameters, such as emissivity or absorptivity or even the geometry of powder
particles, may come into play and they can be introduced in the model as boundary or ini-
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tial conditions. However, accurate measurements of many of the listed parameters are not
publicly available. This is even true for the most basic parameters, such as heat capacity or
thermal conductivity, that are not published for the temperatures involved in metal based
LPBF processes. All this drought of information results in the fact that even the evaluation
of several parameters may itself often rely on models which, in turn, need to be calibrated
against further observations.
The dilemma of choosing a correct model for the case of limited data is an important issue

in statistics. As an example, George Box [Box, 1976] stated, somewhat drastically in his well
known aphorism, that all models are wrong and that, therefore, the most complicated model
is not necessarily the best. Instead, it is recommended to follow the lines of William of Occam,
in which an economical description of the observations is sought which ‘is as simple as possible,
but not simpler’.
Following this line of thought, in Kollmannsberger et al. [2019] we introduce and validate an

economical model able to replicate the results obtained by the benchmark measurements of a
single line laser stroke on a bear metal plate of IN 625 published in www.nist.gov/ambench
[2018]. In this chapter, an extended version of the model and results discussed in Kollmanns-
berger et al. [2019] is presented.

3.1 Governing equations
We use a non-linear heat transfer equation as a physical model to describe the evolution of
temperature T = T (t,x) as a function of space and time. Given a spatial domain Ω and a
time interval T = [0, tend), the heat transfer equation can be written as follows:

ρc
∂T

∂t
+ ρL

∂fpc
∂t
−∇ · (k∇T ) = 0 in Ω× T . 3.1

Therein ρ and L describe the density and the latent heat of the material, c = c(T,x) and k =
k(T,x) are the temperature dependent heat capacity and thermal conductivity of the material,
while fpc = fpc(T ) is the phase-change function describing the solid-to-liquid phase transition
of the material. Therefore, beside the non linear contribution of the heat capacity and thermal
conductivity, the latent heat term of equation (3.1) introduces a further nonlinearity into the
problem.
Equation (3.1) is completed by the initial condition at time t = 0:

T (x, 0) = T0 in Ω, 3.2

as well as Neumann boundary conditions:

k∇T · n = qr + ql on ΓN × T . 3.3

Herein, T0 is the initial temperature of the body, n is the unit normal vector, ql is the heat
flux input and qr is the radiation boundary condition defined as:

qr = σε
(
T 2 + T 2

e

) (
T 2
e − T 2) . 3.4

In equation (3.4) σ is the Stefan-Boltzmann constant, ε is the emissivity of the material, and
Te is the ambient temperature. In our model, convection boundary conditions are neglected.
Further details, specifically the adopted finite element formulation, are provided in Celentano
et al. [1994] and Kollmannsberger et al. [2018].
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Figure 3.1: Phase change function for different values of the parameter S.

Phase-change model

For iso-thermal phase changes, the function fpc exhibits a jump at the melting temperature Tm,
as the temperature changes the material state from solid to liquid. Since the phase-change for
metals is actually non-isothermal, we regularize this sudden jump between two temperatures:
a solidification temperature Ts and a liquid temperature Tl, with Ts < Tl. We can now define
the phase change function fpc, such as:

fpc(T ) = 1
2

[(
S

2
Tl − Ts

(
T − Ts + Tl

2

))
+ 1
]
, 3.5

where the parameter S in equation (3.5) is initially estimated such that the bulk of the phase
change actually occurs between Ts and Tl (see Figure 3.1). Nevertheless, since this value
cannot be measured, it requires calibration.

Heat flux model

In the sequel we consider two variants of the heat flux input ql. The first variant is the
double elliptical model introduced by Goldak et al. [1984] and depicted in figure 3.2. The
front quadrant is defined by:

ql = 2Pηff
πacf

exp
(
−2((z′ − z′0)/c2

f + (x− x0)/a2)
)
, 3.6

while in the rear quadrant it takes the form:

ql = 2Pηfr
πacr

exp
(
−2((z′ − z′0)/c2

r + (x− x0)/a2)
)
. 3.7

Herein, P is the laser power and η is the absorptivity of the material. The geometrical
parameters z′0 and x0 define the center of the laser beam on the upper surface at time t, while
ff and fr are the fraction of heat deposited in the front and the rear quadrant respectively,
which have the side condition that fr + ff = 2 (see [Goldak et al., 1984] for further details).
The second variant the heat source ql which we consider in this work is not a model. In

fact, ql is directly provided to equation (3.3) as given by corresponding measurements.
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Figure 3.2: Goldak model for the heat flux input. The model consists in a double-ellipse on
which a gaussian profile is defined.

3.2 Model Verification
The computational model was verified against the series of analytical or semi-analytical solu-
tions defined in Kollmannsberger et al. [2018], where a multi-level hp-discretization was used.
The computational model utilized in the present work is slightly different, as it uses the IGA
discretization described in chapter 2, wherein multi-level Bézier extraction is applied to con-
struct an efficient discretization which is refined locally in the vicinity of the laser beam. This
implementation was verified in D’Angella et al. [2018] in two dimensions as well as in three
dimensions using the same series of problems which were also used for the verification of the
multi-level hp-basis in Kollmannsberger et al. [2018]. Since the focus of the present chapter is
the validation of the model, we will not repeat these extensive verification studies. Instead,
in the next section of this chapter, we will use the capabilities of the proposed discretization
to directly evaluate the validity of the physical model given in section 3.1.

3.3 Model Validation

As a preamble to this section we want to highlight the fact that there are situations (e.g.
the presence of highly complex phenomena, problem physics still unclear, model uncertainties
and difficulties in ascertain its effectiveness, inability to measure all the model parameters)
in which model validation must consist of two steps. In the first step (calibration step)
the indeterminacy of the physical model is investigated and calibrated against a first set of
experimental evidences; in the second step (validation step) the numerical results are compared
against a different set of experimental evidences in order to define the range of validity and
the robustness of the numerical model. The case under investigation is characterized by the
inability to measure all the model parameters, in particular we have limited information on
the absorptivity, emissivity, thermal conductivity and heat capacity of the material at high
temperature, justifying the choice of the previously defined two-step model validation process.
In section 3.3.1 we will shortly describe and report the experimental benchmarks published

in www.nist.gov/ambench [2018]. Following the previously described steps of the validation
procedure, first, in section 3.3.2, we calibrate the isotropic model of section 3.1 using the
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double ellipsoidal heat source introduced by Goldak et al. [1984] and then we validate the
isotropic model using the two heat fluxes described in section 3.1. For the case in which an
accurate measurement of the laser power distribution is given, we observe that the isotropic
material assumption has a very limited range of validity. These findings serve as a motivation
to extend the physical model by introducing anisotropic conductivities. This extended model
is then presented in section 3.3.3 where it will be demonstrated that it predicts weld pool
shapes with an improved accuracy.

3.3.1 Benchmark cases
All benchmark cases are thoroughly defined in the laser additive manufacturing benchmarks
published in www.nist.gov/ambench [2018], including a detailed report on the measurements.
The benchmarks are obtained through a traveling laser beam on a bare metal plate of nickel-
based alloy IN625. The experimental quantities we will use to validate our model are: width,

Figure 3.3: Bare plates of IN625 used for AMBench experiments. Courtesy of NIST.

length, and depth of the melt pool as defined in CHAL-AMB2018-02-MP of the above refer-
ence. We also report on the cooling rates defined in CHAL-AMB2018-02-CR, although they
are not the primal focus in the work at hand. The experimental raw data for both melt
pool and cooling rate are tabulated in appendix A. The benchmarks cited above and reported
in www.nist.gov/ambench [2018] were performed on two different machines: an EOS M270,
which in this work will be referred to using the designation commercial build machine (CBM)
and the NIST-built additive manufacturing metrology testbed (AMMT) machine of figure 3.4.
On each one of the two machines a set of ten measurements was carried out for three different
cases (labeled A, B, and C), i.e. for varying laser power and speed. These cases are specified
in table 3.1 for the CBM machine and table 3.2 for the AMMT machine. The averages of
the experimental measurements for the CBM machine are reported in table 3.3, while average
measurements for the AMMT machine are reported in table 3.4. In the CBM case the cooling
rate is defined as:

CRCBM = 1290 [◦C]− 1000 [◦C]
∆d[mm] × v

[mm
sec

]
,
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Figure 3.4: Additive Manufacturing Metrology Testbed (AMMT) and its thermography setup,
which uses a long distance microscope and angled first-surface mirror mounted in an argon
purge box. Courtesy of NIST.

Parameter values A B C
laser power [W] 150 195 195
laser speed [mm/s] 400 800 1200
laser spot diameter D4σ[µm] 100 100 100

Table 3.1: CBM machine: parameter values.

with v laser speed and ∆d distance in the direction of the laser path, while in the AMMT case
as:

CRAMMT = 1290 [◦C]− 1190 [◦C]
∆d[mm] × v

[mm
sec

]
.

For the exact definition of v and ∆d, as well as for further details on the experimental bench-
marks we refer to the original website which continues to be updated as further measurements
become available www.nist.gov/ambench [2018].

3.3.2 Isotropic conductivity model
The calibration step of the isotropic model is carried out for case B on the CBM machine, as
given in table 3.1, which is exactly the same configuration as case 7 in Ghosh et al. [2018]. The

Parameter values A B C
laser power [W] 137.9 179.2 179.2
laser speed [mm/s] 400 800 1200
laser spot diameter D4σ[µm] 170 170 170

Table 3.2: AMMT machine: parameter values.
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case length cooling rate
[µm] [ ◦C

sec
]

A 659 6.20× 105

B 782 9.35× 105

C 754 1.28× 106

Table 3.3: CBM machine: experimental measurements according to www.nist.gov/ambench
[2018], CHAL-AMB2018-02-MP.

case length width depth cooling rate
[µm] [µm] [µm] [ ◦C

sec
]

A 300 147.9 42.5 1.16× 106

B 359 123.5 36 1.08× 106

C 370 106 29.5 1.90× 106

Table 3.4: AMMT machine: experimental measurements according to www.nist.gov/ambench
[2018], CHAL-AMB2018-02-MP.

validation step is obtained comparing the calibrated model to the cases A, B and C of table 3.3
and table 3.4. For all the numerical simulations the IN625 material parameters are taken from
literature ( Mills [2002] and www.specialmetals.com [2019]) as reported in appendix B. It is
noteworthy that material and process parameters, necessary to run the numerical simulation,
are not experimentally available for the effective temperatures occurring in LPBF processes.
For example, measurements of the thermal conductivity k is only available up to 871◦C, but
the melting range for IN625 is 1290-1350◦C. Likewise, the melting temperature interval the
value of k can only be extrapolated. It is important to note that this extrapolation itself
represents a physical model which, in turn, needs to be calibrated. This circumstance is used
in section 3.3.3 to better describe the conductivity of the material and, consequently, improve
the accuracy of the predicted melt pool geometry. Further coefficients, whose measurements
are only available up to a certain temperature, are the absorptivity η and the emissivity ε.
The latter necessary to define the radiation boundary condition given in equation (3.3).
In case of the CBM machine, the benchmark defines the laser spot radius equal to 50µm. We

utilize this value for both parameters cf and a of the double elliptical model (see figure 3.2).
However, our model also contains the radius ratio cr/cf as a model parameter as well as the
power fraction ff/fr. Both these parameters are additional, potential candidates to calibrate
the physical model.

Model Calibration

Model calibration first requires to identify the sensitivities of the quantities of interest, i.e.,
length, width, depth, and cooling rate at the wake of the melt pool w.r.t. the modeling
parameters η, ε, ff/fr and cr/cf given by the physical model presented in section 3.1. To
this end, four studies were carried out, and for each study a single parameter is varied while
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the others stay fixed. Figure 3.5 presents the variation of the length, width, depth, and
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Figure 3.5: CBM machine. Sensitivity studies w.r.t. the emissivity of the material ε.

cooling rate w.r.t. the emissivity values. The study clearly suggests that there is practically
no influence of the emissivity on the quantities of interest. At first sight this result comes
as a surprise because the model of the boundary conditions suggests an influence of fourth
order in the temperature, something that for sure can not be neglected. Indeed, numerous
authors explicitly include this boundary condition to obtain good results, see for example Lu
et al. [2018] and the references cited therein. However, the investigation at hand considers the
temperature directly under or in close vicinity to the laser and, therefore, the contribution of
the radiation boundary condition is marginal. To illustrate this effect, we consider the flux
caused by radiation at the melting temperature Tm = 1290◦C= 1563.15K, with an ambient
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temperature of Te = 20◦C= 293.15K. The corresponding power loss is

5.67× 10−8 × 0.47
(
T 2
m + T 2

e

) (
T 2
e − T 2

m

)
= 1.59× 105

[
W
m2

]
= 0.16

[
W
mm2

]
, 3.8

which represents a negligible quantity compared to the peak power density of ql = 2.33 ×
104 [W/mm2] in the center of the laser beam. Clearly, under these conditions, radiation itself
may be neglected for studies of temperature fields in close proximity to the laser source. To the
contrary, the absorptivity has a large influence (see figure 3.6), as do the power fraction and
the radius ratio, as depicted in figure 3.7 and figure 3.8, respectively. An iterative calibration
delivers the final choice of the parameters: ε = 0.47, η = 0.38, ff/fr = 0.053 and cr/cf = 0.167.
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Figure 3.6: CBM machine. Sensitivity studies w.r.t. the absorptivity of the material η.
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Figure 3.7: CBM machine. Sensitivity studies w.r.t. the power fraction ff/fr.

Numerical results for calibration

Numerically computed temperature curves along the laser path are depicted in figure 3.9.
The figure reports also the experimentally measured temperature, carried out using in-situ
thermography, as described in Ghosh et al. [2018]. The different curves labeled 2mm, 6mm
and 12mm indicate at which position the zero of the abscissa of the plot coincides with the
laser path. A steady state is reached already after only 2mm. We specifically note that
the calibration was carried out to best capture the temperature range around the melting
temperature. Larger, even unphysical deviations, are tolerated outside this region. This kind
of calibration towards a process window is justifiable not only due to the fact that merely the
region of interest needs to be captured with accuracy by the computations, but also because
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Figure 3.8: CBM machine. Sensitivity studies w.r.t. the radius ratio cr/cf .

the camera itself delivers its most accurate measurements in that range. The plot also directly
shows where the numerical model is not valid, namely directly inside the melt pool. Here, the
temperature drastically overshoots to unrealistically high values. The very good agreement
of the computation in the range of the melting zone is further confirmed in figure 3.10. This
figure overlays the image of the cross section of the track taken by an ex-situ measurement of a
confocal laser scanning microscope (CLSM) with the calibrated computation. Both figures 3.9
and 3.10 demonstrate that it is possible to obtain an excellent agreement with the experiment
using the simple physical model presented in section 3.1, if η, ff/fr, and cr/cf serve as model
calibration parameters.
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Figure 3.9: Computation of the temperature profile calibrated to case 7 in Ghosh et al. [2018].

Model validation for the CBM machine

The calibrated model delivers the results depicted in table 3.5. It can readily be concluded

case meas. num. ∆ meas. num. ∆
l[µm] l[µm] [%] CR[ ◦C

sec
] CR [ ◦C

sec
] [%]

A 659 707 7.3 6.20×105 8.79×105 41.8
B 782 812 3.8 9.35×105 1.35×106 44.3
C 754 772 2.4 1.28×106 2.09×106 63.3

Table 3.5: CBM machine: obtained weld pool length l and cooling rates CR.

that the model is able to predict the length of the weld pool up to at least 7.3% accuracy in
the parameter range covered by cases A to C. The prediction of cooling rates is approximately
one order less accurate. In fact, the cooling rate is a derived variable (we directly compute
only the temperature) and thus less accuracy is naturally expected; moreover, since our model
treats both the liquid and the solid as homogeneous media, the temperature predicted within
the melt pool are strongly inaccurate and this surely affects also the cooling rate results in
the solid region.
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Figure 3.10: Computation of cross section (red line) calibrated to case 7 in Ghosh et al. [2018].

It is interesting to note that the measured length in Ghosh et al. [2018], i.e., the length
towards which the model was calibrated was 813[µm], provided with a tolerance of ±79[µm].
However, measurements performed during for AMBench considering exactly the same case
(case B) were more accurate and are given as 782 ± 21[µm], see also table 3.5. Thus, a
re-calibration of the model to case B will likely deliver more accurate predictions for the
cases A and C. However, this was not carried out because even more accurate measurements
are available for the AMMT which lead to the development of the extended physical model
presented in section 3.3.3.

Model validation for the AMMT machine

Surprisingly, very different experimental results were obtained with the same scan param-
eters at the AMMT as compared to the CBM. Due to this reason, more thorough studies
were carried out on the AMMT. These include measurements of the actual laser profile itself
(see figure 3.11). These measurements, now published in www.nist.gov/ambench [2018], en-
able their direct application as the Neumann boundary condition ql in equation (3.3). Thus,
the physical model presented in section 3.1 is more tightly defined. This generates an inter-
esting situation from the perspective of model validation because two (influential) calibration
parameters, the power fraction ff/fr and the radius ratio cr/cf are now fixed and, therefore,
can not be used for calibration. Given that the emissivity ε has practically no influence, the
absorptivity η is the only parameter left for a re-calibration. For η = 0.086 we obtain the nu-
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(a) Measured power density (b) Gaussian interpolation of the measured data

Figure 3.11: Power density profile.

merical results provided in table 3.6. The corresponding deviations are provided in table 3.7.

case length width depth cooling rate
[µm] [µm] [µm] [ ◦C

sec
]

A 301 119 52 0.91×106

B 360 103 42 1.33×106

C 348 91 32 2.18×106

Table 3.6: AMMT machine: computed values.

While the deviations in the length are still at a maximum of approx. 6%, width and depth

case length width depth cooling rate
∆[%] ∆[%] ∆[%] ∆[%]

A 0.47 19.3 18.6 21.6
B 0.11 16.4 15.8 23.1
C 5.9 14.2 10.1 14.7

Table 3.7: AMMT machine: deviations from experimental values.

are only predicted to an accuracy of 20%. No further calibration is possible as there is only
one parameter to calibrate but three values of interest to fit (excluding the cooling rate). This
clearly shows the boundaries of validity of the model presented in section 3.1 and motivates
the development of the model discussed in the next section.



3.3. Model Validation 43

3.3.3 Anisotropic conductivity model

Two possible modifications are readily imaginable: a) a definition of an absorptivity field
instead of a scalar value η and b) the definition of an anisotropic conductivity. The former
could be motivated by the fact that the melt pool surface will surely cause the absorption of
the laser energy to be non-constant. However, to the authors opinion a good model should be
as simple as possible, yet replicate the observed effects as accurately as possible. With this
objective in mind, the definition of an anisotropic conductivity is a more attractive choice.
The only change necessary is that the scalar value k in equation (3.1) changes to k, a diagonal
matrix with the entries diag(kx, ky, kz). Further, we set ε = 0.
The physical motivation for this model is that the (transient) diffusion equation given

by equation (3.1) does by no means include the effects caused by convective heat transfer
inside the weld pool. This flaw has already inspired other authors e.g., Lu et al. [2018] to
use a strongly increased conductivity k inside the melt pool to model convective effects. We
now extend this idea by choosing anisotropic values. For simplicity, we introduce the scaling
factor ϑi where i = {x, y, z} such that k = diag(kϑx, kϑy, kϑz). The values for ϑi devi-
ate from 1 only after the last obtainable measurement (at T = 871◦C) of the conductivity
as depicted in figure 3.12. After calibration to the AMMT machine B we obtain the set

0 200 400 600 800 1,000 1,200 1,400
0

1

2

3

4
·10−2

Temperature [◦C]

k

[
W

m
m

K

]

ϑi

Figure 3.12: Scaling of the conductivity in direction i = x, y, z.

ϑx = 1.0, ϑy = 1.4, ϑz = 0.9. This delivers very well matching weld pool geometries. While
the effect of the scaling of k is marginal in a temperature plot along the length (because here
ϑx = 1.0), its effect in the cross-section is quite pronounced (see figure 3.13 for a direct overlay
of the melt pool geometry over the cross section). In the validation step, we keep the calibra-
tion parameters fixed, i.e., ϑx = 1.0, ϑy = 1.4, and ϑz = 0.9 and we compute cases A and C of
the AMMT machine. The computed values are provided in table 3.8 and the corresponding
deviations are provided in table 3.9. We observe that for the anisotropic model the maximum
deviation of length, width and depth is 6.49% at worst while, for the isotropic conductivity
model it was merely 19.3%. Even the forecast of the cooling rates has improved sightly.
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Figure 3.13: Melt pool cross section micrograph image 50×DF (from https://phasedata.
nist.gov/rest/blob?id=5b102edd4407e700870ff13e) over computed cross sections using
isotropic (dashed red line) and anisotropic conductivity (dashed green line).

case length width depth cooling rate
[µm] [µm] [µm] [ ◦C

sec
]

A 304 146.4 44.6 0.82×106

B 362 123.7 36.1 1.23×106

C 346 105.1 27.3 1.88×106

Table 3.8: Anisotropic conductivity model: computed values.

3.4 Summary and further outlooks
In this chapter we used the standard heat diffusion model to predict the length, width and
depth of the melt pool in the laser additive manufacturing benchmarks CHAL-AMB2018-02-
MP published in [www.nist.gov/ambench, 2018]. The physical model included a latent heat
term as published e.g., in Celentano et al. [1994] along with a radiation boundary condition.
Within this model we found the radiation boundary condition to have little to no influence
upon the quantities of interest. This is due to the fact that in close proximity of the laser
beam impact region, the power lost by radiation is much lower than the applied laser energy
itself.
As a first approach we assumed the laser source to possess the well known double elliptical

shape as proposed for welding by Goldak et al. [1984]. We demonstrated that this model is
well suited to predict the shape of the weld pool as it delivered a maximum deviation from

case length width depth cooling rate
∆[%] ∆[%] ∆[%] ∆[%]

A 1.33 1.0 2.5 29.3
B 0.84 0.02 0.2 13.9
C 6.49 0.8 5.1 1.3

Table 3.9: Anisotropic conductivity model: deviations of computed values from experimental
values.

https://phasedata.nist.gov/rest/blob?id=5b102edd4407e700870ff13e
https://phasedata.nist.gov/rest/blob?id=5b102edd4407e700870ff13e
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the measurements of 7.3%. However, in case the shape of the laser source is given by a
measurement, the standard, transient heat diffusion model only provides accuracies of 19.1%
for the investigated benchmark cases. This renders it practically invalid.
We then extended the isotropic thermal model by introducing anisotropic conductivities.

Their physical interpretation is to model anisotropic convection inside the melt pool. This
slight extension enabled the model to deliver at worst 6.49% deviations in length, width
and depth of the melt pool. Therefore, we conclude that the introduction of an anisotropic
conductivity is a simple, yet effective way to improve the physical model based on transient
heat equation including phase changes and remark that the added computational effort for
this extension is marginal.
As further outlooks, we aim at validating a numerical model including powder. Nevertheless,

this task is not straightforward since measurements of melt pool shapes in presence of a powder
bed are extremely challenging. We want to finally stress out the fact that the presented model
is meant to provide, once thoroughly calibrated, a reliable model for multi-track and eventually
multi-layer thermal simulations, while it is not valid to predict temperature distribution within
the melt pool.
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Chapter 4

Real-time Feed Forward Control using
a-priori Simulation Results

Laser powder bed fusion (LPBF) additive manufacturing (AM) technology can be employed
to produce a wide range of products, delivering a high surface finiture and geometric quality of
the final artifact. Moreover, metal components obtained using LPBF AM have been observed
to be almost fully dense and to reach together mechanical properties equivalent or even higher
than traditional manufacturing processes [Craeghs et al., 2010].
Even if the attention on this AM technology has known an exponential growth, LPBF can-

not be considered a mature manufacturing process yet. In fact, the lack of reproducibility of a
single part together with the inability to guarantee uniform material properties strongly limit
the adoption of LPBF systems in wide scale productions. The quality of an LPBF process
is influenced by hundreds of controllable and uncontrollable parameters. The former can be
estimated by means of either experimental measurements or numerical simulations and opti-
mized consequently in order to achieve the desired accuracy of the final artifact. Nevertheless,
due to the high complexity of the physical phenomena involved, many uncontrollable factors
can occur during the process.
To this end, research in developing a reliable and effective process control have been consid-

ered crucial “to achieve predictable and repeatable operations” [National Institute of Standards
and Technology, 2013]. In fact, an efficient control system is required to capture deviations
from the predicted (expected) behavior and, if possible, perform real-time corrections of pro-
cess parameters, in order to minimize those errors.
The aim of this chapter is to present a real-time process control scheme employing a-priori

numerical simulations as reference. The outline of the chapter is organized as follows: in the
first section, laser systems for LPBF machines are shortly described, in the second section
different control strategies are discussed and, finally, in section 4.3 a real-time process control
scheme based on numerical simulations is presented. All these results have been obtained
during a research stay of two month (November-December 2018) at the Engineering Laboratory
of the National Institute of Standard and Technology, Gaithersburg (MD, USA) under the
supervision of Dr. Brandon Lane.
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4.1 Laser system
Before going into the details of control strategy in LPBF processes, we shortly describe the laser
system mounted on the additive manufacturing metrology testbed (AMMT) machine described
in the previous chapter (see figure 3.4). As in every LPBF machine the laser beam is directed by
a couple of mirrors driven by direct current (DC) motors, namely galvo motors (see figure 4.1),
to achieve a two-dimensional x-y scan path. The galvos are rotated by electromagnetic force
proportional to the current flow in the motor coild and controlled by a closed-loop servo control
realized using an internal encoder in the motor shaft. A digital protocol, the so-called xy2-
100, provides the two-dimensional position of the laser with a frequecy of 100 kHz. Therefore,
the rotation of the galvo mirrors is updated every 10 µs, while the time constant for power
adjustment on the AMMT machine is approximately 50 µs. This high temporal resolution of
the laser beam system, gives a very precise control of the process in terms of both velocity and
power, leading to the possibility to develop a real-time control strategy on such a machine.

Figure 4.1: Typical scheme of a two-dimensional (x-y) optical scan system [Yeung et al., 2016].

4.2 Control strategies for laser powder bed fusion
technology

Mani et al. [2015] define as process signature the dynamic characteristics of the power heating,
melting, and solidification process as they occur during the building process. They categorize
process signatures into two groups:

1. observable or measurable (e.g., melt-pool shape and surface temperature);
2. derived, i.e., determined by means of numerical models and simulations (e.g., melt-pool

depth and residual stress).

Process signatures determine the final product quality; in particular, they have found corre-
lations not only between laser beam controllable parameters (diameter, power, and velocity)
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and melt-pool geometry, but also between melt-pool geometry and part quality features such
as geometric precision of the final artifact, number of unmelted particles, and voids. Such
a study proof that, in principle, it is possible to partially control the geometric precision
of the product measuring the melt-pool shape and adjusting controllable laser parameters
consequently. This findings motivated the work presented in the following sections.

4.2.1 Laser scan control strategies
In the recent work of Yeung et al. [2018] is presented the implementation of an advanced
laser control strategies suitable for LPBF technologies, which allows to obtain complicated
scan strategies. In particular, they distinguish the resulting scan strategies based on two
categories, namely: laser path modes and laser power modes. They define three possible laser
path modes and three laser power modes, such that the combination of both uniquely define
the laser scan strategy.

Laser path modes

1. Exact stop: complete stop of the laser at the end of each track;
2. Constant build speed: the laser velocity is kept constant when the laser is on;
3. Continuous: the end and the start velocity of two consecutive movements are equal.

Laser power modes

1. Constant power: laser power is kept constant during each laser move;
2. Constant density power: the power/speed ratio is constant;
3. Thermal adjust: this mode adjust the power to match reference thermal properties or

feedback from real-time monitoring.

In this chapter we will focus on thermal adjust mode in combination with any of the laser
path modes. Our methodology employs as reference for the thermal adjust mode the numerical
results obtained by means of high-fidelity simulations, using the physical model described
in chapter 3.

4.2.2 Co-axial thermal camera signal
Fox et al. [2016] describes a feedback control strategy based on a co-axial melt-pool monitoring,
where a reference solution is used to adjust the process parameters based on thermal camera
measurements, see figure 4.2. Fox et al. [2016] also demonstrates that - due to the high velocity
of the process - laser power is more likely to be manipulated to obtain a real-time control,
while the galvanometers response controlling the laser speed is too slow and thus should be
predefined. This observation confirm that a thermal adjust laser power mode in combination
with any laser path mode can be a suitable choice for a real-time LPBF process control system.

4.2.3 Conversion to true temperature field
If we want to implement a real-time control system for LPBF process we need to take into
account the time spent to convert the thermal camera signal to “true” temperature values.
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Figure 4.2: Block diagram feedback control from Fox et al. [2016].

This conversion process is described in figure 4.3 where the green arrow indicates the mea-
surement process from the measured thermal camera signal to true temperature. During
the measurement process, most of the required operation are extremely complex (e.g., de-
convolution) or even impossible to achieve exactly (e.g. conversion from digital to continuous
signal). Moreover, most of the input parameters required in this conversion process have to
be estimated/calibrated, since they are very challenging to be measured (e.g., emittance).
Contrary, the red arrow shows the “inverse” measurement process, i.e. from a ground truth
solution (e.g., the solution we can obtain from numerical simulations and assume as reference)
to measurement data. This inverse operation, even if not trivial, requires simpler operation
than the direct measurement process.

Figure 4.3: Block diagram describing measurement process. The blue squared blocks indicates
the physical quantities, the green diamond blocks the conversion functions and the yellow
squared blocks the input data required for each function.
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4.3 Real-time process control

Starting from the above observations, we decide to employ a thermal digital signal obtained
from numerical simulations as reference of our real time control loop. As described in figure 4.4,
if we are able to extract from the numerical solution a digitalized image with the same co-axial
field of view of the thermal camera, the controller can directly evaluate the deviation of the
measured signal performing a simple pixel-by-pixel comparison operation.

Figure 4.4: Block diagram feedback control employing as reference a digitalized numerical
solution in the same co-axial field of view of the thermal camera, where Q is the laser power
and v indicates the laser speed.

4.3.1 From simulated "true" temperatures to camera signal
To this end, we need to convert the simulated temperature field on a three dimensional domain
into an equivalent digital signal in the co-axial field of view (FOV) of the thermal camera. First,
we post-process the temperature on a moving surface always centered at the laser position,
having the same size of the camera image. In our case, since we use the images obtained by the
thermal camera mounted on the AMMT machine, we define a quadrilateral surface equivalent
to the FOV of the thermal camera having a spatial resolution of 3.5µm/pixel and 120 × 120
pixel.
Figure 4.5 describe the conversion process from the simulated temperature to an equiva-

lent digital signal. In fact, for each time step of our thermal analysis we obtain the “true”
temperature field F(T) on the upper surface of our domain in a neighborhood of the laser
source (see figure 4.5 A). The first operation is to scale the evaluated temperature field by
the temperature dependent emissivity value of the material ε(T) (figure 4.5 a), obtaining the
corresponding radiant flux (figure 4.5 B). Applying the optical blur and the motion blur filters
(steps b and c of figure 4.5) we obtain the continuous equivalent signal of figure 4.5 D. The
last step constists in a 12bit digitalization which converts the continuous signal into digital
level (figure 4.5 E). Since all these operations can be performed before the actual AM process
starts, we can provide to the controller a reference of the melt pool shape which can be directly
compared in real-time to the measured signal.
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Figure 4.5: Conversion steps from simulated ground truth temperature in degree Celsius to
camera signal in digital level.

4.3.2 Towards real-time control
In order to test the proposed method, a thermal camera measurement obtain for AMBench
(cfr. chapter 3) is used as experimental reference. We recompute the thermal analysis described
in the previous chapter following the procedure to convert simulated temperature to camera
signal. Figure 4.6 represents a comparison between the simulated signal and the camera signal.
The plot in the figure shows that above the melting temperature (in digital levels) the simulated
and the measured signals diverge. This result was expected since the thermal model described
in chapter 3 does not include melt pool dynamics, treating the liquid phase within the melt
pool as a solid material with different properties. Contrary, below the melting temperature the
thermal camera signal is well approximated by the simulated values. This preliminary results
encourage us to perform further investigations in this direction, in order to move towards
a reliable and effective real-time control system based on numerical thermal analysis of the
process.

4.4 Summary and further outlooks
The presented results show that a real-time control scheme based on a-priori simulated results
is possible thanks to to the possibility to convert continuous, numerical temperature field into
digital signals in the thermal camera FOV. Clearly, there are still many issues which have to
be solved before such a control strategy can become reality.
In particular, from a computational point of view, if we want to achieve real-time control of

the entire manufacturing process, we need to be able to solve at the macro-scale the thermal
problem described in chapter 3, i.e., we need to resolve the melt-pool length scale over the
entire AM process. In the next chapter, we will see that at the moment it is not possible to
compute an entire AM process problem at the melt-pool length scale, thus simplified strategy
have to be considered if we want to perform a part-scale analysis. Nevertheless, the proposed
control scheme open the possibility to a closer interaction between AM metrology and simula-
tions. In fact, the presented conversion procedure to obtain digital signal from a ground-truth



4.4. Summary and further outlooks 53

Figure 4.6: Comparison between simulated temperature signal and real thermal image.

temperature (the simulated temperature field) can be extremely useful to better understand
the complex steps involved in the measurement process, i.e., when we convert thermal camera
signal to true temperature values. Moreover, even localized control strategy, which do not
necessarily include the complete process but only few critical spots, might be very important
to improve the controllability of LPBF technology.
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Chapter 5

Part-scale Additive Manufacturing
Thermal Process Simulations using the
Finite Cell Method

The aim of this chapter is to present a novel approach to perform part-scale thermal analysis
of large components having complex geometry and produced using laser powder bed fusion
(LPBF) additive manufacturing (AM) technology. Nowadays, as discussed in the previous
chapter, the diffusion of LPBF system is limited by the lack of reproducibility of the process.
In particular, we want to focus now on the possibility to capture macro-scale thermal effects
(e.g., temperature overshoots due to geometrical features) which is the first step of to obtain
residual stress predictions of complex parts. Hereby, we address numerical simulation of
complete AM processes of metal components by LPBF technologies, such as Selective Laser
Melting (SLM), Direct Metal Laser Sintering (DMLS) or Electron Beam Melting (EBM). All
these technologies, can be modeled using the same numerical scheme, since they share the
same layer-by-layer approach.
Typical LPBF processes occur within a closed chamber with a controlled atmosphere ob-

tained either by an inert gas (e.g., Argon in SLM processes) or by high vacuum (e.g., in EBM
processes). The process proceed incrementally following a layer-by-layer approach, i.e., at each
step a roller spread a layer of powder which is locally melted by a laser (or electron) beam.
Once the laser scan path of the layer is completed, a piston which control the base plate of
the chamber is moved downwards such that a new powder layer can be added.
The manufacturing of a complex functional component by means of LPBF technology re-

quires hundreds or even thousand of layers (typical layer thickness is ≈ 50µm), moreover, the
complete process can last hours or even days, while the melting-solidification process occurs
within few milliseconds. Therefore, if we want to simulate a complete LPBF process, we can-
not employ a physical model such as the one presented in chapter 3 , since it was meant to
resolve the problem at the melt-pool length-scale.
To perform part-scale numerical analysis a very popular approach consist in a layer-by-layer

activation. This approach usually follows a quite element procedure, where all the elements
are created in a pre-processing stage and then selectively activated during the analysis (see,
e.g., Michaleris [2014]). Recently, many authors have investigated a layer-by-layer activation
approach, where an entire layer (or even a group of multiple layers) is activated simultaneously
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(see, e.g., Chiumenti et al. [2017b]; Lindwall et al. [2018]; Lu et al. [2019]). This approach
dramatically reduces the computational time and, at the same time, it is still able to capture
average effects at the macroscale, while local effects are instead neglected. A layer-by-layer
approach is also implemented in almost all the most popular AM commercial codes (e.g.,
ABAQUS R© and ANSYS R©) since it is an effective way to rapidly obtain an estimation of the
temperature field and residual stresses in the final part.
One of the main drawback of this method is that it needs highly refined meshes to correctly

describe complex geometrical features, which are standard for mechanical and structural com-
ponents produced using AM technologies. The generation of such a mesh can be non-trivial
and computationally very expensive, moreover it can easily lead to large system of equations
and consequently to a massive memory usage.
The Finite Cell Method (FCM), first introduced in [Düster et al., 2008; Parvizian et al., 2007],

allows instead to de-couple complex geometry description from the solution approximation
space (the mesh). The geometry is embedded within a simple cartesian grid and resolved only
at the integration level. In the following sections, after briefly recalling the key concepts of
the method, we present a possible extension of FCM to part-scale thermal analysis of AM
processes.

5.1 Thermal analysis

5.1.1 Governing equations
The numerical model described in section 3.1 is now modified in order to reproduce a complete
LPBF process. Since the phase change transformation occurs within a very small time interval
- which cannot be capture if we are interested in macro-scale effects - we neglect the latent
heat term of the heat transfer equation 3.1. Given a spatial domain Ω and a time interval
T = [0, tend), the heat transfer model at part-scale can be written as:

ρc
∂T

∂t
−∇ · (k∇T ) = Q in Ω× T . 5.1

With ρ = ρ(T ) temperature dependent density of the material, c = c(T ) and k = k(T )
temperature dependent heat capacity and thermal conductivity of the material. Equation (5.1)
is completed by the initial condition at time t = 0:

T (x, 0) = T0 in Ω, 5.2

Heat source model

The heat source term Q in equation (5.1) is evaluated considering an equivalent heat source
contribution:

Q = ηP

HAV
in Ω, 5.3

where η is the absorptivity of the material, P is the nominal power of the laser beam, and
HAV is the Heat Affected Volume (HAV), i.e. the component volume where the equivalent
thermal load is applied within a single activation step. In our case the HAV corresponds to
the volume of the layer (or the group of layers) which are heated in a given time step.
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5.1.2 Boundary conditions

Build plate boundary condition

On the lateral surfaces of the build plate ∂Ωbpn we apply convection boundary conditions, such
that:

qcbp = hcbp (Te − T ) on ∂Ωbpn, 5.4

while on the bottom of the base plate ∂Ωbpd we apply Dirichlet boundary conditions, as follows:

T = Tbp on ∂Ωbpd. 5.5

where Te and Tbp are the external temperature and the prescribed temperature on the bottom
of the base plate, respectively.

Powder bed conduction boundary condition

The lateral surface of the part geometry are immersed within the powder bed. Since in our
model we do not include the powder surrounding the growing geometry, we model the heat
loss through the powder by means of conduction boundary conditions, as follows:

qclat = hclat (Te − T ) on ∂Ωlat. 5.6

where hclat is the conduction coefficient through the powder.

Upper surface convection and radiation boundary conditions

On the upper surface of the powder bed the heat is dissipated by means of convection and
radiation boundary conditions, where the former is defined as:

qconvtop = hconvtop (Te − T ) on ∂Ωtop, 5.7

while the latter, can be written as:

qrtop = σε
(
T 2 + T 2

e

) (
T 2
e − T 2) on ∂Ωtop, 5.8

where hconvtop is the convection coefficient due to the argon flux, σ is the Stefan-Boltzmann
constant, and ε the emissivity of the material.
Following the approach proposed in Chiumenti et al. [2017b], radiation and convection

boundary conditions can be written using a single parameter, such that:

qloss = hloss (Te − T ) on ∂Ωtop. 5.9

This way to model radiation and convection boundary conditions by means of a single expres-
sion is justify by the difficulty to measure these effects. Since the hloss coefficient has not a
direct physical meaning, it needs to be experimentally calibrated.



58 5. Part-scale Additive Manufacturing Thermal Process Simulations using the Finite Cell Method

5.1.3 Time integration
In our implementation the time step size is evaluated differently for the heating and the cooling
phase. The heating time step size ∆th depends on the heated surface which is activated within
that specific time step, therefore it requires to be evaluated at run time as follows:

∆th =
m∑
i=1

HASi
hdv

, 5.10

where HASi is the heat affected surface of the ith-layer, hd the hatch distance of the laser
scan strategy, v the constant laser velocity, and m the number of layers activated in one single
heating time step. The cooling time step size ∆tc is instead read from an external input file
and defined by the user, it should take into account the time spent by the machine to spread
a new layer of powder and the time spent to print the remaining components present on the
building plate.

5.2 Numerical model for complex geometry part-scale
simulation

5.2.1 Finite Cell Method
The main objective of the finite cell method is to avoid boundary conforming meshing of
geometrically complex physical domains. To this end, a geometrically complex domain Ωphy

is extended by a fictitious domain Ωfict such that the resulting domain Ω has a simple shape
and can thus be meshed easily (see figure 5.1 and Düster et al. [2008]; Parvizian et al. [2007]).

ΓD

ΓN

Ωphy

+
Ωfict

=
Ω = Ωphy ∪ Ωfict

α = 1.0

α = 0.0

Figure 5.1: Concept of Finite Cell Method

In the simplest case, the mesh is a grid whose entities are called cells, henceforth the name
finite cell method. It is on these cells where the shape functions are spanned. The original
geometry of the domain is recovered at integration level by use of the following indicator
function

α =
{

1
10−g

∀x ∈ Ωphy

∀x ∈ Ωfict
5.11

where, ideally g → ∞, although in practical applications it is usually sufficient to choose
g = 4.
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The discontinuity introduced by the α coefficent necessitates adaptive integration schemes,
see e.g. Abedian et al. [2013]; Kudela et al. [2016] for a recent overview of possible schemes.
To compute the following results we employ a simple yet effective integration scheme, where
the geometry is voxelized in a pre-processing step and the voxel size is defined by the user.
During the analysis, we distribute the Gauss points for the integration directly on the voxels,
allowing in this way to capture even small geometrical features in an efficient way.

5.2.2 Multiple layer-by-layer element activation scheme
In this work we employ a m-layers-by-m-layers activation scheme. The proposed method,
based on an FCM approach, consists of the following steps:

1. Define a given number of cells in x, y, and z direction such that each cell includes m
powder layers in the building direction.

2. Create the integration voxels using h×k×l voxels per cell (in this work we set h = k = l).
3. Generate the base plate cells.
4. Generate a new layer of cells (i.e., create m new layers of powder) in one single heating

time step.
5. Perform an user defined number of cooling time steps, accounting for the time spent in

melting other possible components present within the chamber and the time spent for
spread m new layers of powder.

6. Repeat step 4 and 5 until the process is completed.

The main difference between the proposed scheme and otherm-layers-by-m-layers activation
approaches present in literature is the possibility to separate the resolution of the geometry
description from the solution approximation. This de-coupling leads to a remarkable improve-
ment in terms of memory consumption and computational time, opening the possibility to
simulate the complete LPBF process of components having complex geometry on a standard
desktop computer. Moreover, in this work the cells are newly generated at each layer activa-
tion, i.e. we do not employ a quite element procedure. This choice is justified by the fact that
generating a cell layer in a cartesian grid structure is an extremely simple operation, in such
a way we can concentrate the memory and the computational power only where is actually
needed, without allocating any space for inactive elements. Another important feature of the
presented methodology is that we can weakly apply the boundary condition directly on the
original .stl geometry ( see Kollmannsberger et al. [2015] for further details on the application
of weak boundary condition in FCM ).

5.3 Applications
In this section we apply the numerical model presented in this chapter to simulate an industrial
component with a complex geometrical shape, namely the optimized GE bracket of figure 5.2,
which is a classical benchmark model for AM applications, since many CAD models of this
real industrial component are available open source. The following numerical simulation are
obtained assuming as material stainless steel 316L, which thermal parameters are reported
in appendix C.
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Figure 5.2: GE-bracket: CAD model of an optimized GE Bracket.

FCM at work

Once we obtain the geometrical model, we can directly apply the FCM procedure to perform
thermal analysis of the process as described in figure 5.3.

.STL File FCM discretization Part-scale Analysis

Figure 5.3: GE-bracket: FCM analysis procedure, the original .stl file is in a first step em-
bedded within a cartesian grid (inactive cells are hidden in the figure) to construct the voxel
integration grid, we can then perform a layer-by-layer thermal analysis where the BCs are
applied directly on the .stl surfaces.

As described in section 5.2.2, we have two key elements which allows us to implicitly represent
the complex geometrical shape: the cell, where the functions approximating the solution space
are defined, and the voxels which are used to perform a refined Gauss integration; finally, the
geometry is implicitly reconstructed by means of a simple inside-outside test performed directly
on the .stl file. Figure 5.4a shows the complete problem domain - including the base plate of
the building chamber - immersed within the cell grid (in figure 5.4 the cells completely outside
the geometry are removed for sake of clarity). Thanks to the FCM concept, the cell grid and
the voxel resolution used to integrate over boundaries are completely decoupled, allowing for a
very accurate description of geometrical features (see figure 5.4b) employing instead a rather
coarse discretization for the approximation of the solution space.
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(a) FCM mesh side view. (b) FCM mesh detail.

Figure 5.4: GE-bracket: FCM grid embedding the CAD model.

Multi-layer thermal analysis results

To run our analysis we generate a cartesian grid of 60× 100× 72 cells, each cell is subdivided
by means of 4× 4× 4 integration voxels. We split the process in 60 steps and in each step we
perform a heating and a cooling time step, for a total of 120 time steps. At each time step
a new layer of cells is generated, i.e., assuming a layer thickness of 50µm we activate m = 5
powder layers within a single step.
Figures 5.5 and 5.6 show the temperature distribution at different heating steps of the

process. At time steps 10 and 20, we can observe an overheat in correspondence of dowfacing
surfaces. This well known behavior is due to the lack of supports in the original .stl file, which
leads to higher peak temperatures in downfacing areas, and is qualitatively captured by our
numerical results. Finally, in figure 5.7 we can observe that geometrical information present
in the .stl file are maintained during the analysis. In particular, we are able to impose the
boundary conditions directly on the .stl surfaces, this feature allows us to correctly estimate
the influence of complex geometries on the part-scale thermal analysis results.

5.4 Summary and further outlooks
In this chapter, we have introduced a numerical framework based on the finite cell method to
simulate LPBF process at part-scale. Immersed methods, separating the geometry description
from the mesh, turn out to be particularly effective in an AM context where we have to deal
almost exclusively with complex geometrical shape components potentially very challenging
to mesh. Combining an immersed approach together with a m-layer-by-m-layer activation
procedure, we are able to perform a complete thermal analysis of LPBF processes employing
a rather coarse discretization without any loss of geometrical information.
In this chapter, we have limited the numerical results to a qualitative study of the thermal

problem. There are two main reasons for this limitation: first measuring an averaged temper-
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(a) hts = 1 (b) hts = 10

(c) hts = 20 (d) hts = 30

(e) hts = 40 (f) hts = 50

Figure 5.5: GE-bracket: Temperature distribution at different heating time steps hts.

ature by means of thermal cameras or thermocouples is not possible, i.e., we cannot obtain an
experimental validation of the thermal analysis results; secondly, the numerical verification of
the part-scale thermal analysis would require to solve the problem employing a high-fidelity
model, such as the one described in chapter 3, which turns out to be computationally too
expensive.
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Figure 5.6: GE-bracket: Temperature distribution at the last time step (ts = 120).

Figure 5.7: GE-bracket: Temperature distribution around a geometrical detail of the bracket.

As further outlooks for the presented work, we first aim at computing thermo-mechanical
analysis of LPBF processes extending the presented procedure to include a mechanical problem
with plasticity. Secondly, we aim at validating the simulated results by means of experiments:
either comparing the numerical results w.r.t. distortion measurements of the manufactured
component or comparing the predicted residual stresses with stress measurements obtained
by means of neutron diffraction techniques.
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Chapter 6

Functionally Graded Material Design
for Additive Manufacturing

As defined in Oxman N. and Tsai [2011]: “Functionally Graded Materials (FGMs) are a
class of advanced materials characterized by spatial variation in composition across the vol-
ume, contributing to corresponding changes in material properties in line with the functional
requirements.” This class of materials introduces a radical shift from contour modeling to
performance modeling by having the performance-driven functionality built directly into the
material [Loh et al., 2018]. Since the very beginning AM technologies drastically changed the
approach to design. In fact, classical design for manufacturing (DFM) is not required anymore
and the designer can now focus on the function of the component itself. FGM design can be
seen as a result of this change in the design perspective, where the component is optimized
with respect to its specific application starting from its material microstructure. Nevertheless,
even if recent AM technologies allow this possibility, the development of numerical methods
suitable to generate FGM components is still an open issue for researchers. Moreover, im-
plementations of automatized workflows from numerical results to final products are still an
active field of research.
In this chapter we discuss a numerical method to obtain topologically optimized FGM struc-

tures first introduced in Carraturo et al. [2019b], together with a possible pipeline to realize
these kind of structures using AM technologies. In particular, we present a topology optimiza-
tion routine based on phase field approach for FGM design together with a tentative workflow
to produce the resulting optimized components by means of different AM technologies, ex-
tending a previously published work by Alaimo et al. [2019].
There are other methods in literature which allow to obtain similar structures, for example,

we mention the landmark contribution of Cheng et al. [2019], where the method of moving
asymptotes (MMA) is used to minimize the mass of the structure under stress constraints using
an homogenized material definition. Contrary to this method, which can only distribute the
material within a given domain, the phase-field approach proposed hereby allows to obtain
structures where also regions of voids can be accounted for, substantially introducing an
additional degree of freedom within the design process.
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6.1 Topology Optimization: From origins to
functionally graded material design

The history of topology optimization for continuum structures (see Bendsøe and Kikuchi
[1988]; Sigmund and Petersson [1998] for reviews) goes back to the early ’80s when the first
works on numerical methods suitable to obtain topologically optimized structures appeared.
Nowadays, this technology is widespread and it is available in many commercial software.
In particular it has known an exponential growth within the engineering community since
additive manufacturing technology has become available.

6.1.1 Original approach to structural topology optimization
The original problem of topology optimization aims at obtaining an optimal distribution of
a given density function φ, defined over a design domain Ω, minimizing a given objective
function f (e.g., compliance of the structure). The density function is distributed on Ω taking
the value 1 in a domain D ⊂ Ω and 0 elsewhere, under a constraint on the maximum volume
fraction m = D/Ω. This approach is also called 0 − 1 topology optimization and it can be
written as follows:

min
φ
f(φ),

s.t.

∫
Ω
φdΩ ≤ m,

φ(x) = 0 ∨ 1, ∀x ∈ Ω.

Subdividing the design domain Ω into N finite elements and applying Galerkin method to
discretize the solution space, we can write the discrete version of the topology optimization
problem as:

min
φ
f(φ),

s.t.
N∑
i=1

φivi ≤ m,

φi = 0 ∨ 1, i = 1, ..., N,

where φi and vi are the element density and volume respectively. It is well know, that the
0− 1 topology optimization suffers of numerical issues (see Sigmund and Petersson [1998] for
a detailed review of the argument). They can be subdivided into three classes of problems:

1. Checkboards,
2. Mesh-dependency,
3. Local minima.

Checkboards

The resulting structures are characterized by alternating solid and void elements (see fig-
ure 6.1). The reason of this effect is that checkboard structures have artificially high stiffness,
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as demonstarted in Diaz and Sigmund [1995]. Possible solutions to this problem are smoothing
techniques, high-order finite elements, patches, and filters.

Figure 6.1: Example of checkboard pattern for simply supported beam problem from Sigmund
and Petersson [1998].

Mesh-dependency

Ideally mesh refinement should lead to a better description of the boundaries of the structure
without resulting in a qualitatively different topology; nevertheless, as shown in figure 6.2,
this is not always the case. Sources of this problem can be either non existence of the solution
or presence of multiple optimal solution, i.e., non uniqueness of the solution. This numerical
issue can be solved using two different approaches, namely restriction methods and homog-
enization. The former includes four different techniques: perimeter control, global and local
gradient constraint, and mesh-independent filtering. The latter is quite effective and robust
but it leads to microstructure which are impossible to obtain using classical manufacturing
techniques. This limit of the homogenization approach can be overcome by the most recent
AM technologies (e.g., selective laser sintering and selective laser melting), which allow for a
resolution able to produce almost any kind of structure at very small scales.

Figure 6.2: Example of mesh dependency for simply supported beam problem from Sigmund
and Petersson [1998].

Local minima

This last numerical issue occurs when a non restricted 0 − 1 topology optimization problem
is considered. The reason can be found in flatness of the objective function, or, and probably
more relevantly, in the numerical optimization scheme employed to solve the problem. Different
solutions for local minima have been proposed. Beside many attempts present in literature
we recall here only two example of possible solutions:

• continuation methods: first a greyscale structure is obtained by means of problem re-
laxation (i.e., the problem has a unique solution) and, after convergence, a penalization
routine, which is instead a non-convex problem, is applied to obtain black and white
results (see Allaire and Kohn [1993] and Allaire and Francfort [1993]) ;
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• mesh-independence filter approach: it is a procedure based on a gradual decrement of a
filter size which leads to a final 0-1 design (seen Sigmund [1997]).

In conclusion unless smoothness or topologycal constraints are taken into account the two-
phase topology optimization problem do not have a unique solution. Unique solution can
be instead achieved when homogenization methods are used to relax the original formulation
and the problem is now represented as a composite/perforated material optimization problem.
For example the popular Solid Isotropic Material with Penalization (SIMP) method, can be
interpreted as an homogenization methods where the penalization of the intermediate greyscale
region is implicit in the optimization scheme (see Bendsøe [2003]).

6.1.2 Phase field method in topology optimization
In order to overcome the aforementioned limitations of classical numerical methods in topology
optimization different approaches have been investigated. The two most relevant are the level
set method and the phase field method. The former is characterized by a level set function
which describes the target configuration with its zero contour. Its main limitation consists in
the function re-initialization which is necessary to achieve an appropriate numerical accuracy.
Such a re-initialization is not an easy task and can be computationally expensive.
The phase field method was originally developed to represent the evolution of multi phase

problems such as solid-liquid transition problems. Its origin can be traced back to the sem-
inal works of Allen and Cahn [1979] and Cahn and Hilliard [1958]. Successively, the phase
field method has been applied to simulate a wide range of problems from dendritic growth
(see, e.g., Warren and Boettinger [1995]) to tumor growth (see, e.g., Lorenzo et al. [2017]).
Interested readers are refered to Boettinger et al. [2002] for an extensive review of the method.
The method consists in defining a phase field function φ = φ(x) over a domain Ω, such that:

φ(x) =


φ = 1 if x ∈ D1,

0 < φ < 1 if x ∈ γ,
φ = 0 if x ∈ D0,

6.1

where D1, D0 ⊂ Ω. In such a way we can easily represent two phases α and β (with α < β)
within the same domain. In the regions where φ = 0, we assume to have pure phase α, while,
where φ = 1, we consider pure phase β. The boundary of each phase is represented as a
smooth function, i.e., we have a diffuse interface representation of the boundaries. We can
define the free energy functional of the system F(φ) as:

F(φ) =
∫

Ω

(
γ

2 | ∇φ |
2 + 1

γ
ψ0(φ)

)
dΩ, 6.2

where the first term represents the interface energy and ψ0(φ) = (φ− φ2)2 is the double-well
potential function. The objective of a general phase field problem is hence to minimize the
total free energy of the system under given constraints.
The phase field method was first introduced in structural topology optimization by Bourdin

and Chambolle [2003]. Starting from a classical topology optimization approach, the method
iteratively updates an objective function (e.g., compliance) based on sensitivity analysis. Such
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a method allows the nucleation of new holes during the optimization routine, leading to opti-
mized structure very similar to the one we can obtain by means of SIMP approach avoiding
most of its numerical drawbacks.

State equations

We consider a domain Ω ⊂ Rd where a material is distributed by means of a scalar phase-field
variable φ, representing a material density fraction, hence φ ∈ [0, 1] with φ ≡ 0 corresponding
to a void (i.e., no material) and φ ≡ 1 to a dense material. Adopting a linear elastic model,
the state equations can be written as follows:

−div (σ) = f in Ω 6.3
u = 0 on ΓD 6.4

σ · n = g on ΓN 6.5

with

σ = C : ε(u) in Ω 6.6

where C = C(φ) the fourth-order linear material tensor, u the displacement field vector, ε(u)
the symmetric strain defined as ε(u) = ∇Su =

(
∇u +∇uT

)
/2, g the external load on the

boundary ΓN ⊂ ∂Ω, and ΓD ⊂ ∂Ω, | ΓD |6= 0, the portion of the boundary where homogeneous
Dirichlet boundary conditions are applied.
Assuming the material tensor C to depend on φ, the solution of the linear elastic problem

depends on the distribution of the scalar field φ (i.e., u = u(φ)). We treat the void as a very
soft material, adopting the following expression for C:

C(φ) = Cbφ
p + Cv(1− φ)p

where Cb is the positive definite material tensor of the bulk material, Cv is the positive definite
material tensor of an idealized very soft material (representing the voids), and p can be any
positive value; for simplicity, we assume Cv = γ2Cb, with γ � 1, while, following [Bendsøe
and Sigmund, 1999], we set p = 3.
The weak form of the linear elastic problem can be written as:∫

Ω
ε(u) : C(φ)ε(v)dΩ =

∫
ΓN

g · vdΓ. 6.7

with v ∈ H1
D(Ω) a virtual displacement field. Referring to [Blank et al., 2014] we can prove

that for any given g ∈ L2(ΓN) and φ ∈ L∞(Ω), there exists a unique u ∈ H1
D(Ω) fulfill-

ing equation (6.7), with H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ΓD}.

Topology optimization as a minimization problem

The goal of our topology optimization process is to properly minimize the compliance of a given
structure by optimally distributing a limited amount of material under a stress constraint.
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To properly minimize the compliance, we introduce an objective functional J (φ,u) defined
as:

J (φ,u,σ) =

κg

∫
ΓN

g · udΓ + κ

∫
Ω

[
γ

2 ‖ ∇φ ‖
2 + 1

γ
ψ0(φ)

]
dΩ+

κf

∫
Ω
φ (f · u)dΩ + κσ

∫
Ω
F (σ)dΩ

6.8

where the first integral represents a measure of the global system compliance, defined as the
inverse of the stiffness, while, assuming κ > 0, the second integral is an approximation of
the perimeter of the interfaces between regions with φ = 0 and φ = 1. In equation (6.8) γ
corresponds to the thickness of the diffuse interface, i.e., the region where 0 < φ < 1, the term
γ/2 | ∇φ |2 penalizes jumps between φ = 0 and φ = 1, while ψ0(φ)/γ represents the double-
well potential function penalizing phases with φ different from 0 and 1. Let us point out that
in the cost functional 6.8, we include the last term in order to possibly account for the stress
constraint, which naturally appears in practical applications, e.g., in structural engineering
problems where we require that the stress does not exceed some material dependent threshold
value. In the ideal case, we would like to impose a maximum stress ratio based on a given
stress criterion (e.g., von Mises, Tresca, Hill, ...), such that

σmax = max
(
σe
σy

)
, 6.9

where σe is the equivalent stress depending on the chosen criterion and σy the material de-
pendent yield stress. Since this function is not differentiable, a very popular solution in the
literature of topology optimization with stress constraints (cf., e.g. Le et al. [2010]; Lee et al.
[2012]; Zhou and Sigmund [2017]) is to employ the p-norm of the stresses defined as:

σPN =
(∫

Ω

(
σe
σy

)p)1/p

,

where the parameter p controls the level of smoothness of the function, with p → ∞ leading
to the max function of equation (6.9). Finally, the function F can be taken as

F (σ) =| σPN − 1 | .

We remark that following [Blank et al., 2014] we choose the same scaling parameter γ to
penalize the sharp interface region and to define the void soft material; this choice is justified
by the assumption that when one of the two values goes to zero also the other one has to
vanish.
The minimization of the functional in equation (6.8) is imposed under the assumption of

distributing a limited constant quantity of material inside the domain, hence, we introduce
the constraint:∫

Ω
φdΩ = m | Ω |
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with 0 < m ≤ 1 representing a target domain volume fraction. Clearly, the displacement field
u(φ) solving the topology optimization problem should also be solution of the linear elastic
problem of equation (6.7).
In conclusion, the minimization problem we aim to solve is the following.

Problem (P):

min
φ

J (φ,u,σ)

such that the following constraints are satisfied:∫
Ω
σ : ε(v)dΩ =

∫
Ω

f · vdΩ +
∫

ΓN
g · vdΓ. 6.10

M(φ) =
∫

Ω
φdΩ−m | Ω |= 0, 6.11

with φ ∈ H1(Ω) satisfying the constraint:

0 ≤ φ ≤ 1 a.e. in Ω. 6.12

Following the argument by [Blank et al., 2014], we can prove that the minimum constrained
problem (P) has at least one solution (cf. [Blank et al., 2014, Thm. 4.1]). In particular, to
solve problem (P) we introduce the Lagrangian functional L, defined as:

L(φ, λ,u,σ,U,Σ) = J (φ,u,σ) + λM(φ) + S(φ,u,σ,U,Σ), 6.13

where λ is the Lagrange multiplier introduced to impose the volume constrain of equa-
tion (6.11) and S is the adjoint problem operator defined as follows:

S(φ,u,σ,U,Σ) =

−
∫

Ω
σ : ε(U)dΩ +

∫
ΓN

g ·UdΓ +
∫

Ω
f ·UdΩ +

∫
Ω

(σ − C(φ) : ε(u)) ΣdΩ,

which we introduce together with the adjoint variables U and Σ.
The solution of problem (P) is equivalent to the minimization of equation (6.13) subjected to

the constraint of equation (6.12); this last problem can be seen as an optimal control problem,
with solutions (φ̄, λ̄, ū, σ̄, Ū, Σ̄) that have to satisfy the first order optimality conditions defined
by:

DφL(φ̄, λ̄, ū, σ̄, Ū, Σ̄)(φ− φ̄) ≥ 0 ∀φ ∈ Φad,

where Φad is the set of admissible controls defined as follows:

Φad := {φ ∈ H1
D(Ω) : 0 ≤ φ ≤ 1 a.e. in Ω}.

Thus, to get minimizers we consider the partial derivatives of the lagrangian w.r.t. u and
σ, Lu and Lσ respectively, and impose that they are equal to zero. From these relations,
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it is straightforward, also by definition of J , to derive the so-called adjoint equations. In
particular, we get

div(CT (φ̄)Σ) = κf φ̄f a.e. in Ω 6.14
CT (φ̄)Σ · n = κgg a.e. on ΓN 6.15
Σ = ε(U)− κσFσ(σ̄) a.e. in Ω. 6.16

To obtain a more compact formulation, we define here the energy density of the system and
its derivative w.r.t. the scalar field φ as:

E(φ,u) = ε(u) : C(φ)ε(u),

and

∂E(φ,u)
∂φ

= ε(u) : ∂C(φ)
∂φ

ε(u).

To discretize our continuous problem we employ a gradient flow dynamics, namely Allen-
Cahn gradient flow [Allen and Cahn, 1979], a steepest descent pseudo-time stepping method
with a time-step increment τ . Thus the optimal control problem (P) can be now rewritten as
follows:

DλL vλ =Mvλ = 0, 6.17
γ

τ

∫
Ω

(φn+1 − φn)vφdΩ = −DφL vφ, 6.18

where

DφL = ∂J
∂φ

+ λ
∂M
∂φ

+ ∂S
∂φ

,

with vλ ∈ R and vφ ∈ Φad.
The optimal control problem (P) can be finally written in the following weak extended

formulation:∫
Ω
vλ(φn+1 −m)dΩ = 0, 6.19

γ

τ

∫
Ω

(φn+1 − φn)vφdΩ + κγ

∫
Ω
∇φn+1 · ∇vφdΩ

+ λ

∫
Ω
vφdΩ−

∫
Ω
vφ
∂E(φn,un)

∂φ
dΩ + κ

γ

∫
Ω

∂ψ0(φn)
∂φ

vφdΩ = 0, 6.20

which we solve by means of the finite element method.

Finite element formulation

We derive here a finite element approximation of the phase-field topology optimization prob-
lem previously defined. To this end, we discretize the physical domain Ω employing three
triangular meshes Tu, Tφ,and TU , one for each variable of the problem. At the nodes of each
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triangular element we interpolate, by means of piecewise linear basis functions, the corre-
sponding variables u, φ, and U together with their variations v, vφ,and vU, obtaining the
following finite element expansions:

u ≈ Nuũ, v ≈ Nuṽ,
φ ≈ Nφφ̃, vφ ≈ Nφṽφ,
U ≈ NUŨ, vU ≈ NUṽU,

where Nu,Nφ,NU are the piecewise linear shape function vectors and matrices which interpo-
late the nodal degrees of freedoms ũ, φ̃, Ũ and their variations ṽ, ṽφ, ṽU. Finally, the Lagrange
multiplier λ - used to constrain the volume - is applied using a constant scalar value on the
domain Ω.
We can now write the discretized version of the optimal control problem (P), as follows:

1
τ


0 0 0 0
0 0 0 0
0 0 Mφφ Mφλ

0 0 Mλφ 0




ũ
Ũ
φ̃

λ̃

+


Kuu 0 0

0 KUU 0 0
0 0 Kφφ 0
0 0 0 0




ũ
Ũ
φ̃

λ̃

 =


f

F + qσ
qφ + qs + qψ

qλ

 6.21

with the matrix and vector terms defined as:

Kuu =
∫

Ω
∇Nu

TC∇Nu dΩ,

KUU =
∫

Ω
∇NU

TC∇NU dΩ,

Mφφ = γφ

∫
Ω

NT
φNφ dΩ,

Kφφ = κγφ

∫
Ω
∇NT

φ∇Nφ dΩ,

Mλφ = τ

∫
Ω

NT
λNφdΩ =

(
Mφλ

)T
,

f =
∫

ΓN
Nu

Tg dΓ,

F =
∫

ΓN
NT

Ug dΓ,

qσ = κσ

∫
Ω

NT
UFσ(σn+1) dΩ,

qφ = γφ
τ

∫
Ω

(
NT
φNφ

)
φ̃n dΩ = Mφφφ̃n,

qλ =
∫

Ω
mdΩ,

qs =
∫

Ω
NT
φ

∂E(φ,u)
∂φ

dΩ,

qψ = κ

γφ

∫
Ω

NT
φ

∂ψ0(φ)
∂φ

dΩ.
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To obtain a topologically optimized structure, we solve the problem in equation (6.21)
employing a staggered iterative approach as described in algorithm 6. In fact, the linear
system in equation (6.21) can be split into three linear systems which we solve separately: the
state equation system

Kuuũ = f , 6.22

the adjoint problem system

KUUŨ = F + qσ, 6.23

and the phase-field system

1
τ

[
Mφφ Mφλ

Mλφ 0

] [
φ̃

λ̃

]
+
[
Kφφ 0
0 0

] [
φ̃

λ̃

]
=
[
qφ + qs + qψ

qλ

]
. 6.24

which can be solved with either a direct or an iterative solver. The phase-field
optimization routine defined in algorithm 6 presents an iterative procedure where we first
solve the state equation system 6.22 to get the solution vector ũn+1, secondly we solve the ad-
joint system 6.23, and finally we evaluate the phase-field system 6.24 to obtain the phase-field
solution vector φ̃∗

n+1 together with the Lagrange multiplier λ̃n+1. Every iteration ends calling
the function rescale, as defined in algorithm 7 to impose the constraints on the phase-field
variable φ directly at the nodal values. The phase-field optimization routine is then re-
peated until either the maximum number of iteration (maxiter) is reached or the L2−norm of
the phase-field variable increment ∆φ =‖ φn+1 − φn ‖L2 is below a given tolerance (tol).

Algorithm 6 phase-field optimization
Input: TU , Tφ, Tu, φ0
Output: Optimal topology
1: φn ← φ0
2: while (∆φ ≥ tol) and n ≤ maxiter do
3: ũn+1 ← solve 6.22
4: Ũn+1 ← solve 6.23
5: (φ̃∗n+1, λ̃n+1)← solve 6.24
6: φ̃n+1 ← rescale

(
φ̃
∗
n+1, [0, 1]

)
7: update(∆φ)
8: φn ← φn+1
9: end while

6.1.3 Functionally graded material design optimization
In this section we want to develop a new phase field formulation to obtain graded material
structures. Such a kind of structure is tightly connected with AM technologies since the high
flexibility introduced into manufacturing processes allows to vary the material properties in
an almost continuous fashion. This AM feature leads to a change in the design and manu-
facturing paradigms, shifting the focus of design from a manufacturing oriented design, also
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Algorithm 7 rescale
Input: ω, [a, b]
Output: Constrained solution vector
1: for all ωi ∈ ω do
2: if ωi < a then
3: ωi = a
4: else if ωi > b then
5: ωi = b
6: else
7: do nothing
8: end if
9: end for

known as design for manufacturing, to the so called functional design, where the objective
of design is now the functionality of the component and not anymore its manufacturabil-
ity. In particular, in this section we focus on a particular type of functional design, the so
called functionally graded material design (FGMD). This kind of design aims at obtaining
structures with mechanical properties which are similar to fully dense material structure, but
employing less material. In this sense, we exploit the possibility to obtain local voids and/or
lattice microstructures given by the most recent AM processes. Such a result can be achieved
by means of a topology optimization routine which is able to optimally distribute a varying
material density parameter within the structure. In this work, we first develop and implement
a phase field topology optimization procedure suitable for FGMD, then we build a complete
computational framework to convert numerical results to 3D printable models.

Asymptotic Homogenization

FGM may be obtained creating a microstructure into the solid part of the component to form
a cellular medium. One way of creating such microstructures is the introduction of regularly
spaced holes. More in details, square cells with centrally-placed squared holes are considered
in this work (see figure 6.3).
We assume that the solid part of the microstructure is an isotropic material of elastic modulus

E and Poisson ratio ν. We also introduce a density field variable χ ∈ [0, 1] that is a measure
of the dimension of the squared hole a with respect to the dimension of the side l of the cell,
as shown in Figure 6.3 :

χ = 1− a

l
. 6.25

Because of the squared holes, the cellular medium can be considered an orthotropic material,
for which the (homogenized) elastic tensor CH(χ) at the macroscale is expressed, under the
hypothesis of plane stress state, as follows:

CH(χ) =

 CH
11(χ) CH

12(χ) 0
CH

12(χ) CH
22(χ) 0

0 0 CH
66(χ)

 . 6.26
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Figure 6.3: a) Schematic representation of the FGM; b) microstructure consisting of square
cells with centrally-placed squared holes (RVE).

Given a value of χ, we evaluate the components of CH (χ) considering an asymptotic ho-
mogenization procedure for which the Representative Volume Element (RVE) is the square
cell with the squared hole. The RVE is denoted in the following by Πχ and its area by Yχ. A
Cartesian coordinate system {y1, y2, y3} is introduced in Πχ, with the origin in the center of
the RVE.
According to the relation of equation (6.26), only three components of CH(χ) have to be

evaluated, namely CH
11(χ), CH

12(χ) and CH
66(χ), since from symmetry considerations it results

that CH
11(χ) = CH

22(χ). The equations that allow to obtain the homogenized material tensor
components, under the hypotheses of linear elastic behavior and small strain approximation
used for the RVE are:

CH
11 = CH

22 = 1
Yχ

E

1− ν2

∫
Πχ

[1− ε̃11(y)− νε̃22(y)] dy 6.27a

CH
12 = 1

Yχ

E

1− ν2

∫
Πχ

[ν − ε̃11(y)− νε̃22(y)] dy 6.27b

CH
66 = 1

Yχ

E

2(1 + ν)

∫
Πχ

[1− γ̃12 (y)] dy 6.27c

In equation (6.27) ε̃11(y), ε̃22(y) and γ̃12, are the microscopic strain fields occurring in the RVE,
with applied periodicity boundary conditions, and resulting from the application of specific
macroscopic strain histories ε̄ij. More in detail, the strain histories ε̄11, ε̄22 and γ̄12 applied
for equations (6.27a) to (6.27c) respectively, are shown in figure 6.4. Equation (6.27) have
been numerically solved by Finite Element Analises (FEA) in Hassani and Hinton [1998].
In FGM the value of the density field variable χ is allowed to continuously vary on the whole

structure. In order to perform topology optimization using the model involving a material with
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Figure 6.4: Macroscopic strain histories applied to the RVE for the evaluation of the compo-
nents of the homogenized material tensor CH(χ). a) ε̄11, b) ε̄22, c) γ̄12

square micro cells, we need to determine the functional relationship between the constitutive
matrix CH components and the field variable χ, i.e. to construct CH(χ). To this aim, a table
of 11 equally spaced sampling points representing 11 values of χ was extracted from Hassani
and Hinton [1998]. Finally, we use a least squares approximation polynomial fitting to find
the elements of the homogenized elasticity matrix CH(χ) in a continuous form, relying on the
discrete values obtained at the sampling points.

State Equation

Let us consider a domain, Ω ⊂ Rd where a material is distributed by means of two phase field
variables: φ ∈ [0, 1] and χ ∈ [0, φ], where φ ≡ 0 corresponds to voids and φ ≡ 1 indicates bulk
material, while χ continuously varies within the structure such that it can be considered as a
measure of the relative density in the domain regions (φ 6= 0).
We aim at solving a linear elastic problem formulated as follows:

div(σ(φ, χ)) = 0 in Ω 6.28a
u = 0 on ΓD 6.28b
σ(φ, χ) · n = g on ΓN 6.28c
ε(u) = sym(∇u) in Ω 6.28d
σ(φ, χ) = C(φ, χ) : ε(u) in Ω 6.28e

with g external load vector, n the unit normal vector, and with the material tensor C(φ, χ)
defined as follows:

C(φ, χ) = CH(χ)φ3 + γ2
φCH(χ)(1− φ)3 6.29

with γφ > 0.
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Graded-material topology optimization as a minimization problem

We want now to define an objective functional which optimizes a structure with an inhomoge-
neous material distribution. This new graded-material objective functional JM(φ, χ,u(φ, χ))
can be defined as:

JM(φ, χ,u,σ) =
∫

ΓN
g · u(φ, χ)dΓ +

∫
Ω

f · u(φ, χ)dΩ

κφ

∫
Ω

[
γφ
2 | ∇φ |

2 + 1
γφ
ψ0(φ)

]
dΩ + κχ

∫
Ω

γχ
2 | ∇χ |

2 dΩ + κσ

∫
Ω
F (σ)dΩ,

with κφ, κχ > 0 and γχ > 0. The difference with respect to equation (6.8) consists only in
the additional integral term γχ/2 (| ∇χ |)2, which is introduced to penalize the gradient of the
density scalar field χ.
Following the same approach described for the single-material case, the global graded-

material minimization problem (CP) can be now written as follows:

min
φ,χ

JM(φ, χ,u,σ),∫
Ω
σ : ε(v)dΩ =

∫
Ω

f · vdΩ +
∫

ΓN
g · vdΓ,

M(φ) =
∫

Ω
φdΩ−m | Ω |= 0,

where φ, χ ∈ H1(Ω), under the constraint

0 ≤ φ ≤ 1 a.e. in Ω,

and the additional constraint on χ:

0 ≤ χ ≤ φ a.e. in Ω.

We can now define the graded-material Lagrangian LM as:

LM(φ, χ, λ,u,σ,U,Σ) =
JM(φ, χ,u,σ) + λM(φ) + SM(φ, χ,u,σ,U,Σ),

where, the adjoint operator SM for the graded-material formulation is calculated as:

SM(φ, χ,u,σ,U,Σ) =

−
∫

Ω
σ : ε(U)dΩ +

∫
ΓN

g ·UdΓ +
∫

Ω
f ·UdΩ +

∫
Ω

(σ − C(φ, χ) : ε(u)) ΣdΩ,

Analogously to the previously introduced set of admissible controls Φad for the phase-field
variable φ, we define now the set of admissible controls Ξad for the grading variable χ as:

Ξad := {χ ∈ H1(Ω) : 0 ≤ χ ≤ φ a.e. in Ω}.

Clearly, also in the graded-material case we want that the optimal control solutions φ̄ and
χ̄ have to satisfy the first order necessary optimality conditions, which can be derived as:

DφLM(φ̄, χ̄, ū, σ̄, Ū, Σ̄)
(
φ− φ̄

)
≤ 0 ∀φ ∈ Φad



6.1. Topology Optimization: From origins to functionally graded material design 79

and

DχLM(φ̄, χ̄, ū, σ̄, Ū, Σ̄) (χ− χ̄) ≤ 0 ∀χ ∈ Ξad,

where ū and Ū are solutions of the graded-material state equation (6.28) and of the cor-
responding adjoint problem, respectively. For a complete analysis of necessary first order
optimality conditions we refer to the results reported in appendix D.
Analogously to the single-material case, we can define the energy density of the system and

its derivatives w.r.t. both the material phase-field variable φ and the density variable χ as:

EM(φ, χ,u) = ε(u) : C(φ, χ)ε(u),

∂EM(φ, χ,u)
∂φ

= ε(u) : ∂C(φ, χ)
∂φ

ε(u),

and

∂EM(φ, χ,u)
∂χ

= ε(u) : ∂C(φ, χ)
∂χ

ε(u).

The optimal control problem can be solved as in the single-material case by means of the
Allen-Cahn gradient flow, leading to the following set of equations:

γφ
τ

∫
Ω

(φn+1 − φn)vφdΩ + κφγφ

∫
Ω
∇φ · ∇vφdΩ +

∫
Ω
vφλdΩ

−
∫

Ω
vφ
∂EM(φn, χn,un)

∂φ
dΩ + κφ

γφ

∫
Ω

∂ψ0(φn)
∂φ

vφdΩ = 0,
6.30

γχ
τ

∫
Ω

(χn+1 − χn)vχdΩ + κχγχ

∫
Ω
∇χ · ∇vχdΩ−

∫
Ω
vχ
∂EM(φn, χn,un)

∂χ
dΩ = 0, 6.31

to be solved under the volume constraint∫
Ω
vλ(φ−m)dΩ = 0. 6.32

In order to estimate the total amount of material in the structure, we define a material density
fraction index mχ as:

mχ = 1
| Ω |

∫
Ω
χdΩ,

which can be considered as a measure of the global amount of material used to print the
structure. Correspondingly, we define mφ as the volume fraction index, such that:

mφ = m = 1
| Ω |

∫
Ω
φdΩ.
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Graded-material finite element formulation

We aim now at obtaining a discrete formulation for the graded-material phase-field topology
optimization problem. To this end, the displacement field u, the adjoint variable U, the
phase-field variable φ, the Lagrange multiplier λ and their corresponding variations are ap-
proximated using the same discretization already defined in section 6.1.2. Additionally, we
need to discretize the material grading variable χ on the domain Ω; such a discretization is
obtained introducing an additional mesh Tχ, such that the material grading variable χ and its
variation vχ can be written as:

χ ≈ Nχχ̃ and vχ ≈ Nvχṽχ,

where Nχ and Nvχ are the piecewise linear shape functions which interpolate the nodal degrees
of freedoms χ̃ and ṽχ, respectively.
The discrete form of equations (6.30) to (6.32) can thus be written in a compact notation

as:

1
τ


0 0 0 0 0
0 0 0 0 0
0 0 Mφφ 0 Mφλ

0 0 0 Mχχ 0
0 0 Mλφ 0 0




ũ
Ũ
φ̃
χ̃

λ̃

+


Kuu 0 0 0

0 KUU 0 0 0
0 0 Kφφ 0 0
0 0 0 Kχχ 0
0 0 0 0 0




ũ
Ũ
φ̃
χ̃

λ̃

 =


f

F + qσ
qφ + qs + qψ

qχ + qs′
qλ


6.33

where the newly defined matrix and vector terms are:

Mχχ = γχ

∫
Ω

NT
χNχdΩ,

Kχχ = κχγχ

∫
Ω
∇NT

χ∇NχdΩ,

qχ = γχ
τ

∫
Ω

NT
χNχχ̃ndΩ,

qs′ =
∫

Ω
NT
χ

∂EM(φ̃n, χ̃n, ũn)
∂χ

dΩ,

To obtain a topologically optimized structure with continuously varying material properties,
we solve the problem in equation (6.33) employing a staggered iterative approach as described
in algorithm 8. In fact, the linear system in equation (6.33) can be split into three linear
systems which we solve separately:
the state equation system

Kuuũ = f , 6.34
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the adjoint problem system

KUUŨ = F + qσ, 6.35

and the phase-field system

1
τ

Mφφ 0 Mφλ

0 Mχχ 0
Mλφ 0 0

φ̃χ̃
λ̃

+

Kφφ 0 0
0 Kχχ 0
0 0 0

φ̃χ̃
λ̃

 =

qφ + qs + qψ
qχ + qs′

qλ

 .
6.36

Algorithm 8 describes the iterative procedure to obtain the graded-material optimized struc-
ture discussed so far. The adopted solution scheme is very similar to algorithm 6 but in this
case we have to solve at each iteration the graded-material linear system defined in equa-
tion (6.36) to obtain the material phase-field solution vector φ̃n+1 and the density field solution
vector χ̃n+1.

Algorithm 8 graded-material optimization
Input: TU , Tφ, Tu, Tχ, φ0, χ0
Output: Optimal topology
1: φn ← φ0
2: χn ← χ0
3: while (∆φ ≥ tol or ∆χ ≥ tol) and n ≤ maxiter do
4: ũn+1 ← solve 6.34
5: Ũn+1 ← solve 6.35
6: (φ̃∗n+1, χ̃

∗
n+1, λ̃n+1)← solve 6.36

7: φ̃n+1 ← rescale
(
φ̃
∗
n+1, [0, 1]

)
8: χ̃n+1 ← rescale

(
χ̃∗n+1, [0, φ]

)
9: update(∆φ)

10: φn ← φn+1
11: χn ← χn+1
12: end while

6.2 Numerical and Experimental Results
In this section, we first present a verification benchmark to asses the accuracy of the assump-
tions made for asymptotic homogenization. Secondly, we discuss numerical end experimental
results obtained for a classical benchmark example of topology optimization literature, namely
the MBB-beam problem. We also report numerical results for two three-dimensional examples,
the 3D MBB-beam and the L-bracket problem. In the 3D examples the asymptotic homog-
enization described in section 6.1.3 is not used, instead the bulk material tensor is simply
linearly scaled using the density variable χ, such that:

C(φ, χ) = χCb

(
φ3 + γ2

φ(1− φ)3) . 6.37
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The presented results are obtained using an in-house developed software written in FEniCS,
an open source library to automate the solution of mathematical models based on differential
equations, we refer to Logg et al. [2012] for further information on FEniCS framework.

6.2.1 Verification of the asymptotic homogenization assumption

To estimate the modeling error introduced by asymptotic homogenization we study the simple
numerical benchmark described in figure 6.5. We apply a load g = 100[N/mm] and we
evaluate the compliance and the maximum displacement in x-direction ux,max of the specimen.
We consider domains with microstructure having different cell size (see figure 6.6) and the
corresponding homogenized structure. Table 6.1 reports the results obtained for three different
density fraction ρf = ρstr/ρbulk = 0.25, 0.5 and 0.75, where ρbulk = 7850[N/m3] is the density
of the bulk material and ρstr the actual density of the structure. It can be observed that for
lower density fraction the error of the homogenized model increases. This effect is due to both
boundary effects and an intrinsic modeling error which we introduced with the asymptotic
homogenization assumptions. Nevertheless, due to the extremely high computational costs of
simulations resolving a time evolving microstructure domain, we can consider the homogenized
model a sufficiently good trade-off between accuracy and computational efforts.

x

y

Ω

50

10 g

Figure 6.5: One-quarter traction test. All units are in mm.

(a) 5× 1 (b) 10× 2 (c) 20× 4

(d) 40× 8 (e) 80× 16

Figure 6.6: Microstructure domains with different cell sizes and density fraction ρf = 0.5.
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Table 6.1: Compliance and max. displacement value of different microstructures and corre-
sponding homogenized material.

ρf 0.25 0.75 0.5
]cells ]DOFs C ux,max ]DOFs C ux,max ]DOFs C ux,max
5x1 30346 496.0 0.78 26288 48.1 5.31E-02 59564 103.0 1.29E-01
10x2 30788 295.5 0.45 82262 46.5 4.91E-02 58482 89.0 1.04E-01
20x4 36376 203.4 0.24 252262 45.8 4.71E-02 60544 82.9 8.99E-02
40x8 144558 188.44 0.21 333984 45.3 4.60E-02 66082 79.2 8.21E-02
80x16 819714 185.4 0.20 339608 44.5 4.48E-02 111350 76.6 7.86E-02
hom 402402 169.0 0.17 402402 44.8 4.47E-02 402402 79.7 7.97E-02

6.2.2 Two dimensional MBB
We apply the phase-field topology optimization procedure described in section 6.1 to the
MMB-beam problem described in figure 6.7. We set g = 25 N and we consider the RGD851
rigid polymer from Stratasys, having elastic modulus E = 2300 MPa and a Poisson ratio
ν = 0.3. The volume filling ratios are mφ = 0.7 and mχ = 0.4. In order to satisfy the machine
manufacturing constraints, which do not allow to print infinitely small thicknesses, we set a
minimum value for the density parameter χmin = 0.29, such that χ ∈ [χmin, φ] where φ 6= 0.
The evolution of the density phase-field variable χ at different time steps is shown in figure 6.8.

x

y

Ω

60

65

10

g

Figure 6.7: Two dimensional MBB: half-domain setup.

From numerics to 3D printing

In order to convert the result of figure 6.8f into printable data we implemented the following
procedure:

1. Choose the shape and the size of the microstructure cells. In this work we choose squared
cells with dimensions fulfilling technological requirements such as the minimum print-
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(a) t = 1 (b) t = 15

(c) t = 30 (d) t = 45

(e) t = 60 (f) t = 85

Figure 6.8: Two dimensional MBB: Evolution of the density variable χ at different time steps
t.

able thickness and hole dimension. The dimension of the cell l = 1mm is determined
according to the resolution capability of the Connex 3 3D-printer;

2. Generate a Cartesian grid Λχ over the domain Ω with a constant size equal to the cell
dimension;

3. Evaluate the average value χ̄ within each cell of Λχ;
4. Generate a cuboid for each cell of Λχ; each cuboid results from the extrusion of a square

of side equal to a, evaluated through equation (6.25). Each cuboid represents the void
that has to be introduced to create the microstructure;

5. Generate an high resolution Cartesian grid Λφ over the domain Ω with a constant size
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equal to the finite element mesh dimension; for each cell of Λφ the corresponding value of
the field variable φ is assigned. For each cell, if the value of φ > ξ a cuboid is generated,
being ξ a threshold value;

6. By means of a boolean operation subtract the solid obtained at step 4 from the solid
obtained at step 5.

This procedure is implemented in Mathematica such that we have obtained a complete
conversion pipeline within a single numerical framework.
The complete process, from analysis to 3D printing is described in figure 6.9 where the main

steps of this method are highlighted. Finally, we print the final structure using the 260 Connex
3 R© available at the laboratories of the University of Pavia.

Figure 6.9: A complete pipeline from a continuously graded numerical solution to a 3D printed
FGM structure; a) phase-field based topology optimization, b) generation of 3D virtual model
from the discrete maps of the field variables, c) finished 3D virtual model, d) 3D-printed part

Experimental results

With this experimental measurements we aim at assessing the higher mechanical proper-
ties (e.g., stiffness) which topologically optimized structures can achieve compared to lattice
structures having the same weight but constant density. We printed five different specimens:
3 using the optimized model and 2 constant density beams. One of the optimized specimen
was used to calibrate the machine, thus we report results only of 4 measurements. Figure 6.10
shows the two different kind of specimens (constant density and FGM) in the testing machine.
We perform a 3-point bending test and measure the maximum displacement along the axis
of symmetry of the structure. The experimental results are reported in figure 6.11. These
results clearly show the benefits of performing topology optimization on the mechanical re-
sponse of the structure: for the same load (50 N) we have more than two times less maximum
displacements in the optimized specimen than in the constant density one.
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(a) Constant density specimen

(b) FGM topologically optimized specimen

Figure 6.10: Specimens used in the experiment.

6.2.3 Three dimensional MBB

We now extend the numerical results of section 6.2.2 to the three-dimensional problem de-
scribed in figure 6.12. As in section 6.2.2, we set g = 25 N and we consider the RGD851 rigid
polymer from Stratasys, having elastic modulus E = 2300 MPa and a Poisson ratio ν = 0.3.
We change the volume filling ratio mφ to 0.5 while we keep mχ = 0.4. We set a minimum value
for the density parameter χmin = 0.25, such that χ ∈ [χmin, φ] where φ 6= 0. The evolution
of the material phase-field variable φ at different time steps is shown in figure 6.13, while the
evolution of the density phase-field variable χ at different time steps is depicted in figure 6.14.
Both these results proof that the algorithm converges quite fast to the final solution, as we can
also observe from the compliance evolution reported in figure 6.15. Finally, figure 6.16 shows
the complex internal topology and density distribution obtained at the end of the optimization
procedure.
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Figure 6.11: Load vs displacements plot.

x

y

z

70

10

10

Figure 6.12: Three dimensional MBB: domain setup. The red area indicates the surface where
the load is applied, while the blue areas the surfaces where Dirichlet BCs are aplied
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(a) t = 1 (b) t = 8

(c) t = 16 (d) t = 24

(e) t = 32 (f) t = 49

Figure 6.13: Three dimensional MBB: Evolution of the material variable φ at different time
steps t.

6.2.4 L-bracket design

As a last numerical example we consider another classical benchmark from topology optimiza-
tion literature: the L-bracket problem depicted in figure 6.17, where a load is applied at the
lower-right corner (red surface) of the structure which is clamped at the upper face (blue area).
We employ the same material and optimization parameters used in section 6.2.3. Figure 6.18
shows the evolution of the density variable, while the final topology is reported in figure 6.19
and the corresponding Von Mises stresses are shown in figure 6.20. In figure 6.21 the compli-
ance value at each iteration is plotted. From this figure, we can observe that the algorithm
converges to the optimal solution in few iterations. These results confirm the robustness and
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(a) t = 1 (b) t = 8

(c) t = 16 (d) t = 24

(e) t = 32 (f) t = 49

Figure 6.14: Three dimensional MBB: Evolution of the density variable χ at different time
steps t.

efficiency of the proposed optimization procedure for 3D problems.

6.3 Summary and further outlooks
We have presented a complete pipeline to obtain from numerical results a 3D printed FGM
structure. In particular, we employ the phase-field method together with asymptotic ho-
mogenization for the analysis and the topological optimization of 2D plane stress structures,
whereas an in-house developed Mathematica code is used to convert the density map into a
3D virtual model suitable for 3D printing.
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Figure 6.15: Three dimensional MBB: compliance evolution.

Figure 6.16: Three dimensional MBB: density distribution of optimized structure. Longitudi-
nal plane clip.

As a validation benchmark we investigate an MBB-beam problem for plane stress structure.
The resulting optimized structure is printed and measured experimentally. Measurements
data are compared with a similar beam structure with constant density and equal weight.
Experimental evidences show that-for a fixed weight of the structure-FGMD obtained by
means of the presented methodology are more effective in terms of stiffness with respect to an
analogous lattice structure with constant density.
This experimental results show that the phase-field approach can be useful in case of FGMD

optimization. In fact, contrary to similar methods present in literature, the proposed phase-
field based topology optimization allows to not only redistribute the material within a given
domain but also to indicate void regions within the original domain, simply by means of an
additional degrees of freedom into the problem.
Finally, we tested the phase-field based topology optimization procedure also to 3D bench-

mark problems, namely the three-dimensional MBB-beam problem and the L-bracket problem.
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Figure 6.17: L-bracket: domain setup. The red area indicates the surface where the load is
applied, while the blue area the clamped surface.

In both these problems the algorithm converged to the optimum in few iterations, showing a
robust behavior.
As further outlooks for the present research we aim at extending the complete pipeline to

treat 3D structures and at modifying the optimization algorithm such that we can perform
mass minimization under both functional constraints (e.g., maximum stress constraint) and
technological constraints related to AM processes (e.g., overhang building angles).



(a) t = 1 (b) t = 10

(c) t = 27 (d) t = 37

(e) t = 47 (f) t = 57

Figure 6.18: L-bracket: Evolution of the density variable χ at different time steps t. Mid-plane
section view.



Figure 6.19: L-bracket: density variable χ distribution in the optimized structure.

Figure 6.20: L-bracket: Von Mises stress distribution in the optimized structure.
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Figure 6.21: L-bracket: compliance evolution.
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Chapter 7

Conclusion and outlook

Due to the high heterogeneity of the topics involved, we preferred to discuss most of the
conclusions and possible further outlooks of the results presented in this work within each
single chapter. Therefore, in this final chapter we limit to briefly recall the main conclusions
of this work trying also to propose possible future perspectives for the research from a more
general point of view.

7.1 Summary of scientific conclusions
Since numerical methods are surely a key instrument in understanding, developing, and opti-
mizing AM technologies, in this work we have developed and investigated advanced computa-
tional methods suitable to solve AM related issues.
Accordingly, in chapter 2 we have presented and verified a set of algorithms to obtain

an admissible, adaptive isogeometric discretization, which has shown an excellent trade-off
between numerical accuracy and computational efforts. Admissible adaptive IGA seems to
be a promising alternative to traditional discretization technique when localized solution with
high gradient occurs, e.g., when we are interested in capturing the melt-pool geometry at the
meso-scale.
To obtain an accurate prediction of the temperature field in proximity of the heat affected

zone (HAZ), together with an efficient discretization, a robust and validated physical model is
required. In chapter 3 we have presented a simple yet effective numerical model to approximate
the physical phenomena occurring in the HAZ by means of an anisotropic thermal conductivity
model. This model has been validated employing experimental data provided by the National
Institute of Standards and Technology, showing a good capability in predicting melt-pool
dimensions with respect to different process parameter variations (namely, laser power and
velocity).
An interesting application of the physical model presented in chapter 3 is described in chap-

ter 4, where numerical temperature results are used as ground-truth solution to control an
AM machine through a feed-back loop scheme. Comparing pixel-by-pixel numerical results
and thermal camera measurements the proposed control scheme is potentially able to obtain
a real-time process control on the AM machine. In order to be able to perform operations
directly on the pixel data coming from the thermal camera, we have developed a conversion
procedure, the “inverse measurement” procedure, which allows to translate the continuous,
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simulated temperature results into digital signals in the same field of view of the thermal
camera.
Beside melt-pool shape prediction, another crucial information which AM industry requires

from numerical simulation is the ability to estimate macro-effects on the final artifact which
may occur during the AM process. To this end, both the numerical discretization described
in chapter 2 and the physical model of chapter 3 are no longer valid, since they are tailored to
resolve smaller scales, becoming computationally unaffordable when we are interested in part-
scale results. Therefore, in chapter 5 we have introduced a different discretization technique,
based on the Finite Cell Method and a simpler physical model which can capture averaged
effects occurring during the process. Clearly, we pay a price in terms of accuracy, but this
methodology shows the capability to combine a good geometric description with the possibility
to compute large scale thermal problems within a reasonable computational time.
Optimal design for additive manufacturing is surely one of the most attractive topics com-

bining together numerical method and AM technology. In this work, we have focused our
attention on the so called functionally graded material design, which aims at manufacturing
components with properties varying in an almost continuous fashion. In chapter 6 we have
presented a numerical procedure to perform topology optimization of functionally graded ma-
terial structures. This numerical scheme combines the phase-field method and asymptotic
homogenization to obtain an efficient optimization tool of FGM components. Once the opti-
mized graded material distribution is obtained, we need to convert the numerical results into
a printable 3D virtual model. To this end, we have developed a procedure based on struc-
tural cells having variable filling ratio to map the continuous density distribution to a cellular
structure. This computational framework has been validated with success for plane-stress
structures. Furthermore, chapter 6 shows results obtained applying the topology optimization
algorithm also to a 3D problem, but in this case we limit to report the optimized continuous
density field, while conversion to a 3D virtual model is left to future investigations.

7.2 Future research
The possible interactions between computational methods and AM technologies are potentially
unlimited, and in this work we have presented only a partial overview of potential usages
of numerical analysis in AM applications. From the results discussed herein emerges that
the complex problems posed by AM technology cannot be faced employing conventional and
well-established computational methods. To address the new challenges presented by AM, it
becomes of utmost importance to research and investigate new techniques.
Moreover, the considered problems are so complex which cannot be tackled by a single

discipline; e.g., we have seen how numerical simulations can be fruitfully employed to develop
more efficient process control schemes, or as CAD model generation can be driven by numerical
optimization procedures due to the greater design flexibility introduced by AM.
Limiting this discussion to the topic addressed in this work, there are few general points

which might be mentioned as possible further developments of the presented results.
Since both numerical discretization techniques and physical models are strongly dependent

on the problem scale we are looking at (as we have described in chapter 3), validation proce-
dures can be helpful not only to assess the robustness and the validity of a physical model but
also to find its limits. Therefore, further experimental validations are required to highlight
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the limits of the proposed models and, at the same time, to provide valuable information on
how to possibly improve the presented numerical and physical models.
Another direction which surely requires to be deeply investigated is the possible interaction

between measurements and simulations. So far, these two fields have been rarely integrated,
but the complex issues presented by AM call for a deeper interaction between metrology
and numerical science. We believe that further investigations in this direction might lead to
interesting results.
Finally, the results we have obtained applying phase-field method for the optimization of

FGM components look very promising and surely need to be further developed. In a first
instance, the mapping algorithm needs to be extended to 3D problems, such that the experi-
mental validation, successfully obtained for a plane stress structure, could be replicated for 3D
cases. Secondly, different cell structures should be considered and eventually also anisotropic
cells should be investigated. Moreover, different AM technology (e.g., metal 3D printing)
should also be considered since the resulting FGMD strongly depends on the technological
boundaries introduced by the machine.
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Appendix A

AMBench CHAL-AMB2018-02

In this appendix we provide the list of process parameters and measurement results for each
scan track of each sample made for AMBench CHAL-AMB2018-02 (see figure A.1).

Figure A.1: Example of laser traces on the upper surface of a IN625 bare plate used for
AMBench measurements. Courtesy of NIST.

Measurements for each individual track are provided together with their corresponding stan-
dard deviation (±1σ). Table A.1 reports the melt pool (MP) length, width and depth mea-
surements, while table A.2 reports the cooling rate (CR) measurements for two different tem-
perature ranges. MP length and CR are calculated from the true temperature reconstructed
from the thermal camera signal. MP width and depth are measured ex-situ: First the samples
were cross sectioned through the middle of the laser path, then they were etched using aqua
regia for a time from 20 s to 30 s and finally examined and photographed with a Zeiss LSM800
optical microscope.
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Appendix B

Inconel 625 thermal properties

In this appendix we report the thermal properties of Nickel alloy Inconel 625. These values
are taken from www.specialmetals.com [2019].

Table B.1: IN625; material constant parameters

density 8.44e-6 [kg/mm3]
latent heat 2.8e5 [J/kg]
melting temperature interval 1290 - 1350 [◦C]
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(a) Thermal conductivity.
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(b) Specific heat capacity.

Figure B.1: IN625; temperature dependent material properties.
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Appendix C

Steel 316L thermal properties

In this appendix we report the thermal properties of steel 316L. These values are taken
from www.upmet.com [2019].

Table C.1: Steel 316L; material constant parameters

density 8.03e-6 [kg/mm3]
latent heat 2.8e5 [J/kg]
melting temperature interval 1390 - 1440 [◦C]
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Figure C.1: Steel 316L; temperature dependent material properties.
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Appendix D

Analytical results for FGM Topology
Optimization

In this appendix we report the main analytical results and proofs, required to develop the
optimization procedure developed in chapter 6.
Let us first introduce some notation in order to rewrite the state system in a weak form.

Given a matrix C, we introduce the product of matrices A, B

〈A,B〉C :=
∫

Ω
A : CB,

where we have used the notation A : B :=
∑d

i,j=1AijBij. Then, the elastic boundary value
problem 6.28 can be rewritten in a weak formulation as

〈ε(u), ε(v)〉C(φ,χ) = G(v, φ) ∀v ∈ H1
D(Ω;Rd) D.1

where G(v, φ) :=
∫

Ω φ f · v dΩ +
∫

Γg g · v dΓ, and C(φ, χ) is the elasticity tensor defined as
in 6.29. We define the convex set

C := {(φ, χ) : φ ∈ [0, 1], χ ∈ [0, φ]}. D.2

Now, let us consider the following assumptions on the data introduced in section 6.1 .

Hypothesis D.0.1:
Assume that there exist positive constants cw, θ, Θ, Λ such that

(H1) ψ0 ∈ C1(R), ψ0 ≥ −cw
(H2) Ci,j,k,l ∈ C1,1(R2,R), i, j, k, l ∈ {1, . . . , d}, Cijkl = Cjikl = Cijlk = Cklij, and

θ|A|2 ≤ C(φ, χ)A : A ≤ Θ|A|2

,
|∂φC(φ, χ)A : B|+ |∂χC(φ, χ)A : B| ≤ Λ|A||B| ,

for all symmetric matrices A, B ∈ Rd×d \ {0} and for all φ ∈ R
(H3) (f ,g) ∈ L2(Ω;Rd)× L2(Γg;Rd)
(H4) F ∈ C1(Rd×d;R+) is a convex function.
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The argument we are introducing exploits the results stated in Blank et al. [2014]. Actually,
in our case we have to deal with two state variables (φ, χ) and with two control parameters
(u,σ), so that the proofs have to be adapted to the vectorial case. For the sake of coherence
we also use notations introduce in the same paper.
First, we recall a known result on the state system D.1 (cf. [Blank et al., 2014, Thm. 3.1,

3.2]).

Theorem D.0.2:
For any given (φ, χ) ∈ L∞(Ω)×L∞(Ω), there exists a unique (u,σ) ∈ H1(Ω;Rd)×H(div,Ω)
which fulfills equations (6.28e) and (D.1). Moreover, there exist positive constants C1 and C2
such that

‖(u,σ)‖H1(Ω;Rd)×H(div,Ω) ≤ C1(‖φ‖L∞(Ω) + ‖χ‖L∞(Ω) + 1) D.3
and

‖u1 − u2‖H1
D(Ω;Rd) + ‖σ1 − σ2‖L2(Ω,Rd×d) ≤

C2
(
‖φ1 − φ2‖L∞(Ω) + ‖χ1 − χ2‖L∞(Ω)

) D.4

where C2 depends on the problem data and on ‖φi‖L∞(Ω), ‖χi‖L∞(Ω), i = 1, 2 and (ui,σi) =
S(φi, χi), being S : (L∞(Ω))2 → H1

D(Ω;Rd) × L2(Ω,Rd×d) defined as the solution control-
to-state operator which assigns to a given control (φ, χ) a unique state variable (u,σ) ∈
H1
D(Ω;Rd)× L2(Ω,Rd×d).

Then, we can state our main result related to the existence of solution to Problem (CP)
and the derivation of first order necessary optimality conditions.

Theorem D.0.3:
The problem (CP) has a minimizer.

Proof. Let us denote by Gad := {(u,σ, φ, χ) ∈ Uad : (u,σ, φ, χ) fulfills D.1}. By virtue
of equation (D.1) and the Hypothesis Hypothesis D.0.1, and taking v = u in equation (D.1),
we can deduce that J is bounded from below on Gad, which is not empty. Thus, the infimum
of J on Gad exists and we can find a minimizing sequence {(uk,σk, φk, χk)} ⊂ Gad. Moreover,
using equation (D.3), we obtain that

J (uk,σk, φk, χk) ≥ δ

(
γ

2‖∇φk‖
2
L2(Ω) + 1

2‖∇χk‖
2
L2(Ω)

)
− Cδ

for some δ > 0 and Cδ > 0. This inequality follows by convexity and the boundedness of (φ, χ)
(see, e.g., equation (D.2)). Hence, by using the fact that φk belong to [0, 1] (cf. equation (D.2))
for all k ∈ N and by means of Poincaré inequality we obtain that the sequence {φk} is bounded
in H1(Ω)∩L∞(Ω). The same can be deduced for χk, which is uniformly bounded, too. Hence,
by Theorem D.0.2, we have that also the sequences of {(uk,σk)} of corresponding states are
bounded in H1

D(Ω;Rd)×H(div,Ω) and that there exists, by compactness, some (ū, σ̄, φ̄, χ̄) ∈
H1
D(Ω;Rd)×H(div,Ω))× (H1(Ω;R))2 such that (as k →∞) at least for subsequences

uk → ū weakly in H1
D(Ω;Rd) and strongly in L2(Ω;Rd) D.5

σk → σ̄ weakly in L2(Ω;Rd×d) D.6
φk → φ̄ weakly in H1(Ω) and strongly in L2(Ω) D.7
χk → χ̄ weakly in H1(Ω) and strongly in L2(Ω) . D.8
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Moreover, since the set Uad is convex and closed (and so also weakly closed), we also get
(ū, σ̄, φ̄, χ̄) ∈ Uad. Using (H1) and the weak lower semicontinuity of IC , of norms and of F
(cf. (H4)), we get

J (ū, σ̄, φ̄, χ̄) ≤ lim
k→∞
J (uk,σk, φk, χk).

Finally, due to the fact that (uk,σk, φk, χk) fulfills equation (D.1) we can deduce in addi-
tion that (ū, σ̄, φ̄, χ̄) fulfills it because C(φk, χk)ε(v) converges strongly to C(φ̄, χ̄)ε(v) in
L2(Ω;Rd×d) and so, using equation (D.5), we get∫

Ω
C(φk, χk)ε(uk) : ε(v) dΩ→

∫
Ω
C(φ̄, χ̄)ε(ū) : ε(v) dΩ .

Therefore (ū, σ̄, φ̄, χ̄) ∈ Uad turns out to be a minimizer for (CP).
In order to deduce first order necessary optimality conditions, we first introduce the lin-

earized system with respect to the variable φ and a direction h in a neighborhood of (φ̄, χ̄).
We use the notation

(ξh,ηh) = ∂φS(φ̄, χ̄)h,
where (ξh,ηh) satisfies:

− divηh = fh in Ω D.9
ηh · n = 0 on Γg D.10
ηh = Kφ(φ̄, χ̄)hε(ū) + K(φ̄, χ̄)ε(ξh) in Ω. D.11

Here ū stand for the first component of S(φ̄, χ̄). Analogously, we introduce the linearized
system with respect to χ in a general direction h. Letting

(ζh,νh) = ∂χS(φ̄, χ̄)h,

where (ζh,νh) satisfies:

− div νh = 0 in Ω D.12
νh · n = 0 on Γg D.13
νh = Kχ(φ̄, χ̄)hε(ū) + K(φ̄, χ̄)ε(ζh) in Ω. D.14

We can now reformulate the optimal control problem (CP) by means of the so-called reduced
functional

j(φ, χ) := J (S(φ, χ), φ, χ)
which is Fréchet differentiable in (H1(Ω)∩L∞(Ω))2. This fact is a consequence of the Fréchet
differentiability of J (cf. [Blank et al., 2014, Lemma 4.2]), the differentiability of the control-
to-state operator (cf. [Blank et al., 2014, Thm. 3.3]) and a standard chain rule formula
(cf. [Tröltzsch, 2010, Thm. 2.20]). In particular, we have

∂φj(φ, χ)h = Ju(u,σ, φ, χ)ξh + Jσ(u,σ, φ, χ)ηh + Jφ(u,σ, φ, χ)

and
∂χj(φ, χ)h = Ju(u,σ, φ, χ)ζh + Jσ(u,σ, φ, χ)νh + Jχ(u,σ, φ, χ).
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We can now restate the Problem (CP) in terms of minimizers of the cost functional, i.e.,
(CP)R :

min
(φ,χ)∈Uad

j(φ, χ). D.15

Then, in order to find the first order necessary optimality conditions, we introduce the
so-called Lagrangian:

L(u,σ, φ, χ,U,Σ) =J (u,σ, φ, χ)−
∫

Ω
σ : ε(U) dΩ +

∫
Ω

f · (φU) dΩ D.16

+
∫

Γg
g ·U dΩ +

∫
Ω

(σ −K(φ, χ)ε(u))Σ dΩ.

Thus, to get minimizers we consider the partial derivatives Lu and Lσ in direction h and impose
that they are equal to zero. From these relations, it is straightforward, also by definition of
J , to derive the so-called adjoint equations. In particular, we get

div(CT (φ̄, χ̄)Σ) = κ3ϕ̄f a.e. in Ω D.17
CT (φ̄, χ̄)Σ · n = κ4g a.e. on Γg D.18
Σ = ε(U)− κ5Fσ(σ̄) a.e. in Ω. D.19

Note that since (φ̄, χ̄) is a minimizer and S(φ̄, χ̄) = (ū, σ̄) ∈ H1
D(Ω;Rd)×H(div,Ω), (U,Σ) ∈

H1
D(Ω;Rd)×H(div,Ω) the corresponding state and adjoint variables, by convexity arguments

it follows that the following inequality holds

(L(φ,χ)(ū, σ̄, φ̄, χ̄, Ū, Σ̄), (φ, χ)− (φ̄, χ̄)) ≥ 0. D.20

By means of this process we end up with the following main result.

Theorem D.0.4:
Let (φ̄, χ̄) denote a minimizer of problem (CP)R and S(φ̄, χ̄) = (ū, σ̄) ∈ H1

D(Ω;Rd) ×
H(div,Ω), (U,Σ) ∈ H1

D(Ω;Rd) × H(div,Ω) the corresponding state and adjoint variables.
Then, (ū, σ̄, φ̄, χ̄, Ū, Σ̄) fulfills the optimality system in weak sense obtained coupling the state
relations equations (D.17) to (D.19) and the gradient inequality arising from equation (D.20):

κ1

∫
Ω

ψ′0(φ̄)
γ

(φ− φ̄) dΩ + κ1γ

∫
Ω
∇φ̄∇(φ− φ̄) dΩ + κ2

∫
Ω
∇χ̄∇(χ− χ̄) dΩ

+
∫

Ω
f · (Ū + κ3ū)(φ− φ̄) dΩ− κ3

∫
Ω
Cφ(φ̄, χ̄)Σ : ε(ū)(φ− φ̄) dΩ

− κ3

∫
Ω
Cχ(φ̄, χ̄)Σ : ε(ū)(χ− χ̄) dΩ ≥ 0

for all (φ, χ) ∈ Cad.
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