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Abstract: With current efforts to increase energy efficiency and reduce greenhouse gas (GHG) 
emissions of buildings in the operational phase, the share of embedded energy (EE) and embedded 
GHG emissions is increasing. In early design stages, chances to influence these factors in a positive 
way are greatest, but very little and vague information about the future building is available. 
Therefore, this study introduces a building information modeling (BIM)-based method to analyze 
the contribution of the main functional parts of buildings to find embedded energy demand and 
GHG emission reduction potentials. At the same time, a sensitivity analysis shows the variance in 
results due to the uncertainties inherent in early design to avoid misleadingly precise results. The 
sensitivity analysis provides guidance to the design team as to where to strategically reduce 
uncertainties in order to increase precision of the overall results. A case study shows that the 
variability and sensitivity of the results differ between environmental indicators and construction 
types (wood or concrete). The case study contribution analysis reveals that the building’s structure 
is the main contributor of roughly half of total GHG emissions if the main structural material is 
reinforced concrete. Exchanging reinforced concrete for a wood structure reduces total GHG 
emissions by 25%, with GHG emissions of the structure contributing 33% and windows 30%. 
Variability can be reduced systematically by first reducing vagueness in geometrical and technical 
specifications and subsequently in the amount of interior walls. The study shows how a simplified 
and fast BIM-based calculation provides valuable guidance in early design stages. 

Keywords: early building design; life cycle assessment (LCA); building information modeling 
(BIM); embedded greenhouse gas emissions; embedded global warming potential; life cycle energy 
analysis; life cycle energy assessment; design assessment; embedded primary energy 

 

1. Introduction 

Buildings play an important role in providing comfortable conditions for human life and work. 
Therefore, it is not surprising that constructing and operating them and the related infrastructure 
consumes a large part of global resources [1], both in terms of material as well as energy [2], and 
directly and indirectly emits 40% of global greenhouse (GHG) gas emissions [3]. Hence, the building 
industry is one of the focus areas for the reduction of energy demand and GHG emissions [4]. Life 
cycle energy demand by and emissions from buildings consist of two components—embedded (also 
known as embodied) and operational [5]. Due to the long lifespan of buildings, conditioning the 
building is responsible for the largest share of energy consumption and emissions of existing 
buildings. Therefore, efficiency efforts have focused on the operation phase [4]. However, with 
increasing energy efficiency and a growing share of renewable energy for building operation, 
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embedded energy and environmental impacts gain importance. The European directive on the 
energy performance of buildings [6] requires all newly constructed buildings in Europe to be nearly 
zero energy buildings (NZEB) starting in the year 2020. This means that new buildings will consume 
almost no non-renewable energy during their operation. Consequently, all non-renewable energy 
demand and thus the largest share of GHG emissions will occur during the construction, 
maintenance, and end-of-life phases. Recent studies underline this trend [5,7]. 

To evaluate the environmental performance of building throughout their entire life cycle, life 
cycle assessment (LCA) is in the process of being established in the building industry [8]. However, 
unlike operational energy calculations, LCA is not part of standard planning processes. Even 
operational energy calculations are conducted as late as possible in the design process when more 
information about the future building is available, mainly to show compliance with standards [9]. 
LCA calculations are not mandatory except for certification purposes by a green or sustainable 
building certification system, such as DGNB (Deutsche Gesellschaft für nachhaltiges Bauen, German 
Sustainable Building Council) [10] or LEED (Leadership in Leadership in Environmental and Energy 
Design) [11]. In light of the increasing importance of the construction, maintenance, and end-of-life 
phases, both standardization and tools for evaluation are needed [12]. 

Energy and environmental performance evaluation throughout the building design process 
bears significant improvement opportunities [13], but at the same time, it poses multiple challenges. 
The assumptions made throughout the initial design stages and the decisions based on these 
assumptions have significant influence on building performance [14,15]. As the potential to minimize 
energy demand and GHG emissions is greatest in these early design stages [16,17], there is increasing 
demand for performance evaluation in these stages. However, there is a lack of information about 
future building, and information, which can serve as a basis for analysis, is uncertain. To deal with 
this vagueness, sensitivity analyses should be employed in order to visualize uncertainties in the 
results as well as influential parameters contributing significantly to result uncertainties [18]. 
Moreover, for the designer, it is also valuable to see which building parts contribute most to the 
overall quantity of energy demand and environmental impact. For the purposes of this study, we use 
the term contribution analysis for this calculation. 

Uncertainty analysis has recently been used extensively in building (operational) energy 
assessment [19]. For LCA, which includes embedded energy and environmental impact calculations, 
uncertainty analysis is less common [20], but with increasing relevance of embedded life cycle phases 
of buildings, it is becoming an important research field. Sources of uncertainty in embedded energy 
and impacts overlap with uncertainties for operational energy mainly when they pertain to exterior 
building parts [21]. Of the different uncertainties present in LCA studies—parameter uncertainty, 
model uncertainty, and scenario uncertainty [22]—this study is concerned with uncertainty in the 
building design parameters. 

Uncertainty analysis consist of a sampling step (preprocessing), calculation (uncertainty 
propagation), and final analysis (post-processing) of the results [23]. The sampling step involves 
varying the input parameters according to their distribution functions. Monte Carlo simulation is one 
of the most commonly used sampling technique in probabilistic calculations, generating random 
samples based on the input parameters’ distribution functions [24]. Subsequently, the uncertainties 
are propagated, i.e., the output results for each sample and mean value and variance of all output 
values are calculated. Global sensitivity analysis then identifies how much input parameter 
uncertainties contribute to output variance. Only if sampling is based on distribution functions, 
global sensitivity analysis is possible [25]. Global sensitivity analysis techniques usable in LCA 
include (squared) standardized regression coefficients, squared Spearman correlation coefficients, or 
Sobol indices [25]. 

Full building LCA calculations require detailed information about the materials used in the 
building, construction processes, energy demand and generation, and end-of-life scenarios. Although 
there are building characteristics that influence both embedded and operational energy and impacts, 
the calculation methods for each are essentially different: operational energy demand ideally requires 
dynamic thermal simulation taking into account the exterior conditions (climate, shading provided 



Sustainability 2020, 12, 2633 3 of 19 

by surrounding buildings, etc.). The calculation of environmental impacts for building operation uses 
the operational energy demand as an input value and calculates the related environmental impact by 
taking the energy sources (mechanical systems and energy carrier) into account. Embedded energy 
and environmental impact calculations, in contrast, are essentially matrix calculations whose 
complexity stems from the amount of data and information required. To reduce this complexity to a 
manageable level, aggregated data is provided in building LCI/LCIA databases such as the 
Oekobaudat [26]. This paper explores in detail the analysis of embedded energy and GHG emissions 
in early design stages in addition to the uncertainty analysis of relevant parameters for both 
operational and embedded energy published in Harter et al. [21]. The related operational energy 
calculation is described in detail by Singh and Geyer [27]. 

Existing LCA and energy calculation tools work well for later design stages when the building’s 
shape and materials are established in detail [28]. Current methods to calculate embedded energy 
and impacts do not lend themselves to early design stages, as they require more information input 
than commonly available at an early stage. In early stages, missing information in terms of both 
materials and missing building elements have to be estimated. However, estimations require expert 
knowledge and lack transparency for the designer. Moreover, design uncertainties are not 
systematically taken into account [20]. In this context, building information modeling (BIM), a well-
established modeling technology with 3D-data including geometry and information on different 
levels [29], offers several opportunities: it facilitates managing the amount of data needed for 
calculations and providing automated or semi-automated calculations [30,31]. 

In early stage performance analysis, few, if any, variants of a project are evaluated, as standard 
calculations are lengthy and hence time-intensive. Commonly, only a handful of previous sample 
projects are available, providing guidance from experience to find the most relevant parameters. 
However, as various buildings are only comparable to a limited extent, even normalization to usable 
floor area and one building type does not provide satisfying standard values [32], as influential 
parameters can differ from project to project. Hence, the aim of this project is the development of a 
tool for engineers and designers to provide a project-specific quick estimate of the embedded energy 
and GHG emissions of the building using a limited number of background datasets, but taking 
uncertainties caused by design vagueness into account. Subsequently, this will be integrated into the 
overall performance evaluation such that trade-offs between operational and embedded life cycle 
phases can be visualized and other criteria (cost, fire safety, etc.) are taken into account. 

This paper presents the calculation methods and our sample project in Section 2, starting with 
the LCA method (Section 2.1), subsequently describing the integration into BIM (Section 2.2) the 
sensitivity and contribution analysis (Section 2.3), and finally the sample project (Section 2.4). We 
split the results, Section 3, into three parts. In Section 3.1, we tackle the question of which parameter 
uncertainties contribute the most to result uncertainties (sensitivity analysis). Section 3.2 analyses the 
contribution of the building parts, i.e., which parts contribute the most to total embedded energy and 
environmental impacts (contribution analysis). Section 3.3 tests the influence of a different material 
choice for the building part with the most contribution to GHG emissions. Section 3.4 evaluates the 
order of magnitude of average total rough estimate results and validates them against a complete 
LCA and a simplified manual LCA of the final building design. Section 4 discusses the results, 
describes the limitation of this project, and provides an outlook toward future research. 

2. Methods 

2.1. Life Cycle Assessment (LCA) 

Building LCA in Europe is standardized per the norms DIN EN ISO 14040 (Environmental 
management—Life cycle assessment—Principles and framework) [32] and DIN EN 15978 
(Sustainability of construction works—Assessment of environmental performance of buildings—
Calculation method) [33]. The norm DIN EN ISO 14040 provides the general framework, structuring 
LCA into four steps: goal and scope definition, life cycle inventory, life cycle impact assessment, and 
reporting. Our calculations follow this standard, with the goal defined as the comparison between 
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design variants and scope as life cycle primary energy (PE) analysis and analysis of GHG emissions. 
The life cycle inventory was conducted with a quantity takeoff from an IFC model and a link to 
Oekobaudat [26]. For the purposes of this study, we translated required Oekobaudat datasets into an 
SQL database, which provide PE and global warming potential (GWP) values. We included the 
following building phases: A1–A3 production (including raw materials supply, transportation, 
manufacturing), B4 replacement, and C3–C4 end-of-life (waste processing and disposal), as defined 
by DIN EN 15978 [33]. Phase D, reflecting end-of life credits and loads from reuse, recovery, recycling, 
was calculated separately and is not included in total results. Values for A1–A3, C3–C4, and D come 
directly from Oekobaudat, whereas phase B4 is related to the reference service life of the building 
components. For Oekobaudat data, it is mandatory that for construction materials life cycle stages 
A1–A3 are included. Whenever neither data for life cycle phases C3 nor C4 was included in specific 
datasets, we used generic end-of-life processes such as construction waste processing. An example 
for this is mineral wool, for which the generic dataset “construction rubble landfill” provides end-of-
life impacts. 

We considered building parts (Table 1) that typically contain the largest share of building 
materials [32]. Reference service life (RSL) lengths of materials were combined for building parts 
following the definitions used in German LCA studies conducted for building certification [34] which 
is based on [35]. For the internal walls, instead of the 50-year RSL of gypsum boards, we assumed a 
conservative value (20 years) for office buildings, for which the interior is renewed more often than 
every 50 years due to a change in user or for reasons of representativeness. The study period is 50 
years, as this is the standard defined by DGNB [36] and BNB (Bewertungssystem Nachhaltiges 
Bauen, Sustainable Building Certification System) [37] certification systems and used by the majority 
of recent building LCA studies [38]. 

Table 1. Building parts included and reference service life (RSL) considered. 

Building part Structure Insulation Windows Internal 

Elements included 

Ground slab Exterior insulation: 
Frames 

Interior walls 
Floor slabs Ground slab 

Exterior walls Exterior walls (Triple) 
glazing Roof slab Roof 

RSL (years) >50 40 40 20 

We considered result values for PE demand in megajoules (MJ), split into renewable (PERT) and 
non-renewable (PENRT) primary energy, and global warming potential (GWP) in kg CO2-eq. This 
choice is based on the fact that buildings contribute significantly to global energy demand and GHG 
emissions (Section 1). PENRE, the energy resources part of PENRT, and GWP are related because the 
burning of fossil fuels emits carbon dioxide and thereby contributes to global warming. Therefore, 
we additionally looked for a possible correlation between PENRT and GWP. 

2.2. Integration into BIM 

The LCA calculations described in Section 2.1 rely on BIM methods developed within the 
research group EarlyBIM [39]. The calculation process involves quantity takeoffs of the main building 
parts from an early design stage IFC model, including exterior wall areas, base plate area, roof area 
and floor slab areas (Figure 1). The sampling process uses these quantity takeoffs in conjunction with 
vagueness defined by the designer. To provide information about geometric and semantic 
uncertainties in BIM-models, the meta-model allows specification of vagueness of the overall 
building model and building components [40]. We use this meta-model to integrate vagueness into 
PE and GWP calculations. The designer and the consulting engineer provide additional information 
needed for the calculations, such as window-to-wall-ratio or u-values (Table 2). This information also 
contains vagueness according to the design stage. 

As described, parameters termed “geometry” are derived from the BIM model. The parameter 
“interior walls” represents the (volume) percentage of interior walls of total interior volume of the 
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building (i.e., gross volume minus volume of exterior walls, base plate, floor slabs, and roof). The 
window-to-wall-ratio is the ratio of transparent area to total exterior wall area. The technical 
specifications depend on consultant input. U-values of exterior building parts determine the energy 
standard of the building. “Construction thicknesses” represent the thickness of the structural 
elements (i.e., excluding insulation), depend on the structural requirements of the building parts, and 
are subdivided by building part (base plate, floor slabs, exterior walls, and roof). Finally, the 
reinforcement amount is needed for concrete building parts only and is defined to be the mass (kg) 
of reinforcing steel per volume (m³) of concrete. As we are analyzing embedded impacts in more 
detail, the number of parameters is reduced compared to our previous study concerned with LCEA 
[21]. Also, the reduced number of parameters allows us to regroup them differently providing a more 
specific analysis. 

The method is integrated with the concept of building development levels (BDL) developed 
within the EarlyBIM research group [41,42]. BDL describes the project-specific maturity of a BIM 
model. This concept was developed, because the commonly used term level of development (LOD) 
specifies the geometric and semantic information content of building elements but explicitly not the 
entire building model [43]. On the contrary, models typically are multi-LOD-models, i.e., they consist 
of elements of various LODs throughout the design process. The BDL concept was developed to 
enable the project team to specify required information and vagueness on a building level during the 
design process. The LOD concept is used as a basis for the elements contained in the models. Starting 
with BDL1, when no 3D information is available yet, models are increasingly enriched with geometric 
and semantic information with decreasing vagueness of the contained information. As the BDL 
specification does not contain values for LCA calculations, we defined a set of input parameters 
needed for our calculations (Table 2) and grouped them according to the design process, as a group 
of parameters tends to be defined at the same time by the same actor. For each parameter, a mean 
value and vagueness (percentage of possible deviation) are provided. Quantities and specifications 
in conjunction with corresponding vagueness serve as input parameters for the following sensitivity 
and contribution analysis. 

 
Figure 1. Workflow for embedded energy and input calculation with uncertainty. 

2.3. Sampling Process, Sensitivity, and Contribution Analysis 

The input parameters (Table 2) for the LCA calculation elements are subsequently sampled 
using a uniform distribution of the design parameters as recommended by Kristensen and Petersen 
[44] for design uncertainties. All parameters are varied simultaneously (Monte Carlo), such that each 
building sample consists of a unique combination of parameter values. The sampling sets are 
generated within MatLab using the ERAdist MCS (normal MOM) probability distribution class 
developed by Geyer et al. [45]. Given the very short calculation time (less than 30 seconds for the 
initial calculation of one BDL, less than five seconds for subsequent calculation and generation of 
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graphs), we chose a generous number of sampling sets (105). For each sample, the LCI/LCA results 
are calculated for primary energy (PENRT, PERT) and GHG emissions (GWP). 

Table 2. Input parameter groups. 

Geometry  
(Areas) 1 Interior 2 Windows 2 Technical Specifications 3 

Ground slab Interior walls (%) WW-ratio u-values 
Floor slabs - - Construction thicknesses 

Exterior walls - - Reinforcement amount 
Roof - - - 

1 Extracted from building information modeling (BIM) model (IFC); 2 Additional designer input 
(experience values); ³ Additional consultant input (experience values). 

For the subsequent variance-based sensitivity analysis, we calculated first-order sensitivity 
indices, showing how input parameter uncertainties influence result uncertainty. The sum of the 
sensitivity coefficients should be equal or close to 100%, as it is assumed that higher-order effects are 
close to zero. This sensitivity analysis provides guidance to the designer which uncertainties to 
systematically reduce in order to improve exactness of calculations. 

Additionally, we conducted a contribution analysis. We calculated the means and standard 
deviation per building part (Table 1) and for the whole building to see which building parts 
contribute the largest share to energy demand and GHG emissions. This contribution analysis shows 
the relevance of each building part for the total outcome and guides the designer toward the building 
parts with the highest overall reduction potential. Contribution and sensitivity analysis are related—
parameters influencing the most relevant building parts will also prove to exhibit comparatively 
larger sensitivities. 

According to Raskin and Tylor [46] various terms for uncertainty are used in both colloquial and 
scientific language, with their definitions themselves uncertain. We use the term uncertainty—as 
suggested in Hawer at al. [47]—as an umbrella term for all types of uncertainty such as fuzziness, 
vagueness, ambiguity, etc. To further specify design uncertainty separated from other uncertainties 
inherent in the BIM model we used the term vagueness. In this, we differ from Abualdenien and 
Borrmann [41] where design uncertainty was referred to as fuzziness. Both concepts are, however, 
closely connected according to [48]. In our study, vagueness is due to decisions not yet made in the 
design process. It is assumed that this vagueness is eliminated by the time the building has been built. 
Of course, even the as-built state of a building contains uncertainties due to e.g., construction 
tolerances or the dynamic nature of u-values. 

Huijbregts et al. [22] identified three types of uncertainty in LCA studies—parameter, scenario, 
and model uncertainty. Of these, our study is concerned with parameter uncertainty, termed 
vagueness, as explained above. Uncertainties in the underlying scenarios or assumptions, such as 
length of the study period or reference service lives, were not included in our sensitivity analysis, as 
these are outside of the influence of the architect or engineer during the planning process. Rasmussen 
et al. [49] provide an overview of the influence of these choices. Neither are LCA models, such as 
characterization methods, varied in our study, as the employed database, Oekobaudat [26], does not 
provide data for this, and designers cannot influence these choices. Therefore, the underlying 
datasets are fixed in this study, in contrast to Tecchio et al. [50,51], which employed the method of 
structured under-specification to capture uncertainty in material choice in early design stages. 

The value corridors for the input parameters determine the characteristics of the building to be 
analyzed, covering a wide range of building forms and construction types. For example, the window-
to-wall ratio represents the type of façade, such as fully glazed curtain wall or opaque façade with 
few window openings. 

2.4. Case Study 

We applied our method to the office building “FTmehrHAUS” by Ferd. Tausendpfund GmbH, 
using BIM models at BDL 2, 3, and 4. The case study is a three-story, rectangular-shaped building 
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with a gross floor area of approximately 1200 m² located in Regensburg, Germany. The building was 
built in 2016 using three different wall types for each story of exterior wall: concrete, masonry and 
sand lime stone, each with an exterior insulation and finishing system (EIFS). The building’s structure 
is made of reinforced concrete. Table 3 shows the input values for the calculations representing the 
sample building. The building’s energy standard exceeds the requirements of the current German 
energy saving ordinance [52]. 

Table 3. Input values representative of the sample building. 

Parameter group Parameter Mean Value Vagueness at BDL2 

Geometry 

Ground slab area 405 m² ±10% 
Floor slab area 810 m² ±10% 

Exterior wall area (total) 840 m² ±10% 
Roof area 405 m² ±10% 

Interior Interior Walls 6% ±25% 
Windows WW-ratio 30% ±25% 

Technical Specifications 

u-value (ground slab) 0.19 W/m² × K ±25% 
u-value (ext. wall) 0.18 W/m² × K ±25% 

u-value (roof) 0.15 W/m² × K ±25% 
Construction thickness (ground slab) 0.35 m ±25% 

Construction thickness (ext. wall) 0.20 m ±25% 
Construction thickness (floor slabs) 0.25 m ±25% 
Construction thickness (roof slab) 0.25 m ±25% 

reinforcement 140 kg/m³ ±25% 

Initial vagueness percentages were chosen to represent a rough design of the case study building 
at BDL2. Geometric uncertainties were chosen to be lowest, as we assumed that the rough volume is 
decided upon early in the process. However, these are project-specific and can vary greatly from 
project to project, as they depend on the specific site conditions. For example, it is possible that the 
building footprint is fixed by a development plan, such that the vagueness of the ground and floor 
slab areas would be zero. All other vagueness percentages were set to 25% to represent a reasonable 
range of values in order to test the method. These, too, can differ from project to project, as there 
might be specific requirements, such as an ambitious energy standard with very low u-values. 
Vagueness is subsequently reduced following guidance from the sensitivity analysis. The results of 
this case study cannot be generalized for the above reasons, but the method can be applied to other 
buildings. 

For validation purposes, a standard LCA calculation of the project based on the execution 
drawings and additional information from the client was conducted. To maintain comparability with 
the probabilistic calculation, as described in Section 2.1, we considered one uniform wall type 
(concrete with EIFS) for the entire exterior wall. The Oekobaudat version (2016-I), study period, and 
products’ reference service lives are identical with the respective framework for the probabilistic 
calculation. For comparison with the sampling and uncertainty propagation results, all data was 
input into the tool eLCA [53], from which results were exported in csv format and split into the four 
building parts structure, insulation, windows, and internal (Table 1). 

3. Results 

3.1. Sensitivity Analysis 

Figure 2 shows uncertainties and resulting uncertainty contribution for each parameter group 
according to BDL 2, 3, and 4. Exact numbers are listed in Appendix A, Table A1. Input parameter 
uncertainties are strategically reduced with increasing BDL to reduce overall uncertainty in the 
results. Note that the sum of uncertainty contribution is always close to one (100%) (see Section 2.3). 
It has to be kept in mind that Figure 2 shows uncertainty contribution, not overall result uncertainty. 
The latter is shown in Section 3.2. 
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Figure 2. Input uncertainty (vagueness) in parameter groups and resulting uncertainty contribution 
for a rectangular building shape and reinforced concrete structure; exact numbers are listed in 
Appendix A, Table A1. 

In BDL 2, result uncertainties are highly dependent on the geometrical parameter uncertainties, 
followed by the uncertainties in technical specifications. Hence, these input uncertainties are reduced 
for BDL3 in order to increase the accuracy of the results. In BDL3, result uncertainties, now overall 
lower than in BDL2, are strongly dependent on interior (for PERT and PENRT) and still on technical 
specifications (for GWP). Therefore, uncertainty in these parameters is reduced for BDL4. In BDL4, 
the uncertainty contribution of windows increases for GWP and PENRT, as all other uncertainties 
are small. In this process, it is clear that there are trade-offs involved when decreasing uncertainties 
simultaneously: reducing uncertainties in one parameter increases the contribution of another 
parameter, e.g., uncertainty contribution of the technical specifications to GWP does not change, as 
the uncertainty contribution of interior decreases simultaneously. However, overall uncertainty 
decreases significantly with increasing BDL (see Section 3.2). 

Overall, an ideal picture would show equal sensitivities for all parameters. This, however, is 
impossible due to the differing nature of the indicators considered. Between PENRT and GWP, 
parallels can be identified. This is not surprising, as the use of fossil energy sources (represented by 
the indicator PENRT) contributes largely to GHG emissions, represented by the indicator GWP. 
However, GWP and PENRT do not correlate entirely, as there are other sources of GHG emissions, 
such as the chemical process of clinker production, which is a step in the process of cement 
production. PERT behaves differently from both PENRT and GWP: Results’ uncertainty for PERT is 
to the largest extent due to the uncertainty of the amount of interior walls, starting from BDL3. In 
turn, the uncertainty in window construction is insignificant for PERT uncertainty. This is related to 
the fact that the materials used in interior wall construction (gyp board) have a comparatively high 
content of PERT, whereas the materials used in window construction (PVC, glass) do not. 

The sensitivity analysis guides the workflow of strategic uncertainty reduction and thereby 
reduces overall uncertainties. From the BDL 2 analysis, the planning team receives the information 
that geometric uncertainties and technical specifications are the main sources for result uncertainty. 
Therefore, planning efforts should focus on these aspects to arrive at BDL3. Subsequently, the layout 
of the interior walls needs to be specified in addition to the aforementioned parameters. These steps 
increase reliability of results as will be shown in the following Section 3.2. 

3.2. Contribution Analysis 
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This section analyses the contribution of functional parts of the building to show how the 
sensitivity analysis indicates where in the building the highest potential to reduce PE demand and 
GHG emissions is located. This pertains to the indicator GWP for GHG emissions and PERT and 
PENRT for primary energy use. Building parts are defined in Table 1. 

Figure 3 shows the results for the sample building for BDL2 and BDL4. BDL 3 was omitted as 
results lie between BDL2 and BDL4 and do not contain additional information regarding the building 
part contribution. 

First, the overall reduction of result uncertainty is clearly visible. Average values stay constant 
as we did not change any of the mean input values. The contribution of the building parts changes 
insignificantly from one BDL to the next. This, too, is an expected result for the same reason as the 
(mean) input values stay the same. 

Second, the contribution analysis can guide architects and consultants towards strategic 
building parts, i.e., the parts that should be considered primarily when looking for ways to reduce 
energy demand and GHG emissions. To render a building part truly strategic a second condition 
must be fulfilled: alternative materials with lower PE content and GHG emissions need to be 
available. For example, for a concrete base plate, no alternative materials are available. However, 
alternatives in structural design either providing a different kind of foundation or an alternative 
concrete/reinforcement combination might be available. Hence, this study provides guidance toward 
the building parts with the highest influence but does not provide design assistance, i.e., it entrusts 
the design team with determining if alternative solutions are available. For GWP and PENRT, the 
building’s structure, made of reinforced concrete, clearly emerges as a decisive part, contributing half 
of the building’s GWP and 37% of PENRT. Second, windows are relevant and thirdly, interior walls. 
Insulation plays a lesser role despite the above average energy standard of the building. 

As a building part’s contribution depends on the materials used for each building part, reducing 
overall emissions without changing any of the input parameters requires looking at alternative 
building materials. 
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Figure 3. Box plots of sample building contributions and uncertainties for a reinforced concrete 
building: global warming potential (GWP), renewable primary energy (PERT), and non-renewable 
primary energy (PENRT). The mean is represented by a horizontal line, the interquartile range by a 
thick line, min and max are connected by a thin line and outliers are shown as dotted lines. 

3.3. GWP Reduction Potential 

Since the structure is the largest contributor to total GWP and the use of wood is known to reduce 
GHG emissions, we ran the sensitivity and contribution analyses with wood instead of reinforced 
concrete. In general, this alternative is only available when fire safety requirements allow the use of 
wood (which is the case for our case study as we deal with a building of a low fire safety class) and 
takes into account that some parts cannot be replaced such as the base plate. All results are listed in 
Appendix A, Table A2. This case study shows the effect of a different material choice. Overall, 
changing the structural material reduces GWP by 25% and PENRT by 10% while at the same time 
increasing PERT by 123% (see Figure 4). This result is in line with previous LCA studies, which 
unequivocally state that the use of wood structures reduces GHG emissions [54]. The large increase 
in PERT is due to the calculation background used in Oekobaudat: the sunlight absorbed by the trees 
is attributed to the wood as consumption of renewable energy. 
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Figure 4. Boxplots of comparison of total values for wood and concrete construction for global 
warming potential (GWP), renewable primary energy (PERT), and non-renewable primary energy 
(PENRT). The mean is represented by a horizontal line, the interquartile range by a thick line, min 
and max are connected by a thin line and outliers are shown as dotted lines. 

The analysis also shows that, at BDL2, uncertainties are such that there are reinforced concrete 
building samples with lower GWP than some of the wood building samples. However, this overlap 
between the probabilistic results is located outside of the interquartile range. This means that the 
wood structure is highly likely to perform better in this indicator. For PENRT, the wood structure is 
still likely to perform better, but the overlaps between the two material options are greater than for 
GWP. For the indicator PERT, on the other hand, there are no overlaps. Therefore, any sample of the 
wood building will demand more PERT than any sample of the concrete building. However, PERT 
is still only roughly 26% of overall PE demand, compared to 12.5% for the concrete building. In other 
words, total PE demand of the wood building is 7% higher than of the concrete building. 

The contribution of the building parts shifts accordingly (Figure 5). The wood structure is 
responsible for 33% of GHG emissions instead of 50% for the case the reinforced concrete structure. 
The absolute results for other building parts stay the same, but their contribution increases as the 
total decreases. For PERT, the same applies reversely: the contribution of the structure doubles from 
36% to 73%, reducing the relevance of all other building parts. 
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Figure 5. Boxplots of contribution and overall values of wood structure for BDL2 for global warming 
potential (GWP), renewable primary energy (PERT), and non-renewable primary energy (PENRT). 
The mean is represented by a horizontal line, the interquartile range by a thick line, min and max are 
connected by a thin line and outliers are shown as dotted lines. 

According to this analysis, the next step to minimize GHG emissions would be to look at other 
material options for the window frames. This is building-specific and has to be evaluated on a case-
by-case basis. 

3.4. Order of Magnitude and Validation 

Since we are using a simplified model with only few materials, we verified the results with a 
more detailed LCA calculation based on the execution drawings of the case study. Additionally, we 
conducted a simplified LCA manually in order to verify the probabilistic calculation. This simplified 
calculation uses a fixed size of the building matching the mean input values and the same reduced 
number of materials as the probabilistic calculation. For the probabilistic calculation, mean values of 
the BDL4 calculation are shown, as these are the least uncertain. However, as described in Section 
3.2, mean values are consistent throughout the BDLs. 

Table 4 shows the results of the simplified and probabilistic calculations in comparison to the 
detailed calculation based on the execution drawings. All values are rounded without digits. Hence, 
the sum of all contribution percentages can differ from 100%, as it does for PERT and PENRT 
simplified (99%) and PENRT detailed (99%). Simplified and probabilistic calculations generally 
deliver similar results differing by a maximum of –5% and +8%. This indicates that the probabilistic 
calculation is by far superior to a manual simplified calculation, as it can calculate 105 samples in less 
than one minute, a task that is virtually impossible for a traditional calculation by hand. 

Compared to the detailed calculation, the probabilistic calculation underestimates GWP and 
PENRT by 27% and 30%, respectively, but does not differ significantly in PERT results. Therefore, we 
look at GWP and PENRT separately from PERT results. Generally, for GWP and PENRT, detailed 
results are at the high end of the value corridor of the BDL2 calculation shown in Figure 3. This is to 
be expected as the probabilistic calculation neglects all finishes and small elements and therefore is 
restricted to a handful of materials, whereas the detailed calculation is based on 42 different materials. 
Hence, the absolute values of the calculation should not be used in the planning process, for example 
to determine compliance to certification benchmarks. Instead, the design process should be based on 
comparative analyses. 
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Table 4. Comparison of life cycle assessment (LCA) results of probabilistic, simplified and detailed 
calculation for the case study. 

LCA  GWP [kg CO2-eq.] PERT [MJ] PENRT [MJ] 

Detailed 

TOTAL 470,482 (100%) 538,084 (100%) 5,229,523 (100%) 
structure 45% 212,979 40% 217,507 34% 1,785,981 
insulation 16% 74,065 10% 51,446 21% 1,118,043 
windows 20% 94,727 16% 84,939 21% 1,101,638 
internal 19% 88,710 34% 184,192 23% 1,223,861 

Simplified 

TOTAL 358,621 (76%) 524,702 (98%) 3,756,157 (73%) 
structure 49% (+4%) 177,351 37% (−3%) 193,148 36% (+2%) 1,368,205 
insulation 16% (±0%) 50,146 11% (+1%) 60,055 18% (−3%) 674,660 
windows 23% (+3%) 81,115 11% (−5%) 60,239 25% (+4%) 953,488 
internal 12% (−7%) 42,497 40% (+6%) 211,260 20% (−3%) 759,804 

Probabilistic 
(mean, BDL4) 

TOTAL 336,788 (73%) 517,086 (96%) 3,619,140 (70%) 
structure 50% (+5%) 167,852 37% (−3%) 189,709 38% (+4%) 1,361,042 
insulation 13% (−3%) 45,252 9% (−1%) 46,475 14% (−7%) 524,675 
windows 23% (+3%) 76,742 11% (−5%) 56,994 25% (+4%) 902,003 
internal 14% (−5%) 46,943 43% (+9%) 223,908 23% (±0%) 831,419 

However, the contribution analysis, i.e., the indication of strategic building parts, differs by +5% 
(GWP) or –7% (PENRT) or less. The shares of structure and windows are slightly overestimated, the 
shares of insulation and internal underestimated. At the same time, the ranking of the building parts 
remains the same as in the detailed model for GWP. For PENRT, it indicates correctly the structure 
as the main contributor, but differs in the ranking of the other building parts, as their contributions 
are very close (21%, 21%, and 23%) in the detailed calculation. As guidance to the design team, the 
analysis shows correctly where the largest contribution and thereby the potentially largest reduction 
potential lies, as the probabilistic calculation matches the detailed calculation without uncertainties. 
This tendency of concrete structures to be the main contributor of GWP confirms results from 
previous studies [55,56]. 

For PERT, the overall result differs by a maximum of +5% (simplified calculation) and +2% 
(probabilistic calculation), but contribution differs by up to –5% and +9%, changing the ranking of 
building parts. The detailed calculation indicates that the structure offers the largest reduction 
potential, whereas the probabilistic and simplified calculations suggest the internal walls as the 
largest contributor. The underlying reason for this is the fact that the probabilistic calculation uses 
one material, gypsum board, for the interior walls; whereas the interior of the as-built building 
consists of a mixture of different wall types, e.g., glass partitions or masonry walls. Gypsum board 
demands about 10 times more renewable energy pro volume (m³) than masonry (2167 MJ vs. 263 MJ) 
but shows only roughly three times as much GWP. Hence, for a building part with an inhomogeneous 
mix of materials, the simplification to just one material can have a large influence on results. For 
building parts with fewer materials, like the building’s structure, where the bulk of the building part 
is made of one material, the probabilistic calculation should render accurate indications of their 
relevance within the building. 

4. Discussion 

Our results highlight the possibility of real-time life cycle analysis in early stages of design. 
Although the early stage analysis tends to underestimate the absolute values for PE demand and 
GHG emissions, valuable advice can be provided in two ways. First, the sensitivity analysis guides 
the designer towards the input parameters whose uncertainty causes the highest result uncertainties. 
Second, a contribution analysis reveals the strategic building parts where the potential is largest to 
reduce emissions and energy consumption. 

The design team can use the results of the sensitivity analysis to reduce result uncertainties 
systematically by reducing the vagueness of the most relevant input parameters during the design 
process. Although reducing vagueness is a natural part of the detailing process, in a regular design 
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process the design team is not aware of the impact on the precision of environmental analysis if an 
input parameter is detailed. Our analysis provides guidance toward which parameter’s uncertainty 
to reduce first to get a more precise indication of environmental impact. A previous study [21] 
showed that this method can also applied to the entire life cycle including operational energy 
consumption. Future work should add other criteria (such as cost) and take into account the multi-
criterial nature of decision processes in building design. 

The contribution analysis shows the building parts contributing most to PE demand and GHG 
emissions hence revealing their theoretical reduction potential. In order to determine the reduction 
that can be realized, alternative materials need to be tested. We provided an example of this by 
replacing the concrete structure by a wood structure where possible. To integrate this trial-and-error 
process into a design assistance tool, a database containing alternatives for different materials and 
building parts needs to replace our simplified database containing only fixed materials. Hollberg et 
al. [57] and Röck et al. [58] employ a component catalogue to address this challenge showing the 
realizable reduction potential. 

The contribution analysis works well for homogenous building parts, such as the structure, and 
confirms results from previous studies. On the other hand, the contribution analysis tends to skew 
results when building parts with a multitude of materials, such as the building’s interior, are 
concerned. One way to counteract this would be to subdivide the building into more parts but thereby 
losing the early design stage simplicity. In addition, this phenomenon relates to material uncertainties 
in early design stages, which were not included in this study, but are subject to current (e.g., Tecchio 
et al. [51]) and future research. 

For our early stage analysis, we considered three indicators. This represents a simplification 
from all 23 indicators available in Oekobaudat. However, the analysis shows that strategically 
reducing uncertainties in parallel for all three indicators is unachievable because result uncertainty 
for each indicator is dependent on input uncertainty of different parameters. This was to be expected 
regarding non-renewable and renewable energy, as increasing the use of renewable energy sources 
reduces non-renewable PE demand, i.e., these two indicators should inversely correlate. It is 
somewhat surprising that GWP and PENRT do not correlate, as the burning of fossil fuels, i.e., the 
use of PENRT, causes GHG emissions. In part, the fact that the chemical process of clinker production 
in the cement production process emits CO2 provides an explanation. For other materials than 
concrete, the reasons for the lack of correlation are less clear. Generally, this points to the fact that 
LCA results should not be reduced to one indicator, as none of the indicators can be regarded as 
representative for all others. Instead, decisions based on LCA results need to be treated as multi-
criteria decisions. 

To increase the completeness of results, more building materials will be implemented in our 
model. In order to achieve this, additional input parameters will have to be considered (e.g., concrete 
strength) and additional information (e.g., type of waterproofing) will have to be estimated. 
Additionally, the structural material types, reinforced concrete and wood, will be complemented by 
structural steel and hybrid structures. This has implications on the possible application of the method 
but does not change the methodological approach. 

As shown in our previous work [21], LCA is incomplete if it neglects the operational phase. 
Therefore, we direct future research efforts towards integrating all life cycle phases, which implies 
also including the building’s mechanical systems. We expect multiple interdependencies calling for 
a detailed sensitivity and contribution analysis in conjunction with a weighting system for results. 
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Appendix A. Results of probabilistic calculation 

Table A1. Sensitivities as shown in Figure 2. 

BDL2 
 geo 10% tech 25% win 25% int 25% sum 

‘gwp’ 0,48 0,48 0,02 0,04 1,01 
‘pert’ 0,49 0,25 0,01 0,27 1,02 

‘penrt’ 0,54 0,34 0,02 0,11 1,01 
BDL3 

 geo 2% tech 10% win 25% int 25% sum 
‘gwp’ 0,13 0,53 0,09 0,26 1,01 
‘pert’ 0,06 0,12 0,01 0,83 1,02 

‘penrt’ 0,11 0,27 0,09 0,54 1,01 
BDL4 

 geo 1% tech 5% win 25% int 10% sum 
‘gwp’ 0,11 0,46 0,30 0,14 1,01 
‘pert’ 0,08 0,17 0,03 0,74 1,02 

‘penrt’ 0,10 0,25 0,34 0,32 1,01 

Table A2. Full results of probabilistic calculations for BDL 2, 3, and 4 and concrete and wood 
structure. 

BDL 2 Concrete 
- - Mean Var StD %con %ins %win %int 

‘gwp’ ‘kgCO_2-Eq’ 3,3924E + 05 3,5565E + 08 1,8859E + 04 49,81% 13,51% 22,77% 13,92% 
‘pert’ ‘MJ’ 5,2745E + 05 1,1230E + 09 3,3511E + 04 36,68% 9,04% 11,02% 43,27% 

‘penrt’ ‘MJ’ 3,6601E + 06 3,9457E + 10 1,9864E + 05 37,58% 14,57% 24,90% 22,94% 
‘pert+pe

nrt’ 
MJ 4,1876E + 06 5,3446E + 10 2,3118E + 05 - - - - 

PENRT/
PET 

12,60% - - - - - - - 

BDL 2 Wood 
  Mean Var StD %con %ins %win %int 

‘gwp’ ‘kgCO_2-Eq’ 2,5298E + 05 1,5306E + 08 1,2372E + 04 33,11% 18,00% 30,34% 18,55% 
‘pert’ ‘MJ’ 1,1750E + 06 6,2815E + 09 7,9256E + 04 72,12% 3,98% 4,85% 19,05% 

‘penrt’ ‘MJ’ 3,3117E + 06 2,7923E + 10 1,6710E + 05 31,72% 15,94% 27,24% 25,10% 
‘pert+pe

nrt’ 
MJ 4,4867E + 06 5,7203E + 10 2,3917E + 05 - - - - 

PENRT/
PET 

26,19% - - - - - - - 

BDL 3 Concrete 
  Mean Var StD %con %ins %win %int 

‘gwp’ ‘kgCO_2-Eq’ 3,3683E + 05 4,9952E + 07 7,0677E + 03 49,84% 13,44% 22,78% 13,94% 
‘pert’ ‘MJ’ 5,1711E + 05 3,4538E + 08 1,8584E + 04 36,69% 8,99% 11,02% 43,30% 

‘penrt’ ‘MJ’ 3,6196E + 06 7,4711E + 09 8,6436E + 05 37,60% 14,51% 24,92% 22,97% 
‘pert+pe

nrt’ 
MJ 4,1367E + 06 1,0806E + 10 1,0395E + 05 - - - - 

PENRT/
PET 

12,50% - - - - - - - 

BDL 3 Wood 
  mean var StD %con %ins %win %int 

‘gwp’ ‘kgCO_2-Eq’ 2,5271E + 05 2,8307E + 07 5,3204E + 03 33,14% 17,92% 30,37% 18,57% 
‘pert’ ‘MJ’ 1,1745E + 06 9,7327E + 08 3,1197E + 04 72,13% 3,96% 4,85% 19,06% 

‘penrt’ ‘MJ’ 3,3086E + 06 6,2364E + 09 7,8971E + 04 31,74% 15,87% 27,26% 25,13% 
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‘pert+pe
nrt’ 

MJ 4,4831E + 06 1,1056E + 10 1,0515E + 05 - - - - 

PENRT/
PET 

- 26,20% - - - - - - 

BDL 4 Concrete 
  mean var StD %con %ins %win %int 

‘gwp’ ‘kgCO_2-Eq’ 3,3679E + 05 1,4690E + 07 3,8328E + 03 49,84% 13,44% 22,79% 13,94% 
‘pert’ ‘MJ’ 5,1709E + 05 6,2175E + 07 7,8851E + 03 36,69% 8,99% 11,02% 43,30% 

‘penrt’ ‘MJ’ 3,6191E + 06 2,0592E + 09 4,5378E + 04 37,61% 14,50% 24,92% 22,97% 
‘pert+pe

nrt’ 
MJ 4,1362E + 06 2,7302E + 09 5,2251E + 04 - - - - 

PENRT/
PET 

- 12,50% - - - - - - 

BDL 4 Wood 
  mean var StD %con %ins %win %int 

‘gwp’ ‘kgCO_2-Eq’ 2,5267E + 05 1,0625E + 07 3,2596E + 03 33,14% 17,91% 30,37% 18,58% 
‘pert’ ‘MJ’ 1,1744E + 06 2,2059E + 08 1,4852E + 04 72,12% 3,96% 4,85% 19,07% 

‘penrt’ ‘MJ’ 3,3082E + 06 1,8105E + 09 4,2550E + 04 31,74% 15,86% 27,27% 25,13% 
‘pert+pe

nrt’ 
MJ 4,4826E + 06 2,7277E + 09 5,2227E + 04 - - - - 

PENRT/
PET 

- 26,20% - - - - - - 
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