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1 Introduction55

Functionally graded materials (FGM) are a novel class of advanced materials that offer the possibility to exploit56

various desired physical properties within one component. This allows to manufacture ’high-performance’ and57

’multi-functional’ artifacts which can resist physical exposures that could not be withstood by a single material58

[1]. The idea of combining different materials goes back more than 4000 years – the development of the composite59

bow – and has led to modern carbon fiber reinforced polymers. These composite materials change their material60

properties step-wise and are consequently prone to delamination. In FGM, on the other hand, material properties61

vary continuously inside the volume and avoid material interfaces [2]. Specific material properties are achieved62

by continuous changes in the micro-structures, grain sizes, crystal structure, or composition of different materials63

such as metal, ceramics, polymers, or biological tissues [3, 4]. Prototypes, especially for micro-structures, can be64

found in nature, such as in bones, seashells, skin, or wood [5] or obtained using topology optimization [6, 7, 8].65

Fields of application are, amongst many others, corrosion resistance of chemically exposed components [9],66

bone-like lightweight porous medical implants [10], or heat resistance of load-bearing parts such as spacecraft67

thermal shielding, jet turbine blades, or nuclear reactors [3, 11].68

Additive manufacturing (AM) or 3D printing is a generic term for various production techniques in which69

an object is created by layer-wise material deposition. This allows the fabrication of objects of almost arbitrary70

shape. AM is the method of choice for the fabrication of FGM, as (i) it allows to resolve very fine structures, (ii)71

it can manufacture internal structures which could not be created with any other method, and (iii) the layer-72

wise material deposition gives control over the composition of the processed material, as well as over the grain73

size [12, 13]. With functionally graded additive manufacturing (FGAM), it is possible to create different single-74

and multi-material FGM [14]. Single FGAM created specimens consist only of one material that changes its75

properties due to an adaption of the micro-structure, density, or grain size [15]. As AM allows the creation of free76

form structures, a single-material FGM can be fabricated with any printable material [16]. Multi-material FGM,77

which combines two or more materials, has recently been under intensive research [17]. A special focus was placed78

on metal-metal combinations, see e.g. [4] where steel and titanium-based combinations are investigated. More79

complex are combinations of materials of a different kind, such as ceramic-metal compositions [18]. However,80

these compositions might carry the most potential, as the underlying material properties are very distinct.81

Before fabrication, the behavior of FGM components usually needs to be analyzed by numerical simulations.82

To this end, an analysis-suitable geometrical model needs to be provided which is naturally created with83

computer-aided design (CAD) and then transformed into a mesh. This transition process from CAD to an84

analysis-suitable mesh is error-prone. Depending on the quality of the model, manual work must be invested85

to heal the original geometry before mesh generation can be carried out successfully. Furthermore, the most86

used CAD representations, i.e. boundary representation (B-rep) or solid based procedural models, are not well87

suited for an accurate description of FGM. B-rep models represent their volume implicitly by the boundary88

surfaces, which are modeled either with linear primitives (e.g. triangles and quads) or with trimmed spline89

3



patches [19]. Consequently, B-rep models offer no possibility to directly represent a heterogeneous material90

distribution inside the body. A workaround is to create vector functions that carry the material properties91

for each point. These functions can be classified into four different categories: (i) geometrically-independent,92

e.g., in Cartesian coordinates, (ii) distance-based, (iii) blending composition, and (iv) sweeping composition93

functions (for a detailed explanation refer to [20, 21]). However, except (i), these functions only allow a smooth94

transition of material properties between the different surfaces, which is not suitable for all material distributions.95

Geometrically-independent functions, on the other hand, are cumbersome as they are not related to the object96

itself. CAD systems using solid-based procedural models follow the constructive solid geometry (CSG) idea [22].97

Here, models are composed of simple primitives: spheres, cuboids, cylinders, etc. and more complex primitives:98

sweeps, lofts, extrusions, solid of revolution, etc.. These primitives are combined with the classical Boolean99

operations: union, intersection, difference, negation, and their derivations: fillet, chamfer, holes, etc.. Material100

properties can then easily be assigned to the respective primitives. Of course, this requires special treatment in101

regions with overlapping primitives [12]. Furthermore, as primitives are typically provided as implicit functions102

F (x) = 0, they offer, similar to B-rep models, no possibility to further resolve the internal volume. Again, vector103

functions applied to the primitives are a possible workaround. Another possible geometrical representation104

offered by spatial decomposition, such as voxelized models. Here, each voxel can carry its material properties.105

These voxel models mostly originate from CT scans (e.g. of bones) and provide only a coarse approximation106

while requiring an extensive amount of storage capacity. Nevertheless, voxel-based models have been used to107

resolve fine micro-structures and quasi-continuous changes of the material properties [23, 24].108

Massarwi and Elber [25] recently proposed a novel volumetric representation technique (V-rep) for 3D109

models, which allow full control over the model’s interior. V-reps consist of non-singular trimmed trivariate B-110

spline patches which can be combined into V-models using the Boolean operations. By extending the dimension111

of the control points to R3+s, it is possible to assign material properties directly to the model. Potentially112

critical overlapping regions of the V-model are resolved by trimming the involved patches and creating new113

trivariate primitives for the respective overlapping volume. Due to their non-singularity trivariate B-splines,114

V-models are predestined for are subsequent simulation using isogeometric analysis (IGA) [26]. However, as the115

particular patches do not necessarily coincide at their boundary, special techniques are required to glue them116

together, e.g. Mortar methods [27, 28].117

Apart from the possibility to control the interior of the volume, which can be used to model multi-material118

FGM, the V-rep framework also offers the possibility to create single-material FGM, such as continuously119

changing microstructures. Although easy to fabricate with AM, these multiscale structures are critical from a120

simulation point of view. Due to the complexity of the underlying CAD models, the meshing becomes difficult.121

Additionally, attempts to resolve the structure sufficiently accurate may result in over-refined meshes – which122

in turn lead to an additional but unnecessary computational effort. This is where numerical homogenization123

provides an efficient tool to estimate an overall mechanical behavior of such structures. The basic idea of124
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homogenization is to define a representative volume element (RVE) which is sufficiently large to represent the125

overall material behavior in the specific region [29, 30, 31]. In the case of periodic microstructures, a unit126

cell can be extracted for further material characterization. Periodic Boundary Conditions are then applied127

at their boundaries, which leads to the best possible estimate of the effective behavior [32, 33] among other128

possible choices. The resulting material characterization can then be used to simulate a complete structure129

under complex loading. The computational cost is reduced considerably by ’smearing out’ the detailed complex130

geometrical features of a microstructure and expressing them in terms of the effective behavior. Still, on the131

microscopic level of the RVE, the structure needs to be fully resolved in a boundary conforming fashion to132

account for all geometrical details. Here, embedded domain methods offer an elegant and reliable alternative133

over classical FEA also for non-periodic AM structures [34].134

Embedded domain methods, such as the finite cell method (FCM) [35] avoid a tedious and error-prone135

meshing process by embedding the complex geometrical model into a fictitious domain that can be easily meshed136

into regular simple elements. These methods are known under different names, e.g. fictitious domain [36,137

37, 38], immersed FEM/boundary [39, 40], or Cartesian grid method [41]. The FCM [42], uses besides the138

embedded domain approach also high-order finite element , deploying hierarchical Legendre, spectral, or B-139

Spline shape functions [43, 44]. Initially developed for 2D and 3D linear elasticity, it was extended to various140

fields of applications, such as topology optimization [45, 46], local enrichment for material interfaces [47],141

elastodynamics and wave propagation [43, 48], and additive manufacturing [49]. Further investigations include142

efficient integration techniques [50, 51] and homogenization [34]. FCM was successfully applied to various143

geometrical representations, such as B-rep, CSG [52], voxel domains [53], point clouds [54], and defective,144

mathematically invalid B-rep models [55].145

In this contribution, the FCM is extended such that V-rep models with functionally graded material proper-146

ties can be simulated directly. The paper is structured as follows: Sections 2.1 and 2.3 provide a brief overview147

over the FCM and V-reps, respectively. The methodology to directly simulate on V-reps is described in section148

3.1. Section 3.2 presents and discusses several numerical examples before conclusions are drawn in section 4.149

2 Methods150

2.1 Finite cell method151

The finite cell method is a higher-order embedded domain method. It offers the possibility to directly simulate152

complex geometric models without the need for a boundary conforming meshing procedure. Further, it does not153

compromise the accuracy of the underlying finite element method. While a comprehensive description of the154

method can be found in [42] for a comprehensive description of the method, the basic concepts are summarized155

for the sake of completeness. Linear elasticity is considered as a model application for FCM.156
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2.2 Basic fomulation157

In the finite cell method, a physical domain Ωphy is embedded into a fictitious domain Ωfict forming an extended158

domain Ω∪, as illustrated in Fig. 1 for two dimensions. The weak form of the equilibrium equation for the159

extended domain Ω∪ reads as follows160

∫
ΩU

[Lv]T αC [Lu] dΩ∪ =

∫
ΩU

vT αb dΩ∪ +

∫
ΓN

vT t dΓN , (1)

where u is the unknown deflection, v is a test function, L is the kinematic differential operator and C is

the constitutive material tensor. The body load and the prescribed tractions on the Neumann boundary ΓN

are denoted by b and t, respectively. To resolve the complex domain correctly, an indicator function α(x) is

introduced which weights the material tensor C

α(x) =

 1 ∀x ∈ Ωphy

10−q ∀x ∈ Ωfict

. (2)

In the limit q = ∞, eq. (1) recovers the standard weak form for Ωphy. In a finite element-like discretization,161

however, it leads to ill-conditioned systems. This can be avoided by choosing a finite q (in practice q = 6...10) in162

combination with a suitable preconditioning and/or orthogonalization of the shape functions [56]. This choice163

introduces a modeling error [57] but limits the conditioning number of the stiffness matrix. Further improvement164

on the conditioning can be obtained using preconditioning, orthogonalization of shape functions, and/or the165

increase of continuity between the cut cells [58].166

Ωphy

t
t = 0 on ∂Ω∪

ΓN

ΓD

Ωfict

Ω∪=Ωphy ∪ Ωfict
α = 1.0

α = 0.0

Figure 1: The concept of the finite cell method (taken from [35]).

The extended domain Ω∪ is of simple shape and can be easily meshed into regular cells, e.g. rectangles in 2D167

and cuboids in 3D, respectively. These cells can be locally refined into sub-cells or with respect to the order of168

the shape function [59, 60].169

2.2.1 Geometry treatment170

The FCM resolves the physical domain Ωphy (i.e. the geometric model) by the discontinuous scalar field171

α(x), which is then queried during the integration of the system matrices and load vectors. Consequently, the172

resolution of the geometry’s complexity is shifted from the discretization (conforming meshing) to the integration173
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level. The only information the FCM requires from the geometry is an unambiguous point inclusion statement,174

i.e. it must be possible to decide for any point x whether x ∈ Ωphy or x ∈ Ωfict. Due to the discontinuity of175

α(x) on cut cells, the integration needs to be carried out using special quadrature rules. Common variants are176

recursive space-tree reconstruction, moment fitting, or smart quadtrees/octrees [61, 62, 63]. Another approach177

uses dimensional reduction, i.e. the integration is not performed over the entire domain, but only along the178

boundary [64].179

2.2.2 Boundary conditions180

As the boundary of the physical domain Ωphy typically does not coincide with the edges/faces of the finite cells,181

essential (Dirichlet) boundary conditions need to be applied in a weak sense. For this, several methods have been182

investigated – such as the Nitsche method, Lagrange multipliers, and the penalty method [65, 66, 67, 68]. Natural183

(Neumann) boundary conditions are applied on ΓN following Eq. (1). Homogeneous natural boundary conditions184

are automatically resolved by α(x) ≈ 0. Inhomogeneous natural and essential boundary conditions require an185

explicit integrable boundary description, which is either provided by the geometrical model or extracted directly186

from the volume using, e.g., the marching cubes algorithm, see e.g. [69].187

2.3 Volumetric representation188

Massarwi and Elber [25] developed a novel geometric modeling technique, based on trimmed volumetric trivariate189

B-splines, called ‘volumetric representation ‘(V-rep). The interior volume of V-Reps is modeled explicitly and190

is, thus, able to directly represent functionally graded/heterogeneous material. The V-rep framework provides191

methods and algorithms for the construction of V-models by combining simple (e.g. cylinder, sphere, etc.) or192

complex primitives (e.g. ruled primitives or solids of revolution) with the Boolean operations, thus following193

the idea of Constructive Solid Modeling. Furthermore, it is possible to migrate spline-based B-Rep models to194

V-Rep models. The V-rep framework is embedded in the Irit geometry library, developed by Elber et al. [70].195

Irit provides a vast amount of various geometric modeling and analysis functionalities, and it can be accessed196

as a C(++) library, via a scripting language, or graphically with the GuIrit CAD environment.197

2.4 Trivariate B-splines198

A trivariate B-spline is a parametric function that allows to span a volume over a three-dimensional parameter

space. It is typically represented as follows

V (u) =

l∑
i=1

m∑
j=1

n∑
k=1

Bi,p(u)Bj,q(v)Bk,r(w)Pi,j,k , (3)

where V (u) is a point inside the volume and u = (u, v, w)T the corresponding three-dimensional parameter199

position in the parameter space u ∈ U × V ×W ⊆ R3. Bi,p denotes the ith one-dimensional B-spline basis200
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function of polynomial degree p and Pi,j,k ∈ Rk are the l ·m · n control points. The dimension of the control201

points is k = 3 + s, where k = 3 corresponds to the three geometric coordinates xT = [x, y, z]. Further202

information can be represented by additional dimensions s > 0.203

2.4.1 V-rep primitives204

Apart from the trivial case of a cuboid, the V-rep framework offers a variety of both high-level and simple205

primitives. Implemented are several high-level primitive constructors, all of which yield one single trivariate206

patch (see Fig. 2):207

1. Extrusion: A surface is extruded along a vector.208

2. Ruled solid: A volume is defined as a linear interpolation between two surfaces.209

3. Solid of revolution: A volume is constructed by rotating a surface around an axis.210

4. Boolean sum: A volume is created from six boundary surfaces [71].211

5. Sweep/Loft: A sweep or loft interpolates several surfaces along a sweeping path.212

Simple primitives – such as spheres, cylinders, tori, and cones – can not be represented by a single trivariate213

patch without introducing singularities (e.g. at the mid axis of a sphere, the Jacobi matrix vanishes det(JV (r =214

0)) = 0.) To this end, singular primitives are composed of several non-singular trivariate patches (see Fig. 3).215

(a) (b) (c) (d) (e)

Figure 2: High-level primitives: (a) extrusion, (b) ruled solid, (c) volume of revolution, (d) boolean sum, and
(e) sweep/loft.

(a) (b) (c) (d)

Figure 3: Non-singular primitives composed of trivariate B-splines: (a) A cylinder is composed by five extruded
solids, whereas (b) a cone is composed of five ruled solids. (c) A torus is constructed using five solids of
revolution, and (d) a sphere is composed of six ruled solids and one cuboid in its center.
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2.4.2 V-model construction216

A trivariate B-spline is limited to a cuboid topology. To represent general volumetric shapes, so-called 3-217

manifold V-cells νiC are introduced which correspond to trimmed trivariate B-splines. V-cells occur due to218

the combination of the Boolean operations in the regions of overlapping. To this end, trivariate B-splines are219

trimmed at intersecting surfaces, and, depending on the Boolean operation, the intersection volume is then220

remodeled from the trimming surfaces using the Boolean constructor (see Fig. 4). A V-model Vm is composed221

of several V-cells, which are non-intersecting νiC ∩ ν
j
C = ∅ ,∀i 6= j.222

∪

Figure 4: V-Model created as the union of a trivariate cuboid and a trivariate, non-singular cylinder. The inter-
sected volume yields two V-cells (marked in red) which are constructed with the trimming surfaces (highlighted
in blue).

V-cells store additional topological and adjacency information, which allows an efficient model inquiry. Adjacent223

V-cells share common trimming/boundary surfaces. Analogously to B-Rep, the boundary of the V-model ∂Vm224

forms a closed 2-manifold.225

2.4.3 Point inclusion testing226

In the context of the finite cell method, at first without considering functionally graded materials, the V-model

only needs to provide a point inclusion test. To this end, an inverse mapping is carried out on each V-cell.

f : x = νiC(u)→ u (4)

As splines can generally not be inverted analytically, the corresponding parameter position umust be determined227

iteratively using the Newton-Raphson algorithm. Yet, one should note that – since the splines are regular, i.e.228

the Jacobian never vanishes – a solution is always unique, if one exists. In the case x ∩ νiC 6= ∅ a parameter229

position can be found in the V-cell νiC and the respective point x is inside the V-model. The duration of the230

inverse mapping can be substantially decreased providing a good guess as an initial value. This is exploited by231

the finite cell method as, due to the most frequent element- layer- and row-wise query, consecutive integration232

points are very often geometrically adjacent. Therefore, the last inner point on each V-cell is cached and used233
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as an initial guess for the next query.234

3 Discussion and Results235

3.1 Functionally graded material representation236

The V-Rep framework provides two different ways to realize functionally graded materials: (a) the material237

properties can either be encoded directly into the volume of the V-cells (see Sec. 3.1.1) or (b) the FGM can be238

created in a constructive manner (see Sec. 3.1.2).239

3.1.1 Functionally graded material inside the V-cells240

As the smallest building blocks, the V-cells, are spline-based volumetric elements, it is natural to extend this241

spline description to also carry the material information.242

V-Rep material representation Material properties such as Young’s modulus, Poisson’s ratio, thermal

conductivity, density, etc. can easily be represented on the V-cells by simply extending the dimension of the

control points R3+s, with s > 0 being the additional material parameters (see Eq. (3)). Consequently, evaluating

the V-cell yields, in addition to the geometric coordinates, also the respective material values

V T = [x, y, z,m1, ...,mσ, ...,ms] ∈ R3+s . (5)

As an example, consider a control point that carries additional material properties for the Young’s modulus E,243

Poisson’s ratio ν, and thermal conductivity κ as needed for example 3.2.2: P T
i,j,k = [x, y, z, E, ν, κ]i,j,k.244

The material properties of a V-cell, created from the overlap of two or more trivariate B-splines carrying245

different material information, require additional handling. Either one of the initial trivariate B-spline can be246

set prevailing and, thus, its properties are inherited to the V-cell, or the material properties are interpolated by247

some sort of blending scheme. For detailed information refer to [25].248

Spline based material approximation Inside a patch, splines are typical of higher continuity, which renders249

them perfectly suitable for modeling smooth geometries. However, this restricts the material function to be250

of the same continuity. A remedy to also represent C0 or discontinuous material distributions is given by251

knot-insertion, as the continuity depends on the multiplicity of the knots Cp−m, where p is the polynomial252

degree and m the number of multiple knots. Naturally, knot-insertion also reduces the potential continuity of253

the geometry. However, the original higher continuity is preserved in a geometrical sense. Hence, the model254

keeps its geometrical shape, whereas the material is allowed to have material kinks, or even to be discontinuous.255

Nevertheless, due to the global influence of the position and multiplicity of the knots, splines are not the method256

10



of choice to represent highly discontinuous material distributions, as e.g. underlying voxel data provided by257

CT-scans.258

Given a sufficiently smooth material distribution, the material ’coordinates’ of the control points can be

obtained using least-squares approximation (see Fig. 5). For each material property, the least-squares problem

reads

min
µσ

nLS∑
λ=1

r2
λ = min

µσ
‖V (uλ,µ

σ)− fσm (xλ) ‖22 = min
µσ
‖A(uλ)µσ − fσm (xλ) ‖22 , (6)

where nLS is the number of sample points and µσ = µσi,j,k ∈ Rl·n·m are the minimization variables (see Eq. (3)

for l,m, n). The least squares problem is then solved for each material function fσm and the respective material

’coordinate’ µσ, σ ∈ [1, s] of the control mesh Pi,j,k =
[
x, y, z, µ1, ..., µσ, ..., µs

]T
i,j,k

. Matrix A ∈ Rν×(l·n·m)

contains the spline basis functions. The sample points are evaluated in the parameter space uλ = [u, v, w]Tλ ∈ R3.

Consequently, the material function needs to be evaluated in the same space (see Eq. (3))

fσm (x) = fσm(V (u)) . (7)

Figure 5: One-dimensional least squares approximation of a hypothetical sinusoidal material function mσ(x) =
sin(2πnpx), with np = 2.5 being the number of periods, yields the material ’coordinates’ µσi . Note that the
rather large deviation between the curves comes from the fact that the location (i.e. x−coordinate) of material
control points is fixed.

3.1.2 Constructive functionally graded materials259

A different kind of FGM are structures with changing material properties due to adaptions in the microstructure260

or density. A prominent example in nature is the trabecular bone, where the size and alignment of thin rods261

and plates of bone tissue create stiffness trajectories that follow the principal stresses for the most common load262

cases [72].263

Today, additive manufacturing (AM) offers the possibility to create similarly complex structures. To this end,264

AM uses porous infill structures to support the outer hull. However, this infill is typically a repetitive lattice265
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and is either not taken into account for the load transfer, or it is assumed to be isotropic [73]. Nonetheless266

recent approaches in the field of topology optimization try to exploit the contribution of the infill to the load267

transfer [74]. Problem-fitted complex 3D anisotropic microstructures can reduce the printing time and material268

consumption substantially and at the same time improve the load-carrying properties and buckling behavior.269

Gradually changing microstructure The V-Rep framework offers the possibility to create complex anisotropic270

microstructures with its tiling operation. Hereby, copies of a unit structure are consecutively created inside a271

base volume. Following the shape of the base volume and by using layers of different unit cells, a complex272

constructive FGM can be created. As the resulting microstructure is composed of several V-cells, it is again a273

V-model (see Fig. 6). Naturally, each V-cell can again represent a heterogeneous material distribution within274

its volume.275

(a) Ruled base volume

(b) Unit tiles

(c) microstructure

Figure 6: Functionally graded microstructure: (b) Three different anisotropic tiles, with a changing stiffer
direction, are used to tile (a) a rotating ruled volume. (c) The entire resulting microstructure exhibits a
continuously changing anisotropic stiffness.

Material characterization of unit tiles Detailed geometrical features of such microstructures require a276

fine numerical resolution to achieve reliable simulation results. To reduce the computational cost, a numerical277

homogenization can be used to evaluate a macroscopic mechanical behavior under specified loadings. The basic278

idea of this method is to approximate the solution of a macroscopic boundary value problem by solving less279

demanding microscopic problems [31]. This idea relies on the existence of a Representative Volume Element280

(RVE), which is a microstructural domain that is large enough to represent macroscopic behavior and small281

enough to ensure the scale separation. The mechanical quantities can then be transferred from micro- to macro-282

scale by using the Hill-Mandel condition, which is also called a ‘macro-homogeneity condition’. This mean-283
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field numerical homogenization provides reliable estimates for the effective mechanical behavior if appropriate284

boundary conditions are chosen. In the case of periodic microstructures, such as the ones sketched in Tab. 2,285

periodic boundary conditions provide the best effective material properties. In order to generate a material286

database for these unit tiles, the numerical homogenization technique in combination with the Finite Cell287

Method [34] is used.288

3.2 Numerical examples289

To demonstrate the variety of simulatable functionally graded materials using a combination of V-reps and the290

FCM, five examples are presented. The first example serves as a verification of the method. To this end, a linear291

elastic simulation of a simple cuboid with a prescribed material distribution is performed. The second example,292

a coupled heat, thermo-elastic simulation of a curved thermal protection tile, underlines the applicability to293

examples of engineering relevance. The third example shows a simulation of a fully resolved constructive FGM294

in terms of a continuously changing microstructure. In the fourth example, the underlying tiles of the third295

example are evaluated in terms of a homogenization, which are then used in the fifth example to perform a296

simulation on a homogenized constructive FGM.297

3.2.1 Example 1: Cuboid with sinusoidal material distribution298

As a benchmark problem, the cuboid with varying material distribution in z−direction is chosen. The cuboid

is a trivariate B-spline and is created with GuIrit [70]. As the spline basis functions are initially linear in

each direction, they are not able to represent the material function E(z). For this reason, a degree elevation

to r = 3 and subsequent multiple knot insertions in z−direction were carried out, yielding a knot-vector of

W = [0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1]. The control points in z−direction are depicted in Fig. 7a. The cuboid

has assigned a constant Poisson ratio of ν = 0.3. The functionally graded Young’s modulus is given as an

analytical function

E(z) = 106 + 5 · 104 · sin(zπ) . (8)

The material ’coordinates’ µEi of the control points are computed using least squares with nLS = 100 sample

points, according to Eq. (6) (see Figs. 7b, and 8a)

µE = [100000, 131438, 185772, 46415, 46415, 185772, 131438, 100000] . (9)
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(a) (b)

Figure 7: (a) Dimensions of the cuboid. (b) Least squares fitting of E(z) yielding the material coordinates µEi .

For the simulation, the cuboid is embedded into a slightly larger fictitious domain and discretized with 7×7×17299

finite cells. An octree with a maximum subdivision depth of n = 4 is used for the integration. Homogeneous300

Dirichlet boundary conditions are applied in x−direction on the left, in y−direction on the front, and in301

z−direction on the bottom surface using the penalty method. The cuboid is loaded on the top surface with302

a traction of f = −1000 in z−direction. A p−refinement is carried out to study the convergence behavior,303

increasing the order of the Legendre ansatz function from p = 1...8. The accuracy is measured by comparing304

the strain energy to a reference solution Uref , which was computed with an extensive boundary-conforming305

finite element analysis (see Fig. 8b).306
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Figure 8: (a) Young’s modulus evaluated on integration points inside the cuboid and in the fictitious domain.
(b) Relative error in the strain energy for polynomial degrees p = 1...8.

Fig. 9 shows the displacements and the von Mises stresses on the deformed cuboid. The regions of lower stiffness307

are undergoing a larger deformation. In the region of high stiffness, the stress concentrates on the surfaces.

(a) (b)

Figure 9: (a) Displacements warped around the undeformed cuboid (grey block) embedded into the finite cell
mesh. (b) Von Mises stresses and integration mesh. The deformation is scaled by a factor of 20.

308

3.2.2 Example 2: Curved thermal shielding tile309

For the second example, three curved thermal shielding tiles are simulated. Such tiles are needed for high-310

temperature applications, such as re-entrance shielding for spacecrafts or the inner coating of fusion power311

plants. The tiles consist of a load-carrying zone made of titanium Ti and an insulating zone made of porous312
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silica SiO2 with a porosity of 70%. Both materials have similar melting points of ΘTi = 1.668◦C for titanium313

and ΘSiO2
= 1.710◦C for silica, which allows a fabrication with additive manufacturing using e.g. powder bed314

laser melting.315

Special focus is laid on the continuity of the transition zone between these materials. The first discontinuous316

tile consists of two distinct domains where both domains are assumed to be homogeneous titanium and silica,317

respectively, i.e. there is no transition zone. The material is changed C0−continuously in the second tile, and318

C1−continuously in the third tile. To evaluate the stresses under a heat load, a coupled simulation is carried out.319

An initial thermal simulation provides the temperature distribution, which is then used to apply thermal strains320

for the subsequent thermo-elastic simulation. Consequently, the model will deform due to the different thermal321

expansion ratios. This deformation is, however, hindered by the different Young’s moduli in the transition zone,322

then leading to internal stresses.323

The underlying V-model consists of one V-cell and was generated by extruding a curved two-dimensional

B-spline patch 5 cm in z−direction. The V-cell has polynomial degrees of px = py = 2 in x− and y−direction

and pz = 1 in z−direction. For the C1− continuous tile, the polynomial degree in z−direction is pz = 2. To

construct the discontinuous tile, the V-model was split at ∆zdiv = 1.25 cm using knot-insertion. The knot

vectors and z−coordinates of the control points for all tiles read as follows

UDiscont. = [0, 0, 0.25, 0.25, 1, 1] (10)

UC0 = [0, 0, 0.15, 0.35, 1, 1] (11)

UC1 = [0, 0, 0, 0.05, 0.29, 0.5, 1, 1, 1] (12)

CPz,Discont. = [0, 1.25, 1.25, 5] (13)

CPz,C0 = [0, 0.75, 1.75, 5] (14)

CPz,C1 = [0, 0.2, 0.8, 1.7, 3.6, 5] . (15)

The resulting material distributions are depicted in Fig. 11 exemplary for the Young’s modulus. The other324

material properties are distributed similarly. The parameters for the B-splines were chosen such that the325

integral of the material over the thickness is equal for all three tiles. Fig. 10 shows the outer dimensions of the326

tiles in cm.327

16



10

10

10

4
4
4

(a)

7 7 7

5

5

7

(b)

Figure 10: Model dimensions (in cm) and control point mesh of the discontinuous tile in (a) isometric view,
and (b) from the back side.

To perform the coupled simulation, four different material parameters are required for both materials (see328

Tab. 1). The properties were taken from AZO Materials and averaged if necessary [75]. Due to the porosity of329

the silica, the respective Young’s modulus ESiO2 and the thermal conductivity κSiO2 must be adapted. This is330

implemented based on the Gibson-Ashby criteria [76]. In contrast, the Poisson’s ratio νSiO2
and the thermal331

expansions αSiO2
require no adjustment [77].332

Property Symbol Titanium Silica (70% porosity) Units

Young’s Modulus E 11, 600 634 kN/cm2

Poisson’s Ratio ν 0.36 0.17 −

Thermal conductivity κ 0.216 2.3 · 10−3 W/cmK

Thermal expansion α 8.6 · 10−6 6.5 · 10−7 1/K

Table 1: Material properties of titanium and porous silica for the coupled simulation.
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Figure 11: Material distribution of the Young’s modulus (a) inside the C0−continuous tile and (b) plotted at
x = 5 cm, y = 25 cm over the thickness.

The simulation is based on 16 × 23 × 9 finite cells with a polynomial degree of p = 3 and an integration333

subdivision depth of n = 3. For the preceding heat simulations, Dirichlet boundary conditions are applied with334

a prescribed heat of 1000◦C on the top surface and 20◦C on the bottom surface. The resulting temperature335

inside the tiles is then transferred as a body strain to perform a thermo-elastic simulation. Additionally, the336

tiles are clamped at the bottom surface. The simulation of the tile with the discontinuous material distribution337

is carried out on two separate meshes, which are ’glued’ together in a weak sense along their coupling surface.338

To resolve the critical regions, the multi-level hp-method [60] is used to a refinement depth of two around the339

coupling surface for the meshes of the discontinuous tile and once in the transition zones of the continuous tiles340

(see Fig. 12).341

(a) (b)

Figure 12: Discretizations of (a) the discontinuous tile: The mesh is refined twice around the coupling surface
(yellow), which divides the upper (light blue) and lower domain (purple). (b) The C0−continuous tile: The
FCM mesh is refined once in the transition zone (cells in blue are unrefined, and cells in red are refined once).
The grey mesh in the background corresponds to the octree for the integration. The C1−continuous tile is
meshed and refined analogously.

To visualize the results inside the tiles, a cut through the model is investigated at x = 5 cm. Fig. 13 shows the342
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temperature distribution and displacements of the C0−continuous tile. The temperature and the displacement343

distributions are almost identical for all tiles. More relevant are the stress distributions. As can be seen in344

Fig. 14, a stress concentration occurs at the coupling surface of the discontinuous tile. Figs. 15 and 16 plot345

the temperature distribution, displacements, and stresses over the height at x = 5 cm and y = 25 cm. The346

discontinuous material distribution yields a C0−continuous heat and displacement distribution, which then347

entails a discontinuous stress distribution with a maximum peak at the interface region. This is critical as it348

will potentially cause delamination. The C0−continuous material distribution, on the other hand, ensures a349

continuous and much smaller stress distribution throughout the entire domain. This effect can be augmented350

further by using a C1−continuous material distribution. Continuous materials, on the other hand, involve a351

larger heat flux. For the 1D case, the thermal resistance is reduced to approximately 86% for the C0−continuous352

and approximately 75% for the C1−continuous material wirth respect to the discontinuous material distribution.353

(a) (b)

Figure 13: C0−continuous tile: (a) Temperature distribution and (b) displacements warped by a scaling factor
of 1000.

(a) (b)

Figure 14: Von Mises stresses of the (a) discontinuous and (b) C0−continuous thermal shielding tile. The stress
distribution of the C1−continuous tile looks very similar to the C0−continuous tile.
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Figure 15: Comparison of (a) the temperature and (b) the displacements of the discontinuous and continuous
tiles at x = 5 cm, y = 25 cm over the thickness.
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Figure 16: Comparison of the von Mises stresses of the discontinuous and continuous tiles at x = 5 cm, y = 25 cm
over the thickness.

3.2.3 Example 3: Anisotropic microstructure354

For the third example, a linear-elastic simulation on the microstructure depicted in Figure 6 is carried out. It355

resembles a porous, foam-like microstructure stiffened by an outer shell. To generate this model, a continuously356

changing microstructure is created with GuIrit and converted into a surface model. The outer shell is added357

with a Boolean Union, and the microstructure outside to the shell is trimmed away. Finally, the computational358

model is extracted with a Boolean Intersection. Fig. 17 depicts the selection of the computational domain and359

the final model with the respective surfaces for the boundary conditions.360
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(a) (b)

Figure 17: (a) Selection of the computational domain (turquoise). An outer shell (red) is embedded into a
microstructure. (b) Intersection of the microstructure with Ω∪ leading to the physical domain Ωphy. Boundary
conditions are applied on the highlighted intersection surfaces.

The underlying microstructure consists of 6×6×9 unit tiles and an overall number of 2268 trivariate B-splines.361

Converted into a surface model and after the deletion of internal surfaces, the microstructure consists of 8064362

B-spline surfaces. For the simulation, homogeneous Dirichlet boundary conditions are applied on the cutting363

planes of the shell (see Fig. 17b – highlighted in turquoise). The top and bottom surface fix the displacements in364

x− and z−direction, and the front and back surface restrict the displacements in x− and y−direction. Dirichlet365

boundary conditions of ∆u = 0.1 are applied on the outer surfaces on the left side (see Fig. 17b – highlighted in366

purple). All boundary conditions are enforced with the penalty method. The Young’s modulus is E = 100GPa367

and a Poisson’s ratio of ν = 0.3 ∀x ∈ Ωphy. The simulation is based on 20 × 20 × 20 finite cells, employing368

Legendre polynomials of degree p = 4. The subdivision depth of the octree for the integration is set to n = 4.369

Figs. 18 and 19 show the displacements and the von Mises stresses. Clearly, such a fully resolved simulation370

is slower than the numerical homogenization presented in section 3.1.2 – especially because homogenization371

in the linear case allows to create a lookup table. However, the discussed fully resolved model can be used372

to verify the homogenization. This is addressed in the following examples 3.2.4, and 3.2.5. Note, since the373

shape functions are bad suited to represent holes inside one finite cell, meaning ’material–void–material’, the374

mircostructure needs to be resolved with many finite cells. A remedy can be local enrichment as presented375

in [78].376
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(a)

(b)

Figure 18: Displacements in (a) isometric view and (b) from the top.

(a) (b)

Figure 19: Von Mises stresses in (a) isometric view and (b) from the top.

3.2.4 Example 4: Material characterization database for unit tiles377

For a simulation of such microstructures (compare 3.2.3) with homogenized material, it is necessary to recover378

the material behavior of the RVEs, i.e., in this case, the unit tiles. To this end, homogenization simulations379

were carried out for all unit tiles. The material of the microstructure is considered to be steel with a Young’s380

modulus of E = 210GPa and a Poisson’s ratio of ν = 0.3. Each tile is discretized with 11× 11× 11 finite cells381
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of polynomial degree p = 5. For the domain integration, the moment-fitting approach [62] with the depth of an382

underlying octree of d = 6 is chosen. As the structures under consideration are geometrically periodic, periodic383

boundary conditions are the natural choice for transferring the macroscopic quantities to the microscopic unit384

cells.385

For arbitrary rotations, these constants can be computed analytically via a coordinate transformation. Then,

the Bond-Transformation matrices [79] can be used to rotate the effective elasticity tensor by a matrix-matrix

multiplication. Assume the following ordering of the macroscopic stresses σMij and strains εMij in the Voigt

notation 

σM11

σM22

σM33

σM12

σM23

σM13


=



C∗11 C∗12 C∗13 C∗14 C∗15 C∗16

C∗12 C∗22 C∗23 C∗24 C∗25 C∗26

C∗13 C∗23 C∗33 C∗34 C∗35 C∗36

C∗14 C∗24 C∗34 C∗44 C∗45 C∗46

C∗15 C∗25 C∗35 C∗45 C∗55 C∗56

C∗16 C∗26 C∗36 C∗46 C∗56 C∗66





εM11

εM22

εM33

εM12

εM23

εM13


. (16)

Then, the transformation of the effective elastic tensor reads as follows

C ′ = MC∗N−1 , (17)

where C∗ is the effective elasticity tensor, C ′ is the effective elasticity tensor in rotated coordinates, and M386

and N are the Bond-stress and the Bond-strain transformation matrices, respectively.387

In this work, an exemplary a rotation of the unit tiles (see Fig. 6b) around the z−axis is considered. The Bond388

strain and stress matrices for this rotation are defined as follows:389

M =



cos2(α) sin2(α) 0 sin(2α) 0 0

sin2(α) cos2(α) 0 −sin(2α) 0 0

0 0 1.0 0 0 0

− sin(2α)
2

sin(2α)
2 0 cos(2α) 0 0

0 0 0 0 cos(α) −sin(α)

0 0 0 0 sin(α) cos(α)


(18)

N =



cos2(α) sin2(α) 0 sin(2α)
2 0 0

sin2(α) cos2(α) 0 − sin(2α)
2 0 0

0 0 1.0 0 0 0

−sin(2α) sin(2α) 0 cos(2α) 0 0

0 0 0 0 cos(α) −sin(α)

0 0 0 0 sin(α) cos(α)


(19)
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Given a set of different (an-)isotropic unit tiles that can be used to construct such microstructures, it is possible390

to create a database of homogenized materials, which can then be used to simulate different macroscopic load391

cases. Furthermore – assuming that the macroscopic principal stresses were already computed on an isotropic392

material for a certain critical load case – this database can serve as a look-up table for selecting the best-suited393

unit tile for the respective region. Tab. 2 is a snippet of such a look-up table, and it shows the effective elasticity394

tensors for two varying material properties, i.e. the rotation around the z−axis and the diameter of the rod in395

x−direction. The material properties in-between can be interpolated. Of course, a complete look-up table would396

at least require rotations also around the x− and y−axis and additional unit tiles with two stiffer directions,397

and equal stiffness in all three directions.398

Rotation around the z−axis
0◦ 22.5◦ 45◦

D
ia

m
et

er
of

th
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ro
d

in
x
−

d
ir

ec
ti

o
n

0.2mm

C11 = 7.9 GPa
C22 = 7.9 GPa

C11 = 6.1 GPa
C22 = 6.1 GPa

C11 = 4.4 GPa
C22 = 4.4 GPa

0.3mm

C11 = 18.2 GPa
C22 = 11.1 GPa

C11 = 14.2 GPa
C22 = 9.1 GPa

C11 = 8.6 GPa
C22 = 8.6 GPa

0.4mm

C11 = 33.8 GPa
C22 = 14.8 GPa

C11 = 26.5 GPa
C22 = 13.0 GPa

C11 = 15.2 GPa
C22 = 15.2 GPa

Table 2: Exemplary look-up table for the effective elasticity tensors (here represented by C11 and C22) for
changing diameters of the rod in x−direction and rotations around the z−axis.

Tile 1 (see Fig. 20) shows a cubic macroscopic material symmetry with three independent elasticity coeffi-
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cients [80], namely C11, C12 and C44

C∗T1 =



7895.81 432.89 432.89 0.00 0.00 0.00

432.89 7895.81 432.89 0.00 0.00 0.00

432.89 432.89 7895.81 0.00 0.00 0.00

0.00 0.00 0.00 200.71 0.00 0.00

0.00 0.00 0.00 0.00 200.71 0.00

0.00 0.00 0.00 0.00 0.00 200.71


(20)

Due to the stiffer direction in x−direction, tile 2 and 3 (see Fig. 20) show a tetragonal effective material

symmetry with C11, C22, C44, C55, C12 and C23 as independent entries:

C∗T2 =



18246.81 1026.56 1026.56 0.00 0.00 0.00

1026.56 11066.80 659.81 0.00 0.00 0.00

1026.56 659.81 11066.80 0.00 0.00 0.00

0.00 0.00 0.00 769.49 0.00 0.00

0.00 0.00 0.00 0.00 590.69 0.00

0.00 0.00 0.00 0.00 0.00 769.49


(21)

C∗T3 =



33809.00 2037.73 2037.73 0.00 0.00 0.00

2037.73 14770.28 997.14 0.00 0.00 0.00

2037.73 997.14 14771.08 0.00 0.00 0.00

0.00 0.00 0.00 2022.10 0.00 0.00

0.00 0.00 0.00 0.00 1375.86 0.00

0.00 0.00 0.00 0.00 0.00 2022.17


(22)
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(a) Tile 1 (b) Tile 2 (c) Tile 3

Figure 20: Displacement field of the warped tiles with a scale factor s = 10.

Eq. (17) is used to obtain the effective material tensors for arbitrary rotations around the z−axis. For a399

rotational degree of 45◦, the material constants are verified numerically (see Fig. 21).400

(a) Tile 1 (b) Tile 2 (c) Tile 3

Figure 21: Displacement field of the warped rotated tiles with a scale factor s = 10.

A rotation of tile 1 around the z−axis has no influence on the third, fifth, and sixth columns, neither on the401

respective rows of the effective tensor. The coefficient C11 equals C22 due to the geometrical symmetry in x−402

and y− directions. C14 and C24 are of equal magnitude but have opposite signs. Fig. 22 shows the remaining403

independent material constants with respect to the rotational angle. The results of the numerical simulation at404

45◦ are marked with red crosses.405
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(d) C44, (MPa)

Figure 22: Independent elastic constants for tile 1 under rotation around the z−axis.

For tile 2, only the coefficient C33 which corresponds to the stiffness in z−direction remains unchanged under406

rotation around the z−axis. All other entries are affected by the altered symmetry. Considering a rotation angle407

of 90◦, it is noteworthy that the coefficients C11 and C22 are switched with regard to the initial position. The408

same holds for the coefficient pairs C55– C66, and C13–C23. The rest of the independent material parameters409

are depicted in Fig. 23. Again, the results of the numerical simulation at 45◦ are marked with red crosses.410
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Figure 23: Independent elastic constants for tile 2 under rotation around the z−axis.

Tile 3 exhibits similar material symmetries as the second tile. Fig. 24 shows the material coefficients. Again,411
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the results of the numerical simulation at 45◦ are marked with red crosses.
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Figure 24: Independent elastic constants for tile 3 under rotation around the z−axis.
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3.2.5 Example 5: Homogenized microstructure413

Consider the model of Sec. 3.2.3 to be a part of a larger structure (see Fig. 25). Based on the material database414

for the homogenized unit tiles (see Tab. 2) it is possible to simulate such a large structure. For the simulation,415

the model is subdivided into an outer shell and an infill. The shell is considered to be of solid isotropic416

material, whereas the infill is a homogenized microstructure which continuously changes the two properties: a)417

the rotation angle ψ around the z−axis varies from 0◦ at the bottom to 90◦ at the top and b) the thickness of418

the rod Ø increases from the center axis of the infill (in z−direction) Ø = 0.2mm towards the interface of the419

shell Ø = 0.4mm. A uni-axial compression state is achieved by applying a uniform displacement of ∆z = −1.0420

on the top surface and restricting the displacements in z−direction on the bottom surface. Three additional421

point-bearings block the rigid body motions.422

Figure 25: Structure consisting of a solid shell (red) and a homogenized microstructure (gray scale).

The simulation is based on 15× 15× 15 high-order Legendre finite cells with a polynomial degree of p = 4, and423

moment-fitting with the depth of an underlying octree of d = 4 is chosen for the integration. At the interface424

between shell and infill, the mesh is refined to capture the material discontinuity. As the homogenization of the425

unit tiles was carried out with periodic boundary conditions, the behavior at the interface between shell and426

infill is not captured precisely. However, the affected domain is small compared to the overall structure, thus,427

the introduced error is negligible. If, however, the microscopic stress state at the transition from the micro-tiles428

to the shell is of interest, then a geometrically resolving simulation as in Sec. 3.2.3 can be performed.429

A total of 13 independent material coefficients are required to evaluate the material tensor of the continu-

ously changing microstructure. To this end, the material coefficients from the look-up table (see Tab. 2) are

interpolated using spline fitting. Fig. 26 exemplary shows the interpolation for the material coefficients C11 and

30



C22.

C =



C11 C12 C13 C14 0 0

C22 C23 C24 0 0

C33 C34 0 0

C44 0 0

C55 C56

symm. C66


(23)

(a) C11 (b) C22

Figure 26: Spline based interpolation of the material coefficients C11 and C22.

Fig. 27 shows the displacements in x−direction and von Mises stresses of the structure under uni-axial com-430

pression z−direction. The load is mainly transferred through the stiffer shell, yet the contribution of the infill431

cannot be neglected. Due to the uni-axial compression, the rotation angle ψ of the microstructure has only432

little influence. The thickness of the rod Ø, on the other hand, can be deduced directly from the stress field of433

the infill.434
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(a) (b)

Figure 27: (a) Displacements in x−direction and (b) von Mises stresses with the finite cell mesh.

It should be noted that a geometrical change has no influence on the overall workflow. Even a topological435

change does not lead to a re-meshing as would be required for a simulation with classical FEM or IGA. To436

illustrate such a topological change, a hole is drilled through the structure (see Fig. 28). In the context of the437

FCM, a cylinder is simply subtracted with the Boolean difference. As can be seen, the infill contributes less to438

the load transfer, and high stress concentrations appear at the walls of the hole.439

(a)
(b) (c)

Figure 28: Structure with hole: (a) model, (b) displacements in z−direction (warped by a factor of s = 2), and
(c) von Mises stresses.

4 Conclusions440

In this work, we presented a methodology that allows to simulate functionally graded materials based on the441

V-rep framework and the FCM. V-reps, hereby, offer the possibility to apply the material directly to a model442
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or to design constructive FGM, such as microstructures. The Irit library and the graphical extension GuIrit443

provide a variety of volumetric modeling and analysis tools that can be utilized directly with the FCM. Although444

initially developed for IGA, FCM renders to be perfectly suited for the subsequent numerical simulation, as445

it is only reliant on the point inclusion test provided by the V-rep framework. Furthermore, FCM allows an446

adaptive non-global refinement towards critical regions, and it is perfectly suited for the homogenization of447

microstructures. Numerical examples proved the applicability to single-material as well as to multi-material448

FGM. Further developments could try to exploit the additive manufacturing tools of Irit, which allows to449

directly create G-code from the model. This could then be used in terms of numerical simulations of the450

additive manufacturing process.451
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