
DEPARTMENT OF INFORMATICS
Technische Universität München

Bachelor’s Thesis in Informatics

Comparison of distance metrics for MDS based
NLDR using CNNs

Eric Fuchs



DEPARTMENT OF INFORMATICS
Technische Universität München

Bachelor’s Thesis in Informatics

Comparison of distance metrics for MDS based
NLDR using CNNs

Vergleich von Distanzmaßen für MDS-basierte
NLDR mit CNNs

Author: Eric Fuchs
Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: Severin Reiz, M.Sc.
Submission Date: 17.02.2020



I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 17.02.2020 Eric Fuchs



Abstract

The L1 and L2 distance metrics can be used when training convolutional neural nets
to perform nonlinear dimensionality reduction on image datasets, generating embedded
spaces in a similar manner as with multidimensional scaling. The choice between them
is often made arbitrarily. We trained enocder/decoder network pairs as Regressors, Au-
toencoders, Siamese networks, and with a triplet loss before applying them to Classifica-
tion, Outlier detection, Interpolation, and Denoising. The experimental results were inter-
preted, subjectively where necessary, leading to the conclusion that using the euclidean or
the manhattan distance during training matters less than the choice of training configura-
tion. The L2 distance appeared minimally favorable.
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1. Introduction

Many problems arise when dealing with high-dimensional data like images: The storage of
the large amount of values is cumbersome, the high dimensionality increases the runtime
of algorithms like nearest neighbor search, and the special relationship of sample vectors
is often irrepresentative of their similarity in terms of the features of objects depicted in the
images.

Multidimensional scaling (MDS) is a class of nonlinear dimensionality reduction (NLDR)
techniques that offer a solution to this problem. Algorithms like Isomap can find low di-
mensional coordinates for samples so that their spacial relationship better reflects their
similarity.

Shortcomings of this approach are the large memory requirement that usually scales
unfavorably with the number of samples in the dataset, and the inability to map new data
into or back out of the discovered embedded space.

Convolutional neural networks (CNN) can be trained to solve the out-of-sample exten-
sion problem given such an embedding. By defining loss functions to mimic the optimiza-
tion goals of MDS algorithms, they can also learn embedded spaces directly, with minimal
need for memory thanks to batched training.

In all of these approaches, some comparison of images in their original, high-dimensional
space needs to take place. The L1 and L2 distance metrics are commonly picked for this
function.

This work aims to compare their usefulness for this purpose. To this end, we first pro-
vide a theoretical background for multidimensional scaling and related algorithms. This
is followed by information on the dataset, software, and neural network architecture used
in the experiments, as well as the four employed training configurations that optimize the
networks weights in different ways. Four use cases of dimensionality reduction are de-
scribed next, with interpreted results of the eight trained pairs of encoder and decoder
networks.

A summarization of these results is provided in the conclusion.
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2. Theory

2.1. Principal Component analysis

Principal Component Analysis [13] is a popular method of dimensionality reduction. At
its core is a simple matrix, multiplication with which is used to map data points to an
embedded space. It assumes the data occupy a euclidean space, leaving no room for dif-
ferent distance metrics. Geometrically, PCA can be viewed as translation and rotation of
the data. After centering the mean on the origin the data are projected onto a new set of or-
thogonal basis vectors, chosen to point in the direction in which the data exhibits the most
variance, excluding variance along the previously selected vectors. Actual reduction in
the number of dimensions is then achieved by cutting off all basis vectors after the desired
dimensionality is reached.

One way of computing the matrix mapping vectors to their principal components is:

1. Given a matrix X in which every sample is recorded as one of N row vectors, com-
pute the mean

x̄i = 1
N

∑N
j=1 xji

and center the data matrix by subtracting it from all rows

xcij = xij − x̄j

2. Calculate the covariance matrix of the centered data Xc>Xc

3. Find the eigenvectors and eigenvalues of the covariance matrix, and assemble the
eigenvectors - in order of decreasing magnitude of the corresponding eigenvalues -
as column vectors into a matrix W .

By storing the mean of the data x̄ that was used to center it and the transformation
matrix W , new data x̃ can be mapped to a predetermined embedded space as (x̃− x̄) ·W .

2.2. Multidimensional scaling

Multidimensional scaling [16, 10, 1] was largely developed in the field of psychology.
There, experimental data was often obtained by asking human subjects to give numer-
ical values for different attributes of a stimulus. Averaged over multiple subjects these
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2. Theory

values would provide a dataset with a number of samples equal to the number of stimuli
and number of dimensions equal to the number of attributes ready for analysis.

Problems with this approach include the inherent inaccuracy with which humans map
abstract concepts to a numerical range, and the necessity for researches to anticipate the
exact number and kind of attributes necessary to analyze the data beforehand.

While the first can be mitigated by increasing the number of subjects, the second one
can be solved by collecting information on the similarity or dissimilarity of pairs of stimuli
instead of specific attributes of individual samples. MDS then provides a way to derive
vector coordinates for the stimuli so that their pairwise euclidean distances approximately
match the obtained dissimilarities, even if they contain erroneous values.

Numerous methodologies have been proposed for estimating the necessary number of
dimensions and finding coordinates adhering to the distance matrix. As an example, one
algorithm for finding an embedding with MDS [17] is as follows:

1. Given the N ×N distance matrix D, compute the double centered, squared distance
matrix

B = −1

2
HSH

where sij = d2ij is the element-wise squared distance matrix and hij =
{

1−1/N if i=j

−1/N else
is the so-called centering matrix.

2. Assuming the number of dimensions desired for the embedded space is m, compute
the m largest positive eigenvalues λi of B and their corresponding eigenvectors ei.

3. Construct the matrix containing the final coordinates of theN samples asm-dimensional
row vectors.

xij = (ej)i ·
√
λj

2.3. Isomap

The Isomap algorithm [15] seeks to find an embedding that unravels a manifold presumed
to exist in the higher dimensional data. To do this, the geodesic distances between data
points are approximated. It consists of the following three steps:

1. Construct a neighborhood graph from the input data. This takes the form of a large
matrix where every entry aij is the distance between samples i and j if i and j are
neighbors, positive infinity otherwise. Two points i and j are considered neighbors
either if the distance between them is smaller than a given threshold (ε-Isomap) or if
one is among the others k nearest neighbors (k-Isomap).

2. Find the shortest paths for all pairs of points on the graph. This replaces the infinite
entries in the matrix with real numbers.

3



2. Theory

3. Perform regular MDS on the obtained distance matrix.

If the datapoints on the manifold are sufficiently dense, the global distances between
neighboring points are nearly identical to their geodesic distances. After that, these con-
nections between neighbored points form a lattice along the manifold. The shortest route
along the edges of this lattice is then a reasonable approximation of the geodesic distance
for points that are very far from each other.

4



3. Implementation

3.1. The Fashion-MNIST dataset

The Fashion-MNIST dataset [19] consists of 70 000 labeled images of various articles of
clothing, split into a training set of 60 000 samples and a testing set of 10 000 samples. Each
sample is assigned one of 10 categories (see Figure 3.1), and both the training set and the
test set contain samples of every category in equal proportion. The Images are square, 28
by 28 pixel rasters of 8-bit grayscale values. The white Background is represented by the
number 0, the color black is stored as 255.

As a preprocessing step, we converted the values to 32-bit floating point numbers and
divided them by 255, effectively mapping them to the [0; 1]-Range. No further preprocess-
ing was made.
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3. Implementation

Figure 3.1.: 100 Images of the Fashion-MNIST training set, 10 samples randomly selected
for each of the 10 classes. These are, in columns from left to right: T-shirt/top,
Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot.
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3. Implementation

3.2. Used Software

In this work, a number of preexisting software packages was used to implement and run
the experiments. Most notably they include:

• Keras [3] (https://keras.io/)

For the construction, training, and usage of neural networks.

• scikit-learn [14] (https://scikit-learn.org/stable/)

For its implementations of PCA, Isomap, and nearest neighbor search and classifica-
tion.

3.3. Convolutional Neural Networks

the Architecture of the encoder network (Figure 3.2a) was adapted from [8]. There, its
hyperparameters like the number of layers and number of filters per layer were algorith-
mically chosen to provide reasonable accuracy on specific image classification tasks with
a minimal number of trainable parameters.

While image classification and dimensionality reduction are different tasks, they both
consist of detecting image features and encoding then in a small vector. It can therefore be
assumed that a given network architecture is similarly suited for both.

Notable changes to the architecture proposed by [8] specifically for image classification
on the fashion-MNIST dataset are:

• Increased number of output neurons in the last dense layer from 10 to 20

• Leaky ReLU activation functions

• No activation function (or a linear activation function) in the last layer

By foregoing an activation function in the last layer samples in the embedded space are
not constrained to lie in a hypersphere around the origin or only have positive values. This
is necessary when training the encoder on a precomputed embedding (see section 3.4) or
on specified distances (see section 3.6).

The decoder network’s architecture (Figure 3.2b) is, for the most part, symmetric to the
encoder’s. In place of the commonly used transpose convolution, regular forward convo-
lution layers were employed. This avoids checkerboard artifacts in the generated images
[12]. As inverse of the max pooling layers in the encoder serve Upsampling layers with a
nearest-neighbor scaling function.

The activation function in the last layer of the decoder is a novel modified version of the
hard-sigmoid activation function (Equation 3.1). Just like with leaky ReLU, the sections of
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3. Implementation

5x5 conv, 48

  

2x2 MaxPool

  leaky relu(α=0.1)

5x5 conv, 96

  

2x2 MaxPool

  leaky relu(α=0.1)

5x5 conv, 80

  

5x5 conv, 96

  leaky relu(α=0.1)

dense, 512

  leaky relu(α=0.1)

dense, 20

  leaky relu(α=0.1)

  linear

(a) Encoder

dense, 512

  

dense, 7×7×96

  leaky relu(α=0.1)

5x5 conv, 80

  leaky relu(α=0.1)

5x5 conv, 96

  leaky relu(α=0.1)

2x2 Upsampling

  leaky relu(α=0.1)

5x5 conv, 48

  

2x2 Upsampling

  leaky relu(α=0.1)

5x5 conv, 1

  

  leaky hard sigmoid(α=0.1)

(b) Decoder

Figure 3.2.: Diagrams giving an overview of the used convolutional neural networks. For
more detailed information, see Table 3.1 and Table 3.2
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3. Implementation

the function that would otherwise be constant were slightly tilted to avoid losing gradient
information during training due to zeros in the derivative.

leakyHardSigmoid(x, 0 ≤ α ≤ 1) =


(0.2α)x+ (2.5× 0.2α) if x > 2.5

(0.2α)x+ (1− 2.5× 0.2α) if x < −2.5

0.2x+ 0.5 else

(3.1)

The network weights were initialized from a uniform random distribution within the

range
[
−
√

6
nl

;
√

6
nl

]
where nl is the number of inputs of the layer being initialized, which

has the same variance as the normal distributed initialization proposed by He et al. [5].1

During training, the Adam optimizer [9] is used to update the networks weights. It’s
parameters are set to the following commonly used2 values: learning rate = 0.001,
β1 = 0.9, β2 = 0.999, ε̂ = 1× 10−7.

1 Details on the he uniform initialization can be found at https://www.tensorflow.org/api_docs/
python/tf/keras/initializers/he_uniform

2 They are the default values used by Keras, see https://www.tensorflow.org/api_docs/python/
tf/keras/optimizers/Adam. Kingma and Ba [9] originally recommended ε̂ = 1× 10−8 instead.
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3. Implementation

Table 3.1.: All hyperparameters of the encoder network’s layers. A Reshape-layer is im-
plicitly needed before the first densely connected layer. The network encom-
passes a total of nearly 3 million trainable weights, as evidenced by the right-
most column.

Layer type Kernel size Filter count Input dimensions Output dimensions Parameter count
Convolution 5x5 48 28, 28, 1 28, 28, 48 1 248
Max Pooling 2x2 28, 28, 48 14, 14, 48 0
Convolution 5x5 96 14, 14, 48 14, 14, 96 115 296
Max Pooling 2x2 14, 14, 96 7, 7, 96 0
Convolution 5x5 80 7, 7, 96 7, 7, 80 192 080
Convolution 5x5 96 7, 7, 80 7, 7, 96 192 096

Dense 512 4704 512 2 408 960
Dense 20 512 20 10 260

Total: 2 919 940

Table 3.2.: All hyperparameters of the decoder network’s layers. A Reshape-layer is im-
plicitly needed before the first convolutional layer. Like the encoder network,
the decoder has just short of 3 million trainable weights.

Layer type Kernel size Filter count Input dimensions Output dimensions Parameter count
Dense 512 20 512 10 752
Dense 4704 512 4704 2 413 152

Convolution 5x5 80 7, 7, 96 7, 7, 80 192 080
Convolution 5x5 96 7, 7, 80 7, 7, 96 192 096
Upsampling 2x2 7, 7, 96 14, 14, 96 0
Convolution 5x5 48 14, 14, 96 14, 14, 48 115 248
Upsampling 2x2 14, 14, 48 28, 28, 48 0
Convolution 5x5 1 28, 28, 48 28, 28, 1 1 201

Total: 2 924 529
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3. Implementation

3.4. Regression on precomputed embedding

The most straightforward way of training the encoder and decoder networks is to first
obtain a definitive embedding of the training data from an algorithm like those discussed
in chapter 2. Subsequentially, The two neural networks can be separately trained to map
samples of the dataset in both directions using the embedding as desired output for the
encoder and input for the decoder. This way of using convolutional neural networks for
out-of-sample extension was previously explored by Mishne et al. [11].

Computing the embedding requires large computational resources as discussed in chap-
ter 2, but having the desired output defined directly as well as minimizing the number of
layers between it and the input simplifies the backpropagation of errors and speeds up
training.

Given the assumption that euclidian distance between points in embedded space is
meaningful, mean squared error is a natural choice for the loss function used when train-
ing the encoder.

The decoder’s loss function compares data in image-space. There, only the manhattan
distance and the euclidean distance are in the scope of this work. The former can be imple-
mented by using the mean absolute error as a loss function, the latter - as in the encoder’s
case - with the mean squared error loss.

To obtain an embedding we chose the Isomap algorithm with the 5 nearest samples -
as measured by L2 - being considered neighbors (see section 2.3). To save computational
resources, Isomap was only applied to a subset of the available training data. For each of
the 10 labels, 3000 samples were randomly selected, effectively cutting the dataset in half.

The resultant points in embedded space were centered by subtracting the mean vector
from all data points and scaled by dividing all values by the variance of the flattened data.

Both networks were trained on batches of 32 samples. Training of the encoder was done
after 75 epochs, the decoder was trained for 25 epochs. An epoch in this case refers to
using every one of the 30 000 samples exactly once - in random order - during training.
Since the number of data points is not evenly divisible by the batch size, the last batch in
every epoch contains less than 32 samples.
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3. Implementation

0 20 40 60
epochs

10 2

10 1

Encoder

0 10 20
epochs

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

Decoder

training loss (euclidean)
validation loss (euclidean)
training loss (manhattan)
validation loss (manhattan)

Figure 3.3.: Logarithmic plots of the loss computed in the last batch of every epoch. Since
the encoder in this case does not depend on the chosen distance metric, the
loss plots differ only mildly due to different random weight initializations and
shuffled training data. For the decoders plot, a validation loss was computed
after every epoch of training by using the 10 000 images of the test set without
updating the weights. The two distance metrics exhibit a difference in scale,
but otherwise seem to lead to similar training progress. The validation loss
visibly stops improving after very few epochs. The risk of overfitting is likely
exasperated by the reduction in dataset size that was necessary to obtain the
Isomap embedding.
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3. Implementation

3.5. Autoencoder

encoder

decoder

Figure 3.4.: Training configuration for the autoencoder: The encoder and decoder net-
works are connected sequentially, forming a larger network that maps images
into and back out of the embedded space. This enables training to minimize
the reprojection error without any additional constraints regarding the embed-
ding.

By attaching the last layer of the encoder as input to the first layer of the decoder a new,
bigger neural network (Figure 3.4) is created. This combined network is then trained to
approximate the identity function by providing it with identical samples from the training
data as both input and desired output. [6]

Given that the loss function for the autoencoder compares data in image-space just like
in the decoder above, the same ones were included in the experiments.

Training is done on all 60 000 samples of the training set, in random order, and split into
1875 batches of size 32. It was found that 75 epochs of training were sufficient.

0 20 40 60
epochs

10 2

10 1

training loss (euclidean)
validation loss (euclidean)
training loss (manhattan)
validation loss (manhattan)

Figure 3.5.: Logarithmic loss plots showing the training progress of the autoencoder.
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3. Implementation

3.6. Siamese

encoder

|| ... - ... ||2

encoder

Figure 3.6.: Siamese training configuration: Two instances of the encoder with shared
weights map two input images into the embedded space. The euclidean dis-
tance between these points is computed as part - and output - of the larger
neural network being trained.

Just like in classical multidimensional scaling, the goal of training a Siamese Neural
Network [2, 4] is to find an embedding in which the pairwise euclidean distances between
samples approximate dissimilarities precomputed or known for the training data.

The network being trained consists of two instances of the same encoder network with
shared weights whose outputs are fed into a euclidean distance operator whose output in
turn is used as final output of the bigger network (see Figure 3.6). This way it predicts -
for two samples given as input - their euclidean distance in the embedded space.

For every epoch, two random derangements of the training set’s samples are generated
and cut into batches of 512 pairs. The last batch of every epoch is necessarily smaller. Since
the only distance metrics compared in this work are the euclidean and the manhattan
distance, which are cheap to compute, the desired output values the network is being
trained to approximate can be generated on-demand for the image pairs in every batch.

The mean squared error was chosen as loss function to avoid learning overly accurate
distance relationships on a subset of image-pairs at the cost of outliers by penalizing higher
errors more strongly.

The training process was finished after 50 epochs.
Subsequently, the now trained encoder was used to map all images in the training set

into the embedded space. The resulting coordinates along with their corresponding im-
ages were then used to train the decoder network.

The decoder’s loss function is chosen to be equivalent to the distance metric being con-
sidered. Training with a batch size of 32 is completed after 75 epochs.

14



3. Implementation

0 10 20 30 40 50
epochs
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validation loss (euclidean)
training loss (manhattan)
validation loss (manhattan)

Figure 3.7.: Logarithmic loss plots of the siamese networks training progress. The larger
scale of the manhattan distance destabilizes the optimization of the decoder.

3.7. Triplets

Instead of approximating given distances in embedded space like the Siamese Neural Net-
work, the triplet loss facilitates replication of known neighborhood relationships in the
data [7]. Using the neighborhood information, triplets of inputs (an “anchor”, a “puller”,
and a “pusher”) are assembled so that anchor and puller are neighbors and anchor and
pusher are not. These are fed into three instances of the encoder network with shared
weights, allowing the computation of the euclidean distances between the two pairs in
embedded space (see Figure 3.8). To preserve the neighborhood relationship, the distance
between anchor and pusher should be larger than the distance between anchor and puller.
In order to optimize toward this goal a comparator function turning the two distances into
a minimizable loss is needed. This comparator, together with the two distance computa-
tions, is then referred to as a “triplet loss”.

From the different comparator functions established in previous works we chose the one
proposed by Wohlhart and Lepetit [18]:

ctriplet
(
sanchor, spuller, spusher

)
= max

(
0, 1−

‖enc(sanchor)− enc
(
spusher

)
‖2

‖enc(sanchor)− enc
(
spuller

)
‖2 +m

)
,

where si are the images in a triplet and enc(·) denotes the encoder. The free parameter
m sets a margin by which the pusher needs to be further away from the anchor than the
puller to satisfy the loss function. In this experiment we set m = 0.01.

During training, we observed that using solely the triplet loss leads to continuous ex-
pansion of the cloud of points projected into embedded space from epoch to epoch. To
counter this, we implemented an additional loss to directly oppose this phenomenon by
minimizing the euclidean distance of all embedded points from the origin. This is equiv-
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encoder

|| ... - ... ||2|| ... - ... ||2

encoderencoder

push / (pull + m)

 pull push

max(0, 1 - ...)

  anchor   puller  pusher

Figure 3.8.: Training configuration with triplet loss: Three input images (puller, anchor,
and pusher) are fed into three instances of the encoder network with shared
weights. The euclidean distances in embedded space between the anchor im-
ages’ coordinates and those of the other two are computed and then compared
in a loss function. If the distance between anchor and pusher is higher than
that between anchor and puller by some margin m, the objective of the loss
function is fulfilled.
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3. Implementation

alent to adding an L2 activity loss to the last layer of the encoder. The exact definition of
the activity loss used is the following:

cactivity = w ×
(
‖enc(sanchor)‖2 + ‖enc

(
spuller

)
‖2 + ‖enc

(
spusher

)
‖2
)

Through the weighting parameter w the expanding and contracting effects of the two
losses can be balanced to cancel out. We found a weight value of w = 1× 10−5 to yield
acceptable results.

We used both distance metrics we compare in this work separately to determine the five
nearest neighbors in image-space to every sample in the training set. Images are in this
case not considered to be their own neighbors. One training epoch then consists of all
60 000 training images in random order as anchors, one of their 5 neighbors chosen with
equal probability as pullers, and one non-neighbor randomly chosen from the 59 994 other
samples as “pusher”. The encoder was trained on 75 of these epochs, cut into batches of
512 triplets.

The decoder was trained for 100 epochs in exactly the same manner as for the siamese
network (see section 3.6).

0 20 40 60
epochs

10 4

10 3

Triplet Loss

triplet loss (euclidean)
validation triplet loss (euclidean)
triplet loss (manhattan)
validation triplet loss (manhattan)

0 20 40 60
epochs

10 4

10 3

Training Loss (Encoder)

training loss (euclidean)
activation loss (euclidean)
training loss (manhattan)
activation loss (manhattan)

0 25 50 75 100
epochs

10 2

10 1
Training Loss (Decoder)

training loss (euclidean)
validation loss (euclidean)
training loss (manhattan)
validation loss (manhattan)

Figure 3.9.: Logarithmic plots of the triplet loss during training and on the validation set
(left), the activity loss and the sum of the losses that the optimizer aims to
minimize (middle), and the training and validation loss computed while sub-
sequently fitting the decoder (right).
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4. Evaluation

The ability to map data to a lower dimensional embedded space and back has a variety
of uses. In this chapter, a variety of these are introduced and used to evaluate the relative
usefulness of using the euclidean or the manhattan distance metric to train convolutional
neural nets in any of the previously introduced ways.

Since PCA is also capable of all the same basic operations - determining an embedding
for a given dataset and mapping new data into and out of it - it will serve as a benchmark
to compare the neural networks against.

Reprojection quality plays an important role in Interpolation (section 4.3) and Denoising
(section 4.4), and therefore is not additionally considered by itself. For completeness, a few
reprojected images of the fashion-MNIST test set are provided in Figure A.1.

4.1. Classification

A simple way to classify data given labeled examples is to find the example that is the
most similar to the new sample and use the provided label for it as well. Algorithms exist
to enable a nearest neighbor search without iterating over all provided data, but this limits
the choice of distance metric, and storing the training data in its entirety is not desirable.

Mapping the labeled examples into a low-dimensional embedded space dramatically
decreases the storage requirement and computational cost of the neighbor search with
minimal decreases in accuracy.

The accuracy scores in Table 4.1 are just the percentage of images in the test set that were
correctly labeled. When interpreting these results, it is important to keep is mind that
nearest neighbor classification is sensitive to even small amounts of noise. An excellent
example of this is the “precomputed” row: Since only the encoder network is relevant to
classification and the chosen distance metric plays no role in its training (see section 3.4),
the scores of the “Euclidean” and “Manhattan” columns in this row only differ due to the
retraining of the same network on the same data with different random initializations.

The siamese network shows improved scores when trained using the euclidean rather
than the manhattan distance metric, while for the triplets network the opposite is true. This
suggests that distance metric and training setup can not be chosen entirely independently
from one another.

In these experiments, the triplets networks score consistently - and independently of the
chosen distance metric - worse than their siamese counterparts. A likely explanation of this
is that they were not trained sufficiently (see Figure 3.9). The difficulty of training using

18



4. Evaluation

Table 4.1.: Accuracy of n ∈ {1, 5, 10, 20} nearest neighbor classification. The best and worst
score are highlighted in bold. Results of n-NN in image space are labeled “ref-
erence”, all other results are computed in the 20-dimensional embedded spaces.
The nearest neighbor search always uses euclidean distance. The categorization
into “Euclidean” and “Manhattan” refers to the neural network training process
(see chapter 3).

Euclidean Manhattan
n = 1 n = 5 n = 10 n = 20 n = 1 n = 5 n = 10 n = 20

reference 84.97 85.54 85.15 84.15

PCA 82.12 84.45 84.77 84.33

precomputed 79.59 82.21 82.84 82.58 79.95 82.50 82.96 82.83

Autoencoder 85.96 87.31 87.91 87.30 85.94 87.28 87.41 87.12

Siamese 83.95 85.74 85.92 85.48 82.43 84.67 84.93 84.53

Triplets 81.03 83.11 83.06 82.77 81.87 84.17 84.09 83.74

the triplets loss compared to the siamese architecture is nonetheless a valuable result.
The autoencoder, while slightly better when trained using the L2 rather than the L1

metric, outperforms the reference scores using either of them. A possible explanation for
this is that the autoencoder found an embedding that is based less on the L2 or L1 distance
between samples and more on their similarity in terms of the basic shapes like edges and
corners that its convolutional layers can easily detect and reproduce. This embedding then
clusters samples of the same class together more clearly than they were in the original,
high-dimensional image-space, regardless of the used distance metric.

The scores of the 8 trained and tested neural networks vary more pronounced by the
training configuration that was employed than by the chosen distance metric. Still, for
the autoencoder and the siamese network - the two best performing configurations in this
experiment - the euclidean distance yielded slightly better results.

4.2. Outlier detection

Often, datasets contain a small number of samples that do not “fit in” with the rest. Their
uniqueness and high dissimilarity to other data can complicate further processing, so the
ability to automatically identify them is very useful. When interpreting the data as a cloud
of points in multi-dimensional space, outliers can be defined as those points that inhabit
regions of that space that exhibit a lower density of points.

For the same reasons as discussed in section 4.1 mapping the data into a lower-dimensional
embedded space is advantageous.

In the embedded space, the sample density can be estimated through a nearest neighbor
search. Interpreting the distance to the n-th nearest neighbor as the radius of a hyper-
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(a) PCA

(b) precomputed embedding

(c) Autoencoder

(d) Siamese

(e) Triplets

Figure 4.1.: Images identified as likely outliers in the fashion-MNIST training set. Density
of samples is estimated through a 20-NN search in the embedded space. The 20
images with the lowest density are shown in every single row, with the density
increasing from left to right. For the neural nets (b - e), the top and bottom
row of images are obtained using the version trained with the euclidean and
the manhattan distance metric, respectively. Compare Figure 3.1 for random
images of the same set serving as examples of non-outliers.
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sphere centered on the point in question, the density at that point can be approximated as
n divided by the volume of the hypersphere. Through the free parameter n the maximum
number of points in a cluster of outliers can be controlled.

For example: Setting n = 1, two samples that are close to each other but far away from all
others would still have a high density and consequently not count as outliers. Setting n = 2
in the same scenario expands the hyperspheres all the way to the other points’ cluster. The
significantly lower density then allows the two points to be identified as outliers.

The number of samples necessary for a cluster to count as legitimate part of the data
rather than a collection of outliers is subjective. We settled on n = 20.

By sorting the dataset in order of increasing density, likely outliers can quickly be re-
viewed. Since the density, as defined above, is inversely proportional to - and only to - the
distance to the n-th nearest neighbor, its calculation can be skipped. Sorting is then done
in order of decreasing distance.

Figure 4.1 shows this method of outlier detection being applied to the Fashion-MNIST
training set. Since it lacks definitive labeling of outliers, the results can only be interpreted
subjectively. Comparison with the randomly chosen images of the dataset in Figure 3.1
suggests that all methods successfully find images that are unusual in some way, be it
shape, texture, pose, or the inclusion of a background.

The two rows of 4.1b show the effect of retraining a network. A number of images are
identified as outliers both times, if in a slightly different order.

The same observation can also be made in the pairs of rows 4.1c - 4.1e, which suggests
the choice of distance metric between L1 and L2 plays a nearly negligible role in the result
of outlier detection.

While the different training configurations show a great amount of variability in the kind
of images that are classified as outliers, the siamese network (4.1d) exhibits noticeably
similar results to PCA (4.1a), especially when using the L2 metric (top row). This is to
be expected, given that both optimize for the preservation of euclidean distances in the
embedded space.

4.3. Interpolation

In some datasets, interpolation between samples is very straightforward. Consider, for
example, a dataset describing different rectangles by storing their width and height as
two-dimensional vectors. The average of two such vectors then perfectly represents a new
rectangle that is a mixture of the two originals. In fact, any point on the straight line
connecting the samples in feature-space can be used to create rectangles relating to the
other two to varying degrees.

With datasets consisting of images however, results of this type of interpolation are often
less than desirable. In a dataset consisting of images of rectangles, linear combinations
of sample vectors do not lead to an image of a rectangle at all. Rather, the two source
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Figure 4.2.: Interpolated images of the fashion-MNIST training set. Rows show 0%, 25%,
50%, 75%, and 100% linear combinations of vectors in embedded space after
reprojection.
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rectangles appear overlaid on top of another with transparency, creating a sort of “plus”-
shape.

Ideally, a nonlinear dimensionality reduction method would be able to infer the feature-
space of the first example from the images of the second. Meaningful interpolation can
then be achieved by

1. mapping the source Images to the embedded space,

2. linearly interpolating between the low-dimensional vectors, and

3. reprojecting the newly obtained vectors into the original image space.

This process was applied using all 8 trained neural nets and, for reference, PCA. Fig-
ure 4.2 shows the generated results. For each of the 10 classes, 2 images were randomly se-
lected and interpolated between. Interpolation between different classes was avoided de-
liberately, because the quality of those is difficult to judge (What should an object halfway
between a T-shirt and a shoe look like?). The two samples in the “Sandal”-class (6-th
column from the left) nevertheless provide insight into the type of failures the different
networks produce for interpolations between very different inputs.

By definition, the interpolations obtained by PCA are just linear combinations of the
reprojections. All the neural nets seem to somewhat successfully incorporate nonlinearities
into their mappings. This can be seen for example in the handle of the bag (second column
from the right), which properly changes length instead of duplicating.

A difference between using the L1 or the L2 metric can be observed in the sandal:
Trained with the euclidean distance as loss the decoders tend to blur the image, with the
manhattan distance entire lines can be removed or added.

4.4. Denoising

Usually when projecting images to an embedded space and back, the goal is for as much
detail as possible to be preserved. The ability of neural nets to generalize to unseen data
is, however, limited. This property of the reprojection procedure can be used to remove
unwanted artifacts - like noise - from input images.

To test this, we picked one sample per class from the training set, and generated a pattern
of standard normal noise for each of them. These noise patterns were then multiplied by
a range of scalar factors before being added to their images. By not choosing images from
the test set, the neural nets varying ability to reproject unseen data (see Figure A.1) is
eliminated as a source of errors in the output.

The results of this batch of experiments can be seen in Figure 4.3. The effective mean
and standard variation of the applied noise are µ = 0 and σ ∈

{
2
33 ≈ 0.06, 4

33 ≈ 0.12, 6
33 ≈

0.18, 8
33 ≈ 0.24

}
. The pixel values of the noisy images in (4.3a) are clipped to the [0; 1]-

range, but the neural nets received the unclipped values as input.
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(a) noisy input images (b) PCA

(c) precomputed embedding (euclidean) (d) precomputed embedding (manhattan)

(e) Autoencoder (euclidean) (f) Autoencoder (manhattan)

(g) Siamese (euclidean) (h) Siamese (manhattan)

(i) Triplets (euclidean) (j) Triplets (manhattan)

Figure 4.3.: Denoised images of the fashion-MNIST training set. (a) shows the input im-
ages. The same pattern of gaussian noise is applied in every row, with increas-
ing magnitude.
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Figure 4.3b shows the results of using PCA (fitted to the entire training set) to denoise
the images. While these reprojections are the least affected by high levels of noise, their
quality is noticeably poor even with low levels of noise.

Overall, the networks trained using the manhattan metric appear to perform slightly
better on this task than their counterparts trained using L2 distance. However, the quality
of the denoised images, as well as the maximum level of noise that can be filtered out,
vary much more strongly between the different training configurations. This suggests
once more that the L1 and L2 distance are similarly suited to finding embedded spaces
and training neural networks, and that the choice between them plays an inferior role to
the choice of training configuration.
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5. Conclusion

Convolutional neural networks are a valuable tool for nonlinear dimensionality reduction
of Images. To train them, a distance metric for use in the image-space must first be chosen.
Common choices for this are the euclidean and the manhattan distance. In this work, we
implemented a variety of training configurations and tested them - using both metrics - on
multiple applications of dimensionality reduction.

Although not all training setups led to smooth, fast converging progress during fitting
of the models, the key result of the experiments remains valid:

The effect of choosing the L1 or the L2 metric for training has a negligibly small effect
on the performance of the network in question.

Going into more detail, the euclidean distance produced slightly higher scores when
classifying images. When identifying likely outliers, neither distance metric could be
judged to provide an even minimally better suited embedding. During interpolation, it
was revealed that L1 and L2 tend to produce different types of errors in output images:
Where the decoder networks trained using the euclidean distance blur images, their coun-
terparts trained using the manhattan distance tended to omit or erroneously add features
like lines. In the denoising experiments, the outputs of networks trained with L1 - subjec-
tively - appeared to be of higher quality.

Letting the numerically small, but objective difference in classification score outweigh
the subjective judgment on the denoised images quality, and considering blurring a more
desirable failure mode in image output than the addition or removal of details, the eu-
clidean distance metric can be said to be preferable.
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A. Reprojected Images

(a) original images (b) PCA

(c) precomputed embedding (euclidean) (d) precomputed embedding (manhattan)

(e) Autoencoder (euclidean) (f) Autoencoder (manhattan)

(g) Siamese (euclidean) (h) Siamese (manhattan)

(i) Triplets (euclidean) (j) Triplets (manhattan)

Figure A.1.: 20 images fashion-MNIST test set, reprojected using PCA (b) and every trained
neural net (c - j). Two samples were randomly chosen for each of the 10 classes
and arranged in columns. For reference, the original images are shown in (a).

28



Bibliography

[1] Ingwer Borg and Patrick J. F. Groenen. Modern Multidimensional Scaling. Springer
New York, 2005. doi: 10.1007/0-387-28981-x. URL https://doi.org/10.1007/
0-387-28981-x.

[2] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
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