
c©20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

1

Towards a Flexible Design of SDN Dynamic
Control Plane: An Online Optimization Approach

Mu He, Amir Varasteh, and Wolfgang Kellerer

Abstract—With a centralized control over the forwarding
devices and the embedded flows, Software Defined Networking
promises to increase the flexibility of communication networks.
Meanwhile, a dynamic control plane would adapt itself in a
timely manner to sustain flow setup performance in the face of
traffic variations. Such adaptation depends on a careful decision
of the controller placement, which is challenging because we
need to consider two contradictory objectives, namely the cost
of operating the control plane and the cost of its adaptation. In
this work, we model the problem of operating the control plane
as a multi-period offline optimization problem to minimize the
total cost induced by the flow setup performance and the control
plane adaptation. We leverage the lookahead control scheme and
decompose the intractable offline problem into smaller instances,
which are solved in an online fashion efficiently with an algorithm
based on simulated annealing. We perform extensive simulations
on real world topologies and show that our proposed algorithm
can reduce the total cost by up to 20% compared with the
reference algorithms. Further, we analyze the need of frequent
control plane adaptation, and compare different control plane
design choices according to a novel flexibility measure.

Index Terms—Software Defined Networking, Controller Place-
ment Problem, Control Plane Reconfiguration, Online Cost
Optimization.

I. INTRODUCTION

Managing the Internet’s core has become one of the first

priorities of network operators. Besides the number of end-

users that keeps increasing, new types of network services

keep emerging because of new technologies such as IoT and

tactile network, which have different requirements in terms of

latency, jitter, bandwidth, etc. Such trend stimulates network

operators to deploy and manage the network resources with

novel networking concepts, e.g., Software Defined Network-

ing (SDN) and Network Function Virtualization (NFV).

Software Defined Wide Area Network (SD-WAN), the

application of SDN in wide area networks, is proposed to

simplify network configuration and management tasks. With

a global view of the underlying data plane, the centralized

control plane can make forwarding decisions and manage link

and node resources in a more efficient manner. A WAN typi-

cally covers very large geographical area, and the underlying

data traffic requires both high processing capacity [1] and

reliability [2]. Therefore, SD-WAN deploys several physically

distributed controllers, with each controller managing a subset

of forwarding devices [3]. The controllers synchronize period-

ically to maintain the global view of the network. This network

design is more flexible than the legacy networks running only

MPLS or OSPF [4], [5].

Recently, flexibility has become a buzzword in the research

of communication networks [6]. It refers to the ability of a

network to accommodate new requests that can be represented

as different traffic requirements and distributions [6], [7]. SD-

WAN endows more degrees of freedom in managing the for-

warding devices and is more flexible for the following reasons.

(i) In the face of temporal burden of the control plane, more

controllers can be instantiated to alleviate the potential increase

of controllers’ response time [1]. After the burden, some

controllers can be released to avoid unnecessary operational

cost. A controller can be migrated from one location (e.g.,

Data Center (DC)) to another location [8] for the sake of better

performance indicators such as shorter switch-controller and

inter-controller latency. (ii) Switches with high traffic load can

be reassigned to different controllers with enough capacity to

ensure control plane load balancing and decrease controller’s

response time [1], [9]. (iii) In terms of traffic control, different

traffic engineering algorithms can be implemented in the

controllers [5], [10]. When the traffic distribution changes,

the network operator can adapt the applied algorithm, without

manually updating the forwarding devices.

The advantages of SD-WAN, its flexibility in particular,

do not come at no cost: the flow setup time overhead [11]

and the controller synchronization [12] are two major factors

that worth consideration. Working in the reactive mode, a

switch needs to contact the controller for each new flow

before it knows where to forward the packets. The distributed

controllers also need to frequently synchronize to maintain the

same logical view of the network, which can create a huge

overhead in the control plane, especially when the number of

switches increases or the controller replicas scale out [12].

Meanwhile, it is challenging to operate the control plane

of SD-WAN to adapt to the dynamic traffic requirement and

distribution. Therefore, decisions for migrating a controller

or reassigning switches to controllers should be carefully

determined. First, the implementation of controller migration

and switch reassignment should ensure that the control plane

is always active in order to avoid packet loss [1]. Second, we

need to efficiently decide the dynamic controller placement

with the target of maximizing the static performance while

minimizing the overhead, which is NP-hard [13]. Last but

not least, the control plane may become unstable and/or

suffer from performance degradation during its adaptation [1].

Therefore, a trade-off stands between static performance and

dynamic reconfiguration 1 For instance, when traffic distribu-

tion changes, control plane adapts itself towards an optimal

average flow setup time. The adaptation, however, can take

1Unless specified, we use “reconfiguration” and “adaptation” interchange-
ably in this paper.

2

a long time, which can lead to increasing switch-controller

latency and SLA violations. In this case, it is wiser to

reconfigure the network with a new controller placement.

This new configuration can be sub-optimal in terms of flow

setup performance but does not incur SLA violation during

reconfiguration.

We mainly focus on the latter two challenges in this

paper. The controller placement problem has been initiated

by Heller et al. [14]. The state-of-the-art mainly optimizes

controller placement towards minimum control latency [14]–

[18], minimum control load imbalance [9], [15], and maximum

reliability [19]. However, the end-to-end flow setup time has

not drawn enough attention. Thus, a proper modeling that con-

siders both the latency between the switch and the controller

and the latency of controller processing is still missing in the

literature.

For the trade-off analysis during reconfiguration, the re-

configuration cost should be thoughtfully modeled. Wang et

al. [18] consider an SDN network in a DC with a control plane

that can dynamically scale according to the traffic. However,

they model the reconfiguration cost only as the variation in the

number of controllers, which is designed for the DC network

scenario and may not be directly applicable for the SD-WAN

scenario we consider in this paper. The duration of control

plane reconfiguration should also be considered: controller

migration can happen between two data centers which are far

away from each other, and same for the switch reassignment.

In this paper, we first model the end-to-end flow setup

time in an SDN-WAN, which includes both propagation delay

due to geographical distance and processing delay due to

controller’s queuing behavior. We then model the control

plane reconfiguration cost as the total duration of the con-

troller migration and the switch reassignment. Based on the

modeling, we formulate the Dynamic Controller Placement

Problem (DCPP) as a multi-period global cost minimization

problem. To form the cost objective, we consider both the

performance cost in terms the average end-to-end flow setup

time, and the reconfiguration cost in terms of the control plane

adaptation time. The optimization takes the traffic of all time

slots as input, and produces for each time slot an optimal

controller placement and switch assignment.

In order to solve the global optimization problem efficiently,

we leverage the lookahead control scheme and decompose the

original problem into smaller subproblems at different time

slots. We propose an algorithm based on Simulated Annealing

(SA) to solve the subproblems in an online fashion. The

algorithm can also be applied in the situation that only near

future traffic is available. Since each subproblem outputs the

controller placement results of the next few time slots, we

can pre-plan the control plane reconfiguration even before the

traffic actually changes and therefore react faster to them.

In summary, we make the following contributions in this

paper.

• Modeling of end-to-end flow setup time in an SD-WAN

considering both propagation delay due to geographical

distance and processing delay because of queuing behav-

ior of controller.

• Mathematical formulation of DCPP as a multi-period

optimization problem, which minimizes the total cost of

static operation and dynamic reconfiguration.

• Application of the lookahead control scheme and design

of a heuristic algorithm to solve the optimization problem

efficiently.

• Extensive evaluation and comprehensive analysis of our

proposed algorithm with different input parameters. Com-

parison of the flexibility across different control plane

design choices, based on a flexibility measurement frame-

work [6].

The remainder of this paper is structured as follows. Sec-

tion II presents an overview of the background, as well as the

related state-of-the-art research. In Section III, we introduce

the dynamic control plane architecture, highlighting the mod-

eling of the end-to-end flow setup time and the adaptation

of the control plane. Section IV provides the mathematical

formulations for DCPP. In Section V, we propose online

algorithms to solve the optimization problem efficiently. The

evaluation setup is explained in Section VI. We present the

results of our extensive evaluations of the model and proposed

algorithms in Section VII. Conclusions and future work are

outlined in Section VIII.

II. BACKGROUND AND RELATED WORK

A. Background

1) Distributed Control Plane Architecture: As the most

essential building block in the SDN architecture, the con-

trol plane is responsible for exchanging the information be-

tween network applications and forwarding devices (i.e., data

plane) [20]. It listens to the requirements from the application

layer above, translates the requirements into flow rules and

thereafter, configures the underlying data plane through the

control plane. Further, it forwards messages, such as Packet-
In and Port-Status, from the data plane to the application plane

so that the applications are aware of current network status and

behave in a reactive manner.

Due to the scalability and reliability concerns of a single

centralized controller architecture, the control plane can be

physically distributed among several instances (yet logically

centralized). There are two main categories of distributed

control plane architectures. The first category implies that the

SDN switches are partitioned horizontally into multiple areas,

each area controlled by a single controller instance. Examples

of this category are ONOS [21] and OpenDaylight [22]. The

other category (e.g, Kandoo [23] and Espresso [24]) employs

the hierarchical control structure: the lower layer handles local

and frequent events from the data plane, and upper layer

handles events that need the global knowledge of the network.

In this paper, we focus on the horizontal control plane for the

modeling.

2) Control Plane Consistency & Controller Migration:
Maintaining consistency while keeping the performance is

one of the challenges that a distributed control plane needs

to address. Distributed data store is applied to keep relevant

network and application state and guarantees that all SDN

applications operate with a consistent network view. If the

3

consistency is violated, abnormal behaviors of controllers can

arise. For instance, when the link between two switches in

one control domain goes down, and the information is not

synchronized in time among all controllers, other controllers

can still consider this active link, while calculating flow path

which may induce packet drop.

Since controller instances are pieces of software running

in Virtual Machines (VMs) hosted in DCs, we can migrate

them using two different approaches. As the first approach,

the VM is directly migrated from one DC to another with

live migration technique. However, the downtime during live

migration can not be ignored [25], especially for the VM host-

ing a controller that needs to process flow setup continuously.

To eliminate the downtime, we can apply another approach:

instantiate a new controller instance, synchronize the state

information, and trigger the handover between the old and

new instance [1]. Notably, both approaches can increase the

controller’s response time, which motivates our modeling of

the control plane adaptation cost.

3) Cost Optimization: Communication networks are dy-

namic in terms of traffic distribution, service requirements,

link and node stability, etc. The management of network

resources to adapt to such dynamicity during a time span can

be formulated as an offline cost minimization problem. The

time span consists of several time slots, and the management

decisions are made at each time slot. The cost consists of

two parts, namely static operational cost (which is related to

the current decision variables) and dynamic switching cost

(which is related to both the current and previous decision

variables) [18]. Efficient algorithms are needed to solve the

cost optimization problem in a timely manner.

4) Network Traffic Prediction: We need to predict the

network traffic, i.e., flows in particular, as input of our op-

timization problem. The prediction of a single network traffic

curve (flow rate) can be regarded as an online learning prob-

lem, where temporal correlation is investigated. Researchers

have proposed algorithms such as RDA (Regularized Dual

Averaging) and FTRL (Follow-The-Regularized-Leader) [26]

to address it. Besides temporal correlation, spatial correlation

emerges when different traffic curves of different source and

destination pairs are predicted simultaneously [27]. Recently,

machine learning techniques are widely applied to incorporate

both correlation factors, such as Stacked Autoencoder [28] and

LSTM [29]. In this work, we assume a precise prediction of

network traffic over all time slots.

B. Related Work

In this section, we present the state-of-the-art of the con-

troller placement problem (CPP) and the application of looka-

head control in online optimization. We then distinguish our

present study from the related work.

1) Controller Placement Problem (CPP): We formally

define it as the problem of finding the optimal number and

locations of controllers, as well as the assignment of switches

to the controllers, towards a certain objective [14]. Initial

CPP formulations only optimize for static objectives such as

average control latency and average inter-controller latency.

TABLE I
REPRESENTATIVE PUBLICATIONS IN CPP

(�: STATIC, �: DYNAMIC,��: DYNAMIC CONSIDERING THE FUTURE)

Ref. Dyn. Main Optimization Metrics(s)

[14] � Average control latency
[11] � Average flow setup time
[31] � Control plane operational cost
[15] � Control latency & load imbalance
[32] � Controller utilization and operational cost
[16] � Average control latency
[17] � Max. control latency upon controller failures
[18] �� Avg. control latency & controller operational cost
[9] � Controller load imbalance
[33] � Average flow setup time
[19] � Reliability of control path
[34] � # Controllers under QoS constraints

We define them as Stacic CPP (SCPP). Optimizing for other

metrics that depend on dynamic past and/or current input, such

as average flow setup time and controller load imbalance,

is defined as Dynamic CPP (DCPP). Moreover, if we can

incorporate future input, e.g., traffic distribution or link status

in the future, we have DCPP considering the future. Table I

classifies the most representative and recent publications in

CPP into different categories and summarize their optimization

metrics. A comprehensive survey of conducted research on

CPP can be found in [30] and [13].

The state-of-the-art mainly focuses on SCPP and DCPP,

with little consideration of future traffic input. Besides, it

is commonly assumed that the controller can migrate across

various nodes and the switch can be reassigned from one

controller to another without any explicit adaptation cost

involved, which is not realistic. The work of Wang et al. [18]

has been the first endeavor to address the above two issues

but with a simplified model: the adaptation cost only depends

on the variation of the number of controllers.

2) Lookahead Control: To explore the temporal variations

of flow distribution and achieve a fair trade-off between

static operational cost and dynamic switching cost, lookahead

control scheme [35] looks into the future and solves the

CPP for the current time slot by optimizing over a window

of predicted future flow distributions. As a realization of

lookahead control, RHC (Receding Horizon Control) [36] has

been applied to solve online cost optimization problems with

low competitive ratio, such as DC load balancing [37] and

DC energy reduction [38]). However, RHC may change the

decision variables frequently with a wrong assumption that

the switching (adaptation) cost would get paid off within the

prediction window [37]. In other words, RHC does not provide

“robust” performance guarantees, which potentially induces

large adaptation cost. To address this issue, different variations

of FHC (Fixed Horizon Control) have been proposed, such as

AFHC [37] and RFHC [18]. From another perspective, with

lookahead control, the offline optimization problem (e.g., with

24 time slots if we consider hourly traffic pattern) is split into

a series of online problems (each with only a few time slots),

which makes the solution process faster.

To the best of our knowledge, this is the first paper

that models and investigates DCPP with future traffic input,

4

considering both end-to-end flow setup time and realistic

control plane adaptation cost. furthermore, this work leverages

the lookahead control scheme to minimize the overall cost

efficiently in an online fashion. Evaluation results compare

different control plane design choices in terms of flexibility.

III. DYNAMIC CONTROL PLANE ARCHITECTURE

In this work, we consider a horizontally distributed SDN

control plane shown in Fig. 1. In this architecture, each con-

troller is responsible for a subset of switches that constitute a

control domain. According to the example in Fig. 1, controller

C1 takes care of S11, S12 and S13 (in blue), and Controller C2
takes care of S21, S22 and S23 (in orange). Both controllers

work in the reactive mode, and no forwarding rules are pre-

installed in the switches. To ensure the same view of the

underlying data plane, controllers synchronize with each other

periodically.

A. End-to-End Flow Setup Time

We elaborate the path setup process of an inter-domain

flow from H1 to H2 with distributed control plane, which

is illustrated in Fig. 1. When the first data packet of the

flow reaches switch S11, the switch sends an initial flow

setup request to its domain controller C1 for processing. C1
calculates the path of this flow with the configured forwarding

scheme, e.g., shortest-path or ECMP (Equal-Cost Multi-Path).

Thereafter, C1 translates the path into OpenFlow flow rules and

sends them to every involved switch inside its own control

domain, (in this case S11 and S12. The data packet is then

routed through the first domain until it enters the second

domain. Similarly, switch S21 initiates an intermediate flow

setup request to its controller C2, waits for the flow rule setup

from the controller, and forwards it to the next switch in the

path. We define the setup time of this flow as the difference

between the time S11 receives the first data packet from the

source host H1 and the time S22 successfully starts to forward

it to the destination host H2.

Admittedly, there is another way to implement the path

setup of a new flow: after setting up the flow rules in its

own domain, C1 contacts C2 via the inter-controller channel

and asks C2 to set up the rules for the second domain.

However, when flow rate increases, this option can create high

traffic volume in the control plane and therefore impact inter-

controller synchronization performance [12].

B. Control Plane Adaptation

Fig. 2 illustrates the adaptation of the control plane due

to a change of traffic distribution from time T1 to T2 in

order to maintain the performance of the flow setup. State-

of-the-art research that considers the adaptation of the control

domain, such as [18], [31], [33], only considers it in terms

of the number of controllers, regardless of where they are. In

this paper, we model the control plane adaptation in a more

realistic fashion.

Specifically, the adaptation is composed of two parts: con-

troller migration and switch reassignment. We assume that

S11

H1

Subs trate Network Connection

Flow Forwarding Path

Initial Flow Setup Request

Intermediate Flow Setup Request

Flow Rule Setup

Inter-Controller Connection

H2

Control Plane

Data PlaneS12

S13

S21

S22

S23Domain 1

Domain 2

C1 C2

Fig. 1. Illustration of inter-domain flow and switch-controller interactions
(based on our previous work [11]). Two controllers compose the distributed
control plane, and each one controls three switches. A flow initiates at H1
with the destination of H2, which traverses two control domains.

the control plane is fully distributed, and that each controller

has complete knowledge of the underlying network state, such

as network topology and flows that are embedded. The state

is maintained in each controller’s local data store. During

controller migration, the data store is transferred from the

old controller to the new controller. After the new controller

starts running, each switch in its control domain needs to

stop the old control channel and establish a new one with

the new controller. In Fig. 2, controller C2 is migrated from

the location of S5 to the location of S4. Afterwards, switch

S2 is reassigned from C1 to C2. The total adaptation time is

the sum of controller migration time and switch reassignment

time.

IV. MATHEMATICAL MODEL

This section reveals the mathematical formulation of the

cost minimization problem considering the flow setup delay

and the control plane reconfiguration cost. We first introduce

the variables and notations in our formulation, followed by an

elaboration of the operational (flow setup) and the adaptation

(reconfiguration) cost factors, which we intend to minimize for

a dynamic control plane scenario. Using the formulation of the

cost factors, we formally define the offline cost minimization

problem with an objective and a set of constraints. Finally, we

present some performance metrics for evaluating our proposed

algorithms.

A. Problem Input and Variables

Table II summarizes the notations in our formulation. We

consider an SDN network with the topology represented as an

undirected and connected graph G(V,E). Each switch in V

is assigned to one controller that is in one possible location

in C. All controllers compose the distributed control plane.

There are in total |T | time slots. At each time slot t ∈ T ,

a distinct F (t) represents the current set of new flows, where

each new flow f ∈ V ×V is defined as a source-destination

node pair. Shortest-path algorithm decides the forwarding path

for both control and data-plane. The forwarding path and

latency between two switches v and u are pre-calculated and

denoted as (v,u) and �(v,u), respectively.

5

S1

S2

S3

S4

S6

S5Domain 1
Domain 2

C1
C2

S1

S2

S3

S4

S6

S5
Domain 1

Domain 2

C1

C2

t1

F1
F2

F1
F2

Flow 1 (F1) Forwarding Path
Initial Flow Setup Request Intermediate Flow Setup Request

Flow 2 (F2) Forwarding Path

t2

Fig. 2. Illustration of control plane adaptation when change of traffic
distribution happens. At t2, controller C2 migrates from the location of S5 to
the location of S4, and then S2 is reassigned from C1 to C2. For the two flows
F1 and F2, the second controller placement at t2 has less incurred control load
(3 setup requests) compared with the first one at t1 (4 setup requests).

In order to mathematically model the flow setup time (as

in Sec. III-A), we need to consider the processing time (i.e.,

packet sojourn time) of each controller, which consists of the

queuing and the serving delays. A few assumptions are made

in this regard. We assume that each controller uses only one

thread (i.e., one server) and the flow setup request arrivals

follow a Poisson process [18]. Therefore, we can model each

controller as an M/M/1 queue. This model has been validated

to approximate the processing time of a controller with one

switch [39] and multiple switches [40], and it has been applied

in previous work of CPP for SD-WAN [16]. Nevertheless,

other more accurate queuing models can be incorporated

and therefore extend our problem formulation. The expected

processing time of a controller φ is calculated as the follows:

μ
(t)
Φ
(φ) =

1
θφ − λ

(t)
Φ
(φ)
. (1)

Table III specifies all the variables. All variables have super-

script “(t)” to represent the values at a particular time slot t. At

each t, we have to make two decisions: i) the placement of the

controllers with binary variables p(t)
Φ,C

(φ, c), ii) the assignment

of switches to controllers with binary variables a(t)
V ,Φ,C

(v, φ, c).
To build the objective function, we need some help variables

such as the number of flow setup requests λ
(t)
Φ
(φ) at each

controller φ and the flow setup latency τ
(t)
V
(v,u) if a flow

is forwarded from node v to node u. For the illustration of

the variable λ
(t)
Φ
(φ), we refer to the example shown in Fig. 2,

Suppose there are two flows which are forwarded through the

respective shortest-paths: one S1 → S2 → S4, and the other

S6 → S4 → S2. Regarding the controller placement at t1, the

number of incurred flow setup requests of C1 and C2 (including

both initial and intermediate setups) are 2 and 2, whereas at

t2 the number of requests are 2 and 1. The placement at t2 is

obviously preferred in terms of the total incurred control load.

B. Cost Structure

The total cost of operating the dynamic control plane at

each time slot t ∈ T consists of the operational cost C(t)
F and

TABLE II
SETS AND CONSTANTS

Notation Description

Substrate

G(V , E) Graph of SDN network
V Set of SDN switches (network nodes), i.e., node locations
E Set of physical network links
C Set of potential controller locations where C ⊆ V
P Set of pre-calculated shortest-paths between all switch pairs
(v, u) Shortest path between two switches v and u, with (v, u) ∈ P
�(v, u) Latency (distance) of the shortest-path (v, u) ∈ P
Ω(v, u) Ordered set of switch pairs along the shortest path (v, u) from

v to u

Controllers

Φ Set of controllers’ IDs
θφ Processing capacity of the controller with ID φ ∈ Φ
κφ Reserve factor of the controller with ID φ ∈ Φ
Π Number of active controllers with Π = |Φ |

Traffic

F(t) Set of flows (flow profile) at time slot t

s f , d f source and destination of flow f ∈ F(t)

r f rate to trigger new flow setup of flow f ∈ F(t)

T Set of time slots

the reconfiguration cost C(t)
M + C(t)

R .

1) Operational Cost: In the reactive mode, SD-WAN in-

troduces additional flow setup time for every new flow. Slow

flow setup can potentially lead to SLA violations, as network

service can run only after the successful setup of the relevant

flows. Therefore, network operators intend to decrease this

cost factor, which is formally defined as:

C(t)
F =

1
|F (t) |

∑
f ∈F(t)

[
2 · l(t)

V
(s f) + δ(t)

V
(s f , s f)︸������������������������︷︷������������������������︸

Initial flow setup time C
(t)
F1

+2 ·
∑

(v,u)∈Ω(s f ,d f)

τ
(t)
V
(v,u) + δ(t)

V
(v,u)

︸���︷︷���︸
Intermediate flow setup time C

(t)
F2

(2)

+ �(s f , d f)︸����︷︷����︸
Forwarding time C

(t)
F3

]
.

For each flow setup, we consider twice the control latency

of the switch and the controller processing time (denoted as

C(t)
F1

and C(t)
F2

). Because the flow forwarding time C(t)
F3

is fixed

for each flow and does not pose any impact on the decision

variables, we can leave it out in our problem formulation.

2) Adaptation Cost: As explained in Sec.III-B, control

plane adaptation in the face of traffic distribution (represented

as flow profile) change consists of controller migration and

switch reassignment. The controller migration cost is modeled

as the total latency induced by migrating controllers, given by:

C(t)
M =

∑
φ∈Φ

∑
ct−1∈C

∑
ct ∈C

[
p(t−1)
Φ,C

(φ, ct−1)p(t)
Φ,C

(φ, ct)�(ct−1, ct)
]
(3)

6

TABLE III
VARIABLES FOR DCPP

Notation Description

p
(t)
Φ,C

(φ, c) binary variable representing if the controller with ID φ ∈ Φ is placed at node c ∈ C at time t

a
(t)
V ,Φ,C

(v, φ, c) binary variable representing if the switch v ∈ V is assigned to controller with ID φ ∈ Φ placed at node c ∈ C at time t

l
(t)
V
(v) non-negative variable representing the control path latency of a switch v ∈ V at time t

d
(t)
V ,Φ

(v, u, φ) binary variable representing if both switches v ∈ V and u ∈ V are assigned to the same controller with ID φ ∈ Φ

d
(t)
V (v, u) binary variable representing if both switches v ∈ V and u ∈ V are assigned to different controllers

τ
(t)
V
(v, u) non-negative variable representing the necessary control forwarding latency if the flow goes from v ∈ V to u ∈ V

υ
(t)
V
(v) non-negative variable representing the amount of flow setup requests generated from a switch v ∈ V at time t

υ
(t)
V ,Φ,C

(v, φ, c) non-negative variable representing the amount of flow setup requests generated from a switch v ∈ V assigned to controller
with ID φ ∈ Φ placed at node c ∈ C at time t

λ
(t)
Φ
(φ) non-negative variable representing the total amount of load in terms of the number of Packet-In messages on the controller

with ID φ ∈ Φ at time t

μ
(t)
Φ
(φ) non-negative variable representing the expected Packet-In processing time of the controller with ID φ ∈ Φ at time t

δ
(t)
V
(v, u) non-negative variable representing the necessary controller processing time if the flow goes from v ∈ V to u ∈ V,

and representing the controller processing time when the flow originates at v if v = u

The forwarding latency �(ct−1, ct) between the previous loca-

tion ct−1 and the current location ct is the factor that decides

the migration time of each controller.

The switch reassignment cost is modeled as the total latency

of reassigning switches from one controller instance to another

controller instance, given by:

C(t)
R =

∑
v∈V

∑
φ∈Φ

∑
ct−1∈C

∑
ct ∈C

[[
�(ct−1, v)+�(ct, v)

]
·

a(t)
V ,Φ,C

(v, φ, ct−1)a(t)
V ,Φ,C

(v, φ, ct)
]

(4)

For each switch, the sum of its old and new control latency

contributes to its reassignment delay. Note that the switch can

be reassigned only after the controllers have been migrated. As

an example in Fig. 2, the controller migration cost is �(S4,S5)
and the switch reassignment cost is �(S2,S3) + �(S2,S4).

Intuitively, the operational cost C(t)
F only depends on the

decision variables at t. The adaptation cost C(t)
M and C(t)

R ,

however, is a function of the difference of decision variables

between t − 1 and t.
Furthermore, the scaling of controller instances can con-

tribute to the adaptation cost [18]. Scaling controller instances

vertically, e.g., increase the number of CPU cores of an

instance, requires reboot of the VM [41], which leads to

temporary unreadability of that instance and incurs high cost.

Horizontal scaling, on the other hand, can take place before-

hand, i.e. new controller instances are instantiated before they

are actually being used. The cost in this case mainly involves

the deployment of new VMs and the higher inter-controller

synchronization. We plan to incorporate such cost in our model

as future work.

C. The Offline Cost Minimization Problem

With the two cost factors introduced above and the traffic

profiles F (t),∀t ∈ T as input, we formulate the offline problem

as P, as specified by (5), for cost minimization over T ,

P: minimize
∑
t∈T

γF · C
(t)
F + γM · C(t)

M + γR · C
(t)
R , (5)

subject to constraints (6) to (17).∑
φ∈Φ

∑
c∈C

p(t)
Φ,C

(φ, c) = π(t) (6)

∑
φ∈Φ

∑
c∈C

a(t)
V ,Φ,C

(v, φ, c) = 1 ∀v ∈ V (7)∑
v∈V

a(t)
V ,Φ,C

(v, φ, c) ≤ |V| · p(t)
Φ,C

(φ, c) ∀φ ∈ Φ,∀c ∈ C (8)

p(t)
Φ,C

(φ, c) = a(t)
V ,Φ,C

(c, φ, c) ∀φ ∈ Φ,∀c ∈ C (9)∑
φ∈Φ

∑
c∈C

a(t)
V ,Φ,C

(v, φ, c) · �(v, c) = l(t)
V
(v) ∀v ∈ V (10)

∑
c∈C

a(t)
V ,Φ,C

(v, φ, c) · a(t)
V ,Φ,C

(u, φ, c) = d(t)
V ,Φ

(v,u, φ)

∀v,u ∈ V, φ ∈ Φ (11)

1 −
∑
φ∈Φ

d(t)
V ,Φ

(v,u, φ) = d
(t)
V (v,u) ∀v,u ∈ V (12)

l(t)
V
(u) · d

(t)
V (v,u) = τ

(t)
V
(v,u) ∀ f ∈ F (t), (v,u) ∈ Ω(s f , d f) (13)∑

f ∈F(t)

[
�s f �v +

∑
(p,q)∈Ω(s f ,d f)

�q�v
]
= υ

(t)
V
(v) ∀v ∈ V (14)

υ
(t)
V
(v) · a(t)

V ,Φ,C
(v, φ, c) = υ(t)

V ,Φ,C
(v, φ, c)

∀v ∈ V,∀φ ∈ Φ,∀c ∈ C (15)∑
φ∈Φ

∑
c∈C

μ
(t)
Φ
(φ) · a(t)

V ,Φ,C
(v, φ, c) = δ(t)

V
(v, v) ∀v ∈ V (16)

∑
φ∈Φ

μ
(t)
Φ
(φ) ·

∑
c∈C

a(t)
V ,Φ,C

(u, φ, c) · d
(t)
V (v,u) = δ

(t)
V
(v,u)

∀ f ∈ F (t), (v,u) ∈ Ω(s f , d f) (17)

For a better explanation, we divide the constraints into three

groups. The first group (6)-(9) consists of constraints to build

the basic controller placement model. To model the flow setup

time, the second group (10)-(13) is composed of constraints

to formulate the forwarding latency between the SDN switch

and the respective controller. The last group (14)-(17) models

the controller’s processing time, which relates to the number

of Packet-In messages it needs to process.

7

For the first group, Constraint (6) ensures the total number

of active controllers to be Π. We assume that each SDN switch

v must be assigned to exactly one controller with ID φ at

node c, which is enforced by Constraint (7). Besides, each

controller can only be placed on one of the potential controller

locations from C. Notably, our model can be easily extended

to consider SDN switch with multiple controllers. According

to Constraint (8), we only assign an SDN switch v to an active

controller with ID φ that has been placed on a certain node c.

We assume that a switch v should be assigned to a controller

with ID φ, if the controller shares the same location c with

the switch, which is enforced by Constraint (9). Note that this

constraint can be omitted, when a switch is allowed to be

assigned to any controller in the control plane.

The second group of constraints mainly targets the control

path latency, which is triggered by initial and intermediate flow

setup (explained in Section III-A). The control path latency of

a switch v, i.e., l(t)
V
(v), is defined as the shortest path latency

between the switch v and the respective controller instance φ
on node c, which is described in Constraint (10). For every

two switches, Constraint (11) states that they are in the same

control domain if they are assigned to the same controller. To

derive variable d
(t)

V (v,u), Constraint (12) checks all controller

instances from Φ with node v and u. If v and u are assigned

to the same controller instance φ, the variable d
(t)

V (v,u) is 0;

otherwise, 1. Constraint (13) iterates through every consecutive

switch pair along a flow forwarding path. If one switch pair,

e.g., v and u, leads to d
(t)

V (v,u) = 1 (meaning the flow enters a

new control domain), node u will initiate a flow setup request

with control latency l(t)
V
(u), which is denoted as τ

(t)
V
(v,u). If

d
(t)

V (v,u) = 0, the control latency τ
(t)
V
(v,u) will also be 0,

because two nodes are in the same control domain.

For the controller’s processing time, the third constraints

group accumulates the load of each controller in terms of

the number of flow setup requests, and then calculates the

processing time as the sojourn time accordingly by using

queuing theory. Constraint (14) sums up the total amount

of new flow setup requests, consisting of the initial and the

intermediate ones, of each switch. The function �x�v returns

1 if x = v, otherwise 0. Constraint 15 maps the load of each

switch to its controller. Constraint (16) models the expected

controller processing time if a new flow originates at one

switch, whereas Constraint (17) models the expected controller

processing time if a new flow goes from one switch to another

switch. For simplicity, we introduce two new variables μ
(t)
Φ
(φ)

and λ
(t)
Φ
(φ) in Constraint (16) and (17), defined as:

μ
(t)
Φ
(φ) =

1
θφ − λ

(t)
Φ
(φ)

φ ∈ Φ, and (18)

λ
(t)
Φ
(φ) =

∑
c∈C

∑
v∈V

υ
(t)
V ,Φ,C

(v, φ, c) φ ∈ Φ. (19)

.

In the objective function Eq. (5), γF , γM and γR denotes

the weighting factors for operational, controller migration, and

switch reassignment costs, respectively.

D. Performance Metrics
Besides the performance metrics that can be mapped from

the above cost factors, we introduce in the following three

new performance metrics for a comprehensive analysis of the

model and proposed algorithms.
1) Total Load: It evaluates the sum of the number incurred

flow setup requests, including initial setup and intermediate

setup of all switches over all time slots, given by:

MN =
∑
t∈T

∑
v∈V

υ
(t)
V
(v). (20)

MN is always equal or larger than the total number of new

flows
∑
t∈T

|F (t) |. Smaller MN indicates less burden on the

controllers and potentially better flow setup performance.
2) Controller Load Balance Factor: Even though the con-

troller load is incorporated in constructing the processing time

of each flow setup, the load variance of different controller

instances is not explicitly considered. As reported by Zhou

et. al. [9], from the security point of view, adversaries can

leverage large load variance to identify strategically important

controller instances and attack them specifically to increase

the level of destruction. On the other hand, large load vari-

ance may trigger frequent switch migrations [42], which can

degrade the flow setup performance. Therefore, we define the

controller load balance factor as

M (t)
L =

σ
[
{λ

(t)
Φ
(φ)|∀φ ∈ Φ}

]
μ
[
{λ

(t)
Φ
(φ)|∀φ ∈ Φ}

] , (21)

to evaluate the load variance [9]. σ and μ is the standard

deviation and the mean of the set of controller load values

respectively. This definition is also known as the relative

standard deviation in the literature.
3) Flexibility Measure: Flexibility is often claimed to be

the competitive advantage of a network design that can adapt

in face of external changes. We have proposed a quantification

framework of flexibility in our previous work [6], [7] to

enable a whole new perspective for comparing different design

choices. In a nutshell, the flexibility of a system is defined as

the fraction of new requests that can be supported within a

given time threshold from a given sequence of new requests.

In our use case, we define the flexibility measure metric as

Mf lex =
|supported F (t) within time threshold|

|T |
, (22)

where the nominator counts the number of flow profiles that

can be satisfied within the performance (i.e., average flow

setup time) and migration time constraint, and the denominator

is the total number of flow profiles.

V. ONLINE ALGORITHM DESIGN

In this section, we first propose an approximation technique

to solve the offline cost minimization problem with linear

optimizer. Because of its intractability, we decompose the

offline problem with lookahead control scheme into subprob-

lems at different time slots, which can be solved in an online

fashion. To further increase the solution efficiency, we design

a simulated annealing based algorithm to solve the online

problems.

8

A. Offline Optimization

In order to be able to solve the offline optimization problem

with linear optimizer, such as Gurobi and CPLEX, we need

to linearize the non-linear equations in Problem P. The high

order constraints, i.e., Constraints (11), (13), (15), (16) and

(17), can be linearized without loss of optimality [11]). For

the definition (18), however, we need to apply piecewise linear

approximation and define the following linear relationship

between μ
(t)
Φ
(φ) (the expected processing time of a flow setup

request at a controller) and λ
(t)
Φ
(φ) (the total number of flow

setup requests the controller needs to process),

μ
(t)
Φ
(φ) =

{ 1
(θφ−λ1)θφ

λ + 1
θφ
, 0 ≤ λ < λ1

1
(θφ−λ1)(θφ−λ2)

λ −
λ1+λ2−θφ

(θφ−λ1)(θφ−λ2)
, λ1 ≤ λ < λ2.

(23)

The three segment points 0, λ1 and λ2 define two levels of

controller load low [0, λ1) and high [λ1, λ2). Note that λ2 is

normally smaller than controller capacity θφ to model the

spare capacity of controller, e.g., λ2
θφ
∈ [0.85,0.95] [18].

We refer to the new optimization problem, which replaces

Eq. (18) with Eq. (23), as Problem P’. Indeed, the approx-

imation overestimates the processing time of controller and

therefore does not guarantee that the global optimum of

Problem P’ equals to the global optimum of Problem P. We

have Theorem 1 to show the optimality bound and the proof

can be found in Appendix A.

Theorem 1: Suppose the controller capacity θφ is 1000,

and the segment points reside at 0, 700 and 900. Solving the

linearized problem P’ optimally achieves 1.79-approximation

of the original problem P.

B. Online Algorithm Design

1) Lookahead Control Scheme: We leverage lookahead

control to address our cost optimization problem. With only

a limited knowledge of future input [35], i.e., input within a

lookahead window with size ω, lookahead control decomposes

an offline problem into a series of online subproblems, each

with a small number of time slots (equals to ω). We introduce

two types of lookahead control, RHC [36] and FHC [18],

in PseudoCode 1. RHC solves the optimization problem at

each time slot t over the lookahead window (t, t + ω). Each

optimization takes place given the system state of the last time

stamp t − 1. Thereafter, only the decision variables of the first

time slot t are applied and the remaining decision variables,

i.e., of t + 1, ..., t + ω, are discarded. FHC, on the other hand,

keeps all the decision variables of time slot t, .., t + ω and

directly jumps over the current lookahead window ω. Fig. 3

illustrates the differences between the two alternatives. FHC

guarantees shorter running time by solving fewer optimization

problems (�|T |/(ω + 1)�) compared to RHC (|T |).
Lookahead control can be used as an algorithm wrapper

that encapsulates any inner algorithm, including branch-and-

cut-based optimization and efficient heuristics. The inner algo-

rithm recursively solves the sub-problems within the present

lookahead window in an online fashion.

PseudoCode 1 Online Algorithm Wrapper

1: procedure RHC(ω, F(t))
2: for t ∈ T do
3: Solve the problem P’ over (t , t +ω) with SA-based algorithm
4: Update the control plane state
5: end for
6: end procedure

7: procedure FHC(ω, F(t))
8: T ′ ← {t |t mod(ω + 1) = 1, t ∈ T }
9: while t < |T ′ | do

10: Solve the problem P’ over (t , t +ω) with SA-based algorithm
11: Update the control plane state
12: end while
13: end procedure

2) SA: Now we present an efficient algorithm based on SA

to solve the online sub-problems. SA accepts a new solution

that is worse than the current solution with a varying proba-

bility. The probability depends on the difference between the

objective function value of the current and the new solution,

as well as the current temperature.

We detail our SA-based algorithm in PseudoCode 2. There

are four parameters that determine the total number of random

searches (i.e., iterations, one iteration from Line 6 to Line 23):

initial temperature Ti , stop temperature Ts , temperature update

ratio α, and number of searches per temperature R. They need

to be tuned beforehand in order to take the most advantage of

the algorithm, which we will explain in Section VII-B. The

symbol Rc,Rn and Rb represents the current, the neighbor and

the best result found respectively, each with objective function

value objc,objn and objb . Symbol δ denotes the difference of

objective function values between the current and the neighbor

result. Symbol cntb denotes the number of iterations with

which the best result does not change.

In each iteration, the solution space of the controller place-

ment problem at one time slot (defined as a problem slice) is

explored with one of the three following procedures with equal

probabilities (Line 6). (i) Procedure REASSIGNSWITCH (RS)

randomly selects one switch from a control domain with size

larger than 1 and reassigns it to another control domain. (ii)
Procedure SWAPSWITCH (SS) randomly selects two switches

from two control domains and swaps their controllers. (iii)
Procedure RELOCATECONTROLLER (RC) randomly selects a

controller and change its location to that of another switch

of its control domain. Procedure EVALUATE calculates the

objective function value. If the lookahead window size ω is

non-zero, the algorithm randomly selects a problem slide at

one time slot t ∈ {0,1, ...,ω − 1}. An early-stop mechanism

(Line 25) can expedite the algorithm by returning the best

solution Rb , if it is not improved for CNT steps. Otherwise,

the algorithm continues until the current temperature temp is

lower than Ts .

3) Complexity Analysis: Considering the worst-case (i.e.,

without early-stop), the SA-based algorithm needs for RHC

|T | �R ·logα
Ts
Ti
� or for FHC �T/(ω+1)� · �R ·logα

Ts
Ti
� iterations,

which are independent from the number of switches and

controllers. In each iteration, procedure RS can go through

all controllers and switches to find a switch that can be

reassigned, resulting in O(|Φ| + |V|) complexity. Procedure

9

PseudoCode 2 SA-Based Algorithm

1: procedure SA(ω)
2: Initialize Rc , Rb , objb , cntb ← 0, temp ← Ti
3: while temp ≥ Ts do
4: ri ← 0 � Run id
5: for ri < R do
6: Randomly call RS, SS, or RC and get neighbor result Rn

7: objc , objn ← EVALUATE(Rc , Rn)
8: if objb ≥ min(objc , objn) then
9: cntb ← 0 � Best solution updated

10: Copy the better one of Rc and Rn to Rb

11: else
12: cntb ← cntb + 1 � Best solution kept
13: end if
14: δ ← (objc − objn)/objn
15: if δ > 0 then
16: Copy Rn to Rc � Neighbor is better
17: else
18: prob ← exp(δ/temp) � Probability of acceptance
19: r ←U(0, 1) � Random number
20: if r < prob then
21: Copy Rn to Rc � Accept worse neighbor
22: end if
23: end if
24: if cntb > CNT then
25: Return Rb � Early stop
26: end if
27: end for
28: temp ← temp · α � Update temperature
29: end while
30: Return Rb � Normal stop
31: end procedure

P(t)

P(t + 1)

P(t + 2)

P(t + ω)

Prediction horizon:

[t + 1, t + ω]

If t = t + 1, RHC

If t = t + ω + 1, FHC

Fig. 3. The trajectory explored by a limited lookahead window size ω.
The shaded area represents the solution of an online algorithm, based on
the predicted future problem input, i.e., traffic profiles. (Adapted from [35])

SS can search over all possible pairs of controllers, which

indicate a complexity of O(|Φ|2). For Procedure RC, all

controllers may need to be examined, resulting in a complexity

of O(|Φ|). The remaining steps of an iteration contribute to

O(1). Therefore, the overall worst-case complexity is O(|Φ| +
|V|) +O(|Φ|2) +O(|Φ|) +O(1) = O(|Φ|2 + |V|).

VI. EVALUATION SET-UP

For the evaluation, we extend the Python-based framework

of our previous work [11] and use Gurobi 8.0 as the opti-

mizer. In this section, we introduce our evaluation setup and

parameters and, as well as the procedure to generate realistic

traffic.

A. Evaluation Input & Output

We evaluate three network topologies from the Topology

Zoo [43]: Abilene (11 nodes), AttMpls (25 nodes) and OS3E

(34 nodes). The number of controllers Π varies between 2

and 5 and its impact on the evaluation metrics is analyzed.

For the traffic generation, we randomly choose a subset of

all possible source-destination node pairs and create flows

between the selected pairs between them. We create subsets

with different sizes to represent different flow densities. The

details to generate realistic traffic are introduced in the next

subsection. The number of time slots |T | for random and

realistic traffic is considered as 30 and 24, respectively. In our

traffic model, there is a positive correlation between the size

of the topology and the number of generated new flows: more

flows indicate more flow setup requests to the controller. To

avoid controller overload, we set the controller capacity for

the three topologies as 1000, 5000 and 10000, respectively.

The segment points for linear approximation are 0, 0.7 and

0.9 times the respective controller capacity.

We compare the following algorithms. (1) STA: We fix the

controller locations and keep the switch assignment, which is

the optimal solution of minimizing the average control latency

for the first time slot. This is an algorithm we have adopted

from our previous work [11] which does not consider control

plane reconfiguration. (2) CNPA: We take another state-of-the-

art algorithm adapted from [16] which is designed based on

topology clustering. We need to amend the original algorithm,

so that the clustering can take the dynamicity of the flows into

account. (3) OPT(ω): Due to huge computational complexity,

it is not realistic to optimize for the whole time horizon, i.e.,

the full time slot set T . We therefore only optimize the sub-

problems with various lookahead window sizes (i.e., different

ω). (4) RHC(ω): Similarly, we solve the sub-problems with

our proposed online algorithm based on RHC and SA with

different lookahead window sizes. (5) FHC(ω): We solve the

cost minimization problem with FHC as the online algorithm

wrapper.

For the output, each algorithm under evaluation should

return the decision variables for the controllers’ location

(p(t)
Φ,C

(φ, c)) and the assignment of switches to controllers

(a(t)
V ,Φ,C

(v, φ, c)). The remaining variables defined in Table III

only helps to formulate the optimization problem P, and

therefore they will not be calculated by the algorithms (except

OPT(ω) which returns the optimal solution).

B. Realistic Traffic Generation

Our previous work [44] models the traffic demand of

each gateway in the core gateway network and considers

the population of the city that is closest to the gateway

and time. The traffic demand from each gateway is equally

divided and forwarded to all the other gateways. In the

scenario of SD-WAN network, more factors need to be taken

into consideration. On the one hand, traffic demand volume

between source and destination node is potentially related to

both nodes. On the other hand, we would expect shifting of the

traffic demand curve between the same source node to different

destination nodes, and between different source nodes to the

same destination nodes.

In order to support our assumption, we analyze the traffic

matrices data of the Abilene network that is publicly available

in [45]. The Abilene network consists of 11 nodes (distributed

in four different time zones) and 14 links. The matrices cover

6 months of traffic with a 5-minute step. We conduct statistical

10

(a) New York (b) Los Angeles
Fig. 4. Daily traffic patterns of different source nodes: one on the east
coast and the other on the west coast. For each source node, the curves
corresponding to different target nodes shift. On the other hand, the peak
points among all curves of the two source nodes appear at different time.

tests and evaluate the relation of source and destination popu-

lation with the traffic volume. The square root of multiplication

of source and destination population outperforms other rela-

tions, e.g., source population only, destination population only,

maximum of source and destination, etc. We also observe that

time shifting only happens for destination nodes in different

time zones. For example, the curves of traffic volume between

different nodes at east coast always possess the same trend, i.e.,

reaching maximum at the same time, whereas the maximum

point of the curve from one node at east coast to another node

at west coast is postponed.

Therefore, we extend the traffic model by incorporating the

above observations. The population information of the cities is

taken from [46]. Fig. 4 shows the traffic patterns of two source

nodes. The y-axis is the traffic volume in terms of the number

of flows. Since New York and Los Angeles are the two cities

with the largest population, the highest curves represent the

traffic between them, i.e., brown curve NY-LA in Fig. 4a and

blue curve LA-NY in Fig. 4b. The maximum points of the

these two curves, however, correspond to different time slots:

NY-LA at 15:00 and LA-NY at 12:00.

VII. EVALUATION ANALYSIS

In this section, we conduct a comprehensive evaluation

and analysis of the performance of the introduced algorithms.

As our evaluation unfolds, we would like to study: (i) the

performance of the algorithms, (ii) the impact of lookahead

window size ω, (iii) the necessity of frequent control plane

reconfigurations, and (iv) the flexibility of different control

plane design choices.

A. Which parameter combination is preferred?

As introduced in Sec. V-B, it is critical to decide the four

algorithmic parameters, i.e., Ti , Ts , α and R, that will be

applied in our SA-based algorithm. In this regard, we perform

a study to get a proper parameter combination. We fix Ts as

0.001, while variate Ti from the set {0.1,0.4,0.5,0.75}, R from

the set {100,200,500}, and α from the set {0.9,0.95}.
Regarding the algorithms that apply stochastic search

paradigm, the longer it runs, the higher chance the solution

converges to the global optimum. Indeed, we can observe a

trade-off between quality of solution (in terms of average flow

setup time, controller migration cost, and switch reassignment

cost) and runtime. Due to space limit, we only report part

of our comparison in Fig. 5 from Abilene, where α = 0.95,

Π = 2, and ω = 1. The average flow setup time (as in

Fig. 5a) keeps decreasing when R increases from 100 to

500. For migration and reassignment costs, cost reduction is

obviously improved when R increases to 200. However, further

improvements become marginal when it goes up to 500 and

the runtime inflates several times. For the initial temperature,

Ti = 0.5 has slightly better performance than Ti = 0.75.

The observations also apply to other parameter combinations.

Therefore, we use Ti = 0.5, Ts = 0.001, R = 500 and α = 0.95
for the following evaluations.

B. How good is our algorithm?

Cost Reduction. Fig. 6 plots the three cost factors

and the overall cost objective. We compare STA, CNPA,

OPT(0/1/2) and FHC(1/2), and set the reconfiguration

cost with low priority (γF = 1, γM = γR = 0.1). The

evaluation is performed on Abilene topology with flow density

as 0.05 and number of controllers Π equals to 2 and 4. We

make the following observations. (i) When the number of

controllers increases, the average flow setup time decreases

for all the algorithms, which is consistent with our previous

work [11], where average flow setup time is considered as

the only optimization objective. (ii) STA has the worst flow

setup performance on average, but enjoys zero controller and

switch reconfigurations due to its static nature. (iii) Compared

to OPT(0/1/2) 2 and FHC(1/2), CNPA can achieve similar

performance of controller reconfiguration, but at the sacrifice

of worse performance of the other two cost factors and the

total cost. (iv) FHC(1/2) can achieve similar flow setup

performance compared with OPT(1/2). However, when it

comes to the reconfiguration, FHC(1/2) does not always

promise smaller reconfiguration latency. We enlarge the pri-

ority of reconfiguration (γF = 1, γM = γR = 0.5) and re-

evaluate the algorithms in Fig. 7. The former observations

(i) and (ii) still apply. As a proper response to the higher

priority, OPT(0/1/2) pushes the two reconfiguration costs

down, which is not revealed for FHC(1/2). For the overall

cost, the performance of FHC(1/2) is similar to that of

OPT(0/1/2) when the reconfiguration priority is lower.

Nevertheless, FHC(1/2) can be worse than STA at high

reconfiguration priority, because STA has zero reconfiguration

cost.

Fig. 8 shows the detailed overall cost values for Abilene

topology (Π = 4) for all time slots in T . We can observe

that for low flow densities, the curves of OPT(0/1) and

FHC(0/1) intertwine and there is no absolute winner. CNPA,

however, always delivers the worst overall cost values, on

average 2x that of the other algorithms, and in the worst

case, 4x. When the flow density becomes larger, the trend

of CNPA does not change. It can be seen that The difference

between OPT(0) and FHC(0/1) is marginal, and they three

are slightly better than OPT(1).

Controller Load. We create Fig. 9 and plot the total load

and the load balance factor (defined in Sec IV-D) for two

different topologies. The result of Abilene is depicted in

Fig. 9a and Fig. 9b. The total incurred load in terms of the

2OPT(0/1/2) represents all the three cases of OPT(0), OPT(1) and
OPT(2). Same for the notation of other algorithms.

11

(a) Average flow setup time [ms] (b) Controller reconfiguration [ms] (c) Switch reconfiguration [ms] (d) Runtime [s]

Fig. 5. Three cost factors, i.e, CF , CM and CR , and algorithm runtime (over 30 runs) obtained of topology Abilene with different parameters Ti and R.
The other two parameters are fixed: Ts = 1 and α = 0.95. Number of controllers Π is 2, and the lookahead window size ω is 1.

(a) Average flow setup time [ms] (b) Controller reconfiguration [ms] (c) Switch reconfiguration [ms] (d) Total cost

Fig. 6. Three cost factors, i.e, CF , CM and CR , and the compound cost with coefficient γF , γM , γR equals to 1, 0.1 and 0.1 respectively (over 30 runs)
obtained of topology Abilene with different algorithms. Flow density equals 0.05.

(a) Average flow setup time [ms] (b) Controller reconfiguration [ms] (c) Switch reconfiguration [ms] (d) Total cost

Fig. 7. Three cost factors, i.e, CF , CM and CR , and the compound cost with coefficient γF , γM , γR equals to 1, 0.5 and 0.5 respectively (over 30 runs)
obtained of topology Abilene with different algorithms. Flow density equals 0.05.

(a) Low flow density (b) High flow density

Fig. 8. Total cost with coefficient γF , γM , γR equals to 1, 0.5 and 0.5
respectively obtained of topology Abilene with different algorithms. π(t) = 4.

number of flow setup requests increases when the number of

controllers increases. FHC(0/1/2) achieve smaller total load

compared to STA and CNPA, and the load balance factor is

nearly the same for all algorithms. Fig. 9c and Fig. 9d show

the evaluation for AttMpls, with which we have the same

observation for load balance factor. Additionally, it can be

observed that the improvement of total load of FHC(0/1/2)
becomes marginal, since load balancing is not an explicit

optimization objective in our model.

RHC vs. FHC. Because of its robustness with future

dynamic input, RHC is theoretically superior to FHC. However,

when it comes to particular optimization problems, the advan-

tage of RHC can be marginal, which is the case for our prob-

lem. Fig. 10 compares the induced cost of RHC and FHC by

showing the difference between the respective cost factors.

The performance of the two lookahead control schemes are

nearly the same: boxplots distribute symmetrically with means

at zero. We conclude that both can make “robust” decisions

here. When we consider the computation time, FHC obviously

defeats RHC, since FHC does not need to solve the cost

optimization for each t.
Takeaway. Our proposed algorithms RHC and FHC show

their advantage of a fair trade-off between flow setup and

control plane reconfiguration costs, compared with the state-

of-the-art algorithms STA and CNPA. We would prefer FHC in

this work because of its short runtime.

C. How long we should look into the future?
This is an interesting question for all types of lookahead

control schemes. Intuitively, larger lookahead window size

leads to lower overall cost, because it can achieve a better

trade-off between operational cost and reconfiguration cost by

considering more time slots. However, this intuition is not re-

flected in our evaluation results. Fig. 11 compares the total cost

of different lookahead window sizes for different topologies

and number of controllers (Π from 2 to 5). We observe that

the total cost increases slightly with a larger window size, a

phenomenon we have already seen in Fig. 6d and 7d. This is

due to the positive correlation between the complexity of the

online problem and the window size. When the complexity

increases, our proposed algorithm converges slower and is

likely to output a less optimal solution. Nevertheless, when we

look into the three cost coefficients, we notice that operational

cost is the only one that actually decreases (Fig. 6a and 7a).
Takeaway. With the same parameter sets for SA, larger

lookahead window size ω leads to worse objective function,

while the runtime is reduced. In this case, we suggest to em-

ploy different algorithm parameter combinations (e.g., higher

12

(a) Total Load (Abilene) (b) Load Balance Factor (Abilene) (c) Total Load (AttMpls) (d) Load Balance Factor (AttMpls)

Fig. 9. Total incurred load (in terms of the number of flow setup requests) and load balance factor with γF , γM , γR equals to 1, 0.1 and 0.1 respectively
(over 30 runs) obtained of two different topologies with different algorithms. Flow density equals 0.05.

(a) Average flow setup time (b) Controller reconfiguration (c) Switch reconfigurtion (d) Total cost

Fig. 10. Performance comparison of RHC and FHC with different lookahead window size ω: 0, 1 and 2. Cost coefficient γF , γM , γR equals to 1, 0.1 and
0.1 respectively. Results obtained from Abilene topology over 30 runs with flow density of 0.05.

(a) Abilene (b) AttMpls (c) OS3E

Fig. 11. Total cost with coefficient γF , γM , γR equals to 1, 0.1 and 0.1 comparing different lookahead window sizes ω from 0 to 2, different number of
controllers Π, and different topologies. Results obtained using FHC algorithm over 30 runs with flow density equals 0.05.

(a) Abilene (b) AttMpls (c) OS3E (d) Abilene (Realistic Traffic)

Fig. 12. Reconfiguration cost of different traffic distribution with cost coefficient γF , γM , γR equals to 1, 0.1 and 0.1 respectively (over 30 runs) obtained
from different topologies for (a) to (c). In (d), we compare γF = 1, γM = 0.1, γR = 0.1 (low weight) and γF = 1, γM = 0.5, γR = 0.5 (high weight).

initial temperature Ti and lower stop temperature Ts) to extend

the stochastic search procedure.

D. Do we need frequent reconfigurations?
The frequency of control plane reconfiguration impacts the

induced cost, and it is not always required to have many

reconfigurations. Fig. 12a to 12c plot the reconfiguration costs

for the three topologies with random traffic. We compare

different numbers of controllers and types of traffic. The

lower (shaded) and upper part of each bar represents the

reconfiguration cost of controller and switch, respectively. In

general, we can observe that when the traffic distribution is

more evenly distributed (i.e., high flow density), the intention

of the reconfiguration becomes less obvious. The control plane

can stay unchanged for most flow profiles with good flow

setup performance. For Abilene and low flow density, more

controllers lead to higher reconfiguration cost. Nevertheless,

the trend becomes different for the other two topologies, where

the cost reaches the maximum at Π = 3 and drops afterwards.
For the case of random traffic, there is no spatial or

temporal correlation among the flows of different source and

destination pairs. Therefore, it represents the worst case in

terms of controller and switch reconfiguration cost. In order

to reveal the realistic situation, we apply the traffic introduced

in Sec. VI-B on Abilene topology and plot the reconfiguration

cost in Fig. 12d. Compared with the reconfiguration cost of

500 for random traffic, realistic traffic only triggers a cost

of 20 on average. The two bars for each Π represent low

and high weights for reconfiguration cost, respectively. The

results confirm our previous conclusion: with high weighting

factors, our proposed algorithm can push down the value of

the particular cost coefficient.
Takeaway. By using prediction techniques, we can analyze

the correlation within the traffic. If the correlation is strong, we

can stick to a single static controller placement throughout all

time slots without losing much performance optimality. If the

correlation is low, we would expect frequent reconfigurations

to maintain the flow setup performance. Meanwhile, tuning

the weight parameters (γF , γM and γR) can help to suppress

unnecessary reconfigurations.

E. How flexible is the control plane?
We evaluate the flexibility (introduced in Sec. IV-D3) as

follows. First, we define a performance threshold (average

flow setup time) and a migration threshold (total migration

time). We then iterate through all flow profiles, and for each

flow profile, we check whether the old placement can satisfy

the flow profile in terms of the performance threshold. If yes,

13

Fig. 13. Flexibility measure comparison of different migration time con-
straints and different topologies. Solutions obtained with FHC(1).

the old placement stays without triggering reconfiguration,

which is counted as a successful adaptation. Otherwise, a

control plane reconfiguration is inevitable, and the induced

reconfiguration time is evaluated. We count it as a successful

adaptation only if the reconfiguration time is smaller than the

migration threshold. Otherwise, we keep the old placement

and count it as a failed adaptation.

Fig. 13 compares the flexibility for different topologies,

different numbers of controllers and migration time thresholds

(numbers in brackets). We have the following observations.

(i) When migration time threshold increases, the flexibility

value also increases for each scenario (same topology and

number of controllers). (ii) In most of the cases, the more

controllers we have, the more flexible the control plane is.

(iii) For OS3E, the flexibility value of k = 4 is lower than all

the other ks, due to the randomness of the evaluated flow

profiles. As future work, we plan to extend the flexibility

analysis and consider more types of traffic distribution.

Takeaway. We need a standard approach to quantify the

flexibility of networks and compare different system design

choices [6]. With numerical results, we show that the number

of controllers can affect the flexibility of the control plane.

VIII. CONCLUSION

Traffic variability exists broadly in modern WAN [2], [3]

and data center networks [47], [48], which can affect the

performance and reliability of transmitting high bandwidth

among thousands of end-hosts and VMs. In this regard,

SDN leverages the idea of a centralized control plane by

allocating resources to varying traffic flows in a more ef-

ficient manner. To maintain an acceptable flow setup time,

control plane should adapt itself with controller migration

and switch reassignment. Control plane adaptation, however,

is costly because of induced temporary instability, additional

signaling, and performance degradation. This paper focuses on

the mathematical formulation of the problem of managing a

dynamic control plane (i.e., DCPP) to achieve a fair trade-off

between flow setup and adaptation cost.

We model the end-to-end flow setup time in the SD-WAN

scenario and formulate DCPP as a multi-period optimization

problem, considering both operational and adaptation costs.

Because of its intractability, we leverage the scheme of looka-

head control and propose efficient online algorithms. Our

comprehensive evaluation shows that the proposed algorithms

can achieve up to 30% average flow setup time reduction and

20% reconfiguration cost reduction, compared with the state-

of-the-art algorithm. We also observe that there is a trade-off

between the operational and the adaptation cost. By comparing

different design choices, we conclude that more controllers can

increase the flexibility of the dynamic control plane.

ACKNOWLEDGMENT

This work is part of a project that has received funding from

the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation program (grant

agreement No 647158 - FlexNets). The authors alone are

responsible for the content of the paper.

REFERENCES

[1] A. Dixit et al., “ElastiCon: an elastic distributed SDN controller,” in
Proceedings of the ACM Symposium on Architectures for Networking
and Communications Systems (ANCS). IEEE, 2014, pp. 17–27.

[2] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 4, pp. 3–14, 2013.

[3] R. Ahmed and R. Boutaba, “Design considerations for managing wide
area software defined networks,” IEEE Communications Magazine,
vol. 52, no. 7, pp. 116–123, 2014.

[4] M. Casado et al., “Fabric: a retrospective on evolving SDN,” in Pro-
ceedings of the ACM Workshop on Hot Topics in SDN. ACM, 2012,
pp. 85–90.

[5] Y. Guo et al., “Traffic engineering in SDN/OSPF hybrid network,” in
Proceedings of the IEEE International Conference on Network Protocols
(ICNP). IEEE, 2014, pp. 563–568.

[6] W. Kellerer et al., “How to measure network flexibility? A proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
2018.

[7] M. He et al., “Flexibility in softwarized networks: Classifications and
research challenges,” IEEE Comm. Surveys & Tutorials, 2019.

[8] ——, “How flexible is dynamic SDN control plane?” in Proceedings of
the IEEE INFOCOM Workshops. IEEE, 2017, pp. 689–694.

[9] Y. Zhou et al., “Elastic switch migration for control plane load balancing
in SDN,” IEEE Access, vol. 6, pp. 3909–3919, 2018.

[10] S. Agarwal et al., “Traffic engineering in software defined networks,”
in Proceedings of the IEEE INFOCOM. IEEE, 2013, pp. 2211–2219.

[11] M. He et al., “Modeling flow setup time for controller placement
in SDN: Evaluation for dynamic flows,” in Proceedings of the IEEE
International Conference on Communications (ICC). IEEE, 2017, pp.
1–7.

[12] A. S. Muqaddas et al., “Inter-controller traffic to support consistency in
ONOS clusters,” IEEE Transactions on Network and Service Manage-
ment, vol. 14, no. 4, pp. 1018–1031, 2017.

[13] A. K. Singh and S. Srivastava, “A survey and classification of controller
placement problem in SDN,” Wiley International Journal of Network
Management, vol. 28, no. 3, 2018.

[14] B. Heller et al., “The controller placement problem,” in Proceedings of
the ACM Workshop on Hot Topics in SDN. ACM, 2012, pp. 7–12.

[15] S. Lange et al., “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Transactions on Network
and Service Management, vol. 12, no. 1, pp. 4–17, 2015.

[16] G. Wang et al., “An effective approach to controller placement in
software defined wide area networks,” IEEE Transactions on Network
and Service Management, vol. 15, no. 1, pp. 344–355, 2018.

[17] B. P. R. Killi and S. V. Rao, “Capacitated next controller placement in
software defined networks,” IEEE Transactions on Network and Service
Management, vol. 14, no. 3, pp. 514–527, 2017.

[18] T. Wang et al., “An efficient online algorithm for dynamic SDN
controller assignment in data center networks,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 2788–2801, 2017.

[19] Y. Wang et al., “Resource allocation for reliable communication between
controllers and switches in SDN,” Springer Journal of Network and
Systems Management, pp. 1–27, 2018.

[20] F. Bannour et al., “Distributed SDN control: Survey, taxonomy, and
challenges,” IEEE Communications Surveys & Tutorials, vol. 20, no. 1,
pp. 333–354, 2017.

[21] P. Berde et al., “ONOS: towards an open, distributed SDN OS,” in
Proceedings of the third workshop on Hot topics in Software Defined
Networking. ACM, 2014, pp. 1–6.

14

[22] J. Medved et al., “Opendaylight: Towards a model-driven SDN controller
architecture,” in Proceedings of IEEE International Symposium on a
World of Wireless, Mobile and Multimedia Networks. IEEE, 2014, pp.
1–6.

[23] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient
and scalable offloading of control applications,” in Proceedings of the
ACM Workshop on Hot Topics in SDN. ACM, 2012, pp. 19–24.

[24] K.-K. Yap et al., “Taking the edge off with espresso: Scale, reliability
and programmability for global internet peering,” in Proceedings of ACM
SIGCOMM. ACM, 2017, pp. 432–445.

[25] H. Liu et al., “Performance and energy modeling for live migration of
virtual machines,” in Proceedings of the International Symposium on
High Performance Distributed Computing. ACM, 2011, pp. 171–182.

[26] H. B. McMahan et al., “Ad click prediction: a view from the trenches,”
in Proceedings of the ACM International Conference on Knowledge
Discovery and Data Mining. ACM, 2013, pp. 1222–1230.

[27] A. Nucci et al., “The problem of synthetically generating IP traffic
matrices: initial recommendations,” ACM SIGCOMM Computer Com-
munication Review, vol. 35, no. 3, pp. 19–32, 2005.

[28] Y. Lv et al., “Traffic flow prediction with big data: A deep learning
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 2, pp. 865–873, 2015.

[29] R. Vinayakumar et al., “Applying deep learning approaches for network
traffic prediction,” in Proceedings of the International Conference on
Advances in Computing, Communications and Informatics. IEEE, 2017,
pp. 2353–2358.

[30] G. Wang et al., “The controller placement problem in software defined
networking: a survey,” IEEE Network, vol. 31, no. 5, pp. 21–27, 2017.

[31] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proceedings of the International Conference on Network
and Service Management (CNSM). IEEE, 2013, pp. 18–25.

[32] M. T. I. ul Huque et al., “Large-scale dynamic controller placement,”
IEEE Transactions on Network and Service Management, vol. 14, no. 1,
pp. 63–76, 2017.

[33] G. Cheng et al., “Toward a scalable SDN control mechanism via switch
migration,” IEEE China Communications, vol. 14, no. 1, pp. 111–123,
2017.

[34] M. Tanha et al., “Capacity-aware and delay-guaranteed resilient con-
troller placement for Software-Defined WANs,” IEEE Transactions on
Network and Service Management, 2018.

[35] D. Kusic et al., “Power and performance management of virtualized
computing environments via lookahead control,” Springer Cluster com-
puting, vol. 12, no. 1, pp. 1–15, 2009.

[36] W. Kwon and A. Pearson, “A modified quadratic cost problem and feed-
back stabilization of a linear system,” IEEE Transactions on Automatic
Control, vol. 22, no. 5, pp. 838–842, 1977.

[37] M. Lin et al., “Online algorithms for geographical load balancing,” in
Proceedings of the International Green Computing Conference. IEEE,
2012, pp. 1–10.

[38] ——, “Dynamic right-sizing for power-proportional data centers,”
IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1378–1391,
2013.

[39] M. Jarschel et al., “Modeling and performance evaluation of an Open-
Flow architecture,” in Proceedings of the 23rd International Teletraffic
Congress (ITC). IEEE, 2011, pp. 1–7.

[40] K. Mahmood et al., “Modelling of OpenFlow-based software-defined
networks: the multiple node case,” IET Networks, vol. 4, no. 5, pp.
278–284, 2015.

[41] M. Ghaznavi et al., “Elastic virtual network function placement,” in
Proceedings of the IEEE International Conference on Cloud Networking
(CloudNet). IEEE, 2015, pp. 255–260.

[42] C. Liang et al., “Scalable and crash-tolerant load balancing based on
switch migration for multiple openflow controllers,” in Proceedings of
the International Symposium on Computing and Networking. IEEE,
2014, pp. 171–177.

[43] S. Knight et al., “The Internet topology zoo,” IEEE Journal on Selected
Areas in Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[44] A. Basta et al., “SDN and NFV dynamic operation of LTE EPC gateways
for time-varying traffic patterns,” in Proceedings of the International
Conference on Mobile Networks and Management. Springer, 2014, pp.
63–76.

[45] S. Orlowski et al., “SNDlib 1.0: Survivable network design library,”
Wiely Networks: An International Journal, vol. 55, no. 3, pp. 276–286,
2010.

[46] National population totals and components
of change: 2010-2017. [Online]. Available:
https://www.census.gov/data/tables/2017/demo/popest/nation-total.html

(0, 1
θφ

)

(λ1, 1
θφ−λ1

)

(λ2, 1
θφ−λ2

)

Low Load High Load

λ

μ
(t
)

Φ
(φ
)

Origianal (normal)

Origianal (overload)

Approximated

Fig. 14. Piecewise linear approximation of the average controller sojourn
time.

[47] F. Liu et al., “eba: Efficient bandwidth guarantee under traffic variability
in datacenters,” IEEE/ACM Transactions on Networking, vol. 25, no. 1,
pp. 506–519, 2017.

[48] J. Guo et al., “Pricing intra-datacenter networks with over-committed
bandwidth guarantee,” in Proceedings of the USENIX Annual Technical
Conference, 2017, pp. 69–81.

APPENDIX A

PROOF OF THEOREM 1

Proof: The three anchor points are (0, 1
θφ
), (λ1,

1
θφ−λ1

) and

(λ2,
1

θφ−λ2
). The two line pieces are expressed as follows.

f1(λ) =
1

(θφ − λ1)θφ
λ +

1
θφ
, 0 ≤ λ < λ1 (24)

f2(λ) =
1

(θφ − λ1)(θφ − λ2)
λ −

λ1 + λ2 − θφ
(θφ − λ1)(θφ − λ2)

,

λ1 ≤ λ < λ2 (25)

In order to get the largest gap between the approximation
and the real curves, we substrate 1

θφ−λ
from (24) and (25),

and calculate the first order derivative, e.g.,

(Δ f1(λ))
′=

[1
(θφ − λ1)θφ

λ +
1
θφ

−
1

θφ − λ

] ′
=

1
θφ(θφ − λ1)

−
1

(θφ − λ)2
(26)

Let the derivative equal zero, we then have

θφ(θφ − λ1)= (θφ − λl)
2

λl= θφ ±
√
θ2φ − θφλ1 (27)

We take the minus and do the same thing to (25)

λr= θφ ±
√
θ2φ − θφ(λ1 + λ2) + λ1λ2 (28)

max(λl, λr) returns the largest gap. In the worst-case, all flows

need to issue flow setup requests in each control domain, and

therefore we have max(λl, λr) ·Π for the approximation curve

on top of the real one.

