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Abstract—Facing fast-changing network traffic, Software De-
fined Networking (SDN) endows the capability of efficient traffic
forwarding and control plane resource management, which
results in flexibility in comparison to networking with legacy
rigid hardware. Meanwhile, flexibility has become an implicit
target of many novel network algorithms and designs. This paper
answers an interesting research question: “Can we optimize the
flexibility as an objective?” We study the impact of Data Centers
(DCs) location on the flexibility of dynamic control plane. The
flexibility is revealed when the control plane can adapt itself
with controller migration and switch re-assignment in a timely
manner for a new group of flows to satisfy the requirements
of flow setup. We propose a model, named FLEXDC, for static
DC placement and dynamic controller placement to optimize the
control plane’s flexibility. We also design heuristics to speed up
the decision process. Our simulation over real network topology
with synthetic flows shows the improved flexibility of the dynamic
control plane. Furthermore, we can save up to 2 DCs while
achieving the same flexibility, compared with a naive approach.

I. INTRODUCTION

In recent years, the concept of softwarization has emerged
to provide more flexibility in computer networks [1]. As
one realization of this concept, Software Defined Networking
(SDN) splits the data plane and control plane of legacy
networks to enable fast adaptation in the face of fast-changing
networking traffic with the target of shorter forwarding latency
and higher throughput [2]. The adaptation comes with two
perspectives. (i) The forwarding path of traffic can be updated
with several flow-mods sent from the controller, compared
with the path update of autonomous routing that can take very
long to converge. (ii) The resource of a software controller
(i.e., compute power) can be scaled up or down in accordance
with dynamic traffic flows, compared with legacy hardware
routers that are hard to scale. With the introduction of the
distributed control plane, SDN can be applied to Wide Area
Networks (WAN) while still enjoying the benefit of centralized
control logic, efficient path computation [3] and high reliability
of control [4]. Meanwhile, the distributed control plane has one
more degree of freedom for adaptation, i.e., the controllers can
be migrated among all possible locations.

Formally, given a changing traffic input, the adaptation
of distributed control plane means to place the controllers
dynamically so that particular performance metrics such as
average flow setup time or load imbalance [5], [6] can always
be optimized. The optimization problem is first introduced as
the Controller Placement Problem (CPP) by Heller et al. [7].
Existing CPP literature, though, invariably assumes that there
is one Data Center (DC) at each node in the topology to host a
controller, which is far from realistic, especially for WAN with

dozens of nodes. Further, it would be economically irrational
to build or rent all DCs, as many of which would seldom be
used during the operation.

Moreover, there is no existing metric that evaluates the DC
placement as a design choice for distributed control plane. We
advocate in our previous work [1], [8], [9] that a measure
of flexibility would be beneficial when comparing different
design choices of a network. Such a measure is derived from
the definition of flexibility as a system’s ability to satisfy
external changing requirements in a timely and cost-efficient
manner. That is, in addition to the ability to dynamically adapt,
the adaptation time (i.e., how fast the adaptation can take) and
cost (e.g., the induced extra latency and bandwidth) matter
when evaluating flexibility. With the flexibility measurement
framework [8] in mind, we proceed with optimizing the flex-
ibility of our network, which in a nutshell involves deciding
the network’s design parameters, e.g., the number of DCs and
their locations, to deliver the highest possible flexibility value.

We consider in this paper the scenario that network oper-
ators have the freedom to decide where to place a limited
number of DCs. Once decided, the locations of the DCs are
not allowed to change anymore. This problem sounds trivial:
a naive approach could place DCs close to large cities where
most of the traffic originate and terminate. However, in a multi-
controller scenario, inter-domain flows would also trigger flow
setup requests at intermediate switches [5] which are not
necessarily in the proximity of large cities, not to mention the
flows variate from time to time. Fig. 1 illustrates an example
of two DCs, one controller, and two time slots with changing
traffic. The DC placement supports the control placement in
both time slots that can satisfy the flow setup requirements
with a timely control plane reconfiguration.

In this paper, we propose a mathematical programming
model for static DC placement and dynamic controller place-
ment in SDN networks. Our main objective is to maximize
the flexibility of the control plane under the constraints of
adaptation time and cost. The control plane adaptation con-
sists of controller migration and switch re-assignment [5].
Implemented as VM migration, the overhead of controller
is proportional to the size of the VM and the available
bandwidth for migration. The switch-reassignment involves
rerouting switch-to-controller messages whose latency over-
head depends on the distance between the switch and the
controller. Due to the problem’s non-linear feature, we apply
auxiliary constraints and translation of if-conditional in order
to use the linear optimizer. To improve efficiency, we also
design two heuristics: one borrows the idea of the legacy
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Fig. 1: Illustration of an optimal static DC placement. A single
controller can satisfy the flow setup requirement in two time slots.
Because two DCs are close to each other, control plane reconfigura-
tion can also happen within a short time. This paper aims at finding
the optimal DC placement, as well as the controller placement in
each time slot, given varying flows in a network.

controller placement problem, and the other extracts traffic
features with less problem input. We evaluate our proposals
over real-world topology with synthetic traffic. Evaluation
results suggest that the (i) flexibility depends on the adaptation
time and cost constraints that need to be met, and (ii) our
proposed heuristics can achieve near-optimal performance in
some cases with apparent runtime saving.

This paper is organized as follows. Sec. II describes the
literature related to our work. Sec. III introduces the basics
of designing a flexible control plane. Sec. IV formulates the
mathematical model for optimizing the flexibility of control
plane and proposes efficient methods. We evaluate our model
and discuss the results in Sec. V, and conclude the paper in
Sec. VI.

II. RELATED WORK

In this section, we first discuss the literature that is related
to the topic of CPP and flexible network design. Afterward,
we clarify the contribution of our work in this paper.

A. CPP in SDN

Upon its introduction by Heller et al. [7], the research of
CPP has evolved rapidly and contributed diverse optimization
models and solution techniques. Initial literature focuses on
static objectives, e.g., average control latency [7], [10] and
average inter-controller latency [11], which depend only on
the topology and the number of controllers. Dynamic ob-
jectives, however, depend on varying networking conditions
such as traffic in the network [5], [12], and node/link failures
[13]. From the solution’s perspective, the existing works are
classified into two categories: optimal solution and heuris-
tic algorithms. The first category includes the naive Brute
force method [7] and Integer Linear Programming (ILP) or
Mixed ILP (MILP) that can be solved by linear solvers.
For the second category, state-of-the-art research analyzes the
problem’s structure and proposes various heuristic algorithms
[14], [15]. General meta-heuristic frameworks also show their
promising performance in solving CPP problems, giving rise
to simulated annealing [16] and evolutionary algorithms [17].
The problem we consider in this paper is a variation of the
multi-period CPP, which stems from the multi-period facility
location problem in supply chain management [18]. We need
to solve different CPP instances over multiple time slots,
where the movement of controllers are subject to certain

constraints. Online optimization techniques are preferred for
such a problem [5], [19]. A comprehensive survey of CPP can
be found in the work of Das et al. [2].

B. Flexibility Envisioned by Network Softwarization

Network softwarization can achieve significant cost sav-
ings not only because of resource pooling and multi-tenancy,
but also due to flexible placement of network functions,
direction of traffic flows, and orchestration of network re-
sources [20]. With virtualized network functions in mobile
core network [21], some of the functions offered by hardware
middleboxes can be moved to DCs and therefore benefit
from dynamic resource scaling. Proposals like SIMPLE [22]
leverage SDN to flexibly balance the traffic among different
middleboxes by the dynamic installation of traffic splitting
flow rules in the switches. Further, combining both legacy
and SDN data plane for a flexible forwarding model [23] is
also advocated due to the performance concern of flow setup
in SDN. A detailed discussion of flexibility envisioned by
softwarized networks can be found in our survey [1].

C. Our contribution

To the best of our knowledge, this paper is the first one
that discovers the design space of the SDN dynamic control
plane, which takes a more realistic assumption, i.e., limited DC
resources, into consideration. We optimize static DC locations
to guarantee the highest flexibility value under adaption time
and cost constraints over the whole time horizon. We model
the adaptation time as the time needed to migrate the control
plane with controller migration and switch re-assignment and
the cost as the performance metrics we focus on after migra-
tion, including average flow setup time and load of controller.

III. TOWARD DESIGNING FLEXIBLE CONTROL PLANE

This section clarifies the definition of flexibility to provide
the necessary background knowledge of what do we mean
by “optimizing the flexibility”. It also elaborates the cost
and time aspects, two important factors that we consider
in the optimization. Further, it introduces the measure and
design phase that corresponds to controller placement and DC
placement respectively.

A. Basics of Network Flexibility

1) Definition: Flexibility has become a significant target
of network design in recent years. However, as a high-level
term, its interpretation was different across various research
fields and use cases. For example, in DC traffic engineering,
the authors in [24] consider it as the additional throughput
performance for increasing traffic, in comparison to a pro-
portional behavior. In [8], we propose a general measure
of flexibility that is abstracted from different use cases. We
interpret flexibility of a network as its ability to adapt its
state to changing requirements promptly and with little effort
in order to satisfy specific requests. Formally, we have the
following definition: Flexibility is the ratio of the number of
requests that can be satisfied (adapted) over the total number
of requests, under predefined time and cost constraint [8].



2) Request: The request is specific to the use case; its
definition depends on the functionality of the system and what
factors can trigger the system’s adaptation. In this paper, we
consider the dynamic SDN control plane that is responsible for
the flow setup. With varying data plane traffic (defined for each
time slot), the adaptation of the control plane can be triggered
by the changing pattern of the flow setup requests. Without
adaptation, the network (i.e., system) would suffer from (i)
longer average flow setup time and (ii) higher controller load.

3) Time and Cost Constraints: The time constraint reflects
how fast the system can adapt. We argue that a system that
takes too long to react to new requests would not be deemed as
flexible. The adaptation of the control plane includes controller
migration and switch re-assignment [5], and both times should
be considered. The definition of cost constraint, on the other
hand, is broader and use case-specific. It can reflect the
induced cost of adaptation, which is the extra mechanism to
enable the adaption, the overhead to implement the adaptation,
and even a function of the system’s performance after and/or
before the adaptation [8]. For a flexible system, we would ex-
pect both constraints as small as possible. In the optimization
model, we pre-define thresholds of both aspects and admit a
failure of adaptation when at least one of the thresholds is
violated.

B. Design and Operation Phase

Two phases are involved in managing a flexible networking
system during its life-cycle: design and operation phase. In the
design phase, we decide the parameters of the system, which
are hard to change once the system starts to operate. In the
operation phase, we optimize the system-specific performance
metric at runtime, but under the constraints of system design
and operation. In our use case, the design parameters include
the number of DCs and their locations. The constraints of
the operation phase cover the parameters of DCs, the relation
between controllers and DCs, the properties of the control
plane, and the time of control plane adaptation. The possi-
ble performance metrics are flow setup time, control plane
reliability and overhead, etc.

IV. MATHEMATICAL MODEL

Based on the background of the previous section, we pro-
pose our optimization model to decide on that DC placement
inside the given topology which leads to the maximal flexi-
bility of the dynamic control plane. In other words, with the
static DC locations as candidates, the controllers can be placed
differently in each time slot among them to better satisfy
the requests under time and cost constraints. The number of
satisfied requests is defined as the optimization objective that
represents flexibility. Our model is an extension of the multi-
period facility location problem [18]. Further, we propose three
efficient heuristic methods to decide the DC locations.

A. DC Placement Model (FLEXDC)

We consider a physical network represented by � (+, �).
Every node (i.e., switch) in + has a switch, and is a candidate

TABLE I: Sets and Parameters

Notation Description

+ Set of nodes

� Set of links with � ⊆ + × +
� (+ , �) Network topology with node set + and link set �

� Set of possible DC locations with � ⊆ +
� Set of possible controller locations with � ⊆ + and � ⊆ �
�C Flow profile in time slot C with 5 [B] and 5 [3 ] as source

node and destination node for 5 ∈ �C
? 5 Ordered set of node pairs from source to destination on flow

path of 5 ∈ � with ? 5 ⊆ �
) Set of time slots

Πctr Number of controllers

Πdc Number of DCs with Πdc ≤ Πctr

Nsetup Threshold of average flow setup time

Nload Threshold of controller’s load

Ntime Threshold of adaptation time

for DC and controller. Network traffic during a certain time
slot, i.e., a flow profile �C , is represented as a set of flows
with each flow 5 defined by source 5 [B] and destination 5 [3].
There are ) time slots, and in each time slot C, the controllers
can only be placed on the nodes where DCs locate. The set of
possible controller locations is always a subset of the set of
possible DC locations, i.e., � ⊆ �. Note that for the sake of
simplicity, the set of possible DC locations � is the same
as the set of nodes + , but in reality, the two sets can be
different. We have three parameters to reveal our thresholds of
flow setup performance (Nsetup), controller’s node (Nload), and
latency of control plane adaptation (Ntime). All the sets and
parameters defined in this paper are summarized in Tab. I.
The notations and meanings of the variables are described in
Tab. II. Except for the variable P3dc that denotes the static
locations of the DCs, all the variables are defined per time
slot with superscript C. To better explain the model, we split
our constraints into different categories: the basic placement
model, the fulfillment of adaptation cost and time threshold,
and the outcome of adaptation in each time slot.

1) Basic Placement Model: This set of constraints consti-
tute the basic model of placing controllers and DCs, as well
as assigning switches to the controllers in each time slot. The
major difference of this model and the other CPP models is the
additional layer of DCs between the nodes and the controllers.∑

2∈�
P2,Cctr = Π2 , ∀C ∈ ) ; (1)∑

3∈�
P3dc= Πdc; (2)

P2,Cctr ≤ P3dc, ∀2 ∈ �, ∀3 ∈ �, ∀C ∈ ) ; (3)∑
3∈�
A2,3,Cctr = Π2 , ∀2 ∈ �, ∀C ∈ ) ; (4)∑

2∈�
AE,2,C

sw = 1, ∀E ∈ +, ∀C ∈ ) ; (5)∑
E∈+
AE,2,C

sw ≤ |+ | × P2,Cctr , ∀2 ∈ �, ∀C ∈ ). (6)



TABLE II: Variables

Notation Description

P3dc Binary variable representing if a DC is placed on 3 ∈ �
PCctr Binary variable representing if a controller is placed on

2 ∈ �C in time slot C

AE,2,Csw Binary variable representing if a node E ∈ + is assigned
to a controller 2 ∈ � in time slot C

A2,3,Cctr Binary variable representing if a DC 3 ∈ � hosts a
controller 2 ∈ � in time slot C

LE,C Non-negative variable representing the control latency of
a node E ∈ +

DD,E,Csw Binary variable representing if two nodes D, E ∈ + are
assigned to different controllers

S2,D,E,Cd Binary variable representing if both switches D, E ∈ +
are assigned to controller 2 ∈ �

TCtime Non-negative variable representing the overall adaptation
time in time slot C

LD,E,Cdd Non-negative variable representing control latency if a
flow is forwarded from D to E

TCctr_tran Non-negative variable representing the transmission part
of controller migration delay in time slot C

TCctr_prop Non-negative variable representing the propagation part of
controller migration delay in time slot C

TCsw_assign Non-negative variable representing the switch re-
assignment delay in time slot C

L2old ,2new ,C
sos Binary SOS variable representing if a migration happens

between two locations 2old and 2new

R2old ,2new ,C
ctr Binary variable representing the location of two controllers

in two consecutive time slots

L2,Cprop Non-negative variable representing the propagation delay
of migrating a controller 2 ∈ �

RE,2,Csw Binary variable representing if the assigned controller 2 ∈
� of node E ∈ + in time slot C is different from the
controller in time slot C − 1

MC
afst Non-negative variable representing the average flow setup

time in time slot C

MC
acl Non-negative variable representing the average weighted

control latency in time slot C

S2,Cctr Non-negative variable representing the amount of flow
setup requests served by a controller 2

BCsetup Binary variable representing if the flow setup performance
threshold is reached with MC

afst ≤ Nsetup

BCload Binary variable representing if the controller’s load thresh-
old is reached with S2,Cctr ≤ Nload

BCtime Binary variable representing if the control plane adaptation
time threshold is reached with TCtime ≤ Ntime

Eq. (1) ensures that there are only Πctr controllers in each
time slot C. Eq. (2) defines Πdc as the number of DCs available
throughout the whole time horizon ) . Eq. (3) ensures that
a controller can only be placed on the node that has a DC.
Eq. (4) ensures that a DC can only host one controller. A
switch is assigned to only one controller in time slot C, which
is enforced by Eq. (5) and Eq. (6).

LE,C=
∑
2∈�
AE,2,C

sw × 3 (E, 2),∀E ∈ +, ∀C ∈ ) ; (7)

S2,D,E,Cd = AE,2,C
sw × AD,2,Csw , ∀D, E ∈ +, ∀C ∈ ), ∀2 ∈ �; (8)

DD,E,Csw = 1 −
∑
2∈�
S2,D,E,C
3

, ∀D, E ∈ +, ∀C ∈ ) ; (9)

LD,E,Cdd = LE,C × DD,E,C
3

, ∀D, E ∈ +, ∀C ∈ ) ; (10)

Eq. (7) defines the control latency between a switch and
its controller. If the location of the switch and its controller
coincide, the control latency is 0; otherwise, the latency
defined as the shortest-path latency. If two nodes are adjacent,
3 (, ) returns the latency between them that equals to their
geographical distance divided by the speed of light in fiber
[5]; otherwise, 3 (, ) returns the shortest-path routing latency
between them.

Eq. (8) ensures that two switches are in the same control
domain if and only if they are assigned to the same controller,
where the binary variable S2,D,E,Cd represents if two switches
D and E are assigned to the same controller 2 at time slot C.
Meanwhile, Eq. (9) defines the binary variable DD,E,Csw which
represents if two switches D and E are in the different control
domains. Eq. (10) defines the induced latency LD,E,Cdd between
a pair of switches if a flow is forwarded from switch D to
switch E in time slot C. Note that LD,E,Cdd = 0 if D and E are in
the same control domain or there is a controller on E.

2) Flow Setup Performance (Cost Aspect): We consider
two cost aspects in this paper, i.e., flow setup performance and
load of controller. The flow setup performance is evaluated by
the average flow setup time MC

afst which depends on the flow
profile �C and the controller placement [25]. The flow setup
time represents the time it takes to forward the first packet
of a flow to its destination. It impacts the end-to-end latency
experienced by end-users if their applications create mostly
short-lived flows. We module it with the following equation:

MC
afst =

1
|�C |

∑
5 ∈�C

[
2 × L 5 [B],C+2 ×

∑
(D,E) ∈? 5

LD,E,Cdd

+3 ( 5 [B], 5 [3])
]
, ∀C ∈ ).(11)

For each time slot C, we average the end-to-end flow setup
time ) 5 of all flows in a flow profile �C with 5 [B] and 5 [3]
as source and destination node, and ? 5 is the ordered set of
node pairs from source to destination on flow path of 5 . The
exact modeling detail of end-to-end flow setup time can be
found in [25], which is omitted here because of the space
limitation.

Our previous work [5], [25] demonstrates that optimizing
MC

afst as the objective for a single time slot is much time-
consuming, not teqo mention a multi-period model. Eq. (11)
can be simplified to only consider the average control latency
of each node weighted by the number of new flows originate
from it, which is defined in the following constraint:

MC
acl =

1
|�C |

∑
5 ∈�C
L 5 [B],C , ∀C ∈ ). (12)

3) Load of Controller (Cost Aspect): If we model a con-
troller as an "/"/1 queue [26], the expected sojourn time
of flow setup request from a switch will surge if the arrival
rate of setup requests approximates the controller’s capacity. A



new flow profile with different traffic distribution can overload
a particular controller if the previous controller placement
retains and therefore, should trigger the adaptation of the
placement.

We consider the load of controller S2,Cctr as the second cost
aspect. It is defined as the total number of flow setup requests,
including both initial and intermediate ones, that the controller
needs to process in time slot C.

S2,Cctr =
∑
5 ∈�C
A 5 [B],2,C

sw +
∑
5 ∈�C

∑
(D,E) ∈? 5

AE,2,C
sw × DD,E,C

3
,

∀C ∈ ), ∀2 ∈ �. (13)

Similarly, we can also simplify it and only count the load
in terms of the initial flow setup requests, as followed,

S̃ctr
2,C
=

∑
5 ∈�C
A 5 [B],2,C

sw , ∀C ∈ ), ∀2 ∈ �. (14)

4) Adaptation Time (Time Aspect): Control plane adapta-
tion triggered by new flow profile consists of (i) controller
migration and (ii) switch re-assignment [5], [9]. We assume
that switches can only be re-assigned after controllers are mi-
grated to their new locations and have the following equation:

T Ctime = T
C

ctr_prop + T Cctr_tran + T Csw_assign , (15)

where T Cctr_prop, T Cctr_tran, and T Csw_assign denotes the controller
propagation, transmission delay, and switch re-assignment
delay respectively.

SDN controller is a software (e.g., ONOS [27] and Open-
Daylight [28]) running in a VM that can be migrated across
different DCs with live-migration techniques [29]. The propa-
gation delay of a migration is the shortest-path latency between
its old (at C − 1) and new (at C) location. Each controller in
time slot C selects the closest location of a controller in time
slot C − 1 and calculates its own propagation delay.

To model this selection procedure, we need to find the one-
to-one mapping of the controllers of the previous time slot
and current time slot. For this purpose, we leverage Spatial
Ordered Set (SOS) variables, which are supported by modern
linear solvers. In a set of SOS variables, at most one item can
take a non-zero value, whereas the remaining items must be
set to 0. We use binary SOS variable L2old ,2new ,C

sos to denote if
a migration happens between old and new controller location.
For example, L1,5,3

sos = 1 means that the controller on node 5
in time slot 3 is migrated from the controller on node 1 in
time slot 2. With the following constraint, we enforce only
one migration between a pair of old and new locations:∑

2old∈�

L2old ,2new ,C
sos = 1, ∀2new ∈ �, C ∈ ). (16)

As indicated in Eq. (17), the helper variable R2old ,2new ,C
ctr will

be set to 1 if there is one controller at 2old in slot C − 1 and
one controller at 2new in slot C.

R2old ,2new ,C
ctr = P2old ,C−1

ctr × P2new ,C
ctr , ∀2old, 2new ∈ �, C ∈ ). (17)

If there is a controller moving from 2old to 2new, the
propagation delay L2new ,C

prop is the latency between 2old and 2new,

otherwise it is set to a large number M (meaning an illegal
case), as described by the following constraint:

L2new ,C
prop =

∑
2old∈�

L2old ,2new ,C
sos ×

[
R2old ,2new ,C

ctr × 3 (2old, 2new)+

(1 − R2old ,2new ,C
ctr ) ×M

]
, ∀2new ∈ �, C ∈ ).(18)

Because the migrations of different controllers occur in paral-
lel, only the longest migration matters, whose delay is defined
by the following constraint:

T Cctr_prop ≥ L2,Cprop × P2,Cctr , ∀2 ∈ �, ∀C ∈ ). (19)

The controller transmission delay Tctr_tran is defined as the
time of transmitting the VM of a controller with the migration
bandwidth. It is evident that Tctr_tran does not become depen-
dent on the controller placement and is always a constant.
Therefore we can ignore it in Eq. (15).

Regarding the switch re-assignment, protocols like [30]
need to be designed to reroute all the switch-to-controller
messages. We model this time overhead as the propagation
delay between the switch and its new controller. Variable
RE,2,Csw represents if switch E is assigned to a different controller
other than 2 in slot C−1 and assigned to 2 in slot C, as followed,

RE,2,Csw = AE,2,C
sw × (1 − AE,2,C−1

sw ), ∀E ∈ +, ∀2 ∈ �, ∀C ∈ ).
(20)

We also assume parallelism of re-assignment, therefore the
overall delay T Csw_assign is defined as the maximum of all
induced delays in time slot C.

T Csw_assign ≥
∑
2∈�
RE,2,Csw × 3 (E, 2) × AE,2,C

sw , ∀E ∈ +, ∀C ∈ ).

(21)
Note that T Ctime is defined only for valid C − 1 and C. For the

time slot C = 0, since C−1 does not exist, we have T 0
ctr_prop = 0.

But for the switches, we define )0
sw_assign as the maximum

control latency as followed,

T Csw_assign ≥
∑
2∈�

3 (E, 2) ∗ AE,2,C
sw , ∀E ∈ +, C = 0. (22)

5) Optimization Objective: As introduced in Sec. III, flex-
ibility is defined as the number of requests that can be
successfully adapted under both time and cost constraints. In
each time slot C, we define three binary variables BCsetup, BCload
and BCtime to denote the fulfillment of two cost and one time
constraint respectively. For the cost in terms of flow setup
performance, if the average flow setup time MC

afst (or average
weighted control latency MC

acl for simplicity) is not greater
than the predefined threshold Nsetup, we set the variable BCsetup
to 1, as defined below:

BCsetup =

{
1, if MC

afst ≤ Nsetup

0, otherwise.
(23)

As if-condition expression cannot be implemented by linear
solvers, we translate it into its equivalence as follows,

Nsetup −MC
afst ≤ B

C
setup ×M, ∀C ∈ ), (24)

BCsetup × (Nsetup −MC
afst) ≥ 0, ∀C ∈ ), (25)



where M is a very big number.
We apply the same to the constraint of load of controller and

adaptation time, and have the following linear equivalences:

Ntime − T Ctime < B
C
time ×M, ∀C ∈ ), (26)

BCtime × (Ntime − T Ctime) ≥ 0, ∀C ∈ ), (27)

Nload − S2,Cctr ≤ BCload ×M, ∀C ∈ ), (28)

BCload × (Nload − S2,Cctr ) ≥ 0, ∀C ∈ ). (29)

Our single-objective optimization problem formulation is as
follows:

P : argP3dc
max

∑
C ∈)
BCtime × B

C
setup × BCload, ∀C ∈ ), (30)

s.t. (1)-(11), (13), (15)-(22), (24)-(29).

The simplified version is as follows:

P′ : argP3dc
max

∑
C ∈)
BCtime × B

C
setup × BCload, ∀C ∈ ), (31)

s.t. (1)-(10), (12), (14)-(22), (24)-(29).

Given a flow profile �C of each time slots C ∈ ) , our objec-
tive is to decide the DC locations which maximize the total
number of successful adaptations. Each successful adaptation
corresponds to the case when BCtime = B

C
setup = BCload = 1.

It’s obvious that the formulation of P includes non-linear
constraints such as Eq. (8), Eq. (10) and Eq. (18). In this
regard, we apply two linearization techniques [25] and create
auxiliary constraints to make them supported by linear solvers.
If we have a variable 2 that is the product of two binary
variables 0 and 1, i.e., 0 = 1 × 2, we could replace it with
following three constraints (i) 2 ≤ 0, (ii) 2 ≤ 1, and (iii)
2 ≥ 0 + 1 − 1. Likewise, a variable 2 that is the product of a
binary variable 0 and non-negative variable 1 (1 ∈ [0,∞))
could be replaced by four constraints and a big constant
numberM, i.e., (i) 2 ≤ 0×M, (ii) 2 ≤ 1, (iii) 2 ≥ 1−(1−0)×M,
and (iv) 2 ≥ 0. The choice of M dependents on the range of
1: for example for Eq.(10), we use the upper bound of LE,C
which is the maximum inter-node forwarding latency in the
topology.

B. Heuristic Methods for DC Selection

The optimization’s runtime of FLEXDC increases exponen-
tially for large-size topology and more time slots. Therefore,
we propose three methods to decide DC locations efficiently
with less knowledge of flow profiles.

1) DC Selector with Random Selection (RANDOMDC):
This is a vanilla method that selects DC locations in a purely
random manner. We only need the number of DCs and the
topology as input. It serves as a baseline to evaluate the
performance of other methods.

2) DC Selector toward Minimum Average Control Latency
(ACLDC): Our first heuristic borrows the output of the legacy
controller placement problem, optimizing the average control
latency of switches in the network. For huge topology size,
heuristic algorithms with acceptable optimization gaps can be
applied, such as [31].

3) DC Selector with Half input (HFDC): One factor that
contributes to the complexity of the original model P is
the number of time slots. With this method, we optimize P
considering only the first half of the time slots. Note that this
number can be amended depending on the traffic input.

C. Measurement of Flexibility

For FLEXDC, the achieved flexibility is indicated by the
objective of problem P divided by the number of adapta-
tions |) |. However, the above three methods do not output
flexibility directly; thus, we need a process to measure it.
The measurement process can be performed by optimizing
the problem P or P′ but with DC placement variable P3dc fixed
according to the DC locations. For example, if the three DC
locations returned by RANDOMDC are 0, 3, and 8. We need
to explicitly set P0

dc = P
3
dc = P

8
dc = 1 and the others to 0 in the

linear optimizer. The output is the maximum flexibility value
that can be achieved by those DC locations and the controller
placement in each time slot.

V. EVALUATION AND DISCUSSION

This section reports the evaluation of the proposed FLEXDC
model and efficient methods. It first describes the setup and
parameters of our evaluation. Afterward, it compares the
performance in terms of both flexibility and runtime, as well
as derive take-away messages for SDN network design.

A. Evaluation Setup and Parameters

We evaluate two real-world topologies Abilene and AttMpls
from the Topology Zoo [32] for 5 and 10 slots. For each time
slot, we create a random number of flows that follow a uniform
distribution from 1 to 10 (Abilene) and 1 to 100 (AttMpls).
We variate the number of DCs from 2 to 6, fix the number of
controllers to be 2, and optimize the problem formulation P′.
Regarding the thresholds, we envision different combinations
would lead to different flexibility values. Therefore, for Nsetup
and Nadapt, we multiply the maximal inter-node forwarding
delay with the list of [0.125, 0.15, 0.175, 2.0] and [0.6, 0.7,
0.8, 0.9, 1.0] respectively, whereas for Nload, we use the list
of [30, 40, 50, 60, 70].

B. Results

We use two main performance metrics for our evaluation:
flexibility and runtime. The flexibility is the ratio of the
number of successful adaptations to the total number of new
flow profiles as requests. The runtime is the time it takes to
output the DC locations, which includes the time of optimizing
controller placement and DC locations for FLEXDC. For a
better demonstration, we compress most of the results and
demonstrate them with 2-D heatmaps: we fix one of the three
constraints with a high value and variate the coefficients of
the other two (values as indicated above) on the two axes. The
brighter the color is, the higher the value would be. Because
of the space limit, we only show the cases with Πdc = 2, 4,
and 6 from left to right.
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Fig. 2: Heatmap of flexibility with different control latency and
adaptation time constraint coefficients (FLEXDC, Abilene, |) | = 5).
The plot from left to right illustrates the case of Πdc = 2, 4, and 6
respectively. Same applies to the following figures.
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Fig. 3: Heatmap of runtime with different control latency and
adaptation time constraint coefficients (FLEXDC, Abilene, |) | = 5)

1) FLEXDC: Fig. 2 illustrates the impact of adaptation time
and average control latency constraints. For 4 and 6 DCs, an
increase of the adaptation time constraint coefficient (ATC for
short) with fixed weighted control latency constraint coeffi-
cient (CLC for short) results in an increase of the flexibility,
which is not shown for 2 DCs. This is because 2 DCs would
not allow any migration of 2 controllers; thus, higher ATC does
not help. However, fixing ATC and increasing CLC leads to
higher flexibility for all three cases. Another observation from
the figure is that more DCs tends to increase the flexibility for
the same coefficient combination. However, when we compare
Πdc = 5 (not shown in the figure) and Πdc = 6, the increase is
not apparent compared with the smaller number of DCs. This
complies the effect of diminishing return [7], [25]. For most of
the coefficient combinations, 6 DCs would be an over-design
that does not bring much benefit but induces an obvious higher
cost of investment.

As for the runtime in Fig. 3 (note the logarithmic scale),
the increase of runtime goes hand-in-hand with the increase
of Πdc for most coefficient combinations. For fixed Πdc, there
is a loose relation between the coefficients and runtime.

Fig. 4 shows the topology of Abilene with node IDs.
Fig. 5 illustrates the normalized distribution of DC locations
of 20 coefficient combinations (corresponding to 20 grids in
the heatmap): the sizes of the circles denote the empirical
distribution of the possibility that a node is selected to host a
DC. In general, some nodes (e.g., 0 and 3) are more likely to
be selected than others (e.g., 5 and 8). When fewer DCs are
available, their location distribution is more concentrated on
some nodes. The most selected DC locations for Πdc = 2 are
(2, 3) and (0, 4), which are pushed toward two sides in the
topology as controller migration is not allowed to happen.

Fig. 6 shows the impact of controller load constraint (short
for LC) and ATC, with fixed CLC. Similar to Fig 2, ATC does
not impact flexibility for Πdc = 2. For all cases, increasing LC
results in higher flexibility. The observation of runtime (not
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Fig. 6: Heatmap of flexibility with different adaptation time and
controller load constraint coefficients (FLEXDC, Abilene, |) | = 5)
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Fig. 7: Heatmap of flexibility with different control latency and
adaptation time constraint coefficients (FLEXDC, Abilene, |) | = 10)
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Fig. 8: Heatmap of runtime with different control latency and
adaptation time constraint coefficients (FLEXDC, Abilene, |) | = 10)

shown) is also similar to Fig. 3.
We report the flexibility and runtime of |) | = 10 in Fig. 7

and Fig. 8. The general observation of different coefficient
combinations is similar to |) | = 5. Longer runtime is intuitive
because of a larger input set. Regarding the flexibility, since the
flows of different time slots are randomly generated without
interdependence, it becomes less likely to find an optimal DC
placement to satisfy the constraints. Nevertheless, if the flows
follow a diurnal pattern or are predictable, the flexibility would
increase for both |) | = 5 and |) | = 10.

2) RANDOMDC: As a vanilla approach, RANDOMDC se-
lects DC locations randomly from the topology with negligible
runtime. Because we create new DC locations for each coef-
ficient combination, Fig. 9 looks rather irregular. For several
parameter combinations, the flexibility is nearly 0. Only higher
Πdc tends to lead to higher flexibility.

3) ACLDC: This method takes Πdc as input and optimizes
the locations towards the minimum average control latency
as if all DCs are home to controllers. The runtime does
not depend on the constraint combination, which is in the
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Fig. 9: Heatmap of flexibility with different control latency and adap-
tation time constraint coefficients (RANDOMDC, Abilene, |) | = 10)
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Fig. 10: Heatmap of flexibility with different control latency and
adaptation time constraint coefficients (ACLDC, Abilene, |) | = 10)
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Fig. 11: Heatmap of flexibility with different control latency and
adaptation time constraint coefficients (HFDC, Abilene, |) | = 10)

magnitude of seconds for both topologies. Fig. 10 depicts
the achieved flexibility. Comparing with FLEXDC, the gap
is minor for relaxed constraints. In addition, ACLDC can
achieve at least the same flexibility for almost all coefficient
combinations with 4 DCs (see the heatmap in the middle in
Fig. 10) with RANDOMDC with 6DCs (see the heatmap on
the right in Fig. 9), which is a significant cost saving.

4) HFDC: HFDC only optimizes the first 5 time slots
and output the optimal DCs, which are evaluated on all 10
time slots. Its runtime is similar to Fig. 3, which is obviously
higher than the other two methods. Fig. 11 illustrates that the
flexibility is worse in most cases compared with ACLDC. This
is because of the traffic pattern we have mentioned before. We
envision that for traffic that is periodic or has a specific trend,
HFDC would be a competent candidate to save runtime.

5) Attmpls Topology: Because the runtime of FLEXDC on
AttMpls takes more than 10 hours for a single coefficient
combination, we prefer using ACLDC and showing its result,
as depicted in Fig. 12. We can observe that increasing Πdc
and relaxing CLC result in higher flexibility, whereas varying
ATC does not have an obvious impact.

C. Key-Takeaways

In summary, the coefficient of constraints plays a crucial
role in restricting the maximum achievable flexibility. The
runtime of FLEXDC can hinder its usability for large |) | and
topology size, giving way to our proposed heuristic methods.
The optimal DC locations of FLEXDC depends on the cost
factors that we employ. When the constraints are not tight,
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Fig. 12: Heatmap of flexibility with different control latency and
adaptation time constraint coefficients (ACLDC, AttMpls, |) | = 10)

ACLDC is the right candidate for FLEXDC, whereas when
the traffic has a cyclic pattern, HFDC shows its advantage by
only taking the flow profiles of the first cycle. Furthermore,
both ACLDC and HFDC can achieve the same flexibility but
with less number of DCs, comparing with RANDOMDC.

VI. CONCLUSION AND FUTURE WORK

Network softwarization envisions higher flexibility of net-
works, including flow routing, function orchestration, and
resource scaling. A flexible network endows the ability to
cover future new demands without the need to jump into a
new system, which implies a huge cost. While comparing
different system designs, a flexibility measure would benefit
us in making a decision, together with other performance
metrics. With the knowledge of how a flexible would look,
it is more promising to optimize for higher flexibility by a
careful selection of the system’s parameters.

In this paper, we initiate the study of DC placement towards
a flexible control plane in the face of dynamic traffic. We
propose a framework for optimizing the flexibility of an SDN
network. Under the threshold of adaptation cost and time, the
optimization model FLEXDC optimally decides the static DC
locations and dynamic controller placement for each time slot.
Evaluation results show that the coefficients play a vital role in
the flexibility value. Our proposed efficient methods ACLDC
and HFDC can solve DC locations with acceptable optimality
gap. To further increase the flexibility, one additional factor,
besides the system’s performance, we need to consider while
proposing novel techniques is the time it takes for the system
to adapt in the face of changing requests.

For future work, it would be interesting to model other
cost factors that are induced by control plane adaptation, such
as the signaling overhead. Besides, designing better heuristic
algorithms to decide DC locations and even dynamic controller
placement is worthy of investigation.
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