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Abstract

View synthesis is a process for generating novel views from a scene which has been

recorded with a 3-D camera setup. It has important applications in 3-D post-production and

2-D to 3-D conversion. Being able to modify the baseline of a stereo camera setup after a

movie has been recorded is crucial for the correct representation of depth at the site of the

observer. View synthesis is also the only practical way to generate the many views which

are required for autostereoscopic displays which enable more than one viewer to watch

a movie at the same time. However, virtual view synthesis generates holes in the output

image due to disocclusions, which appear when background content which was occluded

by foreground objects becomes unveiled in the virtual view. How to properly fill in these

holes is a question of great research interest because it is one of the most important factors

to determine the quality of the output. In this thesis, I provide a comprehensive review of

the state of the art in hole-filling algorithms and propose two novel hole-filling algorithms

which are able to fill in disocclusions in a visually plausible way. The design goal with

the highest priority when developing these algorithms was superior image quality, while

still being computationally tractable. The results of both algorithms compare favorably

to the ones generated by state-of-the-art hole-filling algorithms in terms of visual quality,

which I will demonstrate with suitable objective quality metrics, some of which have been

tailored to analyze synthesized views. I substantiate these results with a crowd-sourced

subjective study, a novel method for evaluating virtual views which I will validate against an

independent laboratory study.
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1. Introduction and Motivation

1.1. The State of the Art in 3-D Video Reproduction and

Broadcasting

3-D television is dead, for now. In 2018, Samsung as one of the last manufacturers of 3-D

television sets decided to no longer produce new models with 3-D functionality. After the

cinematic release of the movie Avatar in the year 2010, 3-D technology seemed to be on a

steady rise. For the first time, high quality 3-D stereoscopic content was produced by movie

studios and with the increasing dissemination of HD television sets capable of reproducing

this content, 3-D soon became a commodity feature of every TV set produced by the large

manufacturers. However, the actual adoption of the technology at home was much lower

than anticipated. While customers still seem to be willing to pay a premium for watching

a cinema movie in 3-D at the movie theaters, the adoption at home never really took of,

resulting in its eventual demise [1]. The reasons for this course of events are probably

too diverse to capture them here completely. The need to wear glasses, low availability

of high quality content and bad 2-D to 3-D conversion are some of the most frequently

mentioned reasons [2]. However, there are still major technological issues which have not

been solved yet and which probably contributed to this decline.

Currently, common 3-D video technology is based on stereo systems, i.e., during pro-

duction, the content is being filmed with two cameras and these two views are then re-

produced at the receiver. The reproduction with stereoscopic displays requires the user to

wear glasses so that the two views can be separated and displayed independently for each

eye. Different technologies exist for separating the views, either with active shutter glasses

which synchronize to the refresh rate of the display to facilitate temporal multiplexing of the

views, matched polarization filters in the glasses and the display to separate the images
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1. Introduction and Motivation

based on their polarization, or very narrow-band color filters in the glasses which utilize

minimal wavelength differences in the reference color stimuli of the display.

In any case, the quality of the separation of the two views has a significant influence on

the quality of experience of the 3-D representation, as an insufficient separation leads

to ghosting artifacts in the view. Even if one would achieve a perfect separation of the

views, a major drawback leading to viewer discomfort lies in an incorrect baseline of the

two views. 3-D content is typically produced and optimized for the reproduction on large

cinema screens. Depending on the size of the TV screen and the distance of the observer

from the screen, this baseline may be incorrect which leads to an incorrect representation

of depth [3], and as a result, viewer discomfort [4]. To solve this problem, one or both of the

s1

z1

z2

s2

dd

Figure 1.1.: Given a fixed disparity d , a change in the viewing distance of the observer from s1 to s2 changes
the perceived depth from z1 to z2. This leads to a misrepresentation of the depth of the objects in the scene.
Similarly, a change in the physical size of the screen might lead to a change in d , e.g. when displaying cinema
content on a home screen.

two views need to be repositioned depending on the distance of the observer, a technique

known as stereo repurposing [5].

The fact that one has to wear glasses in itself creates a discomfort for viewers which aren’t

accustomed to wearing these glasses. Autostereoscopic displays promise to rid the user

from having to wear glasses by separating the different views spatially. By using lenticular

lenses or parallax barriers in front of the display, the user will see different pictures from

different viewing angles with respect to the display. While this enables a 3-D reproduction

18



1.1. The State of the Art in 3-D Video Reproduction and Broadcasting
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Figure 1.2.: This plot shows the cumulative bitrate required for the transmission of multiple views with the
same PSNR. Even though Multi-View (Video) Coding (MVC) reduces the bitrate required for the transmission
significantly compared to simulcast, there is still a linear increase with the number of views. Data from [7].

without glasses, the user has to be at a certain spot and at a certain distance in front of the

display for this technique to work. If one wants to create a display where the user has more

freedom to move in front of the display or where multiple viewers sitting next to each other

can watch at the same time, the autostereoscopic display must reproduce many more than

only two views of the same scene. In fact, current prototypes of autostereoscopic displays

require up to 70 views of the same scene [6].

Transmitting such a high number of views through traditional broadcasting channels in-

creases the required bitrate significantly. Multiview extensions of existing stereo video

codecs, while more efficient than transmitting the views individually, still require a bit rate

which typically increases linearly with the number of views as shown in Figure 1.2.
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1. Introduction and Motivation

1.2. View Synthesis and its Applications

Many of the technical problems which I’ve described so far can be solved by view syn-

thesis. View synthesis allows the generation of an arbitrary number of views from varying

viewpoints with only a limited set of input views. If done at the receiver, this enables the

display to adapt the baseline on the fly to the required baseline at the location of the ob-

server and, for multi-view autostereoscopic displays, to produce all required views from

only a limited stream of information. One technique to generate such virtual views that has

gained momentum in recent years is called Depth-Image-Based Rendering (DIBR). There,

the virtual view is generated from the image of one or more cameras and corresponding

depth maps.

1.3. Limitations of Existing View Synthesis Systems

A central problem in the generation of novel views lies in the handling of disocclusions.

Background content, which was occluded in the original view by objects that were closer

to the camera, may become unveiled in the virtual view. In a setup with two or more

cameras, these so-called disocclusions may be partially filled with content from another

camera, yet some disocclusions usually still remain [8]. Figure 1.3 shows a schematic

example of how these holes emerge. Even more challenging, when there is only one view

and a corresponding depth map, there is no other other information available to fill the

holes in the resulting view and the holes may have to be filled with synthetically gener-

ated content. This is, for example, the case in 2-D to 3-D conversion or in transmission

schemes with only one texture and depth map such as the one proposed in the Advanced

Three-dimensional Television System Technologies (ATTEST) project [9, 10]. ATTEST was

a project of the Information Society Technologies (IST) programme by the European Com-

mission which task was to develop a commercially feasible 3D-TV system which should be

backwards compatible to existing 2-D transmission schemes. The outcome was a trans-

mission chain which combined a conventional MPEG-2 encoded 2-D base layer with an

MPEG-2 or MPEG-4 encoded 3-D enhancement layer which basically consisted of the

depth-map with some additional meta data. This makes it possible to either display the

2-D stream on a 2-D television screen or use a 3-D TV capable broadcast decoder which

20



1.3. Limitations of Existing View Synthesis Systems

CL CRCV

Background

Foreground

Figure 1.3.: The disocclusion appears in areas where the background is occluded by foreground content in
the original view. Even with multiple views CL and CR , e.g. from a stereo camera setup, there can be areas in
a virtual view CV which are not covered by any of the two cameras.

would perform depth-image-based rendering to create the required views for single- or

multi-user 3-D TVs.

A number of solutions have been proposed for the problem of handling disocclusions. Most

of the algorithms can be classified into one of two categories. The first category sets out

to mitigate the problem by eliminating the root cause. These algorithms modify the depth

map in a way so that no holes in the synthesized views appear. Disocclusions appear at

regions in the image where there is a steep gradient in the depth-map, i.e., at the borders

of foreground objects. Zhang et al. [11] proposed a technique where the depth-map is

filtered to remove these steep gradients. The result is a virtual view which doesn’t contain

any holes, at the cost of an incorrect reproduction of the depth which may lead to visible

errors [12]. Fehn et al. [10] proposed a very similar method with a Gaussian low-pass filter

to smooth the depth image. Another way is the use of so-called inpainting techniques.

Inpainting describes a process where holes in images are filled with synthesized content

in a visually plausible manner so that the viewer doesn’t recognize that the content has

been generated artificially.

21



1. Introduction and Motivation

Figure 1.4.: Given an input image and a corresponding depth-map, one can generate virtual views, a process
which is called depth-image-based rendering (DIBR). However, disocclusions appear where background is
unveiled which was occluded by foreground objects in the original view.

1.4. Formulation of the Research Problem

Hole filling remains one of the most central problems in view synthesis. How a view synthe-

sis algorithm deals with disocclusions is probably one of the most significant influencing

factors of the quality of the synthesized output. While there are several very promising

approaches in literature, many of those exhibit significant weaknesses in image quality,

computational requirements or both, as I’m going to show in this thesis. How does one

even evaluate the image quality of synthesized views? Is it possible to objectively quan-

tify whether an image looks natural to an observer? In literature, there does not seem to

be an agreement on how to answer this question except resorting back to PSNR. In this

thesis, I therefore want to develop algorithms for hole filling in view synthesis and properly

investigate methods to evaluate their performance in terms of visual quality.

1.5. Contributions

In my thesis, I’m presenting two novel approaches for handling the disocclusion problem in

DIBR. Disocclusion handling is closely related to the image inpainting problem. However,

no existing inpainting algorithm delivers satisfying results when directly applied to the dis-

occlusion problem. Therefore, I’m going to give an extensive review of the image inpainting

field, explaining the challenges in applying some of the most promising algorithms to DIBR

and present novel solutions on how to extend these algorithms for the aforementioned re-

search problems. As I’m going to present in more detail over the course of this thesis,

state-of-the-art research in this field can be categorized into several classes of different al-
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1.6. Outline

gorithms, e.g., exemplar-based techniques or learning algorithms. I’ve made contributions

to two main classes and present the results of these algorithms, each surpassing the state

of the art in DIBR algorithms. Furthermore, I’m going to review which metrics are available

to quantify the visual quality of virtual views, evaluate their accuracy, and propose a new

method to conduct subjective studies to evaluate the quality of virtual views with the online

crowdsourcing tool QualityCrowd, thereby reducing the effort and time required to evaluate

these algorithms.

1.6. Outline

Part I of this thesis covers the fundamentals of view synthesis. In Chapter 2 I’m going

to show the process of generating novels views with depth-image-based rendering and

explain the preliminaries needed for this process. Part II then focuses on the problem

of hole filling in detail. In Chapter 3 I’m going to provide an overview over the state of

the art in hole-filling techniques with a survey of view synthesis algorithms which address

this problem. Diving deeper into suitable inpainting algorithms to synthesize content and

possible challenges that arise when applying them to the hole-filling problems, I’m going

to develop and propose two novel methods for hole filling in Chapter 4. Finally, in Part III,

I’m addressing the problem of the evaluation of these algorithms. I’m starting with a review

of existing objective metrics and evaluate their suitability for the kind of artifacts which can

be introduced by the view synthesis process in Chapter 5. In Chapter 6 I’m presenting an

online subjective study on the image quality, comparing its results to a traditional lab study

and, of course, evaluate the how the proposed algorithms perform. Lastly, I’m going to

wrap up this thesis with a conclusion in Chapter 7.
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View Synthesis
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2. Depth-Image-Based Rendering

2.1. Introduction

Image-Based Rendering (IBR) is a result of the convergence between the two classi-

cal fields of Computer Vision and Computer Graphics which started more than 20 years

ago [13]. Instead of trying to model a virtual scene in 3-D and projecting two-dimensional

views, image-based rendering is a process where novel views are generated from one

or more views which have been captured by cameras. Because photorealistic render-

ing of computer-generated content requires significant modelling efforts and can only be

achieved with raytracing techniques which incur tremendous computational costs, it seems

appealing to use captured images as the basis for the rendering of virtual views. Depth-

Image-Based Rendering (DIBR) amends the captured image by a depth image (often

called a depth map) to get the necessary depth information for the synthesis of novel

views.

Pre-
processing

Depth
Estimation Encoding

Decoding Image
Warping

Hole
Filling

Figure 2.1.: Signal flow from the capture of the content with a stereo camera pair, the pre-processing steps,
the depth estimation, encoding, transmission, decoding, and finally the DIBR step.

Figure 2.1 shows a very abstract and simplified signal flow for a depth-image-based ren-
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dering chain, including the transmission from the site where the scene is recorded to the

receiver where different views of the scene are reproduced. In the first step, the scene is

recorded by two or more cameras from different viewpoints which ideally have been syn-

chronized to capture the images at identical time instances. The captured images then

get pre-processed which includes color matching to deal with differences in color rendi-

tion of the cameras and rectification if the camera setup is approximately parallel. In the

next step, the depth map, if it has not been captured directly by the cameras through a

time-of-flight measurement, is estimated from the disparity between the different images.

Typically, further processing of the depth map is then necessary to get the required dense

depth maps of sufficient quality for depth-image-based rendering. The images and depth

maps then get encoded, transmitted and decoded at the receiver. There, the actual DIBR

step takes place with image warping and hole filling to render the desired views from the

captured scene which can then be displayed.

In the following chapters of this thesis, I want to give a brief overview over the steps in

this chain, in every step explain the techniques that I’ve applied to create the views that

are used during this thesis, give a short overview into the state of the art in the respective

research field of each step and of course introduce my contributions in the hole-filling step.

2.2. Image Warping

2.2.1. Fundamentals

Image Warping describes the process of transforming the image of one camera into a

virtual camera at a different viewpoint. To this end, the points in the image of the original

camera have to be mapped into 3-D space (Mark calls this process an "un-projection" [14])

and then projected back into the 2-D image plane of the virtual camera.

For a mathematical description of this process, I have to take a short excursion into the

field of projective geometry because it allows for a rather elegant representation of the

underlying mechanisms. Figure 2.2 shows a typical setup with two cameras oriented such
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M

mr

Cr Cv

mv

Figure 2.2.: Geometry of a setup with two cameras. The left camera is the reference camera; the right one
is the virtual view. The camera centers are at Cr and Cv , respectively. Both cameras are looking at the same
point M in 3-D space which leads to the image points mr and mv in the camera planes.

that both cameras can see a point

M =


X

Y

Z

1


in the world coordinate system and its projection

mr =


u

v

1


in the image plane of the reference camera.

Using projective geometry, the relationship between both points can be formulated as a

linear equation

mr ' P r M (2.1)

where P r is the projection matrix of the reference camera and ' denotes equality up to a

constant scaling factor. In general, the projection matrix

P r ' Kr

[
Rr tr

]
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is composed of the intrinsic camera parameters

K = 1


αu γ u0

0 αv v0

0 0 1


with the principal point [ u0 v0 ]T , the scale factors αu and αv , the skew factor γ, and the

extrinsic parameters R and t which define the orientation (rotation and translation) with

respect to the world coordinate system which are sometimes combined to a displacement

matrix

D =
[

R t
]

.

Most often, it is more convenient to directly specify the point in space C where the camera

is located and the camera’s orientation RC . The relationship between both representations

can simply be deduced as[
R t

0T
3 1

]
=

[
RC C

0T
3 1

]−1

=

[[
I3 C

0T
3 1

][
RC 03

0T
3 1

]]−1

=

[
RC 03

0T
3 1

]−1 [
I3 C

0T
3 1

]−1

=

[
RT

C 03

0T
3 1

][
I3 −C

0T
3 1

]

=

[
RT

C −RT
CC

0T
3 1

]
,

(2.2)

where I3 denotes the 3× 3 identity matrix and 03 the 3× 1 zero-element vector.

When I combine equations 2.1 and 2.2, I get the following formula for the projection

λmr =
[

K 03

] [ RT
C −RT

CC

0T
3 1

]
M = KRC


X

Y

Z

− KRCC,
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where λ denotes the homogeneous scaling factor.

From here, I can derive the back-projection, which is the inverse transformation from the

camera plane to world coordinates, as
X

Y

Z

 = C + λR−1
C K−1mr , (2.3)

which provides a good intuition for the process of the back-projection: from the origin of the

camera a ray is cast in the direction of the pixel ml with a scaling factor λ which depends

on the distance of the object from the camera or the depth of that point.

Similarly, the same applies to the virtual view (in this case the right-hand camera)

mv ' Pv M.

2.2.2. Forward and Backward Mapping

Applying Equation 2.3 for the reference and the virtual view provides the following equation

for mapping a pixel in the reference view mr into the virtual view mv

Cv + λv R−1
v K−1

v mv = Cr + λr R−1
r K−1

r mr

mv =
λr

λv
Kv Rv R−1

r K−1
r mr +

1
λv

Kv Rv (Cr − Cv )
(2.4)

For the special case of a lateral motion of the camera, only, with a rectified geometry, this

equation gets significantly simpler. As both cameras are parallel to each other and facing

the same direction, Rv = Rr , and because both cameras have identical intrinsic properties,

Kv = Kr . With λ = λr = λv , I get

mv = mr +
1
λ

Kv Rv (Cr − Cv ) .

I also know that the lateral motion only changes the x-component of Cr and Cv ; the y - and
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(a) (b)

Figure 2.3.: Two examples of how the forward mapping strategy leads to tiny holes which can be seen all over
the warped images (a) and (b). In contrast to the large holes which stem from the disocclusion, these are
sampling artifacts due to rounding to the nearest discrete pixel location.

z-component remain the same, which simplifies the equation further to

xv = xr +
1
λ

Kv Rv (Cr − Cv ) = xr + u(xr ), (2.5)

where u(xr ) denotes the disparity associated with pixel xr .

In either case, if Z is known, I can calculate λ as

λ =
Z − Cz

τ3
with τ = R−1

v K−1
v mv ,

where Cz is the third component of Cv and τ3 denotes the third component of τ .

Given a certain discrete point on the reference image mr or xr , respectively, the resulting

point mv or xv . will most probably land at a subpixel location, which requires rounding

to get the nearest full-pixel location in the target image. Therefore, this forward mapping

of the image into the target image will likely introduce holes because some areas in the

target image are not covered when scanning over the reference image. Figure 2.3 shows

the sampling artifacts that get introduced by this forward mapping technique.

On the other hand, because I have to round to the nearest target pixel location, it can hap-

pen that two or more reference pixels become mapped to the same target pixel location. It

is therefore advantageous to store the target depth value in a depth map at the same time

as I create the target image, a process which in computer graphics is called z-buffering. I
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M

mr

Cr Cv

mv

e

Figure 2.4.: The backward mapping strategy makes use of the epipolar geometry in a two-camera setup. Point
e is the epipole [15], i.e. the imaginary point of the center of the virtual camera Cv in the reference camera
image. mv can be found by searching along the epipolar line de.

can then compare the two depth values of the pixels that are being mapped to the same

location and choose the one which is closer to the virtual camera because this pixel would

occlude the the pixel which is further away.

It is possible to avoid the creation of the holes due to the sampling problem of the for-

ward mapping approach by using a technique called backward mapping. There, I’m not

scanning over the reference image but rather over the virtual image and search for the

respective location in the reference image.

I can rewrite Equation 2.4 to

mr =
λv

λr
Kr Rr R−1

v K−1
v mv +

1
λr

Kr Rr (Cv − Cr ) (2.6)

which is equivalent to

mr = Hmv + de,

where H = P−1
r Pv which defines the homography between the screen plane of the virtual

view and the reference camera plane, e is the epipole (the point where the line Cv − Cr

intersects with the reference plane) and d is a scaling factor. Therefore, if I want to find

the pixel in the reference image mr which corresponds to the pixel in the virtual view mv ,

I have to search along the epipolar line de for the value which has the minimum depth to
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the reference camera. This strategy guarantees that there will be no holes in the virtual

view due to the sampling artifacts described in the forward mapping strategy. However,

this comes at the computational cost of having to search along the epipolar line.

Applying either of the techniques just presented allows me to create an arbitrary view of a

scene as long as the camera parameters are known and as long as the distance of each

pixel from the origin of the camera is known.

2.3. Depth Map Generation

A crucial prerequisite for the image warping process is knowing the depth Z at every

pixel mr of the reference image. Typically, this depth is encoded into a depth map which

is a single-channel grayscale image where the depth at each pixel is encoded into the

brightness of that pixel. Before I go into detail of how this information is encoded, I want to

give a short overview of techniques for the acquisition of this depth information. The quality

of this process for the generation of the depth map highly influences the quality of the view

synthesis process. Incorrect depth data will necessarily lead to an incorrect generation of

the novel view with easily recognizable artifacts. However, due to the numerous challenges

in the acquisition of a correct depth map, I consider this to be a research problem on its

own (and a still a very active field in that) which lies outside of the scope of this thesis. I will

simply consider the depth maps to be given and accept the limitations of the underlying

techniques. Nevertheless, I want to briefly give an overview over the different forms of

acquisition that exist and present the techniques which have been used to generate the

depth maps which I’m using.

2.3.1. Depth Estimation

The most commonly used way to acquire the depth information is to estimate the depth

from multiple images which have been recorded from different viewpoints. There, the

depth is determined by the disparity between common features of the scene in different

images. As I need to obtain a dense depth map (i.e. there is a depth value for every single

pixel), the challenge here lies in finding enough correspondences between the pictures

34



2.3. Depth Map Generation

and resolving ambiguities, e.g., if the image content is very homogeneous or consists

of repeating structures. Therefore, typically a number of techniques are applied for the

regularization of the estimation problem and the post-processing of the depth map.

The latest evaluation on the Middlebury version 3 stereo data set [16] provides a com-

prehensive overview over different algorithms for creating dense depth maps from stereo

pairs. In this thesis, I’m evaluating my algorithms with two sequences which I will present in

detail in Section 6.2.2. For the sake of easier comparability against published algorithms,

I’m using the depth maps which were published with these two test sequences. For the

Lovebird sequence, these depth maps were generated using the MPEG Depth Estima-

tion Reference Software (DERS) [17] and in the Ballet sequence, an iterative refinement

algorithm published by Zitnick et al. [18] was used to calculate the depth maps.

2.3.2. Depth Acquisition

Instead of estimating the depth from stereo pair, there exist a number of techniques to

directly capture the depth of a scene. Structured light or coded light methods project

patterns of light onto the scene or object and measure the deformation of these patterns

with a camera. By using infrared light, these methods can be used invisible to the eye or

in conjunction with an RGB camera. The captured depth maps can be of very high quality

and are even used for measurement applications, however, the success depends on how

well the reflection of the projected pattern can be picked up by the camera, making it

susceptible to the influence of ambient light and to the properties of the object itself. Also,

this technique is not very well suited for moving objects because a number of different

patterns have to be projected in succession to facilitate the measurement of depth maps

of sufficient resolution and density.

Time-of-flight cameras don’t measure the shape of the reflected pattern, but instead mea-

sure the round-trip-time from emitting the light rays until being sensed by the camera.

While these systems can capture the depth map very quickly with frame rates of up to 160

Hz, they still suffer from low depth and spatial resolution, low accuracy and relatively high

noise [19]. These, too, are susceptible to ambient light [20].

Light field cameras or plenoptic cameras capture not only the intensity of light rays entering

the camera but also the direction of these rays. This knowledge enables the calculation
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of the depth map [21, 22]. In practice, available light field cameras are using micro-lens

arrays in front of the sensor and therefore the task of finding correspondences in these

micro-apertures remains the same as in a stereo camera setup, yet, with a very small

baseline.

Lastly, laser scanning techniques can also be used for capturing depth maps accurately.

However, due to the scanning nature of these methods, there is a trade-off between the

capturing speed and the density of the acquired depth map.

2.3.3. Depth Encoding
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Figure 2.5.: Different mappings of the depth image intensity values ID to the depth value Z . Plot (a) shows
the linear mapping from zmax = 10 m to zmin = 1 m over the intensity range [0 ... 255] and Plot (b) shows the
inverse mapping. Inverse mapping has the advantage of a finer depth resolution in the near field.

There are two commonly used encoding techniques for mapping the real-world depth Z

to the intensity values in the depth map. By convention, bright pixels are typically used to

indicate objects closer to the camera and dark pixels are used for the background. The

range which is being represented by the depth map needs to be specified by providing a

minimum and maximum distance zmin and zmax, respectively.

The linear mapping strategy maps the intensity values linearly to the range of depth values

between zmin and zmax. An intensity of the depth map ID = 255 therefore gets mapped to

the minimum depth zmin while the maximum depth zmax is mapped to the lowest intensity
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ID = 0 according to

Z =
(

1−
(

ID
255

))
(zmax − zmin) + zmin.

This mapping, however, has the disadvantage of exhibiting a constant resolution over the

depth range. Depth maps are typically encoded as grayscale images with a resolution of

8 bits, which means that the depth has a resolution of (zmax − zmin) /255. In the example

shown in Figure 2.5 with a presumed zmin = 1 m and zmax = 10 m, this would lead to a depth

resolution of ∆Z = 3.5 cm. For a precise representation of fine details, this is unacceptably

coarse. While a simple solution for this problem would be to increase the dynamic range of

the depth image to 16 bits, unfortunately most of the commonly used transmission pipeline

for broadcasting video is still accustomed to 8-bit images with only recent advances in the

transmission of HDR content with typically used resolutions of 10 bits [23, 24].

Because of this resolution problem, typically a so called inverse mapping is employed.

There, the depth

Z =
1

ID
255

(
1

zmin
− 1

zmax

)
+ 1

zmax

is encoded with a hyperbolic function which ensures a much finer depth resolution for

objects which are closer to the camera.

2.4. Post-Processing of the Depth Map

Warping the depth map into the new view introduces two main artifacts as shown in Figure

2.6a. Because a forward mapping strategy is employed, we see the same pixel-sized holes

which I’ve shown in Figure 2.3 which are introduced due to rounding errors. Also, one can

see stepping artifacts in the background which are a result of the limited number of gray

levels of the depth map. These artifacts of the depth map would of course introduce arti-

facts in the synthesized view as well. In the View Synthesis Reference Software (VSRS),

Mori et al. [25] therefore proposed the following filtering techniques to deal with these kinds

of errors. Instead of resorting to a backward-mapping strategy, they propose to fill in the

pixel-sized holes with a median filter. To get rid of the stepping artifacts, they propose to

smooth out the depth map. However, because they don’t want to smooth away edge fea-

tures or depth discontinuities, Mori et al. propose to apply the bilateral filter by Tomasi and
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(a) (b)

Figure 2.6.: The warping process introduces two main artifacts into the depth map. Post-processing can
eliminate the pixel-sized holes which stem from rounding errors and the stepping artifacts which are a result
of the limited resolution of the depth map [25].

Manduchi [26] on the depth map which has the property to smooth the depth map while

preserving the edges.

2.5. Rectification

For depth estimation as well as view synthesis, it may be beneficial to have rectified camera

images. View synthesis then becomes much simpler as the depth can directly be mapped

to a horizontal shift of the pixel. For the depth estimation, the disparity search can be

constrained to horizontal lines in the rectified images.

2.6. Color Matching

When using the images of multiple cameras for virtual view synthesis, it is crucial that the

color profiles of these cameras are matched. Otherwise, when filling in holes in the warped

view of one camera with content of another camera, changes in color temperature, white

balance, brightness or similar differences become obvious. While the best way to match

the colors would be to calibrate the cameras prior to the recording, some minor differences

in between the views typically can’t be avoided. Therefore, several algorithmic methods

have been proposed to perform this color matching post-recording. These algorithms can

be classified into three categories: global, local or hybrid. A global color matching algo-

rithm compares the histograms of both images in all color channels and tries to match

these histograms, regardless of the pixel positions. Local color matching tries to find cor-
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respondences in the pixels of the image, typically by using some form of block matching to

ensure that only same content is compared to each other. These algorithms can therefore

create transformation rules which could change for different pixel so that these can also

deal with local color inconsistencies. Hybrid methods combine aspects of both global and

local methods. [27, 28]
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3. Related Work

3.1. Introduction

As mentioned in the introduction, there are two categories of how view synthesis algo-

rithms deal with the disocclusion problems – the ones that avoid producing disocclusions

in the synthesis step such that no filling is needed, and those that fill in the holes with

known or synthesized content. The algorithms that I’m going to propose in this work are

of the latter type. However, for the sake of completeness, I still want to provide a survey of

the state of the art in both types of view synthesis algorithms.

3.2. Survey of View Synthesis Algorithms

Algorithms of the first category are typically smoothing the depth map so that no steep

depth gradients in depth image appear. This in turn leads to a virtual view which doesn’t

contain any holes after warping, however, at the cost of a geometric distortion of both

foreground and background objects. The algorithm proposed by Fehn et al. [10] is using a

simple Gaussian filter to smooth the depth map. They are aware that "this must obviously

lead to some geometric distortions" [10], however, they claim that an advantage would be

that the depth map could be compressed more efficiently due to the lack of high frequency

components. I will have a look at the subjective quality of two variants of this algorithm

in Chapter 6. Tam et al. [29] investigated the effect of smoothing the depth map on the

subjective visual quality and found that increasing levels of Gaussian blur increased the

subjective visual quality while not degrading the perceived depth quality. Zhang et al. [11]

extended this concept by introducing an asymmetric smoothing filter which applies stronger

smoothing in the vertical direction than in the horizontal direction, claiming that this would
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improve binocular depth perception which would rely mostly on horizontal cues. Chen et

al. [30] and Horng et al. [31] suggested the use of directional filters in the edge direction of

the depth map to better preserve the edges of objects.

As described in the previous chapter, the algorithm proposed by Mori et al. [25] is the

basis of the View Synthesis Reference Software (VSRS) of the MPEG working group on

Free-viewpoint Television (FTV), which I’m also using in the warping step of the virtual view

generation process in the remainder of this thesis. They are proposing a filtering step to

smooth out the projected depth-map to reduce depth discontinuity and a boundary matting

technique to avoid ghosting artifacts where traces of background content remain at the

border of foreground objects. For hole-filling, they are using the inpainting algorithm by

Telea [32], which I’m going to have a closer look at in the next chapter.

The fairly recent algorithm proposed by Li et al. [33] also falls into the category of reducing

the size of holes instead of filling them. Typically, only two views are used for generating a

virtual view and the information of both views is merged to fill in the holes that originated

in the warping of the respective other view. They’ve investigated whether in a multi-view

recording with more than two cameras the information of what they call complementary

views in addition to the two stereo views can be utilized to reduce the hole size even

further and described an algorithm to decide on which information to use for merging the

views. They showed that the holes can be reduced in size significantly by using more cam-

eras, yet, in all cases they analyzed, holes remained in the virtual view which needed to be

filled. This has been proposed several times in literature. Kauff et al. [34] also suggested to

transmit multiple video-plus-depth streams to have sufficient material to fill in the disocclu-

sions. Zinger et al. [35] were combining both views of a stereo system to reduce the hole

size and filled in the remaining holes with a modification of Telea’s [32] inpainting algorithm

to work only on background pixels with the drawback "that the inpainted region becomes

a low frequency patch, when the disoccluded region is very large" [35]. Müller et al. [36]

use a hole-filling algorithm which fills the holes line-wise. Each horizontal line of the hole

is filled with the color of the nearest background pixel which is horizontally extrapolated

into the hole. They claim that "this simple constant-color extrapolation of the background

pixel leads to better results, than an unconstrained linear interpolation between both val-

ues" [36]. However, this method obviously fails to reproduce texture or any kind of linear

structure which is not horizontal.
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The second category of view synthesis algorithms is filling the holes which remain af-

ter warping with artificially generated content, usually by means of interpolation, texture

synthesis or inpainting algorithms, or with content from other frames along the temporal

dimension. One of the most popular inpainting algorithms used for hole filling is the one

proposed by Criminisi et al. [37]. There is a huge number of adaptations of this algorithm

for disocclusion filling. Criminisi’s algorithm can be categorized into the group of so-called

exemplar-based techniques, i.e., the algorithm uses patches of the image itself and copies

these into the hole, thus exploiting the redundancy of natural images. I will explain his

algorithm in more detail in the next chapter as well, for now, suffice to say that Criminisi

discovered that the order in which this filling process is executed determines the quality

of the output image. He therefore introduced a confidence and a priority term with the

intention to steer the filling process into the direction of isophotes, i.e., lines with constant

luminance. However, using this algorithm directly for disocclusion filling in the context of

view synthesis leads to very poor results [38]. Therefore, several modifications have been

proposed.

Oh et al. [39] explicitly modified the boundaries of the holes to only incorporate background

pixels. On the side of the hole where the foreground object is located, the pixels at the bor-

der are simply replaced by the background pixels from the opposite side before the hole

is filled. Daribo and Saito [38] proposed a depth-based modification to Criminisi’s priority

term to prioritize background pixels over foreground pixels. Gautier et al. [40] replaced the

color gradient in the priority term with a structure tensor based on the color of the texture

and the structure of the depth map. Ndjiki-Nya et al. [41] steered the filling order from the

background towards the foreground by first initializing the holes in the depth map with an

estimate for the depth at the unknown regions. It is important to note that some of these

methods actually require the depth-map of the virtual view, i.e, the correct depth at the re-

gion of the disocclusion, which is not available in most view synthesis use-cases. Ahn and

Kim [42] and Buyssens et al. [43] therefore proposed algorithms which perform depth-map

filling and disocclusion filling consecutively. Zhu and Li [44] created an analytical model to

determine the size of the holes and proposed an additional step during the warping pro-

cess to preserve occluded depth information which can then be used to guide Criminisi’s

inpainting algorithm.

Criminisi’s inpainting technique is a greedy algorithm, i.e., once a patch has been copied
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into the hole, it won’t be changed regardless of the patches that follow in its neighbour-

hood. Komodakis and Tziritas [45] recognized this as a potential drawback and therefore

introduced an inpainting algorithm based on the solution of a Markov random field. They

demonstrate that this technique has the potential to significantly outperform the method of

Criminisi in terms of visual quality of the inpainting result. In this thesis, I therefore pro-

pose an adaptation of the algorithm of Komodakis and Tziritas for disocclusion filling for

view synthesis.

The last class of algorithms exploit temporal or spatio-temporal correlation between con-

secutive frames of a video sequence to fill in holes. While it may seem obvious to use the

content of neighboring frames which may not be occluded for hole filling, the challenge

here lies in the circumstance that the content of a scene may change rapidly, either in the

background or in the foreground or both, which renders the content unusable very quickly.

Schmeing and Jiang [46] proposed an algorithm which is trying to fill in the holes using

faithful pixels, in contrast to the plausible pixels that are used in inpainting. Faithful pixels

are ones which are taken from temporally adjacent frames. The problem with filling in

content from different frames is that the content is likely to change over time which makes

it difficult to identify valid information. While Cheng et al. [47] try to achieve this goal

by simply extending the source region of the inpainting algorithm of Criminisi [37] to not

only use patches from the current image but also temporally adjacent frames, Schmeing

and Jiang extend this idea by using SLIC superpixels [48] instead of patches. While their

approach to extend the search region by another dimension is valid to improve the image

quality, it also increases computational cost significantly.

Hsu et al. [49] and Kim et al. [50] proposed a global energy minimization approach with

a Markov Random Field (MRF) to ensure spatial and temporal consistency in the disoc-

cluded area.

Recently, machine learning methods with deep neural networks are gaining increasing at-

tention for view synthesis and hole filling for depth-image-based rendering. Zhou et al. [51]

presented a technique to increase the baseline of a small baseline stereo pair typically

found in recent smartphones by training a deep neural net to infer the global scene repre-

sentation described by fronto-parallel planes at fixed depths. Flynn et al. presented "Deep

Stereo" [52] which trains a network to infer the depth and the color of a new view sep-
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arately, and, more recently "DeepView" [53], a method for estimating multi-plane images

from sparse views using learned gradient descent. Ali Eslami et al. [54] presented the

Generative Query Network, a framework which can construct an internal representation of

a scene and can predict views which were not seen during training.

Many of these methods either utilize an enormous amount of training data with thousands

of images from the same scene to train the network or introduce significant artifacts in

the hole regions when the baseline becomes larger [51]. Also, many of these methods

need to train the networks on each scene individually [52, 55], resulting in an enormous

computational complexity for each frame of a video. Others, such as the work by Zhou,

can predict a the virtual view via a learned feed-forward network, thereby reducing this

effort, however, they become ineffective for dealing with disocclusions, as "the number of

network connections required to effectively model this visibility can become prohibitively

large" [53]. Occluded content which is not visible in any of the views typically can’t be

constructed by these algorithms because it can’t be trained to the network. DeepStereo

for example is "unable to render surfaces that appear in none of the inputs" [52]. While the

work of Ali Eslami et al. [54] is able to predict unseen views from a small set of input views

and correctly handle the occlusions that appear in the scene, they demonstrate this only for

very low resolution (64× 64 pixels), extremely simple synthetic rendered environments on

a network that has been trained on 2 million scenes. These toy examples already have a

prohibitively high computational cost, which makes rendering natural scenes with medium

to high resolution intractable using their technique. Despite all of these drawbacks, I’m

confident that we will see significant advancements out of that research direction in the

near future.
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4.1. Introduction

The terms hole filling and inpainting are used somewhat synonymously in literature, how-

ever, I chose to use hole filling in the title of this thesis because of its broader scope. Hole

filling in the case of DIBR is more than just inpainting; it consists of the reconstruction of the

view geometry, the reconstruction of the depth information and, as the goal, the synthesis

of the image information that is missing. From the very beginning of digital image process-

ing, researchers have also addressed the hole-filling problem [56], with early applications

e.g. in the reconstruction of satellite images [57] or the restoration of telefaxes which were

damaged due to transmission errors [58]. Early research has focused on texture synthe-

sis, where statistical models were investigated to synthesize texture, usually describing

some kind of regular, often repeating pattern which can be modeled sufficiently well using

the wealth of experience gained with time series modelling, applied in a spatial instead

of a temporal dimension. However, texture synthesis in this form is limited to very regu-

lar images. Natural images of sufficient complexity can typically no longer be described

by a single mathematical model. In this chapter, I will therefore review the most relevant

techniques to hole filling and describe the algorithms I have developed for this task.

4.2. Interpolation, Diffusion and Partial Differential Equations

One of the simplest and maybe most intuitive approaches to hole filling is interpolation.

There, the pixels around the hole are used as boundary values for interpolating functions,

which then calculate intermediate values for the missing pixels inside the hole. Commonly

used interpolation functions in 2-D are nearest neighbor, bilinear and functions of higher
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order, e.g. bicubic interpolation. When using interpolation for hole filling, one draws the

implicit assumption that the missing content is appropriately described by its surrounding

environment. This assumption will typically only hold true for relatively small holes or very

homogeneous image contents. Also, the maximum spatial frequency of the synthesized

content will directly depend on the interpolating function and the size of the hole. By

definition, interpolation kernels are low-pass filters. When only the boundary pixels are

used for the interpolation, the size of the hole defines the sampling rate of the input of the

interpolating function. The maximum spatial frequency of the output signal will therefore

depend on the size of the hole, with a larger hole resulting in lower spatial frequency.

In practice, this leads to interpolation results with very little detail and often very smooth

regions. Depending on the size of the hole and the spatial frequency of the content around

the hole, these changes in spatial resolution may become very apparent [59, 60].

Researchers have recognized these shortcomings of basic interpolation kernels. Depend-

ing on the implementation of the interpolation algorithm, typically only one single layer of

pixels around the hole will be used as boundary values. However, it is beneficial to extend

this source region to a wider area around the hole, possible weighting it with the distance

from the hole. Kaup and Aach [61], for example, proposed to extrapolate the background

content into an uncovered region by evaluating the prevailing spectral components in a dis-

crete Hartley transform and extrapolating those into the unknown region using a technique

called successive extrapolation, which leads to a much more natural continuation of the

background texture.

It was also discovered that it may be important to continue lines arriving at the boundary of

the hole throughout the hole and connect them where possible to other lines. One of the

most fundamental techniques exploiting that insight was proposed by Bertalmio et al. [62].

They formulated an analogy between the inpainting process and fluid dynamics, with the

image being regarded as a stream function and the isophotes arriving at the border of the

hole as fluid streams with a certain direction of the flow velocity. They were then able to

derive a set of partial differential equations based on the Navier-Stokes equations, which

when being solved generate the inpainted images. They showed that this technique can

be applied to images and videos, and it is also being used as the algorithm for inpaint-

ing in the VSRS of the Moving Picture Experts Group (MPEG) FTV project. However, it

suffers from the drawbacks which I’ve already insinuated, namely creating very smooth in-
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painting results which when applied to large holes tend to lose the structure of the original

image. I’ve included the results of the VSRS reference implementation for comparison in

the evaluation of my algorithms in Chapter III.

4.3. Exemplar-Based Techniques

Exemplar-based techniques are a class of algorithms which use patches directly from a

source image to fill in the missing regions. The term has been introduced by the paper

of Criminisi et al. [63]. They were one of first to show an algorithm which manages to fill

large holes in natural images, i.e. images which don’t consist purely of one single texture,

in a "visually plausible way" [63]. As this algorithm lies the foundation of many algorithms

which were developed on its basis, and also because I’m going to adapt their notation, I’m

going a little bit more into detail on how it works.

The basic idea of sampling directly from a source image was introduced by Efros and Le-

ung [64]. They recognized that the most promising approaches at that time treated the

texture synthesis problem as one of sampling from a probability distribution, e.g. mod-

elling the texture as a Markov Random Field and using Gibbs sampling for synthesis [65].

However, instead of constructing a probability distribution drawing assumptions about the

statistical properties, they introduced the idea of querying samples directly from a source

image, a technique which they call non-parametric sampling. This idea had been intro-

duced as early as 1948 by Claude Shannon for natural text synthesis [66] by modelling

language as a Markov chain where consecutive words are being sampled from a large

distribution such as a book.

Extending this idea to 2-D, the image I is synthesized from a texture sample Ismp ⊂ Ireal

which is a section of the real infinite texture image Ireal . From this texture sample, Efros

and Leung construct a conditional probability distribution P(p|ω(p)) to sample from with p

being a single pixel which is to be reconstructed and ω(p) being a patch around the central

pixel p with dimension w × w . Modelling the texture as a Markov Random Field (MRF),

they assume that the brightness value (or color for RGB images by simple extension of

their algorithm to a color space) given its surrounding neighborhood ω(p) is independent

of the rest of the image I, i.e. p is independent of I \ ω(p) given ω(p).

51



4. Algorithms for Hole Filling

Using a perceptual distance metric dperc(ω1,ω2) between two patches ω1 and ω2, they

then define a set Ω(p) = {ω′ ⊂ Ireal : dperc(ω′,ω(p)) = 0} which contains all occurrences

of the patch ω(p) in Ireal , which can be used to produce a histogram of all pixel values p

as an approximation for the conditional PDF P(p|ω(p)). This distance metric could be a

normalized sum of squared differences (SSD), however they chose to include a gaussian

kernel G because they want to give a higher weight to pixel values closer to the center

pixel, which leads to dperc = dSSD ∗ G.

Because it is likely that there are no direct occurrences of ω(p) in the finite sample image

Ismp, Efros and Leung are weakening the condition in Ω(p) to get an approximative set Ω′(p)

based on a variation of the k -Nearest-Neighbour algorithm. They search for the closest

match which minimizes the perceptual distance ω′best = arg minω dperc(ω(p),ω) ⊂ Ismp and

then include all patches ω′ into the set Ω′(p) ≈ Ω(p) which have a perceptual distance

dperc(ω′best ,ω
′) < ε smaller than a threshold ε.

As the holes to be filled are typically larger than one single pixel, not the entire neighbor-

hood of the center pixel is known. Therefore, ideally a joint probability of all pixels would

be constructed, which they claim to be "intractable for images of realistic size" [64]. While

I’m going to present a solution for that problem later on, Efros and Leung are proposing

another heuristic in which they are filling the hole in concentric circles from the edge of the

hole. There, the algorithm needs to be modified to ignore the unknown pixel values and

only use the known values at the edge to construct the conditional PDF which can easily

be done by ignoring the unknown pixel values and normalizing the distance metric for the

number of known pixels.

A number of variants of that algorithm have been proposed, all relying on that same prin-

ciple of querying single pixel values by exhaustively searching fitting patches in a query

image with the goal of synthesizing a more or less regular texture [67, 68].

4.3.1. Structure Propagation

A rather large step into the direction of natural image synthesis was then undertaken by

Criminisi et al. [63]. They noticed that the quality of the inpainting result depends heavily

on the order in which the filling process is executed. Simple concentric filling of the hole
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region may lead to artifacts which originate from the structure of the hole rather than the

structure of the original image.

Their contribution was an extension of the algorithm just described with an idea of the

seminal paper Image inpainting by Bertalmio et al. [69]. They were one of the first to

introduce the idea of isophote continuation to fill holes. The basic principle is to continue

isophotes (i.e. lines of equal brightness) in the direction of their arrival at the border δΩ of

a hole region Ω, much like traditional restaurateurs are working when manually repairing

damaged pictures. The hole is then filled with the same color as the contour line which is

arriving at the hole. While this algorithm works quite well even on natural images, it has

the drawback of smoothly continuing the isophotes into the hole, thus losing the original

structure of textured regions, a disadvantage that the authors mention themselves in their

paper.

Criminisi et al. combine these two ideas. They use the exemplar-based approach for its

property of accurately capturing the texture of the image to be synthesized, while steering

the filling process into the direction of isophotes, thus taking into account the dependency

of the result on the filling order.

They separate their image to be inpainted I = Φ ∪ Ω into a source region Φ and the hole

Ω, with no constraints on the shape and topology of the hole, and define patches Ψ with a

typical size of 9× 9 pixels, depending of the largest texture element in the pictures. Each

pixel on the fill front gets assigned a confidence value

C(p) =

∑
q∈Ψp∩Ω C(q)

|Ψp|
,

with Ψp being a patch around pixel p and |Ψp| the area of this patch. The confidence

describes how much information in the neighborhood of this pixel is already known. This

confidence is then used to calculate a priority

P(p) = C(p) · D(p) (4.1)

by multiplying the confidence term with a so called data term

D(p) =

∣∣∇I⊥p · np
∣∣

α
,
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T

S

δT
p

Figure 4.1.: This illustration shows the inpainting step in isophote-driven exemplar-based algorithms such as
the one of Criminisi. The hole is the target area T and the border of the hole is denoted by δT . A suitable
patch is copied from the source region S to the position p.

with ∇I⊥p being the direction of the isophote in the point p, np a unit vector orthogonal to

the border of the hole δΩ at point p and α a normalization factor.

Once the priorities of all pixels around the hole have been computed, the patch with the

highest priority Ψp̂ will be filled in. Therefore, in the source region the patch which is most

similar to the known pixels of Ψp̂

Ψq̂ = arg min
Ψq∈Ω

d(Ψp̂,Ψq) (4.2)

according to a suitable distance metric d(Ψp̂,Ψq) such as SSD in the Lab color space,

is being searched and the unknown pixels which are part of the hole are then updated

with the best matching source patch. Unfortunately, this exhaustive search of patches

in the source region is computationally extremely expensive, making the whole algorithm

relatively slow. I will show improvements to this strategy in Chapter 4.4.3.

Finally, when the patch has been filled, the confidence at that point will be updated accord-

ing to

C(q) = C(p̂) ∀q ∈ Ψp̂ ∩ Ω.
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Figure 4.2.: Result of Criminisi’s algorithm when applied to the hole-filling problem

4.3.2. Criminisi’s Algorithm for Hole Filling

Figure 4.2 shows the result of Criminisi’s algorithm when directly applied to the hole-filling

problem. The result is rather unsatisfactory as the inpainting result exhibits several obvious

problems. The disoclussion is partially filled with foreground content and the structure

propagation seems to be working poorly in this scene as revealed by the discontinuation

of the bars in the background.

Several researchers have identified these problems and proposed solutions for these draw-

backs. Oh et al. [39] explicitly modified the hole at the border close to foreground objects

and replace the missing content there with background content from the opposite side of

the hole. This ensures that the inpainting algorithm is only operating on background con-

tent. Cheng et al. [70] proposed to constrain the search region to the background, there-

fore avoid having to manipulate the hole geometry first. Advancing these two approaches,

Daribo et al. [38] proposed a modification of Criminisi’s algorithm as follows. They extend

the priority computation term of Equation 4.1 with a so called level regularity term

P(p) = C(p) · D(p) · L(p)
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which considers the variance of the corresponding depth-image patch according to

L(p) =
|Zp|

|Zp| +
∑

q∈Ψp∩Ω
(
Zp − Zp

)2

with Zp being the mean depth value of that patch. This gives priority to background patches

simply because they don’t exhibt such strong depth discontinuities as the patches on the

border of foreground objects. Daribo et al. also extend the search strategy for suitable

patches of Equation 4.2

Ψq̂ = arg min
Ψq∈Ω

{
d(Ψp̂,Ψq) + β · d(Zp̂, Zq)

}
by a term which takes the corresponding depth of that patch into account, weighted by a

factor β whose selection they unfortunately don’t mention in their paper. Also, because

their algorithm relies on the same exhaustive search strategy, this algorithm shares the

disadvantage of being computationally extremely expensive.

Gautier et al. [40] made some further modifications of Criminisi’s and Daribo’s algorithm.

They replace the data term D(p) by a "more robust structure tensor" [40] based on the

Di Zenzo matrix [71] of a local spatial gradient in a 3× 3 window ∇I(p)l

J(p) =
∑

l=R,G,B

∇I(p)l∇I(p)T
l .

By calculating the eigenvalues λ1,2 of J(p), they derive a measure for variation in the

structure and use that to get a new data term

D(p) = α + (1− α) exp
(

−C

(λ1 − λ2)2

)
.

Furthermore, they don’t just use one single exemplar patch to fill in the target but a combi-

nation of the K best patches from a K -nearest-neighbor search, where they chose K = 5.

Josselin Gautier was kind enough to provide me with his implementation of the algorithm

so that I could use it to compare the results of his algorithm with mine. The results of these

comparisons can be found in Section III.
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Figure 4.3.: Result of Gautier’s algorithm when applied to the hole-filling problem

4.3.3. Propagation with Graphical Models

Parts of the following section have already been published in [72].

Introduction to Komodakis and Tziritas’ Algorithm

Criminisi’s algorithm uses the isophote continuation as an heuristic to guide the filling pro-

cess. Komodakis and Tziritas [45] identified this as a potential drawback and instead of the

greedy synthesis method (i.e. one patch at a time), they propose to pose the image com-

pletion problem as a discrete global optimization problem. That way, they want to make

sure that the image doesn’t contain any local inconsistencies. Also, instead of building the

image out of single patches, their algorithm maintains several candidate patches for each

location which are then iteratively selected to form the complete image. As I’ve developed

a hole-filling algorithm extending on their idea, I’m going to explain it more in detail. I will
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Figure 4.4.: Komodakis and Tziritas’ algorithm cannot be used directly to fill disocclusions. The most obvious
problem is bleeding of foreground objects into the background.

explain my modifications in the next section of this thesis. For clarity, I try to adapt the

notation of [45] as closely as possible.

Prerequisites

Again, I’m separating the image I into a source region S and a target region T , i.e., the

holes to be filled. In the view-synthesis problem, the location of the holes is determined by

the scene geometry, and during the process of mapping the texture of the original view to

the virtual view, I can simultaneously generate a mask which specifies the location of the

holes. I am using the MPEG View Synthesis Reference Software (VSRS) [73] to conduct

this mapping and to generate the virtual view from the texture and the depth map. The

results of this warping process can be seen the illustration in the introduction of this thesis

in Figure 1.4. I’ve modified the source code of VSRS to output the intermediate products

of the view synthesis process, e.g. the map of holes and the unfilled warped view which I

will need for the hole filling.

The image is then partitioned into small, overlapping patches of size w × h with a spacing
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of gapx and gapy , respectively. As the patches need to overlap each other, gapx < w

and gapy < h. The goal of the inpainting algorithm is then to find suitable patches from

S which can be filled into the holes T . To this end, Komodakis and Tziritas proposed a

Markov network which consists of nodes V = {1, 2, ... , N} at the positions of the patches

inside and at the border of the hole, each of which is associated with a random variable Xj

out of the set of random variables X = {X1, X2, ... , Xn} and a set of edges E which connect

these nodes to their four neighbors. Figure 4.6a shows an exemplary distribution of the

nodes over the holes in the view synthesis setting.

The resulting graph defines a Markov Random Field (MRF). An MRF is an undirected

graphical model G = (V , E) where the random variables exhibit a Markov property, i.e. their

probablity depends only on their direct neighbors, not on the rest of the random variables

of the network

Pr (Xi |{Xj}j∈V\i ) = Pr (Xi |{Xj}j∈Ni )

where Ni is the neighborhood of node i , i.e., j ∈ Ni ⇐⇒ (i , j) ∈ E .

Each of the nodes has a set of labels L = {l1, l2, ... , lM} associated with it which comprises

candidate patches from S to be inserted at the position of the node. The assignment of a

specific label to a certain node thus would result in a specific patch being copied to that

location. I denote the probability for a node pi taking on a label li as Pr (Xi = xi ). The vector

x = {x1, x2, ... , xn} thus describes a labeling of the random field with the joint probability

Pr (X = x) or Pr (x).

According to the Hammersley-Clifford theorem [74], one can define the joint probability as

a factorization of the set of cliques (i.e. fully connected subgraphs) C

Pr (x) =
1
Z

∏
C∈C

exp(−φC(x)), (4.3)

where the functions ψC(x) are potential functions and

Z =
∑

x

∏
C∈C

φC(x)

is a normalization constant, often called the partition function which ensures that the dis-

59



4. Algorithms for Hole Filling

tribution sums to 1. Equation 4.3 can be rewritten as a Gibbs distribution

Pr (x) =
1
Z

exp

(
−
∑
C∈C

(−ψC(x))

)
, (4.4)

where ψC(x) = − log(φC(x)). Given that I want to find the labels for each patch, I’m looking

for x̂, the maximum a-posteriori estimate

x̂ = arg max
x

Pr (x)

= arg max
x

1
Z

∏
C∈C

exp(−φC(x))

or when applying Equation 4.4 one can formulate this as an energy minimization problem

x̂ = arg min
x

E(x)

with

E(x) = − log (Pr (x))

= − log

(
1
Z

∏
C∈C

exp(−φC(x))

)
=
∑
C∈C

φC(x) + const .

In a first order random field, this energy

E(x) =
∑
i∈C

φi (xi )︸ ︷︷ ︸
unary pot.

+
∑

(i ,j)∈C
φij (xi , xj )︸ ︷︷ ︸

pairwise pot.

can be written as a sum of unary and pairwise potentials. In the following, I’m going to

adapt the notation of Komodakis and Tsiritas and denote the unary potential as the node

potential Vp and the pairwise potential as Vpq . The node potential

Vp(xp) =
∑

dp∈[− w
2

w
2 ]×

[
− h

2
h
2

]M(p + dp)(I(p + dp)− I(xp + dp))2
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defines the specific cost which the association of any of the labels to a node p incurs, i.e.,

how well the patch xp matches any available content from S. M denotes a mask which is

zero inside T , 1 else. Similarly, a pairwise potential Vp,q(xp, xq) is constructed which states

how well the patch matches the other patches in its 4-connected neighborhood where they

are overlapping. This pairwise potential has to consider the respective orientations of the

pair of patches because the overlapping area is different, e.g., for a patch above the current

position than below.

Solving the optimization problem defined by an MRF can be shown to be NP-hard [75],

however, especially in the field of image processing, algorithms like belief propagation [76]

or graph cuts [77] have demonstrated to provide good approximate solutions to these prob-

lems [78, 79].

Priority Belief Propagation

The goal of the optimization problem is to minimize the total energy of the MRF

F (x̂) =
∑
p∈ν

Vp(x̂p) +
∑

(p,q)∈ε
Vpq(x̂p, x̂q), (4.5)

by assigning labels x̂p ∈ L to each node p for which Komodakis and Tziritas proposed a

priority-belief propagation algorithm. The classical belief propagation algorithm was intro-

duced by Pearl [76] and soon became a standard algorithm for the inference on MRFs.

In belief propagation, messages are exchanged between the connected nodes about the

confidence in the association of a patch to a neighboring node, which then in turn defines

the belief bp(xp) each node has in its own set of labels. A message {mpq(xq)}xq∈L denotes

a message sent from node p to node q about the confidence node p has about assigning

label xq to node q. Thus, in every iteration of the belief propagation algorithm there are |L|
message sent from one node to each of its neighboring nodes. This message consists of

three components

mpq(xq) = min
xp∈L
{Vpq(xp, xq) + Vp(xp) +

∑
r :r 6=q,(r ,p)∈E

mrp(xp)}. (4.6)

For one message about one label to be sent to node q, node p must first check each of
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m41(x4)
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Figure 4.5.: Illustration of the basic message passing scheme in belief propagation. A central node can
exchange messages with its four-connected neighborhood.

its own labels xp ∈ L about how well labels xq and xp match (i.e., calculate the pairwise

potential), check how well its label xp matches at its own position and gather the messages

from all surrounding nodes of p about their belief in the association of label xp to node p.

It becomes clear that for the exchange of information between nodes, all nodes have to

cooperate. This message exchange formulated in Equation 4.6 is therefore conducted

iteratively until all nodes agree about the labels which should be assigned to them. Once

the nodes have converged to a specific labeling, a set of beliefs

bp(xp) = Vp(xp)−
∑

r :(r ,p)∈E
mrp(xp)

is computed for each node. This belief combines the confidence a node has in the assign-

ment of a label to itself and the information it got from all neighboring nodes. To find the

label with the maximum likelihood, the label with the highest belief

x̂p = arg max
xp∈L

bp(xp)

is found for that node.

In the setting of image completion, the number of labels represents the number of patches

which can be created out of that image. Depending on the image size and the size of

the patches it may easily consist of hundreds of thousands of patches. As the message

passing step needs to consider all labels for one message to be sent for one label, its
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Figure 4.6.: Figure (a) shows a schematic visualization of the distribution of the nodes over the disocclusion.
Nodes marked with yellow edges lie over foreground content and will be assigned a node potential Vp = 0.
Figure (b) showcases the relative beliefs of a node at the border of the hole (Node A) and of any interior node
(Node B) before the message passing step.

complexity is O(|L|2). The computational cost of the standard BP-algorithm therefore

would be prohibitive in this setting. Komodakis and Tziritas thus added a method called

dynamic label pruning based on priority. If a node has only a small set of labels in which it

has a belief higher than a given confidence threshold, i.e.,

brel
p (xp) ≥ bconf

with

brel
p (xp) = bp(xp)− bmax

p (xp),

it will be assigned a high priority, that means it is quite confident about the assignment

of its patch. On the other hand, if a node has similar beliefs in all of its labels, it may

be considered indetermined and will be given a low priority. Nodes with high priority will

be the ones to first get rid of all labels in which they have a low belief and then send

efficient messages. Figure 4.6b shows the distribution of the relative beliefs of a node with

high priority which is usually located at the border of the hole. An interior node has a low

priority as its node potential is zero and therefore has the same belief in all of its labels.
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4.3.4. Extension for View Synthesis - VS-BP

Komodakis and Tziritas’s algorithm is not directly applicable to the disocclusion problem in

view synthesis as a naïve application leads to very poor results, as shown in Figure 4.4.

The most obvious problem is that there occurs bleeding of foreground objects into the

background, which should be avoided. I therefore present extensions which will deal with

this problem. Disocclusions occur at steep depth gradients, where there is a jump between

a foreground object to the background of a scene. When I move the virtual camera to the

right, disocclusions will appear on the right side of foreground objects. I therefore adapt

the idea of Gautier [40] and others to steer the filling process into the opposite direction

of the camera displacement. In this setting, I achieve this by modifying the node potential

of all nodes that are on the side of the disocclusion opposite to the camera displacement,

e.g., on the left side. These nodes, in Figure 4.6a marked as yellow, are given a node

potential Vp = 0. The algorithm thereby treats them just like interior nodes and they will get

the lowest priority. As the MRF now doesn’t have any support on the left side of the hole,

the inpainting task has become somewhat similar to the texture synthesis task described

in [45]. It is therefore necessary to introduce another term

V 0
pq(xp, xq) =

w0, if xp − xq 6= p − q

0, otherwise

to the cost function which enforces the coherence of the image by penalizing the filling of

non-adjacent patches.

Furthermore, I modify the node potential

Vp(xp) = VI,p(xp) + λDVD,p(xp) (4.7)

and the pairwise potential to not only accommodate for visual similarity between neigh-

bouring nodes but also for similarity in depth. To this end, I add another term to both

potentials which calculates the SSD

VD,p(xp) =
∑

dp∈[− w
2

w
2 ]×

[
− h

2
h
2

]M(p + dp)(D(p + dp)−D(xp + dp))2 (4.8)
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Figure 4.7.: Result of my VS-BP algorithm when applied to the hole-filling problem

in the depth map D, weighted by a factor λD. Thereby, I make sure that candidate patches

are selected from similar depth ranges as the surrounding of the nodes which ensures

consistency of the image and also improves the efficiency of the algorithm because it

dramatically reduces the number of contemplable labels for each node.

Results

In the remainder of this thesis I will identify the algorithm just described as VS-BP, short

for View Synthesis with Belief Propagation. Figure 4.7 shows a crop of the result of my VS-

BP algorithm when applied to the first frame of the Ballet sequence. One can see that this

algorithm no longer fills in foreground texture into the disocclusion and that the structure of

the elements in the background has been propagated much better, as can be seen in the

continuation of the bars in the background. Figure A.1 shows a visual comparison of the

results of VS-BP with two other state-of-the-art algorithms. In Chapter III, I will compare the

performance of this algorithm against the state of the art in disocclusion filling algorithms

and show that it outperforms even recently published algorithms in terms of visual quality.

However, even with the performance optimizations described in this section, it is still one
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of the slowest algorithms in that comparison (see Section 5.5.3). With the algorithm I will

describe in Section 4.4, I want to tackle this problem.

Temporal Consistency

The VS-BP algorithm can very simply be extended to the temporal dimension by adding a

third term to the node potential of Equation 4.7

Vp(xp) = VI,p(xp) + λDVD,p(xp) + λT VT ,p(xp)

with

VT ,p(xp) =
∑

dp∈[− w
2

w
2 ]×

[
− h

2
h
2

]Mt (p + dp)(It (xp + dp)− It−1(p̂ + dp))2

to improve the temporal consistency of the output with It and It−1 being consecutive frames

and where points p and p̂ are the corresponding points in both frames which have been

found when estimating the motion vectors between these two frames. This extension of my

algorithm has been proposed by Kim et al. [80]. They show that this extension improves

the temporal consistency in terms of flicker between frames (see Chapter 5.5.2 for more

information of the evaluation of temporal consistency and flicker). They are also showing

how this method can be used to propagate the labeling to the next frame and thereby

reduce the computation time by initializing the labels with the previous result. However,

as mentioned in the introduction, propagating information of temporally adjacent frames

bears the risk to introduce outdated content into the hole because the background image

could be changing. Kim et al. [80] avoid this problem by evaluating their algorithm only on

scenes with static background.

4.4. Approximate Nearest Neighbour Methods

One of the major drawbacks of exemplar-based techniques is their exhaustive search effort

for matching patches. Finding the best matching patch of a set consisting of all patches

of a source image, much less of a source video, quickly becomes infeasible. The number

of patches in an image which are overlapping by one pixel is roughly proportional to the
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number of pixels in this image, not considering the border of the image. As we will see

in the runtime evaluation in Chapter III, this enormous search effort is the most important

factor for the high computational complexity of these algorithms.

Therefore, for an efficient patch matching algorithm, there is a need for extremely efficient

search strategies. As I am searching for matching patches via a similarity measurement,

this problem reduces to a nearest neighbor search. The patch can be represented as

a vector with matching patches represented as points in the space of all patches. The

closest matching patch is the point which minimizes a given dissimilarity function, which

is called the nearest neighbor. Donald Knuth describes this problem of searching for a

nearest neighbor with the example of a post-office tree, which was first suggested by Bruce

McNutt [81]. There, the task is to find the nearest post office given a destination address.

In this section of my thesis, I’m going to give a very brief overview about existing nearest

neighbor algorithms which have been or could theoretically be used for DIBR and then

present a novel DIBR algorithm based on a recent and very efficient nearest neighbor

algorithm.

4.4.1. Search Trees

Linear search, i.e. the brute-force method, has a search complexity of O(dN), where N

is the cardinality of my set of patches and d is the dimensionality of the patches. A more

efficient way can be achieved by organizing the data into a search tree and partitioning that

tree. Thereby, large portions of the search space can quickly be eliminated. In literature,

such a tree is called a k -d-tree [82], short for k -dimensional tree. This representation

partitions the data into a binary tree where each node divides the space into two parts.

Such a representation can typically reduce the search effort to O(log N). In the context

of image inpainting, the usage of k -d-trees has been proposed e.g. by He et al. [83].

However, with increasing dimensionality d , the search effort increases rapidly. In literature,

this problem is known as the curse of dimensionality, an expression coined by Richard E.

Bennlan [84].

Fortunately, in my application it is not necessary to know the exact nearest neighbor in the

search space, i.e. the one with the absolute smallest distance. Instead, it is sufficient to

search for a matching patch that is reasonably close to the query patch q. The assumption
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here is that a patch which is very similar to the query region may fill the gap well enough.

The patch is considered to be a (1 + ε)-nearest neighbor if the distances D(p, q) between

a patch p and q and between q and its nearest neighbor have a ratio of at most (1 + ε).

A solution for this relaxation of the problem was first proposed by Arya and Mount [85]

and is known as an Approximate Nearest Neighbour (ANN) query. The aforementioned

example of the k -d-tree query can easily be made approximate by stopping the search

after a predefined number of points in the tree have been visited or after a certain run-

time. The algorithm of Arya and Mount can reduce the query time toO(1/ε)dO(log N) and

the pre-processing time (the tree has to be built first) to O(1/ε)dO(N).

4.4.2. Hashing Methods

The search for a matching candidate may be sped up even more by introducing a hash

table. The idea is that when I use a suitable hash function and create a hash table for

all the patches, any collision in the fingerprint of the patch may indicate a close match. I

therefore only have to compare the patch to the ones in same bucket of the hash table,

making the search effort sublinear [86]. The performance of the algorithm is therefore

strongly dependent on the hash function. In the context of nearest-neighbor searches, I

need to find a hash function that is sensitive to locality, which means that points that are

close in space will have a high probability of collision, i.e. landing in the same bucket.

An algorithm for creating such a hash function was first proposed by Indyk and Mot-

wani [86] and is known as Locality Sensitive Hashing (LSH). They have proven that such

functions exist for any domain which leads to ε-NNS algorithms with preprocessing costs

of O(d) and sublinear in N. I will present a rough sketch of their algorithm but refer the in-

clined reader to their paper. First, they partition the search space by random hyperplanes

into different regions, with bits of the hash indicating on which side of the hyperplane the

point resides. Points with the same hash therefore indicate points residing in the same

region of the space, however, not necessarily the closest points as there may be nearer

neighbors in a different region. This partitioning is therefore executed multiple times, each

time with a different set of random hyperplanes. After all the candidate points in their

respective region have been collected, we can then perform the search for the nearest

neighbor.
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While the algorithm propsed in [86] is limited to points in Hamming space, i.e. restricted to

binary data, Datar et al. [87] presented an algorithm extending LSH to operate directly in

Euclidean space without the need for embeddings of the l2 space into Hamming space. I

will explain this in detail in Section 4.4.3.

LSH and k -d-trees perform very well but are still not fast enough for my application. An-

other algorithm called PatchMatch [88] has been proposed by Barnes et al. for the task of

finding matching patches. This algorithm exploits the fact that images are usually coherent.

If a matching patch was found in an image, the coherency property indicates that patches

in the close neighborhood of this pair of patches will also be similar. While the algorithm

has the same complexity as k -d-tree-based algorithms of O(log N), the authors show that

in practical applications, their algorithm is faster by a factor of 20-100.

PatchMatch is employed for the hole filling in view synthesis in several algorithms [89, 90,

91], including very recent ones such as [92].

Korman and Avidan [93] proposed an algorithm called Coherency Sensitive Hashing

(CSH), combining the advantages of LSH and PatchMatch. As I’ve developed a hole-

filling algorithm which is based on their hashing algorithm, I’m going to explain it in detail

and then propose my hole-filling algorithm based on CSH.

4.4.3. Coherence Sensitve Hashing

CSH uses the set of locality sensitive hashing functions

ha,b(v) =
⌊

a · v + b
r

⌋
(4.9)

proposed by Datar et al. [87], where a is a random vector of dimension d drawn from a

p-stable distribution and b is a random real value drawn uniformly of the range [0, r ]. This

hash function maps a d-dimensional vector v onto the set of integers ha,b(v) : Rd → N.

The input vector v is projected onto the random line a, which is divided into equidistant

segments of size r . The hash value is then the index of the bin into which the input is

projected. b is used to offset the quantization effect of the binning.

Instead of projecting onto random vectors a, Korman and Avidan suggest to use the most
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significant 2-dimensional Walsh-Hadamard kernels [94] as a hash function

hj,b(v) =
⌊

WHj · v + bj

r

⌋
. (4.10)

Their rationale for selecting a Walsh-Hadamard transformation lies in its descriptiveness

for pattern matching in images as shown by Hel-Or and Hel-Or [95] and its fast compu-

tation (2 additions per patch and kernel [96]). They claim that a hash table built of these

functions leads to local sensitivity in the appearance plane, a property I can exploit for

finding matching patches for hole filling.

Figure 4.8.: Illustration of the 64 Walsh-Hadamard kernels of size 8× 8 pixels.

After indexing all patches of the source and target image (which for image inpainting might

very well be the same image), I should find patches of similar appearance with the same

hash. However, this set of similar patches might be very small. Korman and Avidan thus

combine this LSH approach with the findings of Barnes et al. [88] in their PatchMatch

algorithm.

PatchMatch exploits the local coherency property of images. If the left neighbour of the

candidate patch, that is the patch which is shifted by one pixel to the left, has a good match

in our target picture, the right neighbour of this match will most likely be a good hit for the

original candidate patch. The same holds true for neighbours on top, the bottom or the
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right side of the candidate patch. Korman and Avidan extend the LSH algorithm with this

finding and thus arrive with three types of candidate patches:

Figure 4.9.: The three different types of candidate patches which the CSH algorithm selects. Patches of Type
1 are those which have the same hash as the query patch. Patches of Type 2 are found by looking up hash
collisions of the left neighbor of the query patch. Because of the coherence property, the right neighbor of this
patch will also be a good candidate for the query patch. Patches of Type 3 are found by looking up the hash
collisions in the query image and finding their neighbors in image B [93].

appearance-based

Type 1 patches are the ones which can be found by using the LSH method. If

candidate patches b of image B have the same hash as the query patch a from

image B, then these patches will be good matches for a: g−1
B (gA(a))

coherency-based

I search for the nearest patch in the target image B which has the same hash as the

left neighbour of the candidate patch a. The local coherency property then suggests

that the right neighbour of this patch will be a good candidate for the candidate patch.

The list of candidates is further extended by looking up patches with the same hash

as these candidate patches.

appearance-based

I search for patches in the query image A with the same hash as the query patch a.

These patches will have good candidates for a in their matches in image B.

After this search, each query patch will typically have a set of 4k + 2 candidate patches,

with k being the number of entries in the hash table at each bin. Out of these candidates,

the best matching one, i.e. the one with the lowest distance to the query patch, will be

selected. As this task again would be computationally relatively expensive, Korman and

Avidan suggest to use the Walsh-Hadamard transformation again for each candidate on
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the kernels with the highest frequency and select the one which minimizes the sum of

projected differences.

Once this algorithm has been applied to each patch of the query image, one can generate

a dense approximate nearest neighbour field (ANNF) for one image. This field contains a

matching patch to each query patch in the query image. In the following, I show how to

modify this ANNF-algorithm to be suitable for the view synthesis problem, how to use the

resulting ANNF for inpainting and propose the complete new algorithm for hole filling.

4.4.4. CSH for View Synthesis (VS-CSH)

(a) (b) (c)

Figure 4.10.: This comparison shows how incorporating the information of the depth map can significantly
improve the inpainting result of a CSH-based inpainting step. Image (a) shows the input image with the
disocclusion, Image (b) shows how the result looks when using CSH without any depth information and (c)
shows the result when guiding the inpainting step with the depth information. Image (b) shows areas where
foreground content has been filled into the disocculsion, leading to an unnatural result.

To this date, I’m not aware of any view synthesis algorithms using CSH in the inpainting

step. I would therefore describe this algorithm as novel. Nevertheless, it does adopt some

of the groundwork in the algorithms described by Barnes et al. [88], Fitzgibbon et al. [97]

and Wexler et al. [98]. In the remainder of this thesis I will address the following algorithm

as VS-CSH.

In the first step, I create a virtual image Iwarp with the methods described in Chapter 2. The

original view I is transformed using the depth map D into a virtual view Iwarp and a mask
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M is created which marks the holesH in the image. For a change, I took the the following

examples from the sequence Lovebird, provided by Electronics and Telecommunications

Research Institute (ETRI) and the MPEG Korea Forum [99]. I will provide more examples

in the evaluation chapter where all algorithms will be evaluated on the same data set.

(a) (b)

(c) (d)

Figure 4.11.: Pre-processing steps for the VS-CSH algorithm of the first frame of the Lovebird sequence. (a)
is the synthesized virtual view with holes. One can see remnants of the background at the outermost seam of
the foreground objects due to imperfections in the depth map, depth quantization errors and bleeding of the
colors. (b) shows the synthesized depth map, (c) is the resulting mask after the dilation operation, and (d)
shows the final view with enlarged holes.

The pre-processing steps are essentially the same as in the previously described algo-

rithms. The transition between the foreground object to the hole is not perfect due to

imperfections in the depth map and quantization errors, so there are usually some back-

ground artifacts around the outermost seam of the foreground object (see Figure 4.11a).

To avoid ghosting artifacts in the resulting inpainted image, I’m removing this seam from

the foreground object using a simple binary morphological operation on the mask, namely
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a dilation

H⊕ K =
⋃
k∈K

Hk (4.11)

with the filter kernel

K =
[
1 1 0

]
. (4.12)

This will essentially enlarge the mask on the left-hand side by one pixel, which will remove

these seams. Please note that for the sake of brevity, and without loss of generality, I

describe this algorithm for a virtual view which is located on the right-hand side of the

original view. The algorithms can trivially be modified for views at other positions, in the

simplest case by mirroring all input and output images.

Using the image, the mask and the depth map, I’m then calculating an ANN-field (short

ANNF) which for each pixel p in the synthesized view I provides the location of the source

patch. For known content, the source location is simply the location of the pixel itself, but

in the regions of the disocclusion, the ANN field points to the location of the patch which

fits best at that location. To create this ANN field, I’m using a modified version of the

CSH algorithm, which I will describe shortly. In all following examples, the patch size was

chosen to be w = h = 8. Note that the patch size has to be a power of 2 because the

Walsh-Hadamard kernels need to have a scale of a power of 2.

(a) (b)

Figure 4.12.: Input image and the corresponding ANN field (only the horizontal component is shown here).
The color map indicates the position of the source patch. The ANN field shows a mostly linear color gradient
over the image, which means that the source position is the pixel itself. In the disoccluded region, the color
indicates where the pixel which fills that hole is taken from.

To compute the ANNF, I’m creating a copy of the image I where I’m initializing the holes
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with random content, i.e., drawing each pixel from uniformly distributed random color val-

ues. I then calculate the ANNF between the image with holes I and the randomly filled

image Irand . This ensures that only the areas outside of the hole are contributing when

matching to a suitable source patch as it is unlikely that the random pixels are found in a

source region.

To calculate the ANNF, in the first step, both images are segmented into overlapping

patches. All the patches from I and Irand are then projected onto M Walsh-Hadamard

kernels {WHj}M
j=1. In my examples, M was chosen as

(
log2(w)

)2 · nChannels = 27.

Using the hash functions from Equation 4.9, I create a hash table by concatenating M

functions {hj}M
j=1 to a code

gi (p) = h1(p) ◦ · · · ◦ hM (p).

Using this hash code, the signatures of all patches of both images are then inserted into

a hash table T . Due to the local sensitivity of this approach, patches which are proximate

in the appearance space, i.e., patches which are looking similar to each other will land in

the same bin in this hash table. This indexing step therefore has reduced the number of

contemplable patches significantly.

In the next step, for all these patches with colliding hashes the number of suitable patches

is increased by the previously described coherency-based expansion to 4k + 2 candidates.

This ensures that not only the patches which were found by the locality sensitive hashing

step are considered but also those which are in a local proximity to the candidates, thereby

increasing the set of candidates for one patch. I can then search for the one which matches

best by comparing all cadidate patches to the query patch with a suitable measure such

as SSD. While this is still a computationally expensive operation, the effort is much lower

than having to compare against all possible patches.

This is also the step where I’m introducing the information of the depth map into the match-

ing algorithm. As I’ve explained in Section 4.3.4, for a visually plausible completion of

the holes introduced in the view synthesis, the algorithm is only considering patches of

the background to fill the holes. Therefore, here the algorithm is not only comparing the

patches of the image but also their corresponding patches of the depth map. If a candidate

patch has on average a depth value which is smaller than the query patch, this patch will
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not be considered for the filling. I can thereby ensure that only background content will be

filled into the hole.

As a last step, the missing pixels p ∈ H are filled using the scheme proposed by Wexler

et al. [98] where the color of that pixel

cp =

∑
i∈Np

αi
psi

pc i∑
i∈Np

αi
psi

p

is calculated by a weighted mean of all ANN-patches which contain p, with a weighting

factor

w = αi
psi

p

which comprises a measure for the similarity

si
p = sim(W i

p, V i ) = e−
d(Wi

p ,Vi
p )

2σ2

between the query patch and its AN-neighbour. αi
p is a factor which denotes whether a

point is part of the hole p ∈ H or of the image area outside of the hole p ∈ I \ H. Areas

inside the hole will get a low confidence while areas outside of the hole will get a high

confidence. Wexler suggests to use a distance measure αp = γ−dist to the boundary of

the hole with γ = 1.3.

This filling is repeated iteratively. The image with the inpainted pixels is then again used

to initialize the next iteration instead of the random initialization of the hole of the first

step. In the next iteration, another ANNF between this inpainted image and the original

image with the holes is created to refine the inpainted content. In each iteration, I’m using

SSD to measure how much change there is in the picture. After a maximum number of

iterations (nIter = 30) or when the change in the picture falls below a certain threshold

(ε < 0.1 · w · h, where w and h are the size of the image), the iterations are stopped.

Typically, the algorithm converges relatively quickly to a suitably small threshold in about

3 iterations, however, there is no guarantee for a convergence which can sometimes be

observed by an oscillation of the change in the SSD between consecutive iterations.

This algorithm as described so far can only be applied for very small holes because the

size of the holes is limited by the patch size. Should the hole be larger than the patch
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Figure 4.13.: Hole filling is started on the lowest resolution level of a log-spatial pyramid. This facilitates
filling of holes which are larger than the patch size and enables faster convergence in the next level due to
propagation of the result.

size, the query patch would consist of random content only. I’m therefore introducing a

log-spatial pyramid. The image is scaled down by a factor 2n where n = −5 ... 0, which

ensures that the holes in the lowest resolution level are smaller than the patch size. The

lowest resolution scale depends on the size of the largest hole and the patch size. In my

examples a starting scale of 2−5 has been sufficiently small. After the image has been

inpainted in the smallest level, the image is scaled up to be used as the initialization in the

next level. This guarantees global consistency across the hole and faster convergence in

the high-resolution levels of the pyramid.

Algorithm 1 shows the complete VS-CSH algorithm in pseudo code.

4.4.5. Results

Figure 4.14 shows the result of the inpainting of the disocclusions of the last frame of the

Lovebird sequence. I’m showing the last frame here because it has the largest holes of all

frames due to the persons walking closer to the camera over the course of the sequence.

Image 4.14a shows a warped virtual view as would be seen from the position of Camera

7; using the image of Camera 6 as the reference image. Image 4.14b shows the inpainted

image. Especially when looking at the stairs in the background one can see how well

the algorithm preserves the structure of the stones, while making sure that none of the
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foreground is bleeding into the background. Figures (c) and (d) show some cropped parts

of the image to better visualize the details.

(a) (b)

(c) (d)

Figure 4.14.: Inpainting results for the last frame of the Lovebird sequence of the proposed algorithm. (a)
shows the warped image with the holes in black, (b) shows the inpainting result of the VS-CSH algorithm. (c)
and (d) show selected cutouts for improved visibility of the details.

Figure 4.15 shows the reconstruction of the depth map of the VS-CSH algorithm. The

depth can be reconstructed at the same time as the image is being inpainted, simply by

selecting the patches in the depth image which are at the same location as the patch of

the visual image and filling these into the disoccluded depth map.
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(a) (b)

Figure 4.15.: This picture shows the completion of the depth map by the VS-CSH algorithm. (a) shows the
input depth map with holes, (b) the reconstructed result
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5.1. Introduction

To evaluate the performance of the algorithms I’ve presented so far, suitable measures

need to be found to compare the performance of the algorithms against other state-of-the-

art algorithms. The goal of these algorithms as formulated in the course of this thesis was

to produce images where the holes have been filled in a visually plausible manner. This

already indicates that the synthesized content doesn’t necessarily need to be exactly the

same as the original view would be at that point. Measures which compare the image

to the ground-truth image on a pixel-by-pixel basis such as PSNR are therefore only of

limited expressiveness. Nevertheless, I’ve included them because they can be easily com-

pared against published numbers of existing algorithms. More appropriate methods would

be ones which don’t compare pixel values but rather the structure of the image such as

SSIM [60]. Even better, there exist metrics which take into account the processes occur-

ring in the human visual system, which might be able to give us a good indication of how

similar the synthesized image might be to the ground truth image in the eyes of a human

observer.

Researchers have investigated the properties of objective image metrics extensively be-

cause they exhibit a number of advantages compared to subjective testing in a laboratory.

Objective metrics allow for a quick analysis of the performance of algorithms already dur-

ing the development stage without the need to conduct time-consuming tests associated

with high effort and therefore high cost. Especially in the field of video coding, there exists

a wealth of analyzes of different objective metrics for exactly this reason. In many recent

publications, researchers were able to demonstrate that objective metrics for video coding

artifacts can provide results which are as good as tests performed in a laboratory setting,
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with deviations from the measured lab results which are well below deviations in between

different labs [100, 101, 102].

5.2. 2-D Objective Metrics

In 2011, Bosc et al. [103] conducted a comprehensive analysis how well classical objective

metrics used for assessing 2-D images may be applied to synthesis results of 3D-DIBR al-

gorithms. In a subjective study, she generated four viewpoints of three different sequences

using seven different view synthesis algorithms. 43 observers were then tasked to per-

form an absolute category rating (ACR [104]) on the generated views, which were then

averaged to get the mean opinion score (MOS). These ratings were then compared to

the result of 12 objective metrics, namely PSNR, SSIM [60], MSSIM [105], VSNR [106],

VIF [107], VIFP [107], UQI [108], IFC [109], NQM [110], WSNR [111], PSNRHVSM [112]

and PSNRHVS [113]. She found out that WSNR (weighted signal-to-noise ratio) had the

highest correlation to the MOS, with a correlation coefficient of 0.423, followed by PSNR

(0.386) and NQM (0.386, also). These low correlation values indicate that apparently

none of these metrics is particularly well suited to the quality degradations introduced by

the DIBR process.

5.3. Objective Metrics for DIBR

Battisti et al. [114] had a closer look at these specific artifacts. They identified six main

types of DIBR-related distortions: object shifting, incorrect rendering of textures, blurring,

flickering, geometry and depth distortions. Based on these findings, they developed an

objective metric called 3DSwIM which is tailored to evaluate view synthesis results. Their

metric is based on three assumptions. Given that the rendering process displaces ele-

ments of the image in the horizontal direction between different viewpoints, they introduce

a block registration step in their metric, giving it a "shifting-resilience" [114]. This is one

of the main differentiators to classic pixel-based metrics. Also, they assume that the im-

age synthesis process would introduce artifacts which would be especially noticeable in

the component of a Haar-wavelet transform related to the horizontal image features. The
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idea is that the holes in the image are oriented vertically in the image due to the horizontal

camera shift so that differences between the synthesized and the reference view should

manifest in a change of the horizontal frequency spectrum. Lastly, they propose that a

human observer would be specifically sensitive to changes in human skin, e.g. distortions

of the faces of people in the images. Therefore, they incorporate a skin detection algo-

rithm in their metric. They as well performed a comparison of the results of their metric

with the subjective study performed by Bosc et al. [103]. They showed that 3DSwIM has a

Pearson correlation coefficient of up to 0.7617 with the MOS values of the subjective study,

indicating that this metric might be much better suited to replicate the rating of a human

observer.

The fairly recently proposed DSQM metric by Farid et al. [115] achieves even higher coef-

ficients of correlation on the dataset of Bosc et al. Their metric is not quite a full reference

metric in that it doesn’t use the ground truth reference image from a camera at the synthe-

sized viewpoint but only the original image which has been warped as a reference. This

metric uses a patch-based normalized cross correlation in a first step to find the location

to where the patch has been shifted in the synthesized image. Then, they apply the phase

congruency model [116] as a perceptual feature extractor. The phase congruency model

states that perceptually important features such as edges, lines, mach bands etc. are lo-

cated at points where all fourier components of the signal are in phase. This feature is

extracted on the luminance channel of the image which has been converted from RGB

to YIQ. Farid et al. then compare the mean value of the phase congruency of all blocks

and use that as a measure for the distortion introduced by the DIBR process. Thereby,

they achieve a Pearson linear correlation coefficient of 0.7895 and a Spearman’s rank

order correlation coefficient of 0.7151 with the MOS values of the IRCCyN/IVC DIBR im-

age data base [103]. This outperforms not only 2-D-IQA algorithms such as SSIM, Multi

Scale SSIM (MS-SSIM) [105], PSNR or VSNR [106], but also metrics tailored especially

for the assessment of synthesized 3-D content such as 3DSwIM, Tsai [117], PQM [118],

SIQE [119], MW-PSNR [120] and MP-PSNR [121].
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5.4. Test Sequences

To evaluate the performance of my algorithms, I use two well-known Multiview Video-plus-

Depth sequences which seem to have become the de-facto standard sequences in liter-

ature to evaluate view synthesis hole-filling algorithms. This allows for a fair comparison

against published results of the state-of-the-art algorithms. The first one is the Ballet se-

quence from the Interactive Visual Media Group at Microsoft Research [18] which I’ve cho-

sen to include in the comparison because of its large baseline. This leads to comparably

large holes and therefore poses a unique challenge for hole-filling algorithms. Further-

more, the background has very clearly defined structures such as the bars and the regular

curtain which makes it easy to visually compare the results.

The scene was filmed with 8 cameras mounted on an arc with 30◦ angular separation

and the images have a resolution of 1024 × 768 pixels. Zitnick et al. [18] developed a

novel iterative algorithm to calculate the depth-map based on the disparity between two

cameras and I’ve used their published depth-maps in the warping step of the algorithm.

They’ve also published intrinsic camera parameters and a rotation matrix for each camera.

For my evaluation I take the view from Camera No. 5 and create a virtual view which would

be seen from Camera No. 4. I can therefore use the image from Camera No. 4 as a

ground truth reference. I use the MPEG View Synthesis Reference Software (VSRS) [73]

in version 3.5 to generate the virtual view and use my algorithms to fill the disocclusions.

Unfortunately, Zitnick et al. used different conventions for their transformation from world

to camera coordinates than the MPEG VSRS software expects so their published matrices

can’t be used in the VSRS software. Zitnick et al. provided the rotation matrices and

translation vectors according to

xc = Rxw + t

while the VSRS software expects an inverse external transformation

xw = Rxc + t.

In Chapter 2, I provide the derivation of the conversion of one representation into the

other in Equation 2.2. It is therefore necessary to convert the parameters provided by the
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Microsoft Research (MSR) team according to

RVSRS = R−1
MSR

and

tVSRS = −R−1
MSRtMSR.

This conversion is also described in detail in an MPEG document by Smolic et al. [122].

The other sequence I’ve used for the evaluation is the Lovebird sequence from the

Electronics and Telecommunications Research Institute (ETRI) of the MPEG-Korea Fo-

rum [99]. This sequence has a resolution of 1024 × 768 pixels as well. The depth-

maps of this sequence were generated using the MPEG Depth Estimation Reference

Software (DERS) [17]. I’ve chosen to include this sequence in the evaluation because,

in contrast to the Ballet sequence, this sequence was filmed outdoors which leads to a

much more irregular and more natural background, providing a challenging task for the

hole-filling algorithms. Just as the MSR sequence, this sequence has also gained some

popularity among researchers, so comparisons against published performance numbers

are easily possible. In this sequence, I use the images of Camera No. 6 and transform

them to the viewpoint of Camera No. 7 using the VSRS software.

5.5. Performance Overview

Table 5.1 shows the results of the objective metrics on the synthesized view of the Ballet

sequence averaged over all 100 frames of the sequence. I’m comparing the performance

of both my algorithms VS-BP and VS-CSH against the the MPEG VSRS reference imple-

mentation [73] which uses Bertalmio’s inpainting algorithm [62], the algorithm of Daribo et

al. [38], Gautier’s algorithm [40] and two very recently published algorithms by Li et al. [33]

and Luo et al. [92]. All algorithms which I could evaluate on my own were fed with the same

input material (disoccluded view, depth map and hole mask) which I’ve created with the

VSRS software with the same parameter settings for all algorithms. The VSRS software is

designed to output complete warped and filled images, so I’ve modified the source code to

output the intermediate images which I then passed on to the other hole-filling algorithms.

The VSRS software does not have any further parametrization for the hole-filling step. The
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Table 5.1.: Objective evaluation of the inpainting result
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PSNRY [dB] 28.7 30.3 31.4 31.5 32.1 33.2 32.5
PSNRY holes only [dB] 19.2 24.2 24.0 - - 26.2 24.9
SSIM 0.92 0.87 0.88 0.93 0.87 0.93 0.93
SSIM holes only 0.60 0.68 0.69 - - 0.72 0.71
3DSwIM 0.52 0.33 0.35 - - 0.53 0.49
DSQM 0.28 0.49 0.49 - - 0.25 0.25

algorithm by Daribo was run with the default window size of 9×9 pixels proposed by Crim-

inisi and the depth prioritization parameter β was manually tuned to give the best possible

result. Gautier’s algorithm was run with the parameters provided with the software. Un-

fortunately, the implementation which was provided to me by the author doesn’t support

the full resolution of 1024× 768 pixels so the images were resampled to half their original

size which actually improves the PSNR value of the result by a little margin. I was not able

to get a reference implementation of the algorithms of [33] and [92], so I used the values

which they published in their articles. Unfortunately, this means that I can only compare

against selected metrics which were published.

The objective metrics for this comparison were PSNR on the luma channel of the image,

SSIM, 3DSwIM and DSQM. Note that for DSQM, lower values are better. I’ve provided

additional values for PSNR and SSIM which were evaluated on the holes only, i.e., the

metrics were only applied on the inpainted content. One can see from Table 5.1 that VS-

BP provides the best hole-filling result of all the algorithms in this evaluation in terms of the

applied objective metrics. VS-CSH is a close contender on the second place for almost all

metrics except 3DSwIM where, suprisingly, the VSRS software scores the second place.

Only for SSIM, the algorithm of Li et al. [33] performs equally well.
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5.5.1. Performance over Time

Figure 5.1 shows how the values of selected objective metrics change over the course of

the complete Ballet sequence. The red line is the result of VSRS [123], yellow is the result

of Gautier’s algorithm [40], blue is the result of VS-CSH and violet is the result when the

hole is filled with the ground truth content of Camera No. 5. Unsurprisingly, all hole-filling

algorithms perform worse than the ground truth, however, one can see that VS-CSH is

performing the best out of these algorithms.
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Figure 5.1.: Course of the objective metrics over the complete Ballet sequence. The red line is the result of
VSRS [123], yellow is the result of Gautier’s algorithm [40], blue is the result of VS-CSH and violet is the result
when the hole is filled with the ground truth content of Camera No. 5.
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5.5.2. Temporal Consistency

Temporal consistency is an important aspect of disocclusion filling algorithms. As most

of the algorithms presented in this thesis operate on individual frames of a video, it is not

guaranteed that the synthesized regions of the output images remain consistent over time.

When these individual images are then played sequentially, the observer will experience

more or less noticeable flickering of in the image in the synthesized regions where the

content may change rapidly from one frame to the next, especially around the borders of

the foreground objects. This makes the disocclusion filling process more apparent as the

eye is more sensitive to rapid changes in the video sequence [124], thus counteracting the

goal of visually plausible content generation.

To evaluate the temporal consistency of the inpainting results, I’m using a measure called

Frame Differential Flicker (FDF) as described in [125]. This measure analyzes the amount

of change in the disoccluded areas of an image sequence and compares it to the naturally

occurring change in the ground truth sequence.

In the first step, this measure calculates the difference between two consecutive images

It−1 and It for each pixel p over a so called timeline Tp = {It (p) : t = 1 ... N}

κp =
1
|Tp|

∑
t

|It (p)− It−1(p)| ,

which provides a value for the absolute flicker of a single pixel over the duration of the

sequence, similar to how Intra-frame flicker is being measured in video coding [126]. This

difference is then evaluated over the disoccluded areas in the video to provide

κD(I) =
1
|D|

∑
Tp∈D

κp,

where D denotes all the timelines in the disoccluded area of the image sequence.

Finally, this flicker of the disoccluded areas is compared to the flicker of the ground truth

sequence G to obtain the Frame Differential Flicker

FDF (I) = |κD(I)− κD(G)|.
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Table 5.2.: Frame Differential Flicker for two test sequences and different algorithms. The values marked with
an asterisk (*) were taken from [92] and could not be verified independently.

Test Sequence [73] [40] [92] VS-BP VS-CSH
Ballet5→4 1.77 3.68 3.7* 2.91 0.15
Lovebird6→7 -1.07 6.94 - 3.80 4.74

Schmeing and Jiang, the authors of [125], note that it may become difficult to find the

timeline of a certain pixel in the disoccluded area when the foreground object is moving

because the disoccluded area is changing its location, shape and size inside the frame.

They therefore restrict their measure to static scene geometries with very simple objects

of synthetic rendered videos. In my opinion, the limitation to static foreground objects is

unnecessary. While it is true that the pixel value in the disoccluded area may change due

to the foreground object moving in the scene, this change is equally reflected in the ground

truth sequence and thus does not contribute to the FDF. I have therefore evaluated the

FDF over the set union of the two disoccluded regions of two consecutive frames.

Table 5.2 shows the result of the evaluation. Both algorithms presented in this thesis com-

pare favorably to even the most recent state-of-the-art algorithms. Flicker is significantly

lower than of the algorithm of Gautier et al. [40] and better than the reference algorithm of

the VSRS 3.0 [73] in the Ballet sequence. In this sequence, both algorithms are also better

than the recent algorithm of Luo et al. [92]. Lacking an implementation of their algorithm,

I could only compare to their published number for the Ballet sequence. VSRS performs

relatively well because the Bertalmio inpainting algorithm it employs by design leads to

very smooth filling results due to the underlying flow equations. This optimization on spa-

tial consistency rather than visual acuity was already shown in the previous analysis. The

FDF metric for this algorithm becomes negative because the flicker is even lower than the

flicker of the ground truth sequence.

5.5.3. Runtime Comparison

The hole-filling algorithms I’ve presented so far exhibit significant differences in compu-

tational complexity which leads to significant differences in the runtime of the algorithms.

While it is very difficult to make an objective comparison of different algorithms written

in different programming languages with different levels of optimization, I briefly want to
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present measurements for the runtime of all the algorithms and discuss the results with

respect to their implementation details.

As the runtime of most of the algorithms depends on the area of the holes, I’ve executed

them on all 100 frames of the Ballet sequence to get a good distribution over different

sizes of holes. The holes of the Lovebird sequence are smaller on average, so the Ballet

sequence with its large baseline should give a good estimation for the higher end of the

execution time for a typical application of these algorithms.

Table 5.3 shows the runtime of the presented algorithms for a single frame of the Ballet

with the median value and the lower and upper quartile indicated over all frames.

All of the algorithms in this comparison were executed on a PC with an Intel Core i7-5500U

Dual-Core CPU with a maximum clock frequency of 3.0 GHz and 8 GB of RAM.

The fastest algorithm of this comparison is the inpainting algorithm of Bertalmio et al. [62]

which is being used in the VSRS reference implementation. It is not surprising that this

algorithm wins this comparison as it uses the inpainting method which comes with the

OpenCV library1, implemented in C++ and being heavily optimized. Also, this algorithm

can use very efficient solvers for the underlying Navier-Stokes equations. However, it is

also the algorithm with the worst image quality in this comparison.

For the algorithm of Gautier et al. [40] I was provided with the reference implementation

by the authors in a binary format. The software was written in C++ as well and compiled

using the Microsoft Visual Studio compiler. The algorithm is still relatively slow which

can be explained by the exhaustive patch search it is employing which makes it relatively

inefficient.

The VS-BP algorithm I’ve developed is written in Matlab and unfortunately uses a straight-

forward and therefore rather inefficient implementation of the belief propagation algorithm.

This makes it one of the slowest algorithms in this comparison, comparable to the Criminisi

inpainting algorithm. However, it makes up for its computational complexity by its superior

image quality. I would expect that an implementation in C++ using an efficient belief prop-

agation library such as OpenGM [127] to solve the MRF would make it significantly faster.

An evaluation on a comparable inpainting problem conducted by the authors of this library

1https://opencv.org/
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Table 5.3.: Runtime of different hole-filling algorithms on 100 images of the Ballet sequence.

Test Sequence VSRS [73] Gautier [40] Criminisi [63] VS-BP VS-CSH
Q0,25 9 s 57 s 5 h 12 min 3 h 43 min 27 s
Median 9 s 2 min 2 s 6 h 41 min 5 h 24 min 35 s
Q0,75 10 s 2 min 20 s 7 h 23 min 6 h 12 min 41 s

showed an increase in the execution speed by at least one order of magnitude compared

to different implementations of the same algorithm [127].

My VS-CSH algorithm was implemented in Matlab as well. However, I could make use

of the excellent CSH implementation by Korman and Avidan [93] which is largely imple-

mented in C and embedded in Matlab through the use of MEX functions. I’ve implemented

all my extensions for using CSH for hole filling in C as well. This makes this algorithm one

of the fastest in this comparison, while still retaining excellent image quality.
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The framework for crowd-sourced subjective testing described in the next chapter

has already been published in [128, 129, 130, 131, 132].

6.1. Introduction

Objective quality metrics are an invaluable tool in the assessment of the performance of

image and video processing algorithms because they allow for a quick and inexpensive

way to compare the performance of different algorithms. However, as I have described in

the previous chapter, their expressiveness in terms of the image quality a human observer

would observe is always subject to debate. While it seems to be good form to present

the PSNR values when publishing a newly developed algorithm, numerous studies have

shown that the correlation of PSNR and the mean objective score measured in a subjective

study is very poor, and even simple examples can be found to demonstrate that different

kinds of errors with significant differences in the perceived quality of an image can lead to

the same PSNR value [133].

Especially in the context of this thesis, my formulated goal was to develop algorithms which

are able to complete images in a way which is natural to a layperson. An ideal hole-

filling algorithm would fill in the disocclusions in a way which is unnoticeable to a human

observer. This suggest that there is no objectively quantifiable correct way to fill in the

hole, let alone one that one could compare against some ground truth reference. To me, it

therefore seems necessary that I conduct a subjective study to substantiate the results of

the objective metrics that I have provided in the previous chapter.
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Subjective studies, however, often come at a significant cost. One needs to have access

to a specially equipped laboratory (which I was fortunate enough to have at the Institute

for Data Processing of the TUM), the equipment should be calibrated in a time consuming

procedure before the test and the test needs to be conducted with a rather large group

of persons which have to be instructed individually. Due to the limited capacity of the

laboratory, these tests also consume a significant amount of time, most often spreading

over the course of several days or even weeks. Lastly, the test subjects are typically

reimbursed for their time and effort, which amounts to a significant financial expense for

conducting a study.

My colleagues and I therefore set out to find a simpler way to conduct subjective studies

which is more adapted to the internet age. The result was the development of Quality-

Crowd, a framework for quality evaluation in a web browser. In several studies, we have

shown that the results of a subjective study conducted in such an online experiment are

comparable to those which were conducted in a standard conforming laboratory environ-

ment. We were even able to show that the deviations between these two testing method-

ologies are smaller than one would expect when comparing the results of tests which have

been conducted at different laboratories [132].

In this chapter, I will therefore present a subjective study which has been performed on the

virtual views generated by my hole-filling algorithms. The purpose of this study is two-fold.

With one single study, I want to assess the subjective image quality of the virtual views

generated with the two algorithms presented in this thesis, but at the same time verify the

validity of using QualityCrowd to conduct this experiment. My approach therefore is as

follows. I recreate the study which was conducted by Bosc et al. [103] in the QualityCrowd

framework instead of the laboratory and compare the results of both methodologies. The

goal is to find out whether conducting the study in an online test yields comparable results

to those of the laboratory experiment. At the same time, I’m extending the test set by

virtual views views which have been generated with the algorithms presented in this thesis.

Should the hypothesis hold true that the results of the original test set are comparable to

those of the study of Bosc, I’m getting an assessment of the subjective quality of my

algorithms at the same time, for which I otherwise would have needed to conduct a new

subjective study in the lab.
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6.2. Test Setup

6.2.1. The QualityCrowd Framework

QualityCrowd in the latest version 2 provides a server architecture which enables a very

quick setup of subjective studies on the internet. It has only minimal requirements on the

server software (an HTTP server like Apache with a recent version of the PHP interpreter)

and can quickly be installed with an interactive installation assistant. Once installed, new

subjective tests (so called batches) can be set up with a simple test description language

called QualityCrowd-Script. It supports different media formats for still images and videos

and different ratings scales such as Absolute Category Rating (ACR), either discrete or

continuous, but also impairment scales such as Double Stimulus Impairment Scale (DSIS)

or Pairwise Comparison (PC). Each test subject gets an individual link to access the study

and QualityCrowd collects the results which can then be downloaded in CSV or Excel

format. QualityCrowd2 also automatically generates statistics while the study is being

conducted such as the progress of each test subject through the questions and meta

information such as the time a subject spends at each question. QualityCrowd is Open

Source Software and can be downloaded at the Github account of the Institute for Data

Processing of the Technische Universität München1.

6.2.2. Test Set

Bosc et al. [103] conducted their experiment with three different test sequences: the Book

Arrival sequence of the Heinrich-Hertz Institute which has a resolution of 1024 × 768

pixels and was recorded with 16 cameras with a spacing of 6.5 cm; the Lovebird se-

quence provided by ETRI and the MPEG Korea Forum [99] which has a resolution of

1024 × 768 pixels and was recorded with 12 cameras with a spacing of 3.5 cm; and the

Newspaper sequence by Gwangju Institute of Science and Technology (GIST), also with

a resolution of 1024 × 768 pixels and a spacing between cameras of 5 cm. Out of every

sequence, four novel views were generated. Adapting the notation of the previous chap-

ter, these synthesized views are Lovebird6→7, Lovebird6→8, Lovebird8→6, Lovebird8→7,

1https://github.com/ldvpublic/QualityCrowd2
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Figure 6.1.: This figure shows a screenshot of the QualityCrowd browser interface as seen by a subject which
participates at the study. The synthesized view is shown and the subject is tasked to rate the image quality on
a discrete five point ACR scale.

Newspaper4→5, Newspaper4→6, Newspaper6→4, Newspaper6→5, Book8→10, Book10→8,

Book8→9, and Book10→9.

They were using 7 different algorithms on these three sequences:

A1: Holes

These are the synthesized views where the disoclussions are left present in the form

of black holes.

A2: Fehn et al. [10]

This method applies a Gaussian low-pass filter to the depth image which smoothes

out depth-discontinuities which manifest as edges with high contrast in the depth
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.2.: The test set consists of 120 images, comprising 3 different test sequences, each with 4 different
viewpoints and 10 different view synthesis methods. In this figure, I’ve selected Frame No. 104 of the Lovebird
sequence transformed from Camera 6 to Camera 7; Frame No. 112 transformed from Camera 8 to Camera
6; Frame No. 136 of the Newspaper sequence transformed from Camera 4 to Camera 5 and Frame No. 104
transformed from Camera 6 to Camera 5. The top row (images (a) to (d) shows the transformed viewpoint
with the disocclusions, the bottom row the filling result of my VS-CSH algorithm (images (e) to (h)).

image. Thereby, the algorithm eliminates the depth discontinuities, similar to the

method by Zhang et al. [11]. After warping the image, these smooth depth gradients

lead to visible distortions of the image. Also, this technique can’t be applied to

disocclusions at the border of the image, which is why these disocclusions are simply

cropped away.

A3: Fehn et al. [10] with Telea [32] inpainting

This algorithm uses the same method as A2 but the disocclusions at the border are

inpainted using the method proposed by Telea [32].

A4: MPEG VSRS [123]

This is the view synthesis method used in VSRS proposed by Tanimoto, Mori and

others [123, 25] which also uses Telea [32] as the inpainting step.

A5: Müller et al. [36]

This view synthesis method uses a hole-filling algorithm which fills the holes line-

wise. Each horizontal line of the hole is filled with the color of the nearest back-

ground pixel which is horizontally extrapolated into the hole. They claim that "this

simple constant-color extrapolation of the background pixel leads to better results,
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than an unconstrained linear interpolation between both values" [36]. However, this

method obviously fails to reproduce texture or any kind of linear structure which is

not horizontal.

A6: Ndjiki-Nya et al. [41]

This is one of the variants using Criminisi’s [63] algorithm in the inpainting step, not

dissimilar to the algorithms developed by Daribo [38] or Gautier [40] which have

been used in the previous chapter for the objective testing.

A7: Köppel et al. [134]

Köppel et al. [134] extend the algorithm of Ndjiki-Nya et al. by saving a sprite of the

background. Therefore, background information which was present in earlier frames

can be used for the inpainting step of the holes. However, the information stored

in the background sprite might become outdated quickly, which would degrade the

synthesized view.

A8: Original

These are the original camera views which have not been synthesized.

With the combination of these three sequences with four different camera views and eight

algorithms, they’ve ended up with a total of 96 images which were rated in this study.

6.2.3. Laboratory Study

Bosc et al. conducted their study in an "ITU conforming test environment" [103], where

they presented the stimuli to 43 naïve observers on a TVLogic LVM401W LCD reference

monitor in a test setup in conformance to the recommendations of ITU-R BT.500 [135].

They’ve conducted two separate studies, one with an absolute category rating (ACR) and

another with a pairwise comparison (PC) study. I will only use the results of the ACR

study in my comparison because the PC study takes much longer to complete (40 min

vs. 20 min) and therefore isn’t very well suited for an online experiment. The age and

gender distribution of the test subjects unfortunately is not known to me. They conducted

pre-screening of the subjects with Snellen and Ishihara charts to check for visual acuity

and color blindness and post-screening according to the rejection criteria formulated by

the Visual Quality Experts Group (VQEG) [136], however did not have to exclude any
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participant. Bosc et al. unfortunately didn’t describe any further details about the study,

especially not how the participants were instructed and whether they were using anchor

sequences in a stabilization phase.

6.2.4. QualityCrowd Study

My goal with the QualityCrowd study was to replicate the experiment conducted in [103] as

closely as possible in a web-based setting with the addition of the synthesized images of

the two algorithms presented in this thesis. Fortunately, Bosc et al. published their dataset

online2 so that I could download all the images they used in their study. I’ve then applied

my view synthesis algorithms to the same frames and the same combination of camera

pairs of the Lovebird and Newspaper sequence which were used in the data set, so that I

had 112 images in total.

It lies in the nature of the tests which are conducted using QualityCrowd that they violate

many of the recommendations which are formulated in ITU-R BT.500 [135] concerning the

study environment, the presentation device, the distance between observer and screen

and so forth because one has largely no control over how the images are presented at the

site of the test subject. I did, however, ask all participants to conduct the study on a web

browser on a computer and explicitly asked them to not use their mobile devices because

of the limited screen size of mobile phones which might be too small for the artifacts of the

algorithms to be sufficiently well resolved.

The participants were invited via e-mail where each participant got an individual link to

the QualityCrowd test site. The study group consisted mostly of friends and family of

mine and several colleagues, however, I’ve paid attention to only invite non-experts which

were not aware of the nature of the algorithms. The only instruction about the purpose

of the study I’ve given was to compare "the visual quality of several image processing

algorithms". In total, 24 observers (12 female, 12 male) participated in the study, which is

the recommended number of test subjects in the VQEG test plan [136], with a range of 34

to 60 years of age.

In the written instructions which were presented to the test subjects on the QualityCrowd

2http://ivc.univ-nantes.fr/en/databases/DIBR_Images/
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platform, I’ve explained how the test will be conducted and asked the participants to com-

plete the test on their own. QualityCrowd ensures that each participant can conduct the

test only once with their individual link and that the subjects can’t jump back or repeat a

test step.

The first step of the test was a training session. In this training session, I’ve presented

two images of the study consecutively, one of the group A1 with the holes and one of

the original views of the A8 group and explained the rating scale. I’ve chosen these two

images to serve as anchor images for the subjects to adjust to the scale. The ratings of

the training session were discarded.

In the subsequent test, the 112 images were shuffled in random order, however, I did

include a stabilization phase at the very beginning of the test which consisted of 6 images

with the complete range of MOS values known from the lab study. The purpose of this

stabilization phase again was to give the test subjects the opportunity to adjust their inner

rating scale. The results of the stabilization phase were discarded as well and the 6 images

repeated later on in the actual test. More information about the purpose and the effect of

the stabilization phase in a subjective test can be found in [137].

The test was conducted in January of 2020. All 24 participants completed the test. As

the setting of an online test doesn’t allow a meaningful pre-experiment screening of the

observers, I’ve only applied post-experiment screening for possible rejections of partic-

ipants. I followed the recommendations of VQEG [136] and ITU-R BT.500 [135]. The

VQEG recommendations suggest to eliminate the ratings of a participant if its Pearson

correlation coefficient per sequence is lower than 0.75 vs. the rest of the viewers. The ITU

recommendations define a more involved rejection criterion which counts how often a test

subject’s ratings exceed an interval defined by the mean and the standard deviation of all

ratings. In the end, I did not have to exclude any participants from the study.

6.3. Comparison of QualityCrowd with the Laboratory Study

After conducting the study in the QualityCrowd platform, first of all I want to compare the

results of both studies and find out whether there are any significant differences in the

studies which might stem from the different methodologies used to get the MOS values.
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6.3. Comparison of QualityCrowd with the Laboratory Study

Figure 6.3 shows a scatter plot of the results of the studies. One can see a high correlation
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Figure 6.3.: Scatter plot comparing the MOS values of the lab experiment of [103] and my study conducted
with QualityCrowd. The MOS of the QualityCrowd study has a tendency to be slightly better, which is probably
a result of the test subjects’ better utilization of the full rating scale in the online test.

between the results of both studies with a Pearson correlation coefficient of ρP = 0.967

and a Spearman rank correlation of ρS = 0.913. For reference, this is considerably better

than the lowest acceptable correlation between the results of studies conducted in different

labs (the so called lab-to-lab correlation) using the same methodology, which was defined

by the VQEG as ρP ≥ 0.94.

However, correlation alone is not a good indicator for the agreement between two differ-

ent measurement methodologies [138]. I’ve therefore created a Bland-Altman plot of the

results, which allows to have a more detailed look at the differences between both method-

ologies. A Bland-Altman plot [138] is a tool often used in the field of medicine or analytic

chemistry for the comparison of two methods of measurement. It plots the differences

between the two sets S1 − S2 over the average of both results S1+S2
2 , including three hor-

izontal lines which show the mean value and the 95% confidence intervals. One can see
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Figure 6.4.: The Bland-Altman plot of the MOS values of the lab experiment of [103] and my study conducted
with QualityCrowd shows the difference between both measurement methods. Most measurements lie within
the 95% confidence interval shown with the two horizontal lines. There is a mean offset of -0.26, which is not
quite statistically significant (p=0.065). There seems to be a slight systematic bias towards better MOS values
in the QualityCrowd study, where the test subjects seem to rate high quality pictures better in the QualityCrowd
study than in the Lab experiment.

that there is a slight difference in the mean MOS of both studies of −0.26 which is not sta-

tistically significant (p=0.065). Also, one can see that there might be a a slight systematic

bias towards better MOS values in the QualityCrowd study where the test subjects seem

to rate high quality pictures better in the QualityCrowd study than in the Lab experiment,

which I’ve shown with the regression line that I’ve added. It looks like the test subjects in

the QualityCrowd study seem to rate images with a good MOS better than in the lab study,

while for low MOS values both studies seem to be in relative agreement. I suspect this to

be a result of the direct and indirect anchoring [135] in the training session and the hidden

stabilization phase of the QualityCrowd study, which probably led the test subjects to make

better utilization of the full ACR scale.
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6.4. Subjective Visual Quality of VS-BP and VS-CSH

Apart from these slight differences, almost all of the ratings lie well within the 95% con-

fidence intervals, which means that there is no statistically significant difference between

both studies.

This result shows that the subjective image quality test which I’ve conducted on Quality-

Crowd has delivered valid results for DIBR images, comparable to those that one would

get from a laboratory study. Having validated my methodology, we can now have a closer

look at the performance of the algorithms in the study and of course especially have a look

at the performance of both view synthesis algorithms presented in this thesis.

Figure 6.5 shows the average MOS values for the Lovebird and the Newspaper sequence

for all 10 different algorithms which were evaluated in the study. For the eight algorithms

which were evaluated in both studies I’ve plotted both results, whereas the VS-BP and

the VS-CSH algorithms have only been evaluated in the QualityCrowd experiment. One

can see that, unsurprisingly, the images with the disocclusions present as black holes

performed worst in the study, while, also not suprising, the original camera views performed

best. All the view synthesis algorithms are ranked somewhere in the middle between these

two extremes. The ranking of the algorithms is well preserved between both studies; the

QualityCrowd study has ranked the algorithms in the same order as the lab study – with

one notable exception which is the Fehn algorithm with Telea inpainting (A3). There, the

lab study has a lower MOS than the QC study. I had a closer look at this discrepancy

and, unfortunately, there seems to be an error in the raw data provided by Bosc et al. of

the study. While in their paper they computed an average MOS of 2.41 for this algorithm

(which is probably the correct value), if one calculates the MOS from the raw data of the

study one gets a MOS of only 2.157. The MOS values for all the other algorithms, however,

seem to be correct and plausible. Still, I find it to be a nice example of the expressiveness

of the QualityCrowd study that it was able to uncover this error in the data of the original

study.

6.4. Subjective Visual Quality of VS-BP and VS-CSH

The results of the QualityCrowd study show that the VS-CSH algorithm is rated to be

on par or have a slightly better visual quality than the next best algorithm of the study
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6. Subjective Evaluation

"Fehn cropped" with a MOS of 2.79 vs 2.73 (this difference is not statistically significant

with p = 0.587). This is particularly notable because in the "Fehn cropped" algorithm

the disocclusions at the border of the image are actually cropped away which should give

this algorithm a considerable advantage over one which is filling in the disocclusions (see

Chapter 6.2.2 for details). VS-CSH is significantly better than the third best algorithm in

this study, which is the one of Müller et al. [36] which is using an inpainting technique to fill

in the disocclusions (MOS 2.79 vs 2.48, p < 0.007). VS-BP did not perform quite as well

as the objective metrics suggested, and it is also my personal subjective impression that

VS-CSH performs better on the selected test set than VS-BP. With a mean opinion score

of 2.44, it is on par with the visual quality of the algorithms by Müller et al. [36] (MOS 2.47)

and Ndjiki-Nya et al. [41] (MOS 2.52). The differences in visual quality are not statistically

significant. VS-BP is, however, significantly better than the hole-filling algorithm in the

VSRS by Mori et al. [25] (MOS 2.06, p < 0.05).
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Figure 6.5.: This plot shows the average MOS and the 95% confidence intervals for the Lovebird and the
Newspaper sequence for all 10 different algorithms. The blue plot shows the results of the laboratory study
of [103] while the green plot shows the results of the QualityCrowd study. The algorithms have been sorted
by their MOS of the laboratory study in ascending order, with the images with holes ranking worst in the
experiment and the ground truth camera images ranking best. VS-BP and VS-CSH have only one data point
each because they were not part of the laboratory study. Out of the view synthesis algorithms in this subjective
study, VS-CSH scored the highest MOS with 2.8.
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7. Conclusion

This thesis presented two new hole-filling algorithms for view synthesis. VS-BP applies a

global optimization approach on Markov random fields incorporating the information of the

depth map. This not only leads to consistent inpainting results but also to a higher algo-

rithmic efficiency due to rigorous label pruning based on depth range. It has a significant

improvement in objective image quality even when compared to very recently published

state-of-the-art algorithms, and compares very favorably in the subjective study.

VS-CSH was developed with the goal to further improve the computational efficiency of

hole-filling algorithms. By employing a state-of-the-art hashing scheme, I’ve achieved a

tremendous increase in processing speed by several orders of magnitude while still retain-

ing excellent image quality. Considering the objective metrics, it performs almost as well

as VS-BP, however, the results of the subjective study rank it as the algorithm with the

highest visual quality of the study.

In the quest for evaluating the visual quality of both algorithms, I’ve conducted a crowd-

sourced subjective study, which to my knowledge, has never been done before for DIBR

images. I’ve therefore validated the results of this study against an independent laboratory

study and shown that it is a valid method to conduct subjective experiments with signifi-

cantly less effort than laboratory studies.

In this thesis, I’ve developed algorithms which operate on individual images. Their perfor-

mance on videos could most probably be improved even further by taking into account the

temporal correlation of consecutive frames. The literature knows numerous approaches

on how to do that and I’ve made specific suggestions for both algorithms which were pre-

sented here. For VS-BP, this has actually been done by Kim et al. [80] while I was preparing

this thesis with at least subjectively good looking results; and a similar approach could also

be applied to VS-CSH.
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A. Appendix

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.1.: Inpainting results for the first frame of the Ballet sequence of two state-of-the-art algorithms
and VS-BP. (a), (b) Synthesized View; (c), (d) Result of Daribo’s method [38]; (e), (f) Result of Gautier’s
method [40]; (g), (h) VS-BP.

127



A. Appendix

Algorithm 1 VS-CSH

Input: Image I, Depth Map D

Output: Virtual View Isynth, Virtual Depth Map Dsynth

Image Warping

Warp image I to get the virtual view with disocclusions Iwarp, the depth map from that

viewpoint Dwarp and the mask of the disocclusions M

Enlarge holes by dilating with the structuring element K

niterations = 10

for s = −5 . . . 0 do

Resample Iwarp by a factor 2s to get Ires

Create a copy of Ires and fill the holes with random content to get It
for t = 1:niterations do

Compute ANN field with CSH between Ires and It
Hashing

Project all patches of Ires and It onto M Walsh-Hadamard Kernels {WHj}M
j=1

Calculate the hash of each patch of Ires and It with the code

gi (p) = h1(p) ◦ · · · ◦ hM (p)

Insert hash into hash table T [gi (p)]

Search

For each patch p in It find all candidates ci using the hash table T

For each candidate c:

if SSD(p, c) < SSD(p, ANNF (p)) then

if D(c) <= D(p) then . Check that candidate is further in the background

ANNF (p) = c

end if

end if

Fill Holes

Fill disocclusions (M = 1) with all patches of the ANNF which contain p

end for

end for
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