
Theory of Computing Systems (2019) 63:466–487
https://doi.org/10.1007/s00224-018-9883-0

Motivating Time-Inconsistent Agents: A Computational
Approach

Susanne Albers1 ·Dennis Kraft1

Published online: 7 August 2018
© The Author(s) 2018

Abstract
We study the complexity of motivating time-inconsistent agents to complete long
term projects in a graph-based planning model proposed by Kleinberg and Oren
(2014). Given a task graph G with n nodes, our objective is to guide an agent towards
a target node t under certain budget constraints. The crux is that the agent may change
its strategy over time due to its present-bias. We consider two strategies to guide the
agent. First, a single reward is placed at t and arbitrary edges can be removed from
G. Secondly, rewards can be placed at arbitrary nodes of G but no edges must be
deleted. In both cases we show that it is NP-complete to decide if a given budget is
sufficient to keep the agent motivated. For the first setting, we give complementing
upper and lower bounds on the approximability of the minimum required budget. In
particular, we devise a (1+√

n)-approximation algorithm and prove NP-hardness for
ratios greater than

√
n/3. We also argue that the second setting does not permit any

efficient approximation unless P = NP.

Keywords Approximation algorithms · Behavioral economics · Commitment
devices · Computational complexity · Time-inconsistent preferences

1 Introduction

In behavioral economics people’s tendency to change long term plans for no apparent
reason is known as time-inconsistent behavior. Examples of such behavior are plenty
in every day life, including academia. Consider, for instance, a referee who agrees
to evaluate a scientific proposal. Despite good intentions, the referee gets distracted

Supported by the European Research Council, Grant Agreement No. 691672. A preliminary version
of this work was presented at the 12th Conference on Web and Internet Economics (WINE), 2016

� Dennis Kraft
kraftd@in.tum.de

1 Department of Informatics, Technical University of Munich, Boltzmannstr. 3,
85748 Garching, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-018-9883-0&domain=pdf
http://orcid.org/0000-0002-6476-4371
mailto: kraftd@in.tum.de


Theory Comput Syst (2019) 63:466–487 467

and never submits a report. Or consider a student who enrolls in a course. After
completing the first homework assignments, the student drops out without earning
any credit. In general, these situations have a reoccurring pattern: An agent makes a
plan to complete a set of tasks in the future, but changes the plan at a later point in
time. This behavior is sometimes the result of unforeseen circumstances. However, in
many cases the plan is changed or abandoned even if the circumstances stay the same.
This paradox behavior of procrastination and abandonment might severely affect the
performance of agents in an economic or social domain, see e.g. [1, 12, 14].

A sensible explanation for time-inconsistent behavior is that agents assign dispro-
portionately greater value to the present than to the future. For example, consider a
simple car wash problem in which Alice commissions Bob to wash her car. Each day
Bob can either do the chore or postpone it to the next day. However, the longer he
waits, the dirtier the car gets. On day i cleaning the car incurs a cost of i/50 while the
cost of waiting another day is 0. After completing the task, Bob will receive a reward
of 1 from Alice. Because Bob is present-biased, he perceives any current cost accord-
ing to its true value, but discounts future costs and rewards by a factor of β ∈ [0, 1].
On day i he compares the cost of washing the car right away, which is i/50, to his
perceived cost of washing it on the next day, which is β(i + 1)/50. Suppose that
β = 1/3. Since i/50 > β(i + 1)/50, he procrastinates with good intentions of doing
the job on the following day. On day i = 50, Bob’s perceived cost for washing the
car on the next day or any of the following days is at least β(50+1)/50. This exceeds
his perceived reward of β and therefore he abandons the project.

1.1 RelatedWork

There exists an extensive body of work on time-inconsistent behavior, see again [1,
12, 14]. A common idea thorough the literature is that time-inconsistent behavior
arises because agents discount the value and cost of future events disproportion-
ately. Remember the car wash problem. In this scenario we have considered a special
case of quasi-hyperbolic discounting, which is a well established discounting model
introduced by [10]. We build on work by [7], who proposed a graph-based model
to capture the behavior of quasi-hyperbolic discounting agents in general planning
problems. Since its introduction, their work sparked an active line of research at the
intersection of economics, mathematics and computer science, see e.g. [2, 3, 6, 8, 9].

We give a formal definition of our model in Section 2. Essentially, it consists of a
directed acyclic task graph G with n nodes. Each node represents a certain state of
the project, whereas the edges are tasks necessary to transition between states. The
workload of individual tasks is modeled by edge costs. To complete the project, an
agent with bias factor β ∈ [0, 1] must move from a designated source s to a target
t . As a motivation, rewards are placed on the nodes of G. When located at some
node of G, the agent considers all possible paths to t . However, because of its time
inconsistency, the agent only evaluates the cost of incident edges accurately. All other
costs and rewards are discounted by a factor of β. Let P be a path that minimizes the
agent’s perceived net cost. If this cost is at most 0, the agent traverses the first edge
of P and then reassesses its plan. Otherwise the agent abandons the project. A graph
in which the agent always reaches t is called motivating.



468 Theory Comput Syst (2019) 63:466–487

We take the perspective of a project designer, whose main objective is budget-
efficiency. In other words, we try to minimize the reward we must spend to get the
project completed. In general, various strategic arrangements can be made to increase
budget-efficiency. For instance, in the car wash problem Alice can introduce a dead-
line to keep Bob from procrastinating. As we show in Section 2, this is beneficial to
both of them. Because the aim of such an arrangement is to commit the agent to fin-
ish the project, it is often called a commitment device, see e.g. [4]. Note that deadlines
belong to a broader range of popular commitment devices that reduce the agent’s set
of choices [12, 13]. In the graph-based model we can implement such devices by
removing the corresponding edges from G [7].

Another common commitment device is the placement of rewards at intermediate
states of the project, see e.g. [13]. In the graph-based model, this can be achieved by
placing rewards at non-terminal nodes of G. We call such an assignment a reward
configuration. This approach is especially interesting if the project designer’s budget
is only affected by rewards that are actually collected by the agent. As we show in
Section 2, this allows the construction of exploitative projects in which the agent is
motivated by rewards it never claims. Kleinberg and Oren [7] pose the complexity of
computing motivating subgraphs and reward configurations as two important open
problems.

In recent work, [15] address both problems. First, they show that it is NP-hard to
decide if G contains a motivating subgraph for a fixed reward at t . Secondly, they
give an NP-hardness result and a 2n-approximation algorithm for three variations
of the reward configuration problem: One with positive rewards, one with arbitrary
rewards and one in which all rewards placed on G must be collected. In each setting,
the project designer pays the absolute sum laid out.

1.2 Our Contribution

We thoroughly analyze the complexity and approximability of computing motivating
subgraphs and reward configurations. In Section 3, we settle the complexity of find-
ing a motivating subgraph for a fixed reward at t . First, we show that the problem
is polynomially solvable if β = 0 or β = 1. We then prove that it is NP-complete
to decide the existence of a motivating subgraph for general β ∈ (0, 1). Tang et al.
[15] showed NP-hardness via a reduction from 3-SAT. In contrast, we use reduction
from k DISJOINT CONNECTING PATHS. We believe this reduction to be simpler.
More importantly, we are able to generalize the reduction to obtain a hardness of
approximation result at a later point.

Considering the hardness of the motivating subgraph problem, Section 4 focus
on an optimization version of the problem. More formally, we want to compute the
minimum reward that must be placed at t such thatG contains a motivating subgraph.
We propose a simple (1 + √

n)-approximation algorithm that outputs the reward
and a corresponding motivating subgraph. As our main technical contribution, we
show that this approximation is asymptotically tight. In particular, we prove that the
problem cannot be approximated efficiently within a ratio less than

√
n/3 unless

P = NP. Thus, we resolve the approximability of the motivating subgraph problem
up to a small constant factor.



Theory Comput Syst (2019) 63:466–487 469

Finally, Section 5 explores the problem of finding reward configurations within a
fixed total budget of at most b. We examine a version of the problem that, in our view,
is the most interesting one. First, only positive rewards may be laid out. This assump-
tion avoids the issue of finding a sensible way to account for negative rewards in the
designer’s budget. A version with negative rewards that do not affect the budget can
be found in [2]. Secondly, the designer must only pay for rewards that are actually
collected by the agent. This setting is fundamentally different from the settings ana-
lyzed by Tang et al. as it allows exploitative solutions. We show that the problem can
be solved in polynomial-time if β = 0 or β = 1. Using a reduction from SET PACK-
ING, we prove that deciding the existence of a motivating reward configuration is
NP-complete for general β ∈ (0, 1), even if b = 0. This immediately implies that the
optimization problem of finding the minimum b for which a motivating reward con-
figuration exists cannot be approximated efficiently within any ratio greater or equal
to 1 unless P = NP.

2 The Graph-BasedModel

In the following, we present [7] model. Let G = (V , E) be a finite directed acyclic
graph. Associated with each edge (v, w) is a non-negative cost cG(v, w). Further-
more, the project designer may lay out positive rewards rG(v) at arbitrary nodes v.
We call r a reward configuration. An agent with bias factor β ∈ [0, 1] has to incre-
mentally construct a path from a source s to a target t . Located at some node v

different from t , the agent evaluates its lowest perceived net cost. For this purpose it
considers all paths P from v to t . However, only the initial edge of P is accounted
for by its actual value. All other costs and rewards along P are discounted by a fac-
tor of β. More precisely, let dG,r(w) denote the cost of a cheapest path from some
node w to t with respect to the actual costs and rewards. Note that although dG,r (w)

might be negative depending on r , no negative cycles can occur as G is acyclic. If no
path exists, we assume that dG,r (w) = ∞. The lowest perceived net cost is defined
as ζG,r (v) = min{cG(v, w) + βdG(w) | (v, w) ∈ E} if v has at least one outgoing
edge. Otherwise, ζG,r (v) = ∞. If ζG,r (v) > 0, then the agent has no motivation to
continue the project and abandons. Conversely, if ζG,r (v) ≤ 0, the agent traverses an
edge (v, w) for which cG,r (v, w) + βdG,r(w) = ζG,r (v). Ties are broken arbitrarily.
Note that the agent could take more than one path from s to t . A project is called
motivating if the agent successfully reaches t along all such paths. To simplify our
notation, we omitG and r in the index of c, r , d and ζ whenever the graph and reward
configuration is clear from context.

To illustrate the model, we consider the car wash problem from Section 1 once
more. Assume that Alice’s car must be washed during the next m days with m > 50.
The task graph G is depicted in Fig. 1. For each day i with 1 ≤ i ≤ m there is a node
vi . Let v1 be the source. There is an edge (vi, t) of cost i/50 that represents the task
of washing the car on day i. To keep the drawing simple, the edges (vi, t) merge in
Fig. 1. Furthermore, for every i < m there is an edge (vi, vi+1) of cost 0 to postpone
the task to the next day. Assume for now that Bob is located at some vi with i < m.
His perceived cost for procrastinating is at least β(i + 1)/50. This bound is tight if



470 Theory Comput Syst (2019) 63:466–487

Fig. 1 Task graph of the car wash problem

he plans to traverse (vi, vi+1) and then (vi+1, t). Alternatively, his perceived cost for
using (vi, t) and washing the car on day i is i/50. Recall that Alice offers Bob a
single reward r(t) = 1 upon completing the car wash. Furthermore, β = 1/3. As a
result, the minimum perceived net cost is ζ(vi) = β(i +1)/50−β. We conclude that
Bob always prefers to wash the car on the next day instead of doing it right away.
Moreover, for i < 50 it holds true that ζ(vi) ≤ 0. This means that during the first 49
days, Bob moves along (vi, i+1) believing that he will finish the project the next day.
However, once Bob reaches v50 he suddenly realizes that ζ(v50) > 0 and abandons.
Therefore, the car wash problem in its current form is not motivating.

Next, assume that (v16, v17) is deleted fromG. This can be thought of as a deadline
set by Alice at day i = 16. Let G′ be the resulting subgraph. When Bob reaches v16,
he cannot procrastinate anymore but must wash the car to get a reward. The perceived
net cost is ζG′(v16) = 16/50 − β = −1/75. Because this is less than 0, he washes
the car. This makes G′ a motivating subgraph. It is interesting to note that no reward
configuration in G is motivating for a budget of b < (m/50)/β. The reason is that
no matter how rewards are placed, Bob always prefers to procrastinate until the very
last day.

To illustrate the power of reward configurations, we consider a second scenario.
Suppose that Alice offers Bob a new deal. If he first washes her car, which by now
incurs a cost of 1, and afterwards also mows her lawn, which has a cost of 6, he
receives a reward of 10. What Bob is unaware of is that Alice does not care about
the lawn. Instead, she tries to get Bob to wash the car for free. We model this project
with a task graph G consisting of a path from s to t via the intermediate node v and
another path from v to t via w. The edge (s, v) corresponds to the car wash and has a
cost of 1. Furthermore, (v, w) corresponds to mowing of the lawn and has a cost of 6.
The edges (v, t) and (w, t) are of cost 0. Assuming that β = 1/3, there is a reward
configuration r for which Bob will wash the car but will not claim a reward. Suppose
Alice sets r(w) = 10. In this case, Bob traverses (s, v) with a minimum perceived
net cost of ζ(s) = −1/3 along the path s, v, w, t . When at v, Bob reevaluates the net
cost for traversing (v, w) to 8/3. In contrast, finishing the project right away along
(v, t) has cost 0. As a result, Bob changes his plan and moves to t without collecting
any reward.

3 FindingMotivating Subgraphs

In this section, we assume that the project designer may only place a single reward
at t . This way, no exploitative reward configurations are possible. We first argue that
the problem of finding a motivating subgraph can be solved in polynomial-time if



Theory Comput Syst (2019) 63:466–487 471

β = 0 or β = 1. Although this claim might seem intuitive, we are able to generalize
the idea to show the existence of an (1 + √

n)-approximation algorithm for general
β ∈ (0, 1) in Section 4.

Proposition 1 If β = 0 or β = 1, it is possible to find a motivating subgraph in
polynomial-time for arbitrary r(t) ≥ 0.

Proof First, assume β = 0. Because the agent has no value for future rewards, it must
walk along a path of cost 0. Otherwise, it would abandon once it encounters an edge
of positive cost. If such a path exists, it itself is a motivating subgraph. Conversely, if
no such path exists, no subgraph can be motivating. Next, assume β = 1. In this case,
the agent behaves time-consistent and follows a cheapest path from s to t . Therefore,
G contains a motivating subgraph if and only if there is a path from s to t with a total
edge cost less or equal to r(t). Any subgraph containing such a path is motivating.
Clearly, if a motivating subgraph exists, it can be found efficiently in both scenarios,
i.e. β = 0 and β = 1.

Unfortunately, computing motivating subgraphs for general β ∈ (0, 1) is more
challenging. We give evidence for this in Theorem 1 by showing that the corre-
sponding decision problem, which we name MOTIVATING SUBGRAPH (MS), is
NP-complete for general β ∈ (0, 1).

Definition 1 (MS) Given a task graph G, a reward r(t) ≥ 0 and a bias factor
β ∈ [0, 1], decide the existence of a motivating subgraph of G.

To prove NP-completeness of MS, we must first show that MS is contained in NP.
For this purpose we argue that it can be decided in polynomial-time whether a task
graph is motivating for a given reward configuration. Note that a naive approach that
simply simulates the agents walk through G must fail as the agent might take more
than one path whenever it is indifferent between two options. A possible solution that
preserves polynomial-time bounds is presented in the following proposition.

Proposition 2 For any task graph G, reward configuration r and bias factor β ∈
[0, 1], it can be decided in polynomial-time if G is motivating.

Proof We modify G in the following way. For each node v we calculate the lowest
perceived net cost ζG,r (v). Next, we take a copy of G, say G′, in which we remove
all edges (v, w) for which ζG,r (v) < cG(v, w) + βdG,r(w) or ζG,r (v) > 0. In other
words, we remove all edges from G′ that do not minimize the agent’s perceived net
cost or are not motivating. Let V ′ be the set of all nodes that can be reached from s in
G′. Observe that V ′ contains exactly those nodes that might be visited by the agent
in G. Clearly, G is motivating if and only if the agent can reach t from all nodes of
V ′ via some path in G′ . This condition can be checked in polynomial-time.

To show NP-hardness, we use a reduction from k DISJOINT CONNECTING
PATHS (k-DCP), which is defined as follows [5]:



472 Theory Comput Syst (2019) 63:466–487

Definition 2 (k-DCP) Given a graph H containing k disjoint pairs of nodes
(s1, t1), . . . , (sk, tk), decide if H has k mutually node-disjoint paths, one connecting
every si to the corresponding ti .

Lynch [11] showed that k-DCP is NP-complete if H is undirected. A simple mod-
ification of Lynch’s reduction, which can be found in the appendix, implies that
k-DCP is also NP-complete if H is directed and acyclic.

Before we tackle Theorem 1, we want to draw attention to a useful price structure
that is common to all our reductions presented in this work. Imagine a directed path
along k + 1 edges, such that the i-th edge has a cost of (1 − β)k+1−i . According to
the following Lemma, the agent’s perceived cost for following the path to its end is 1
at every node except for the last.

Lemma 1 For every positive integer k and bias factor β ∈ [0, 1] it holds true that

(1 − β)k + β

(
k−1∑
i=0

(1 − β)i

)
= 1.

The correctness of Lemma 1 follows from basic calculus, in particular from the
geometric series. A formal proof can be found in the appendix. We are now ready to
show NP-completeness of MS.

Theorem 1 MS is NP-complete for any bias factor β ∈ (0, 1).

Proof By Proposition 2, any motivating subgraph G′ serves as a certificate for
a “yes”-instance of MS. Consequently, MS is in NP. To complete the proof, we
establish NP-hardness via a polynomial reduction from k-DCP.

Consider an instance I of k-DCP consisting of a directed acyclic graph H and k

disjoint node pairs (s1, t1), . . . , (sk, tk). Our goal is to embed H into the task graph
G of an MS instance J such that G has a motivating subgraph if and only if H has
k disjoint connecting paths. For this purpose we assume that the encoding length of
β ∈ (0, 1) is polynomial in that of I and set r(t) = 1/β . The task graph G, which is
illustrated in Fig. 2, is constructed as follows:

To get from s to t , the agent must follow the so calledmain path along intermediate
nodes v1, . . . , vk+3. The first k + 1 edges of this main path each have a cost of
(1 − β)3 − ε, with ε being a positive constant satisfying

ε < min

{
β
1 − β

k + 1
, β

(1 − β)3

1 + β

}
.

The last three edges have a cost of (1 − β)2, 1 − β and 1, respectively. To keep the
agent motivated, we introduce k shortcuts that connect every vi with 1 ≤ i ≤ k to
t via the embedding of H . More formally, the i-th shortcut starts at vi and is routed
through a distinct node wi via an edge of cost (1−β)2. Node wi is then connected to
si via an edge of cost (k + 1 − i)(1 − β)/(k + 1). Finally, ti is connected to t via an
edge of cost i(1−β)/(k + 1)+ 1. To keep Fig. 2 simple, the edges (ti , t) are merged



Theory Comput Syst (2019) 63:466–487 473

Fig. 2 Reduction from a general k-DCP instance: H

and their cost is depicted as two terms, namely i(1 − β)/(k + 1) and +1. Note that
the prices of (wi, si) and (ti , t) complement each other, i.e. they sum to (1− β) + 1.
The edges of H all have a cost of 0. The resulting graph G is acyclic and its encoding
length polynomial in I. It remains to show, that J has a solution if and only if I has
one.

(⇒) First, suppose I has a solution, i.e. there exist k node-disjoint connecting
paths. Let G′ be a subgraph of G obtained by deleting all edges of H that are not
part of one of these paths. Furthermore, let s = v0 and assume the agent is located
at vi with 0 ≤ i ≤ k. According to Lemma 1, the agent perceives a net cost of −ε

for taking the (i + 1)-st shortcut or if i = k for following the main path. In contrast,
if 0 < i ≤ k, the perceived net cost of the i-th shortcut is 0. As a result, the agent
follows the main path to vk+1 and then for lack of other options continues to t . We
conclude that G′ is a motivating subgraph of G.

(⇐) To prove the other direction, assume that there are no k node-disjoint paths
in H and let G′ be an arbitrary subgraph of G. Our goal is to argue that G′ cannot be
motivating.

It is crucial to observe that G′ is only motivating if the agent never leaves the main
path. Otherwise, it would have to pass some node ti on its way to t . At this point
the agent perceives a net cost of i(1 − β)/(k + 1) + 1 − 1 > 0 and abandons. We
therefore focus on subgraphsG′ in which the agent stays on the main path. Of course,
any such G′ must contain the main path. We say the i-th shortcut of G′ is degenerate
if the cost of a cheapest path from vi to t via wi is different from the target value
ϑ = (1−β)2 + (1−β)+1. In particular, the i-th shortcut is degenerate if there is no
path from vi to t via wi in which case the cost is infinite. Note that by construction,
every degenerate shortcut must miss the target value by (1 − β)/(k + 1) or more.

We first argue that there is at least one degenerate shortcut in G′. For the sake of
contradiction assume that no such shortcut exists. This means that there is a cheapest
path Pi from vi to t via wi for all 1 ≤ i ≤ k. By construction, Pi must contain
(wi, si). Because total cost of Pi should sum up to ϑ , it follows that Pi must end in



474 Theory Comput Syst (2019) 63:466–487

(ti , t). Furthermore, Pi must be node-disjoint from all other paths Pj with j < i.
Otherwise, Pi would not be a shortest path from vi to t considering that the cost of
(tj , t) is less than the cost of (ti , t). As a result, the subpaths of Pi between si and ti
correspond to k node-disjoint paths in H . This contradicts the assumption that I has
no solution.

Now that we have established the existence of a degenerate shortcut in G′, we
distinguish two cases: Either there exists a degenerate shortcut i such that the cost of
a cheapest path from vi to t via wi is less than ϑ , or every degenerate shortcut costs
more than ϑ . We start with the first case. Let i be the largest index of a degenerate
shortcut such that the cheapest path from vi to t via wi is less than ϑ . When located
at vi , the agent’s perceived net cost along (vi, wi) is less or equal to

(1 − β)2 + β

(
(1 − β) + 1 − 1 − β

k + 1

)
− 1 = β

1 − β

k + 1
< −ε.

The equality can be seen easily by means of Lemma 1. Furthermore, the inequality
holds by choice of ε. The agent’s second option is to stay on the main path. How-
ever, the fact that all subsequent shortcuts cost ϑ or more implies that the agent’s
perceived net cost along (vi, vi+1) is at least −ε. Clearly, this is a contradiction to
the assumption that the agent stays on the main path. We conclude that G′ is not
motivating.

We now take a look at the second case. Suppose that the i-th shortcut is degenerate
and assume that the agent plans to travel from vi−1 to t along the main path. Also
recall that s = v0. The agent has two options. If it plans to follow the i-th shortcut,
its perceived net cost is greater or equal to

(1 − β)3 − ε + β

(
(1 − β)2 + (1 − β) + 1 + 1 − β

k + 1

)
− 1 = β

1 − β

k + 1
− ε > 0.

Again, the inequality holds by choice of ε. If the agent plans to go one edge further
along the main path instead, i.e. traversing (vi, vi+1) and possibly taking a shortcut
of index j with j > i, its perceived net cost is at least

(1−β)3−ε+β((1−β)3−ε+(1−β)2+(1−β)+1)−1=(1+β)

(
β

(1 − β)3

1 + β
− ε

)
>0.

This holds true because no shortcut is of cost less than ϑ . In both cases the perceived
net cost is greater than 0 by choice of ε. Consequently, the agent is not motivated
to follow the main path at vi−1. As argued before, this means that G′ cannot be
motivating and completes the proof.

4 Approximating Optimal Subgraphs

Considering that the decision problem MS is NP-hard, the next and arguably natural
question is whether good approximation algorithms exist. Therefore, we restate MS
as an optimization problem that we call MS-OPT.



Theory Comput Syst (2019) 63:466–487 475

Definition 3 (MS-OPT) Given a task graphG and a bias factor β ∈ (0, 1), determine
the minimum reward r(t) such that G contains a motivating subgraph.

We present two simple approximation algorithms: one that performs well for small
values of β and one that leads to good solutions for large β. The algorithms return
a reward r(t) as well as a corresponding motivating subgraph G′. Combining both
algorithms eventually yields a general approximation algorithm with a ratio of (1 +√

n) for any β ∈ (0, 1).
First, we assume that β is small. Because the agent is highly oblivious to the

future, it is sensible to guide it along a path with minimal maximum edge cost. Paths
with this property are called minmax paths. A minmax path can be computed easily
in polynomial-time. For instance, starting with an empty subgraph, the edges of G

can be inserted in non-decreasing order of cost until s and t become connected for
the first time. Any path from s to t in the resulting subgraph is a minmax path. Our
first algorithm, called MINMAXPATHAPPROX, computes a minmax path P from s to
t and returns a subgraph G′ whose edges are that of P . Furthermore, the reward r(t)

is chosen in such a way that max{ζG′,r (v) | v ∈ P } = 0. Clearly, this is sufficient to
make G′ motivating.

Proposition 3 MINMAXPATHAPPROX has an approximation ratio of 1 + βn.

Proof Let c denote the maximum cost among the edges of the minmax path P com-
puted by MINMAXPATHAPPROX. By definition of P , the agent must encounter an
edge of cost c or more in any subgraph that connects s with t . Thus the optimal
reward is lower bounded by c/β. Conversely, the cost of every edge in P , of which
there are at most n−1, is c or less. This means that the reward returned by MINMAX-
PATHAPPROX is upper bounded by r(t) ≤ c/β + (n − 2)c ≤ c/β + nc. From this
the desired approximation ratio of 1 + βn follows immediately.

Next, suppose that β is large and the agent is hardly present-biased at all. Our
second algorithm, called CHEAPESTPATHAPPROX, simply computes a path P of
minimum cost from s to t and returns a subgraph G′ containing the edges of P .
Again, the algorithm chooses r(t) in such a way that max{ζG′,r (v) | v ∈ P } = 0.

Proposition 4 CHEAPESTPATHAPPROX has an approximation ratio of 1/β.

Proof Let P be the path computed by CHEAPESTPATHAPPROX and c the total cost
of P . At any node v of P the agent’s perceived net cost is at most dG′,r (v) − βr(t),
which is less than c − βr(t). The reward returned by CHEAPESTPATHAPPROX is
therefore at most c/β. Conversely, when located at s, the agent perceives a cost of at
least βc in any subgraph of G, including the optimal one. Consequently, a reward of
at least c is need to motivate the agent. This establishes the approximation ratio of
1/β.

It is interesting to see how MINMAXPATHAPPROX and CHEAPESTPATHAPPROX

generalize the algorithmic ideas of Proposition 1. If we combine the two and use



476 Theory Comput Syst (2019) 63:466–487

MINMAXPATHAPPROX whenever β ≤ 1/
√

n and CHEAPESTPATHAPPROX oth-
erwise, we obtain a general approximation algorithm called COMBINEDAPPROX.
Propositions 3 and 4 directly imply the following result.

Theorem 2 COMBINEDAPPROX has an approximation ratio of 1 + √
n.

Although the algorithmic techniques of COMBINEDAPPROX are simple, Theo-
rem 3 implies that up to a small constant factor the approximation ratio is the best we
can hope for in polynomial-time. To prove the theorem, the following inequality will
come in handy.

Lemma 2 For any integer � with � ≥ 1 it holds true that

(
1 − 1

3� + 3

)3�+3

>
1

3
.

Similar to Lemma 1, verifying Lemma 2 only requires basic calculus. Refer to the
appendix for a proof. We are mow ready to establish Theorem 3.

Theorem 3 MS-OPT is NP-hard to approximate within a ratio less than
√

n/3.

Proof To show hardness of approximation, we use another reduction from k-DCP.
Let I be a k-DCP instance consisting of a directed acyclic graph H and k disjoint
node pairs (s1, t1), . . . , (sk, tk). Furthermore, let � be an arbitrary positive integer.
The best choice of � will be determined later. Our goal is to construct an instance J
of MS-OPT that consists of a task graphG and has the following two properties: (a) If
I has a solution, then G has a subgraph that is motivating for a reward of r(t) = 1/β.
(b) If I does not have a solution, then no subgraph of G is motivating for a reward of
r(t) = �/β or less. Consequently, any algorithm achieving an approximation ratio of
� or better must solve I.

Unlike Theorem 1, the bias factor cannot be chosen arbitrarily anymore. Consid-
ering that Proposition 4 gives a (1/β)-approximation, β must be less than 1/�. For
convenience, we set β = 1/(3� + 3). From a structural point of view, the task graph
G consists of two units: the embedding unit and the amplification unit. The first unit
contains an embedding of H , while the second unit amplifies approximation errors
occurring in the embedding unit.

The overall structure of the embedding unit, which is depicted in Fig. 3, is similar
to the graph of Theorem 1. There exists a main path and k shortcuts that link to the
embedding of H . However, there are some differences. First, the main path starts at
the last node of the amplification unit u9�2 and passes k + 3� + 3 intermediate nodes
v1, . . . , vk+3�+3 before it ends in t . The first k + 1 edges of the main path each have
a cost of (1 − β)3�+3 − ε, where ε is a positive value satisfying

ε < min

{
β

(1 − β)3�+1

k + 1
, β

(1 − β)3�+3

1 + β
,

1

1 + �
, (1 − β)3�+3 − 1

3

}
.



Theory Comput Syst (2019) 63:466–487 477

Fig. 3 Embedding unit

Note that (1 − β)3�+3 − 1/3 is positive according to Lemma 2. The remaining
edges (vi, vi+1) of the main path, with k < i ≤ k + 3� + 3 and t = vk+3�+3+1,
have an increasing cost of (1 − β)k+3�+3−i . Furthermore, the initial edge
(vi, wi) of each shortcut has a cost of (1 − β)3�+2, while the edges (wi, si)

and (ti , t) have complementing cost of (k + 1 − i)(1 − β)3�+1/(k + 1) and
i(1 − β)3�+1/(k + 1) + ∑3�

j=0(1 − β)j . All edges of H are free of charge. As a

result, the total cost of each shortcut sums up to
∑3�+2

j=0 (1 − β)j . Furthermore, the
final shortcut edges (ti , t) ensure that the agent becomes very expensive to motivate
whenever it leaves the main path.

The amplification unit, which is shown in Fig. 4, consists of an amplification path
connecting s to u9�2 along the intermediate nodes u1, . . . , u9�2−1. Each edge of the

amplification path has a cost of (1− β)3�+3 − ε. From every ui there is also an edge
of cost (1 − β)3�+2 to a common node z. Node z is in turn connected to t via an
edge of cost

∑3�+1
j=0 (1 − β)j . Similar to the embedding unit, the idea of the edge

(z, t) is to ensure that the agent becomes expensive to motivate whenever it leaves
the amplification path.

To conclude the proof, we must show that our construction satisfies properties (a)
and (b) stated above. We start with (a) and assume that k node-disjoint paths exist
in H . Let G′ be a subgraph of G obtained by deleting all edges of H that are not
part of such a path. Furthermore, we set r(t) = 1/β and s = u0. When located
at ui with 0 ≤ i ≤ 9�2, Lemma 1 suggests that the agent perceives a net cost of

Fig. 4 Amplification unit



478 Theory Comput Syst (2019) 63:466–487

−ε for traversing (ui, ui+1) and then following (ui+1, z) or the first shortcut of the
embedding unit if i = 9�2. Conversely, if i > 0, the agent evaluates the net cost of
walking along (ui, z) to 0. As a result, the agent follows the amplification path until
it reaches v1. From this point on it travels along the main path of the embedding unit
until it eventually arrives at t for the same reasons given in Theorem 1. This means
that G′ is a motivating subgraph for a reward of r(t) = 1/β.

To prove (b), assume that I does not have k node-disjoint connecting paths and
consider any subgraph G′ of G. Furthermore, let the reward r(t) be at most �/β. Or
goal is to show that G′ cannot be motivating.

As our first step we argue that the agent certainly abandons the project if it diverts
from the amplification path or main path. In case of the amplification path, note that
the agent must pass (z, t) to reach t should it divert. However, the cost of (z, t) is

3�+1∑
j=0

(1 − β)j =
3�+1∑
j=0

(
1 − 1

3� + 3

)j

>

3�+1∑
j=0

(
1 − 1

3� + 3

)3�+3

>

3�+1∑
j=0

1

3
> �.

See Lemma 2 for the second inequality. Clearly, a reward of r(t) ≤ �/β is not suffi-
ciently motivating for the agent to traverse this edge. Similarly, if the agent leaves the
main path via a shortcut, it must pass an edge (ti , t). The cost of these edges is greater
than

∑3�
j=0(1 − β)j > �. Again, a reward of r(t) ≤ �/β is not motivating enough.

Therefore, we may restrict ourselves to subgraphs G′ in which the amplification path
and main path are intact and assume that the agent stays on these paths.

We say that the i-th shortcut of G′ is degenerate if the cost of a cheapest path from
vi to t via wi is different from the target value ϑ = ∑3�+2

j=0 (1 − β)j . In particular,
a shortcut is degenerate if it does not connect to t . Note that by construction every
degenerate shortcut must miss the target value by (1 − β)3�+1/(k + 1) or more.
Similar to Theorem 1, the assumption that I has no solution implies the existence of
a degenerate shortcut. By the same argument given in Theorem 1, it is also clear that
no degenerate shortcut can cost less than ϑ if the agent is to stay on the main path.
Without loss of generality we therefore assume the cost of a cheapest path from vi to
t via wi to be greater than ϑ for all degenerate shortcuts i. We continue to distinguish
between two cases depending on whether the first shortcut is degenerate.

If the first shortcut is not degenerate in G′, then there exists an integer i with
1 < i ≤ k such that the (i −1)-st shortcut is not degenerate, but shortcut i is. At vi−1
the agent’s perceived net cost for taking the current shortcut via wi−1 is 1 − βr(t)

according to Lemma 1. In contrast, traversing (vi−1, vi) and taking the next shortcut
i has a perceived net cost of at least

(1 − β)3�+3 − ε + β

⎛
⎝3�+2∑

j=0

(1 − β)j + (1 − β)3�+1

k + 1

⎞
⎠ − βr(t)

= 1 + β
(1 − β)3�+1

k + 1
− ε − βr(t) > 1 − βr(t).



Theory Comput Syst (2019) 63:466–487 479

The inequality holds by choice of ε. Moreover, there are no degenerate shortcuts of
cost less than ϑ . Thus traversing (vi−1, vi) and walking further along the main path,
possibly taking a subsequent shortcut, has a perceived net cost of at least

(1 − β)3�+3 − ε + β

⎛
⎝(1 − β)3�+3 − ε +

3�+2∑
j=0

(1 − β)j

⎞
⎠ − βr(t)

= 1 + (1 + β)

(
β

(1 − β)3�+3

1 + β
− ε

)
− βr(t) > 1 − βr(t).

Again, the inequality holds by choice of ε. Together, this contradicts the requirement
that the agent must not diverge from the main path.

Finally, we consider the case that the first shortcut in G′ is degenerate with cost
greater than ϑ . Let i be the highest index of a node on the amplification path such
that ui is connected to t via (ui, z) and (z, t) in G′. The perceived net cost of such a
path is 1− βr(t). Conversely, any path along (ui, ui+1), or (u9�2 , v1) if i = 9�2, has
a perceived net cost greater than 1 − βr(t) as calculated in the last paragraph. Thus
the agent leaves the amplification path and abandons. However, if no ui is connected
to t via (ui, z) and (z, t), then the lowest perceived net cost at s is lower bounded by

(1 − β)3�+3 − ε + β

⎛
⎝9�2

(
(1 − β)3�+3 − ε

)
+

3�+2∑
j=0

(1 − β)j

⎞
⎠ − βr(t)

= 1 − ε + 9β�2
(
(1 − β)3�+3 − ε

)
− βr(t).

Taking into account that β = 1/(3� + 3) we can further simplify this term to

1 − ε + 9�2 1/3 + ((1 − β)3�+3 − 1/3 − ε)

3� + 3
− βr(t)

> 1 − ε + 9�2 1/3

3� + 3
− βr(t) = � +

(
1

1 + �
− ε

)
− βr(t) > � − βr(t).

Once more, the two inequalities hold by choice of ε. Consequently, no G′ is
motivating for a reward of �/β or less, which proves (b).

To conclude the proof, we must determine a suitable �. For this purpose we set
� = m, wherem is the number of nodes inH . As a result the total number of nodes in
G is n = 2+(9m2+1)+(m+2k+3m+3). The first term accounts for s and t , the next
one for the number of nodes in the amplification unit and the last one for the number
of nodes in the embedding unit. Thus we have presented a polynomial reduction.
Furthermore, for every positive value δ and sufficiently large k-DCP instance I that
satisfies m ≥ (

√
6δ + 9 + 3)/δ it holds true that n ≤ 9m2 + 6m + 6 ≤ (9 + δ)m2.

It follows that � ≥ √
n/(9 + δ) and therefore MS-OPT is NP-hard to approximated

within any ratio less than
√

n/3.



480 Theory Comput Syst (2019) 63:466–487

5 Motivation Through Intermediate Rewards

In this section, we study the complexity of motivating agents through the strategic
placement of rewards. In this scenario, the task graph must not be pruned. The goal is
to minimize the total value of the rewards along the agent’s walk from s to t . Similar
to the previous setting of Sections 3 and 4, a motivating reward configuration within
a given budget b can be computed in polynomial-time if β = 0 or β = 1.

Proposition 5 A motivating reward configuration within budget b can be computed
in polynomial-time for β = 0 or β = 1.

Proof First, suppose that β = 0. In this case, the agent does not care for any future
rewards and only traverses edges of cost 0. Let V ′ be the set of nodes that can be
reached from s for cost 0. Note that V ′ contains exactly those nodes that might be
visited by the agent independent of the specific reward configuration. As a result,
G has a motivating reward configuration if and only if t can be reached from every
node of V ′ for a cost of 0. Because no rewards need to be placed in this scenario, the
budget constraint is always satisfied. Next, assume that β = 1. In this case the agent
is time-consistent. Let c be the cost of a cheapest path from s to t . Setting r(t) = c

yields a motivating and also optimal reward configuration. The required budget is c.
Clearly both cases, β = 0 and β = 1 can be solved in polynomial time.

As before, the problem becomes much harder for general β ∈ (0, 1). In particular,
the corresponding decision problem MOTIVATING REWARD CONFIGURATION
(MRC), which we define below, is NP-hard.

Definition 4 (MRC) Given a task graph G, a budget b and a bias factor β ∈ [0, 1],
decide the existence of a motivating reward configuration r such that the total reward
collected on any walk of the agent is at most b.

The following proposition establishes membership of MRC in NP.

Proposition 6 For any task graph G, reward configuration r and bias factor β ∈
[0, 1], it is possible to decide in polynomial-time if r is motivating within a given
budget b.

Proof The problem is similar to that of Proposition 2. The only difference is that
we need to keep track of the budget. For this purpose we modify the algorithm of
Proposition 2 in the following way: A cost of r(w) is assigned to each edge (v, w)

of G′. Let c be the maximum cost among all paths from s to t in G′. The budget
constraint is satisfied if c + r(s) ≤ b. Because G′ is acyclic, c can be computed in
polynomial-time.

To show NP-hardness of MRC, we use a reduction from SET PACKING (SP). For
convenience, the definition of SP is stated below [5].



Theory Comput Syst (2019) 63:466–487 481

Definition 5 (SP) Given a collection of finite sets S1, . . . , S� and an integer k ≤ �,
decide if at least k of these sets are mutually disjoint.

We are now ready to prove NP-completeness of MRC. Note that the problem
remains hard even if the budget is 0.

Theorem 4 MRC is NP-complete for any bias factor β ∈ (0, 1), even if b = 0.

Proof By Proposition 6, we can use any motivating reward configuration r within
budget b as certificate for a “yes”-instance of MRC. This establishes membership of
MRC in NP. To prove NP-hardness we present a polynomial-time reduction from SP
to MRC. We focus on the case that b = 0. A modified reduction for budgets b > 0
can be found in the appendix.

Let I be an instance of SP consisting of finite sets S1, . . . , S� and an integer k ≤ �.
We start by constructing an MRC instance J that has a motivating reward configu-
ration within a budget of b = 0 if and only if I has a solution. Figure 5 depicts the
task graph G for a small sample instance of SP. In general, G consists of a source s, a
target t and 1 ≤ i ≤ k levels of nodes vi,j with 1 ≤ j ≤ �. For every vi,j with i < k

there is a so called upward edge to every node vi+1,j ′ on the next level. To maintain
readability, upward edges are omitted in Fig. 5. In addition to the upward edges, there
is an edge from s to every node v1,j on the bottom level and an edge towards t from
every node vk,j on the top level. The idea behind this construction is that the agent
walks along the upward edges from s to t in such a way that the nodes v1,j , . . . , vk,j ′
on its path correspond to a collection of k mutually disjoint sets Sj , . . . , Sj ′ . The cost
of the initial edges (s, v1,j ) and all upward edges (vi,j , vi+1,j ′) is 1−β −ε. Note that

Fig. 5 Reduction from the SP instance: S1 = {a}, S2 = {a, c}, S3 = {b, d}, S4 = {d, e}, S5 = {e} and
k = 3



482 Theory Comput Syst (2019) 63:466–487

β ∈ (0, 1) might be an arbitrary value with an encoding length that is polynomial in
that of I. Moreover ε is a positive value satisfying

ε < min

{
(1 − β)2

k
,

β − β2

k − 1 + β

}
.

The cost of the edges (vk,j , t) is 0. To motivate the agent, we add shortcuts to G that
connect every vi,j to t via an intermediate node wi,j . The first edge (vi,j , wi,j ) has
cost 1 and the second edge (wi,j , t) has cost 0. In Fig. 5 the second edges are omitted
for the sake of readability. Note that a reward of value less than 1/β can be placed on
wi,j without the agent claiming it. Furthermore, if the reward is at least (1 − ε)/β,
all edges (vi−1,j ′, vi,j ), or (s, vi,j ) if i = 1, become motivating.

We finish our construction by connecting each node vi,j with all nodes wi′,j ′
for which i′ < i and Sj ∩ Sj ′ �= ∅ via a downward path. Each downward path
consists of two edges: the first one is of cost 0 and the second one is of cost
(1 − β − kε)/(β − β2). In Fig. 5, downward paths are drawn as single dashed edges.
The idea behind these paths is to enforce the disjointness constraint of I. In the next
paragraph we address this in more detail. But first note that G is an acyclic graph that
is polynomial in the size of I. It remains to show that J has a solution if and only if
I has one.

(⇒) First, assume that I has a solution, i.e. there exists a collection of k mutu-
ally disjoint sets among S1, . . . , S�. To construct a motivating reward configuration
r , we fix such collection and assign each of its sets Sj to a distinct node level i. Fur-
thermore, we set r(wi,j ) = (1 − ε)/β. The corresponding shortcut from vi,j to t is
referred to as active. By analyzing the agent’s walk, we can show that it visits exactly
those nodes vi,j which belong to an active shortcut.

Suppose that the agent is located at vi,j with i < k. Furthermore, assume that
vi,j is the initial node of an active shortcut. There are three options. First, the agent
could follow the shortcut to wi,j . However, the perceived net cost along this path
is ε and therefore not motivating. Secondly, the agent could take a downward path.
By construction, none of these paths leads to an active shortcut. This means that the
agent cannot collect rewards but encounters positive cost, which is not motivating
either. The only remaining option is to take one of the upward edges. According to
Lemma 1, the agent’s perceived net cost for following the active shortcut onto level
i + 1 is 0. This is a motivating choice. Conversely, assume that the agent plans a path
P to t that visits a node vi+1,j ′ such that the corresponding shortcut is not active.
We distinguish between four scenarios, none of which is motivating. If P includes a
downward path, then at most one reward can be located on P . In this case the agent
perceives a net cost that is at least

1 − β − ε + β

(
1 − β − kε

β − β2
− 1 − ε

β

)
= k

1 − β

(
(1 − β)2

k
− ε

)
> 0.

The inequality holds by choice of ε. This scenario is not motivating. If P includes
the shortcut at vi+1,j ′ , then P contains edges of positive cost but no rewards. Again,



Theory Comput Syst (2019) 63:466–487 483

this is not motivating. If P includes a shortcut on some level j > i + 1, then the
agent must traverse at least two upward edges, but can collect at most one reward. As
a result, the perceived net cost is at least

1−β−ε+β

(
(1 − β − ε) + 1 − 1 − ε

β

)
= β(1−β−ε) > β

(
(1 − β)2

k
− ε

)
> 0.

As always, the last inequality holds by choice of ε. Finally, P may neither include a
downward path nor a shortcut. However, this means that P contains edges of positive
cost but no rewards. All in all, the only motivating option is to take the upward edge
leading to the active shortcut of level i + 1.

The same arguments also apply if the agent is located at s or on the top level. At
s, the agent’s only option is to take an upward edge. Therefore, it moves towards the
active shortcut of the bottom level. At the top level the agent takes the direct edge
to t . This incurs no cost. All other options, namely taking a downward path or the
current shortcut, are not motivating. We conclude that the agent walks from s to t

along the initial nodes of the active shortcuts. By doing so, the agent cannot collect
any rewards. Consequently, r is a motivating reward configuration for a budget of
b = 0.

(⇐) Next, assume that J has a solution, i.e. there exists a motivating reward con-
figuration r such that the agent does not claim any reward. Considering an arbitrary
walk of the agent, our goal is to show that the nodes vi,j it visits correspond to k

disjoint sets Sj . A crucial observation is that none of the agent’s walks may include
a shortcut or a downward path. This is because a positive reward is needed to lure
the agent onto such a path. However, the agent cannot leave shortcuts or downward
paths once entered. Therefore, the agent must either claim the reward or abandon.
Both scenarios contradict the assumption that r is motivating for b = 0. We conclude
that the agent visits exactly one node vi,j at each level i. We call every vi,j that is
contained in one of the agent’s walks active. Note that there might be more than one
active node per level.

In the following we prove that the agent’s lowest perceived net cost is at least
(1 − k)ε at every active node. More precisely, we use backwards induction from
level k down to level 1 to show that every path from some active node vi,j to t has
a minimum perceived net cost of (i − k)ε. Additionally, we observe that the only
motivating paths along an upward edge (vi,j , vi+1,j ′) must follow the shortcut at
vi+1,j ′ . For the basis of the induction, assume that the agent is at an active node vk,j

on the top level. As argued above, the agent cannot take the shortcut or downward
path to t . Moreover, there are no upward edges. However, the single edge (vk,j , t) is
a motivating path as the agent’s perceived net cost is 0 = (k − k)ε. This proves the
basis of the induction.

For the inductive step let i < k and assume that the agent is located at some active
node vi,j . Let vi+1,j ′ be the active node that the agent visits next. Because the agent
moves from vi,j to vi+1,j ′ , there must exist a motivating path P from vi,j to t via
(vi,j , vi+1,j ′) that minimizes the perceived net cost. We distinguish four scenarios.



484 Theory Comput Syst (2019) 63:466–487

First, assume that i = k−1 and P contains (vk,j ′, t). This means that the agent antic-
ipates no reward, but positive cost. Clearly, this is impossible as P is not motivating.
Secondly, assume P contains a forward edge (vi+1,j ′, vi+2,j ′′) and consider the per-
ceived net cost of the remaining part of P when viewed from vi+1,j ′ . According to
the induction hypothesis, this cost is at least ((i + 1) − k)ε. Furthermore, no reward
must be placed at vi+1,j ′ as this would violate the budget. This means that the per-
ceived net cost of P at vi,j increases by β(1 − β − ε) compared to the perceived net
cost of P at vi+1,j ′ . We conclude that the perceived net cost of P at vi,j is at least

((i + 1) − k) ε + β(1 − β − ε) = (k − (i + 1) + β)

(
β − β2

k − (i + 1) + β
− ε

)
> 0.

The inequality holds by choice of ε. Again, P is not motivating. Thirdly, assume that
P contains a downward path out of vi+1,j ′ . In this case, the perceived net cost of P at
vi,j increases by 1−β − ε compared to the perceived net cost of P at vi+1,j ′ . This is
even more than in the second case. Certainly, P cannot be motivating. Finally, assume
that P contains the shortcut of vi+1,j ′ . When viewed from vi,j instead of vi+1,j ′ , the
perceived net cost of P increases by 1−β −ε and decreases by 1−β. Consequently,
the perceived net cost is at least ((i+1)−k)ε−ε = (i−k)ε. Note that this is the only
motivating scenario, which concludes the induction step. A similar argument shows
that the only motivating paths out of s traverse the shortcut of an active node on the
bottom level.

The last three paragraphs imply that for every active node vi,j the reward r(wi,j )

must be at least (1 − ε)/β. Otherwise the agent would not be motivated to move to
vi,j when residing at an active node on the previous level i − 1, or at s if i = 1.
However, this means that there can be no downward path between two active nodes
because the perceived net cost for following the downward path would be at most

β

(
1 − β − kε

β − β2
− 1 − ε

β

)
= (1 − k − β)ε

1 − β
< (1 − k)ε.

This violates the bound established earlier. By construction of G, the active nodes
vi,j along any of the agent’s walks must correspond to k disjoint sets Sj . We conclude
that I has a solution.

Finally, we look at the optimization variant of MRC called MRC-OPT.

Definition 6 (MRC-OPT) Given a task graph G and a bias factor β ∈ (0, 1), deter-
mine the infimum of all budgets b for which there exists a reward configuration r

such that the total reward collected on any of the agent’s walks is at most b.

The fact that MRC is NP-complete for b = 0 immediately implies that MRC-OPT
does not permit any efficient approximation algorithm unless P = NP.

Corollary 1 MRC-OPT is NP-hard to approximate within any ratio greater or equal
to 1.



Theory Comput Syst (2019) 63:466–487 485

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Proposition 7 k-DCP is NP-complete in directed acyclic graphs.

Proof Membership of k-DCP in NP is easy to see. To establish NP-hardness we mod-
ify Lynch’s reduction to map instances of 3-SAT to instances of k-DCP in directed
acyclic graphs [11]. Let I be a 3-SAT instance with m clauses c1 . . . cm over n vari-
ables x1 . . . xn. Furthermore, let J be an (m + n)-DCP instance on a directed acyclic
graph H that is constructed in the following way:

For every variable xi , the terminals si and ti are connected via two node-disjoint
paths. One path, the so called high path, corresponds to the case that xi is set to true.
The other path, which we call low path, corresponds to the case that xi is false. Sim-
ilar to the variables, there are terminals s′

j and t ′j for each clause cj . These terminals
are connected via one node-disjoints path for each literal in cj . If the k-th literal of
cj is equal to xi , a node vi,j,k is added as an intersection between the low path of xi

and the path of the literal. Should the k-th literal be negated, i.e. x̄i , we add vi,j,k to
the high path of xi and the path of the literal instead.

Observe that the incident edges of terminal nodes are either all in-edges or all out-
edges. Consequently, terminal nodes cannot be part of a cycle. Furthermore, every
other node vi,j,k has exactly two out-edges. The first one leads directly to t ′j . The
second one follows the high or low path of xi , which eventually ends in ti . Therefore,
non-terminal nodes cannot be part of a cycle either. We conclude that H is acyclic.
Moreover, the size of H is polynomial in the encoding length of I. Figure 6 shows
an example of H for a small sample instance.

Fig. 6 Reduction from the 3-SAT instance: (x̄1 ∨ x̄2) ∧ (x1 ∨ x2) ∧ (x1 ∨ x̄1 ∨ x2)

http://creativecommons.org/licenses/by/4.0/


486 Theory Comput Syst (2019) 63:466–487

Next, we prove that J is feasible if and only if I is. (⇒) Given a variable assign-
ment that satisfies I, it is easy to construct m + n node-disjoint connecting paths in
J . For the terminals si and ti choose the high path if xi is true or the low path if xi is
false. For s′

j and t ′j the path of any literal in cj that evaluates to true can be selected.
Because the variable assignment is satisfying, at least one such path must exist. By
construction of H , all paths are node-disjoint.

(⇐) Recall that every node vi,j,k has exactly two out-edges: one that leads to t ′j
and one along the high or low path of xi . As a result, the terminals si and ti can only
be connected by a high path or a low path in any solution of J . By construction of
H , the chosen high and low paths of such a solution directly translate to a variable
assignment that satisfies I.

Proof of Lemma 1 If β = 0, the claim is easy to verify. Furthermore, for β > 0 the
geometric series

∑k−1
i=0 (1− β)i evaluates to (1− (1− β)k)/β, which in turn implies

that

(1 − β)k + β

(
k−1∑
i=0

(1 − β)i

)
= (1 − β)k + β

(
1 − (1 − k)k

β

)
= 1.

Proof of Lemma 2 Recall that the sequence (1 − 1/n)n converges towards 1/e. In
particular, the function (1−1/n)n is monotonically increasing for n ≥ 1. As a result,
it holds true that (

1 − 1

3� + 3

)3�+3

≥ (1 − 1/6)6 > 1/3.

Proof of Theorem 4 for arbitrary b In the following we sketch how the reduction in
the proof of Theorem 4 can be generalized to prove NP-hardness for arbitrary budgets
b > 0. We assume that encoding length of b is polynomial in that of I. To establish
NP-hardness we modify the previous task graph in the following way. We rename
the target node to t ′ and insert a new target node t . Both nodes are connected via an
edge (t ′, t) of cost βb. As a result, a reward of b or more must be placed at t for the
agent to traverse (t ′, t) and finish. However, when the agent reaches t it has certainly
collect this reward. This means that every motivating reward configuration r within
the budget constraints must set r(t) = b. Furthermore, no other rewards must be
collected by the agent.

To compensate for the extra reward at t , some of the edges in G become more
expensive. The price of each edge (vk,j , t

′) as well as the initial edge of every shortcut
increases by an additional (1−β)βb. Their new cost is (1−β)βb and 1+ (1−β)βb.
The price of upward edges is increased by (1− β)2βb to (1− β − ε) + (1− β)2βb.
Finally, the price of the second edge of each downward path is increased by (1−β)b

to (1 − β − kε)/(β − β2) + (1 − β)b. All other edges have the same cost as before.
Clearly, the size of J is polynomial in that of I. Moreover, the same reasoning

that we used in the special case of b = 0 shows that I has a solution if and only if



Theory Comput Syst (2019) 63:466–487 487

J has one. To verify this claim it is helpful to observe how the reward at t and the
additional edge costs cancel each other out according to Lemma 1.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Akerlof, G.A.: Procrastination and obedience. Am. Econ. Rev. 81(2), 1–19 (1991)
2. Albers, S., Kraft, D.: On the value of penalties in time-inconsistent planning. In: 44th International

Colloquium on Automata, Languages, and Programming, Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, pp. 10:1–10:12 (2017)

3. Albers, S., Kraft, D.: The price of uncertainty in present-biased planning. In: Proceedings of the 13th
Conference on Web and Internet Economics, Springer, pp. 325–339 (2017)

4. Bryan, G., Karlan, D., Nelson, S.: Commitment devices. Annual Review of Economics 2, 671–698
(2010)

5. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness.
W. H. Freeman & Co., New York (1979)

6. Gravin, N., Immorlica, N., Lucier, B., Pountourakis, E.: Procrastination with variable present bias. In:
Proceedings of the 17th ACM Conference on Economics and Computation, pp. 361–361. ACM, New
York (2016)

7. Kleinberg, J., Oren, S.: Time-inconsistent planning: A computational problem in behavioral eco-
nomics. In: Proceedings of the 15th ACM Conference on Economics and Computation, pp. 547–564.
ACM, New York (2014)

8. Kleinberg, J., Oren, S., Raghavan, M.: Planning problems for sophisticated agents with present bias.
In: Proceedings of the 17th ACM Conference on Economics and Computation, pp. 343–360. ACM,
New York (2016)

9. Kleinberg, J., Oren, S., Raghavan, M.: Planning with multiple biases. In: Proceedings of the 2017
ACM Conference on Economics and Computation, pp. 567–584. ACM, New York (2017)

10. Laibson, D.: Golden eggs and hyperbolic discounting. Q. J. Econ. 112(2), 443–478 (1997)
11. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. Newsletter 5, 31–36

(1975)
12. O’Donoghue, T., Rabin, M.: Doing it now or later. Am. Econ. Rev. 89, 103–124 (1999)
13. O’Donoghue, T., Rabin, M.: Incentives and self control. Advances in Economics and Econometrics:

The 9th World Congress 2, 215–245 (2006)
14. O’Donoghue, T., Rabin, M.: Procrastination on long-term projects. J. Econ. Behav. Organ. 66, 161–

175 (2008)
15. Tang, P., Teng, Y., Wang, Z., Xiao, S., Xu, Y.: Computational issues in time-inconsistent planning.

In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI Press, pp. 3665–3671
(2017)


	Motivating Time-Inconsistent Agents: A Computational Approach
	Abstract
	Abstract
	Introduction
	Related Work
	Our Contribution

	The Graph-Based Model
	Finding Motivating Subgraphs
	Approximating Optimal Subgraphs
	Motivation Through Intermediate Rewards
	Appendix I 
	References


