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Drug discovery faces an efficacy crisis to which ineffective mainly
single-target and symptom-based rather than mechanistic ap-
proaches have contributed. We here explore a mechanism-based
disease definition for network pharmacology. Beginning with a
primary causal target, we extend this to a second using guilt-by-
association analysis. We then validate our prediction and explore
synergy using both cellular in vitro and mouse in vivo models. As a
disease model we chose ischemic stroke, one of the highest unmet
medical need indications in medicine, and reactive oxygen species
forming NADPH oxidase type 4 (Nox4) as a primary causal thera-
peutic target. For network analysis, we use classical protein–pro-
tein interactions but also metabolite-dependent interactions.
Based on this protein–metabolite network, we conduct a gene
ontology-based semantic similarity ranking to find suitable syner-
gistic cotargets for network pharmacology. We identify the nitric
oxide synthase (Nos1 to 3) gene family as the closest target to
Nox4. Indeed, when combining a NOS and a NOX inhibitor at
subthreshold concentrations, we observe pharmacological syn-
ergy as evidenced by reduced cell death, reduced infarct size,
stabilized blood–brain barrier, reduced reoxygenation-induced
leakage, and preserved neuromotor function, all in a supraaddi-
tive manner. Thus, protein–metabolite network analysis, for ex-
ample guilt by association, can predict and pair synergistic
mechanistic disease targets for systems medicine-driven network
pharmacology. Such approaches may in the future reduce the risk
of failure in single-target and symptom-based drug discovery
and therapy.

network pharmacology | stroke | NOX4 | network analysis

In drug discovery, a “one disease–one target–one drug” ap-
proach is common practice, primarily to simplify compound

screening, reduce unwanted side effects, and simplify registration
(1). This approach, however, oversimplifies disease mechanisms,
which are in fact complex subnetworks within the interactome (2,
3). Moreover, disease definitions are mostly symptom- rather
than mechanism-based, and hence the therapeutics are likewise.
Not surprisingly, drug discovery has thus become increasingly
inefficient (4). Conversely, systems medicine and network
pharmacology define diseases according to causal mechanisms
(5, 6). Moreover, network pharmacology aims to further enhance
this by targeting not only a single component within such a
network but by combining drugs within these networks with the
aim of achieving synergy and dose reduction (7). However, most
network databases are curated (8); the de novo identification of
such networks is only in its beginning. De novo network en-
richment from a single primary validated target toward at least
one secondary target holds high promise for systems medicine
(9) but is currently not possible.
To address this challenge, we designed an approach that (i) is

integrative, (ii) is based on the network pharmacology paradigm,

(iii) predicts targets instead of drugs, (iv) is validated through
experiment, and (v) is readily applicable by a broad range of
biomedical scientists. In fact, our approach can be established as
a powerful tool and therefore implemented in novel, complex,
and frequently unexpected indications where already-marketed
drugs can be repurposed, leading to new therapies. Our strategy
amends the limitations of previous approaches, for example,
simple pairwise combination of drugs as opposed to targeting
networks (10, 11), or combining drugs, which may have different
off-target effects, rather than drug targets (10–12). Furthermore,
most proposed computational methods have not been validated
experimentally for de novo predictions (10–14). Moreover, most
of these methods rely on drug similarity signatures extracted
from chemical structures, targets, and side effect profiles, in-
troducing a potential bias toward the pharmacological classes
currently represented in knowledge bases (15) and limiting their
applicability to de novo candidate discovery (16).
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We therefore here develop a simple and integrative in silico
approach to pair an existing validated primary causal therapeutic
target with a synergistic cotarget within a network pharmacology
strategy. We importantly validate our prediction both in vitro
and in vivo, including a suitable in vitro human model. As a
disease model for this we chose ischemic stroke, a multifactorial
high unmet medical need indication for which no neuro-
protective therapy is currently available. As a mechanistic start-
ing point (node), we selected the reactive oxygen-forming
enzyme NADPH oxidase type 4 (NOX4), a preclinically highly
validated target directly involved in neurotoxicity and poststroke
blood–brain barrier dysfunction (17, 18).

Results
Guilt-by-Association Analysis and Network Construction. To identify
synergistic and mechanistically related cotargets for NOX4, we
employed a guilt-by-association analysis on a multilayered mo-
lecular interaction network. Since many signaling events are
governed by intermediate metabolites rather than protein–protein
interactions (19), we considered this approach alone as insufficient
to search for secondary targets. We therefore combined protein–
protein interactions with protein–metabolite interactions to over-
come such a potential bias or limitation.
We adopted a bottom-up approach consisting of three inter-

acting computational modules starting from a well-known clinical

target in stroke, NOX4 (17), as our primary target protein and
seed node (Fig. 1). In module 1, we expanded from this seed node
to obtain a network of candidate targets and related metabolites,
resulting in five metabolites which were extended to their inter-
actors, yielding 537 proteins. The main product of Nox4 (20),
hydrogen peroxide (H2O2), and the substrate, oxygen (O2), were
manually added due to their absence from the Human Metab-
olome Database (HMDB), and a curation request was sent to the
database. As a filtering step for narrowing down the interactions
search space, drug–target interactions were used, resulting in
166 potential druggable target proteins. In module 2, a protein–
protein interaction network was constructed based on the pre-
viously obtained druggable target proteins (Fig. 1). Subsequently,
networks from modules 1 and 2 were combined to obtain a two-
layered network determining the closest interaction partners of
our primary target by means of guilt by association (21). Hence,
several levels of connectedness to NOX4 were observed, via direct
protein interactions or indirect metabolic interactions (Fig. 2A), of
which we consider the highest level, including nine proteins, as
suitable NOX4-synergistic targets (Table 1). The full list of protein
connectedness is reported in SI Appendix, Table S2.

Semantic Similarity of Gene Ontology Terms Affirms Network
Analysis Results. Semantic similarity quantifies the closeness or
relatedness of two strings or terms, in our case the different gene
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Fig. 1. Computational workflow for target prioritization via network pharmacology. The computational target prioritization pipeline consists of three
interdependent modules. The blue module extracts the metabolites interacting with the protein NOX4 from the Human Metabolome Database, performs
curation of the metabolites, extracts the proteins interacting with them, and filters them based on the availability of drugs from the Therapeutic Target
Database (TTD). The gray module uses the Integrated Interaction Database (IID) to extract protein–protein interactions of the proteins yielded by the blue
module and constructs a network out of them. The green module calculates gene ontology-based semantic similarity scores of the output of the blue module
compared with NOX4 using molecular function (MF) annotations, ranks the proteins based on their similarity scores, and excludes proteins with less than one
molecular function. The output of the green module is used to annotate the network with the top four proteins.
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ontology (GO) molecular function annotations (22). In module
3 of our approach (Fig. 1), we computed a single score measuring
the similarity of each GO term pair, which was then employed to
compare the functional relatedness of two proteins. In brief, the
functional relatedness score of two proteins was calculated by
combining the similarity scores of every possible pair of GO
terms annotating the two proteins. For scoring term pairs, we
used the Wang et al. method (23) due to its ability to infer
similarity according to the GO hierarchy, and not only the im-
mediate terms in comparison. To combine these scores into the
functional relatedness score of two proteins, we used the best
average match strategy, as it accounts for both similar and dis-
similar terms and is less affected by the number of terms avail-
able for comparison (22). Based on the assumption that
functions of proteins act as a proxy for structural and biological
similarity, we ranked the proteins according to their functional
relatedness to NOX4 calculated based on GO similarity scores.
Finally, the candidate proteins were filtered to extract the top
10 targets functionally most similar to NOX4 (Fig. 2B).

The intersection of the outcome of the semantic analysis with the
list of the most connected targets from the network analysis nar-
rowed down the candidate list of targets to only four: CYBB, NOS2,
NOS3, and NOS1, which ranked as the topmost functionally similar
drug targets, with similarity scores based on the molecular functions
from the GO annotations of 0.87, 0.70, 0.67, and 0.67, respectively
(Fig. 2 B and C). NOX1 also showed an equivalent score to NOS1;
however, previous studies using a combined preclinical metaanalysis
described that NOX1 plays no role in brain ischemia (24). More-
over, NOX4KO mice treated with a NOX inhibitor showed no
additional effect, suggesting no additional NOX1-dependent
mechanism in stroke (17). Having predicted a close connection
between NOX4 and the NOS enzyme family by in silico hybrid
protein–metabolic network analysis, we next wanted to validate our
finding stepwise, first in vitro, then in vivo, with respect to mecha-
nistic synergy and thus applicability for network pharmacology.

In Vitro Cotarget Validation and Drug Identification. For in vitro
validation, we used two models: an organotypic hippocampal
culture (OHC) and human brain microvascular endothelial cells

proteins 

A

C

B

Fig. 2. Integrated NOX4-extendedmultilayer network of biomolecular interactions used for candidate extraction and the involved protein semantic similarity ranking.
(A) The full network constructed using the primary protein, NOX4 (orange node), connected to its direct metabolic interactors (red nodes), which have been linked to
the proteins (blue nodes) interacting with them. We also show all protein–protein and metabolite–protein interactions (gray edges). (B) The semantic similarity ranking
based on molecular functions (MF SemSim) of proteins with the top four similar proteins is highlighted. (C) The simplified network with only the primary protein, and
the top four similar proteins and metabolites shown individually, while the rest of the proteins are grouped as modules and their interactions are merged.
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as a blood–brain barrier model. In the OHC model, oxygen and
glucose deprivation (OGD) followed by reoxygenation (Fig. 3A)
resulted in the increased expression of our primary target, NOX4
(17, 18) (Fig. 3B), and all different NOS isoforms (Fig. 3C)
within 2, 4, 8, 12, and 24 h post-OGD. Combinatory treatment
with subthreshold concentrations of the NOX4 inhibitor
GKT136901 (0.1 μM) and the NOS inhibitor L-NAME (0.3 μM)
significantly reduced cell death (Fig. 3D) and formation of reactive

oxygen and nitrogen species 24 h post-OGD, while individual
treatment with these subthreshold concentrations had no effect
(Fig. 3E). Likewise, early kinetics (15-min) assessment of reactive
oxygen species (ROS) formation postcotreatment reflected a sig-
nificant reduction compared with single therapies (SI Appendix,
Fig. S1). Similarly, in the human blood–brain barrier model,
cotreatment with the same subthreshold concentrations of
GKT136901 (0.1 μM) and L-NAME (0.3 μM) reduced cell death

Fig. 3. In vitro cotarget validation and drug identification of NOX4 and NOS inhibitors as a combinatory treatment. (A) Organotypic hippocampal cultures
prepared from hippocampal slices were cultured for 4 d and subsequently subjected to 15 min of OGD period followed by 24-h treatment. Samples for gene
expression detection were collected at 0, 2, 4, 8, 12, and 24 h post-OGD. (B) NOX4 expression was up-regulated at 4 and 8 h in comparison with the beginning
of the ischemia period (*P < 0.05, ***P < 0.001; n = 3). (C) Inducible NOS (NOS2; square) was up-regulated only in the first 2 h post-OGD, while neuronal NOS
(NOS1; circle) was up-regulated in the final 12 to 24 h after the OGD period. Similarly, endothelial NOS (NOS3; triangle) was also significantly up-regulated at
8, 12, and 24 h post-OGD (*P < 0.05, **P < 0.01; n = 4). Gene expression was normalized using β-actin as housekeeping gene. (D) Cell death was significantly
reduced in OHCs treated with GKT136901 (0.01 μM) and L-NAME (0.3 μM) in combination (**P < 0.01; n = 8; green slashed bar) in comparison with control
slices (#P < 0.05 with respect to basal; n = 8; gray bar). Individual treatments show no effect. (E) ROS formation was also significantly decreased in OHCs
treated with the combination of GKT136901 (0.01 μM) and L-NAME (0.3 μM) in comparison with nontreated slices. Again, individual treatments show no
effect on cell death. #P < 0.05 compared with basal conditions (gray bar; n = 5); **P < 0.01 with respect to nontreated slices (gray bar; n = 5). (F) Combinatory
treatment of GKT136901 and L-NAME increases cell viability in human brain microvascular endothelial cells subjected to hypoxia/reoxygenation (Re-Ox). ##P <
0.01 with respect to basal conditions (n = 4; gray bar); *P < 0.05 with respect to nontreated cells (n = 4; green slashed bar). (G) Cell permeability was assessed
by measuring Evans blue fluorescence post-OGD. Evans blue diffusion was significantly reduced in cells treated with GKT136901 (0.01 μM) and L-NAME
(0.3 μM) in combination (#P < 0.05; n = 4; gray bar) in comparison with nontreated cells (*P < 0.05; n = 4; green slashed bar). Error bars are mean ± SD.

Table 1. Network proteins ranked according to their connectedness to NOX4 through
its metabolites

Protein symbol Protein name UniProt ID Connectedness to NOX4

NOS1 Nitric oxide synthase, brain P29475 4
NOS2 Nitric oxide synthase, inducible P35228 4
NOS3 Nitric oxide synthase, endothelial P29474 4
HMOX1 Heme oxygenase 1 P09601 4
HMOX2 Heme oxygenase 2 P30519 4
DUOX1 Dual oxidase 1 Q9NRD9 4
DUOX2 Dual oxidase 2 Q9NRD8 4
PPOX Protoporphyrinogen oxidase P50336 4
AOX1 Aldehyde oxidase Q06278 4

Proteins n = 10 to n = 378 are included in SI Appendix, Table S1.
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(Fig. 3F) and prevented the increase in permeability after hypoxia
(Fig. 3G). These data validated both the mechanism-based nature
of NOX4 and NOS as a target and their in silico predicted syn-
ergistic interaction, since chosen monotherapies were not significantly
effective.

In Vivo Validation of Network Pharmacology for Clinical Translation.
To validate our network pharmacology approach in an in vivo
model relevant for clinical translation, we used the mouse oc-
clusion of the middle cerebral artery (MCAO) model in the
absence or presence of GKT136901 (10 mg/kg) or L-NAME
(3 mg/kg). Due to the many translational failures in stroke (25),

the Stroke Treatment Academic Industry Roundtable (STAIR)
established a set of guidelines to improve the success rate. Fol-
lowing these STAIR criteria, we assessed both a transient and
permanent model, male and female, old and young mice. First, in
transient MCAO, single subthreshold treatments showed no
neuroprotection (Fig. 4A) but combinatory treatment signifi-
cantly reduced brain infarctions compared with controls (Fig.
4A), both at 1 h and, importantly (26), 3 h poststroke (Fig. 4A),
suggesting a wide therapeutic time window in agreement with
our in vitro expression kinetics. Similar effects in a permanent
MCAO model suggested therapeutic effect independent of
reperfusion (Fig. 4A), and thus promise for patients where

Fig. 4. In vivo validation of network pharmacology for clinical translation. (A) Twenty-four hours after tMCAO infarct size was reduced in mice treated with
GKT136901 (10 mg/kg) and L-NAME (3 mg/kg) in combination 1 h (**P < 0.01; n = 6) and 3 h poststroke (*P < 0.05; n = 5), while individual treatment showed
no effect in reduction of infarct size. Infarct volume was also significantly reduced in aged animals treated with the combination (GKT+L-NAME) 1 h
poststroke (**P < 0.01; n = 5). Similarly, combinatory treatment decreased infarct volume after permanent occlusion of the MCA in adult mice (*P < 0.05; n =
5). (B) With respect to the neurological outcome of the combinatory treatment in surviving mice, neurological outcome (Bederson score) was improved in the
adult mice treated 1 h poststroke (*P < 0.05; n = 9), 3 h poststroke (*P < 0.05; n = 5), and the aged model (*P < 0.05; n = 4). (C) Likewise, the elevated body
swing test indicated a significant increase for the right swing number/total swing number ratio in adult mice treated 1 h PO (*P < 0.05; n = 9) but not in the
other groups. (D) Significantly improved motor outcome was detected after four-limb hanging test in all groups: 1 h PO (*P < 0.05; n = 9), 3 h PO (*P < 0.05;
n = 5), and aged animals (*P < 0.05; n = 4). (E) Blood–brain barrier integrity assessed by Evans blue extravasation was preserved in treated animals compared
with nontreated mice at day 1 after 1 h of tMCAO (*P < 0.05; n = 4). (F) Treated mice showed decreased ROS formation compared with their respective
nontreated animals (*P < 0.05; n = 4). (G) N-Tyr–positive cells were significantly reduced with the combinatory therapy compared with nontreated mice. (*P <
0.05; n = 4). Error bars are mean ± SD.
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thrombolysis or/and thrombectomy is not recommended. In hu-
mans, stroke mostly occurs in the elderly population, and patient
prognosis is directly influenced by age (27). Thus, we confirmed
these effects in aged female and male mice (Fig. 4A). Although
smaller infarct sizes poststroke is an important readout, neuro-
functional outcome and quality of life postischemia are the main
clinical parameters. Hence, we additionally assessed three in-
dependent neuromotor functioning tests in the adult mice
treated 1 and 3 h poststroke together with the aged mice model:
the Bederson score (Fig. 4B), elevated body swing test (Fig. 4C),
and four-limb hanging wire test (Fig. 4D), which all were sig-
nificantly improved 1 h postoperation (PO), and Bederson and
the four-limb test also 3 h PO (Fig. 4 C–E). Monotherapies were
only assessed 1 h poststroke treatment in adult mice due to
ethical restrictions (Material and Methods). Thus, dual NOX/
NOS inhibition poststroke leads to a potent synergistic, mechanism-
based, and neuroprotective effect, further confirming that both
targets are causally linked in a clinically translatable manner.

Prevention of Blood–Brain Barrier Disruption and ROS Formation
upon Stroke Treatment. The cerebral vasculature, which is criti-
cal for the maintenance of the blood–brain barrier (BBB), is
particularly susceptible to oxidative stress (28, 29). To test whether
dual inhibition of NOX/NOS leads to the blood–brain barrier
phenotype, we assessed the integrity of the blood–brain barrier
after ischemic stroke. In line with previous findings, combinatory
treatment significantly reduced blood–brain barrier disruption
upon stroke compared with nontreated mice (Fig. 4E).
To link the neuroprotective effect on the enzymatic activity of

both ROS sources, we measured oxidative stress and N-Tyr
formation in brain tissue cryosections. ROS generation and N-
Tyr formation were dramatically reduced in treated mice (Fig.
4F) after 24 h of cotreatment (Fig. 4G), demonstrating a direct
link in ROS reduction and a broad neuroprotective effect (SI
Appendix, Figs. S2 and S3).

Discussion
We here report a proof of concept for an in silico discovery
approach to pair a single validated therapeutic drug target with
another mechanistically related one for synergistic network
pharmacology. Our multilayered interactome analysis including
metabolites coupled with semantic similarity ranking detects
pathomechanistically related proteins which can be cotargeted.
Using this approach, we extend NOX4 to the closest functional
neighbor gene, NOS.
In search for a secondary, synergistic, and causal network

pharmacology target prediction, data-driven or modeling-based
techniques have been developed. A data-driven approach in-
tegrated multiple sources of data on drugs such as target pro-
teins and their pathways, medical indications, therapeutic
effects, and side effects (30). DrugComboRanker prioritizes
synergistic drug combinations (31) by constructing a functional
drug network, although restricted to cancer drug–gene profiles.
Here, community detection is performed via Bayesian non-
negative matrix factorization and, finally, similar drugs are
inferred based on an adjacency matrix built from the drug–
target network.
With respect to modeling, a network-based approach ranked

combinations of proteins using a topological score calculated
from an integrated protein–protein interaction (PPI) network
constructed and enriched with gene expression data from a sin-
gular disease phenotype (13). Random forests were used to
predict drug combinations by exploiting network features gen-
erated from PPI data, and drug chemical and pharmacogenomic
features from drug-induced expression profiles (11). MASCOT
is a model-driven machine-learning algorithm that leverages
curated dynamic models of signaling networks and their disease
states to predict synergistic targets of a desired therapeutic effect

(14). In comparison with all these previous reports, our two-step
approach utilized experimental databases on multilevel molec-
ular networks in a rather simple and generic manner, and our
predictions were experimentally validated both in vitro and
in vivo.
PPI networks or interactomes have been commonly used to

understand complex disease mechanisms (32–36). However, PPI
networks are just one level of molecular interaction networks.
Most signaling events are not due to wild-type PPIs but involve
metabolites or metabolic protein modifications. We therefore
used protein–metabolite networks in conjunction with PPI net-
works. In addition, this solved another issue of molecular in-
teraction databases. Current databases suffer from selection and
detection biases, high rates of false positives, and low rates of
coverage (5, 37).
However, metabolome databases still have severe shortcom-

ings. When querying the most comprehensive HMDB with seven
additional key signaling enzymes, key metabolites were consis-
tently missing, namely for soluble guanylate cyclase, the sub-
strate, GTP, and the product, 2′,5′-cGMP, as well as GMP,
cAMP, and 2′,3′-cGMP being wrongly listed. Thus, our approach
will improve considerably once these or other metabolic data-
bases are intensely curated and become more complete.
Although our method is generic and can be applied to other

cases in concept, there are restrictions. For instance, the current
computational pipeline supports one seed target; however, it is
generally applicable to more than one seed target. For multiple
seed targets, one would have to look for druggable candidates
with the shortest average distance in the graph representation of
the integrated network to all seeds.
In the network analysis step, the patchiness of the data sources

may affect predictions, while for the semantic similarity, the
availability and accuracy of GO annotations may impact on the
ranking. In addition, we report only a single validated application
of our method, and further use cases will be needed. In fact,
NOX4-related targets, namely NCF1, NQO2, and DPYD, might
also show potential. Targeting NCF1, also known as p47 (NOX
subunit), may lead to indirect NOX4 activation. However,
modulating NCF1 is so far not possible, since protein–protein
interaction inhibitors proved noneffective and no further net-
work pharmacology strategy could be achieved (38). Moreover,
ribosyl dihydronicotinamide dehydrogenase (NQO2), a ROS-
generating enzyme, shows a direct acetaminophen side effect,
while this drug has been shown as protective in stroke, demon-
strating a direct link (39). However, when weighing NQO2 and
NOS as a cotarget of NOX4, we would still prefer NOS, because
with NOX4 and NQO2 we would both target ROS formation
with possibly no synergy but rather additive effects.
We thus validated the therapeutic applicability of our in silico

network pharmacology hypothesis both in vitro and in vivo by
coadministering both a NOX inhibitor and NOS inhibitor, re-
spectively, in three different species including a human BBB
model. Of high translational relevance, combining a NOX and
NOS inhibitor conveyed in direct neuroprotection in three dif-
ferent brain ischemia models, rat organotypic hippocampal cul-
ture, transient and permanent MCAO in mice, and human brain
microvascular cells as a BBB model. Importantly, this was
achieved at concentrations and doses, respectively, that on their
own were ineffective. This will allow extension of the clinical
translation of NOX4 inhibition in stroke to be enhanced in ef-
ficacy and safety by lowering in risk of any potential side effects,
increasing mechanistic-based synergy and reducing the number
needed to treat. Thus, our multitargeted approach therefore
focuses on NOX4 inhibition coadministered with a NOS in-
hibitor while, due to synergy, reducing the doses/concentrations
of both drugs to individual subthreshold levels.
On a mechanistic level, interaction between reactive oxygen

species and NO, for example, to toxify NO via intermediate
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peroxynitrite formation, has been shown before (40). The source
of ROS, however, has not always been identified (41–43). Also,
the signaling networks of NOS/NO on the one side and ROS
formation and ROS targets on the other have been annotated as
rather independent. Here, we show that, at least in disease, both
networks represent subnetworks of the same common mecha-
nism that involves both NOS and NOX4. At least NOX4 is one
relevant ROS source interacting with NO, or NO’s downstream
signaling and online pathways have been suggested for curation,
as far as possible. Importantly, this does not imply that all ROS
sources will interact as well with NOS. Such assumptions rep-
resent a shortcoming of the current curated NOS and ROS
pathways, as they combine, for example, all ROS sources and all
ROS targets into one scheme. With respect to the relevant NOS
isoform, the best characterized and validated is NOS1 (44),
whereas NOS3 is rather protective (45) and NOS2 expression
commences only 12 h after the onset of the stroke in an in vivo
rat model (46), while our findings suggest different expression in
mice primarily due to model and species differences.
With respect to clinical application there are two other NOS

inhibitors worth being considered apart from L-NAME, which
has been tested for the longest time. First, Vasopharm is de-
veloping VAS203 as a NOS common inhibitor currently entering
phase III clinical trials for traumatic brain injury. Since it is a
NOS common inhibitor like L-NAME it has a similar spectrum,
but concerns have arisen with respect to covalent off-target ef-
fects (47, 48) and depression of kidney function (49). Second,
S-methyl-L-thiocitrulline has also been tested in humans but
appears to have only a limited spectrum, possibly limited to
NOS1 (1), while our in silico prediction ranked NOS2 > NOS3 >
NOS1. Such isoform-selective inhibitors will certainly be of in-
terest in future studies aiming at deciphering the contribution of
individual NOS isoforms in ROS–NO interaction.
Clearly, more de novo generated pathways as subgraphs of the

interactome are necessary to eliminate such assumptions. Also,
NOX4 generates H2O2, whereas typically superoxide, O2

−, is
considered the key interfering molecule with respect to NO.
Moreover, NOX4 has also been identified as a positive indirect
transcriptional regulator of the major H2S-producing enzyme,
cystathionine β-synthase (50), which plays a key role in the central
nervous system and circulation linked to worse poststroke outcome
(51). Thus, poststroke NOX4-dependent inhibition of the cys-
tathionine β-synthase pathway may also result in at least additive
effective effects in stroke within the same mechanistic network.
With respect to NOS1 to 3, the possibility exists that one of the

isoforms may actually be protective. Importantly, the here-presented
network approaches are by definition undirected, namely whether a
cotarget needs to be inhibited or activated is not always imme-
diately obvious. Chronically, NOS3 inhibition is certainly not of
benefit (11); however, in an acute setting, even endothelial NOS-
derived NO may for a time window where it interacts with
NOX4-derived ROS be detrimental. Pan-NOS inhibition is al-
most as effective as NOS1 knockout. Thus, pharmacological val-
idation will in many cases remain an essential component when
interpreting and curating network pharmacology discovery results.

Thus, from a chemical point of view, the NOX4–NOS in-
teraction that we predicted and validated was surprising, and
may involve a hitherto underappreciated interaction of H2O2
with transition metal centers to form singlet oxygen (40, 52).
In conclusion, our present and other network pharmacology

approaches (1, 53) provide a roadmap to reduce the risk of failure
in single drug target development by moving toward multiple tar-
geting of de novo causal networks to increase therapeutic efficacy
and reduce individual drug dosing and possible side effects due to
mechanism-based synergy (53, 54). We suggest extending our ap-
proach to other unmet medical need indications, where currently
only single drug- or symptom-based approaches are available.

Material and Methods
Detailed experimental procedures are provided in SI Appendix, Material
and Methods.

Study Design. All animal experiments were performed after approval of the
protocol by the Institutional Ethics Committee of the Autonomous University
of Madrid according to European guidelines for the use and care of animals
for research. The dropout rates were four mice in the vehicle groups [tran-
sient (t)MCAO, aged, permanent (p)MCAO, and Evans blue] versus three mice
in different treatment groups (tMCAO and pMCAO) (SI Appendix, Table S2).
Post hoc power analysis for adult mice is included in SI Appendix, Table S3.

Transient Occlusion of the Middle Cerebral Artery. The model was previously
described in ref. 17.

Human Brain Microvascular Endothelial Cells Subjected to Hypoxia. Human
brain microvascular endothelial cells (HBMECs) (Cell Systems) were cultured
to ∼90% confluence. Cell medium was replaced by non–FBS-containing
medium (2 mL per well) following 6 h of hypoxia (94.8% N2, 0.2% O2, and
5% CO2) and 24 h of reperfusion in the presence or absence of the phar-
macological treatment (see SI Appendix for details).

Statistical Analysis. All results obtained from the in vitro (hippocampal brain
slices, OHCs, HBMECs) and in vivo (tMCAO) ischemia models were analyzed
using Prism 5.0 software (GraphPad Software). Data were expressed as the
means ± SEM of separate experiments. Statistical comparisons between
groups were performed using one-way ANOVA, followed by a Newman–Keuls
multiple-comparison test. Differences between two groups were considered
significant at P < 0.05. Numbers of animals necessary to detect a standardized
effect size on infarct volumes ≥0.2 (vehicle-treated control mice vs. treated
mice) were determined via a priori sample size calculation with the following
assumptions: α = 0.05; β = 0.2; 20% SD of the mean. In each case, when only
two groups were compared, the unpaired two-tailed Student’s t test was ap-
plied followed by a Mann–Whitney U test, where significance was considered
at P < 0.05.
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