
Technische Universität München
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Statik

Combining Physics-Based Models and
Machine Learning for an Enhanced

Structural Health Monitoring

Mohamed Khalil, MSc.-Hons.

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo
Umwelt der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:

Prof. Dr.-Ing. Christian Große

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Kai-Uwe Bletzinger
2. Prof. Dr. ir. Daniel J. Rixen
3. Prof. Riccardo Rossi, Ph.D.

Die Dissertation wurde am 15.04.2020 bei der Technischen
Universität München eingereicht und durch die Ingenieurfakultät
Bau Geo Umwelt am 16.03.2021 angenommen.





Schriftenreihe des Lehrstuhl für Statik TU München

Band 46

Mohamed Khalil, MSc.-Hons.

Combining Physics-Based Models and
Machine Learning for an Enhanced

Structural Health Monitoring

München 2020





To the brain cells, eye balls, and cervical spine vertebrae that
propelled beyond their physiological limits during the times of

aspiration, desperation, and procrastination.





Acknowledgements

I would like to express my gratitude to everyone who extended
their unconditioned support and motivation, without which this
work would have had ended up being 200 pages of lorem ipsum and
contemporary artwork.

My parents, my father Prof.-MD. Magdy Khalil, and my mother
Dr. Azza Nasr, I owe you endless genuine thanks throughout the
journey of life, and not just the years of PhD. Your gleams of belief,
encouragement, and consolidation are the reason I keep moving
forward, even through the times of despair. My beloved sister,
Noha Khalil, I will life-long feel indebted to your sincere admiration,
reassurance and compassion.

Life during the past couple of years had more than just the scientific
content of this work. To my dear friends in Germany, Abdelrahman
Elskhawy, Ahmed Khattab, Dr. Ahmed Saleh, Amr Seleem, and Omar
Shouman, it is due to your presence, I felt surrounded by family in
Munich.
My school and university friends back in Cairo, Loay Khalil,Mohamed
Hamza, Noor Elmahallawi, and Youssek Elkorma, you never made
it feel like a thousand miles away. My utmost gratitude to you for
being by my side when I longed for a brother to vent and a wise
man to consult.

VII



Special thanks is forwarded to Dr. Ahmed Kamal; the friend and
the colleague. I would also like to extend a precious thank-you to all
the peers who "voluntarily" reviewed my work. I, here, would like
to particularly name Abdelrahman Elskhawy, Ahmed Khattab, Omar
Shouman, Diana Manvelyan, Ioannis Kouroudis, and Jakob Zietsch.
Without your rounds of constructive feedback, the quality of this
dissertation would have never been anywhere close to its current.

I forward my thanks to my advisers and mentors Dr. Vincent Malik,
Dr.-Ing. Roland Wüchner and Prof. Kai-Uwe Bletzinger for their
undoubted assurance of my work, and their incessant academic and
professional advisory and support through the course of my doctoral
work.
Further, I would like to thank my former and current managers at
Siemens Dr. Efrossini Tsouchnika and Dr. Christoph Heinrich for
putting their trust in me back then in 2017, and granting me the
opportunity to conduct my doctoral research at Siemens Corporate
Technology.

I feel very grateful to my colleagues Dr. Arianna Bosco, Dr. Christoph
Bergs, Christoph Ludwig, Dr. Dirk Hartmann, Ioannis Kourodis,
Jack Zietsch, Dr. Stefan Boschert, Stefan Gavranovic, and Theo
Papadopoulos for your fruitful collaboration, your guidance through
daily corporate business, and, most appreciated, your festive work
mood. That latter kept the not-my-best days going and made long
evening stays in the office more joyful than they sound.

The final thanks go to the unknown soldiers, who remain in the
dark aisles unrecognised enough for their precious roles. I would
like to acknowledge the thousands of individuals who have coded
for open-source projects and uploaded them to Github for free. It
is due to their efforts this scientific work could be managed in such
a critical period. I also feel grateful to all Pythoneers on Stack
Overflow, and the Latex community on Stack Exchange for their
endless contributions.



Abstract

Structural Health Monitoring (SHM) refers to a paradigm enabling
maintenance activities to be scheduled based on the forecast of the sys-
tem degradation. This forecast is primarily derived from the analysis
of sensor data. This dissertation presents two novel contributions,
which enhance the precision of SHM, through the combination of
physics-based simulations and data-driven models.

The first contribution is a robust approach, that finds an optimal
configuration of heterogeneous sensors, which maximizes the damage
estimation confidence. This approach’s novelty lies in three aspects.
First, the mathematical definition of the damage estimation process
using a Kalman filter is modularly incorporated in the optimization
problem’s objective function. Second, benefiting from such a def-
inition, the Jacobian of the objective function with respect to the
design variables is derived, permitting the usage of a gradient-based
method. Third, within the proposed approach, a systematic algorithm
for a-priori identifying the optimal number of sensors is derived.
The combination of the three aspects in one approach make it cus-
tomizable according to the subsequent estimation requirements and
makes it applicable to complex industrial structures.

The approach’s sensitivity to the number of sensors, their types, and
the constraint enforcement approaches is rigorously investigated on
two structures with ascending physical complexity. The proposed
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approach precisely estimated the accumulated damage, and consis-
tently surpassed existing methods in literature. The robustness of
the approach to complex cases is evaluated by applying it to two
industrial structures under realistic operating conditions.

The second contribution of this thesis is a hybrid model for fatigue
damage estimation in fleets of engineering systems. Mainly two
novelties are presented in this model. The first novelty is the unprece-
dented utilization of physical degradation models for fleet estimation.
This yields an interpretable damage estimation model, in comparison
to a conventional purely-data-driven model. The second novelty is
the robust transferability of physics-based degradation models of one
engineering system to other unidentical systems. This allows more
accurate damage estimation, even where only limited physics-based
models and operation data are available.

The hybrid model utilizes the availability of scarce, yet accurate,
physics-based degradation models, and combines them to approximate
the degradation behaviour of other homogeneous structures in a fleet.
The combination is performed by a data-driven weighted-mean filter.
Based on the extent of similarity between fleet structures, and the
current operating conditions, a data-driven algorithm assigns the
suitable weights to each physics-based model.

The model is tested on a fleet of beams, which included a deviant
range of damage severities. To assess its robustness, the constituents
and parameters of the hybrid model are vigorously varied between
nominal and extreme cases. To further evaluate the applicability in
an industrial environment, the model is evaluated on a realistic fleet
of servomotors. On both use-cases, with only a few physics-based
models, and very limited operation data, the hybrid model quantified
accurately and precisely the fatigue damage accumulation in other
structures of the fleet.



Zusammenfassung

Structural Health Monitoring (SHM) bezieht sich auf ein Konzept,
das es ermöglicht, Wartungsaktivitäten auf der Grundlage der Prog-
nose der Systemdegradation zu planen. Diese Prognose wird aus
der Analyse von Sensordaten hergeleitet. In dieser Dissertation wer-
den zwei neuartige Beiträge vorgestellt, die durch die Kombination
von physikalisch-basierten Simulationsmodellen und datengetriebenen
Modellen die Präzision des SHM erhöhen.

Der erste Beitrag ist ein Ansatz, der eine optimale Platzierung
heterogener Sensoren findet, die die Zuverlässigkeit der Schadens-
abschätzung maximiert. Die Neuheit dieses Ansatzes liegt in drei
Aspekten. Erstens ist die mathematische Definition eines Kalman-
Filter-basierten Schadensabschätzers modular in die Zielfunktion des
Optimierungsproblems integriert. Zweitens wird aus einer solchen
Definition die Jacobian der Zielfunktion in Bezug auf die Design-
variablen abgeleitet, was die Verwendung einer gradientenbasierten
Optimierungs-Methode ermöglicht. Drittens wird im Rahmen des
Ansatzes ein systematischer Algorithmus zur a-priori-Ermittlung der
optimalen Anzahl von Sensoren hergeleitet. Die Kombination der drei
Aspekte in einem Ansatz ermöglicht die Anpassung der Formulierung
speziell auf komplexe industrielle Strukturen anwendbar.

Die Sensitivität des Ansatzes in Bezug auf die Anzahl der Sensoren,
ihre Typen und die Ansätze für Erzwingung der Nebenbedienungen
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wird an zwei Strukturen mit aufsteigender physikalischer Komplexität
streng untersucht. Darüber hinaus wird die Robustheit des Ansatzes
für komplexe Fälle bewertet, indem er auf zwei industrielle Strukturen
unter realistischen Betriebsbedingungen angewendet wird. Der Ansatz
schätzt die akkumulierten Schäden genau ab und übertrifft die in der
Literatur vorhandenen Methoden.

Der zweite Beitrag dieser Arbeit ist ein hybrides Modell zur Ab-
schätzung von Ermüdungsschäden in Flotten von technischen Sys-
temen. Haupsächlich werden zwei Neuheiten bei diesem Modell
vorgestellt. Die erste Neuheit liegt bei der neuartigen Nutzung von
physikalischen Degradationsmodellen zur Flottenschätzung. Dies
führt zu einem interpretierbaren Schadensabschätzungsmodell im Ver-
gleich zu einem konventionellen, rein datengetriebenen Modell. Die
zweite Neuheit liegt bei der robusten Übertragbarkeit von physikalisch-
basierten Degradationsmodellen eines technischen Systems auf andere
unterschiedliche Systeme. Dies ermöglicht eine genauere Schadens-
abschätzung, selbst wenn nur begrenzte physikalisch-basierte Modelle
und Betriebsdaten zur Verfügung stehen.

Das Hybridmodell nutzt die Verfügbarkeit knapper, jedoch genauer,
physikalisch-basierter Degradationsmodelle und kombiniert diese, um
das Degradationsverhalten anderer ähnlicher Strukturen in einer
Flotte zu approximieren. Die Kombination wird durch einen daten-
basierten Gewichtsmittelwertfilter durchgeführt. Basierend auf dem
Ähnlichkeitsgrad der Flottenstrukturen und den aktuellen Betriebsbe-
dingungen ordnet ein datenbasierter Algorithmus jedem physikalisch-
basierten Modell die entsprechenden Gewichte zu.

Das Modell wird exemplarisch an einer Flotte von Balken getestet,
die einen abweichenden Bereich von Schweregraden von Schäden
enthält. Um seine Robustheit zu beurteilen, werden die Bestandteile
und Parameter des Hybridmodells zwischen Nominal- und Extrem-
fällen stark variiert. Um die Anwendbarkeit im industriellen Umfeld
zu bewerten, wird das Modell an einer realistischen Flotte von Ser-
vomotoren ausgewertet. In beiden Anwendungsfällen ermöglicht das



Hybridmodell die Akkumulation von Ermüdungsschäden in anderen
Strukturen der Flotte genau und präzise zu quantifizieren anhand
weniger physikalisch-basierten Modellen und sehr beschränkten Be-
triebsdaten.
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1Introduction

Engineering structures are abundant in a plethora of our daily as-
pects and activities. Many of those are designed to function within a
range of environmental and operating conditions, usually pre-defined
by the responsible engineers at the design phase. Operating limits
dictate influential decisions in the design of structures, such as ma-
terial choice, manufacturing processes, as well as joint and support
mechanisms. In practice, engineers rely on experimental validation
and modelling techniques to assess the ruggedness of their designed
structures, or prototypes. It is well-known that these two are nei-
ther free of approximation nor assumptions about the structures
investigated. Typical engineering assumptions could be, for instance,
the consistency of applied loading, degradation behaviour of struc-
tures, linear response to external environmental excitations, flawless
material distribution, and de-coupled interaction between various
physical phenomena within the structure.

Many structures have a prevailing complex operation nature, due to
the incorporation of multiple coupled physical phenomena in their
construction, or due to the indeterministic operation conditions they
might undergo; the fact that makes it difficult to accurately model
or reproduce their operation condition through experiments. Accord-
ingly, the true picture of the structure is only obtained once it is
deployed in its operating environment and begins to run. Typically,
structures are subject to operation scenarios, unforeseen during the
design stage, due to impacts or loads exceeding design limits, as well
as due to manufacturing tolerances and deviations. Such anomalies
could eventually be the root cause of faults in the structure, that
could go undetected as their occurrence might be unexpected in
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the first place. Undiagnosed, and hence un-remedied, faults could
cause severe damages to the structure, leading to unexpected down-
time, overwhelming maintenance and overhaul processes, economic
devastations, and, in the worst cases, even catastrophic fatalities.

Engineers have been attempting to overcome unfavourable repercus-
sions of unanticipated events during operation in many ways. One
classical solution, which is accepted in many engineering domains,
is to over-design structures, practically by increasing the safety
limit upon which material selection and design decision are based.
This is often the case in designing residential buildings, for example,
where the human safety aspect is decisive. Employing this approach
yields a heavy and an expensive structure, which, although more
reliable during operation, is still prone to long-term degradation.
Additionally, this solution is not robustly applicable to engineering
applications, where weight is a critical design parameter, such as
aerospace applications and light-weight structures [WDB04].

This has led engineers to design structures with tighter safety fac-
tors and rely on maintenance activities during the life cycle of their
systems to ensure their performance and integrity as an alterna-
tive to over-designing. According to the DIN1 13306: 2008 norm,
maintenance is defined as

“A combination of all technical, administrative and
managerial actions during the life cycle of [a system]
intended to retain it in, or restore it to, a state in which
it can perform the required function.” ([DIN08])

Before proceeding further with discussion on maintenance, it is
essential to clearly define some terms which will be repeatedly used
throughout the following paragraphs, and the entire text.
A system refers to an intended arrangement of interrelated items
or components to achieve a defined function through mapping one

1DIN: Deutsches Institut für Normung (translation: German Institute for
Standardization)

4 Chapter 1 Introduction



or more inputs to one or more outputs [Bir13; FB09]. A system
is considered in a healthy condition as long as it is providing its
desired function. For instance, a car is a system, whose function is
converting energy resulting from burning fuel to motion.
A system failure is the event impeding the system from delivering
its desired function. Occurring system failures are caused by faults
or defects existing in the system.
A fault or a defect is a non-inherent deviation of a system’s property
or parameter from its nominal condition [Ise06]. Unfortunately,
failures and faults are erroneously interchangeably used, thus it
should be clearly distinguished that a failure is a time-related event
occurring on the system, while the fault is an intrinsic system state
[Bir13]. In the car example, a failure could be a broken wheel axle,
while the fault could be a surface crack which has led to it.
Additionally, damage is defined as the temporal event, associated
with occurring intentional or unintentional alteration in system
properties or parameters, which adversely affects the current or
future performance of this system [FW12]. Note that damage refers
to an event or a sequence of events that might precede failure. In the
car example, while a broken axle is the failure, damage is the growth
and propagation of the root-cause surface crack. The scenarios by
which a fault or a defect progresses such that it leads to a failure is
known as the failure mechanism. For instance, the opening modes
of a crack subjected to a given stress state are a failure mechanism
[Sao17].

That being said, maintenance can pragmatically be perceived as
the combination of actions aiming to understand and anticipate the
failure mechanisms and act accordingly in order to ensure that the
system can perform its desired function [GMZ16].
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2Historical Overview

The concept of Prognosis and Health Management (PHM) was first
introduced and defined in the medical field as “the prediction of
the future course and outcome of disease processes, which may ei-
ther concern their natural course or their outcome after treatment”
([AHL01]). Motivated by the same concept as medical prognostics,
several philosophies of maintenance have been adopted and developed
over the last decades, see Figure 2.1, until a prognostics paradigm
has been reached for engineering applications.

2.1 Evolution of Maintenance
Before 1960s, maintenance was carried out only in a corrective fashion.
Corrective maintenance is “carried out after fault recognition and
is intended to put an item into a state in which it can perform a
required function.” Such maintenance philosophy could be accepted
for applications where failures are neither critical, nor expensive, nor
life-threatening. Gradually, this philosophy was complemented and
eventually substituted by the preventive maintenance philosophy,
defined as a “maintenance carried out at predetermined intervals or
according to prescribed criteria and intended to reduce the probability
of failure or the degradation of the operation of an item.” [DIN08].

Two philosophies can be observed under preventive maintenance:
time-based and condition-based. Time-based maintenance is when
maintenance interventions are carried out at pre-defined intervals.
One habitual daily life example of such is the maintenance and in-
spection schedule for vehicles, performed at mileage- or years-based
schedules. It is speculated by system designers, that with such a
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Figure 2.1.: Taxonomy of maintenance philosophies. Adapted from
[GMZ16].

routine, critical components of the system would be maintained in
a healthy condition. The execution of such a maintenance routine
doesn’t require any monitoring of the system during operation per
sé, keeping the cost of running the system as low as possible. Yet
it could incur higher maintenance costs due to unnecessary service
activities performed on components far from their critical lifetime.
In contrast, condition-based maintenance is defined as “a preventive
maintenance based on performance and/or parameter monitoring and
the subsequent actions.” This maintenance strategy, thus, requires
monitoring of the system outputs (for instance vibrations, temper-
ature, etc.) and analysing its responses. It aims to detect existent
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anomalies in system outputs, and infer from them the presence of
a fault, hence calling for a maintenance intervention based on the
current state of the system.
What remains not yet addressed is the future projection, to estimate
the operation time until the failure event, or what is referred to as
the Remaining Useful Life (RUL). This led to the evolution of the
Predictive Maintenance (PdM) philosophy, defined as “a condition-
based maintenance, carried out following a forecast derived from the
analysis and evaluation of the significant parameters of the degrada-
tion of the item.” [DIN08]. Among all maintenance philosophies, this
latter one has the highest economic benefit in terms of reduction
in maintenance costs, despite the high initial cost required for data
acquisition and management systems.

A note on the notion: In many academic and industrial consortia,
the term PHM is often used, and for the first sight, it seems like
it is often interchanged with Condition-Based Maintenance (CBM)
and PdM. As a matter of fact, there is no clear, standard definition
proposed for the PHM notion. Nonetheless its primary processes are
similar to those of the CBM [GMZ16]. In some context, PHM is dis-
tinguished from maintenance as being the discipline concerned with
the integrated, system-level health state management, while main-
tenance is focused on applying similar procedures at a component
level. According to the PHM Society, PHM is not limited only to
engineering activities, but its research topics extend to Meteorology,
Climatology, Decision Policy, Finance, and Economy [Lee+14].
As our work is concerned with the Predictive Maintenance (PdM)
activities in engineering systems at component level, we would refer
to this maintenance regime and its associated activities as PdM when
presenting our ideas. For the sake of consistency in terminology,
when presenting ideas of other scientists, such as in Part II, we will re-
fer to all activities associated with health state management as PdM,
unless specified explicitly that the higher-level health management
discipline is meant; in which case PHM will be used.
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2.2 Socio-Economic Aspects
The benefits of adopting a PdM philosophy are motivating many
business owners towards enforcing them as acting policies. Unex-
pected downtimes as well as corrective actions cost companies a
fortune! With such policies, reduction in the frequency of system
downtimes due to failures could be achieved, and intervals between
maintenance activities could be extended, hence maximizing the
system availability. This translates in longer periods during which a
system is generating revenue rather than draining resources.
Furthermore, the costs of spare parts purchases and stock manage-
ment would be shredded significantly. According to [FW12], today
the annual cost of maintenance of wind turbines, for instance, is esti-
mated to be e20k per Megawatt, and a regular overhaul performed
every 15 years costs up to e200k. With adequate maintenance,
regular maintenance and overhauls could be spared, unless a failure
is prone to occur, leading to a remarkable cut in both figures.
On the other hand, for companies producing high-capital-expenditure
products, it is more profitable and appropriate to have a leasing-based
revenue under their business model as opposed to an asset-sale-based
revenue [Afu04]. Such business models would adhere the company to
taking responsibility of the service and maintenance of its equipment.
As PdM would allow systems to confidently run in the field up to
their utmost load-bearing capacity, a financial advantage could be
gained, as well as a more realistic pricing strategy, that could be
based on the equipment’s lifetime consumption instead of basing it
on the leasing period [FW12].
The reliable field performance, guaranteed quality and availability of
systems, and lean maintenance plans promise a positive impact on
the customer satisfaction and business reputation; two precious in-
tangible assets granting an edge in a competitive market [FMV00].

In addition to the economic value, adequate maintenance functions
have significant social and environmental implications as well. Firstly,
the failure anticipation of critical system components foresees indus-
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trial risks and helps avoiding accidents which can be detrimental
to the environment and the humans. In the case of residential and
industrial complexes, especially in seismically active regions, with
the aid of system monitoring techniques, the readiness and safety
of buildings for reoccupation could be assessed with tighter uncer-
tainties. Accordingly, this inflicts satisfactory work conditions and
leveraged human safety. Furthermore, monitoring and PdM allow
a reliable operation of some structures, e.g. bridges and urban in-
frastructure, beyond their initial design lifetime, since either their
replacement or phase-out inflicts an economic and functional burden
[FW12].

2.3 Realizing a Maintenance System
Motivated by these socio-economic implications, many industrialists
and engineers have directed their attention towards the development
and deployment of PdM policies [MSI08].

In [Int06], a standardized architecture for CBM is proposed, see
Figure 2.2. Being a derivative of CBM, the same architecture could
be adopted for PdM.

The proposed architecture consists of the following seven functional
modules:

1. Data acquisition: This module provides the system with digital
data acquired from sensors or transducers, as well as meta-data
input by operators, e.g. inspection logs.

2. Data processing: At this level, the sensor signals are processed
in order to extract the important features required for state
estimation, fault identification and damage assessment.

3. Condition assessment: This module compares the extracted
features against predefined or expected benchmarks in order
to detect any changes in the system state.

2.3 Realizing a Maintenance System 11
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Figure 2.2.: Architecture of CBM according to [Int06]. Grey boxes
indicate the seven function levels of the architecture, and
the white boxes indicate the data transferred between every
two levels.

4. Diagnostics: On the basis of the detected state, this mod-
ule determines whether the system has undergone a damage
event and identifies probable causing faults. This module re-
quires thorough knowledge of the system’s components, their
interactions, and the system’s operating conditions.

5. Prognostics: This module relies on the accumulated results
from the previous modules, to forecast the future state of the
system, and its RUL. This prediction generally comes with
a certain level of uncertainty as it is based on extrapolated
future conditions.

6. Decision analysis: Based on the predicted RUL, this module
recommends control / maintenance actions to be taken to
ensure that the system accomplishes its defined function.

7. Presentation: This module collects the outputs and conclusion
from all the previous layers for conveying them in a comprehen-
sible fashion to the users through the so-called human-machine
interface.
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Within industrial domains, as well as academic communities, the
terms Structural Health Monitoring (SHM) and Condition Moni-
toring (CM) are used to refer to the set of tasks comprised by the
first five layers. The distinction between the two terms lies in that
SHM is rather common for civil and aerospace applications, while
CM is used when referring to applications in the domain of rotary
and reciprocating machinery [Tid+16]. Both SHM and CM could be
applied online, i.e. parallel to the operation of the system without
disconnecting it, or offline, i.e. after the system is detached from the
operation pipeline.

One way to enhance the accuracy of the monitoring systems is
through integrating the operating industrial machinery in the diag-
nostics loop. This can be achieved through recycling simulation mod-
els and upgrading their design-phase features to operation-parallel
capabilities, i.e. transferring the classical simulation model created
for design and manufacturing purposes into a digital twin represent-
ing the asset during its operation progression. In the past couple of
years, the concept of the digital twin has been widely acknowledged
in industrial and academic contexts and has been regarded by Gart-
ner among the top strategic technologies of the near future [GV17;
Gar19].
Boschert et al. defined the digital twin as

“The description of a component or a system, achieved
through interlinking its digital artefacts, such as engi-
neering and operational data, via simulation models.”
([BHR18])

Said simulation models evolve along with the evolution of the system
throughout its lifecycle. The vision of the digital twin refers to a
comprehensive physical and functional description together with all
available operational data of a component, product or system.

In its most generic conception, the digital twin doesn’t only hold
engineering and functional information of its physical correspondent,
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but, additionally, stores its operation history, maintenance activities,
its relation to other assets in a larger operating system e.g. the
relation between different electric motors in a fabrication plant, as
well as information about its subsystems, e.g. information related
to the bearings and windings in one electric motor. Herein, this
conceptualization of simulation-hardware relationship forms a very
profound foundation for seamless SHM and CM. Some holistic per-
ceptions of digital twins in SHM and CM contexts can be found in
[BR18; BKR19; Kha+19b]
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3Research Structure

3.1 Problem Statement
When landscaping the scientific work conducted on the five modules
of Structural Health Monitoring (SHM) and Condition Monitoring
(CM), numerous contributions could be found in the area of signal
processing and analysis. Throughout the past five decades, many
methods have been proposed to extract the relevant features from
both the signal’s time and frequency domains to be used in system
state identification. These methods have been developed to robustly
handle clean as well as noisy, trendy and non-stationary signals.
With respect to diagnostics, a wide range of approaches using output-
only-based estimators, linear and non-linear filtering methods, and
machine learning algorithms have been developed to identify faults
in the system and reconstruct its states and inputs. To the time
of writing, new developments are continuously being undisclosed to
the academic society addressing the short-comings or enhancing the
performance of existing methods.

In contrast, the research on the choice and configuration of sensor
networks is not gaining much of attraction. Despite the role optimal
sensor placement plays in the accuracy and precision of system states
estimation and faults identification, fewer contributions are being
published in this area. Browsing the publications in this field released
in the last decade, few thousand journal articles and proceedings
could be found in the domain of sensor placement, while a ten-fold
is published addressing state estimation, state reconstruction and
input estimation.
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Surveying the sensor placement literature, the following research
niches are found:

1. Many contributions address sensor placement for SHM appli-
cations, where the underlying system models are relatively
simple. For such simpler structures, the scalability of the pro-
posed sensor placement algorithm is not a priority. However,
for complex industrial cases with larger system models, the
concerns about the algorithmic performance and robustness
arise when employing many of the existing methods, e.g. those
based on genetic algorithms.

2. Scarce sensor placement strategies consider the downstream
condition assessment and diagnostics method employed. In-
stead, they assume a generic metric representative-enough of
the subsequent estimation precision as an objective to find the
optimal sensor placement.

3. Only few contributions address the problem of multi-type
sensor configurations, whereby sensor are positioned in a con-
figuration that provides accurate prediction of the structure
states through fusing signals from different sensor types.

To the time of writing, no known scientific work has been found that
has entirely fulfilled the three issues. The shortcomings highlighted
within the three niches are addressed in this work, with the goal
to

Develop a multi-type sensor configuration approach, robustly
applicable to complex structures, that considers the

subsequent diagnostics method, and modularly incorporates in
it finding the optimal sensor configuration.

Herein, the following steps are employed to achieve this goal:

• Derive the optimization problem based on the assumption
that a Kalman filter is to be used to reconstruct the system
states and estimate the fatigue damage based on the sensor
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data. The objective would then be to minimize the covariance
of the filter’s error estimate. Such a formulation accounts for
the approach employed for the subsequent diagnostics step.

• Formulate the optimal sensor placement problem such that it
optimizes the positioning of strain gauges and accelerometers
simultaneously, not sequentially. These two sensors are not
only chosen because they are common in SHM and CM ap-
plications, but also because they measure signals of different
amplitudes and encompass variant sensor noises. This would
pose a realistic challenge to the robustness of the proposed
approach.

• Employ a gradient-based optimization solution method for
the sensor placement problem, capable of scaling well with
the size of the problem. This method doesn’t just outperform
the gradient-free genetic algorithms but can also robustly
incorporate as many constraints on sensor types, permitted
placement domains and budget.

With respect to the work on the prognosis module, two clusters
of Remaining Useful Life (RUL) estimation paradigms could be
found; approaches estimating qualitative RUL of the structures,
e.g. percentage consumed of the system’s lifetime, and approaches
estimating the physical severity of the underlying failure mechanism,
e.g. propagation of the damage-driving crack.
The former relies dominantly on the statistical modelling or machine
learning algorithms and necessitates the presence of operational data
to build a representative surrogate for the degradation process. It
retains the edge of being more easily developed and being extensi-
ble to similar systems. In contrast, the latter requires meticulous
understanding and elaborate formulation of the principles of mate-
rial degradation and urges the use of physics-based models of the
structure. The presence of such a model allows quantifying the
actual degradation state of the system, let it be a crack length or
the number of load cycles until failure.
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Over the past decades, both paradigms have been and are still being
intensively developed. One advantage of the data-driven models is
the easier transferability from one system to any other adhering to the
same degradation behaviour. This makes these models particularly
attractive when monitoring fleets of complex systems – a typical
requirement in industrial fields. This comes at the expense of losing,
to an extent, the interpretable and quantifiable damage estimate
provided by the physics-based model.

Up to the point of writing this document, the exploitation of physics-
based models in fleets prognosis has received no scientific contri-
butions except the collaborative work of the author of this thesis.
Building upon those early works, in this work, a stride through this
deserted path is made with the goal to

Develop a prognosis approach, seamlessly applicable to a fleet
of systems, that principally bases the damage estimation on

the physical description of the degradation process and
utilizes operation data only to leverage its robustness.

Herein, the following steps are employed to achieve this goal:

• Build an elaborate damage accumulation model based on
simulating the material fatigue under cyclic loading. The
detailed model is limited only to those system retaining the
highest similarity to other systems in the fleet, and hence can
approximate their degradation behaviour.

• Develop a data-driven algorithm that assesses the similarity
between the various fleet systems. Upon this assessment, it
decides on the adequate combination of the built physics-based
degradation models, such that the most precise approximation
of the degradation behaviour is achieved.

• Train the data model on a multitude of operating conditions to
enhance its accuracy and robustness over a wide spectrum of
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nominal as well as extreme system loading conditions applied
to any arbitrary system within the fleet.

Another focus point of this work is to close the gap between the two
terminals of the Predictive Maintenance (PdM) pipeline through
accounting for the downstream diagnosis and prognosis steps while
designing and optimizing the in-feed sensor configuration. Such a
closure could be potentiated by employing a physics-based simula-
tion model to forecast the system responses and degradation under
prospective operating conditions. This given, the sensor configura-
tion is planned for the ultimate goal of the PdM. The gap is further
bridged by employing the very same simulation models during the
prognosis step. Since the physics-model encompasses the system’s
degradation behaviour, the inferred features from the sensor signals,
and reconstructed states resulting from the diagnosis step are input
to the models to assess the damage state. With this, the simula-
tion model would then be fully utilized throughout the entire PdM
pipeline.

3.2 Outline of the Work
Having elaborated the problems under investigation and the research
goals of this work, the outline of the document follows in a similar
manner.

• Part II (State of the Art): An overview of the main academic
and industrial contributions in the domain of PdM is sum-
marized. Following, a detailed survey of the approaches and
algorithms published in the area of Optimal Sensor Placement
is given. Afterwards, the scientific literature in the field of
damage and RUL estimation is outlined.

• Part III (Fundamental Theory): The required knowledge about
physics-based damage estimation and state estimation using a
Kalman filter is introduced. This serves as a pre-requisite the-
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oretical introduction, upon which the consecutive two chapters
are built.

• Part IV (Acquisition and Sensing): This chapter addresses
the first goal. The role of signal acquisition and sensor con-
figuration in the context of SHM and CM is pointed out.
Also, the different motives triggering the deployment of signal
acquisition systems are presented and contrasted. This is fol-
lowed by a proposition of a novel gradient-based algorithms for
multi-type sensor configurations. The optimization problem
is first formulated, then its constraints are outlined, followed
by a discussion on their treatment approaches. Furthermore,
numerical issues of the algorithm are addressed. Finally, the
constituents of the proposed algorithm are thoroughly investi-
gated on two benchmark examples, followed by a comparison
to existing methods.

• Part V (Prognosis and Damage): This chapter addresses the
second goal. In this chapter, the use of physics-based models to
improve the degradation process modelling of similar systems
is presented. First, the architecture of simulation-data-driven
hybrid model is presented, wherein the roles of the physics-
based model and data-based surrogates are clearly defined.
The sequence of simulation model preparation and operation
data processing is detailed. A systematic methodology for
choosing the physics-models approximating other fleet systems
is explained. Finally, the sensitivity of the hybrid model’s
performance to the choice of these physics-based models and to
the data processing is studied on a benchmark example. The
chapter is concluded with a comparison between the proposed
hybrid model’s precision and generalization and purely data-
driven approaches.

• Part VI (Industrial Applications) : In this chapter, the appli-
cation of SHM and CM procedures is demonstrated on three
industrial use cases. Herein, the strength of utilizing simula-
tions models to implicitly fulfil SHM and CM requirements,
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as well as to support data-driven models reaching a precise
solution, is emphasized.

• Part VII (Epilogue): A summary of the proposed work and
the obtained results are presented along with the conclusion
of the main findings of the underlying contribution. The open
issues are remarked and prospective future developments on
this work are suggested.
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4Predictive Maintenance

As mentioned in Section 2.1, the terms Prognosis and Health Man-
agement (PHM) and Predictive Maintenance (PdM) are sometimes
interchangeably used in academic and industrial contexts. In the
following paragraphs, we focus on presenting a survey of the main
contributions in both fields.

In our opinion, the research in PdM could be investigated in two
folds; 1) general contributions addressing PHM holistically as a
concept and presenting its frameworks and architectures, and 2)
contributions focusing on applications-related realizations of PdM
routines and techniques to particular engineering systems.

It is important to note that this section is limited to higher-level
state of the art contributions to PdM, while contributions related to
the specific technologies involved in the seven elementary modules
shown in Figure 2.2 are not in focus here.

4.1 Generic Contributions
Despite the circulation of the PHM concept and term in industry
and academic for decades already, and the establishment of the
PHM Society1 in 2009, unfortunately, there has been no systematic
framework, or a robust standard for designing and implementing the
PHM technology; according to [Lee+14], the developments are mostly
system-specific, which are not thoroughly explained or documented.
In [FW12], the authors refer as well to the "dearth" of publications
in Structural Health Monitoring (SHM) and Condition Monitoring

1https://www.phmsociety.org/
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(CM). Nevertheless, when browsing literature, one can come across a
couple of preliminary contributions, that could be considered a first
seed towards realizing such a standard. These are presented in the
following paragraphs.

General PHM

In 2003, members of Los Angeles National Laboratory complemented
a literature review produced earlier by their lab in 1996 [Doe+96],
with a broader view of statistical pattern recognition paradigm for
SHM. The aim of this study was to present techniques and challenges
for damage assessment, which in turn is an indicator of Remaining
Useful Life (RUL), in the context of SHM. The review starts with
proposing a definition of damage, followed by a breakdown of the
statistical pattern recognition paradigm, which in their belief is the
foundation of damage assessment. The breakdown consisted of four
aspects: operational evaluation, data acquisition, feature extraction,
and statistical modelling for feature discrimination. Interested read-
ers are referred to the reference for more details about each aspect.
The aim of this study was mainly classifying different contributions
to the proposed paradigm.
Building upon it, as well as other resources, came the book Struc-
tural health monitoring: a machine learning perspective published
in 2012 [FW12]. The authors, among which were contributors to
[Soh+03] too, re-used the definition of damage, and the four-aspects
statistical pattern recognition to propose a well-rounded overview
for damage detection using novel machine learning supervised and
unsupervised learning approaches. The book provides as well basic
fundamentals for realising these approaches, lays essential founda-
tions for the damage assessment problem. In addition, the four
aspects of the statistical pattern recognition paradigm presented
in [Soh+03] are explained in more details and complemented with
applications to various use cases: a wind turbine, an aircraft, bridges
and buildings.
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In 2013, a book composed of a collection of articles [Inm+13] ad-
dressing a scope of PHM approaches was presented, viz. sensing
technology and hardware, monitoring algorithms, damage and prog-
nosis models, and concluded with use cases where SHM and CM
proved to be valuable. The book is comprehensive in sense of cov-
ering a wide breadth of aspects, yet it fails to connect its elements
under one hood. In other words, it doesn’t present a comprehensive
architecture bundling the flow of data and information across the
different modules.

In [Lee+14], Lee et al. were motivated by the fact that no profound
framework exists for realising PHM in system-independent way, and
by the lack of a proper medium for conveying information among
maintenance stakeholders. The authors presented a comprehensive
overview of the on-going research efforts in the field, followed by a pro-
posal of system methodology for improving the deployment of PHM
to engineering systems. The proposed method was demonstrated
on different industrial cases, where PHM procedures viz. critical
components identification, diagnostics and prognostics algorithms
selection, followed by information visualization and decision-making
process are explained.

Building upon the work of [Lee+14], in [GMZ16; CMNV17], Gouriveau
et al. and Chebel-Morello et al. presented a comprehensive overview
and a holistic pipeline for PHM procedures, addressing monitoring,
diagnosis, prognostics, data management, reliability, availability, and
decision associated to the maintenance activities.
To our knowledge, this reference is by far the most profound and
comprehensive source combining a robust, application-independent
overview of the PHM procedure. It also provides a deep-dive into
the underlying technologies of each of its module with a sufficient
level of detail. The authors conclude their work with indicating the
main challenges and open questions, which they see vital for the im-
provement of PHM. These could be summarized into 1) the need for
developing a standard approach for signal acquisition and raw data
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handling, 2) an objective methodology for analysis and prognosis,
and 3) a systematic approach for the validation and verification of
the conclusions and decision coming out of the PHM. Additionally,
the importance of focusing on an application-independent PHM
standard was strongly highlighted in their recommendations.

Further details about different approaches for fault diagnosis and
health monitoring techniques can be found in e.g. [GCD15a; GCD15b;
Ran11; TDP12]

Frameworks and Architecture

Looking at domain-specific frameworks, the most refined advances in
maintenance technology in general could be granted to the aviation
industry with their adoption and integration of maintenance and
prognostics technologies since the late 1970s. In that regard, the
industry has yielded practical frameworks, which have gained a wide
consensus as acceptable maintenance strategies by the aerospace
industrial community [FW12].

Among those strategies is the Health and Usage Monitoring System
(HUMS) [McC05], which is used to diagnose faults in helicopter drive
trains, engines, oil systems and the rotor system. The framework
has been endorsed by the Federal Aviation Administration (FAA)
and the Civil Aviation Authority (CAA) as part of an acceptable
maintenance strategy.
Another framework, developed by NASA, is the Space Shuttle Modal
Inspection System (SMIS) [Gry94], which was developed to identify
fatigue damage in components such as control surfaces, fuselage
panels and lifting surfaces using modal testing techniques instead of
conventional non-destructive testing. A more detailed discussion on
both frameworks, as well as others, could be found in Chapter 2.3
in [FW12].
A recent framework development is being conducted within the
context of the European project "REconfiguration of CONtrol in
Flight for Integral Global Upset Recovery (RECONFIGURE)", which
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aims at automating the handling of abnormal and off-nominal events
during flight operation [Gou+14].

In 1999, the US army released a publication presenting the funded
project "Prognostics Framework", whose target was providing a
holistic architecture to convey PHM information to the personnel
involved in the maintenance, logistics and planning activities. Despite
being a high-level, comprehensive architecture, the framework is
limited to the US army Department of Defence weaponry systems
and can’t be considered a generalized standard solution. Additionally,
the diagnosis and prognosis technologies underlying are based on a
knowledge database assembled from experimental conclusions and
empirical rules, without much exploitation of more sophisticated
analysis of operation information through data-driven and physics-
driven models.

In 2002, Hess and Fila proposed a framework for automatic logistics
in aircraft maintenance procedures, supported by Condition-Based
Maintenance (CBM) activities and PHM technologies. The authors
addressed issues such as the architecture of the underlying informa-
tion system, and technology enablers. Yet this framework is very
specific to aircraft systems [HF02].

Roemer et al. proposed a prognostics framework for rotary machinery
with an application on bearings of aircraft engines [Roe+13]. The
framework utilizes signal analysis and physics-of-failure models to
perform online update of material properties, fatigue life estimate and
faults severity. The framework provides, as well, online operation
feedback and decision-making support based on the in-situ RUL
forecast.

A recent contribution in that direction dates to the work in [Kan+17],
which proposed a framework using Industry 4.0 capabilities and
cloud services for the automation of a plant-wide CBM strategy
for rotating machines. In their work, Kande et al. discussed the
need for hierarchically-distributed monitoring modules, connected
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via communication protocols, which feed information to on-premises
analytics units. Said analytics units process the information and
supply decision support systems with the result, to close the loop
by communicating the taken decisions to the hardware on the plant
floor.

Interested readers in more details about PHM frameworks and gen-
eral contributions can benefit from the discussion presented in [FW12;
GMZ16; CMNV17].

4.2 Application-specific Contributions
Application-specific contributions in the field of PdM and PHM are
more abundant in the literature. The remarkable work published
over the last decade is summarized in the following paragraphs.
The paragraphs are arranged according to the applications: rotary
machinery, aerospace applications, and electrical applications. The
realisation of SHM and CM technology in these fields have been
and is still investigated intensively by academic institutions and
industrial research centres in attempts to find solutions for relevant
daily engineering problems [FW12].

Rotary Machinery

Rotary machinery is one of the fields where maintenance technologies
have prospered significantly over the past eight decades, and made
a huge leap from being an institutional research topic to an indus-
trial practice [Mit07]. The first research in vibration monitoring in
induction motors could be reported way back in 1930s in [Hil30].

As mentioned, the term CM is used to refer to the PHM activities
associated with rotary machines. The advancement in CM focused in
principle on monitoring and analysing measured signals from rotating
machinery using contact and contactless sensing hardware. Among
the commonly used signals are acoustic emissions, vibration signals,
temperature, and current signature [Cho+18]. Researchers have
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been investing huge efforts in attempts to correlate the monitored
signatures to specific dynamic responses and faults occurring in the
machinery.

In [Ran11], the author presents the basic signal processing techniques
utilized for fault identification in both time and, more dominantly,
frequency domains. In this book, the author is only concerned with
fault detection and diagnosis based on vibration sensors, with an
application to different rotary components, e.g. bearings, gears,
reciprocating machines, and internal combustion engines. Addition-
ally, the book presents broadly some physics-based and data-driven
methods for RUL estimation.
In [Cho+18], the author highlights the advantage of combining vi-
bration signal and current spectrum analyses for CM of induction
motors, which share many common operating principles and fail-
ure signatures with other rotary machinery. [Zha+17] presents an
overview of some methods used for fault detection in rotary machines
using Artificial Intelligence (AI) approaches, viz. fuzzy logic, Neural
Networks (NNs), Support Vector Machines (SVMs), and adaptive
neuro-fuzzy inference system.

Rotary machinery are complex systems which are prone to failure
due to various possible root causes. The nature of loading on rotary
machinery is complex as well, comprising mechanical, electrical, and
thermal loads, along with environmental operating conditions. The
complexity of the system and its loads results in failures as complex
and makes back-tracing their root-causes a challenge for maintenance
engineers and researchers in CM field.

Faults in rotary machinery can be, on one side, categorized into in-
ternal and external faults, that are further classified into mechanical,
electrical and environmental faults. From another perspective, faults
may be classified into the rotor, stator, bearing and other mechanical
faults based on its location in the equipment, as shown in Figure 4.1.
The different faults and their respective root-causes are detailed in
[BG12]. The book presents a cross-section documentation of possible
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Figure 4.1.: A map of rotary machinery faults [Cho+18]
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faults occurring to different subcomponents of a rotary system and
illustrates systematic approaches for troubleshooting them based
on non-destructive tests, and signals analysis from different sources.
The author summarizes for each subcomponent its most prominent
root causes of failures and its symptoms that could be detected by
monitoring machinery responses.
In [Tol+12], Toliyat et al. present an overview of the common faults
in both induction and synchronous motors, including bearings faults,
stator faults, and rotor faults. The authors present as well different
approaches for building electro-magnetic and structural models for
the respective machinery in both healthy and faulty status. With
respect to fault diagnosis, techniques based on signal processing,
both in time and frequency domain, techniques based on physics
models, and techniques based on pattern-recognition in measure-
ments are explained and applications of them on various faults are
demonstrated.
According to [O’D+87], the major causes of rotary machinery failure
are due to bearings and stator windings, contributing to almost
70 % of failures. This explains the focus of researchers on those
two subcomponents in particular, trying to understand their failure
modes, identify their root causes, and suggest condition monitoring
solutions to mitigate them.

Bearings Faults Bearings faults alone contribute to around 40 % of
the root-causes of failures in rotary machinery [O’D+87; Cho+18].
Information about bearing faults could often be related to their
fundamental frequencies: inner race frequency, outer race frequency,
ball-spin frequency and ball-pass frequency. These frequencies are
dictated by both the geometry and the running speed of the bearing
[SD+19].

Bearings typically fail due to the development of high contact pres-
sures between its components, i.e. inner and outer race, cage, rolling
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elements2. High stress concentrations develop due to high operation
loads, presence of external faults, e.g. misaligned or bent rotor, un-
balance, etc., and/or presence of local or distributed bearing defects,
e.g. high surface roughness, debris and inclusions in the lubricant
film, etc.
Consequently, local surface cracks and pits start developing on the
surfaces of the bearing’s components, which as operation goes on
evolve into spalls and distributed wear [ETJ14]. A survey conducted
by FAG3, a world-wide bearing provider, presents a wide scope
of bearing damages, their causes, inspection procedures and their
corrective and preventive remedies [AG03].

Condition Monitoring of bearings requires understanding and mod-
elling the physics of failure, which is a very challenging task, as
it inherently contains various interacting physical phenomena and
sources of non-linearity. Many dynamic simulation models were and
are being developed and researched over the past seven decades,
starting with the contribution of [Pal59] in 1959. The complexity
of the models developed over the years to include non-linearities
and time-variant dynamics, such as speed-related hydrodynamic
effects, clearances, surface roughness and localised faults. Various
simulation technologies, such as Finite Element Analysis (FEA) and
multi-body dynamics were also studied to model bearings operational
dynamics and fault characteristics. A comprehensive review of the
development of bearings simulation advancements could be found in
e.g. [ETJ15].

Besides the development of simulation models, research has been
intensively conducted in monitoring and signal analysis of bearings’
response signature. Common monitoring techniques for bearing
faults include vibration analysis, current signature analysis, acoustic
emissions, and oil-debris analysis. Using post-processing techniques

2For rolling element bearings, these could be balls, roller, or needles depending
on the bearing type. For fluid (journal) bearings, the cage and the rolling
elements don’t exist.

3https://www.schaeffler.de
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like single-feature extraction, e.g. root-mean-square, skewness, kurto-
sis, etc., or more complex signal processing techniques, e.g. wavelets,
envelopes, Fourier transforms, diagnosis of failure presence, fault
location and size, wear evolution and crack sizes could be inferred
[Cer+18].

Regarding fault detection in bearings, intensive research is present in
literature, where data-driven approaches are exploited for detection of
fault-sensitive and damage-related features, e.g. [GCD15a]. Among
which are supervised and unsupervised NNs, fuzzy-logic, SVMs, and
regression models. Model-based approaches could also be found
in literature, but rather less-abundantly, due to the complexity
associated with developing a fault model, which is often non-linear
and non-deterministic. Examples of model-based approaches for
bearing fault diagnosis can be found in [BM97; VP04; ET16].

With respect to the life prognosis in bearings, just like other applica-
tions of SHM and CM, physics-based and data-driven models have
been developed to predict the RUL. Physics-based models include
fatigue-life models, contact stiffness models, damage rules, and crack
development/propagation models. More details about physics-based
prognosis models are presented in e.g. [San+16; Sao17]. Data-driven
models utilize AI and Machine Learning (ML) techniques, such as
NNs, Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), SVMs, Gaussian processes, Markov chains, etc.
Detailed examples of utilizing data-driven RUL methods in life es-
timation of bearings can be found in [Jia+16; Ahm+18; AWN18;
Liu+18b]. [ETJ15; Cer+18; AS18] present a review of different
prognosis methods followed by a comparison of their strengths, limi-
tations, and challenges.

Stator Windings Faults Stator faults occur mainly due to inter-turn
winding faults caused by insulation breakdown. This in turn results
in excessive local heating in the windings, and unbalance in the
magnetic field, yielding an additional threat on the bearings and the
rotor. In [Sto13], the authors review the different CM approaches
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for diagnosing rotor and stator windings faults, both online during
operation and offline. The authors stress on the importance of offline
tests in revealing some faults that could only be detected through
conducting those tests on regular basis. Among the techniques
reviewed in [Sto13] is the temperature monitoring of the stator
windings using temperature sensors. The sensors indicate the overall
temperature of the windings, with few information on the local hot
spots, that could occur due to inter-turn faults.

Alternatively, thermal imaging of the stator can provide a heat map
of the local hot spots as well as the overall temperature distribution.
This technique is nowadays heavily employed to detect faults occur-
ring due to a wide range of root-causes such as shorted strands, local
blockages or restrictions in cooling gas flow, extensive contamination
of the stator windings and core.
In [Eft+13], the authors provide a review of inter-turn faults, being
the most dominant root cause of failures in stator windings, and
summarize condition monitoring techniques to diagnose them at
early stages of operation. Examples of those techniques include axial
leakage flux, current signature analysis, sequence component, vibra-
tion monitoring, air-gap torque, temperature monitoring, including
both global temperature sensing, and local temperature sensing, e.g.
thermal imaging, or estimation using thermal models, e.g. Finite
Elements (FE) models, or AI models.

Other faults that occur to rotary machines are faults in rotor cage and
windings, faults due to shaft eccentricity and mechanical unbalance,
and stator faults occurring in the frame and laminations. Details on
these faults and their corresponding CM techniques can be found in
e.g. [JLB06; Ran11; BG12; Cho+18].

Aerospace Applications

Research in PdM technology in aerospace applications has been
growing over the past couple of decades. The complexity and the
criticality associated with aircraft systems, equally military and
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commercial, along with the particular safety standards imposed on
flights makes the reliability of a PHM framework a crucial and a
challenging task. Several PHM frameworks have been deployed and
standardized over the past years, such as HUMS [McC05], SMIS
[Gry94], and RECONFIGURE [Gou+14]. Such frameworks comprise
modules for fault detection, isolation, life prognosis, and decision
support.

Fault detection and isolation (FDI) are achieved through model-based
approaches [Din08a; Mar+12] attempting to minimize a residual
between a real observed state and a simulation-calculated corre-
spondent. Physics-based approaches include Kalman filters, particle
filters, input observers, and least-square approaches. A review of
physics-based methods can be found in [Doe+96]. FDI could as well
be performed using data-driven techniques, sometimes referred to
as model-free methods, such as fuzzy logic, and neural networks,
although not so common in aerospace applications as in other fields
[Fek14]. On the other hand, it is still rather common in aerospace
applications to use the traditional Non-Destructive Testing (NDT)
techniques, such as ultrasonic scanning, infrared thermography, and
X-ray inspection. NDT is an offline maintenance procedure applied
after the identification and localisation of faults, from which char-
acteristics and severity of the fault are identified without causing
damage to the structure [Shu02].

Aerospace applications, in particular, dictate some weight and safety
constraints on primary systems of the aircraft, as well as auxiliary
systems, among which are the PdM hardware. In [FW12], Farrar
and Worden discuss the impact of such limitations on the choices
and decision associated with the configuration of the PdM systems.
Further discussion on PdM technologies can be found in more detail
in [MK11; Zol+14; Fek14]
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Electrical Components

Although not particularly relevant to this work, yet electronics
systems play an important role in many applications, and hence
have their share of diagnostics and prognosis research. For the
sake of completeness, we highlight swiftly some advancements in
that field. In [VP07], a prognostics method for estimating damage
based on in-situ thermal loads monitoring in electronic components
is presented. In [RLT08], the authors presented a plethora of data-
driven algorithms for monitoring the health condition and estimating
the RUL of batteries. In [SG09], Saha and Goebel utilized particle
filtering methods to predict the dynamic behaviour of batteries
during discharge cycles and estimate their RUL during the entire life
cycle. Interested readers in this subject are recommended to refer to
[RBMGSM17] for a more comprehensive overview.
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5Optimal Sensor Placement

The topic of sensor placement has been investigated by many re-
searchers in the Structural Health Monitoring (SHM) and Condition
Monitoring (CM) community. Despite its demonstrated importance,
it is not as intensively investigated in either fields, in comparison to
other research areas such as system parameters identification or life
estimation. The following paragraphs will summarize the key rele-
vant contributions in Optimal Sensor Placement (OSP). Interested
readers are referred to [Li12; OSM19; YL12] for intensive review of
contributions in the art.

The literature concerned with OSP could be classified according to
the research question they attempt to address and propose solutions
for, as follows:

5.1 Choice of Sensors
The choice of sensors is particularly dictated by the application
or system considered, as well as the operating conditions under
which it operates. [FW12] has assembled a non-exhaustive list of
different prominent SHM applications and their recommended sensor
choices. For instance, for rotary machinery and offshore platforms,
piezoelectric accelerometers and displacement probes are the most
commonly used sensors, due to their ability to monitor vibrations at a
broad frequency range. On the other hand, in aerospace applications,
strain gauges are more recommended to capture local effects induced
by damages and micro-cracks, in addition to their light weight. In
critical cases, corrosion and temperature sensors might as well be
mounted. For civil structures, accelerometers and strain gauges are
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chosen, however, care needs to be taken to ensure they tolerate the
environments they operate in.

5.2 Objective Function
The sensor configuration problem is in essence an optimization prob-
lem, where a certain objective function needs to be minimized given
certain constraints that need to be fulfilled. The design variables, i.e.
the independent values of the objective function, are the locations
of the sensors, and typical constraints would be the minimal or
maximum number of sensors, or infeasible domains (locations) where
sensors may not be placed [OSM19].

The earliest effort in that direction was documented in the landmark
paper of Kammer [Kam91]. In this work, he proposed the Effective
Independence (EfI) technique to optimize uniaxial accelerometers
positions for modal identification for large structures. The method
was further extended in [Kam05] to accommodate for triaxial ac-
celerometers. The concept underneath attempts to maximize the
linear independence of the observed target mode shapes, through
selecting positions that minimize the measurement error between
the real and estimated modes. The main drawback of this objective
function is that it neglects sensor position’s contribution to the ki-
netic energy content of the system, which could result in positions
with low Signal-to-Noise Ratio (SNR). To overcome this drawback,
OSP objective functions that maximize the kinetic energy content
covered by sensors are proposed, see e.g. [Li12].

Another family of objective functions, which are based on information
theory, were proposed by [Pap04] and further developed by the author
in [PL12]. The proposed objective function provides an estimation
uncertainty measure of the system parameters, represented by the
inverse of the information entropy. Positioning sensors that minimize
this objective in turn leads to maximizing the information and
energy content of the sensed positions. For modal analysis, the
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Modal Assurance Criterion (MAC) is proposed as an objective for
comparing the shapes of the estimated (measured) modes with the
expected ones and quantifying the spatial aliasing [Li12].

The observability and controllability Grammians are common indi-
cators on the state estimation uncertainty [Inm17], which are also
used as objective functions for sensor placement, cf. [Geo95; SH05].
Typically, matrix functions are used as the objective function, such
as determinant, trace, condition number, or maximum/minimum
eigenvalues. According to [HM14], all functions hold the same prop-
erties, and could be indifferently chosen. [Tam+16] have proposed
an observability-based objective function based on the method of
Popov-Belevitch-Hautus (PBH) for quantifying systems’ observabil-
ity [GR95]. Due to the computational effort required to calculate
the observability Grammian, [SH05; HM14] proposed an empiri-
cal approximation of the objective function based on snapshots of
simulated response.

For the aforementioned objective functions, systems where single-
physics, namely system elasto-dynamics, are considered. In that
context, the estimated quantity, the benchmark / real quantity and
the measurement belong to the same physical domain; in the case
of elasto-dynamics, this is displacement or its temporal or spatial
derivatives.
The positioning on a system with multi-physics, e.g. thermo-elastic
systems, has been investigated by [HRU17]. In this context, the
objective function is chosen to minimize the estimation error or co-
variance between an unmeasured quantity (e.g. displacement) which
is calculated from the coupled measured quantity (e.g. temperature).
Due to the complexity of such coupled systems, model order reduc-
tion techniques are often used for mathematical modelling [SVR08].
In [Ben+18], the authors compared different model order reduction
approaches, to assess the accuracy of the yielded objective function
for estimating the displacement from temperature measurements.
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In many SHM and CM applications, state reconstruction from sensor
data is essential. At this point, it suffices to mention that one of
the prominent techniques for system identification is the Kalman
filter [Kal60] and its variants. Based on the joint input-state estima-
tion formulation in [Lou+12a], an objective function based on the
covariance of the estimated input has been proposed in [ZX16]. The
adequateness and limitations of this objective function are heavily
investigated in [TJP16; ZAS17]. This work is not only prominent in
the sense that a complex objective function has been worked through
and thoroughly investigated, but also for generalizing the solution to
account for the positioning of multiple sensors, namely displacement
probes, accelerometers and strain gauges.
Another formulation of objective, which is in fact a weighted sum
of multiple objective functions, has been presented in [LXL18] for
structural damage detection. In [HR15], the authors proposed an
objective function for joint estimating model parameters and states
for thermo-elastic systems. The choice of objective functions for
multi-type sensors is still an open research question, which, to our
knowledge, faces a lot of issues with respect to stability and com-
plexity, and needs further investigation.

According to [YL12], the objective functions found in literature are
all dependent on the dynamics of the structure and are essentially
adequate for estimation of displacement and its temporal derivatives
(velocity and acceleration). If spatial derivatives, i.e. strains, are to
be estimated from vibration monitoring, the metrics may need to be
customized similarly for those applications as well.

Strain sensors, such as strain gauges, have been regularly used for
damage and fatigue detection due to their characteristic sensitivity
to local responses in structures [OSM19]. In the context of damage
identification and assessments, many methods infer the presence of
damage based on changes in estimated modal shapes from strain
gauges readings.
[OSM19] suggests that many OSP formulations involving strain
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gauges use an objective function that minimizes the mean-square-
error or the mean-absolute-error between the estimate based on the
sensor readings and the actual measurement. The drawback of those
two objective functions is that, globally, the high objective function
value of unfavoured locations tends to fade away when combined
with locations with low objective values, hence could be overseen by
an on-average acceptable value of the objective function.
[ZW17] proposed an approach for optimal strain gauges placement
based on the statistical analysis of the damage event detectability.
Based on several simulated damage scenarios, calculated by a finite
element model, the strain difference between healthy and damage
state are used as the damage-sensitive feature. The proposed objec-
tive function is then defined as ratio between the number of damage
scenarios detected by the strain gauges to the number of damage
scenarios simulated.

5.3 Optimization Algorithms
The OSP problem is inherently an optimization problem, where
adapted or adopted minimization algorithms from general optimiza-
tion literature could be reused. The application, the size of the
system, as well as the chosen objective function highly influence the
choice of the optimization algorithm. Optimization algorithms in
OSP context could be classified as shown in Figure 5.1.

Empirical approaches Empirical approaches are typically standard-
ized engineering or expert guidelines for sensor placement. Normally,
these guidelines are closely associated with specific experimental
setup, and measurement process. Such approaches can be found in,
for instance, the ISO 108 standard “Mechanical vibration, shock and
condition monitoring” concerning machine vibrations and vibration
diagnostics, and ISO 133 series "Condition Monitoring and Diag-
nostics of Machines" [KGK13]. Due to the limited scope of those
recommendations, which makes them inevitably non-generalizable
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Figure 5.1.: Taxonomy of common algorithms in OSP context.

to real-world engineering applications, they tend to go overseen in
many OSP literature.

Heuristic approaches The most prominent family of OSP algorithms
are the heuristic approaches. The reason for this is their ease of im-
plementation and the rather small computational overhead required
by them to evaluate complex, non-linear objective functions, when
compared to the deterministic approaches.
Heuristic methods for OSP could be clustered into two sub-categories:
sequential methods [Bis+13] employing greedy approaches, and
nature-inspired methods [Bar+17] employing physics- and biology-
like routines.

The earliest contribution to sequential methods came along the pro-
posal of the EfI objective function in [Kam91]. A forward sequential
sensor placement was proposed, where sensors with minimal contri-
bution to the objective function are sequentially removed one after
the other until a constraint (e.g. minimal number of sensors), or a
stopping criteria (e.g. relative change in objective function’s value)
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are met. This algorithm has been later utilized on other objective
function as in [Pap+14; Ben+18; ZX16; TJP16].
In [KP08], the same author proposed an additive approach, where
basically the sequence of sensor choice is reversed. Instead of having
a full pool of sensors, where redundant ones are subtracted, the initial
set of sensors is empty, and most influential sensors are sequentially
appended to it. This is particularly efficient for system with many
degrees of freedom, out of which a much smaller sensor set must be
chosen.
The implementation and computational efficiency make them an
attractive choice to many researchers. However, due to the greedy
nature of those two algorithms, achieving a global optimum solution
is not always guaranteed. Also, those methods work optimally only if
the objective functions are proven to be decreasing and sub-modular
[ZAS17]. Another restriction is their non-suitability to be applied to
multi-objective optimization.

On the other hand, nature-inspired approaches are well-known opti-
mization approaches which mimic physical processes, such as simu-
lated annealing [WDB04], and biological patterns, such as species
evolution and social behaviours. Biology-inspired algorithms are fur-
ther classified into evolutionary algorithms and trajectory algorithms.
Evolutionary algorithms are iterative algorithms that follow the
Darwinian theory of evolution, where successors surpass their prede-
cessors. Practically, they are initialized by a random set of sensors,
and iteratively a new set is generated such that it yields a lower1

objective function value. The progression from one set of sensors to
the following is performed over three stages: selection, crossover, and
mutation [Bar+17]. Examples of evolutionary algorithms are the
genetic algorithms with their numerous variations and adaptations,
see e.g. [LKS08; Liu+08]. Trajectory-based approaches follow the
space-search patterns adopted by many creatures in groups. The
basic idea evolves about multi-directional exploration of the space,

1It is a convention in optimization literature to formulate the objective function
to be minimized.
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followed by a feedback on the fitness of the explored sub-domain,
upon which a proceeding search trajectory is projected. Some fa-
mous algorithms in this sub-category are the particle-swarm [RA07],
ant-colony[OW04], and frog-leaping [FJ17]. Interested readers are
recommended to refer to [Bis+13] and [Bar+17] for an exhaustive
compilation of physics- and biology-inspired algorithms, respectively,
employed for OSP. The inherent analogy of these algorithms makes
them simple to comprehend, and their space-search approaches make
them very attractive for multi-objective OSP problems. Nonetheless,
they suffer from many disadvantages. Mainly, they require much
longer time to converge and like other heuristic algorithms, their
converged optimal solution is not guaranteed to be the global opti-
mum. The recent advancement in computational power and parallel
computing come in favour of nature-inspired algorithm, since they
can elevate their advantages at an alleviated computational effort.

Deterministic approaches Third, deterministic approaches which
employ gradient-based methods are as well used to attempt OSP
problems. By far, deterministic approaches have been associated
with the objective function being one of the measures of the observ-
ability and controllability Grammians. The earliest contribution in
that direction can be found in [Geo95], where the author proposed
the objective function optimized by employing a branch and bound
optimization strategy [Wel82] for OSP in linear and non-linear dy-
namic systems.
Following his work, [Ser+13] exploited a max-det minimization ap-
proach to solve the optimization problem using a gradient-based
approach. [HM14] proposed an empirical approximation of the
Grammian matrix to reduce the complexity associated with objec-
tive function and its gradient calculation, the thing which made
the gradient-based approach using the Grammian-based objectives
an attractive alternative towards obtaining global optima for OSP
problems. The PhD work of Hinson [Hin15] presents the most
comprehensive and profound work on the optimization problem
and objective formulation. Also, Hinson addressed the issues of
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the method such as non-guaranteed convexity of the objective and
discrete domain of design variables.

Data-driven approaches Finally, a data-driven formulation for sen-
sor placement has been published. [Man18] utilized Proper Orthogo-
nal Decomposition (POD), Dynamic Mode Decomposition (DMD)
and empirical interpolation methods to efficiently optimize the sensor
locations for estimation, control and field reconstruction.

Hybrid OSP Recently, research has been conducted on hybrid formu-
lation of OSP problem, where a series of optimization algorithms are
applied, possibly each on a different objective function. For instance,
in [Som+12], a sequential algorithm is used to determine the optimal
number of sensors, then followed by a genetic algorithm to find the
optimal configuration. Also, a lot of investigation is currently held
towards utilizing sensor fusion for leveraged structural monitoring
and identification, which necessitates attempting multi-type OSP
problems, e.g. [ZX16; LXL18; Kha+18].

5.4 Numerical Issues
Many developments have been carried out on the aforementioned
methods to improve their robustness and stability when applied
to new applications or larger systems. One challenge faced during
solving OSP problems, especially using sequential algorithms, is
information uniqueness. In many structures, where candidate po-
sitions are spatially close, e.g. due to fine FE discretization, the
traditional sequential algorithm yields a cluster of sensors at one
hot region on the structure, with essentially redundant informa-
tion. [FJ17] combined a modal similarity metric with the EfI as an
objective function for a frog-leaping algorithm. [GAK16] applied
an observability-Grammian-based filter on the result of a forward-
sequential minimization of the EfI to reject sensor choices with
redundant information to the system’s observability. [THVB01]
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proposed an entropy-based metric for determining the minimum
separation between accelerometers.

Another problem which appears when employing deterministic meth-
ods is the non-convexity of the objective function due to the binary
representation of the design variables; since a sensor s may either be
placed or not, thus represented as s ∈ {0, 1}. [Hin15] has presented a
convex-relaxation modification to the objective function constraints,
where the design variables are represented as a range; s ∈ [0, 1],
and has demonstrated the improved performance of this approach
in comparison to mixed integer programming applied to a binary
constraint.

An additional problem which appears dominantly in multi-type
OSP problems are the ill-conditioned system matrices appearing in
the derivation of the objective function due to the combination of
heterogeneous measurements, which intrinsically vary in the order
of magnitude. [Som+14] proposed to normalize the measured values
before combining them in the formulation, [ZX16] proposed pre-
multiplying the system’s observation matrix by a weighting matrix
incorporating information about the sensitivity and accuracy of the
sensors used.

5.5 Comparative Literature
Many publications have been concerned with methods comparison,
such as [Bak11; Gom+18; LTL04]. In fact, the results of comparative
work are only applicable towards similar domain or application field,
and are not necessarily transferable, since the formulation and tuning
the algorithms’ hyper-parameters is very problem-dependent, hence,
there is no general solution for OSP [OSM19].
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6Damage Estimation

Damage estimation is an essential goal in any prognosis paradigm.
Many contributions can be found in literature attempting to esti-
mate the damage of both systems and components during operation.
Damage estimation is also common during the design phase of compo-
nents and systems; in fact, it is one of the critical design parameters
in many applications. The presented discussion in this section is
focused on damage prediction for systems deployed in operation,
while interested readers in damage evaluation at the design phase
are recommended to review the discussion presented in e.g. [Shi11;
Hob15; Lot16; Zer+16; Zah19]

Life estimation largely gains the attentions of design and mainte-
nance engineers in applications involving cyclically-loaded structures.
Under cyclic loads, which are dominant in engineering domains,
structures are subject to gradual degradation, which is caused by
the presence or development of defects in the structures. Defects
that might lead to fatigue life deterioration could be:

• Material defects, such as pores, shrinkages, and inclusions

• Geometric defects, such as surface roughness, and surface
irregularity due to manufacturing inaccuracies

• Surface defects, such as notches, scratches, and pits, resulting
mainly from environmental and loading factors.

A detailed discussion on each of these defects, and their corresponding
impact on fatigue life is thoroughly presented by Zerbst et al. in a
recent three-part review [Zer+19].
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The purpose of life estimation models is to provide a prediction
of time until the next onset of damage due to the presence of the
mentioned defects in the material. To achieve this, the degradation
mechanisms leading to defects in materials should have had been in-
vestigated. According to [Oko+14], the dominant failure mechanisms
in metallic components are:

• Wear defined as the loss of surface’s material over the course
of structure’s operation, mainly caused by mechanical loads,
friction and contact,

• Corrosion defined as the loss of material resulting from elec-
trical, chemical or biological reactions occurring between the
outer surface of the structures and its surrounding,

• Fracture defined as the separation of material due to cracking
(in homogeneous materials) or de-lamination / disintegration
(as in composite materials)

• Deformation defined as the mechanism characterized by the
change in the geometry of the structure, such as stretch-
ing, bending and twisting, resulting in excessive stresses or
strains in the structure. Deformation could occur instanta-
neously (elastic and plastic deformations) or gradually over
time (creep).

In contrast, in composites, composed of two or more constituent
materials, either stacked as laminates or having a matrix-fiber-
reinforced structure, typically encountered failure mechanisms are
[SR79; Bat06]:

• Internal matrix cracks, which are micro-cracks localized at a
single layer or unit volume of the matrix material,

• Interfacial debonding, which results from coalescing of matrix
cracks leading to separation of laminates or separation of the
matrix from the fibres,
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• Fibre pull-out, which occurs in fiber-reinforced matrials due
to excessive interfacial debonding, to the extent that fibres
are loosely held inside the matrix,

• Fibre rupture, which occurs both due to sudden or gradual
loading being exerted on the fibres.

According to [Kam+15], homogeneous materials and composites
materials experience different evolution rates of fatigue damage.
The onset of observable fatigue damage in homogeneous material
starts after a relatively larger number of loading cycles. Before
that, the material encounters cracks at the micro- and meso-scale,
boundary dislocations and slippage. Cracks start to develop at the
surface of the homogeneous material, and due to cyclic loading,
they start to fuse, thus spreading more widely on the surface and
propagating deeply into the material. Composites, however, may
experience deterioration in their stiffness and integrity after only a
few hundred loading cycles, due to the developed internal matrix
cracks. Afterwards, the composite undergoes a gradual degradation
stage corresponding to the interfacial debonding. Towards the end
of life, severe failure mechanisms dominate as the fibres rupture, or
as the laminates detach in an unstable manner.

For a more detailed discussion about the different faults and defect
evolution mechanisms in different material families, interested readers
are referred to cf. [BP13].

Having outlined the different defects that a material could possibly
encounter during operation, Remaining Useful Life (RUL) estimation
approaches are now introduced, see Figure 6.1. RUL estimation
approaches could be categorized into four main classes

6.1 Experience-guided
These are a set of rules formulated and dictated by domain experts
correlating the RUL estimate with the current and previous operat-
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Figure 6.1.: Taxonomy of RUL methodologies in literature.
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ing conditions of the structure. This approach is very interpretable
as it mimics the sequence followed by experts to solve engineering
problems. However, it relies heavily on the specificity of the defined
expert rules to be executed, and could quickly suffer from the curse
of dimensionality, for systems having a broad scope of operating con-
ditions [LK14]. Some examples of experience-guided, or sometimes
called expert systems, could be found in literature, cf. [Lem+89;
BS02; BS04; Sci04].

6.2 Physics-based
These are approaches where RUL is predicted based on results
of degradation models, built from the first principles and the un-
derstanding of the physics of failure mechanisms. Physics-based
approaches are sometimes referred to in literature as model-based
approaches [Luo+03]. Degradation models are parametric mathemat-
ical models, whose parameters are initialized based on experimental
results and empirical data.
At the deployment phase, the model parameters are typically cal-
ibrated using measurements through model update methods, e.g.
Kalman filters [Kal60], particle filters [DM96], Bayesian inference
[Dow13].

The input to degradation model is the stress distribution on the
structure resulting from the solution of a simulation model, e.g.
Finite Elements Method [ZZT13], Extended Finite Elements Model
[Kho14], or a multi-body dynamics model [RS12], from which the
corresponding damage and RUL are estimated.

To domain experts, physics-based approaches provide easily inter-
pretable prognosis measures. Additionally, when available and suf-
ficiently complete, they significantly outperform experience-based
and data-driven models. Nonetheless, this is not always the case, as
physics-based models are very expensive and resource-intensive to
build, and calibrate, making them not always available or sufficiently
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complete for complex systems. Moreover, they are usually design
for built case-by-case, making them not as robust and generalizable
as other models.

Figure 6.2.: SN curve showing the different CDM domains

Degradation Models Looking deeper into the degradation models
over the past decades, one can recognize the following domains, upon
which the research has been focused

• Cumulative Damage Model (CDM): Cumulative Dam-
age Models (CDMs) attribute the damage occurring in the
material to the experienced load cycles and estimate the total
damage severity as the summation of the individual damage
contributions of each load cycle [Lee05]. The relationship
between the applied load (S) and the fatigue life in number of
cycles (N) is given by the SN-Curve, see Figure 6.2. CDMs
could be sub-categorized into three different domains:

– Giga-Cycle Fatigue (GCF) (also Very High Cycle Fa-
tigue): refers to the class of fatigue failure occurring at
load cycles ≥ 109 cycles with loads significantly below the
yield strength of the material. The remarkable work of
Bathias over the last two decades is a key enlightenment
in that domain.
In [Bat99], the author states that fatigue infinite life
doesn’t exist in different materials. On the contrary, it was
found out that the fatigue strength decreases about 50–200
MPa between 106 and 109 load cycles, depending on the
material. Subsequently, many research contributions were
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published by the same author and fellow researchers ad-
dressing the Giga-Cycle Fatigue (GCF) phenomena in
different material, viz. ferrous alloys [Wan+99; Wag+10],
bearing steels [Ara16], aluminium alloys [Wag+10], tita-
nium alloys [Hua+16], and natural and synthetic rubber
[Bay+08].
According to [MA16], under GCF regime, the fatigue
life is dominantly spent in crack initiation and not in
propagation. Cracks usually initiate in the core of the
loaded component, leading eventually to inclusions and
large internal grains in the micro-structure of the mate-
rials, known as the Fish-eye. These act as an internal
notch, where regions of stress concentrations and plastic
strain localisation are exhibited during operation. More
comprehensive discussions about GCF can be found in
literature, cf. [BP04; PSB11; MA16; Sak+16; PLJ18].

– High-Cycle Fatigue (HCF) This is the class of failures
attributed to loads large enough to leave the GCF domain,
yet still below the yield strength of the material, applied
for 103 − 106 cycles.
The relationship between the load and its corresponding
fatigue life within the High-Cycle Fatigue (HCF) regime is
described by Basquin’s exponential law [Kun+08], which
relates the number of cycles endured by the material to
the applied stress level, as damage occurring in the elastic
regime of the material is driven essentially by the material
stress.
The simplest method for estimating HCF is Miner’s linear
degradation rule [Min59], which concludes that the sum of
individual damages caused by successive loads constitutes
to the total damage in the material. Despite its simplicity,
Miner’s rule is deficient due to ignoring non-linearity be-
tween the number of load cycles and damage, the effects
of load sequence, residual stresses, and variable loads.
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To overcome its deficiencies, many contributions have been
published. For instance, [Mes+05; Ben+15] proposed a
non-linear damage model to account for multi-axial vari-
able loads, Lv et al. proposed a modified non-linear dam-
age model which considers load interaction and sequence
effects, [Böh+14] employs time history of the trajectory
and cumulation of fatigue failures with the help of a
coefficient dependent on material memory. Further devel-
opments of Miner’s rule can be found in [FS11; San+16;
Pav18].

– Low-Cycle Fatigue (LCF) This is the class of fatigue
failure encountered during the first few loading cycles
when large stresses (relative to the yield strength of the
material) are applied. Typically, faults associated to Low-
Cycle Fatigue (LCF) are surface cracks and fractures.
The relationship between the load and its corresponding
fatigue life within the LCF regime is described by Coffin-
Manson law [BMS92]. This law is analogous to Basquin’s
law being an exponential relationship between the applied
cyclic load and the number of lifetime cycles, except that
it attributes the fatigue life degradation to plastic strains
around the crack tips.
Different approaches have been used to estimate LCF; In
[BS90], the critical plane approach is introduced, where
strain components are proposed to the principal plane, at
which the material undergoes the maximum damage. The
approach is investigated and reviewed on various ductile
and brittle materials in [Zhu+18]. In [WB94], the authors
have proposed a method to map a history of multi-axial
loads to cycles using cycle counting algorithms (e.g. Rain-
flow counting [ME68]), where for each cycle the critical
plane is allowed to change.
Golos and Ellyin proposed a theory based on the total
strain energy in the material as a measure of fatigue
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[GE89]. The advantage of this method is its robust ap-
plicability to both LCF and HCF, as well as combined
loading scenarios including mechanical and thermal loads.
Based on the work in [GE89], Kreiser et al. proposed a
non-linear damage accumulation depending solely on the
load history path and considering the stable hysteresis
effects. The method has been further investigated on
various metal alloys e.g. Ni-based alloys, steels, cast iron,
aluminium and titanium [San+16].
Other methods are adopted to estimate the lifetime of the
structure due to LCF, e.g. the methods of linear elastic
fracture mechanics (LEFM) and elasto-plastic fracture
mechanics (EPFM). Interested readers in the underlying
assumptions and limitations of those methods are referred
to e.g. [And17].

• Crack Initiation and Propagation Crack initiation and
propagation could be modelled by deterministic as well as
stochastic models [San+16]. The earliest contribution to crack
initiation models was proposed by [TM81] using the concept of
slip plastic flow. Other authors have proposed crack initiation
models correlating crack initiation to the geometry of the ma-
terial specimen examined, the presence of local plastic flow in
its micro-structure, and the sizes of short and small cracks, as
well as micro-structural defects whose principal dimension is in
the order of the micro-structure grains, respectively [San+16].
Among the earliest contributions to estimate crack growth
and propagation using deterministic models is the power law
proposed by Paris and Erdogan in [PE63]. The model was
initially proposed for macro cracks (cracks having principal
dimension larger than the material’s micro-structure). Further
models have been developed later to account for short and
small cracks.
The growth of fatigue cracks can be also modelled by non-
linear stochastic models, with the earliest contributions to this
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field dating back to 1985 [LY85].
A summary of developments in crack initiation and growth
models can be found cf. [BAA09; Sad+09; Bes10; Sao17;
San+16]. Additionally, many efforts have been directed to
develop different numerical models to simulate crack initiation
and growth, among which are e.g. finite elements method
[Bou+00], extended finite elements method [Sut+18], scaled
boundary finite elements method [SON18], and virtual ele-
ments method [Hus+19].

Variable Loading Many HCF, LCF, and crack initiation and prop-
agation models require information about the sequence, range and
mean of the applied loads. Loads in real cases could be random,
multi-axial and non-proportional, hence obtaining such informa-
tion requires a pre-processing step achieved through cycle counting
techniques.

Among the standardized cycle counting techniques presented in
literature are e.g. Level Cross Counting, Peak Counting, and Simple
Ranging Counting, cf. [Lee05]. The most robust and widespread
cycle counting techniques is the Rainflow Counting [ME68] proposed
by Matsuishi and Endo. Two variants of the proposed techniques
have been implemented in [DS82] and [Amz+94], and both definitions
are included in the ASTM cycle counting standard [FF05]. These
technique extracts the load cycles amplitudes and count by processing
the load history in time domain.
Recently, Marsh et al. proposed an adaptation to the classical rainflow
technique using the endpoint bound sequence (EPBS) to avoid
processing the entire load history and spare the computational effort.
For each given sub-history, the technique counts the full cycles in the
signal, and concatenates the residue of half cycles to the proceeding
sub-history, where full cycles are attempted to be counted. In
[Hei+19], the authors deployed the technique to an online RUL
estimation framework and highlighted its computational advantage
over the classical rainflow counting.
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On the other hand, many methods were proposed to perform cycle
counting in the frequency domain. In fact, these techniques are not
explicit cycle counting techniques; they rather attempt to estimate
fatigue based on cycle counting from the frequency domain spectra,
with an underlying damage accumulation rule [Pap+11]. These
techniques rely on the information enclosed in the spectral moments,
such as standard deviation, mean frequency, irregularity factor, peaks
and upward mean crossing per second, to fit a Probability Density
Function (PDF) to the given load sequence. The choice of the PDF is
the key element differentiating the different spectral methods [LI15].
A common choice of PDFs include the Rayleigh distribution proposed
for narrowband signals in [WL80]. The technique has been extended
to accommodate wide-band signals by using empirical correction
factors, as in the methods of Dirlik, Wirsching & Lite, Ortiz & Chen,
Benasciutti & Tovo [LI15], or by altering the damage formulation as
in the single-moment method [BCT13] and the method proposed in
[PZ04; KWB19]. The strengths and limitations of each technique,
and its applicability to different signals can be found in comparative
reviews such as [LI15; QLW16; BT18].

6.3 Data-driven
Data-driven approaches utilize models that rely only on previously
observed data to predict the projection of a system’s state and infer
its RUL without relying on physics or engineering principles. Data-
driven models can be classified to statistical models, and artificial
intelligence models.

Statistical Models Statistical models are data-driven models that
constructs the RUL prediction model by fitting observed data to
a probability distribution. Different statistical models have been
proposed in literature and interested readers can find more thorough
discussions on them in e.g. [Si+11]. Among common statistical
models for RUL estimation are:
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• Regression models Regression models use the observed
data from a sample of structures to infer the deterioration of
a given derivative of this sample [Ahm+18]. The underlying
assumption is that all derivatives follow the same deterioration
function. Typically, regression models can provide a PDF of
deterioration, either in closed-form or as an approximation.
Regression models are, however, limited in a sense that they
can’t model temporal uncertainty associated with RUL esti-
mates. In addition, regression models are restricted to system
exhibiting monotonic deterioration [Si+11].

• Markovian Models Markovian models are based on the
assumption that the deterioration state possess a Markov
property, i.e. 1) the deterioration state can be inferred directly
from the observed signals, and 2) the future prediction is
solely dependent on the current state (memoryless property).
Markovian models can be defined for both continuous and
discrete spaces of states, which facilitates their application and
understanding. However, its underlying memoryless property
limits its robustness. Also, in case of discrete state spaces, the
transition between states is often dictated by domain experts,
which might be biased, or by large data samples, which might
be scarce [Si+11].

• Wiener models Wiener models represent RUL by predict-
ing the time, at which the observed signal crosses a certain
threshold level, corresponding to the component’s end-of-life
or a critical deterioration state. This point in time is de-
noted as the first-passage time (FPT), and its PDF is given
by an inverse Gaussian distribution. Wiener models are suit-
able for non-monotonic degradation processes with temporal
variability, unlike regression models. Wiener models have,
nonetheless, some restricting assumptions; their application
is limited to homogeneous deterioration models, and they
ignore the loading history, assuming a Markov property for
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the degradation process, which both are not always the case
[Wan10b; LS+13].

• Gamma processes Gamma processes are models for the
degradation processes, where deterioration takes place grad-
ually over time in a sequence of positive increments. The
deterioration increments themselves, as well as their cumula-
tive sum, are described by a Gamma distribution [AH75]. The
inherent property of the Gamma processes, as well as its pos-
sessed physical interpretability, motivated its application to
many maintenance-related contexts, e.g. wear processes and
crack propagation [Si+11]. Like Wiener models, they withhold
the variability in the process uncertainty in their formulation,
having an advantage over regression models. Nonetheless,
they are, alike Wiener and Markov processes, memoryless
processes, that rely on the current deterioration state only
for future predictions. A detailed investigation on the use of
Wiener processes in the context of maintenance can be found
in [VN09].

• Stochastic Filtering: Filter-based models in their simplest
fashion use historical observations, along with a state-space
model of the degradation state evolution, to predict the current
and the future degradation state. Examples of stochastic
filter models are Kalman filters, and particle filters [SSA15].
A notable advantage of these models is their utilization of
historical observations, and their applicability to linear and
non-linear degradation behaviour. However, the definition of
the degradation state evolution function remains an associated
challenge. The main restriction of filtering models is their
limitation to single-input-single-output deterioration functions,
which makes them inadequate in the cases where deterioration
is inferred from various observations. Also, in the context
of predictive maintenance, stochastic filters have not been
developed to incorporate inter-interval maintenance actions,
i.e. assume monotonic deterioration [Si+11].
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AI Models Artificial Intelligence (AI) models are data-driven models
which use observed data as well statistical techniques, e.g. least
squares, to obtain a RUL prediction, but, unlike statistical models,
don’t provide a PDF of the deterioration. Artificial Intelligence (AI)
models are becoming more commonly deployed in many domains,
and prognosis is one of them. According to [Oko+14], AI models are
more favoured to statistical models in the cases where large amounts
of experimental or operation data are available, from which the
degradation behaviour could be inferred. A comprehensive review
on AI models and their application to Condition Monitoring (CM)
can be found in [Zha+16]. Among the common AI models applied
in the context of Predictive Maintenance (PdM) are:

• Neural Network (NN): Neural Networks (NNs) are data-
driven models in which a network model learns the relationship
between a given set of inputs, e.g. vibration signals, and their
corresponding output, the increment in RUL. In [MZ05], the
author presented a method for predicting RUL under variable
loading using a NN and has shown the similarity between
the NN’s predictions and Miner’s rule predictions for different
material groups. In [Bez+07; PWB08], the authors presented
a RUL prediction model for sandwich composite materials.
In [Fre+09], Freitag et al. used accelerated test data to train
a NN to predict fatigue life and was applied to a textile-
reinforced concrete sample. [MSH10] presented a feed-forward
NN to predict the RUL of bearings in rotating machinery.
[Tia12] presented a similar model to predict RUL in bearings
in pumps, where signals are pre-processed and fitted to a
Weibull distribution, which is then used as an input to the NN.
The results of his model were compared to CM data collected
from pump bearings in the field.

• Recurrent Neural Network (RNN): Recurrent Neural
Networks (RNNs) are the most common and intuitive models
for time series data, which is a common case in prognosis
problems. The first usage of an RNN was reported in 2008,
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as Heimes published his results to the IEEE 2008 Prognostics
and Health Management conference challenge problem [Hei08].
The challenge involved detecting plant failure events in advance
based on time-series signals from plant units with unknown
initial wear and manufacturing variation. Following his work,
RNNs have been applied in RUL estimation in gears [TZ09],
batteries [Liu+10], fuel cells [Liu+18a], bearings [Guo+17;
HT18], and turbofan engines [Gug+17; Zhe+17].

• Convolutional Neural Network (CNN): Although Con-
volutional Neural Networks (CNNs) have been applied on
tasks such as computer vision, natural language processing,
speech recognition etc., they have only been used lately in
RUL estimation in prognostics. To our knowledge, the work in
[BZL16] presents the first contribution in that field, where the
authors applied a proposed CNN for predicting RUL on two
publicly available datasets from NASA. The proposed CNN
yielded a consistently lower mean square error in comparison
to Multi-Layer Perceptrons (MLPs) and Support Vector Re-
gression (SVR) algorithms. [LDS18] adopted the proposed
model in [BZL16] using the proposed time-window interval
approach to consider local temporal features as input to the
network. The work of [Ren+18] presents the first utilization of
CNNs in RUL for bearings. Again, the authors demonstrated
a lower mean square error compared to MLPs and SVR.

6.4 Hybrid Models
Hybrid approaches combine the two aforementioned worlds in an
attempt to complement the shortcomings of one approach through
the strengths of the other. A wide range of hybrid models have
been used in many Structural Health Monitoring (SHM) and CM
applications in the last decade. In the following paragraphs, we
present the most notable contributions.To our knowledge, hybrid
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models could be distinguished into two sub-categories: grey-box
models, and ensemble models.

Grey-box Models A grey-box model establishes the relationship be-
tween its inputs and outputs through an integration of physics-based,
experience-based and/or data-driven models [Hau08]. To clarify,
take for example a life estimation process that is described by a Paris
law (white-box), where its material parameters are not known, thus
have to be identified from the sensor data captured from experiment
data (black-box).

Grey-box models could comprise any combination of experience-
based, physics-based or data-driven models, integrated in different
ways. According to [LK14], one way of creating a grey-box model for
RUL is through combining rules generated from knowledge bases and
domain experts, to determine the faults in the inspected system, and
integrate them with data-driven models (either machine learning or
statistical filtering models) to refine the RUL estimates. Such models
were deployed to assess the health status of industrial gearboxes
by combining expert rules with a NNs to discard redundant rules
[Gar+01], induction motors bearings by employing a fuzzy logic and
NN [SS05], and cutting tools health monitoring by combining NNs
and domain knowledge.
With respect to using statistical filtering models, for instance, Swan-
son estimated crack growth in steel bands using a model comprising
a Kalman filter incorporating a crack growth degradation model
and fuzzy logic [Swa01]. Similarly, in [BWE04], a fuzzy logic based
on a set of predefined rules is combined with a Kalman filter to
predict the progression of the damage in aircraft actuator compo-
nents. In [Nie+15], the authors used a Support Vector Machine
(SVM) whose model parameters were calibrated using a particle-
swarm optimization algorithm to predict the RUL in an aircraft craft
engine. Baptista et al. compared different data-driven models, viz.
k-nearest neighbours, NN, SVM, and random forests, integrated in
a Kalman filter framework to estimate the RUL of aircraft engines,
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and concluded with the choice of the k-nearest neighbour method
for the data-driven subcomponent of the grey-box model.

Contrarily, another approach towards building grey-box models is
through combining different data-driven models. Usually, prognosis
in such an architecture is performed in two-folds, with one of the
underlying models estimates the system states or RUL-influential
features, and another model predicts the RUL. In [Liu+13], a hidden
Markov model was used to represent the health state of investigated
bearing, which was fed into a least square support vector regression
to predict the bearings’ health state. Huang et al. used a minimum
quantization error to estimate the health state of the system, which
was input to a NN to predict RUL [Hua+07].

The three approaches could be combined together as in [BM12],
where a dynamic Bayesian network holding information from expert
opinions, operational data, experiments, physical models, reliability
standards and a particle filter was used to predict the crack length in
cantilever beams. In [OSK03], physics-based models of spall initiation
and propagation in bearings were used and switched between using
a vibration feature-based Dempster-Shafer approach. In [GN11], an
analytical parametric physical model for choke valve fluid dynamics
was developed, its parameters were identified by filtering the outputs
of an ensemble of NNs using a moving average approach, to eventually
feed a gamma process describing the degradation of the valves.

The most dominant structure of grey-box models in the context
of RUL prognosis is the structure incorporating physics-based and
data-driven models [LK14]. Different physics-data interfaces are
adopted to realize such grey-box models. In some case, data-driven
models are used to replace an unknown or a high-indeterministic
sub-component of a physics-model; cf. [Che+10; CVO12], where the
authors estimated the crack length in a helicopter’s gearbox using
a hidden-Markov model (instead of a physics-based approach, e.g.
Paris law) within a particle filter framework.
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In a second setup, data models are used as a forecast model for the
future states based on historical data, while RUL is predicted using
a physics-based models. This grey-box architecture was used by
Liu et al. to improve the prediction of RUL in lithium-ion batteries,
where a particle filter was used to estimate the RUL at the current
step, and a NN was used to predict the measurements p-steps ahead
in the future based on the historical values [Liu+12].

A third common grey-box architecture is when data-driven models
are used to infer a measurement model, i.e. the relationship between
the measured signal quantities and the unobserved health states,
from which RUL is estimated using a physics-based model. In
[OV07], the authors predicted the PDF of the fault indicator using
a particle filter, which was fed to a Paris law to estimate the PDF
of the crack propagation, hence RUL, in planetary carrier plates.
[Moh+07] proposed a grey-box model for fatigue crack growth in
metallic alloys, where a modified Paris law for crack closure was used
to estimate the crack length, while the stress state in the plastic
zone around the crack was inferred from a mixed Gaussian process.
Similar grey-box models with different physics and data constituents
were used by [Pen+12; IEC12] to estimate crack lengths in metallic
structures. In the context of RUL estimation in batteries, [Sah+07]
used a relevance vector machine (data-driven model) to estimate the
initial battery’s state of charge to be used in a particle filter-based
degradation model. [LK16] used a two data-driven model; one to
estimate the unknown internal states in lithium-ion batteries, and
one to predict the future states. The results of both models were
fed to a physics-based model to estimate the RUL in the battery.

Ensemble Models Ensemble models combine the output of multiple
constituent models by a weighted-sum formulation to obtain better
prediction than from the constituent models alone [Li+17]. To
distinguish it from grey-box models, consider a life estimation process
which could be expressed by an LCF model (e.g. Coffin-Manson
law), a HCF model (e.g. Basquin law), and a crack model (e.g. Paris
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law), an ensemble model assigns a weight to the outputs of each of
these three models to improve the accuracy of the life prediction.
Unlike grey-box models, no new model is created, but rather the
weights assigned to aggregate the existing models are tuned. Just
like grey-box models, the constituents of ensemble models could be
any combination of experience-based, physics-based or data-driven
models.

To our knowledge, the earliest contribution where ensemble models
were used in an RUL estimation context was the work of Goebel and
Eklund, where the author combined estimates from experience-based
data-driven and physics-based models for estimating the length of
spall length in bearings [GE07].
In [Pee08], the authors proposed a model composed of an ensemble
of MLPs and radial basis functions as constituent models, whose
combination weights are guided by a Kalman filter. The model
was applied to an aircraft engine life prediction use case. A similar
ensemble architecture was used by Baraldi et al., where an ensemble
of empirical models was aggregated through a Kalman filter-based
algorithm to predict the RUL of turbine blades affected by a devel-
oping creep [BMZ12].
In [Jia+10], the authors used an ensemble of MLPs to estimate the
lifetime in gas turbines. The author has demonstrated an improve-
ment in prediction accuracy of 35% in comparison to the constituent
MLP. Hu et al.combined five data-drive approaches to predict RUL,
and demonstrated the power of their model on an aircraft engine
lifetime prediction problem, a power transformer ageing problem,
and cooling fan life estimation problem [Hu+12].
Xing et al. combined expert-based rules with a regression model
to estimate the life of lithium-ion batteries and obtained as well
more better prediction accuracy using the ensemble model [Xin+13].
[ZZX13] estimated the RUL of bearings using a weighted combina-
tion of two NNs. In [Bar+14; BMZ15], the authors used an ensemble
of regression methods to estimate the health state of choke valves in
offshore oil platforms.
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In [Wu+18], the authors used an aggregate of parallel random forest
algorithms to predict the tool wear in machinery. Ensemble mod-
els were applied to estimate crack growth in structures [Bar+13;
Sba+16], where NN where combined with statistical models to es-
timate the lifetime of components under fatigue-induced crack. In
[Cad+17], Cadini et al. used the results of a committee of NNs
to estimate the crack size in a helicopter panel within a particle
filter-based probabilistic framework.

There is no single answer to the question on which of the discussed
approaches is the best. The choice depends on the nature of the
degradation behaviour, the common faults in the material, the failure
mechanisms, the knowledge and experience about the underlying
physical laws governing degradation, as well as the availability of
experimental and operational data. Okoh et al. presented a compar-
ative literature review [Oko+14] mapping the different faults and
failure mechanisms, along with other factors influencing the choice
of the RUL, to the recommended model. In [AKC15], the authors
present a similar comparison, but restricted to AI models and sta-
tistical models 1, outlining their associated advantages, restrictions,
and challenges [AKC15]. Readers can benefit from the discussion in
these two references, as well as [JLB06; KHV06; Hen+09; SHM11]
as a guideline for model selection.

1Although the authors referred to them as physics-based models, the presented
models fit to definition of statistical models used in this work.
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PART III

Fundamental Theory





7Damage Estimation

Damage estimation is one of the essential outcomes for Structural
Health Monitoring (SHM) and Condition Monitoring (CM). Many
efforts have been invested in finding methods to estimate the fatigue
lifetime of materials under different loading conditions, as mentioned
in Chapter 6.

Damage occurring due to structural loads is evaluated by post-
processing the displacement field, which results from solving the
system’s equations of motion. To derive the equations of motion, con-
sider a solid structure Ω ⊂ R3, having a weak formulation discretized
by a Galerkin approach, e.g. finite element discretization [ZZT13].
The discretization yields a linear system of equations describing the
dynamics of the structure, having nd DOFs and is excited by np
inputs, and is given in physical coordinates by

Mz̈(t) + Vż(t) + Kz(t) = Lu(t). (7.1)

The matrices M,V,K ∈ Rnd×nd are the system’s global mass, damp-
ing and stiffness matrices, respectively. u ∈ Rnp and z ∈ Rnd are the
inputs and displacements vectors, respectively. L ∈ Rnd×np is the
mapping matrix relating the structure’s DOFs to the locations of the
inputs. The suffix (t) denotes the time dependency of a variable, and
the ˙(·) and (̈·) operators denote the first- and second-order temporal
derivatives.

Defining the coordinate transformation z(t) = Φq(t), where q ∈
Rnm , and pre-multiplying Equation (7.1) by Φ

T, yields

Φ
TMΦq̈(t) + Φ

TVΦq̇(t) + Φ
TKΦq(t) = Φ

TLu(t), (7.2)
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where Φ ∈ Rnd×nm contains the mass-normalized eigenvectors, ob-
tained by solving the eigenvalue problem of the undamped free-
response system, KΦ −MΦΩ = 0. Typically, under operating
conditions, high frequency modes have negligible contributions to
the structural response. Thus, the structural responses could be
expressed as a superposition of the first few modal responses. This
results in a reduced size of the modal system; nm < nd [Inm17].

Let Φ
TMΦ = I, ΦTVΦ = 2ΞΩ, and Φ

TKΦ = Ω
2, Equation (7.2)

can be re-written in modal coordinates as

q̈(t) + 2ΞΩq̇(t) + Ω
2q(t) = Φ

TLu(t), (7.3)

where Ξ ∈ Rnm×nm and Ω ∈ Rnm×nm are the diagonal matrices
containing the modal damping ratios ξi and the eigen-frequencies ωi

in rad s−1 , respectively [Inm17].

In a solid mechanics system, the variables z(t) are the displacements
at the discretization nodes. The strains ε(z, t) are obtained by
calculating the spatial derivatives of z(t) as follows (the notation (z,
t) is dropped for simplicity):

ε = 1
2

∇z +∇zT + ∇z∇zT︸ ︷︷ ︸
non-linear

 , (7.4)

where ∇ denotes the derivative operator with respect to the material
coordinates [Irg08]. For the linear case of small displacements con-
sidered in this work, the non-linear term of Equation (7.4) ∇z∇zT

is negligible.

Defining the fourth-order elasticity tensor ζ, where each of its com-
ponents, ζ

ijkl
, governs the constitutive relationship between the ijth

component of the stress tensor, σ, and the klth component of the
strain tensor, ε, through the generalized Hooke’s law [Irg08],

σij = ζijkl εkl. (7.5)
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For a general 3D solid continuum, the elasticity tensor contains 81
components. Without losing generality, considering a linear-elastic,
homogeneous, isotropic material, the elasticity tensor is symmetric
and reduces to 9 non-zero components, governing the relationship
between 6 distinct stress and 6 distinct strain components. The
elasticity tensor components are described by the Lamé constants,
λ and µ. The Lamé constants are calculated from the material
properties; Young’s modulus, E, and Poisson’s ratio, ν [Irg08]. Based
on these assumptions, Equation (7.5) can be re-written as

σij = λδijεkk + 2µεij. (7.6)

Fatigue damage develops in the material when it is subjected to
cyclic loading. Consider a material point subjected to nσ consecutive
cyclic loads, each having an amplitude σa,i applied for Ni cycles,
where i ∈ {1, . . . , nσ}. The accumulated fatigue damage, Da, can be
estimated by the following rule:

Da =
nσ∑
i

Di =
nσ∑
i

α

(
Ni

Nf,i

)ς
. (7.7)

where Nf,i is the maximum number of load cycles a material can
withstand under a given cyclic load, or the fatigue limit. The
coefficient α accounts for the stiffness or strength degradation of the
material as the damage propagates, and ς is a function to account
for non-linearity in the damage accumulation [San+16].

The simplest form of Di in Equation (7.7) is given by the Miner’s
rule, where α = 1 and ς = 1. This is also referred to as the linear
damage model, as the damage in the material is a linear relation
with the cycle ratio. The accumulated damage in Equation (7.7),
hence, simplifies to

Da =
nσ∑
i

Ni

Nf,i
≤ 1. (7.8)
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Despite its non-realistic simplicity, Miner’s rule is predominantly
accepted in industrial applications undergoing variable loading. The
assumption neglecting the load sequence effects, stiffness degradation
of the material and non-linear damage accumulation reduces the
independent variables to nσ and Nf,i. The first is obtained from the
operation, and the latter can be retrieved from the material’s SN
curve, hence making the rule directly applicable to any problem at
almost no additional cost [Lee05].
For traditionally manufactured ferric components, neglecting stiffness
degradation can be justified, since the material’s Young’s modulus
at failure has been observed to be at least 95%. In contrast, stiffness
degradation in either additive manufactured metallic parts or com-
posites could not be neglected, therefore, a damage accumulation
rule accounting for the severe, non-linear time-dependent reduction
in material stiffness is necessary [Vas19].

As mentioned, Nf,i is obtained from SN curves1 describing the
relationship between the cyclic load and the corresponding fatigue
life. A component loaded within the elastic regime of the material,
i.e. below its yield strength, its fatigue damage is driven by the
stresses, whereas, beyond the elastic domain, strains dominate the
fatigue damage development. The SN curve could be applicable to
either of them, where the relationship is established between the σa

and Nf,i in the former, and between εa and Nf,i in the latter, where
εa is the amplitude of the fatigue-driving strain [San+16].

More generally, to account for both stress- and strain-driven fatigue
effects, the Smith-Watson-Topper (SWT) parameter is used to rep-
resent the loading bearing capacity of the material with respect to
the applied load [SWT70]. The SWT parameter could be expressed
as

εaσa = σfN
b
f

(
σf

E
N b
f + εfN

c
f

)
, (7.9)

where εa and σa are the strain and stress amplitudes at a given
material point, σf and b are the material’s fatigue strength coefficient

1In some references, denoted as Wöhler curves.
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and exponent, respectively. εf and c are the material’s fatigue
ductility coefficient and exponent, respectively. E is the initial
static Young’s modulus of the material. E, σf , εf , b and c are
material parameters that can be obtained from material handbooks,
e.g. [Han98], or by conducting the appropriate experiments. The
fatigue limit for a given load can be obtained by iteratively solving
Equation (7.9) for Nf for every applied load.

In Equation (7.9), both εa and σa are images of the scalar mappings
of the strain and stress tensors given by f ε(ε) : ε→ εa and f σ(σ) :
σ → σa, respectively. The fundamental idea of the function is to
map the components of the strain and stress tensors to the plane at
which the maximum damage is prospected to happen; i.e. likely to
evolve to the damage plane [Zhu+18].
For the scope of this work, the maximum principal strain plane
theory is adopted, and εa is chosen to be the maximum principal
strain εI . In case of strain-driven fatigue, the maximum principal
strain is responsible for driving the damage propagation. Otherwise,
for stress-driven, the maximum principal stress is responsible for
driving the damage, whose plane coincides with the plane on which
the maximum principal strain occurs. Hence, the adopted mappings
will be applicable to both cases. Other multi-axial loading reduction
functions, e.g. the maximum principal stress plane, and maximum
shear failure plane, can be reviewed in literature, cf. [Zhu+18].

εI is obtained by evaluating the largest eigenvalue of the strain tensor
re-written following the Voigt notation in the following symmetric
matrix form

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 , (7.10)

and to obtain the corresponding σa, the stress components are
mapped to the maximum principal strain plane.
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Typically, in industrial applications, variable-amplitude loading
sequence is experienced, which is not directly applicable to the
SWT-curves obtained from constant-amplitude loading experiments.
Hence, the load history needs to be processed into constant-amplitude
loading cycles through counting algorithms. For an overview on
prominent counting algorithms, the reader is directed to [Lee05].
The most common and robust cycle counting method is the rainflow
counting [Amz+94].
Many modifications have been presented in the literature to account
for the shortcoming that the rainflow method doesn’t account for
the load sequence. Nonetheless, as the Cumulative Damage Model
(CDM) used in this work is the Miner’s rule, the load sequence effects
could be neglected. Hence, the rainflow method is a suitable cycle
counting algorithm.
The rainflow counting is herein applied to the strain and stress sig-
nals mapped on the critical plane as explained. For each load cycle,
the rainflow counting yields the mean load value, as well as the load
amplitude. Mean values of the load cycles have an influential effect
on the fatigue limit. The mean stress effects can be incorporated
in the SWT parameter by substituting the stress amplitude σa in
Equation (7.9) by an effective value σe given by

σe = σa

√
2

1−R , (7.11)

where R = σmin/σmax is the stress ratio, and σmin and σmax are the
valley and peak values of the load. For a zero-mean load R = −1,
and Equation (7.11) becomes σe = σa.
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8State and Parameter Estimation

In the context of Structural Health Monitoring (SHM) and Condition
Monitoring (CM), state estimation is defined as using system models
to identify quantities based on sensor data to produce a complete de-
scription of the system state (defined in terms of the system variable
and its derivatives). State estimation serves a variety of purposes,
such as stress prediction in running structures, fatigue estimation
and damage identification, either online or offline [Lou+12a].
Various state estimators for structural systems behaving both lin-
early and non-linearly can be found in literature, including the
well-known Kalman filter [Kal60], and the particle filter [DM96], and
their advancements [Pas+13].

Damage estimation is an example of state estimation problem. As
seen in the previous paragraphs, the starting point of damage esti-
mation is the estimation of the system displacement/state z.

In control and vibration theory, most of the work carried out on state
estimation has been developed on the state-space representation of
the systems to find their equilibrium points, and perform numerical
integration [Inm17].

The equation of motion in modal coordinates is considered in the
coming paragraphs. To re-write Equation (7.3) in state-space form,
the state variable x ∈ Rnx with nx = 2nm, is defined as

x =
[

q
q̇

]
, q, q̇ ∈ Rnm (8.1)
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where q and q̇ are the modal displacements and velocities, respec-
tively. Equation (7.3) could be re-written in the continuous state-
space form, denoted by the subscript c, as:

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t) + Dcu(t).

(8.2)

The first equation expresses the equilibrium of the system. The
matrices Ac ∈ Rnx×nx and Bc ∈ Rnx×np are referred to as the state
and input matrix. They hold the right- and left-hand side matrices
of Equation (7.3), respectively, and are defined as:

Ac =
[

0 I
−Ω2 −2ΞΩ

]
, Bc =

[
0

Φ
TL

]
. (8.3)

The second line of Equation (8.2) expresses the observation (output)
model of the system, where y ∈ Rno is the system output measured
by sensors. The matrix Cc is the observation matrix of the system,
relating the outputs to the state variables, and the matrix Dc is the
output feedback matrix of the system relating the outputs to the
inputs, given as:

y =
[
ε

z̈

]
, Cc =

[
Ψ 0
−ΦΩ

2 −2ΦΞΩ

]
, Dc =

[
0

ΦΦ
TL

]
, (8.4)

where the considered system outputs are the physical accelerations
z̈ and strains ε, and Ψ is the matrix containing the strain modes,
obtained by differentiating the eigenmodes Φ with respect to the
material coordinates. The choice of the system outputs in the
formulation is dictated by the common sensors used in the context
of SHM and CM based on vibration signals. The arrangement
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of values in the rows and columns of Cc and Dc depends on the
discretization approach applied to variational form of the system’s
governing differential equation. In this work, Finite Elements Method
(FEM) is used for spatial and time discretization, and details about
the matrices assembly could be found in respective literature, cf.
[ZZT13].

Due to the time-discrete form of the sensors’ digital signals, the dis-
crete forms of the system matrices are substituted in Equation (8.2).
The discrete time step variable

tk = k∆t, k = {1, . . . , nt} (8.5)

is introduced, and the discrete states, inputs and outputs at tk are
defined as:

xk = x(tk), yk = y(tk), uk = u(tk), (8.6)

The discrete state space form of Equation (8.2), denoted by the
subscript d, is written as follows:

xk = Adxk−1 + Bduk−1,

yk = Cdxk + Dduk,
(8.7)
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where the discrete forms of the system matrices in Equations (8.3)
and (8.4) are defined as:

Ad = eAc∆t ∈ Rnx×nx ,

Bd = (Ad − I)(A-1
c Bc + B̄) ∈ Rnx×np

B̄ = (Ad −Ac∆t− I)
(

A2
c Bc

∆t

)

Cd = Cc Dd = Dc

(8.8)

In the coming paragraphs, the subscript d would be dropped out for
the ease of notation. To incorporate the modelling errors in the equi-
librium equation, and the measurement noise in the measurement
model, process noise dw ∈ Rnx , and measurement noise, dv ∈ Rno
are introduced, respectively. Both variables are assumed to be time-
invariant, and following a normal probability distribution with zero
mean and covariances Q ≥ 0 ∈ Rnx×nx and R > 0 ∈ Rno×no ,
respectively. Also, both variables are assumed to be independent,
hence both covariance matrices are diagonal [Lou+12a]. The process
noise is assumed constant, while the measurement noise is assumed
constant for measurements from the same sensor type, but not nec-
essarily constant for different sensors. This results from the different
measurement variances associated with strain and acceleration mea-
surements, due to e.g. internal sensor noise, wiring, or environment
noise [ZX16]. The measurement noise covariance holds the corre-
sponding measurement variance associated to each sensor.
Let rε and rz̈ be the measurement variances associated to the strain
and acceleration measurement, respectively, the covariance matrix
R is assembled as follows:

R =

rεI 0

0 rz̈I

 . (8.9)
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In the scope of this work, a linear state estimation problem is
attempted. Therefore, a Kalman filter is used to estimate the state
vector x+

k based on the measurements vector yk at each evaluation
step k. In brief, the estimation is achieved through the filter over
two steps; 1) prediction, and 2) update [Kal60]. Non-linear state
estimation applications are beyond the scope of this work, and
interested readers are directed to e.g. [Lou+12a; Lou+12b].

After introducing the process and measurement noise, Equation (8.7)
is written as:

xk = Axk−1 + Buk−1 + dwk−1,

yk = Cxk + Duk + dvk
(8.10)

It is assumed that the initial state x0 and an initial state-estimate
error covariance matrix P x0 are known. In the prediction step, an
a-priori estimate of the states x−k and their respective estimation
error covariance P x-

k are evaluated through:

x−k = Ax+
k−1 + Buk, (8.11)

P x-
k = AP x+

k−1AT + Q. (8.12)

The superscripts (·)+ and (·)− denote a-posteriori and a-priori eval-
uations. For k = 0, the initial values of the state estimate and
its error covariance are used; x+

k−1 = x0 and P x+
k−1 = P x0. The a-

posteriori values are evaluated during the update step by considering
the measurements yk, as follows:

x+
k = x−k + Gk

(
yk −Cx−k −Duk

)
, (8.13)

P x+
k = (I−GkC) P x-

k , (8.14)

where Gk is the optimal Kalman filter gain matrix evaluated at the
kth time increment, given by [HJS09]:

Gk = P x-
k CT (R + CP x-

k CT)-1 ∈ Rnx×no . (8.15)
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Typically, only a limited number of the system’s outputs are mea-
sured. The estimate of the non-measured outputs ŷ at any given
time step k could be evaluated from the calculated a-posteriori state
estimates x+

k by:

ŷk = Cx+
k + Duk + dvk. (8.16)

Defining an output estimate error εy as:

εy = yk − ŷk

=
((

Cxk + Duk + dvk
))
−
((

Cx+
k + Duk + dvk

))
= C

(
xk − x+

k

)
,

(8.17)

then, the error covariance of the estimated outputs is given by:

P y
k = E

[
εy ε

T
y

]
= E

[(
C
(
xk − x+

k

) )(
C
(
xk − x+

k

) )T
]

= E
[
C
((

xk − x+
k

) (
xk − x+

k

)T
)

CT
] (8.18)

where E is the expected value operator. Given that the observation
matrix C is time- and state-invariant, the error covariance of the
estimated output can be re-written as [ZX16]:

P y
k = CE

[(
xk − x+

k

) (
xk − x+

k

)T
]

CT = CP x+
k CT. (8.19)

To calculate the covariance in the damage estimation error, P D, first,
a mapping function

f D̂ : ŷ → D̂ (8.20)

is defined to map the output estimates to a damage estimate.
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Mapping strain estimates to damage is straightforward and is ob-
tained by following the derivation presented in Equations (7.6)
to (7.8). Mapping accelerations estimates, however, requires the
double temporal integration of the estimated values to obtain a dis-
placement estimate. The displacement estimate is then substituted
in Equation (7.4) to calculate a strain estimate, which is mapped in
the same way as the strain estimates calculated directly from the
Kalman filter.

In both procedures, the mapping is independent of the filtering
process detailed above, and doesn’t introduce any uncertainty to the
output estimate of the filter. It is, hence, concluded that a reduction
in the covariance of the estimated output error results in a reduced
covariance of the damage estimate error, and a higher certainty in
the damage estimate. Therefore, and based on Equation (8.19), the
covariance in the damage estimation error can be expressed to be:

P D
k ∝ P y

k ∝ P x+
k . (8.21)
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9Motivation

In Structural Health Monitoring (SHM) and Condition Monitoring
(CM) applications, sensors represent the gateway through which op-
erators could grasp an insight about their structures. In brief, SHM
and CM techniques exploit sampled dynamic responses obtained
from sensors to extract features sensitive to the system’s damage.
Extracted features afterwards are input to analysis procedures to
infer or estimate the current state of the monitored system. Ac-
cordingly, the overall performance of any SHM and CM technique
is essentially sensitive to the quality of the collected information.
Besides the functional advantage of having an optimally-configured
sensor network, the economic impact on the lifecycle costs of sys-
tems is also significant. With optimal deployment of sensors, all
costs associated with instrumentation, wiring, data acquisition, man-
agement, storage and processing could be spared. This includes
both hardware and labor costs. Additionally, in many applications,
e.g. aerospace, the structure’s weight is critical, hence, the optimal
setup of acquisition systems could lead to reduction in weight, and
consequently, operating costs. Optimal sensor placement mitigates
the risk of false-positive alarms of damage, and reduces unnecessary
system shutdowns and maintenance activities [OSM19]. That being
said, finding an optimal choice of sensing devices, and an optimal
configuration for mounting and deploying them on a running system
becomes an inevitable demand and a huge incentive.

There is a wide spectrum of sensors, with an as-wide underlying
operating principles, e.g. current generating sensors, charge generat-
ing sensors, resistive sensors, inductive sensors, capacitive sensors.
In this text, the investigation of different sensor technologies is out
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of scope, therefore, interested readers are recommended to browse
[Asc11]. In general, the configuration of a sensor network incorpo-
rates aspects such as performance (precision, sensitivity, etc.), cost
(e.g. initial, operation and maintenance costs), dimensions and space
constraints, operating environment (e.g. extreme humidity, high
temperature, strong electromagnetic field), fixation type (magnetic,
screwing, adhesive, etc.), connectivity (wired or wireless), sensor
family (vibration, strain, temperature, etc.), number, and position-
ing. [GMZ16; FW12] provide a more holistic overview regarding
optimizing sensor networks with respect to other aspects, as well as
respective literature. The focus of this chapter is limitedly directed
towards optimizing sensor networks with respect to the choice of
sensor family, number and positions, which will be referred to later
on as Optimal Sensor Placement (OSP)

Farrar and Worden in [FW12] have summarized three main appli-
cations for which sensors are deployed; 1) detection and tracking
system’s responses, 2) model validation, update, and uncertainty
quantification, and 3) system control. Both SHM and CM are im-
plicitly concerned with detection and tracking in operating systems.
According to [FW12], two paradigms can be distinguished as strate-
gies for Optimal Sensor Placement (OSP) in the context of SHM
and CM:

• Experience-guided Strategy which involves a sparse arrange-
ment of sensors on the structure, typically guided by previous
experience of system developers and operators. This strategy
is rather observed in earlier attempts of SHM and CM studies.
The physical quantities are measured without any a-priori
definition of system parameter to be identified, e.g. damage or
load magnitude, thus parameter sensitivity to measurements
is not guaranteed. In fact, this strategy assumes that systems
are subject to the same nominal excitation, regardless the
value of the parameter of interest. With the help of large data
sets of archived measurements, from which parameter-sensitive
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features are extracted, statistical inference and outliers’ detec-
tion approaches could be employed to detect such parameter
changes. A crucial drawback of this strategy is the inability
to classify parameter outliers induced by operational and envi-
ronmental changes from those outliers induced by parameter
change. Also, the lack of a-priori parametrized definition of
the system reduces the certainty of the estimated parameter
value, and the reliability of the sensing network to detect its
entire range of values.

• Parameter-guided Strategy which is driven by an a-priori
parametrized definition of the monitored system. Based on
the results of experimental work or numerical simulations, a
model of the system is built, which can simulate the system
dynamic response under different values of the parameter of
interest. Herein, the positions and types of sensors are se-
lected based on the developed model. Associated optimization
procedures indicate that changes in the system parameters
yield statistically significant effects that can be observed in
the measurements. It is obvious that such strategy guarantees
a more precise parameter estimate since it is inherently based
on the definition of the parameter in the developed model.
Additionally, this strategy could yield a leaner sensor network,
with less redundant or irrelevant information. This has a
positive impact on operation costs of the entire SHM and
CM process on the long run. Additionally, it alleviates the
uncertainty associated with human decision regarding sensor
configuration.

Having briefly shown the benefits of basing sensing configuration
on a parameter-guided strategy, a choice of whether to create the
parametrized system definition based either on experimental results
or simulation models has to be taken. In fact, there is not a clear-cut
answer regarding which is a better way to build a model. Experiments
will always retain the edge of providing responses governed by the
actual system’s dynamics, without any assumptions or simplifications.
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On the other hand, simulation models are mathematical description
of the underlying physical laws governing the system and incorporate
some assumptions and simplifications. With the aid of a validated
simulation model, the entire spectrum of the system’s operating
conditions could be simulated, even going through extreme cases
which could have been costly or non-feasible through experimental
work. Building a simulation model and an experimental setup
are both labour intensive tasks, however, extracting results from a
simulation model is relatively less time and effort consuming than
experiments, as the data acquisition task could be automated.

In the scope of this work, simulation models are chosen as a basis for
parametrized description of the system for many reasons. First, a
profound verified mathematical description is available in literature
for the benchmark examples, as well as the industrial use cases
presented. Contrarily, the lack of broad experimental data available
for the industrial use cases was feared to jeopardize the accuracy
of a model generated based solely on experimental results. Second,
the robustness granted by simulation models in investigating the
systems’ behaviour under extreme operating conditions is deemed to
come at a lower cost than the cost of experimental work. This cost
comprises the hardware, as well as the labour cost involved. Finally,
non-conventional, complex operating scenarios could be set up and
investigated at remarkably less effort.

It should be made clear to the reader that solving the OSP problem
is considered an application of utilizing simulation models during
systems’ operation. It can be argued that this step is typically
done offline and prior to deploying the systems in their operating
environments. Nonetheless, it is a fact that should be regarded,
that the quality of the downstream SHM and CM activities is as
high as the data collected by sensors. Additionally, the choice of
a sensor configuration takes into account the operating conditions,
the intended analysis, the system parameters of interest, and the
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responses to be analysed during the system’s operation. Hence, it is
inherently a function of the system’s operation.

The following chapters are organized as follows:
In Chapter 10, a procedure for finding an optimal sensor configura-
tion is derived. The procedure’s target is to reduce the degree of
uncertainty in the state and accordingly damage estimate in struc-
tures based on a Kalman filter formulation. The sensor configuration
involves the placement of a multitude of sensors types, namely ac-
celerometers and strain gauges, as they are the most practical choice
of sensors in SHM and CM, as indicated in Chapter 5. The objective
function is first derived, followed by a formulation of an optimization
problem, and a justification of the suggested optimization algorithm.
Later, special issues related to the objective derivation, the problem
formulation, and the numerical implementation are addressed. In
Chapter 11, a numerical investigation is carried out on a Single
Degree of Freedom (S-DOF) system and a 2D truss structure. The
investigation involves examining the optimization parameters, assess-
ing the solution quality, and comparing the results of the proposed
OSP approach to the sequential approach, being the most commonly
used in literature.
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10Methodology

In industrial real-world applications, an injective mapping, in a
mathematical fashion, between the measured signals and the damage
features, whether local or global, is not always guaranteed. In fact,
signals are affected by system parameters, such as the structure’s
materials, or operating conditions, as well as environmental condi-
tions, such as background noise and sensor quality, which jeopardize
the uniqueness of the signal for a given state. Mohanty suggests the
utilization of sensor fusion to overcome this shortcoming [Moh18].
Sensor fusion has had many definitions and classifications in litera-
ture, cf. [Cas13]. Here, the discussion is focused on redundant sensor
fusion, where multiple input sources (sensors) provide information
about the same observed target, resulting in an incremented estimate
confidence. Besides, in the context of Structural Health Monitoring
(SHM) and Condition Monitoring (CM), sensor fusion guarantees
higher reliability of the monitoring process, better signal-to-noise
ratio (as noisy signals get compensated by fusing information from
different sources), a higher-resolution and wider insight on the sys-
tem’s state, as well as increased hypothesis discrimination [FW12].

10.1 Optimization Problem Statement
As explained in Chapter 8, in order to reduce the uncertainty in
the damage estimate, the a-posteriori error covariance of the state
estimate, P x+

k in Equation (8.14), is to be minimized. For the scope
of this work, a generalized damage accumulation rule is selected,
cf. Equation (7.7), in association with the rainflow cycle counting
algorithm for variable loading [Lee05]. The relationship between the
load and the fatigue life is established through the Smith-Watson-
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Topper (SWT) parameter. These choices constitute to the definition
of the mapping function in Equation (8.20), hence the damage
estimate. Nonetheless, these choices are arbitrary as long as they are
accompanied by the consistent definition of the mapping function,
and should not have an influence on the optimal sensor placement
problem formulation presented in the following paragraphs.

To begin with, let the Boolean variable β ∈ {0, 1} be defined to
indicate whether the system output is measured, i.e. a sensor is
placed at a given position. Hence, for the whole system, the sensor
selection matrix β is defined as:

β = diag
(
β1, . . . , βno

)
∈ {0, 1}no×no , (10.1)

where e.g. β1 = 1 indicates a measured system output at position 1,
and vice-versa for β1 = 0. Re-writing Equation (8.14) in terms of
the selection matrix yields:

P x+
k (β) = ( I−Gk(β) C(β) ) P x-

k (β), (10.2)

where C(β) = β C0, and C0 refers to the observation matrix with
all system outputs being measured.

Effectively, the selection of an optimal configuration of sensors, β∗,
which minimizes P x+

k , is obtained by solving the following optimiza-
tion problem

β
∗ = argmin

β

ϕ (P x+
k (β)) , (10.3)

where ϕ is a function mapping the matrix P x+
k ∈ Rnx×nx to a real

number, and is evaluated at a given k-th Kalman filter step. Herein,
Equation (10.3) presents an unconstrained optimization problem,
where the objective is to minimize the P x+

k through minimizing the
function ϕ (P x+

k ).

It is important for the function ϕ to preserve the inherent information
in P x+

k with respect to the uncertainty of the estimation error [Hin15].
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[Hin15] presented the most common functions used in this kind
of problems, along with an interpretation of their relation to the
estimation error covariance. These include

• Condition number, which is the ratio of the maximum to mini-
mum singular values of the error covariance matrix, indicating
the shape of the estimation uncertainty ellipsoid,

• Determinant, which is the product of the singular values,
indicating the volume of the estimation uncertainty ellipsoid,
and

• Trace, which is the summation of the singular values, indicat-
ing the average estimation uncertainty ellipsoid.

Since different functions implicitly interpret the estimation uncer-
tainty of the system states, the choice of the function used is arbitrary.
In the course of this work, the trace is selected, as it is relatively eas-
ier to be analytically differentiated. This shall become a requirement
as presented in a Section 10.4. Herein, the optimization problem in
Equation (10.3) becomes

β
∗ = argmin

β

Tr (P x+
k (β)) . (10.4)

10.2 Choice of Optimization Approach
In recent works, e.g. [Pap04; KP08; Li12; ZX16], the authors resorted
to a forward-sequential greedy algorithm for attempting the problem
formulated in Equation (10.3) due to its undeniable computational
efficiency and implementation simplicity. An inherent property of
the system is assumed for a greedy algorithm to be adequate: the
objective function to be minimized must be non-increasing and
sub-modular [ZAS17].
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To understand the criticality of the requirement, consider a linear
dynamic system, cf. Equation (8.7). For any arbitrary number of
sensors ns, a state estimator, e.g. a Kalman filter, provides the
optimal estimate of the state based on the sensor measurements by
minimizing the mean square estimation error. Assuming the pair
(A,C) is detectable, and the pair (A,Q 1

2 ) is stabilizable, their exists
a unique lower limit, ϕ∗ = inf(ϕ(P x+

k )), to which the a-posteriori
estimation error covariance will converge [ZAS17]. The solution of
the sensor placement optimization problem attempts to find the
sensor configuration (number of sensors and their positions) which
achieves this limit. In a forward-sequential greedy algorithm, the
following steps are followed:

1. A set of candidate sensors is initialized

2. The function ϕ is evaluated for all candidate sensors

3. The sensor which contributes most to the minimization of ϕ
is appended to the set of optimal sensors, and dropped out of
the set of the candidate sensors,

4. Steps 2 and 3 are iteratively repeated until a stopping criteria
is reached, e.g. a maximum number of sensors, or a threshold
value of the function ϕ or the change in it.

Herein, to guarantee that no consecutive sensor additions would lead
to a reduction in estimation uncertainty, regardless of their sequence
of choice, the function ϕ should follow that 1) its value decreases
or stays constant for each additional sensor, i.e. non-increasing
function, and 2) that the ratio of decrease for a given sensor is less
than or equal to the ratio of the decrease from the previous sensor
addition, i.e. sub-modular function, see Figure 10.1.

For limited cases, the mapping function ϕ is a non-increasing, sub-
modular function, however, this could not be generalized to all
systems [ZAS17]. Hence, it couldn’t be taken for granted that the
sequential addition of sensor locations unconditionally has a positive
impact on the certainty of the state estimate.
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*

Figure 10.1.: Given ‖βns−1‖1 < ‖βns
‖1 < ‖βns+1‖1, the function ϕ(β)

is non-increasing if and only if ϕ(βns+1) ≤ ϕ(βns
) ≤

ϕ(βns−1), and sub-modular if and only if ϕ(βns
) −

ϕ(βns+1) ≤ ϕ(βns−1)− ϕ(βns
)

On the other hand, exhaustive search algorithms, see e.g. [Kha+18],
fail definitely for large systems, as the possible number of sensor
combinations explodes; the size of the search would be no!/(ns!(no−
ns)!). For the 5-nodes Single Degree of Freedom (S-DOF) spring-
mass system, cf. Figure 11.1, there exists 1023 possible sensor
combinations, and adding one more node increase the number of
combinations to 4095. Similarly, evolutionary algorithms suffer
from the curse of dimensionality as they require large number of
iterations, compared to sequential methods, to reach an optimal
solution [Pap04].

Given the discrete definition of the design variable, β ∈ {0, 1}, it is
rather common to consider mixed integer programming as a solution
algorithm. However, the scalability of mixed integer programming
are notorious. Because mixed integer programming doesn’t scale
to large problems, a relaxation of the binary variable to the entire
range [0, 1] is often resorted to. In this case, the relaxed problem
provides an approximate fast solution to the original mixed integer
problem [HM14]. A discussion about the design variable relaxation
follows in the upcoming paragraphs.
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[Hin15] proposed using a gradient-based approach to minimize the
empirical observability Grammian of non-linear dynamic systems,
relating the measures of the Grammian to the estimation uncertainty
of the system states. The gradient-based approach is an attractive
alternative to sequential approaches, as its applicability is not limited
to non-increasing, sub-modular objective functions. Additionally,
benefiting from the gradient information, the optimal solution could
be reached faster compared to the search and evolutionary algorithms,
as well as mixed integer programming [OSM19].

To get an impression about the complexity of the objective function
space, Figure 10.2 shows a contour plot of the objective function
Tr (P x+

k (β)) evaluated for the different combinations of 1 and 2 sensors
(Accel and SG) for the 5-node S-DOF system shown in Figure 11.1.
The diagonal solid line refers to the objective function value for
1 sensor, projected in Figure 10.3. As shown in both figures, the
objective function is neither convex with respect to the position of
the sensors nor to the type of sensors. Additionally, for 2 sensors,
there seems to be no distinct global optimum for the function; the
local optima are indicated by the dots in Figure 10.2.
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Figure 10.2.: Example Contour of Tr (P x+
k (β)) for 2 sensors, ‖β‖1 = 2.
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Figure 10.3.: Example of Tr (P x+
k (β)) for 1 sensors, ‖β‖1 = 1.

The complexity of the objective function contours is expected to
increase with larger number of sensors to be positioned. Motivated
by this, it is decided, within the context of this work, to solve
Equation (10.3) using a gradient-based approach.

10.3 Formulation Approaches
Equation (10.4) presents an unconstrained optimization problem
formulation. Such a formulation might result in a dense sensor
configuration (holding a large number of sensors), since this would
promote a lower state estimation covariance [Hin15].
In the following paragraphs, two alternative formulations are pre-
sented to overcome this challenge.

10.3.1 Regularized Formulation

In Optimal Sensor Placement (OSP), a sparse solution that could
maintain an acceptable certainty in the state estimate is desired.
The sparsity of the solution could be promoted using the l1-norm
regularization technique (Reg) [BV04].
The optimization problem re-writes to:

β
∗ = argmin

β

fobj = argmin
β

{Tr (P x+
k (β)) + λP ‖β‖1} . (10.5)

where Tr (P x+
k (β)) represents the measure of state estimation uncer-

tainty to be minimized by choosing an optimal sensor configuration
β
∗. ‖β‖1 is the regularization function, representing the number of
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sensors, given by the l1-norm of β, and λP > 0 is a user-defined con-
stant. Herein, no constraints are imposed on the resulting number of
sensors ns. Instead, ns is a free variable in the optimization problem
determined by β

∗.

The l1-norm regularization functions as such: λP penalises the ob-
tained number of sensors, thus increasing the optimization cost for
denser sensor configurations. This, in turn, introduces a trade-off be-
tween the desired sparse solution and a solution with low Tr (P x+

k (β)).
The trade-off between the solution sparsity and the state estimation
certainty is a user decision, dictated by the choice of λP. Hence,
the choice of a suitable λP poses a concern about this problem
formulation.

Another concern about this formulation is the risk of obtaining a
solution with no sensors, especially if a large λP is chosen. This
concern can be alleviated by examining Equation (10.2). For an
empty vector of sensors, the observation matrix C(β), hence P x+

k (β),
would be undefined. Accordingly, a solution with no sensors is not a
plausible solution.
Yet another perspective; Tr (P x+

k (β)) is the measure of state estima-
tion uncertainty of the Kalman filter given sensor measurements.
Should no sensor measurements be fed to the filter, the state estima-
tion uncertainty would increase as the filter progresses, eventually
reaching ∞. Thus, for an empty configuration, the first term of the
regularized cost function would be very large, making this solution
far from the optimal.
Contrarily, [HM14] presents several studies in favour of the formula-
tion’s performance. The authors conclude that l1-norm regulariza-
tion in OSP often results in configurations near the global optimal
solution found by the mixed integer program.
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Using a gradient-based optimization method, the regularized objec-
tive function should be differentiated with respect to β as follows:

∂fobj
∂β

= ∂ Tr (P x+
k (β))

∂β
+ λP

∂‖β‖1
∂β

. (10.6)

10.3.2 Constrained Formulation

A typical constraint for OSP problems is an a-priori determined
number of sensors, ns. Herein, the optimization problem in Equa-
tion (10.4) becomes

β
∗ = argmin

β

Tr (P x+
k (β)) , s.t.

no∑
j

βj = ns. (10.7)

Assuming the existence of a unique number of sensors n∗s for which
a minimum value ϕ∗ of the objective function is reached, Equa-
tion (10.7) could be solved by employing the Fixed-point approach
(FP) proposed in [Kha+19a]. Herein, the optimization problem is
divided into two consequent sub-problems:

1. Finding the optimal number of sensors n∗s where

ϕ∗(β | ‖β‖1 = n∗s ) ≤ ϕ∗(β | ‖β‖1 = ns) ∀ ns 6= n∗s ,

2. Finding the optimal configuration of n∗s sensors, where

β
∗ = argmin

β

Tr (P x+
k (β)) , s.t. ‖β‖1 = n∗s . (10.8)

The motivation for a fixed-point approach stems from the fact that
the objective function is a function in its own constraint. This
effectively yields a complex optimization process if both sub-problems
are attempted simultaneously [Kha+19a].
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Moreover, the a-priori choice of n∗s implicitly defines a feasibility
domain for the optimization function and narrows down the solution
space to the combinations satisfying the constraint ‖β‖1 = n∗s . This
allows faster convergence and reduces the risk of being trapped into
less favourable local optima.

The procedure for finding n∗s was introduced in [Kha+19a] and is
detailed in Appendix A. Equation (10.8) could be reformulated into
an unconstrained problem by using constraint enforcement methods.
In this work, Lagrange multipliers and penalty methods are used.

Lagrange Multipliers The Lagrange multiplier (LM) method intro-
duces an additional design variable λL to the optimization problem.
As a result, the number of the design variables of the system increases
from no (number of outputs) to no + nc, where nc = 1 is the number
of constraints. Hence, the resulting optimization problem becomes

β
∗ = argmin

λL,β
fobj = argmin

λL,β
{Tr (P x+

k (β)) + λL g (β)} , (10.9)

where g (β) is the constraint function, defined as:

g (β) = ‖β‖1 − n∗s . (10.10)

Examining the constraint qualification of the chosen g(β), it is found
that ∇β g(β) 6= 0 for all feasible solutions. The qualification is only
violated when β = 0; i.e. a solution with no sensors. As mentioned
earlier, an empty-vector solution is non-feasible as it would result
in an undefined C(β), hence an undefined P x+(β). Therefore, this
solution is intuitively not the optimal, thus, the constraint non-
qualification at which shouldn’t introduce numerical issues.

Using LM, the application of gradient-based approach requires differ-
entiating fobj with respect to both the vector of selection variables
β as well as the Lagrange multiplier λL, as follows:
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∂fobj
∂β

= ∂ Tr (P x+
k (β))

∂β
+ λL

∂‖β‖1
∂β

,

∂fobj
∂λL

= g (β) = ‖β‖1 − n∗s .

(10.11)

Penalty Method An alternative method to enforce the equality con-
straint is the penalty method. The penalty method (Pen) enforces
the constraint by scaling the constraint violations by the penalty
factor λP. Unlike LM, λP is not a design variable, but a constant
user-defined parameter in the optimization problem. Thus, the
problem size remains no (number of outputs).

The optimization problem using a penalty method is written as:

β
∗ = argmin

β

fobj = argmin
β

{Tr (P x+
k (β)) + λP p (β)} , (10.12)

where p (β) is the penalty function, defined in terms of the constraint
‖β‖1 = n∗s .
The quadratic penalty is a common function, defined as:

p (β) = (max {0, ‖β‖1 − n∗s})2.

When employing a gradient-based approach, themax function has the
shortcoming of being non-differentiable. Additionally, the maximum
function is an ideal penalty function for inequality or bounded
constraints, where the domain in which the p(β) equates to 0 is
permissible, and otherwise a violation should be penalised. However,
in this work, since an equality constraint is employed, the following
penalty function is, alternatively, introduced

p (β) = (‖β‖1 − n∗s )
2
. (10.13)

This penalty function is C1-continuous. Also, it equates to the
quadratic penalty function for solutions with a number of sensors
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≥ n∗s . However, unlike the quadratic function, solutions with number
of sensors < n∗s are as well penalised. The penalty function equates
to zero only when the number of sensors in the solution reaches
n∗s . Using gradient-based approaches with the penalty method, fobj
should be differentiated only with respect to β as follows:

∂fobj
∂β

= ∂ Tr (P x+
k (β))

∂β
+ 2λP (‖β‖1 − n∗s )

∂‖β‖1
∂β

. (10.14)

10.3.3 Discrete Variable Treatment

Earlier in the discussion, it has been mentioned that mixed integer
programming doesn’t scale to large problems. On the other hand,
for a gradient-based approach, the binary definition of β poses as a
challenge for calculating the sensitivity of the objective functions as
shown in Equations (10.6), (10.11) and (10.14).

In order to employ a gradient-based approach, it becomes, thus,
necessary to relax the binary selection variable β to the interval [0, 1],
as shown in Figure 10.4. A condition needs to be kept in mind,
however; in order for the solution of the relaxed convex problem to
serve as a solution for the original mixed integer problem, it needs
to be mapped back to the original domain {0, 1}.

0

1

0

1

x x
Discrete Variable Continuous Variable

sensors

structure

relaxed
function

binary
function

Figure 10.4.: Discrete vs. Continuous Sensor Placement Variables.

Let β ∈ [0, 1] be the relaxed selection variable. A mapping function
f β : β→ β̃ is defined to map back the relaxed variable to a binary
value β̃ ∈ {0, 1}. Hence, the mapped selection matrix is defined as:

β̃ = diag
(
β̃1, . . . , β̃no

)
= diag

(
f β (β1) , . . . , f β

(
βno

))
(10.15)
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The mapped variable is now used during the optimization procedure,
such that the objective function and its Jacobian are evaluated with
respect to the relaxed variables. The term ∂‖β‖1

∂β
in Equations (10.6),

(10.11) and (10.14) is hence substituted by:

∂‖β̃‖1
∂β

= ∂‖β̃‖1
∂β̃

∂β̃

∂β
.

A simple definition of the mapping function f β is a piecewise (step)
function, as follows:

β̃j = f β
(
βj

)
=
{

0 if βj < β̄

1 if βj ≥ β̄

,
∂β̃j
∂βi

= δij

{
0 if βj 6= β̄

φ if βj = β̄

(10.16)

with β̄ being a user-defined relaxation threshold, above which β is
rounded up to 1, and below to 0. It can be immediately noticed that
this function is discontinuous at β = β̄, thus having an undefined
derivative at this point (as denoted by φ). This would cause algorith-
mic instabilities if incorporated into a gradient-based optimization
procedure.

Alternatively, a continuous function exhibiting a similar step-function
profile has to be chosen. An example of such a function is the
Cumulative Density Function (CDF) of the Gaussian distribution,
having its mean value µ = β̄, and a very small variance σ2

β � 1.
Figure 10.5 shows that the Cumulative Density Function (CDF) tends
to the piece-wise step function in Equation (10.16) as σ2

β → 0. In
contrast to the step function, the CDF of the Gaussian distribution,
denoted by Ψ, is continuous and differentiable with respect to its
random variable ∀ β ∈ [0, 1]. The first derivative of the CDF of the
Gaussian distribution is given by its Probability Density Function

10.3 Formulation Approaches 105



0.0 0.25 0.5 0.75 1.0
β

0.00

0.25

0.50

0.75

1.00
β̃

σ= 0.01

σ= 0.1

Step

0.0 0.25 0.5 0.75 1.0
β

0.00

0.25

0.50

0.75

1.00

β̃ β

(a) Function

0.0 0.25 0.5 0.75 1.0
β

0.00

0.25

0.50

0.75

1.00
β̃

σ= 0.01

σ= 0.1

Step

0.0 0.25 0.5 0.75 1.0
β

0.00

0.25

0.50

0.75

1.00

β̃ β

(b) Derivative

Figure 10.5.: Influence of the choice of the Gaussian distribution variable
on the shape of the function and its derivative. β̄ = 0.5.

(PDF), denoted by ψ. Hence, the mapping function and its derivative
are defined as follows:

β̃j = Ψ
(
βj | β̄, σ2

β

)
,

∂β̃j
∂βi

= δijψ
(
βi | β̄, σ2

β

)
(10.17)
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10.4 Solution Strategy
The optimization problem of interest falls under the family of non-
linear optimization problems as shown in Section 10.1. Iterative
approaches are employed to solve this kind of optimization problems.
Iterative methods are known to be rather practical for problems
involving large number of DOFs, for which the evaluation of the
objective function as well as the gradients could be computationally
demanding [NW06].

10.4.1 Optimization Method

One of the iterative approaches, having a wide consensus in structural
optimization problems, is the Method of Moving Asymptotes (MMA)
[Sva87]. In structural optimization problems, the evaluation of the
objective and Jacobian functions involves intensive finite-element
calculations at the spatially-discrete nodal locations to find the
solution regions. The formulation of the OSP problem shows a great
resemblance to topology optimization, in a sense that the objective
function and the Jacobian are evaluated at discrete nodal positions,
resulting in discrete design variables. In this case, the said variables
are the selection variables β. Exploiting the similarity between the
problems, MMA is used to solve the presented OSP problem.

The execution of MMA runs in two nested iteration loops, with the
superscript (k) denoting the outer loop counter. At the beginning,
the design variables are initialized. In the scope of this work, the
elements of β(0) are randomly sampled from a uniform distributions
U(0, 1) and λ(0) is user-initialized1. The outer loop starts with a
value of the design variables β

(k) and λ(k) and increments to β
(k+1)

and λ(k+1) once the inner loop is terminated. Before entering the
inner loop, the gradient of the objective function is evaluated at(
β

(k), λ(k)
)
.

1Only when a LM approach is employed. In penalty approach, λ is not a design
variable.
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In the inner loop, the original optimization problem is approximated
by an explicitly convex sub-problem about the point

(
β

(k), λ(k)
)
.

The approximating function is calculated using the evaluated gradient
and the method parameters, referred to as the moving asymptotes.
The convex sub-problem is iteratively solved using until a convergent
solution of the sub-problem is reached. This solution becomes the
next iteration point

(
β

(k+1), λ(k+1)
)
.

The outer loop keeps iterating until a defined stopping criteria is
reached. Within the scope of this work, three stopping criteria are
set to control the termination of the algorithm.

1. l2-norm of the relative change in design variables ∆x(k) ≤ εxtol

∆x(k) =
∥∥∥ [∆λ(k) ∆β

(k)
]T ∥∥∥

2

where ∆λ(k) = λ(k) − λ(k−1)

λ(k) ,

∆β
(k) =

(
β

(k)
j − β

(k−1)
j

β
(k)
j

)no
j=1

(10.18)

Here, ∆λ(k) corresponds to the Lagrange multiplier, when
applicable, and ∆β

(k) corresponds to the sensor selection vari-
ables.

2. Absolute change in objective function ∆f (k) ≤ εftol

∆f (k) = f
(k)
obj − f

(k−1)
obj (10.19)

3. Number of iterations k = nitermax

The details of defining the sub-problem and performing the inner iter-
ations are given in [Sva87] and a more stable version of the algorithm
is presented in [Sva02]. For the discussion here, it suffices to mention
that the approximate sub-problem requires the first-order derivative
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of the objective function with respect to the design variables to be
derived and evaluated.
The Jacobian expression of fobj is given in Equations (10.6), (10.11)
and (10.14), depending on the problem formulation. The detailed
derivation of the Jacobian of Tr

(
P x+
k (β̃)

)
is presented in Appendix B.

10.4.2 Solution Pipeline

To summarize, the following steps are required to solve the optimal
solution problem using the procedure presented in this work. In
Algorithm 10.1, a pseudo-code is given, showing the details of the
following steps.

1. Assembly of system matrices

2. Building state-space representation

3. Assumption on process and measurement noise

4. System simulation to retrieve prospective output at candidate
output locations

5. Estimation of n∗s
6. Formulation of optimization problem, Equation (10.5) or Equa-

tion (10.8)

7. Initialization of optimization variables, β(0) and λ(0)

8. Optimization problem solution
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Algorithm 10.1 Algorithm to find an optimal sensor configuration
1: procedure System Definition
2: Assemble system matrices K, V, and M
3: Assemble input vector u and input mapping matrix L.
4: Assume process noise dw and measurement noise dv
5: Build state space representation of equations of motion Equa-

tion (8.7).
6: Solve Equation (8.7) to simulate system output, y.
7: end procedure
8: procedure Estimate n∗s
9: Evaluate Grammian: G =

∫ tf
t0

YTYdt
10: SVD decomposition: G = Uf Σf ZT

f (cf. Equation (A.2))
11: n∗s ← r (find r by evaluating Equation (A.4))
12: end procedure
13: procedure Solve Optimization Problem
14: Set optimization stopping criteria: εxtol, ε

f
tol and nitermax

15: Initialize MMA outer loop counter: k ← 0
16: Initialize β

(0) and λ(0)

17: while k < nmaxiter do
18: Map selection variable β̃

(k) (cf. Equation (10.17))
19: Evaluate f (k)

obj

20: Evaluate Jacobian
∂f

(k)
obj

∂β
and

∂f
(k)
obj

∂λ
21: Evaluate stopping criteria ∆x(k) and ∆f (k)

22: if ∆x(k) > εxtol or ∆f (k) > εftol then
23: Update design variables β

(k+1) and λ(k+1)

24: Increment outer loop counter: (k)← (k) + 1
25: else
26: Optimal sensor configuration found: β

∗ ← β
(k)

27: Terminate
28: end if
29: end while
30: end procedure
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11Numerical Investigation

In this chapter, a numerical investigation of the proposed approach
is carried out. The goals of this investigation are

1. Examine the solution space, and observe the objective function
behaviour in terms of sub-modularity and non-increasingness,

(a) Variation of the objective function with respect to the
number and types of sensors

(b) Solution spaces of the estimation error and estimation
covariance as functions of the sensor configuration

(c) Distribution of the resultant sensors from the different
formulations in the solution spaces

2. Study the sensitivity of the resultant sensor configuration and
estimation quality to the problem formulation,

(a) Formulation approach: fixed-point vs. regularized,

(b) Constraint enforcement: penalty vs. Lagrange multipli-
ers,

3. Verify the advantage of using a multi-sensor configuration over
a single-sensor one

4. Compare the performance of the proposed Optimal Sensor
Placement (OSP) approach to the forward-sequential approach
applied on the same objective function.

Within the context of this investigation, the following quantities are
chosen to be used as evaluation metrics:
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1. n∗s : The number of sensors the approach decides for, being
implicitly part of the optimization’s cost,

2. niter: The speed of convergence, expressed in terms of the
number of iterations required by the optimization algorithm
to reach a solution,

3. f∗obj : The value of the unconstrained objective function at the
optimal (converged) solution,

4. Tr(P x+): The average estimation error covariance, when the
optimal solution is used as output locations to feed a Kalman
filter solving for the hidden states,

5. εx: The mean absolute relative error of the estimated states
calculated across the Kalman filter evaluation horizon over all
states

11.1 Problem Description
The aforementioned investigation is conducted on two systems; a
Single Degree of Freedom (S-DOF) system, Figure 11.1, and a truss
structure, Figure 11.2, both modelled using Finite Elements.
The decision for these two specific systems is due to their relative
simplicity in comparison to more complex industrial engineering
systems. Hence, they pose as minimal case problems, upon which
extreme scenarios could be applied, and a broad range of interesting
parameters could be tested. Additionally, both problems have closed
form mathematical models, thus minimizing the errors introduced
by the modelling process, and cornering the error sources to those
due to the estimation procedure.
Despite their non-complex mathematical formulations, the two cases
pose two levels of complexity. The Single Degree of Freedom (S-
DOF) has fewer finite elements, as well as holding only a single
DOF per node, thus resulting in significantly fewer possible sensor
configurations, and a simpler solution space. On the other hand, the
truss structure is a 2D structure, with more elements, and 2 DOFs
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per node, thus allowing acceleration sensors to be oriented in either
directions. This, in turn, appends an additional dimension to the
solution space as will be explained in the coming paragraphs.

The following points summarize the main geometric properties and
dynamic characteristics of the two use cases.

Test Case 1: S-DOF System

Figure 11.1.: S-DOF system.
• Geometry:

– 6 springs, 7 nodes, with the two end nodes fixed
– lengths, 0.3 m
– circular cross-sections of a 7 mm diameter

• Material:
– AISI-1045: E = 210 GPa, ν = 0.3, ρ =

7850 kg m−3

– fatigue properties: σf = 948 MPa, b = −0.092,
εf = 0.26, and c = −0.445

– linear, elastic material model
• Load f(t):

– location: Node 5,
– characteristics: periodic, sinusoidal, frequency =

10 Hz, amplitude = 1 kN,
– superposed by a random Gaussian process follow-

ing N (0, 1) kN
• Model:

– 1D constant-stiffness spring elements connecting
mass elements located at the nodes,

– nodal lumped masses: 21, 15, 12, 15 and 21 kg,
– system damping: 1 % of all system natural fre-
quencies,

• Sensors:
– Uni-axial strain gauges on the spring elements,
oriented along the elements axis,

– Uni-axial accelerometers on all non-boundary
nodes except 5 (load node).
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Test Case 2: Truss Structure

Figure 11.2.: Truss structure, adapted from [Pap+11].
• Geometry:

– cantilever structure, composed of 35 truss mem-
bers

– horizontal and vertical elements have equal
lengths 1 m.

– circular cross-sections of a 7 mm diameter
– identical mass 200ρAL kg, where A and L are
the cross-sectional area and length.

• Material:
– AISI-1045: E = 210 GPa, ν = 0.3, ρ =

7850 kg m−3

– fatigue properties: σf = 948 MPa, b = −0.092,
εf = 0.26, and c = −0.445

– linear, elastic material model
• Load f(t):

– location: Node 2,
– characteristics: periodic, sinusoidal, frequency =

100 Hz, amplitude = 100 N,
– superposed by a random Gaussian process follow-
ing N (0, 1) N

• Model:
– truss finite element formulation,
– system damping: 5 % of all system natural fre-
quencies,

• Sensors:
– SG: uni-axial strain gauges on the truss members,
oriented along the elements axis - total: 35,

– AccX, AccY: uni-axial accelerometers on all nodes
except 2 (load node) and 1 and 4 (boundary
nodes), oriented either in the x- or y-directions -
total: 13 × 2 = 26.
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To evaluate the precision of the hidden state estimation and the
associated estimate confidence, uncertainty is introduced to the both
problems by perturbing the masses of the elements by a random
∆m ∼ N (0, 0.05) kg. The perturbed system is depicted as a real
system with unknown deviations from the mathematical model used
for the sensor placement. Outputs at the chosen sensor positions, y,
are fed into a Kalman filter to estimate the hidden states x̂ h ∈ Rnh ,
while the actual system states , x h, are calculated from the simulated
outputs of the perturbed system. The mean absolute relative error
between both quantities is given by:

εx = 1
ntnh

nt∑
k=1

nh∑
l=1

∣∣∣∣x h
kl − x̂ h

kl

x h
kl

∣∣∣∣ . (11.1)

Output reconstruction refers to estimating the unmeasured outputs
(i.e. outputs associated to DOFs where no sensors are mounted),
ŷ r ∈ Rnr , based on the estimated states. The actual values of the
reconstructed outputs y r are obtained from the perturbed system
simulation, and the corresponding Mean Absolute Relative Error
(MARE) of reconstruction can be calculated by:

εy = 1
ntnr

nt∑
k=1

nr∑
l=1

∣∣∣∣y r
kl − ŷ r

kl

y r
kl

∣∣∣∣ . (11.2)

The process noise, dw, is assumed to be 10−2 m for displacement
states and 10−2 m s−1 for velocity states. All sensors from one
category are assumed to be identical sensors, having independent
and identical Gaussian noise. The measurement noise, dv, is assumed
10−1 for strain gauges, and 10−3 m s−2 for accelerometers. That’s
because accelerometers are assumed to output a signal with less
noise compared to strain gauges.

It is worth noting that the discussion in this section is focused inten-
tionally on the state estimates and their corresponding estimation
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error covariance, and not on damage estimate, since these quantities
are immediately related to the estimation process, while the damage
estimation is a post-processing procedure that follows. Only at the
latest stage of the investigation is the damage estimation examined
and compared against the actual values.

11.2 Solution Spaces
A first step towards benchmarking is setting the ground truth against
which the model results are assessed. Herein, the solution spaces of
both problems are investigated. Due to the large number of sensor
configurations, especially for the truss problem – going beyond
1017 combinations, exhaustive solution space evaluation is almost
impossible. Instead, the combinations are sampled randomly from
sub-spaces generated by full factorial design of experiments applied
to the number of sensors.
For instance, taking the S-DOF problem, the total number of sensors
are 6 SG and 4 Accel, which makes 34 full-factorial experiments
with pairs of sensor counts (0, 1), (0, 2), . . . , (6, 4). Here, for each
experiment, sensor positions from each category are randomly drawn
according to the corresponding count. For this work, 30 unique
sensor configuration are chosen for each experiment, except for the
last experiment with (6, 4) sensors, since there is only one possible
combination associated with it; i.e. a fully covered system.
The exact procedure is repeated for the truss problem, with 35 SG
and 28 Accel, with the x- and y-accelerometers being drawn from
the same pool of sensors, and not separated. This yields full-factorial
experiments with pairs of sensor counts instead of triplets.

For each experiment, Tr(P x+) and εx are evaluated by feeding the
sensor selection to the Kalman filter, as explained earlier. Addition-
ally, the respective value of the objective function is evaluated (as if
such a configuration has resulted from the optimization procedure),
by considering Tr

(
P x+
k (β̃)

)
at k = 2. This is referred to as the

Raw fobj , to distinguish it from the constrained objective functions,
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using either the fixed point or the regularization formulations, cf.
Equations (10.5) and (10.8). The latter are as well evaluated for the
configurations of each experiment’s configuration, with ‖β̃‖1 taken
as the sum of the sensor counts, and n∗s calculated using pre-defined
values for ε0 ∈ {10−2, 10−4}.

Besides exploring the solutions space, the results of 30 optimization
runs using each constraint formulation approach are shown. This
provides a visualization of the locations of the optimization algorithm
procedures in the space representing the solution space.

S-DOF System

Figure 11.3 shows the relationships between the estimation error
and estimation covariance on one side, and the number of sensors
on the other side, taking into consideration whether only a single
sensor type is mounted, or a multi-type configuration, denoted by
"Accel + SG".

Examining the state estimation error, for a single sensor configura-
tion, mounting more than 2 sensors results in a monotonic reduction
in the average estimation error as well as the uncertainty associated
with it, indicated by the error bars. When deploying a multi-type
sensor configuration, the average estimation error decreases to a
minimum for ns = 3, then gradually increases with the number of
sensors . The sample deviation of the error doesn’t change notably,
except for ns = 9.
On the other hand, the covariance of the estimation error is non-
increasing through the whole domain for single-type accelerometers
and multi-type configurations. In contrast, only for strain gauges
when ns ≤ 6, the function is non-increasing; i.e. a system fully
covered with strain gauges alone doesn’t guarantee a more confident
estimate.

For this case, one might rashly conclude that sequential sensor
placement is an adequate approach. This could even be supported
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Figure 11.3.: Variation of the estimation error and covariance with
respect to the number and type of sensors - S-DOF system

by the raw objective function contours in Figure 11.4 (a).
The contours in Figures 11.4 and 11.5, as well as Figures 11.7 and 11.8
are generated by considering the minimum value of the corresponding
quantity for the respective sensor configuration. For some cases, and
due to the large range of the plotted variables, the contour values
are capped to ease visualization, and to highlight the gradual change
of the variable’s values.

The contours in Figure 11.4 (a) give the impression that the more the
accelerometers the lower the objective function, while strain gauges’
presence is of no effect. Therefore, favouring the least number of
sensors, an optimal configuration becomes 4 accelerometers and no
strain gauges. Nevertheless, as indicated by the colour scale, the con-
tours of the raw objective function are almost identical, which falsely
indicates that the estimation uncertainty is independent of sensor
configurations. This impression is proven rash when comparing the
contours of the raw objective function of the optimization with the
contours of the actual estimation error covariance in Figure 11.5
(a). Herein, the constrained objective functions are appreciated
when considering their contours, whether using the regularization
formulation, Figure 11.4 (b), or the fixed-point, Figure 11.4 (c) and
Figure 11.4 (d). In a sense, the constrained objective functions form
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a front of optimal sensor configurations similar to the front of low
covariance.

Through visual inspection of the distribution of sensors for each
constraint formulation approach in Figure 11.5, it can be seen that
all approaches yield sensor configurations within the bounds of the
low uncertainty contours in the solution space. Additionally, with
respect to the estimation error, the results seem to be formulation
independent, with all chosen sensor configurations yielding an average
error less than 2 %.

Figure 11.4.: Contours of unconstrained (raw) and constrained objective
function using FP and Reg - S-DOF system
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Figure 11.5.: Contours of estimation error and covariance, with the OSP
solution using different formulations - S-DOF system

Truss Structure

The truss structure is a more complex system in comparison to
the S-DOF system. It has a larger number of hidden states to be
estimated, more candidate positions to place sensors, as well as
the additional dimension introduced by the sensors orientation of
accelerometers.

Examining the progression of the estimation error and the corre-
sponding estimation error covariance in Figure 11.6, it can be seen
that the non-increasing behaviour observed in the S-DOF no longer
holds for both single- and multi-type configurations. In this case,
for instance, it could be asserted that the trace of the covariance
is not always a non-increasing, sub-modular function, according to
the findings of [ZAS17]. Herein, the choice of a gradient-based OSP
could be further motivated and justified.
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Figure 11.6.: Variation of the estimation error and covariance with
respect to the number and type of sensors - Truss structure

Similar to the S-DOF system, the contours of the minimum ob-
jective function for each sampled sensor configuration are plotted,
and are shown in Figure 11.7, where four main regions could be
distinguished;

1. A region with few accelerometers and few strain gauges (lower
left corner).
In this region, the values are the highest in the objective
function space.

2. A region with few accelerometers, but > 15 strain gauges (up-
per left corner of the plot).
In this region, the raw objective function values start to de-
crease, and could seem promising for the optimizer to traverse.
The region corresponding to this one in the state estimation
covariance space, Figure 11.8(a), yields a close range of high
covariance values. This makes it as unfavoured as the previous
region. Like the S-DOF, the constrained objective functions,
but not the raw, capture this behaviour, and result in a quali-
tatively equivalent solution space.

3. The subspace with > 20 accelerometers, and >5 strain gauges
(right section of the plot).
This is deemed as a region of instability for the solver. This
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can as well be indicated by the high values in the estimation
error space, Figure 11.8(a). To ease the visualization, some of
these values are capped, while their true values are actually
higher than the scale limits.

4. The mid section of the objective function space.
This region bears a remarkable resemblance of its correspondent
in the state estimation error covariance space. It poses a
favourable sub-space for the optimizer to traverse and search
for an optimal configuration.

In this problem, the optimal sensor configurations form a cluster
with the number of strain gauges lying between 0 and 2, and the
number of accelerometers (X or Y) lying between 14 and 16. This
cluster is located well inside the domain of low state estimation
error covariance, as well as the state estimation error solution spaces
(Region 4). Furthermore, the choice of the constraint formulation
doesn’t seem to hinder the optimization procedure from reaching a
solution located at a low-level contour of the solution space.

Since the optimal configurations generated are dominated by ac-
celerometers, the accelerometers’ solution space is thoroughly inves-
tigated. Figure 11.10 shows the raw objective function, alongside
the fixed-point and regularization objective functions. Figure 11.11
shows the corresponding distribution of the state estimation error
and covariance in relationship to the sensor configurations.

Comparing the objective function contours to the contours of the
state estimation error covariance, the constrained functions, irrespec-
tive of the constraint formulation, show a better resemblance than the
unconstrained one. Although all solutions lie within a low covariance
and a low error domain, it can be noticed that the configurations
from regularization formulation are more widely spread within the
solution space, and approach the fronts of the low-high estimation
error and covariance domains. On the other hand, the fixed-point
results are located at stably low regions of state estimation error and
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Figure 11.7.: Contours of unconstrained (raw) and constrained objective
function using FP and Reg - Truss structure

covariances. A more detailed quantitative investigation is triggered
by this observation.
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Figure 11.8.: Contours of estimation error and covariance, with the OSP
solution using different formulations - Truss structure
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Figure 11.9.: Contours of estimation error and covariance, with the OSP
solution using different formulations - Truss structure
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Figure 11.10.: Contours of unconstrained (raw) and constrained objec-
tive function using FP and Reg - Truss structure
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Figure 11.11.: Contours of estimation error and covariance, with the
OSP solution using different formulations - Truss struc-
ture

At this point, it is worth mentioning that the choice of the reduction
threshold ε0 in the fixed-point formulation seems to have a small
effect on the constrained objective function. In Figure 11.7(c) and
Figure 11.7(d), the constrained objective functions using a fixed-
point formulation with ε0 = 10−4 and 10−2, respectively, are plotted.
For these values of ε0, n∗s = 16 and 10 are yielded, respectively.
Although it could be expected that the value of ε0 would possibly
affect the results of the optimization problem, both plots show similar
distribution of the objective function values with respect to the sensor
configuration. For the coming investigations, ε0 = 10−4 is chosen.

11.3 Problem Formulation and Constraint
Enforcement

To illustrate the influence of the constraint functions choice and the
constraint enforcement approaches on the result on the optimization
problem, the problems in Figures 11.1 to 11.2 are evaluated using
the following four settings:
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1. LM, Fixed-point,

2. Penalty, Fixed-point,

3. Regularization.

To account for the possible variations occurring during the optimiza-
tion procedure, the optimization problem is solved 30 times for each
setting, each with a different random initialization of β.

In some investigations, it would be necessary to examine the validity
of a hypothesized assumption or observation for statistical signifi-
cance. Herein, the following statistical inference tests [MGB74] are
used:

• Two-tailed T- test: To test whether two samples (a and b)
come from populations having identical means. For this test,
the null and alternative hypotheses are written as:

H0 : µa = µb, H1 : µa 6= µb. (11.3)

• One-tailed T-test: To test whether the mean population A
is significantly less than the of population B based on the
corresponding samples a and b. For this test, the null and
alternative hypotheses are written as:

H0 : µa ≤ µb, H1 : µa > µb. (11.4)

Similarly, one-tailed and two-tailed Mood’s test are also applied.
These have a hypothesis formulation similar to the equivalent T-
tests, except that the sample’s median is used as a test statistic
instead of the sample’s mean.

For any of the above tests, the null hypothesis is rejected when
the p-value is smaller than the significance value, α. In this work,
α = 5× 10−3; the test inferences regarding the consistency of the
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data with the null and alternative hypothesis are drawn with a
confidence of 99.5%.

S-DOF System

In this study, ε0 = 10−4 is used, and a fixed-point n∗s = 4 is yielded.
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Figure 11.12.: Distributions of ‖β∗‖1 for the different constraint treat-
ment approaches - S-DOF system

As shown in Figure 11.12, enforcing the constraint using the penalty
methods yields the target number of sensors for all the 30 experiments
conducted, either using a regularized or a fixed-point formulation.
On the other hand, using LM tends to yield one sensor less than
n∗s , with 28 out of 30 experiments yielding 3 sensors and only 2
yielding the target 4 sensors. Comparing the initialization of β for
the experiments with 3 and 4 sensors using LM enforcement, it can
be observed that the initial set of selection variables are different,
and only certain initializations yield the desired ns. On the other
hand, the initial sets that yield 3 sensors using LM are all found to
yield 4 sensors when using penalty.

This concludes that the LM enforcement is somehow sensitive to the
initialization of the optimization variable, while this is not observed
in the penalty approach, while the formulation of the constraint has
no impact on the yielded number of sensors.
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Figure 11.13.: Distribution of Tr
(
P x+
k (β̃)

)
for the different constraint

treatment approaches - S-DOF system

The distribution of the objective function reached at the end of
the optimization procedure is shown in Figure 11.13. This is the
yielded value of the unconstrained term of the objective function
Tr (P x+

k (β∗)).

It can be observed that, on average, all algorithms yield the same
value. The objective function from all experiments ranges between
5.66× 10−2 and 6.00× 10−2, which is a rather insignificant devia-
tion.

The regularization formulation results in the most consistent opti-
mization results. For this formulation, 29 experiments out of 30
converged to the same state estimation covariance, despite the dif-
ferent initializations of β.
Meanwhile, using a LM results in a slightly larger variance among
the result set compared to the using penalty, as indicated by the
wider scatter in Figure 11.13.

Figure 11.14 shows the distribution of the number of optimization
iterations required to reach convergence for each formulation, niter.
From the distributions, no significant difference in terms of speed of
convergence could be observed, with almost all methods converging
in 2 iterations.
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Figure 11.14.: Distribution of niter for the different constraint treatment
approaches - S-DOF system

As an additional step, using each of the three formulations, the
resulting optimal sensors are used to estimate the hidden states of
the system using a Kalman filter, as explained in Chapter 8. The
error in the state estimation εx as well as the trace of the error
covariance matrix Tr(P x+

k ) are evaluated after 400 Kalman filter
steps. The distributions of both variables are shown in Figures 11.15
and 11.16.
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Figure 11.15.: Distribution of Tr(P x+) for the different constraint treat-
ment approaches - S-DOF system

To recall, the objective of the proposed sensor placement method is
alleviate the uncertainty in the state estimate by reducing Tr(P x+

k ).
As shown in Figure 11.15 using a constrained formulation with a
penalty method yields a lower mean Tr(P x+

k ) compared to the LM and
the regularized formulation. The same observation holds with respect
to outliers, as hinted in the discussion about the objective function.
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Given certain initial sensor configurations, the optimization yields
outliers when employing LM, which is less likely when employing
penalty.

Likewise for the state estimation error, the penalty method out-
performs the LM method. However, since all experiments yield an
error well below 5 %, the deviation between the algorithms could be
neglected.

To sum up, for the S-DOF system, both the penalty method and
the regularized formulations exhibit a more reliable constraint en-
forcement, yields lower state estimation error covariance, with no
significant increase in the computational cost of optimization.

Truss Structure

As for the S-DOF system, ε0 = 10−4 is used, and a fixed-point
n∗s = 16 is yielded. The difference between the two benchmarks is
the extent of complexity, with this system having a larger space of
sensor configurations, and AccY as an additional sensor type.

Examining the l1-norm of β∗ in Figure 11.12, the penalty method
formulation and the regularized formulation meet the target n∗s for all
the 30 experiments. The results of the LM-constrained formulation
evenly fluctuate between 15 and 16.
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Figure 11.17.: Distributions of ‖β∗‖1 for the different constraint treat-
ment approaches - Truss structure
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Figure 11.18.: Distribution of Tr
(
P x+
k (β̃∗)

)
for the different constraint

treatment approaches - Truss structure

Looking at Figure 11.18, it can be observed that the median values of
the samples using the different algorithms are almost identical; 0.42
for LM Fixed-point, 0.67 for penalty fixed-point, and 0.63 for the
regularized formulation. It needs to be remarked that the median
in this case is investigated to alleviate the influence of the outliers,
which can be observed in all samples.

This observation is further assured by a two-tailed Mood’s test,
having the hypotheses H0 : medLM = medPen, H0 : medLM =
medReg, and H0 : medPen = medReg. The null hypothesis fails to be
rejected in all cases, with p-values between 0.17 and 0.5. Based on the
evidence from the samples, it can concluded that the approaches are
unlikely to yield non-identical objective functions when repeated.
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Figure 11.19.: Distribution of niter for the different constraint treatment
approaches - Truss structure

A very efficient performance of all algorithms is demonstrated in
Figure 11.17, where all approaches converge in two optimization
iterations.

Speaking of the quality of the state estimate, when neglecting the
outliers, both formulations seem to perform equally as shown in
Figures 11.20 and 11.21. The estimation error for all cases lies below
2 %, including outlier sample points, whereas, the median values of
the errors for all approaches’ samples lie well below 1 %.

Visually, it seems that the LM method yields smaller estimation error
medians than the penalty method. When conducting a one-tailed
Mood’s test to verify the null hypothesis

H0 : med (εx)Pen ≤ med (εx)LM
,

both tests failed to reject H0. Similarly, when statistically comparing
the LM-constrained formulation to the regularized formulation, H0

fails to be rejected. This concludes that the observed superiority of
the LM formulation is statistically insignificant. Hence, the choice of
the enforcement method are insignificant to the resultant estimation
error.
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approaches - Truss structure
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Figure 11.21.: Distribution of Tr(P x+) for the different constraint treat-
ment approaches - Truss structure

The last comparison metric is trace of the estimation error covariance,
shown in Figure 11.21. The three approaches yield very close values
of Tr(P x+). Using the LM formulation yields a relatively higher
average value of the trace, which could be justified by performing the
estimation with one-less sensor on average, as shown in Figure 11.17.
Although this deficiency in the number of sensors didn’t have a
notable influence on the precision of the state estimate, its impact
on the estimation confidence, manifested by Tr(P x+), is obvious.

Summing up the conclusions reached in this investigation, it has
been found that

• With respect to the number of sensors, the penalty approach
is more likely to yield the target sensors, while the LM ap-
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proach has shown some evidence of sensitivity towards the
initialization of the optimization variable.

• With respect to the estimation error, and the optimization pro-
cedure convergence, no approach is concluded to be favoured
over the others.

• The concern that the regularized formulation might favour
sparse sensor configurations is alleviated.

• All algorithms reach nearly the same objective function value
at the end of the optimization algorithm, with the penalty
fixed-point method showing a slightly higher robustness indi-
cated by the tighter scatter around the average.

• The constrained formulation using the penalty method yields
smaller state estimation covariance, hence lower estimation
uncertainty.

Accordingly, the penalty method is favoured to the LM method, and
for the following investigations, the penalty fixed-point is chosen as
the gradient-based OSP method.

11.4 Multi-Sensor Configuration
In the following paragraphs, the influence of limiting candidate
sensors to a single type versus choosing from both sensor types is
investigated. Moreover, the choice of the sensor type (accelerometers
vs. strain gauges) in case of single sensor type is studied.

The samples for this study are generated as follows; for each of the
two considered systems, the domain of candidate sensors is limited to
either strain gauges only, accelerometers only (for the truss structure,
this includes x- and y-accelerometers), or both (denoted by "Accel +
SG"). The former two are referred to as single-type configurations,
and the latter as multi-type. For each set of candidate sensors, 30
unique random initializations of the selection variables βi are made,
and the optimization problem is solved. The chosen optimizer setting
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throughout this investigation is fixed-point formulation for defining
the constraint, and the penalty method is applied to enforce it.

For this investigation, the following two claims are tested for validity
based on the evidence from the samples:

• Claim 1: Using single-type sensor configuration, accelerome-
ters yield lower estimation errors, as well as lower estimation
error covariance than strain gauges. The corresponding null
and alternative hypotheses are

H0 : µ(·)SG ≤ µ(·)Acc, H1 : µ(·)SG > µ(·)Acc. (11.5)

• Claim 2: Using multi sensor-type configuration yields lower
estimation errors, as well as lower estimation error covariance
than single sensor-type configuration. The corresponding null
and alternative hypotheses are

H0 : µ(·)single ≤ µ(·)multi, H1 : µ(·)single > µ(·)multi.

(11.6)

Both claims are tested using a one-tailed T-test with a significance
value α = 5× 10−3.

S-DOF System

Figure 11.22 shows the distribution of the state estimation error
and state estimation error covariance when using different sensor
configurations.

Clearly, a multi-type sensor configuration results in 20-folds lower
estimation error covariance, as shown in Figure 11.22(a). Also, a
multi-type configuration results in a smaller uncertainty in the state
estimates more consistently, as indicated by the smaller sample
variance. With respect to the choice of the sensor type in case
of single-type configurations, Figure 11.22(b) indicates that strain
gauges yield lower covariances.
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Figure 11.22.: Variation of the estimation error and covariance with
respect to the configuration and type of sensors - S-DOF
system

Additionally, using a multi-type configuration results for state esti-
mation yields a smaller estimation covariance than any single-type
configuration. This is visually obvious when comparing multi-type
to accelerometers in Figure 11.22. To confirm the validity of this for
multi-type vs. strain gauges, a one-tailed T-test is conducted, with
the null hypothesis being H0 : µSG ≤ µmulti. This is, in fact, the sta-
tistical significance test of claim 2 stated above, with the single-type
sample being exclusive to the strain-gauges. The resultant p-value
of that test is 10−27 ≈ 0, thus the null hypothesis is confidently
rejected. Hence, it is concluded that the multi-type configuration
yields a smaller estimation covariance.

Looking at the state estimation error distributions, using strain
gauges alone yields a significantly lower state estimation error than
using accelerometers alone; almost 10-folds smaller on average. As-
tonishingly, the precision of the estimate when combining accelerom-
eters and strain gauges didn’t surpass that of the strain gauges alone,
which is seconded by the one-tailed T-test. The p-value calculated
from the strain-gauges’ experiments and the multi-type experiment
is 0.490 > α, hence providing no sufficient evidence to reject H0.

From the 30 experiments conducted for each of the candidate sensor
configurations, the number of times each sensor position is chosen
as optimal is counted, and the corresponding tally is shown in
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Figure 11.23(a). Using a reduction tolerance, ε0 = 10−4, the fixed
points for accelerometers only, strain gauges only, and multi-type
configurations are 3, 3, and 4, respectively. In light of this, the most
frequently selected positions for each configuration are chosen, and
shown on the structure in Figures 11.23(b) to 11.23(d).

Here, it can be seen that the multi-type optimal sensor configuration
is not simply the union of the single-type optimal sensor positions.
In fact, the most selected sensors in a multi-type configuration
are accelerometers. This could possibly be explained by the lower
measurement noise attributed to accelerometers, compared to strain
gauges.

Truss Structure

Looking at the second system, Figure 11.24 shows the distribution
of the state estimation error and state estimation error covariance
when using different sensor configurations.

Alike the S-DOF system, a multi-type sensor configuration results in
lower estimation error covariance, as shown in Figure 11.24(a), and
the strain gauges outperform accelerometers with respect to reducing
state estimation uncertainty. This accords with the hypothesis test
results in Table 11.1. It is shown that no evidence is presented to
support the claim that accelerometers result in lower estimation
covariance. On the other hand, the claim that multi-type configura-
tions surpass single-type configurations (whether accelerometers or
strain gauges) is assured by rejecting the null hypothesis.

As previously observed in the S-DOF system, strain gauges state
estimation precision outperforms accelerometers, as shown in Fig-
ure 11.24(b). On the other hand, using a multi-type configuration
yields an even smaller estimation error compared to any of the single-
type sensor configurations. Likewise, the one-tailed T-test results
in Table 11.1 affirm this, with all the claim 2 null hypotheses being
rejected.
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Figure 11.23.: Most selected sensor positions - S-DOF system

The individual count of sensor positions in the samples is shown in
Figure 11.25(a). It may be noticed that the multi-type configuration
is dominated by accelerometers, with very few experiments involving
strain gauges choice. Figures 11.25(b) to 11.25(d) show the positions
of the most frequently chosen 3 strain gauges, 3 accelerometers, and
16 multi-type sensors, as dictated by the fixed-points calculated with
ε0 = 10−4.
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Figure 11.24.: Variation of the estimation error and covariance with
respect to the configuration and type of sensors - Truss
structure

Table 11.1.: Results of the statistical significance test - Truss structure

µ(·)SG ≤ µ(·)Acc µ(·)SG ≤ µ(·)multi

Variable p-value H0 p-value H0

Tr(P x+) 9.204× 10−3 No Evidence 0.00 Reject
εx 8.278× 10−2 No Evidence 1.049× 10−3 Reject

µ(·)Acc ≤ µ(·)multi

Variable p-value H0

Tr(P x+) 0.00 Reject
εx 7.574× 10−4 Reject

The distribution of the multi-type configuration sensors on the struc-
ture is, at the first glance, confusing. No accelerometers are placed
at node 3. This would have been a first educated guess, especially
from those with high confidence in their engineering intuition, given
a vertically oriented load. Recalling that the goal of the sensor
configuration is to reduce the estimation error covariance – in other
words, reduce estimation uncertainty – it becomes more intuitive to
think of the optimal sensor configuration as the one that observes
a broader spatial spectrum of the structure, even near its supports.
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This explains the scatter of the sensor over the upper and lower
fibres of the truss structure.
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Figure 11.25.: Most selected sensor positions - Truss structure

11.5 Comparison to Sequential Approach
In the following paragraphs, the proposed gradient-based OSP ap-
proach is compared with the greedy forward sequential OSP approach.
The sequential approach for OSP is the most abundant method in lit-
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erature being applied to many objective functions used by authors to
measure the quality of sensor configurations, e.g. [Kam91], [Kam05],
[KP08], [Pap+11], [ZX16], and [Tam+16].

The sequential approach is compared with a penalty fixed-point
gradient-based approach, since it was shown to outperform the
other constraint enforcement approaches in the previous paragraphs.
Accordingly, the stopping criteria of the additive sequential OSP
procedure is terminated when reaching the fixed-point, n∗s .

Herein, two results are compared; the state estimation error and
the error estimation covariance, shown in Figure 11.26. Moreover,
the respective mean values of 30 experiments applying gradient-
based OSP and the result of the sequential OSP are summarized in
Tables 11.2 and 11.3.

Table 11.2.: Comparison between gradient-based and sequential sensors
- S-DOF system

Method Tr(P x+) εx

Accelerometers Gradient 6.67× 102 2.70× 10−2

Sequential 6.67× 102 2.70× 10−2

Strain Gauges Gradient 5.44× 101 7.00× 10−3

Sequential 4.21× 102 2.30× 10−2

Multi-type Gradient 3.75× 10−1 5.00× 10−3

Sequential 1.00× 101 1.20× 10−2
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Table 11.3.: Comparison between gradient-based and sequential sensors
- Truss system

Method Tr(P x+) εx

Accelerometers Gradient 3.74× 104 1.50× 10−2

Sequential 6.98× 104 5.80× 10−2

Strain Gauges Gradient 3.77× 104 1.40× 10−2

Sequential 5.27× 104 8.40× 10−2

Multi-type Gradient 2.66 5.00× 10−3

Sequential 4.96 1.00× 10−3

With respect to Tr(P x+), the gradient-based OSP results consistently
in lower state estimation error covariance, which reflects an improve-
ment in the state estimation confidence. Applying the proposed
method on the S-DOF system results in a relative reduction in the
state estimation uncertainty by 87 % and 96 % for the strain-gauges
and multi-type configurations, respectively. For the accelerome-
ters configuration, both approaches yielded identical configurations,
hence equal values of Tr(P x+). For the truss structure, the improve-
ment achieved by the gradient-based method is 46 % and 23 % for
the single-type and multi-type configurations, respectively.

Both algorithms yield very precise state estimates, with respective
errors not exceeding 10 % in any experiment. When comparing
the approaches, the gradient-based approach demonstrates steadily
lower estimation errors than the sequential approach. For the S-DOF
system, the error drops by 70 % for strain gauges and by 58 % for
multi-type configurations, whereas for the truss structure, the error
for the accelerometers and strain gauges configurations drops to
74 % and 83 %. For a multi-type configuration, the gradient-based
approach yielded a higher average estimation error than the sequen-
tial. Nonetheless, both errors retain equivalent order of magnitude
and are both below 1 %, making the estimate error in an acceptable
range.
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Figure 11.26.: Variation of the estimation error and covariance with
respect to the configuration and type of sensors - Truss
structure

11.6 Damage Estimation
Damage estimation based on the captured sensor signals is the
goal of SHM. That a procedure for configuring an optimal sensors
constellation has been investigated, the captured sensor data are
used to estimate the damage the structure is prone to experiencing
under prospective loading conditions.

Herein, damage introduced in the structure can be estimated as
explained in Chapter 7. To recall, the damage can be inferred based
on the strain signals, by correlating strains to stresses using the
constitutive law, or based on the acceleration signals, by applying a
more complex function to correlate both quantities. The function
involves applying a double integral on the acceleration signal to
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infer the nodal displacements, from which the elements’ strains are
computed, as per Equation (7.4). Clearly, using acceleration signals
to infer damage could involve higher process error, which could
downgrade the quality of the damage estimate, even if the associated
measurement error is lower.

As shown in the previous paragraphs, the optimal sensor configu-
ration is mostly dominated by accelerometers. Hence, an attempt
to reconstruct the strain field from the chosen acceleration mea-
surements is undergone. Without being exhaustive, this following
discussion will consider the nodes associated to the highest and lowest
strain amplitudes, as these present the limits of the foreseen damage
spectrum. Also, these present the extrema of the signal-to-noise
ratios attainable for this problem, since all sensors of the same type
have identical and independent measurement noise.

S-DOF System

From the simulation results of the perturbed system, element 4
experiences the smallest strain, in the order of 10−4, while element
6 experiences the largest strain, in the order of 10−3. Element 4
connects nodes 3 and 4, while element 6 connects node 5 and the
fixed support. The acceleration signals of the three nodes are shown
in Figure 11.27.

In each of the three plots in Figure 11.27, the actual acceleration sig-
nal is plotted. Additionally, the mean and the one-standard-deviation
(1-STD) band are plotted based on a data set of 30 experiments
using a penalty fixed-point approach. All reconstructed acceleration
signals exhibit a remarkable overlap with the actual signals, with a
mean relative error of 7.74 %.

Figures 11.28(a) and 11.28(c) show the strain signals for elements 4
and 6, respectively. The actual signal is obtained from the perturbed
system simulation, whereas the estimated signals are reconstructed
from the nodal accelerations in Figure 11.27. The frequency spectra
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Figure 11.27.: Accelerations of the nodes associated to the elements
with lowest and highest strains - S-DOF system

of both strain signals is obtained by applying a Fast Fourier Trans-
form (FFT), and the resulting spectra are shown in Figures 11.28(b)
and 11.28(d), respectively.

As shown in the Figure 11.28, using the proposed gradient-based
approach, the difference between the actual and the reconstructed
strain is rather insignificant. Based on the simulation results, given
the described load, elements 4 and 6 experience damage of 0.13 %
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Figure 11.28.: Reconstructed strain signals and corresponding frequency
spectra for elements with lowest and highest strains -
S-DOF system
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and 0.71 %, which, using the reconstructed signals, are estimated to
be 0.11 % and 0.67 %, respectively.

Truss Structure

From the simulation results of the perturbed system, it can be
determined that element 16 experiences the smallest strain, in the
order of 10−3, while element 27 experiences the largest strain, in the
order of 10−1. The nodes associated with these two elements are (1,
11) and (10, 3), respectively. Since node 1 is fixed in all directions,
the acceleration signals in x and y directions of nodes 3, 10, and
11 are shown in Figure 11.29. In each of the six plots, the actual
acceleration signal, along with the reconstructed signal from the
sensors obtained using the gradient-based OSP algorithm are plotted.
For the OSP results, the mean and the 1-STD band are plotted based
on a data set of 30 experiments. All reconstructed acceleration signals
exhibit a remarkable overlap with the actual signals, even capturing
the high-frequency vibrations, with relative errors 9.21 % and 7.95 %
for the x- and y-accelerations, respectively.

Figures 11.30(a) and 11.30(c) show the strain signals for elements
16 and 27, respectively. The actual signal is obtained from the
perturbed system simulation, whereas the other two signals are
reconstructed from the nodal accelerations in Figure 11.29. The
frequency spectra of both strain signals is obtained by applying
a FFT, and the resulting spectra are shown in Figures 11.30(b)
and 11.30(d), respectively.

As shown in Figure 11.30, the difference between the actual and
the reconstructed strain almost vanishes in the time-domain, with
the actual signal lying within the bounds of the 1-STD band of
the reconstructed signals. In the frequency domain, insignificant
deviation between both spectra is also observed. From the simulation
results, elements 16 and 27 experience damages of 3.87 % and 51.82 %,
respectively. Estimating the damage from the reconstructed signals,
the obtained damage estimates evaluate to 4.58 % and 52.85 %.
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Figure 11.29.: Accelerations of the nodes associated to the elements
with lowest and highest strains - Truss structure
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(b) Frequency spectrum ε16 - Truss structure
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(c) ε27 - Truss structure
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Figure 11.30.: Reconstructed strain signals and corresponding frequency
spectra for elements with lowest and highest strains -
Truss structure
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PART V

Prognosis and Damage





12Motivation

In Section 2.3, it was introduced that prognosis is one of the execution
modules as well as goals of a Predictive Maintenance (PdM) routine.
In the context of the upcoming discussion, we refer to prognosis as a
functional block receiving the predicted system states as input, and
yielding an estimate of the accumulated damage as an output. This
estimate is fed as an input to the proceeding functional blocks in the
PdM routine to take or suggest maintenance-related decisions such as
operating conditions adjustments, failure and anomalies corrections,
rescheduling maintenance or overhaul, etc.

Having such an importance in the context of PdM, many models
have been proposed and developed over the previous decades for
predicting damage in operating systems. Prognosis methods can be
categorized into three main classes:

• Physics-based models: These are models which require the
description of the system’s behaviour based on the physical
laws governing its dynamics and degradation. Among these
laws are the laws representing the evolution of damage in
the system, which could be both deterministic or stochastic
[CNM11; Wan10a]. These models offer more precise and in-
terpretable results as they, in fact, do mimic the system’s
behaviour, and their parameters are related to physical prop-
erties of the system. This facilitates the process of estimating
damage based on a current system state and investigating its
root cause, in comparison to the other two models. However,
the construction of such models retains a great deal of assump-
tions and uncertainties, e.g. within material consecutive laws,
or defining components’ connections and interfaces. Typically,
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such non-deterministic properties are modelled by stochastic
random variables, which are calibrated based on measurements
from the real system, presumed that the model represents its
corresponding state [Din08b; Ise05]. Even though, for real
systems, it is challenging to obtain an analytical description
of degradation processes due to their complexity. Another
limitation lies in the restriction to the transferability of a
model specifically developed for one system to another.

• Data-driven models: These models exploit the abundance of
monitoring data and pattern-recognition models to learn a
surrogate relationship between the system inputs and outputs,
and derive characteristics depicting the system’s behaviour
and degradation. Data-driven models are particularly advan-
tageous when limited knowledge about the system’s physical
laws compared to input-output data are available. These
models are comparably simpler and require less effort to build.
However, they demand intricate pre-processing of monitoring
data to extract the relevant features [Din+11; JQ03]. Also,
they lack interpretability in most of the cases, especially in
engineering applications1

• Hybrid models: These models offer an integration of a physical
model and a data-driven approach aiming to combine the
benefits of both. The integration could be achieved in either
of two manners; a series manner, where data driven models
are used to estimate an uncertain and unobserved parameter
in the physical model, thus complementing its definition, or a
fusion manner, where the outputs of both models are combined
to reconstruct a global output. Either ways, hybrid models are
gaining a lot of attention due to their exhibited performance
and precision. Nonetheless, they could be computationally
costly to deploy [RPK19].

1Currently, intensive research is being conducted to improve the interpretability
of data-driven models, yet it is still more prominent in natural language
processing and computer vision domains [Sam19].
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It is rather typical in industrial applications to have systems com-
posed of an array of different assets, which need to be monitored and
maintained. When considering the choice of a damage estimation
method, the degree of variability of system assets needs to be ac-
counted for, while not overseeing the extent of homogeneity among
them.

A single-asset system typically holds one or more identical assets. An
example on that could be an array of bearings in machines, all having
the same designation; hence, identical dimensions, identical build-
up, identical operating principles, identical range of load bearing
capacities (reflected in stress and heat distribution in the bearing),
as well as identical set of potential failure mechanisms. In this case,
it suffices having a single damage model (whether physics-based,
data-driven, or hybrid) that could be instantiated and executed for
each asset. The different instances of this model would differ in
the input system states and hence output damage estimates as the
operating conditions and anomalies differ from one to the other.

In the context of this work, a multi-asset system refers to a system
comprising assets with variant principles of operations, build-ups, or
purposes. With respect to a multi-asset system, a system composed
of heterogeneous assets is referred to as a portfolio, while a system
composed of homogeneous assets is referred to as a fleet [Pet18].
Taking bearings as a clarification example. In terms of variant
operation principles, a system composed of roller bearings and fluid
bearings is a multi-asset system, since the mode of operation is
distinct between both families of bearings, and has a direct impact
on failure modes and degradation. In terms of variant build-up, a
system composed of roller bearings and needle bearings is considered
a multi-asset system. In this case, both bearings belong to the
rolling element bearing family (i.e. same operation principle), yet
they differ in structural build-up. Needle bearings have slenderer
races and rolling elements resulting in reduced stress peaks under
axial load compared to roller bearings. This in turn reflects on the
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failure mechanisms; needle bearings typically experience failure due
to brinelling, while roller bearings tend to experience spalling and
pitting. The two previous cases are examples of portfolios.
On the other hand, a system composed of different roller bearings
is considered a fleet, even if the bearings vary in dimensions or run
under different operating parameters. All the assets have the same
operating principles and build-up, thus resulting in similar loading
profiles. The variation in dimensions and operating conditions reflects
mainly in the magnitude of loading and stress but not in their
distribution profiles. Hence, for the different roller bearings, similar
degradation and failure mechanisms could be expected [AG03].

When deriving a damage model for single-asset systems, physics-
based models is relatively less arduous since only one asset with its
respective degradation model is under consideration. On the other
hand, for data-driven models, the diversity of the experimental and
operational data required by the model is limited to the diversity of
the operating conditions only; i.e. diversity of the model inputs. This
means that historical data of different assets can be accumulated for
the model development.
In multi-asset systems, the diversity of the assets must be covered in
the damage models. Considering the example of the portfolio of roller
and fluid bearings, two physical models would need to be developed.
With respect to data-driven model, either two separate models would
need to be developed, or alternatively a more sophisticated model
which can distinguish between the operation principles of the two
bearings. The latter is more computationally intensive and both
alternatives would require a larger dataset to develop the model.

Prognosis models for fleets lie midway. With fleets, the similarity in
the structural build-up and operation principles allows, to an extent,
for the re-usage of models from other assets. It should be made clear
that damage estimates from those models are not precise due to the
dimensionality variance.
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Take an example of a fleet of two roller bearings with one having
shorter roller length than the other, yet both are undergoing the
same cyclic loads. Both bearings will have equivalent contact stress
distribution profiles, yet the one with shorter rollers will experience
higher contact pressure, thus higher stress peaks on the races. If
the applied load is such that the stress in one bearing cross the
yield strength of the material, while the stress in the other is still
below, different material fatigue laws would need to be applied to
estimate the damage. For the one with stress crossing the yield limit,
High-Cycle Fatigue (HCF) will not be valid in this range of loading.
Alternatively, data-driven models can be used. The degradation in
the bearing with stress below the yield strength is stress-driven, while
in the other the degradation is strain- and crack-driven [ETJ15].
Plasticity associated with strain-driven degradation induces different
dynamics to the system’s output signals, while cracks developing in
the races induce cyclic impulses in the output signals. The signal
profile observed for a system experiencing stress-driven degradation
is different. Hence, using one bearing’s set of signals to train the
model for the other bearing’s model means that the training set
would differ from the deployment set, leading to large errors in
the damage estimates. The same problem would arise if a fleet is
composed of two roller bearings with identical dimensions, but one
is loaded more than the other, to the extent that it experiences
plasticity and crack initiation, while the other does not.

From this discussion, it can be concluded that, for fleets, models
could be transferred among the assets, however, only within a limited
range of operation.

For the scope of this work, the focus is dedicated to damage estima-
tion for fleets, and not portfolios. Motivated by the discussion in the
previous paragraphs, the approach Simulation Models and Artificial
Intelligence Combined (moSAIc) is proposed as a methodology for
damage estimation for fleet assets based on hybrid modelling. The
hybrid model consists of an ensemble of physics-based models, whose
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damage estimates are combined using a weighted average to yield a
damage estimate of an asset that has no damage estimation model.
The weights assigned to each simulation model are calculated by a
data-driven model, which is trained to generate weights such that the
deviation between the estimated damage value and the corresponding
ground-truth value is minimized.

The following chapters are organized as follows:
In Chapter 13, ensemble and Mixture of Experts (MoE) models
are first introduced as a foundation for moSAIc, followed by a de-
tailed formulation of the proposed methodology, and a description
of the architecture of the hybrid model. Afterwards, the specific
model preparation steps as well as the model pipeline are elaborated.
Finally, in Chapter 14, a benchmarking example is presented to inves-
tigate the robustness and sensitivity of the model to its constituents,
parameters, and assumptions. In addition, the model’s performance
is compared to that of purely data-driven models applicable to the
problem of damage estimation in fleets.
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13Methodology

As pointed out earlier, the fundamental concept of data-driven ap-
proaches is trying to find a black-box relationship between inputs and
outputs by adjusting the weights and parameters of the underlying
model. In the context of supervised Machine Learning (ML), the
hypothesis space is searched for an appropriate mapping between the
inputs and the outputs, such that it satisfies, as much as possible,
the prescribed performance metric, e.g. accuracy, precision, etc. In
many cases, different methods compete in terms of performance on
the considered task. In fact, in most settings, there is not a single
method that consistently outperforms the others, rather, different
methods achieve different performance levels in different input do-
mains. Hence, it can be inadequate to restrict the choice of the
method to a single model, and one could instead favour combining
the results of different base models together under a committee or en-
semble, in a process referred to as ensemble learning. Different forms
of ensemble learning include the combination of different model
results through Bayesian averaging, Random Forests, Bootstrap
Aggregation (Bagging), and Boosting [ZM12].

13.1 Mixture of Experts
One form of ensemble learning is the Mixture of Experts (MoE)
models. In Mixture of Expertss (MoEs), it is assumed or proven
that no stand-alone model can attempt the underlying problem.
Hence, the problem space is divided into different subspaces, each
is allocated to an expert base model, hypothesized to yield optimal
performance on such a subspace. The results of different base models
are combined to create the relationship between the input-output
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sets of the problem. The combination is achieved by associating each
base model with a weight, which is typically decided by a gating
network. The weights in that sense resemble the competency of the
expert base model towards the whole problem. Building an MoE
model occurs in two folds: 1) selecting and building base models,
and 2) training the gating network to yield optimal weights, such
that the output of the MoE satisfies the prescribed performance
metrics [ME14].

13.2 Architecture of moSAIc
Having given an overview of the MoE in the previous paragraphs,
in the following paragraphs, the details of the proposed model,
Simulation Models and Artificial Intelligence Combined (moSAIc),
is explained. The fundamental idea of moSAIc is to exploit the
existing similarity between the assets’ geometric features, material
laws, and operation principles, which implicitly influence the failure
mechanisms, such that the existing damage models of assets can be
re-used by other assets.

The first works on moSAIc were first introduced in the collaborative
work [Hil+19], where the concept of using physics-based degradation
models as experts, and combining them linearly using a trained
Multi-Layer Perceptron (MLP) was proposed and demonstrated on
a synthetic example. To the time of writing this work, a MoE model
with physics-based expert models is a novelty, and [Hil+19] is con-
sidered the first contribution in that direction. The model however
didn’t incorporate either extraction of time-dependent features from
signals, and didn’t provide a criteria for selecting the expert degra-
dation models. Later, in [Ber+19], the same authors highlighted
the impact of expert models selection on the hybrid model’s perfor-
mance, albeit the absence of proposing a systematic approach for
this selection. These two aspects are explicitly attempted rigorously
in the scope of the current work.
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Figure 13.1.: A fleet of assets

Consider a fleet of na distinct assets X̊ = {x̊1, . . . , x̊na}. Each asset
x̊i is represented by the states of an engineering system whose inputs
and outputs are the tensors ůi and ẙi, respectively, see Figure 13.1.
In the context of a damage calculation problem, ů is an array of time-
variant operating conditions of the system, and ẙ is the accumulated
damage of the asset.

The estimate of the damage of x̊i could be evaluated using a dedicated
degradation model, x i, defined as x i : ui 7→ yi. Herein, ui is a vector
of inputs of the ith model, which is the discrete form of the ith
asset’s time-variant operating parameters, and yi is the corresponding
damage estimate. Due to modelling and measurement errors, dwi
and dvi, respectively, deviations between the real asset’s damage
value ẙ and the corresponding model’s estimate y usually exist.

The set of time-variant inputs of the ith model, x̊i, is referred to as
the dynamic features, and denoted by F U

i, and defined as:

F U
i =

{
u

(1)
i (t), . . . , u (nD)

i (t)
}

(13.1)

where u (j)
i is the jth dynamic feature of the ith asset.

Moreover, each ith asset x̊i is characterized by a unique set of static,
time-invariant parameters, such as geometric dimensions, material
properties, etc. known as the static features, and denoted by F C

i.
The set of static features of x̊i is defined as:

F C
i =

{
c

(1)
i , . . . , c

(nC)
i

}
, (13.2)
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where c (j)
i is the jth static feature of the ith asset. The static features

are used as parameters in the damage models; i.e. x i = x i
[
F C

i

]
,

with [.] denoting the parametrisation of x i by F C
i. The parametriza-

tion notation will be dropped out throughout the discussion for the
sake of notation simplicity.

Herein, the set of dynamic and static features for the whole fleet are
given as:

F U =
{
F U

1, . . . ,F U
na

}
,

F C =
{
F C

1, . . . ,F C
na

}
.

(13.3)

The sets of static features of different assets are defined to be non-
identical; i.e.

(
F C

i ∩ F C
j

)
⊂ F C

i, i 6= j. Since x̊i and x̊j are non-
identical engineering systems, hence for any identical set of dynamic
features F U

· = F U
i = F U

j applied to both systems, the damage
estimates of both systems would be non-identical, i.e. ẙi 6= ẙj.

As mentioned earlier, there exists different classes of damage models;
physics-based, data-driven, and hybrid models, denoted by x P, x D,
and x H, respectively. For any asset, there could exist a damage model
of either of these classes. In some cases, some assets could have no
model at all, either due to the inability to derive a mathematical
formulation of the damage behaviour (for physics-based models),
or unavailability of a data set of correlated operation parameters ů
and the damage values ẙ (for data-driven models). In this case, an
undefined damage estimation model x φ is associated to the asset,
with the aim to define it.

Let X = {x1, . . . , xna} = X P ∪X D ∪X H ∪X φ, where X P, X D, X H,
and X φ are the disjoint sets of physics-based, data-driven, hybrid,
and undefined damage models, respectively, Figure 13.2.

In this work, moSAIc is proposed as a hybrid damage model that
combines an ensemble of existing physics-based models using a data-
driven fusion method. moSAIc can be categorized as an MoE model
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Figure 13.2.: A fleet of damage models

for the damage estimates for fleet assets with unknown damage
models. For an MoE model, a set of expert models needs to be
defined. Here, we refer to this set as the set of nbbasis models X B.
Details about the proper selection of basis models are detailed later
in this chapter.

The vector ui is defined to be the vector of inputs to the ith model
as

ui =
(
u

(j)
i

)nD
j=1

, (13.4)

and ci to be the vector of static features of the ith asset as

ci =
(
c

(j)
i

)nC
j=1

. (13.5)

For an arbitrary vector of operating conditions u, each basis model
x B

i yields a corresponding damage estimate y B
i. The damage

estimates are fused together by assigning a weight α
B
i ∈ [0, 1] to

each. Hence, the weighted-sum of the damage estimates is given
by:

ŷ =
nb∑
i

α
B
iy

B
i,

nb∑
i

α
B
i = 1. (13.6)

In MoE models, the weights are decided by a gating network to ac-
count for the non-linear relationship between the inputs and outputs.
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In moSAIc, the gating network is an MLP, parametrized by the set
of parameters PG, and is defined as a mapping function such that

f G [PG] : (c,u) 7→ α
B, (13.7)

where u is the vector of model inputs, c is the vector of static features,
and α

B is the vector of weights assigned to the basis models. f G is
the function relating the model inputs and static features vectors
to the weights vector. PG is the set of MLP’s hyper-parameters,
e.g. the number of layers, number of perceptrons in each layer,
perceptrons’ activation functions, learning rate, the weight assigned
to each perceptron’s output, the bias in each layer, etc.

To this end, the only element in Equation (13.7) that remains un-
defined is the set of function parameters PG. Within moSAIc, the
goal is to estimate a weights vector α

B for a given (c,u), which
combines the basis models’ damage estimates to approximate the
target damage of the unknown-model asset as precisely as possi-
ble. Herein, the objective function to be optimized is the difference
between moSAIc’s damage estimate and the target damage.

The optimization problem is defined as follows:
Let y O be the target damage and its corresponding estimate ŷ.
Following the ML jargon, the difference between the target damage
and the estimated damage values is referred to as the loss function,
and is denoted by LM. Denoting P∗G to be the set of optimal MLP
parameters, that minimize LM, P∗G can be obtained by solving the
optimization problem

P∗G = argmin
PG

LM (PG) . (13.8)
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Figure 13.3.: Architecture of moSAIc

Defining α
M = f G [P∗G] (c,u), obtained by substituting P∗G in Equa-

tion (13.7), moSAIc’s damage estimate can be re-written by substi-
tuting α

M into Equation (13.6)

yM =
nb∑
i

α
M
iy

B
i =< α

M,y B > . (13.9)

The architecture of moSAIc is shown in Figure 13.3. For complex
problems, there is no closed form solution to the optimization prob-
lem in Equation (13.8). Alternatively, machine learning is applied
to learn a surrogate relationship between (c,u) and α

M through a
gradient-descent optimization procedure.

The elements of PG are classified into two groups: 1) the matrices
of weights and biases associated to the individual perceptrons of the
MLP, W and b, respectively, and 2) the set of other MLP hyper-
parameters, such as the number of layers, the size of each layer, the
learning rate, the activation function of each perceptron etc. In
practice, only W and b are solved for by applying gradient-descent

13.2 Architecture of moSAIc 165



algorithms, while the rest of the parameters could be chosen using
hyper-parameter tuning methods, e.g. random search or grid search.
Further details about the theoretical principles of MLPs can be found
in [Kro16].

In a supervised learning setting, given a training set of nT examples,
defined as

T =
{{(

c {q}, u {q}
)
, y {q}

}
| q ∈ {1, . . . , nT }

}
, (13.10)

the gradient descent procedure attempts to find the appropriate
weights and biases of the MLP’s perceptrons. To avoid over-fitting
to the training set, elastic-net regularization is employed to penalize
large weights. The loss function LM (PG) is, herein, re-written as

LM = 1
nT

nT∑
q=1

∣∣∣∣∣1− yM{q}

y O{q}

∣∣∣∣∣+ λ1‖W‖1 + λ2‖W‖F , (13.11)

where λ1, λ2 ∈ PG are the lasso and ridge regularization parameters,
respectively. ‖W‖1 is the l1-norm of the weights matrix and ‖W‖F
is the Frobenius norm of the weights matrix.

At the initialization of the training process, the weights and biases are
randomly initialized, and an estimate of damage is computed, from
which the loss is evaluated using Equation (13.11). This estimate is
used to feed-in the back-propagation process to iteratively update
the individual weights of the MLP by

w
[l]
ab|m+1 = w

[l]
ab|m − ∆w[l]

ab|m, (13.12)

where w[l]
ab|m is the contribution of the bth perceptron’s output to

the value of the ath perceptron in the lth layer at the mth epoch,
∆w[l]

ab|m is the update increment of the said weight.
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13.2.1 The general case of moSAIc

In the previous paragraphs, the simplest form of the proposed damage
estimation model has been introduced. The underlying assumptions
for the proposed architecture and formulations are:

1. For every asset x̊i, there exists one and only one degradation
model x i, i.e. the degradation of the asset is attributed to a
single degradation mode, e.g. mechanical degradation due to
Low-Cycle Fatigue (LCF).

2. Every model x i outputs only a single damage estimate yi, i.e.
reducing the damage of the system to a scalar metric.

In reality, engineering systems are rather complex, and their degra-
dation is typically caused by a multitude of failure mechanisms,
hence dictating the need for as-many degradation models describing
each. The significance of each failure mechanism’s contribution to
the overall degradation of the asset is assigned using a decision
mechanism, which is not the focus of this discussion at the moment.
Additionally, each degradation model doesn’t necessarily reduce to a
scalar damage, but typically to a vector of damage estimates for the
same asset undergoing the same inputs ui.
For example, let x i be a LCF model for a given roller bearing, possi-
ble model outputs may include the Remaining Useful Lifes (RULs)
of each roller, the inner and outer races, and the cage. This gen-
eral architecture including models having multiple as well as single
outputs is shown in Figure 13.4.

Recalling the definition of the model parametrized by the set of static
features introduced earlier, x id [ci] denotes the model describing the
dth degradation phenomena of the ith asset parametrized by the
static features ci. Herein, it should be noted that not all assets should
necessarily have a thoroughly complete set of degradation models.
For instance, for a fleet of roller bearings, a subset might have
both structural LCF and degradation models attributed to grease
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Figure 13.4.: General configuration of a damage model set-up and out-
put

contamination, while the rest have only corresponding contamination-
driven degradation models.

In this work, for simplicity, it is assumed that the different damage
models are independent. Hence, deriving the damage model x φ

attributed to the dth degradation phenomena requires only the
existence of basis models attributed to the same phenomena. Herein,
the general form of the definition of x B can be re-written as

X B =
{

x P
id ∈ X P

d | i ∈ {1, . . . , nb}
}
, (13.13)

where X P
d is the subset of physics-driven models having damage

models corresponding to the dth degradation phenomena. The vec-
tors of damage estimates of the ith basis model and its associated
vector of moSAIc weights are given by:

y B
i = x B

i [ci] (u) ∈ Rne,i ,

α
M
i =

[
f G [P∗G] (c,u)

]
i
∈ Rne,i ,

(13.14)

where ne,i is the number of damage estimates from the ith basis
model. For generality, the basis models don’t yield an equal number
of estimate; i.e. ne,i 6= ne,j, and don’t yield correspondent damage es-
timates; e.g. taking two basis models of roller bearings, the first yields
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damage for the rollers only, while the second yield damage estimates
for the rollers and the races. Hence, {1, . . . , ne,i} 6= {1, . . . , nej}.
Following this assumption, defining moSAIc’s damage estimate as
y M =

∑nb
i < α

M
i,y B

i > results in mathematical inconsistency in
dimensions and indexing.

To resolve this inconsistency, the dimensions of the individual ba-
sis damage and weights vectors should be adjusted, as well as the
indexing of their constituent damage estimates, such that all corre-
sponding constituents are positioned at the same index, thus allowing
vectorized operations to be applied. This procedure is referred to as
the assembly of consistent vectors 1, and its assembled outcomes are
scribed as (̃·).

To define the assembled vectors, we first define the size ñe =∣∣∣∣ nb⋃
i=1
{1, . . . , ne,i}

∣∣∣∣, calculated by evaluating the cardinality of the
union of sets of indexes of all basis models. Additionally, the func-
tion f ã : Rne,i → Rñe is defined, which maps the indexes of the
individual basis output / weights vectors, e, to their corresponding
index in the consistently assembled vectors, ẽ. Therefore, the ẽth
element of the assembled vector of basis damage estimates and the
vector of their associated weights are defined as:

(ỹ B
i) ẽ =

{
(y B

i) e, if (y B
i) e ∈ y B

i

0 else
, (13.15)

(α̃M
i) ẽ =

{
(αM

i) e, if (αM
i) e ∈ α

M
i

0 else
(13.16)

1Naming adopted from the Finite Elements Method (FEM) assembly procedure
of matrices and vectors.
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Herein, the vector of moSAIc’s damage estimates for any arbitrary
asset can be written as:

ỹ M =
nb∑
i

< α̃
M
i, ỹ B

i > ∈ Rñe . (13.17)

In Appendix C, the assembly procedure is elaborated on a minimal
example.

13.2.2 Back-propagation in moSAIc

In moSAIc, the calculation of the update increment of the weights of
the hidden layers follows the standard calculation procedure of back-
propagation in MLPs, see e.g. [Kro16] for details. Only the update
of the MLP’s output layer weights is influenced by the architecture
of moSAIc, and differs from the standard MLP’s output layer’s back-
propagation procedure. This is explained in the following paragraphs.

(a) Standard MLP (b) moSAIc

Figure 13.5.: Output terminal of moSAIc’s MLP vs. a standard MLP.
The MLP is enclosed by the light grey dotted polygon,
and its outputs(s) are contained in the dark grey boxes

Figure 13.5 shows the terminal layers in a standard MLP deployed
as a data-driven damage estimation model, and the MLP deployed
in moSAIc (nb= 2) for estimating the weights associated with the
basis models. The architectures are shown for models estimating a
single damage, and could be generalized by applying the relevant
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linear algebra operations to the tensors introduced in the previous
paragraphs.

Three main differences can be remarked between the two architec-
tures:

1. The output of moSAIc’s MLP is weights vector α
M which is

afterwards used to predict the damage, while the output of the
standard MLP is the damage prediction y directly.

2. The output of moSAIc’s MLP is a vector of size nb (or a tensor
of size nb × ñe for the general case), while the output of the
standard MLP is a scalar; i.e. size 1 (or a vector of size ñe for
the general case).

3. The loss function of moSAIc is not calculated directly from
the MLP’s outputs, but rather on the proceeding value yM, cf.
Equation (13.11). Contrarily, in a standard MLP, the model’s
loss function is evaluated directly on the MLP’s output.

Let the superscript [L] denote quantities associated to the last layer
of the MLP, z[L−1]

b denotes the output of the bth perceptron in the
second-to-last layer, w[L]

ab be its associated weight, and let z[L]
a =∑

b w
[L]
1b a

[L−1]
b be the ath perceptrons’ input to the last layer, cf.

Figure 13.5.

For a classical MLP, the non-regularized loss function given by the
Mean Absolute Relative Error (MARE) between the target damage
and the MLP’s damage is expressed as follows:

LG,MLP =
∣∣∣∣1− yMLP

y O

∣∣∣∣ , (13.18)

where yMLP = f act
(
z

[L]
1

)
, f act is the activation function, and y O is

the target model output.
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Herein, the update increment of the weights of the last layer, ∆w[L]
ab ,

can be obtained by applying the chain rule, as follows:

∆w[L]
ab = η

∂LG,MLP

∂w
[L]
ab

= η

(
−1
y O

)
︸ ︷︷ ︸
∂LG,MLP

∂yMLP

δf act
(
z[L]
a

)
︸ ︷︷ ︸
∂yMLP

∂z
[L]
1

a
[L−1]
b

︸ ︷︷ ︸
∂z

[L]
1

∂w
[L]
ab

, (13.19)

where δf act is the derivative of the activation function, whose closed-
form can be looked up in machine learning literature for standard
activation functions. η ∈ PG is the learning rate, a hyper-parameter
of the MLP, which controls the gradient descent’s speed.

On the other hand, in moSAIc, the output of the MLP is the weights
vector, αM, and not the damage. The loss function of the MLP2 is
given by the mean square error between the target weights vector
α

M,O
i and the MLP’s output weights vector α

M,G
i . The MLP’s loss is

herein expressed as:

LG,M = 1
2

nb∑
i

(
α

M,O
i − α

M,G
i

)2
, (13.20)

where α
M,G
i = f act

(
z

[L]
i

)
.

In the case of moSAIc, although α
M,O is the target weights vector,

it is not provided as a label for training set examples. Instead, it has
to be inferred from the given target damage y O. The target damage

2Not to be confused with the loss function of the whole model in Equa-
tion (13.11).
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can be expressed in terms of the target weights and the basis models
damage estimates as

y O =
nb∑
i=1

α
M,O
i y B

i = α
M,O
a y B

a +
nb∑
i=1
i 6=a

α
M,O
i y B

i, (13.21)

where the last term represents the target contributions of the basis
damage estimates, excluding the ath estimate. As mentioned earlier,
the target weights are not provided as training labels, thus Equa-
tion (13.21) represents an under-determined system. This problem
could be overcome by approximating the summation in the last term
using the corresponding MLP’s output weights, by introducing

y O
6=a =

nb∑
i=1
i6=a

α
M,O
i y B

i ≈
nb∑
i=1
i 6=a

α
M,G
i y B

i (13.22)

Substituting Equation (13.22) in Equation (13.21) and arranging
the terms, the α

M,O
a could be expressed as

α
M,O
a =

y O − y O
6=a

y B
a

. (13.23)

Substituting Equation (13.23) into Equation (13.20), the update
increment of the weights of the last layer, ∆w[L]

ab , can be obtained
by applying the chain rule, as follows:

∆w[L]
ab = η

∂LG,M

∂w
[L]
ab

= η

(
y O − y O

6=a

y B
a

− α
M,G
a

)
︸ ︷︷ ︸

∂LG,M

∂αM,G
a

δf act
(
z[L]
a

)
︸ ︷︷ ︸
∂αM,G

a

∂z
[L]
1

a
[L−1]
b︸ ︷︷ ︸
∂z

[L]
1

∂w
[L]
ab

, (13.24)
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13.3 Hybrid Model Preparation
In this section, four necessary model preparation steps are intro-
duced, and their application in the context of moSAIc is elaborated;
1) classification of damage severity prior to interpolating among
basis models, 2) dynamic features extraction from sensor signals,
3) the selection of static and dynamic features, c and u, respec-
tively, and 4) choice of the set of basis models X B. Conventional
data pre-processing practices, e.g. hyper-parameter tuning, input
standardization, etc. are not addressed in this text.

13.3.1 Damage pre-classification

Most degradation models in literature describe accumulated damage
Da in Equation (7.7) as a value between 0 and 1. Hence, under a
given operation scenario, the damage accumulation severity could be
categorized into: negligibly damaged when Da ≈ 0, fully damaged
Da ≈ 1, or partially damaged 0 < Da < 1.

The dominance of the extreme values, i.e. 0 and 1, in a dataset could
pose a challenge to the model trying to fit one regression model to
samples from three different distributions. To overcome this and
ensure a model fits a regression kernel capable of distinguishing the
three behaviours, larger training sets, as well as computation effort
for training is needed. Typically, obtaining a training set generous
with samples having full or negligible damage is a challenge.

Alternatively, this problem could be broken down into a preliminary
classification step, whereby, given a set of inputs (c,u), a classifier
algorithm, e.g. Random Forests (RFs) [Bre01], predicts the damage
severity. Having categorized the damage severity class, only the
cases with partial damage are passed to the hybrid model to quantify
their damage severity numerically.

In this work, the classifier is trained on the same training set as
the hybrid model. Since the decision of the classifier is passed
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downstream to the hybrid model, it is essential to make sure that
the predicted severity matches the actual, and not misclassified as
another severity. Hence, the classifier parameters are to be tuned
such that it favours maximizing precision over recall, while not
neglecting the latter.

Nonetheless, not even a perfect classifier can be 100 % precise, and
misclassified information can inevitably pass to the hybrid model.
To address this issue, during the training phase, not only the samples
labelled as partially damage are let through to the hybrid model,
but a portion of the samples labelled as fully or negligibly damaged.
Under this setting, the regression step performed by the hybrid
model gets trained on extreme cases by incorporating the entire
spectrum of accumulated damage values. Given that, the probability
of a misclassified case getting corrected by the regression step is
higher, hence yielding a more precise result.

13.3.2 Dynamic features extraction

As mentioned earlier, dynamic features are time-variant features,
provided as input to the degradation model. In many data-driven
applications, time-series data is handled using Recurrent Neural
Networks (RNNs) or its more advanced variants, e.g. LSTMs. Such
models come with additional computational overhead. On the other
hand, another approach to handle time-series data is through extract-
ing descriptive statistical quantities, distinguishably representing the
signal characteristics.

In the context of this work, the focus is directed to estimating
damage for structures undergoing oscillatory loading, where cyclic
signals are commonly recorded by sensors. Hence, the following
discussion focuses on the extraction of features relevant to them.
Other applications having different sensor data signatures might
require different treatment to extract representative features.
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For cyclic signals, [GMZ16] suggests extracting features from the time
domain (temporal features), frequency domain (spectral features), as
well as time-frequency-related features, especially for non-stationary
signals.

Temporal features represent the statistical properties of a signal.
Some common temporal features are

1. Mean: filters the signal, or windows of it, to an average value

2. Median: filters the signal to an average value, while being less
sensitive to outliers

3. Root Mean Square (RMS): represents the energy content of
the signal

4. Peak: measures the strength of the vibrations, and reflects the
extent of damage

5. Skewness: indicates the presence of rough surfaces between
contacting components (e.g. rolling elements in bearings)

6. Kurtosis: characterizes the impulsive and noisy behaviour of
the signal

Spectral features are extracted by performing a Fourier transforma-
tion on the signal, from which fundamental frequencies of the signal
and their corresponding signal power content can be retrieved. In
many rotating machinery applications, for instance, the fundamental
frequencies depend on the frequency of the system loads, and its
multiples. In other applications, e.g. bearings, the geometry of the
components contribute to the fundamental frequencies. Due to the
periodic nature of operation, damage-related features are associated
to such fundamental frequencies. Therefore, their corresponding
power spectral density functions are used as spectral features.

Finally, temporal-spectral features are features connecting both time
and frequency domains. These are particularly relevant for non-
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stationary signals, where signal trends and mean variations over
time are as relevant to the damage. Temporal-spectral features can
be obtained from short-term Fourier transformation, which performs
a sliding-window Fourier transformation on the signal, yielding a
time-variant power spectral density functions. Further elaboration
on the temporal-spectral features is not relevant to this work, and
interested readers are directed to [GMZ16]

13.3.3 Feature selection

Feature selection is a very common preparatory step for statistical
models. Feature selection doesn’t only bring an advantage to the
models’ performance, but also the failure to select the relevant fea-
tures from a larger set could impair the accuracy and generalization
capability of the model.

In this work, features are classified into static and dynamic features.
Among either sets, some features are more correlated to damage
than the others, in addition to some features being dependent on
others features. Accordingly, the feature selection process should
exclude features dependent on others, and extract those that exhibit
the highest contribution to the damage estimation precision.

To asses the contribution of features to the damage estimate, an
Extremely Randomized Trees Regressor (ERTR) is employed. ERTR
is an evolutionary development of the Random Forest (RF), known
for its accuracy, robustness and computational efficiency [GEW06].
An importance threshold is set on the feature importances, below
which features are deemed insignificant to the damage estimate.

The correlation among the important features selected by the ERTR
is assessed to rule out the correlated features. Since the features
investigated are quantitative, Pearson’s and Spearman’s correlation
coefficients pose as alternatives. In the course of this work, Spear-
man’s correlation coefficient is preferred since it can measure the
correlation between ranked values, thus highlighting the monotonic-
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ity between the variables, rather than the linearity. Additionally,
Spearman’s correlation is less affected by outliers in the data, making
it more attractive, especially for industrial use-cases, where outliers
are common [CSP02].

The Spearman’s correlation coefficient scales between −1 and 1,
with 1 indicating negative and positive monotonic correlations, re-
spectively, while 0 is a sign of no correlation at all. To decide on
dependent features, a correlation threshold is set on the absolute
values of the coefficient. Features with correlations coefficients higher
than the threshold are excluded from the set, leaving behind only
the feature with the highest correlation to the damage variable.

The outcome of both the feature importance step and the correlation
identification steps are governed by the importance and correlation
thresholds. Both thresholds are considered hyper-parameters of the
hybrid model, which ought to be identified either by search methods,
or by recommendations from experts based on their know-how about
the assets degradation.

13.3.4 Basis models choice

Ideally, the selected basis models should be chosen such that they
span the entire range of static features describing the physics-based
models. As well, the basis should span the entire space of dynamic
features, describing the operation scenarios. In this work, it is
assumed that all physics-based models can estimate the damage
equally-precise for the entire domain of dynamic features. Therefore,
the basis selection procedure should yield basis models that scatter
uniformly within the space of the static features, and are independent
from one another; i.e. the information added by one basis model
should not be already represented by another.

A first step for identifying the basis models is to select the damage-
relevant features, so as not to overwhelm the hybrid model with
redundant basis models. As explained in the previous paragraphs, the
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feature importance is obtained from an ERTR model. Depending on
the chosen importance threshold, unimportant features are dropped
from c, thus reducing its size to nC+. For the upcoming discussion,
c is taken to hold only the important features.

A first question to care for is the number of basis models required to
adequately represent the degradation behaviour of assets in the fleet.
A linear n-dimensional feature space can be spanned and represented
by n+ 1 points. Hence, nb = 1 + nC+ models are assumed sufficient
to represent the fleet.

The choice of the basis models is performed sequentially. As a
prerequisite, the function f dist which evaluates the distance between
every ith static features vector and any other lth vector in F C is
defined as

f dist (ci, cl) = ‖ci − cl‖2 . (13.25)

It is important to note that all the vectors in F C used through the
discussion should be normalized.

The set of basis models X B ⊆ X P is hereafter defined as

X B =
{

x B
k

}nb
k=1

=
{

x P
b | b ∈

{
1, . . . ,

∣∣∣X P
∣∣∣}}, (13.26)

where

b = argmin
i



(∥∥∥(f dist (ci, cl)
)na
l=1

∥∥∥
2

)na
i=1

if k = 1,


∥∥∥(f dist (ci, cl)

)na
l=1

∥∥∥
2∥∥∥∥(f dist (ci, cl)

)k−1

l=1

∥∥∥∥
2


na

i=1

if k > 1,

(13.27)
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Figure 13.6.: Example for basis selection in different feature spaces

Figure 13.6 shows a minimal example demonstrating the basis selec-
tion process, for a fleet with two features. The models’ positions in
the features are indicated by the black circles. The selected models
and their order of selection are indicated by the number inside.

In a structured feature space, the basis models land automatically to
the corner models, where they can fully span the entire feature space.
On the other hand, for the unstructured space, the basis models get
pushed towards the models lying in the outskirts of the scatter. In
that case, the fact that the algorithm considers the already chosen
basis while choosing the consequent ones can be observed. Basis 2 is
chosen as far as possible from basis 1, whereas basis 3 maintains a
distance from the two previously selected basis.
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13.3.5 Preprocessing pipeline

To summarize, Figure 13.7 illustrates the model preparation pipeline.
The following sequence is undergone:

1. Extract the temporal, spectral, and tempo-spectral dynamic
features from the raw sensor signals. Simultaneously, the rele-
vant static features are inferred from the assets’ catalogues

2. Consistently assign the damage labels to the corresponding
extracted features

3. Split the features and labels into train and test sets

4. Assess the feature importance on the training set and exclude
less-important and correlated features

5. Perform the basis selection procedure, and extract a subset of
basis models from the training set. Hence, reduce the training
set to the unselected models only

6. Train a classifier to categorize the damage severity

7. Perform cross-validation on K-folds of the training set to tune
the model hyper-parameters

8. Train the model on the entire training features and labels, and
the basis sets labels

9. Evaluate the trained model’s performance on the test set
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182 Chapter 13 Methodology



14Numerical Investigation

In this section, numerical investigations are conducted on the pro-
posed hybrid approach for damage estimation. The role the physics-
based simulation models play in enhancing the accuracy and precision
of the estimate is highlighted. Furthermore, the edge of this hybrid
model over traditional data-driven models in terms of robustness
and intuitiveness of the results is assessed.
Throughout this study, the models’ sensitivity to the following as-
pects is investigated:

• Impact of pre-classifying the damage severity

• Size and selection method of the set of basis models X B

• Importance and correlation thresholds of static and dynamic
features extraction

• Performance compared to simulation-free models

To allow for an exhaustive investigation of Simulation Models and
Artificial Intelligence Combined (moSAIc)’s sensitivity to its con-
stituents, inputs, and hyper-parameters, the following problem is
introduced.

14.1 Problem Description
The problem shown in Figure 14.1 consists of a cantilever structure
of total length l, and is discretized using 10 equisized Euler-Bernoulli
beam finite elements, each of length dl. All elements have the same
isotropic material properties: Young’s modulus E, density ρ, and
Poisson’s ratio ν, and their material behaviour is governed by a linear-
elastic material law. Two solid alloys are used in this study; Stainless
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Figure 14.1.: Beam benchmark example. (a) Beam elements discretiza-
tion and boundary conditions, (b) Box cross-section, and
(c) Tube cross-section.

steel alloy SS316, and Aluminium alloy Al5086. Their corresponding
nominal material properties, denoted by (·)o are shown in Table 14.1.
Additionally, the fatigue strength Sf and fatigue coefficient b, which
will be required to evaluate damage are shown in the same table.

Table 14.1.: Nominal material properties of the beam structure

Material Eo (GPa) ρo (kg/m3) νo Sf (MPa) b

SS316 210 7809 0.30 1762 -0.209
Al5086 70 2710 0.27 491 -0.081

Fleet assets

The beams have a constant cross-section profile throughout their
lengths, shown in Figure 14.1 (b) and (c). Two profiles are considered
in this study; 1) box profile, defined by the breadth b, height h,
horizontal thickness db, and vertical thickness dh, 2) a tube profile,
defined by the radius b = h, and the radial thickness db = dh.
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Herein, the different cross-section profiles, cross-section dimensions,
and material properties can be combined to create the set of static
features of fleet assets. The respective domains of each static feature
are summarized in Table 14.2

Table 14.2.: Domains of asset variant parameters

Parameter Domain

Profile, P ∈ {Tube,Box}
Material, M ∈ {SS316,Al5086}
b (m) ∈ {0.05, 0.01}
h (m) ∈ {0.05, 0.01}
db/b ∈ {0.2, 0.5}
dh/h ∈ {0.2, 0.5}

The reader is reminded at this point that the values in Table 14.2 are
not essentially static features of the model. Rather, these values are
used to create a fleet of beam assets, while the definition of the set of
static feature follows in the subsequent paragraphs. Examining the
possible combinations of parameters, it is found that 32 are possible
for Box profile, only 8 are possible for the Tube profile, since b = h

and db/b = dh/h. This yields a fleet of 40 unique assets.

For the definition of the fleet assets, variances in material properties
are accounted for, i.e. not all beams from the same material have
the same material properties. Instead, E, ν, and ρ are respectively
sampled from the following Gaussian distributions,

E ∼ N
(
Eo, σ

2
E

)
GPa, ν ∼ N

(
νo, σ

2
ν

)
, and ρ ∼ N

(
ρo, σ

2
ρ

)
kg m−3,

where σE = 5 GPa, σν = 0.01, and σρ = 15 kg m−3 denote the
standard deviations assumed in this study for the three material
properties. The sampled material properties are used solely in the
simulation of the different dynamic inputs, as will be shown later,
and will not be exposed as inputs to the damage model.
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Boundary conditions

The beam is excited by the sinusoidal force vector

f(t) = [fx(t), fy(t), fz(t)]T ,

where fx(t) = 0, and the y- and z-components are expressed by:

fy/z(t) = fo, y/z sin(ωf,y/zt) + dfy/z, (14.1)

where df ∼ N
(
0, 6.25× 10−2)N is a Gaussian noise super-positioned

on the sinusoidal force signal, fo is the amplitude of the force signal,
and ωf is its frequency. The uncertainty in the loading conditions
is demonstrated by sampling fo and ωf as well from the Gaussian
distributions, where ωf ∼ N (10, 2) Hz. Limiting this study to High-
Cycle Fatigue (HCF) damage, it is necessary to remain in the linear
elastic domain of the material. Hence, the means and the stan-
dard deviations of the force amplitude are varied with the material
choice. Accordingly, fo ∼ N

(
6.5× 102, 25

)
N for Al5086 beams, and

fo ∼ N
(
104, 2.5× 103)N for SS316.

The force vector is applied at an arbitrary node at distance lf
from the support, as shown in Figure 14.1(a). The distance lf
is given by lf = dl · U(3, 10), where dl = 0.1 m is the element’s
length, and U(3, 10) denotes sampling a node from a discrete uniform
distribution ranging from 3 to 10; i.e. the load is neither allowed on
node 1 (support node) nor node 2 (the node next to the support),
cf. Figure 14.1. For each asset, a total of 800 scenarios of unique
combinations of load amplitudes, frequencies, and positions are
generated.

The responses of the structure to the load scenarios are simulated
by applying them as boundary conditions on a finite element model
for each fleet variant. A linear transient solver with a 10−3 s time
step is used. The critical time step is inferred from the maximum
eigenfrequency of the system to be 10−2 s.
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To capture the cantilever’s response, three sensors are placed at node
2; a uni-axial stain gauge oriented in the x-axis, and two uni-axial
accelerometers oriented in the y- and z-axes. The position of the
sensors is intentionally chosen neither to be at node 1 (where damage
is evaluated), nor at nodes 3 to 10 (force application domain). Also,
it is intentional to fix the sensor position for all assets and loading
scenarios. Therefore, node 2 is chosen.

Static features

Static features can be inferred from Table 14.2. Bearing in mind that
the loading scheme induces damage caused by the normal stresses
at the support, the physics of failure can be exploited to derive
additional features. The normal stress σxx at the support of a
cantilever beam is inversely proportional to the second moment of
area Iy/z, depending on whether the transverse load is applied in the
y/z directions, respectively. Therefore, the second moments of area
Iy = bh3

12 , and Iz = hb3

12 are added to the set of static features.

With respect to the material parameters, besides the nominal values
of the Young’s modulus E0, Poisson’s ratio ν0, and density ρ0, which
describe the dynamics of the structure, the yield and ultimate tensile
strengths σY and σU , reflecting its mechanical strength, as well as the
fatigue strength σf and fatigue exponent b, dictating the endurance
of the material, are appended to the set of static features.

In total, an initial set of 20 static features is used, out of which the
unimportant and correlated will be filtered out before training the
model.

Dynamic features

Dynamic features, u, are to be generated by processing the 3 signals,
both in time and frequency domains. Exploiting the cyclic nature
of the load, hence the response, from the time domain, the mean,
peak, Root Mean Square (RMS), skewness, and kurtosis of the signal
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are extracted. From the frequency spectrum of signal, ideally, the
power spectrum density value at the load frequency is assumed to be
the most valuable information. Nevertheless, the information about
the load is to be unknown during the damage estimation procedure.
Hence, considering this as a feature to train the model is physically
an invalid assumption, and from a machine learning point of view
introduces data leakage.

Alternatively, a convolution operation with a square kernel function
is applied to the power spectrum to evaluate the mean energy con-
tent in subsequent frequency bands. In this problem, the domain
of the frequency spectrum obtained from a one-sided Fast Fourier
Transform (FFT) extends to 500 Hz, and is divided into 10 equisized
frequency bands, each is 50 Hz wide. Hence, the convolution opera-
tion yields 10 mean band-energy values. In the upcoming text, these
features are denoted by PSDmean.

The dynamic features naming convention follows the template

"acc<Node ID><direction>_<statistic>",

e.g. the feature "acc2Y_mean" refers to the mean of the accelerome-
ter’s Y-direction signal at node 2.

Having 5 temporal features, and 10 spectral features for each of the
3 sensor signals, in total, 45 initial dynamic features are used.
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Damage estimation

From the problem definition, the loading of the cantilever is domi-
nated by bending, and the most stressed point in the cantilever is
the outermost fibre of the support (at node 1). Therefore, for each
simulated boundary condition, the stress tensor is evaluated on node
1 at z = h/2 to estimate the damage, cf. Chapter 7.

For this problem, since HCF damage is dominant, Miner’s linear
damage accumulation rule is used. Since the stresses in the material
are below its yield strength, the stress-strain relationship remains
linear, and thus the relationship between the load and fatigue limit
could be simplified from the Smith-Watson-Topper (SWT) rule to
the Basquin’s rule, given by

σe,i = σfN
b
f,i, (14.2)

and σe,i is obtained from Equation (7.11). A rainflow algorithm is
applied on the variable loading sequence to extract the mean stress
and stress amplitudes.

The damage for each beam is estimated after applying the load
prescribed in Equation (14.1) for 108 load cycles. Figure 14.2 shows
the distribution of accumulated damage obtained for each asset.

Two families of damage distributions could be observed in Fig-
ure 14.2.

The first family contains beams 1 to 4 and beam 33, and has a
broad distribution of damages, inducing a first impression of high
sensitivity to the loading conditions.
Beams 1 and 33 share the same dimensions and material properties,
except that asset 1 is a box, while asset 33 is a tube. Both assets
have vertical and horizontal wall thickness of 0.2 m, which is the
thinnest wall in the fleet. This explains their large median damage
value.
On the other hand, beams 2, 3 and 4 have box cross-sections, just like
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model 1, except that their vertical and/or horizontal wall thickness
is 0.5 m instead of 0.2 m, hence making their smaller median damage
value justifiable.

Contrarily, the remaining 36 exhibit both a smaller average value
and variance in the damage accumulation with respect to the loading
conditions. Their average damage values scattered between 0.15 to
0.26, and their standard deviations between 10−2 to 10−1, compared
to a standard deviation of ≈ 0.3 for the first family.

MLP configuration

To perform the training and evaluation of the Multi-Layer Perceptron
(MLP), the fleet of beams is divided into

1. Basis models set X B, whose damage estimates are to be com-
bined linearly using the output weights α from the MLP,

2. Training set T , whose inputs u and c, as well as corresponding
damages y, are provided to the MLP to infer their relationship,
hence the appropriate α

M,

3. Test set E , whose u and c are input to the MLP to evaluate
whether it can suggest α

M correctly, and hence yield a correct
prediction of damage.

An important remark at this point is that the MLP during the
training phase doesn’t learn the relationship between the inputs and
the outputs of models in X B. Instead it only receives the resulting
outputs from the basis models as input. Accordingly, when evaluating
the model’s performance during the testing phase, the model is tested
both on the test set and the set of basis models. For the upcoming
discussion, when referring to the test set without explicit exclusion of
the basis models, the combined set of test models and basis models
is hereby referred to.
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14.2 Impact of Pre-classification
The first aspect investigated is the impact of pre-classifying damage
severity based on the input static and dynamic features. Herein, two
models are created:

1. The first model feeds all the data samples to the MLP, ir-
respective of their labelled damage severities. Thus, during
training, the MLP is trained on the entire training set, and
during testing, the model evaluates all test samples.

2. The second model incorporates a Random Forest Classifier,
which is trained to classify the severity of damage. During
training, the MLP is trained dominantly on the partially dam-
aged samples, and fewer samples from both extremes. During
testing, only if the sample is classified "partially damaged", its
damage severity gets quantified usingmoSAIc. Else, its damage
severity is mapped to the corresponding 0 and 1 damages.

The hypothesis to be tested within this study is that the incorporation
of a pre-classifier prior to the model’s MLP yields a smaller than or
equal Mean Absolute Relative Error (MARE) as compared to model
without a pre-classifier.

For this investigation, an Extremely Randomized Trees Regressor
(ERTR) is applied to assess the importance of static and dynamic
features to the damage. The top 20 %of the features are chosen,
then those among them having a Spearman correlation coefficient ≥
0.9 are omitted. The importance ranking of the static and dynamic
features are shown in Figure 14.3
Out of the static features, the nominal fatigue exponent b0, the
cross-section bounding area bh, the cross-section profile type, and
the second moment of area around the y-axis Iy are considered
important. Out of these, the second moment of area exhibits a 0.97
correlation coefficient with the bounding area, hence dropped, and
only the first 3 features are considered.
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From the dynamic features, 9 are deemed important, with the first
three showing surpassing importance, see Figure 14.3(b). The first
three features are all extracted from the strain signal, being its peak,
RMS and average energy content in the first frequency band. A
comprehensible selection, in fact, it is; the peak and RMS values
relate to the amplitude of the cyclic load, whereas the energy in
the first band encloses the signal energy content at the cyclic load’s
frequency. All 9 features exhibit a correlation coefficient ≥ 0.9, thus
funnelling down to the peak value of the strain signal.
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Figure 14.3.: Feature importance ranking
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The basis models are selected according to the procedure described
in Section 13.2, hence, nb = 4. The selected basis models are 13, 25,
33 and 37, and their corresponding selected static features are listed
in Table 14.3. It can be seen that the reduced static features space
is fully bounded by the chosen basis models, and that all variants of
the reduced static features are covered within.

Table 14.3.: Static features of basis models

Model b0 bh Profile

13 −0.209 1.0× 10−2 Box
25 −0.081 5.0× 10−3 Box
33 −0.209 2.5× 10−3 Tube
37 −0.081 2.5× 10−3 Tube

Both models undergo a 5-fold cross validation procedure to tune
their hyper-parameters to attain the best performance. The two
models are thereafter trained for 20 epochs, then evaluated on their
combined test sets.
For this fleet, the beams are either fully or partially damaged, and
none of the beams under any loading condition is negligibly damaged.
This reduces the number of severities predicted by the pre-classifier
to 2. For the model with a pre-classifier, the precision of the fully
damaged and partially damaged severities are 0.78 and 0.97, respec-
tively. In such a set-up, the precision is the most valued classification
metric, since it is more important to have the severities correctly
classified before being passed to moSAIc’s MLP. Of greater impor-
tance is the precision of the partially damaged samples, since a
false prediction of the extreme severities could be corrected by the
regression step downstream, whereas an over/under-estimation of
the partial damage sticks to it.
Figure 14.4 shows the respective MARE of each set using both
models. Generally, the model with a pre-classifier out-performs or
at least yields equal MARE as the model without. Recall from
Figure 14.2 that assets 1, 2, 3, 4 and 33 exhibited high sensitivity to
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the operating conditions, and a non-trivial subset of their samples
reached full damage after 108 load cycles. Particularly on these
assets, the model with the pre-classifier demonstrates a satisfactory
performance, with the MARE dropping by 18 to 28 %.

14.3 Selection of Features
The second point under investigation is the influence of the impor-
tance and correlation thresholds on the number of features yielded,
and hence the implications this has on the train and test MARE. In
this study, both importance and correlation thresholds are assigned
a value from {0.2, 0.4, 0.6, 0.8, 1.0}.
With respect to the feature importance, this threshold presents the
fraction of ranked feature importances, whose features are deemed
important; i.e. a threshold of 0.4 means the features corresponding
to the largest 40 % of the ranked importances. Whereas for feature
correlation, the threshold is the minimum Spearman’s coefficient of
a feature pair, larger than which the features are assumed correlated.
An importance/correlation threshold of 1.0 means that all features
are assumed important/uncorrelated, respectively, hence none of
them is filtered out.

Figure 14.5 shows a map of the resultant total number of features
for each combination of the thresholds. In total, this problem had
20 static features, and 45 dynamic features.

Generally, the impact of the importance threshold on the resultant
number of features is less pronounced than that of the correlation
threshold. This is clearly indicated in the domain [0.4, 0.8], where
the number of features remains constant with respect to the feature
importance threshold. This indicates that even if the important
features are over-selected, the correlation filter would still omit the
superfluous features out.
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M

Figure 14.4.: MARE using a model with and without pre-classification
on basis, train, and test sets
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Figure 14.5.: Number of model features for different importance and
correlation thresholds

Having concluded the stronger impact of the correlation threshold,
the outcome of the feature selection steps for static as well as dynamic
features is detailed in Figure 14.6. The different markers indicate the
number of initial features, the important features, and the important,
uncorrelated features. The error bars correspond to the variances in
the number of features due to the different importance thresholds.
As shown, when a correlation filter is applied, the variances in both
static and dynamic features are significantly small.

The influence of the correlation threshold on the MARE is shown in
Figure 14.7. The variance in the MARE over the range of thresholds
considered is barely noticeable. Although the choice of the threshold
significantly affected the number of features, the accuracy of the
model seems to remain consistent after sufficient optimizer epochs,
in this case 20.
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Figure 14.6.: Effect of correlation and importance thresholds on the
number of features

14.4 Choice of Basis Models
The third aspect to be studied is the influence of the basis models
selection criteria on the model’s performance, evaluated on the train
and test sets. In this study, two selection criteria are considered:

1. Optimal criteria: the basis models are chosen from the fleet as-
sets based on the distance metric described in Equations (13.25)
to (13.27).

2. Random selection: the basis models are drawn from the set
of fleet assets without replacement. In this study, 3 draws are
performed.
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Additionally, the number of basis models is regarded as a variable,
whose effect on the MARE to be investigated within this study. To
this end, the condition that nb = nC+ + 1 is ignored. Accordingly,
two hypothesis can be formulated here:

1. Using the proposed criteria for optimal basis selection should
yield smaller or equal MARE as compared to randomly selecting
the basis models

2. An increase in the number of basis models yields smaller or
equal MARE

For both hypothesis, the MARE is evaluated on the train and test
sets. In this specific study, since the basis test changes for each
test group, when evaluating the model’s performance, the basis
set is not included in the test set. However, for all groups, the
test set E = {1, 7, 20, 21} is kept fixed. Moreover, the influence of
hyper-parameter tuning is muted for this study, and the same set of
hyper-parameters is used for all test cases.
In deployment, this is definitely not ideal, since it results in a poor
model quality. However, as the focus of this study is the selection
and size of the basis set, all other degrees of freedom in the model
are deliberately fixed.
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The variation of the train and test sets’ MARE with the number
of basis models is shown in Figure 14.8. Additionally, the 95 %
confidence interval is evaluated for the 3 random selections and is
plotted as well.
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Figure 14.8.: Effect of basis choice on MARE

As shown, for the training set, the choice of the basis models using
the proposed procedure yields a MARE smaller than or equal to the
lower bound of the 95 % confidence interval of the MARE yielded
from the random selection. With respect to the test set, the same
observation holds for nb ≤ 2, however for nb > 2 the selection criteria
of the basis is less significantly impacting the performance.

The consistently smaller error observed for the train set is enough of
a motivation to consider an optimal selection criteria for the basis.
Although the impact on the test set errors is mild, the simplicity
of the problem should be borne in mind. The static feature space
is Cartesian within which the assets are uniformly scattered, thus
interpolating between the assets degradations is rather straight-
forward. Therefore, a random selection of sufficient models would
cover the feature space. In contrast, for a feature space with randomly
scattered assets, like the one shown in Figure 13.6(b), the random
choice of assets to be used as basis models is less prone to completely
enclose the feature space.
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14.5 Performance Assessment
The final stage of this numerical investigation is to assess the per-
formance of the proposed hybrid model against other algorithms,
typically applied to this class of problems. As hinted earlier, moSAIc
is a Mixture of Experts model, whereby the damage estimates from
an ensemble of physics-based degradation models are averaged by
the weights suggeted from an MLP.

To compare its performance, the following three machine learning
models are proposed and justified:

1. Elastic-Net: Linear regression combined with L1 and L2 regu-
larization, attempting to minimize Equation (13.11).

2. SVR: A Support Vector Regression (SVR) with a radial basis
function. Support Vector Regressions (SVRs) are commonly
used in literature for this class of problems.

3. Ensemble: An ensemble of 50 SVRs with radial basis functions.
As moSAIc is an ensemble of physics-based degradation models,
it is relevant to have it compared to an ensemble of purely
data-driven models.

4. MLP: A Multi-Layer Perceptron predicting the accumulated
damage directly, unlike the MLP of moSAIc, which predicts
the weights vector.

The four models above fit the set of features (c,u) to the accumulated
damage y. The hyper-parameters of the four models are tuned after
conducting a 5-fold cross-validation procedure. The four models,
as well as moSAIc are evaluated on the combined test set, and the
resulting mean and standard deviation of the MARE for each asset
are shown in Figure 14.9.

Compared to other models, moSAIc yields a smaller MARE except
on assets 1 and 33. These two assets exhibited full damage in some
of their samples, as well as a large variance in the damage, indicating
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models

higher sensitivity to the loading conditions. In these two cases, the
regression capability of data-driven regression model surpasses the
interpolation accuracy of moSAIc’s MLP in correctly fitting to the
extreme damage cases, even with the presence of a pre-classifier.
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PART VI

Industrial Applications





15Gearbox Mount

The first presented industrial application is a gearbox mount for a two-
seats vehicle. The mount was originally fabricated using traditional
manufacturing processes, but with the rise of the unprecedented
capabilities of Additive Manufacturing (AM), new optimal designs
are now under investigation. One of the proposed optimal designs is
shown in Figure 15.1(a).

15.1 Description
The mount is designed to withstand a gearbox with an average mass
of 25 kg, fastened to the mount using 12 M8 bolts, six on each side,
whose holes are indicated by the green surfaces in Figure 15.1(a).
The mount is fastened to the chassis underneath with four M10 bolts,
whose holes are shown as red surfaces.

(a) Geometry and regions (b) Mesh and boundary conditions

Figure 15.1.: Geometry of the gearbox mount, optimized for 3D printing.
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15.1.1 Material and fabrication

As mentioned, AM techniques are used to fabricate the new design of
the mount. Particularly, direct metal laser sintering (DMLS) [Fra14]
process is used to print the component using Ti-6Al-4V grade 23.
Further details about the parameters of the printing parameters and
the mechanical tests conducted to infer the fatigue parameters of
the material can be found in [Lam+19]. Various material specimens
have been investigated with different print orientation and surface
treatment settings.
For this work, material properties are drawn from the specimen with
0° print orientation, without any surface treatment after printing
(designated as-built). The corresponding material properties of the
said specimen are summarized in Table 15.1.

Table 15.1.: Material properties of the gearbox bracket

Material property Value

E 75 GPa
ν 0.27
σf 6652 MPa
b −0.319
εf 0.084 mm/mm
c −0.319
d 7.0

15.1.2 Damage accumulation law

The specimens manufactured from Ti-6Al-4V using 3D printing
commonly exhibit non-linear fatigue degradation behaviour. Thus,
applying the linear Miner’s degradation rule in Equation (7.7) yields
inaccurate estimates. Instead, a modification is introduced, and the
damage accumulation rule is re-written as
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Da =
(

nσ∑
i

Ni

Nf,i

)d
, (15.1)

where d is an experimentally-determined material parameter, de-
scribing the rate of Young’s modulus degradation in relation to the
life fraction Ni/Nf,i [EP11a; EP11b].

15.1.3 FE modelling

Finite elements are used to discretize the geometry using linear 4-
noded tetrahedral elements, with an average element size of 5 mm is
applied. A damping ratio of 5% of the first system natural frequencies
is assumed to calculate the system damping. The covariance of the
process noise is assumed identical and independent for all system
states, and equal to 5× 10−2. The material model is assumed
linear and elastic, since only High-Cycle Fatigue (HCF) is under
investigation, and no stresses beyond the yield strength are expected.
For simplicity, the distribution of porosities in the print is assumed
uniform throughout the component. Hence, an isotropic material
model is used and material properties are assumed constant at all
material points.

Both the bolts and the gearbox assembly are assumed significantly
stiffer than the mount, hence replaced by boundary conditions in
this analysis. Full supports are used to fix the mount at the location
where it is fastened to the chassis (red surfaces), while the forces
resulting from the acceleration of the gearbox assembly are applied
directly on the inner surfaces of the 12 M8 holes.

15.1.4 Load Scenarios

Different road conditions are assumed for the vehicle, which inflict
different cyclic loads on the gearbox. The road profile considered
varies between smooth and rough, whose imposed loads are described
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as gravitational forces (g-forces) on the bracket. The load properties
of both road conditions are summarized in Table 15.2.

Table 15.2.: Load parameters for different road conditions

Parameter Smooth Rough

Duration 1200 s 2400 s
Frequency 2 Hz 2 Hz
Amplitude [2, 2, 5] g [5, 4, 10] g
Static Offset [0, 0, 0] g [0, 2, 4] g
Noise N (0, 0.5) g N (0, 2) g

Both load signals are sinusoidal functions having 2 Hz frequency.
The vehicle is assumed to drive 1200 s on a smooth road, and twice
as much on a rough road. On a smooth road, zero-mean cyclic load
is imposed with magnitudes 2 g, 2 g and 5 g in the X-, Y- and Z-
directions, respectively. On the other hand, static load is superposed
on the cyclic load in the rough road section, resulting in shifted-
mean cyclic loads. This will effectively introduce mean effects to the
stress and strain cycles, and will have a pronounced effect on the
components fatigue behaviour. For both load profiles, corresponding
Gaussian noise is superposed, where their parameters are indicated
in Table 15.2. Figure 15.2 shows a close-up on the transition between
the smooth and rough road at 1200± 2 s.
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Figure 15.2.: Applied load profile - load signal (solid), static off-
set(dotted)
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The two load conditions are applied periodically for a total operation
time of 105 hours, where the vehicle is supposed to be running in
consequent laps, each lap lasting one hour. To reduce the compu-
tational cost of the problem, only a small portion of this operation
profile is estimated using the Kalman filter procedure. Particularly,
the 4 s window shown in Figure 15.2, during which the mount expe-
riences the transition from load condition to the other is of interest.
Elsewhere, the quality of the filter is assumed to remain constant
throughout the operation due to the periodicity of the load.

15.1.5 Candidate sensors

Due to the curved, non-uniform topology of the optimized mount’s
geometry, the regions where sensors could be installed are rather
limited. Permitted surfaces for sensor placement are indicated by the
yellow faces in Figure 15.1(a), and opposing faces on the other side
of the mount. The permissible regions are essentially the periphery
of the holes where the gearbox is fastened, which were intentionally
constrained during the optimization process to remain flat to ease
the gearbox attachment.

For this problem, the sensor configurations are composed of uni-axial
accelerometers and strain gauges, with the measurement noises as-
sumed identical and independent among sensors of the same type.
The associated noises are assumed 10−3 mm s−2 and 10−1 for ac-
celerometers and strain gauges, respectively [Pap+11; ZX16].

Typically, uni-axial strain gauges are assembled into strain gauge
rosettes, with 0 − 45 − 90 or 0 − 60 − 120 arrangements. This
constraint is, however, not taken into consideration, and all sensors
are assumed uni-axial and can be mounted independent from one
another, to avoid imposing additional complexity in the formulation
of the output matrix in Equation (8.7). Thus, either sensors can be
oriented in the global Cartesian X-, Y- or Z-directions.
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15.2 Results
Due to the limited space allocated for sensor placement, the number
of sensors attached to this bracket is to be kept to minimum. Hence,
a threshold ε0 = 10−2 is used to determine n∗s . For this problem,
this yields n∗s = 2 when mounting a multi-type configuration.

Five experiments are conducted for this use case. Figure 15.3 shows
the sensor configuration yielding the smallest Tr (P x+), with a value
of 0.934, and a mean state estimation error ε̄x of 4 %. The configu-
ration is composed of one accelerometer and one strain gauge both
oriented in the X-direction, with each mounted on one side of the
structure as indicated by the two views in Figure 15.3.

Figure 15.3.: Optimal sensor configuration – accelerometers (green),
strain gauges (red).

The relative error of each state estimate is calculated using Equa-
tion (11.1), and is averaged over the 4 s duration of the Kalman filter.
The errors of the displacement and velocity state estimates, respec-
tively z̃ and ˜̇z, are examined separately. Figures 15.4(a) and 15.5(a)
show the Kernel Density Estimate (KDE) of the X-, Y-, and Z-
displacement and velocity estimation errors, respectively.

Impressively small errors can be observed for displacement estimates,
with a mean value less than 1 %. The error variable is nearly follow-
ing an exponential distribution, and its KDE function diminishes
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significantly for error values ≥10 %.
Figure 15.4(b) shows the contours of the mean X-, Y-, and Z-errors
at each node. The colour scale is capped at 20 %. The contours are
clearly dominated by error values below 5 %, and only 3 % of the
nodes have associated errors between 5 % and 20 %. Such outliers are
not scattered in one region, but rather scattered over the geometry,
therefore, they can be attributed to numerical inaccuracies in the
model, e.g. due to coarse mesh, or poor element quality.
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Figure 15.4.: KDE and contours of the displacements estimation mean
relative error

The estimate of the velocity states are not as accurate as the displace-
ments’, as indicated by the KDEs in Figure 15.5(a). Although the
mean values of the X-, Y- and Z-velocity estimation errors evaluate
to 10 %, 13 % and 6 %, which are acceptable, the scale of the KDE,
especially of the X- and Y- errors indicates that a non-ignorable
number of states have larger errors. This can be better visualized
in Figures 15.5(b) to 15.5(d), where the contours of each error are
shown on the mount’s geometry. With respect to the contours of
the X- component, two regions seem to have spikes of relative errors,
whereas for the Y-components, the nodes with high errors are scat-
tered over the structure. Nonetheless, the three error components
are dominated by values below the 10 % mark, which is very accept-
able for the velocity field, since it doesn’t contribute directly to the
reconstruction of the strain field used in damage estimation.
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Figure 15.5.: KDE and contours of velocities estimation mean relative
error

From the estimated states, particularly displacement, the strain
field is reconstructed by applying Equation (7.4). The reconstructed
strains are to be used in damage prediction, following the proce-
dure and assumptions explained in Chapter 7. The distributions
of the reconstruction errors over the system outputs are shown in
Figure 15.6(a). Figure 15.6(b) shows the distribution of the mean
errors at each element overlaid on the geometry. The strain recon-
struction errors follow coherently the distribution of the displacement
estimation errors, due to the physical relationship between the two
variables, as expressed by Equation (7.4). Albeit its mean being
about 11 %, the distribution of the strain reconstruction error has a
relatively wider scale. Such a spread manifests to the accumulated
error from the state estimation, and is suspected to impact the dam-
age estimates. Nevertheless, for the rather restricted instrumentation
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and non-trivial system, this error is regarded within tolerance, and
the reconstructed field is proceeded with to the damage estimation
procedure.
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Figure 15.6.: KDE and contours of relative output reconstruction error

The accumulated damage after the 105 hours of operation is evalu-
ated, and its distribution is displayed on the geometry as shown in
Figure 15.7. Although the bracket is optimized for low weight-to-
strength ratio, its design is still rugged and can withstand a typical
load scenario of a conventional vehicle. The accumulated damage on
the structure ranges between 10−6 to 10−3, indicating at the first
glance a healthy condition of the component.

(a) Estimate (b) Actual

Figure 15.7.: Contours of the accumulated damage
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Nonetheless, it is worth mentioning that the non-linearity of the
damage accumulation rule incurs a delusional interpretation on
the component’s reliability. It could be misinterpreted that the
component is still far away from its end-of-life, only because its
accumulated damage is not close to 1. This correlation doesn’t hold
for non-linearly degrading materials. Looking at Figure 15.8, the
material having a non-linear damage accumulation behaviour (d = 7)
consumes almost 90 % of its useful lifetime with the corresponding
accumulated damage just turning 0.5, whereas the last 10 % of the
lifetime corresponds to as much of the damage accumulation. Such
abrupt material degradation towards the end of life is rather common
in fabricated composites and printed materials [Kam+15].
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Figure 15.8.: Linear and non-linear damage accumulation behaviour

Examining the distribution of the relative error in the accumulated
damage value calculated after 105 hours, Figure 15.9(a) shows a
bi-modal KDE, with the first and dominant mode at 1.42 % relative
error, and the second mode at 38.6 %. Although more than 75 %
of the elements have associated errors below 10 %, the error in the
remaining elements is alerting, especially for a material that exhibits
rapid degradation towards its end-of-life expectancy.

Comparing the accumulated damage distribution in Figure 15.7(b)
with the error distribution, it can be observed that some regions
with high actual damage values have a discrepancy in their estimates.
The errors in those regions cannot be claimed to be sporadic, as they
form a continuous gradient with the values around them.
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(a) KDE (b) Contours

Figure 15.9.: KDE and contours of relative accumulated damage esti-
mation error

Although the strain reconstruction seems accurate, small variations
in the signals could yield errors during the cycle counting procedure,
which get augmented by the exponential damage rule.
The restricted domain for placing sensors is suspected to impede
further improvements in the accuracy of the solution. It would be
ideal to consider the original geometry of the mount while performing
optimal sensor placement, and to constrain the surfaces where the
sensors are to be placed during the topology optimization.
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16Bearing Support

The second presented application is a bracket acting as a bearing
housing, found in aircrafts. The bracket was originally designed by a
manufacturer of fastening systems and rings for aerospace and indus-
trial applications to be fabricated using conventional manufacturing
processes. The bracket design was published in 2016 through a design
competition1, aiming at optimizing the old design to suit Additive
Manufacturing (AM), while retaining its mechanical performance.
Figure 16.1 shows one of the selected optimal designs.

Figure 16.1.: Bearing support geometry

16.1 Description
The bracket is fastened with four 10-32 high strength tension rated
bolts, mounted in the red-coloured holes at the rear end of the
bracket. A custom-design spherical bearing (the blue component) is

1For more details:
https://grabcad.com/challenges/airplane-bearing-bracket-challenge
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mounted in the special grooving at the front end. External forces
from the assembled component are applied on the inner surface
(green face) of the bearing. As specified by the manufacturer, the
bracket is to hold a dynamic load of 2.5 kN in the horizontal direction,
and 5.5 kN in the vertical direction.

16.1.1 Material and fabrication

No detailed specifications about the fatigue properties of the material
used in AM were provided, thus the material specifications presented
in [Ste+15] are assumed. The material properties are for Ti-6Al-4V
alloy fabricated using Laser Engineered Net Shaping (LENS) 3D-
printing process, proceeded by hot isostatic pressing (HIP) treatment.
Titanium alloys are highly attractive materials to be fabricated using
AM processes, due to their easy manufacturability, as well as high
strength-to-weight ratios. In aerospace applications, this results in
lighter components, hence significant cost reduction.

16.1.2 Damage accumulation law

In this use case, to estimate fatigue damage in the component,
the Smith-Watson-Topper (SWT) parameter in Equation (7.9) is
applied to calculate the fatigue limit, as described in Chapter 7. It
is common to observe a highly non-linear damage accumulation in
AM components, thus the non-linear damage accumulation rule in
Equation (15.1) is applied.

16.1.3 FE modelling

A linear elastic material model is assumed, with the mechanical and
fatigue properties summarized in Table 16.1. A damping ratio of 5%
of the first system natural frequencies is assumed to calculate the
system damping.

Linear tetrahedral finite elements (4-noded), with average edge size
of 3 mm are used to mesh the geometry, as shown in Figure 16.2. The
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Table 16.1.: Material properties of the bearing support

Material property Value

E 106 GPa
ν 0.29
σf 2310 MPa
b −0.136
εf 0.256 mm/mm
c −0.797
d 7.0

boundary conditions are, as well, indicated on the same figure. The
covariance of the process noise is assumed identical and independent
for all system states, and equal to 5× 10−2. The support is assumed
to be fastened to a rigid foundation, using bolts with significantly
higher stiffness. Hence, the DOFs of fasteners’ holes and the base are
fully constrained. The stiffness of the spherical bearing is assumed
very high, thus the bearing is dropped off the Finite Elements (FE)
model, and the external load is applied directly on the bearing
housing as a distributed surface force.

Figure 16.2.: Bearing support mesh, fixed-constraints (red), and loads
(green)
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16.1.4 Load scenarios

A 10 Hz sinusoidal load of magnitudes 2.5 kN and 5.5 kN in the
horizontal and vertical directions is applied. To introduce noise,
a Gaussian process, following N (µn, 1), where µn is a 100 Hz sine
wave is superposed on the load signal. A sample of the applied load
profile is shown in Figure 16.3
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Figure 16.3.: Applied load profile

16.1.5 Candidate sensors

Due to the curved surfaces of the optimized bracket, limited positions
are available to mount the sensors. The yellow surfaces, shown
in Figure 16.1, are the only candidate surfaces to mount either
strain gauges or accelerometers. The associated measurement noise
covariances are independent and identical for all sensors of the same
type, and are assumed 10−3 mm s−2 and 10−1 for accelerometers
and strain gauges, respectively, [Pap+11; ZX16]. For this structure,
either sensor type can be oriented in the global X-, Y- or Z-directions,
and all sensors are assumed uni-axial.

Since weight is a major concern in aerospace applications, the number
of sensors attached to this bracket is to be kept to a minimum. Hence,
a threshold ε0 = 10−2 is used to determine n∗s . For this problem,
this yields n∗s = 4 when mounting a multi-type configuration.
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16.2 Results
Five experiments are conducted for this use case. Figure 16.4 shows
a resulting sensor configuration, consisting of one accelerometer in
the Z-direction (green), and three strain gauges (red), each oriented
in one of the three spatial directions. The shown configuration
yields the smallest Tr (P x+), with a value of 0.820, and a mean
state estimation error ε̄x of 9.58 % with a standard deviation of
5.12 %. Over the five experiments, the resulting mean and standard
deviation of Tr (P x+) are 0.828 and 0.01, respectively, with ε̄x ranging
between 3.58 to 17.0 %. Despite the discrepancy of the resulting
sensor configurations, the yielded estimates are rather accurate, and
their associated uncertainty is significantly low.

Figure 16.4.: Optimal sensor configuration – accelerometers (green),
strain gauges (red).

The mean relative error of the state estimates over the 1 s window
is calculated using Equation (11.1). Figures 16.5(a) and 16.6(a)
show the Kernel Density Estimate (KDE) of the error for X-, Y-,
and Z-displacement and velocity states, respectively. The density
functions are clearly left-skewed, with medians errors 8.37 %, 2.72 %
and 2.83 % for X-, Y-, and Z-displacement estimates, respectively,
and 7.79 %, 4.70 % and 4.99 % for X-, Y-, and Z-velocity estimates,
respectively.

Figures 16.5(b) to 16.5(d) show the contours of the mean estimation
relative error of each displacement component. The error is calculated
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over a 1 s interval after the Kalman filter’s convergence; i.e. after
the state estimation covariance plateaus at 0.828. As shown, for
the Y- and Z-displacement fields, the time-averaged error remains
below 10 %, with the error going sporadically higher at some points.
The region around the bracket’s support exhibits larger errors in the
X-displacement field.
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Figure 16.5.: KDE and contours of the mean estimation relative error
of displacement

The mean estimation relative error of the X-, Y- and Z-velocities are
shown in Figures 16.6(b) to 16.6(d), respectively. Likewise, the three
components exhibit estimation errors well below 10 % on average,
with the X-component showing a larger deviation from the true values
around the supports. Such discrepancy in the X-velocity correlates
strongly to the discrepancy of the X-displacement estimates.
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Figure 16.6.: KDE and contours of velocity estimation relative error

From the estimated states, the strain field is reconstructed to be used
in damage prediction. The distribution of the respective mean strain
reconstruction error over system outputs is shown in Figure 16.7(a).
Error patterns similar to those of the displacement estimates can be
observed due to the physical relationship between the two variables.
The errors from estimating the three normal strain fields are also
left skewed, and all have mean values below 10 %.

Similar to the state estimation error, the contours of the reconstruc-
tion error averaged over a one-second window after the Kalman
filter’s convergence are calculated, and shown in Figure 16.7(b). Ig-
noring the sporadic outlier values, the temporally-averaged strain

16.2 Results 223



field reconstruction error remains mostly below 15 %. The regions
exhibiting larger reconstruction errors are non-critical from an en-
gineering perspective, them being in the vicinity of the support.
Herein, the shown contours present satisfactory estimates, upon
which the damage in the structure under the assumed loading profile
can be estimated.
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Figure 16.7.: KDE and contours of relative strain reconstruction error

The one-second load profile shown in Figure 16.3 is repeatedly applied
107 times on the structure, and based on the reconstructed strain
field, Equation (15.1) is used to estimate the accumulated damage.
The true values of the damage estimate are evaluated based on the
outputs of the simulated perturbed system. The damage estimation
error covariance matrix is also evaluated at the end of the simulation,
and the resulting trace of the covariance of the damage estimation
error Tr

(
P D) is 0.236.

Figure 16.8(b) shows the contours of the mean relative damage
estimation error. As indicated by the colour scale, the error falls
dominantly below 10 %, with an average and standard deviation
of the 3.69 % and 6.65 %. The distribution of the error is skewed
towards the lower error values, with 95 % of the elements having
relative errors ≤10 %.
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(a) KDE (b) Contours

Figure 16.8.: KDE and contours of relative accumulated damage esti-
mation error

Nonetheless, scatters of error values greater than 10 % can be ob-
served, despite the high accuracy and precision of the state estimation
and output reconstruction. Those exceptionally larger errors could
be attributed to the high non-linearity in the damage accumulation
rule.
First, the formulation in Equation (15.1) is very sensitive to varia-
tions in the cycle ratio, Ni/Nf,i, due to the exponent d. Second, the
accumulated damage is a function of the cumulative sum of cycle
ratios; unlike Miner’s rule which is a function of the cycle ratios
themselves. The combination of these two factors lead to the propa-
gation and augmentation of small errors that arise in the cycle ratio.
Errors in the cycle ratio could stem either from the cycle counting
algorithm, introducing errors in Ni , or from the variations in the
stress and/or strain values used to calculate the SWT parameter,
thus leading to errors in Nf,i. The latter seems to be the source
of discrepancy in this problem, due to the slight variations in the
reconstructed strains.
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17Servomotors

Servomotors are abundantly used in a broad domain of industrial
applications, both as rotary and linear motion driver. Typical
engineering systems, in which servomotors are used, are e.g. robotics,
CNC machines, and automated manufacturing. Servomotors come
with several advantages, such as broader range of operating speeds,
and precise and smooth torques, even at high speeds.
Despite their ruggedness and reliability, servomotors can’t afford
being operated at their limits for long periods. Running at maximum
torque for extended durations makes them susceptible to failure.

17.1 Description
In this chapter, the estimation of the accumulated damage in ser-
vomotors exposed to a range of typical and excessive operating
conditions is investigated. Herein, Simulation Models and Artificial
Intelligence Combined (moSAIc) is tested on a fleet of servomotors
adopted from Siemens SIMOTICS series with power rating from
0.05 kW to 0.9 kW.

For modelling simplicity, the power electronics, encoder, and control
circuits are omitted and only the mechanical sub-components are
considered. Figure 17.1 shows a typical isometric and a cross-section
view of a SIMOTICS motor, excluding the unconsidered units.

Based on the shown cross-section, 18 servomotor variants are gen-
erated following the dimensions and specifications in the product
catalogues. Despite the strong similarity between the SIMOTICS
motors and the models shown here, it is crucial to note that the
assets considered are not the actual Siemens products, but rather
synthesized replicas intended solely for the sake of this study.
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(a) Isometric (b) Cross-section

Figure 17.1.: Typical CAD of SIMOTICS servomotor

17.1.1 Model features

The information retrieved from the product catalogues are considered
to define the set of static features F C. In practice, catalogue infor-
mation are provided by manufacturers to motor operators, hence it
is fair to assume the availability of such information for both motors
with and without degradation models.

The set of static features can be sub-categorized into:

• Operation features, represented by the parameters nrated,
Prated, M0, Mrated, Irated, n_poles, J, m denoting the rated
speed, rated power, static torque, rated torque, rated cur-
rent, number of poles, polar moment of inertia, and mass,
respectively.

• Driving end/non-driving end bearings features, represented by
the parameters BDi, BDo, BB denoting the bearings’ inner,
outer, and ball diameters, respectively, and the parameters
Cd, C0 denoting the dynamic and static load ratings, respec-
tively.

• Geometric features, represented by the parameters SH, P, N,
LA, M, AB, T, I2, S, D, E, GA, F, LB, O1, O2, and denoting
dimensions of the housing, shaft, and connection flange.
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Material properties are not included in the static features for this
application since the sub-components of all considered fleet variants
are manufactured of the same material.

A total of 29 static features are considered for each fleet variant.
Each servomotor is not necessarily described by a fully-unique set
of static features. For instance, the fleet covers only three unique
rated speeds, 2000, 3000 and 6000 RPM, associated to motors 1, 5
and 12. This would in turn have an influence on the choice of the
set of basis motors, which should cover the space of static features.
Additionally, this irregularity in parameters distribution among the
fleet variants could inevitably introduce class unbalances between
the train, test and basis sets.

With respect to the dynamic features set F U, the statistical quan-
tities listed in Section 13.2 are extracted from acceleration signals
of triaxial sensors mounted at 10 different positions on the motor’s
housing, as indicated by the green cylinders in Figure 17.2.

Figure 17.2.: Positions of accelerometer sensors (green), fixation surface
(red), and Boundary Conditions (BCs) (teal and light
blue)
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For each acceleration signal, the mean, peak, Root Mean Square
(RMS), skewness, and kurtosis values are evaluated from the time
series. In addition, the power spectrum densities at the first three
harmonics are extracted from the signal frequency spectrum. No
temporal-spectral features are used in this problem. This yields 8
dynamic features per signal, and a total of 240 dynamic features for
each motor’s operation scenario.

The dynamic features naming convention follows the template

"acc<ID><direction>_<statistic>".

For instance, the feature "acc5Y_mean" refers to the mean of the
5th accelerometer’s Y-direction signal.

17.1.2 Data synthesis

The acceleration signals are obtained for different operation scenarios
designed based on the operation specifications and load capacity of
each fleet variant. Each scenario is described by three Boundary
Conditions (BCs) applied to the driving end of the shaft

1. Radial preload force, Fr ∼ N
(
αFFr0, 10−4),

2. Axial moment, Mx ∼ N
(
αMMx0, 10−2),

3. Parallel misalignment, ∆p = α∆∆p0.

Fr0 (kN), Mx0 (Nm), and ∆p0 (mm) are nominal radial force, axial
moment, and shaft misalignments specific to each motor, and as-
sumed based on its bearing’s static load capacity, nominal torque
and shaft’s diameter, respectively. The nominal values for each fleet
variant are summarized in Table 17.1. αF , αM , α∆ ∼ U (1, 25) are
multipliers applied to each BC to vary their magnitude with respect
to the nominal values.

Variation in the loads imposed on the motor from the driven appliance
is accounted for by sampling the radial force and axial moment from a
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Gaussian distribution, whereas the parallel misalignment is assumed
to remain constant. A set of 11 random values are sampled from the
uniform distribution U (1, 25), and are assigned to all the multipliers.
This yields a total of 1331 combinations of multipliers, hence, 1331
operation scenarios for each motor.

Table 17.1.: Nominal boundary conditions of different motors

Motor ∆p0 (mm) Fr0 (kN) Mx0 (Nm)
1 2.0 1.550 0.08
2 2.0 1.550 0.08
3 2.0 1.550 0.16
4 2.0 1.550 0.16
5 2.8 1.875 0.60
6 2.8 1.875 0.60
7 3.6 2.375 1.00
8 3.6 2.375 0.80
9 3.6 2.375 1.20
10 3.6 2.375 0.90
11 3.6 2.375 1.45
12 3.6 2.375 1.00
13 4.8 3.900 1.10
14 4.8 3.900 2.80
15 4.8 3.900 2.60
16 4.8 3.900 2.60
17 4.8 3.900 1.50
18 4.8 3.900 1.50

The fleet motors operations are numerically simulated using Finite El-
ement Analysis (FEA). Linear, tetrahedral (4-noded) finite elements
are used to mesh the geometry, and a time step of 1.25× 10−3 s is
applied for temporal discretization. The critical time step is inferred
from the maximum eigenfrequency of the system to be 2× 10−3 s.
For all the subcomponents, a linear-elastic, isotropic material defini-
tion is used.
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The torque and axial preload are applied on the curved surface of the
exposed section of the shaft (teal surface in Figure 17.2), while the
misalignment is applied on its flat surface (light blue in Figure 17.2).
The motor is assembled such that the driven component is vertically
underneath, thus an additional gravity load is applied in the x-
direction on the entire assembly. The four holes on the driving end
are used to fasten the motor housing, whereby the flange becomes
fully in contact with the motor mount. Hence, the red surfaces in
Figure 17.2 are fully supported.

17.1.3 Damage estimation

The root of the shaft; the section at which it enters the motor
housing, is highly prone to failure due to extended operation times at
high torques, especially in the presence of misalignments. Typically,
bearings would fail as well, however in the scope of this work, bearing
faults are not in focus.

Damage is estimated based on the stress distribution evaluated at
the nodes located at the shaft’s root. Because the motors are initially
designed with a high safety factor, the applied loads, even when
exceeding the nominal operating conditions, don’t lead to material
plasticity. Herein, the Smith-Watson-Topper (SWT)-N relationship
reduces to the SN relationship, where the number of cycles to fatigue
failure are expressed as a function of the cyclic stresses only.

Since fatigue failure is stress-drive, High-Cycle Fatigue (HCF) rules
are applied, where the maximum principal stress represents the stress
tensor. Basquin’s equation is used to estimate the fatigue life, with
the fatigue strength and exponent for the shaft equal to 440 MPa
and −0.088, respectively.

For each load scenario, the simulation results are replicated to gener-
ate 3× 104 hours of operation. The accumulated damage is estimated
at the end of the operation using Miner’s rule. The application of
Miner’s rule to this case is justified by the HCF damage, where the
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material is loaded in the elastic regime, hence load sequence effects
can be ignored. In the case of motor failure before completing 30 000
hours, its accumulated damage is capped at 1.

Figure 17.3 shows the distribution of the accumulated damage for
each motor across the different operation scenarios. Motors 5, 6,
11 and 12 seem to be lightly damaged, despite of the overload
conditions. On the other hand, motors 7, 8, 13 and 18 have all failed
before completing 30 000 hours of operation. The other fleet motors
experience a wider spread of damage accumulation, depending on
the severity of the operation condition. The estimated accumulated
damages are used as labels to train and test the hybrid model.
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Figure 17.3.: Distribution of accumulated damage
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17.2 Results

Data pre-processing

The very first step is to isolate a test (evaluation) set E from the
pre-processing and training processes. Having 18 motors, each with
1331 operation scenarios, yields a dataset of 23 958 samples.
A conventional train-test split on the entire dataset would be inap-
propriate. In such a case, the Multi-Layer Perceptron (MLP) would
be exposed to samples relating the operating conditions features u
and catalogue data feature c to the degradation y for motors with
physical degradation models X P as well as models with unknown
degradation models X φ. This would definitely lead to data leakage,
since in practice, the degradation models in set X φ are not yet
defined.

Alternatively, the train-test split is performed among the fleet motors
using a Grouped Split, whereby each motor with its corresponding
operation scenarios are treated as a group, and are splits as such.
The train and test subset of motors represent 90 % and 10 % of the
entire fleet, resulting in 16 models for training and 2 models for
testing.

Having split the data, the feature extraction and basis selection
procedures could be executed on the training set.

As explained in Section 13.2, an Extremely Randomized Trees Re-
gressor (ERTR) is used to rank the feature importance with respect
to the accumulated damage. This process is conducted on the sets
of static and dynamic features separately.

For both feature sets, an ERTR with 100 randomized decision trees,
each with a maximum depth of 50 is used. The features corresponding
to the top 20 % importances are deemed important.
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Figure 17.4 shows the static features importances. Five features out
of 29 are deemed important; LB,O1, J,m and nrated. O1 and LB
are dimensions, representing the housing length and the distance from
the driving end to the power electronics compartment. Typically,
LB is about 65 to 75 % of O1, hence, the two features are obviously
correlated. J and m are the polar moment of inertia and the mass,
which are as well correlated, and nrated is the rated speed of the
motor.
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Figure 17.4.: Static features importance

Figure 17.5 shows the dynamic features importances. Due to the
large number of features, only the highest 50 are shown. Out of 240
features, 48 are selected. It is clearly shown that the top important
features are dominated by the signal kurtosis and mean values from
different sensors in different directions. Spectral features are less
significant in this case compared to temporal ones.

Looking more thoroughly at the important dynamic features, for each
feature, the corresponding sensor position, measurement direction
and signal statistic are identified. The importances corresponding to
each sensor position, each measurement direction, and each signal
statistic are summed up as shown in Figure 17.6.
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Figure 17.5.: Dynamic features importance
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Looking at the sensor positions, the most frequently appearing
positions among the top 50 features is position 8, located along the
driving end flanges. Positions 1, 7 and 10 are ranked second, with
the importance of position 6 being comprehensible. Position 1’s
importance is justified in similar manner as position 8, with position
8 being more important due to its proximity to the driving end,
hence location of damage.

The damage introduced to the shaft is mainly dominated by stresses
due to bending, hence normal stresses in the x-direction. This
explains the dominance of features extracted from signals in the
x-direction. Although torque results shear stresses in the material, its
impact could be less significant on the damage, it being an operation
condition a motor is designed for. On the other hand, the presence of
misalignments is considered an operation anomaly, a load condition
to which the motor is less tolerant.

The kurtosis represents the impulsive characteristic of the signal,
being a measure of outliers. Impulses in the acceleration signal
result from the superposition of the shaft’s driving end’s eccentricity
(due to misalignment) and offset (due to the pre-load), leading to a
cam-shaped profile motion of the driving end. On the other hand,
the importance of the mean stems from being an indicator of the
pre-load, which introduces mean effects to the cyclic stress signals.

The features with the highest importance are the kurtosis of the x
acceleration signal at position 6 and of the z acceleration signal at
position 8. This is justified by the vertical orientation of the motor.
Position 6 corresponds to a section with relatively lower stiffness,
due to the un-modelled electronic and control components. Hence,
sensor 6 experiences the highest vibration impulses (hence signal
kurtosis) due to axial gravitational loads. On the other hand, the
proximity of position 8 to the damaged component, the radial nature
of the cyclic and static loads (i.e. in the z-direction), along with the
impulsive or eccentric load profile explains the importance of the
kurtosis of acceleration z at position 8.
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Figure 17.6.: Dynamic feature importances breakdown

Having identified the important features, some features are suspected
to be correlated. Hence their presence bears a computation cost and
threatens the generalization of the model. A Spearman correlation
is calculated for every two features, and features with correlation
coefficients greater than 0.9 are dropped out, except for the feature
among them with the largest importance (i.e. the feature most
significant to the damage estimation).

Out of the 5 important static features, only nrated and LB are con-
sidered, as the other features are found correlated to either of them,
as shown by the correlation matrix in Figure 17.7. Consequently,
with respect to motor specifications, the damage is mainly influenced
by the nominal rotation speed and the housing length.

Figure 17.8 shows the correlation matrix of important dynamic
features, with the darker entries corresponding to high correlations.
Several blocks of correlated features can be identified. After dropping
out the correlated dynamic features, the number of dynamic features
drops from 48 to 22.
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Figure 17.7.: Spearman correlation matrix of important static features

As shown in Figure 17.9, the breakdown of signal direction and
signal static remains almost unchanged after dropping out corre-
lated features, which comes in line with the justification of feature
importance from a physical point of view. However, the distribution
of position significance looks different. First, all features extracted
from the signals at position 10 are dropped, and position 8 lost
its significance dramatically, being now among the position with
the fewest associated important feature. Since the signals at the
flange are strongly correlated, both positions have lost their leading
significance to position 7, which became the leading position with
associated important features.

Coming back to the basis selection, the 2 uncorrelated static fea-
tures deduced are used to calculate the relative distance function
in Equation (13.25), upon which the basis models are chosen. The
basis models are chosen and excluded from the training set resulting
from the aforementioned split. Herein, the basis set holds 3 models,
the training set size reduces to 13, and the evaluation set remains at
2 as is. This results in a typical 80-20 train-test split.

Figure 17.10 shows the scatter of the fleet assets in the space of
extracted static features, indicating the basis, training and test sets.
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Figure 17.8.: Spearman correlation matrix of important dynamic fea-
tures
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Figure 17.9.: Uncorrelated dynamic feature importances breakdown

As shown, the scatter of the basis models covers the entire space of
reduced static features.
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Figure 17.10.: Distribution of models in the static feature space

Pre-classification

An ensemble of Random Forests (RFs) with 50 estimators and a
maximum depth of 100 splits is trained to classify the damage severity
before predicting its value using moSAIc.

Figure 17.11 shows the confusion matrix of the classification process
when performed on the test set, with the value normalized to the
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Figure 17.11.: Confusion matrix of the RF classifier

true count of each class. Both the fully and negligibly damaged
samples were predicted with 100 % precision. On the other hand,
only 78 % of the samples predicted partially damaged are in fact
partially damaged, while the remaining 22 % are falsely predicted as
fully damaged.

To this end, this result is satisfactory, since all the partially damaged
samples could be 100 % recalled, whereas the presence of some false
predictions in the training of the downstream MLP could be corrected
by the hybrid model’s regression task.

MLP setup

The hyper-parameters of the MLP are tuned using random search.
Ideally, the training set is split into a training and a validation set to
perform the parameter tuning. However, due to the small number of
samples, such a split could impact the generalization of the trained
model. This limitation is overcome by conducting a cross-validation
procedure using 5 training-validation folds.

To accelerate the cross validation loops, only 10 epochs are performed
by the optimizer. The mean and the 95 % confidence interval of the
Mean Absolute Relative Error (MARE) evaluated on all epochs after
10 folds are shown in Figure 17.12.
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Figure 17.12.: Average loss with a 5-fold cross validation

To this end, with the tuned parameters, the model converges to
the same mean MARE and standard deviation. The details of the
hyper-parameter tuning using random search are omitted due to
irrelevance, and only the concluded optimal hyper-parameters are
summarized in Table 17.2.

Table 17.2.: Set of optimal MLP parameters, P∗
G

Hidden Units λ1 λ2 Activation Learning rate

(40, 30, 20, 10) 5× 10−3 5 tanh 10−4

The MLP is trained using the hyper-parameters in Table 17.2, and
evaluated on the test set. In this case, the basis models are regarded
as part of the test set, as the MLP has not learned the relationship
between their inputs and weights during the training phase. Instead,
they have only been regarded as expert models, to which the learned
weights are assigned.

The training process of the model is shown Figure 17.13. After 20
epochs, the MAREs calculated on the training and test set evaluate to
14.9 % and 14.6 %. As shown, both sets converge to nearly the same
value, showing confidence about the concluded hyper-parameters.
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Figure 17.13.: MARE evolution over the training and test sets

The inclusion of the basis set doesn’t only increase the size of the
test set, but also increases the robustness of the model, in a sense
that the model gets tested on motors with different degradation
behaviour.

Figure 17.15(a) shows the distribution of the accumulated damage
in each motor after 30 000 hours of operation. If the basis models
are to be excluded, the model would have been evaluated only on
models 10 and 12, which is a very unrepresentative sample of the
degradation behaviour. For instance, the degradation of models
15 and 16 exhibiting partial damage with a large variance, or the
models 7 and 8 exemplifying the extreme case of full damage are
not in the test set. Hence, the performance of the model on these
behaviour is not assessed. With the inclusion of the basis models,
these behaviours are covered and the model is assessed on them.

Figure 17.15(b) shows the distribution of the Absolute Relative Error
(ARE) of each motor model, evaluated only on the samples passed
through the MLP. Half the models, whether in train, test or basis
set, have mean error below 10 %. These very models, nonetheless,
share in common that they are partially damaged. Contrarily, those
negligibly damaged exhibit errors between 10 and 20 %, while the
full damaged have the highest error spikes with errors going up to
40 %.
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M

Figure 17.14.: Error comparison between moSAIc with and without
pre-classifier

Accounting for the pre-classifications, and mapping the pre-classified
severity to 0 and 1 for negligible and full damage, respectively, the
distribution of the error changes to that shown in Figure 17.15(c).
While the partially damaged models don’t show much change in
the error distribution, the error of the models with extreme damage
severity drops to almost the half. This highlights the added benefit
of the pre-classifier.

A final remark with respect to the large errors and variances asso-
ciated with models 7, 8, 13 and 18: due to the high pre-classifier’s
precision, many of these models’ samples get excluded from the
training of the MLP, hence leading to insufficient data to learn
from during the training phase. This reflects in the observed large
errors. This problem, however, is not addressed in this work, and is
recommended for further investigation.

To highlight further the added value of the pre-classifier, a moSAIc
model without the pre-classification step is trained on samples with
all damage severities. The MARE associated to each motor model is
shown in Figure 17.14, for both moSAIc configuration. As expected,
the precision of the damage estimate for the extreme cases increases
dramatically when inferred using a classifier rather than from a
regression model.
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(b) ARE - excluding pre-classification
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(c) ARE - including pre-classification

Figure 17.15.: Distribution of ARE and accumulated damage for differ-
ent models
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18Summary of Contributions

In this dissertation, two state-of-the-art contributions were presented
in the context of combining physics-based simulation models with
machine learning in the pipeline of Predictive Maintenance (PdM),
particularly the two modules: sensing and signal acquisition, and
prognosis and damage estimation.

Acquisition and Sensing
The first contribution was an Optimal Sensor Placement (OSP) ap-
proach for configuring a network of multi-type sensors to improve the
confidence in the damage estimates in complex industrial structures.
The novelty herein lay in three aspects:

1. First, the formulation of the OSP approach incorporated the
objectives of the downstream state and damage estimation
within its objective function. The optimization problem formu-
lation was based on a Kalman filter framework, that integrated
the mathematical description of the structure, whose state
were to be reconstructed from a limited number of sensors.

2. Second, the formulation of the problem constraints permitted
optimizing a configuration of heterogeneous sensor types. In
addition, the optimal sensor budget was not defined as a user
input, unlike prior scientific work. On the contrary, a system-
atic method, based on simulating the system responses under
the prospective operating conditions, was derived. From the
simulation results, the minimum number of sensors required
for a confident damage estimate could be a-priori inferred.
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3. Third, the proposed approach is based on a convex optimization
problem formulation. The gradient-based Method of Moving
Asymptotes benefited from the physical description of the
system and from the analytical form of the Jacobian to solve
for the optimal sensor configuration. This guaranteed a scalable
algorithm, that is ruggedly applicable to large and complex
industrial structures.

The sensitivity of the approach towards varying its ingredients and
constituents was rigorously investigated on two simple systems: a
mass-spring system and a 2D truss structure. The proposed method
outperformed consistently the sequential approach when applied on
the same problem. It yielded a smaller damage estimation error as
well as a lower covariance of the estimation error.

Furthermore, on two real-life industrial cases, the proposed approach
showed very satisfactory precision. On both cases, the resulting state
reconstruction and damage estimation errors were dominantly below
10 %, despite the restricted domain of candidate sensor positions.

Prognosis and Damage
The second contribution was a physics-data-based hybrid approach
for degradation modelling and damage estimation within a fleet
of industrial structures. The approach exploited the presence of
elaborate physics-based degradation models of limited structures in
the fleet to approximate the fatigue damage in other fleet structures.
The novelty in this contribution lay in the following two aspects

1. First, this contribution is the first-of-a-kind in the PdM sci-
entific work that enables the transferability of physics-based
degradation models among fleet structures. This was achieved
through weighted-mean filtering the physics-based damage
models’ outputs. The weights were assigned based on the
similarity physics-based models express to the structure in
question.
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2. Second, the measure of similarity, and hence the weights of the
physics-based damage models, were determined from a Multi-
Layer Perceptron (MLP). The MLP suggested the weights
based on the characteristics features of the structure, e.g. its
material properties and geometric dimensions, as well as on
its endurance sensitivity towards a broad set of operation
conditions. This, in turn, extended the applicability of the
hybrid model to nominal and extreme operating conditions.

This approach allowed precise and quantitative damage estimation in
structures, for which a physics-based degradation model would have
had been laborious or expensive to formulate. The hypothesized
performance of the approach was corroborated by the rigorous study
conducted on a fleet of cantilever beams. In this study, the sensitiv-
ity of the approach is assessed towards choosing the physics-based
models, which were used to approximate other beams’ degradation.
Also, the performance of the model was evaluated with respect to
the choice of the fleet structures’ characteristics features and the
choice of the operation conditions, upon which the weights of the
physics-based models are assigned.
The precision of the approach was compared against other Machine
Learning (ML) models, namely a MLP, an elastic-net regressor, a
Support Vector Regression (SVR), and an ensemble of SVRs. In
most of the cases, it demonstrated a surpassing performance, with
some limitations remarked at the extreme cases of damage.

Additionally, the approach was applied to a fleet of 18 synthetic
servomotors, with different geometric dimensions and operation
ranges. In that use case, with the help of the 3 physics-based
degradation models motors in the fleet, the damage in the rest of the
fleet was calculated. The damage was predicted under an exhaustive
spectrum of nominal and extensive operation conditions, and for the
most part, the damage estimation error remained below <20 %.
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19Open Issues

The research presented in this thesis paves the road for many in-
triguing avenues of future work.

Acquisition and Sensing
Among the open issues to be investigated is the applicability of
the proposed Optimal Sensor Placement (OSP) approach to non-
linear systems. In this work, the discussion was limited to linear
systems, where cyclic fatigue damage was to be estimated using
standard Kalman filters. Generally, state estimation problems with
unknown inputs involve using non-linear filters and estimators, e.g.
extended Kalman filters, augmented Kalman filters, or particle filters.
Additionally, other forms of damage, such as crack initiation and
propagation result in non-linear system matrices, that must solved
within filtering framework. The current formulation of the optimiza-
tion problem doesn’t account for the case of non-linear estimation
and has to be adapted when considering such systems.

Further, filtering methods are not the only diagnostics methods.
In fact, hybrid models, such as multi-fidelity models, are heavily
applied at this stage of the Predictive Maintenance (PdM) pipeline.
Multi-fidelity models combine limited, high-fidelity sensor data with
abundant, low-fidelity simulation results for a better state recon-
struction. Typically, the performance of these models is a function
of the locations of sensors capturing the high-fidelity data. Given a
physics-based simulation model is available, it could be utilized, with
an adapted optimization problem formulation, to find the optimal
configuration for such a hybrid diagnosis approach.
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Another potential extension of this work is optimal sensor placement
for multi-physics problems. [Ben+18] and [HR15] investigated se-
quential OSP for thermo-elastic problems. The robustness of the
proposed method in this work could be applied to similar prob-
lems, whereby the estimated quantity is not only different from the
measured one, but also doesn’t belong to the same domain. Other
multi-physics Structural Health Monitoring applications, to which
the proposed approach is applicable, are fluid-structure interaction
problems, e.g. in wind turbines, gas turbines, high rise buildings,
dams and railway foundations. Herein, wind velocity, temperatures
or water pressure are the quantities recorded by the sensors, which
are used to estimate the presence of cracks or fatigue damage in the
structure.

Prognosis and Damage
Regarding the damage estimation of fleet assets using physics-data-
based hybrid modelling, one potential would be to investigate ap-
plying more rigorous gating networks instead of the Multi-Layer
Perceptron (MLP) to estimate the weights assigned to the basis
physics-based models. Classical machine learning regressors has
shown outstanding performance compared to the proposed approach
when applied to extreme cases. This sparks a flame of curiosity to
investigate whether they could enhance the robustness of moSAIc if
they substitute the MLP.

Additionally, for the discussion in this work, only cyclic fatigue
damage models were considered when investigating Simulation Mod-
els and Artificial Intelligence Combined (moSAIc). Cyclic fatigue
damage is not the only failure mechanism. Cracks, wear, and creep
are as prevailing in industrial applications. When broadening the
scope of research beyond metallic materials, a multitude of more
sophisticated failure mechanisms associated with composites show
up on the table.
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Moreover, it was assumed that the appropriate degradation model
of the structure is known a-priori. In the daily life of a maintenance
engineer inspecting an engineering system, this doesn’t go beyond an
assumption associated with a level of confidence. Another alternative
for moSAIc is to use it as an ensemble of candidate physics-based
degradation models for the same structure, where the voting al-
gorithm decides how they could be combined to obtain the most
accurate damage model. Herein, the variability is not among fleet
assets, but among different failure mechanisms of the same structure.
Some industrial applications where such an approach could be rea-
sonably applicable are gas turbines prone to simultaneous thermal-
and mechanical-driven degradation. Also, this could be applicable
to rotating machinery, where an interaction between faults in the
electrical and the mechanical sub-systems are root causes for damage
accumulation.
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Appendices





AA-Priori Identification of Optimal
Number of Sensors

The paragraphs in this appendix summarize the methodology presented
in [Kha+19a] for a-priori estimating the optimal number of sensors
required for an accurate state estimation. The estimated number of
sensors is used as a constraint for the optimization problem, presented
in Equation (10.8)

Let Y = (yi)nti=1 ∈ Rnt×no be the matrix of output snapshots cap-
tured at nt discrete time steps, obtained either through experimental
measurements or a simulation of the system. From linear algebra,
given a set of real-valued functions {yi|i ∈ {1, . . . nt}} on the in-
terval [t0, tf ], the Gram matrix is given by the inner product on
functions. One application of the Gramian is to evaluate the linear
independence of the set of functions yi. The vectors yi are linearly
independent if the Gramian is non-singular. The Gramian of the
matrix of outputs Y is given by

H = YTY ∈ Rno×no . (A.1)

Defining d to be the rank of H, the column space spanning H
can be represented in terms of d linearly-independent columns
contained in Uf ∈ Rno×d [KV10]. Singular Value Decomposi-
tion (SVD) guarantees the existence of real, positive eigenvalues
σ1 ≥ σ2 ≥ · · · ≥ σd

!
≥ 0, and two sets of orthogonal basis vectors

Uf ∈ Rno×d and Zf ∈ Rno×d such that

H = Uf Σf ZT
f ; Σf = diag(σ1, . . . , σd) ∈ Rd×d (A.2)
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According to [KV10], for a matrix H, having orthogonal basis vectors
Uf and Zf , there exists a reduced sub-space represented by fewer
basis vectors, Ur and Zr, that can express the information contained
in H. The components of the reduced sub-space are given by

Ur, ij = Uf, ij for i ∈ {1, . . . , no} , j ∈ {1, . . . , r},
Zr, ij = Zf, ij for i ∈ {1, . . . , no} , j ∈ {1, . . . , r},

(A.3)

where 1 ≤ r ≤ d is defined such that

1−
∑r
i=1 σi∑d
i=1 σi

≤ ε0, (A.4)

and ε0 is a pre-defined tolerance for the reduction.

In relation to the optimal sensor placement problem, the number
of sensors to capture the dynamics of the system represented by
r linearly-independent basis vectors is given by ns = r. The in-
ner product YTY used to calculate H is proven by [PK96] to be
equivalent to the Fisher Information Matrix, which represents the
estimation covariance of the set of output responses. Accordingly,
the Gram matrix H, as well as its reduced-order representation,
inherently reflect the estimation error covariance. This concludes
that the optimal number of sensors n∗s required to minimize the
estimation error covariance P x+

k in Equation (10.2) equals to the
number of reduced basis vectors r according to Equation (A.4).
It needs to be noted that the choice of r depends dramatically on
the choice of the reduction tolerance ε0. In the literature of model-
order reduction, e.g. [KV10], it is common to choose the value of ε0
according to the application in hand. To our knowledge, there exists
no clear-cut rule of thumb according to which this tolerance value is
set.

260 Chapter A A-Priori Identification of Optimal Number of Sensors



BJacobian of Trace of A-Posteriori
Estimation Covariance Matrix

The paragraphs in this appendix present the detailed derivation of the
first term of the Jacobian of the objective function, Tr

(
P+
k (β̃)

)
. .

The chain rule could be used to find the derivative of the trace of
the state estimation error covariance, Tr

(
P x+
k (β̃)

)
, with respect to

the relaxed selection matrix β, as follows:

∂ Tr
(
P x+
k (β̃)

)
∂β

=
(
∂ Tr

(
P x+
k (β̃)

)
∂βj

)no
j=1

∈ Rno (B.1)

where the jth component of the Jacobian vector is

∂ Tr
(
P x+
k (β̃)

)
∂βj

=
∂ Tr

(
P x+
k (β̃)

)
∂β̃i︸ ︷︷ ︸

Term I

∂β̃i
∂βj︸︷︷︸

Term II

. (B.2)

The evaluation of Term II is rather simple. From Equation (10.17),
the mapping function of the relaxed variable βj to the binary variable
β̃i is written as

β̃i(βj) = δijΨ
(
βj | β̄, σ2) =⇒

∂β̃i(βj)
∂β̃j

= δijψ
(
βj | β̄, σ2) , (B.3)
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where Ψ and ψ are the Cumulative Density Function (CDF) and
Probability Density Function (PDF) of the Gaussian distribution
N (β̄, σ2), respectively, and δij is the Kronecker delta.

Term I requires a more elaborate step-by-step derivation.

First, exploiting the linear property of the trace operator, which
allows commuting it with the partial derivative operator, yields

∂ Tr
(
P x+
k (β̃)

)
∂β̃i

= Tr
(
∂P x+

k (β̃)
∂β̃i

)
(B.4)

Starting from Equation (10.2), the error covariance matrix is formu-
lated as a function of the argument variable β̃i as

P x+
k (β̃i) =

(
I−Gk(β̃i) C(β̃i)

)
P x-
k (β̃i), (B.5)

where the matrices Gk(β̃i), C(β̃i), P x-
k (β̃i) are given by:

Gk(β̃i) = P x-
k (β̃i)C(β̃i)T

R(β̃i) + C(β̃i)P x-
k (β̃i)C(β̃i)T︸ ︷︷ ︸

R̃(β̃i)


-1

P x-
k (β̃i) = AP x+

k−1(β̃i)AT + Q,

C(β̃i) = β̃iC0, i∗,

R(β̃i) = β̃
2
iR0, i∗.

(B.6)

The matrices C0 and R0 refer to the original observation and obser-
vation covariance matrices with all no system outputs being observed,
as defined in Equations (8.8) and (8.9). The subscripts (·)i∗ / (·)∗i
are used to refer to the ith row / column of a matrix, respectively.

For the rest of the derivation, the argument (β̃i) is dropped out for
the simplicity of the notation.
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Applying the product differentiation rule to Equation (B.5), the
derivative of the estimation error covariance is given by:

∂P x+
k

∂β̃i
= ( I−Gk C ) ∂P x-

k

∂β̃i
+ ∂ ( I−Gk C )

∂β̃i
P x-
k

= ( I−Gk C ) ∂P x-
k

∂β̃i
− ∂ (Gk C )

∂β̃i
P x-
k

= ( I−Gk C ) ∂P x-
k

∂β̃i
−
(
∂Gk

∂β̃i
C + Gk

∂C
∂β̃i

)
P x-
k .

(B.7)

Looking at the individual matrices separately, the derivative of the
a-priori estimation error covariance, P x-

k , could be written as:

∂P x-
k

∂β̃i
=
∂
(
AP x+

k−1AT + Q
)

∂β̃i
= A

∂P x+
k−1

∂β̃i
AT

=


A∂P x0

∂β̃i
AT = 0, if k = 1

A
∂P x+

k−1

∂β̃i
AT, if k > 1

.

(B.8)

Clearly, ∂P x-
k

∂β̃i
is dependent on

∂P x+
k−1

∂β̃i
evaluated at the previous

Kalman filter step. For k = 1, P x+
k−1 = P x0, which is the initial state

covariance of the problem, and is independent of β̃i. Hence, the
derivative vanishes for the first step. For the following steps, the
derivative could be calculated. This could be comprehended by the
fact that the Kalman filter intrinsically attempts to minimize the
covariance in the estimated joint probability of the states based on
the array of measurements updates. Accordingly, the a-posteriori
covariance is effectively a function of the measurements array, and
thus their positions in the system. For the first step, however, the
covariance is effectively an assumption on the degree of uncertainty
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in the initial state estimate, x0, thus remains uninfluenced by the
choice of system output positions.

Due to recursive procedure of the filter, which results in the depen-
dence of the current state estimation covariance on the previous
one, the derivative of the covariance matrices propagates in a similar
recursive fashion; i.e.

∂P x-
k

∂β̃i
= f ∂P x-

(
∂P x+

k−1

∂β̃i

)
=

−→
f ∂P x-

(
∂P x+

2

∂β̃i

)
(B.9)

where f ∂P x- is a function performing the steps shown in Equa-
tion (B.8), and

−→
f ∂P x- indicates the recursive call of the function.

Nonetheless, since the filter estimate at step k requires only knowl-
edge from the current step’s measurements and the previous steps
covariance, so does the derivatives of the covariance matrix. In other
words, the derivative ∂P x+

∂β̃i
should only be stored for the (k − 1)th

step, and recursively updated as the filter progresses.

The derivatives of the observation and observation covariance matri-
ces C and R with respect to β̃i are given as

∂C
∂β̃i

=

 0
C0, i∗

0

 ∈ Rno×nx ,
∂R
∂β̃i

= 2β̃i

 0
R0, i∗

0

 ∈ Rno×no ,

(B.10)

respectively, where the derivatives are matrices holding the elements
of the ith row of the original matrix and having zeros elsewhere.
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The derivative of the Kalman filter gain, G, is given by applying the
product rule, as follows:

∂Gk

∂β̃i
=
∂
(
P x-
k CTR̃-1)
∂β̃i

= ∂P x-
k

∂β̃i︸ ︷︷ ︸
Eq. (B.8)

CTR̃-1 + P x-
k

(
∂C
∂β̃i

)
︸ ︷︷ ︸
Eq. (B.10)

T
R̃-1 + P x-

k CT ∂R̃-1

∂β̃i

(B.11)

The term R̃, introduced in Equation (B.6), is differentiated by
applying the chain rule on the inverse operator. Recalling the

definition of the derivative of an inverse operator, the term ∂R̃-1

∂β̃i
is

given by

∂R̃-1

∂β̃i
= −R̃-1 ∂R̃

∂β̃i
R̃-1. (B.12)

The derivative of the matrix, R̃, is given by recalling the definition
in Equation (B.6), as follows

∂R̃
∂β̃i

=
∂
(
R + CP x-

k CT)
∂β̃i

= ∂R
∂β̃i︸︷︷︸

Eq. (B.10)

+

 ∂C
∂β̃i︸︷︷︸

Eq. (B.10)

P x-
k CT + C ∂P x-

k

∂β̃i︸ ︷︷ ︸
Eq. (B.8)

CT + CP x-
k

(
∂C
∂β̃i

)
︸ ︷︷ ︸
Eq. (B.10)

T


(B.13)
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Substituting Equation (B.13) in Equation (B.12) to obtain ∂R̃-1

∂β̃i
,

then substituting Equation (B.12) back into Equation (B.11) to ob-
tain ∂Gk

∂β̃i
, and finally substituting Equations (B.8), (B.10) and (B.11)

into Equation (B.7), the derivative matrix ∂P x+
k

∂β̃i
could be evaluated.

The trace of ∂P x+
k

∂β̃i
is evaluated to obtain the derivative of the objec-

tive function with respect to βi as per Equation (B.4).

To calculate the Jacobian vector,
∂ Tr

(
P x+
k (β̃)

)
∂β

, Equation (B.2) is
then evaluated for all βj ∈ β.
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CAssembly Procedure for the
General Case of moSAIc

In the paragraphs of this appendix, the assembly procedure of the
general case of moSAIc explained in Section 13.2 is elaborated on
a minimal example attempting to estimate the damage in a roller
bearing.

Consider a fleet of roller bearings, where Simulation Models and
Artificial Intelligence Combined (moSAIc) is applied to estimate
the damage of an unknown asset. For simplicity, we consider an
architecture with X B =

{
x B

1, x B
2

}
, and given that each model may

yield up to four damage estimates, (y B
1) (r), (y B

1) (i), (y B
1) (o),and

(y B
1) (c), corresponding to the most damaged roller, the inner race,

the outer race, and the cage, respectively. The alphabetic characters
are used in the example for the sake of clarity, but typically, numeric
indexing is used.

Let

y B
1 =

[
(y B

1) (r), (y B
1) (o)

]T
, y B

2 =
[
(y B

2) (r), (y B
2) (i)

]T
.

Correspondingly,

α
M

1 =
[
(αM

1) (r), (αM
1) (o)

]T
, α

M
2 =

[
(αM

2) (r), (αM
2) (i)

]T

Here, the union of indexes is given by

{(r), (o)} ∪ {(r), (i)} = {(r), (i), (o)} ,

and has a cardinality of 3. Therefore, ñe = 3, which is the total
number of distinct damage estimates yielded by the basis models.
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The mapping function is defined as f ã : {(r), (i), (o)} → {1, 2, 3}.
Applying Equation (13.15) to the first basis model’s outputs and
weights, we observe that for both ẽ = 1 and ẽ = 3, the correspondents
(y B

1) (r), (y B
1) (o) ∈ y B

1, in contrast to (y B
1) (i) /∈ y B

1. Similarly,
(αM

1) (r), (αM
1) (o) ∈ α

M
1, while (αM

1) (i) /∈ α
M

1.

Hence, the assembled vectors corresponding to x B
1 are written as:

ỹ B
1 =

(y B
1) (r)

0
(y B

1) (o)

 , α̃
M

1 =

(αM
1) (r)

0
(αM

1) (o)

 .

Equivalently, the mapping function is applied to vectors of x B
2,

yielding:

ỹ B
2 =

(y B
2) (r)

(y B
2) (i)

0

 , α̃
M

2 =

(αM
2) (r)

(αM
2) (i)

0

 .
Finally, substituting the yielded consistent vectors into Equation (13.17),
yields

ỹ M =< α̃
M

1, ỹ B
1 > + < α̃

M
2, ỹ B

2 >

=


(αM

1) (r)(y B
1) (r) + (αM

2) (r)(y B
2) (r)

0 + (αM
2) (i)(y B

2) (i)

(αM
1) (o)(y B

1) (o) + 0

 .

Effectively, the hybrid model’s estimate of the roller element’s damage
is the combined damage of x B

1 and x B
2, weighted by the vectors

α̃
M

1 and α̃
M

2. Due to the non-comprehensiveness of the basis models
in estimating the damage of the inner and outer rings, the estimate
of both quantities is attributed solely to x B

1 and x B
2, respectively,

without a contribution from the other basis model.
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