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Zusammenfassung

Aufgrund der wachsenden Komplexität des Entwicklungsprozesses in der Automobilindustrie wird
es immer schwieriger, sich bei der Konstruktion von Fahrzeugkomponenten ausschließlich auf die
ingenieurtechnische Intuition zu verlassen. Gleichzeitig ist der Einsatz von Simulationsmetho-
den in der Industrie mittlerweile ein gängiger Standard, der zu einer Transformation des tradi-
tionellen Entwurfsprozesses hin zum modellbasierten Konzept führt. Infolgedessen wird die au-
tomatische Erzeugung mechanischer Strukturen auf der Basis von Optimierungsalgorithmen in
der Praxis immer häufiger eingesetzt. Insbesondere die Formulierung einer Entwurfsaufgabe als
Problem der Topologieoptimierung bietet dem Computerprogramm die größte Flexibilität und er-
möglicht eine Umverteilung des Materials innerhalb eines bestimmten Entwurfsraums, um die
Leistungsmetriken für die definierten Belastungsbedingungen zu maximieren. Die meisten häu-
fig verwendeten Methoden zur Topologieoptimierung nutzen analytische Sensitivitätsinformatio-
nen, um eine effiziente gradientenbasierte Optimierung durchzuführen, auch bei Problemen mit
Millionen von Entwurfsvariablen. Einige wichtige Optimierungsprobleme, wie z. B. die struk-
turelle Crashtauglichkeit, weisen jedoch eine sehr hohe Komplexität auf, was sich in einer starken
Nichtlinearität, einem hohen Grad an numerischem Rauschen, Bifurkationen und Diskontinuitäten
der betrachteten Zielfunktionen und Nebenbedingungen widerspiegelt. Daher sind die gradien-
tenbasierten Methoden in solchen Fällen normalerweise nicht direkt anwendbar und stattdessen
werden alternative Ansätze verwendet, die auf starken Vereinfachungen bei der Modellierung
oder heuristischen Annahmen beruhen. Infolgedessen sind sie hauptsächlich für bestimmte Fälle
geeignet, und es sind weitere Untersuchungen zur Entwicklung allgemeinerer Methoden erforder-
lich. In dieser Arbeit wird daher ein Ansatz zur Topologieoptimierung vorgeschlagen, der auf
evolutionären Algorithmen und einer niedrigdimensionalen Level-Set-Darstellung basiert und die
Optimierung beliebiger quantifizierbarer Kriterien mithilfe expliziter Crash-Simulationen mit ho-
her Wiedergabetreue ermöglicht. Die Methode wird auf Grundlage von standardmäßigen linear-
elastischen Benchmark-Problemen validiert und mit den aktuell vorhandenen Optimierungsmetho-
den für Crashtopologien unter Verwendung akademischer Testfälle sowie eines industriellen Opti-
mierungsproblems verglichen. Die numerischen Experimente zeigen, dass mit dem vorgeschlage-
nen Verfahren erheblich bessere Strukturen erzielt werden können, jedoch auf Kosten einer hohen
Anzahl notwendiger Crash-Simulationen. Um dies zu mildern, wird in dieser Arbeit vorgeschla-
gen, die verfügbaren Informationen effizient zu nutzen, indem maschinelles Lernen auf verschiede-
nen Ebenen des Optimierungsprozesses integriert wird: zur Modellierung der Antworten aus den
teuren Crash-Simulationen, zur Approximation von Sensitivitätsinformationen, die in einer hybri-
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den gradientenverstärkten evolutionäre Optimierung verwendet werden, und zur Vorhersage gün-
stiger topologischer Variationen innerhalb einer adaptiven Topologieoptimierung. Die Ergebnisse
zeigen, dass durch die Einbeziehung von Techniken des maschinellen Lernens in die evolutionäre
Optimierung signifikante Leistungsverbesserungen erzielt werden können. Schließlich ermöglicht
der generische Charakter der vorgeschlagenen Verfahren möglicherweise die Bewältigung eines
breiten Spektrums von nicht standardmäßigen Strukturoptimierungsaufgaben, einschließlich Prob-
lemen bei der Fertigung, der Soft-Robotik, dem Entwurf komplienter Systeme und vielen an-
deren.
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Abstract

Due to the rising complexity of the development process in the automotive industry, it becomes
very difficult to rely solely on the engineering intuition when designing car components. At the
same time, the use of simulation methods in industry is now a common standard, leading to a trans-
formation of the traditional design process towards the model-based concept. As a consequence,
automatic generation of mechanical structures based on optimization algorithms is more and more
frequently used in practice. In particular, formulation of a design task as a topology optimiza-
tion problem gives the computer program the most flexibility, allowing for a redistribution of the
material within a given design space, to maximize performance metrics for the defined loading
conditions. Most of the commonly used topology optimization methods utilize analytical sensi-
tivity information to perform efficient gradient-based search even for problems involving millions
of design variables. However, some important optimization problems, such as the ones in struc-
tural crashworthiness, exhibit very high complexity, reflected in strong nonlinearity, high levels
of numerical noise, bifurcations, and discontinuities of the considered objectives and constraints.
Hence, the gradient-based methods are usually not directly applicable in such cases and alternative
approaches, based on strong simplifications in the modeling or heuristic assumptions, are used
instead. As a result, they are suitable mainly for specific cases, and a further research to develop
more general methods is needed. Therefore, this thesis proposes a topology optimization approach
based on evolutionary algorithms and a low-dimensional level-set representation, allowing for an
optimization of arbitrary quantifiable criteria using high-fidelity explicit crash simulations. The
method is thoroughly validated based on the standard linear elastic benchmark problems and com-
pared to the state-of-the-art crash topology optimization methods using academic test cases as well
as a real-world optimization problem. The numerical experiments show that considerably better
structures can be obtained with the proposed method, however, at the cost of a high number of
necessary crash simulations. To mitigate that, this thesis proposes to use efficiently the available
information by integrating machine learning at different levels of the optimization process: for
modeling of the responses from the expensive high-fidelity simulations, for approximating sensi-
tivity information used in a hybrid gradient-enhanced evolutionary approach, and for prediction of
favorable topological variations within an adaptive topology optimization. The results show that
significant performance improvements can be obtained by incorporating machine learning tech-
niques into the evolutionary search. Finally, the generic character of the proposed methods allows
potentially for addressing a wide spectrum of non-standard structural optimization tasks, including
problems in manufacturing, soft robotics, compliant mechanism design, and many others.
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Chapter 1

Introduction

For decades, automotive industry has been striving for lightweight design. Through a tremen-
dous effort of generations of engineers, we were able to develop very complex vehicle structures,
meeting ambitious requirements concerning fuel consumption, driving comfort, and safety. So
far, the design process was based mostly on trial and error as well as engineering intuition and
know-how, collected over all the past years. Nowadays, the design targets for the car industry are
even more demanding. Shorter design cycles, very strict CO2 emission regulations, as well as high
expectations of the customers regarding the comfort and safety, make the design process highly
interdisciplinary and challenging. As a result, very often it is difficult to rely on intuition when de-
signing complex car components, which have to meet stringent requirements related to a growing
number of versatile disciplines.

In particular, among different design aspects, vehicle crashworthiness plays a very important role.
Each year, ca. 1.2 million people die in car accidents worldwide (Fang et al. (2016)) and many
more are severely injured, which makes vehicle crash one of the main health concerns of a mod-
ern society, with major socioeconomic implications. Despite the huge improvement in terms of
vehicle crashworthiness within the last decades, strongly related to the development of numerical
simulation methods such as the Finite Element Method (FEM), crashworthiness design remains
one of the most challenging fields of structural engineering, involving highly complex physical
phenomena. As such, it poses severe difficulties for the human designers, with crash components
frequently exhibiting very non-intuitive mechanical behavior.

With the development of numerical simulation methods as well as the growing power of com-
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putational hardware, so-called simulation-driven design becomes an attractive alternative to the
traditional trial-and-error design process. By formulating the design problem as a mathematical
optimization task, simulation software can be used to provide an optimal design for given crite-
ria in a fully automated way. As a consequence, the development process can be considerably
accelerated and the number of costly prototypes reduced.

Among different formulations of optimization problems for structural design, Topology Optimiza-
tion (TO) is the most complex one, giving the computer program the full freedom to redistribute
material within a predefined design space, for given loading conditions. In particular, crashwor-
thiness TO belongs to the most difficult classes of TO problems, due to highly nonlinear character
of the optimization objectives and constraints, which are usually highly multi-modal, involve dis-
continuities, bifurcations, and high levels of numerical noise. This results directly from the high-
fidelity simulation models used today, which account for nonlinear material behavior, buckling,
large deformations, contact, or even material failure. Consequently, standard gradient-based TO
approaches are not applicable here and alternative methods have to be developed.

Due to its practical relevance, complexity, and a high potential for improvements, crashworthiness
TO constitutes a very important and interesting field of research. This work primarily focuses on
development of crash TO methods addressing the shortcomings of the existing approaches, which,
to mitigate computational cost, rely on simplifications of the load cases or utilization of heuristic
update rules, leading to a considerably limited generality. To achieve that, this thesis presents
an alternative way, based on utilization of the methods from the domain of Artificial Intelligence
(AI), such as evolutionary computation, memetic algorithms, supervised learning for regression
and classification problems. To guarantee high computational efficiency, manufacturability, as
well as correct physical behavior of the structures in the crash simulations, a low-dimensional
representation based on a level-set description is used.

The proposed methods are validated on linear elastic static problems and applied to nonlinear crash
scenarios, considering both 2D and 3D design spaces. Finally, the core method proposed in this
dissertation, Evolutionary Level Set Method (EA-LSM), is used for a real-world design problem
of a conceptual hybrid S-rail with an additively-manufactured metal joint.

Although the methods discussed in this work are developed mainly in the context of crashworthi-
ness applications, all of them have generic character, which makes them potentially also useful in
other fields of structural TO, where the gradient-based approaches are not applicable. Moreover,
these approaches can work with commercial, black-box simulation software, which allows for em-
bedding them in established workflows. Finally, the proposed methods can be also applied in case
of the problems where gradient-based methods are used, however, the considerable computational
effort would likely prohibit that.
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This dissertation is structured as follows. In Chapter 2, the current state of the art of crashworthi-
ness TO, as well as the methods based on evolutionary optimization and utilizing machine learning
in structural TO, are discussed. In Chapter 3, a short introduction to Evolutionary Computation
(EC), necessary for understanding the methods developed in this work, is given. Chapter 4 pro-
vides an intuitive justification of the choices made on the representation level for evolutionary-
based structural TO. Chapter 5 introduces the main contribution of this thesis, the EA-LSM. In
Chapter 6, machine-learning-based enhancements of EA-LSM are discussed, including the con-
cept of an adaptive EA-LSM. To validate the proposed methods, in Chapter 7, an evaluation on
linear elastic cases is presented. Subsequently, in Chapter 8, the methods are evaluated on non-
linear crash cases. Finally, Chapter 9 addresses the question of feasibility of using EA-LSM in
industrial setting, by optimizing the topology of a 3D-printed metal joint in a hybrid S-rail. Chap-
ter 10 concludes the work and discusses promising directions for the future research.
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Chapter 2

State of the art

This chapter summarizes the state of the art with a special focus on methods relevant to this work.
First of all, structural TO is briefly introduced in Section 2.1. In Section 2.2, state-of-the-art TO
methods for crashworthiness are discussed in more detail. Particular attention is paid to the gen-
erality of the methods, to motivate the solutions proposed in this work. Subsequently, Section 2.3
discusses the existing structural TO methods using Evolutionary Algorithms (EAs). Finally, since
a significant part of this work uses Machine Learning (ML) approaches to enhance the optimiza-
tion process, a critical review of the recent methods using ML in TO is given in Section 2.4. The
presented discussion leads directly to the definition of aim and objectives of this work, described
in Section 2.5.

2.1. Structural topology optimization

Structural TO targets finding optimal material distribution for given criteria, within a defined de-
sign domain, and under specified boundary conditions. These methods are used nowadays mainly
in early design phases, as an inspiration for the novel design concepts. Recently, with the advances
in integrating manufacturing constraints into TO (Langelaar (2016); Liu and Ma (2016); Vatanabe
et al. (2016); Gaynor and Guest (2016)) and the progress in Additive Manufacturing (AM), TO is
considered also as a tool for the part design. In general, TO methods can be divided into two main
categories, i.e. density-based (Bendsøe and Sigmund (2004)) and level-set methods (Dijk et al.
(2013)), which are discussed below.
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The most commonly used structural TO methods are the density-based approaches, including ho-
mogenization methods (Suzuki and Kikuchi (1991); Hassani and Hinton (1998)) and SIMP1-based
methods (Bendsøe (1989); Zhou and Rozvany (1991); Rozvany et al. (1992)). In density-based
methods, the design domain is divided into a mesh of parametrized elements. The parameters, e.g.
element densities scaling the Young’s modulus, are adjusted by the optimization algorithm to mini-
mize given objective functions, while satisfying specified constraints. Such parametrization results
typically in thousands, up to millions of design variables, which are modified by gradient-based op-
timizers (Bendsøe and Sigmund (2004); Aage et al. (2015)) or heuristic2 methods (Xie and Steven
(1997); Yang et al. (1999); Tovar (2004)). Highly efficient gradient-based methods allow for ad-
dressing various problems, involving such criteria as compliance minimization (Sigmund (2014)),
stress constraints (Duysinx and Bendsøe (1998); Bruggi and Duysinx (2012)), eigenmode max-
imization (Pedersen (2000)), maximization of fundamental buckling load (Neves et al. (1995)),
pressure loads (Hammer and Olhoff (2000)), compliant mechanisms (Sigmund (1997)), and many
others. Heuristic methods (Xie and Steven (1997); Yang et al. (1999); Tovar (2004)) are typically
used in situations when analytical sensitivities are not available. To overcome typical problems
with density-based approaches, e.g. checkerboard patterns, mesh dependency, and intermediate
densities, different techniques have been developed (Bendsøe and Sigmund (2004)). However, the
problem of intermediate densities still appears in most cases, even when the SIMP interpolation
scheme is used. As a result, level-set methods have been proposed, to guarantee development of
clear boundaries between material and void.

In Level Set Methods (LSMs) (Sethian and Wiegmann (2000); de Ruiter and van Keulen (2004);
Allaire et al. (2004, 2005)), an implicit level-set function is used to describe material distribution,
and its 0th iso-contour defines the location of the material interface. The clear definition of material
boundaries is crucial from the point of view of manufacturability of the optimized topologies and
resulted in a growing popularity of LSMs. In standard LSMs, the level-set function is updated via
solving the Hamilton-Jacobi partial differential equation (Allaire et al. (2004)), which incorporates
analytically derived sensitivities. The level-set function is usually defined in terms of local basis
functions, e.g. FEM basis functions (Dijk et al. (2012)), Radial Basis Functions (RBFs) (de Ruiter
and van Keulen (2004); Wang and Wang (2006)), or spectral parametrization (Gomes and Suleman
(2006)), which highly influence the smoothness of the material distribution.

Taking advantage of the main concept of LSMs, i.e. definition of the material distribution based
on an implicit function, different techniques using parametrized geometric shapes as local basis
functions emerged (Van Miegroet and Duysinx (2007); Guo (2014); Norato et al. (2015)). From
this perspective, those methods can be perceived as a part of a broader class of LSMs (Dijk et al.
(2013); Wein et al. (2019)). However, there is a fundamental difference between the standard LSMs

1 Solid Isotropic Material with Penalization (Bendsøe and Sigmund (2004)).
2 Heuristics are methods employing certain rules, formulated usually based on earlier observations. They do not have

to lead to an optimal solution, but are sufficient for finding good designs, leading therefore to realization of short-term
goals.
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(Sethian and Wiegmann (2000); Wang et al. (2003); Allaire et al. (2004)) and the parametrizations
based on geometric shapes, where the Hamilton-Jacobi equation is not solved to evolve the material
interface, but the variables parametrizing the shapes are changed explicitly by the optimizer. As a
consequence, there is no clear consensus in the community regarding classification of this group of
methods as LSMs, and different terms were proposed: Moving Morphable Components (MMCs)
(Guo (2014)), Geometry Projection (Norato et al. (2015)), or Feature-Mapping Methods (Wein
et al. (2019)) suggested recently as a unified name. In this work, however, similarly to our previous
publications (Bujny et al. (2016b,c, 2017a, 2018); Raponi et al. (2017)), we follow the oldest
classification (Dijk et al. (2013)) and treat this type of methods as a part of a broader category of
LSMs.

2.2. Crashworthiness topology optimization

Crashworthiness belongs to the most difficult areas of application of TO. Due to high levels of
numerical noise, physical bifurcations, and discontinuities caused by material failure, contacts and
large plastic deformations, the analytical derivation of sensitivities is very difficult and even nu-
merical estimates of gradients are not always reliable (Duddeck (2008); Aulig (2017); Ortmann
and Schumacher (2013)). Therefore, crash TO is normally not addressed with gradient-based
approaches directly, and alternative methods have to be used. In general, the methods for crash-
worthiness TO can be divided into the following categories:

• Equivalent Static Loads (ESL) methods.
• Ground Structure Approaches (GSAs).
• Bubble and Graph/Heuristic approaches (GHAs).
• Hybrid Cellular Automata (HCA) methods.
• Bi-directional Evolutionary Structural Optimization (BESO) approaches.
• State-Based Representation (SBR) approaches.

Below, the description of the most representative methods and algorithms from these categories is
given.

2.2.1. Equivalent static loads (ESL) methods

The earliest attempts of using TO in crashworthiness involved primarily the use of ESL techniques.
The main idea in ESL is to replace the dynamic crash case with a set of static loads roughly
representing the loading conditions during the crash event. Since dynamic and nonlinear effects
are not taken into account in such a case, those methods are appropriate mainly for optimization of
structures not undergoing large plastic deformations, e.g. the safety cell. Once static load cases are
defined, standard gradient-based TO methods for linear elasticity (Bendsøe and Sigmund (2004))
can be used to minimize the compliance.
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One of the most important aspects of ESL techniques is the type of approximation of the dynamic
loads. From this perspective, ESL approaches can be divided into global and local ESL methods.
In the global ESL methods, the static loads cover larger areas of the design domain and are usu-
ally defined coarsely based on the individual judgement of the optimization expert. In the early
approaches (Cavazzuti et al. (2010); Christensen et al. (2012)), each of the dynamic load cases
was approximated with just a single static load case, thus not capturing the variations of the load
over time in the approximated crash scenario. Each ESL case was considered separately and the
structure was optimized simultaneously for different loading conditions by considering a multi-
objective optimization problem. Later on, Duddeck and Volz (2012) proposed an extension, where
several static load cases were used to represent different stages of the crash event. This accounted
both for the variations of the loads in time and location, so this approach is much more suitable for
grasping the dynamic characteristics of the crash event. Moreover, the derivation the ESLs in this
case was relying on general energy considerations, based on average force levels and free crush
lengths in the energy-absorbing zones, which much better reflected the requirements for structural
crashworthiness.

The second group of ESL methods, i.e. the local ESL approaches (Yi et al. (2012); Park (2010)),
rely on a much more fine-grained definition of the static loads. The main idea is to use the nonlinear
crash simulation to compute the nonlinear displacements at different moments of the crash event.
In the next step, the nonlinear displacements are multiplied by the corresponding linear stiffness
matrix, yielding a vector of the nodal forces. The application of the resulting nodal forces to a
linear elastic case should obviously result in the same displacements as in the nonlinear crash
scenario. Each of the points of time during the nonlinear crash simulation is considered separately
and, therefore, the multiplication of the displacements by the stiffness matrix results in several
independent load cases. Similarly to the global ESL approach proposed by Duddeck and Volz
(2012), multi-load-case TO techniques are used to derive the optimal design. Once the topology
is optimized for the first set of ESL cases, the behavior of the structure in a crash scenario is
simulated and the process is repeated. The entire optimization is therefore realized in two nested
loops – in the outer loop the crash simulation is performed and the equivalent static load cases are
extracted, while in the inner loop, gradient-based multi-load-case TO for linear elastic statics is
applied to optimize the structure for the current loading conditions. Since the overall process is
fully automated, the implementation of this method in engineering software is possible and was
done in GENESIS (Vanderplaats (2019)). Several works on optimization of automotive structures
based on this software have been published and the results were promising (Erhart et al. (2012);
Müllerschön et al. (2013); Salway and Zeguer (2013); Kim et al. (2017); Karev et al. (2018, 2019)).
However, even the local ESL approach, potentially offering much better accuracy in representing
the nonlinear crash behavior than the global ESL, relies on the fundamental assumption that the
crash loads can be replaced with static forces, which is questionable in general case. Moreover, it
is arguable if the stiffness matrix corresponding to the undeformed structure can be used to derive
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the nodal forces (Duddeck et al. (2016)). Another important assumption in the local ESL is that
the minimization of the compliance in the inner loop would guide the optimization towards the
optimum of the problem addressed in the nonlinear crash case. Finally, due to the computation of
the equivalent loads on the nodal level, element deletion, which is crucial for crash TO to avoid
unphysical behavior, should be taken with a special care.

Although ESL techniques are computationally very efficient, the simplifications they use severely
restrict the applicability of those methods in general case. Regardless of that, they remain one of
the main approaches used in the industry for large-scale TO, thanks to their simplicity and the low
computational cost.

2.2.2. Ground structure approaches (GSAs)

Similarly to ESL methods, GSAs belong also to one of the oldest approaches for crash TO. In
GSA, the optimized part, e.g. a car body structure, is modeled as a system of elementary macro-
elements (beams), which exhibit a simplified crash behavior. That is a clear advantage over the
ESL approaches, since nonlinear effects can be taken into account. The optimization starts with
a design composed of a dense lattice of macro-elements, referred to as the ground structure. For
the simplified crash simulation model, the analytical sensitivities can be derived, and efficient
gradient-based optimization techniques can be used to find the best topological concept. Usually,
size parameters, such as thicknesses of the macro-elements, are used as design variables. The
elements are deleted from the ground structure if the thickness drops below a certain threshold.

In particular, the methods proposed by Fredricson et al. (2003), Pedersen (2003), and Torstenfelt
and Klarbring (2007) belong to the most representative GSAs. Fredricson et al. (2003) proposed to
use GSA in optimization of frame structures with flexible joints. However, only static load cases
were addressed here and the method was applied only to small academic examples. Pedersen
(2003) applied GSA to achieve a predefined energy absorption history in a simplified crash sce-
nario. The simplification involved the use of quasi-static finite element (FE) solver for a 2D frame
composed exclusively of beam elements and plastic hinges. The macro-elements could therefore
undergo large translations and rotations, allowing for much more realistic modeling of the crash
behavior than in the ESL methods. Finally, Torstenfelt and Klarbring (2007) used GSA for op-
timization of a 3D car body structure relying on a parametrized model composed of beams and
joints. However, also in this case, only static load cases and equivalent static counterparts of the
crash load cases were considered.

The main limitation of the GSAs remains the accuracy of the simulation models. In particular,
contact modeling is not taken into account and the simplified models require significant calibration
effort. Moreover, the final result of the optimization strongly depends on a particular layout and
the number of macro-elements in the ground structure. The parametrizations used usually allow
only for changes in size, and not in shape or positions of the elements, which also significantly
restricts the number of design concepts that can be derived.
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2.2.3. Bubble and graph/heuristic approaches (GHAs)

Another important class of methods for crash TO are bubble as well as graph and heuristic ap-
proaches (GHAs). Crashworthiness TO based on the bubble method (Eschenauer et al. (1994);
Eschenauer and Schumacher (1997)) is a three-stage approach. Firstly, for a given topology of
the initial design, shape optimization of its geometry is carried out. Secondly, the topology of
the design is changed by insertion of an infinitesimal hole, also referred to as the "bubble", into
the structure. The positioning of the hole is based on analytical expressions proposed by Schu-
macher (2005). Depending on the considered objectives, different criteria for hole positioning can
be used. Schumacher (2005) proposes closed expressions for the stiffness maximization and min-
imization problem. The approach is mathematically justified by a strong relation to the concept
of topological derivative (Novotny and Sokołowski (2013)), which is frequently used in level-set
structural TO (Allaire et al. (2005); Norato et al. (2007)). Thirdly, the shape of the inserted hole
as well as the remaining structural boundaries are optimized. The entire process is repeated until
convergence, indicated by insertion of the hole on the variable boundary. The main limitation of
the method remains the fact that the criteria for positioning of the holes are based on maximization
or minimization of the stiffness of the part for the corresponding linear elastic case. It is not clear
how much this is correct in general case. Furthermore, the method has been applied only to rela-
tively simple academic test cases. Taking into account the similarity of the bubble method to the
topological derivative, Weider and Schumacher (2018) proposed recently a topological derivative
method for crash objectives based on meta-modeling. However, this is still a work-in-progress
and additional research on contact and strain rate effects is necessary (Weider and Schumacher
(2018)).

The bubble method inspired a development of an approach for graph and heuristic based topology
optimization (Ortmann and Schumacher (2013); Ortmann (2015)). In this method, a topology is
represented using a graph, whose vertices encode the information about the cross-sections, such
as wall thickness or curvature. The edges of the graph are used to store the information about the
topological connections of the design. Manufacturing constraints and graph correction checks are
also performed in the proposed framework (Ortmann and Schumacher (2013)). In GHAs, crash-
worthiness criteria are tackled directly to optimize thin-walled components. The method is used
mainly for optimization of rib patterns in the thin-walled extrusions (Ortmann and Schumacher
(2013); Ortmann (2015)), and recently also to composite profiles (Schneider et al. (2018, 2019)),
as well as for optimization of the rib layout on surfaces (Schneider and Schumacher (2018)). In all
of the cases, the TO problem remains always two-dimensional. The optimization itself is carried
out in two nested loops. The outer loop introduces topological changes by adding new walls within
the empty chambers of the profile. The topological modifications are introduced based on heuris-
tic rules extracted from the expert knowledge in the area of crashworthiness design. The rules
were formulated based on a wide study (Schumacher and Ortmann (2013)) done in cooperation
with major German car companies, where more than 150 engineering design rules were identified.
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Based on that, 7 most important heuristics, e.g. "Support Fast Deforming Walls", "Remove Small
Chambers", or "Balance Energy Density", were described mathematically and used within GHAs.
In the inner loop, an optimization of shape and size of the ribs, for a fixed topology, is carried out
using Genetic Algorithms (GAs). The optimization process is continued until the next topological
modifications no longer result in the improvements of the optimization criteria.

Although GHAs, unlike the state-of-the-art methods discussed previously, rely on high-fidelity
crash simulations and address crash-specific criteria directly, the heuristic rules they use remain
arguable. One has to take into account also the higher computational cost of the method resulting
from the utilization of GAs in the inner loop. The method has been also applied only to 2D TO,
and it is not clear if it could be extended to 3D problems and how would it perform in these
cases. Most probably, the heuristic rules would also heavily depend on the type of the optimization
problem as well as the design representation used. Moreover, acquiring such rules in the way
proposed by Schumacher and Ortmann (2013) is very cumbersome and it is not clear if such rules
can be identified in general case. Finally, to the best of our knowledge, the method has never been
evaluated on linear elastic static problems, where it could be compared to the standard benchmark
cases with the known optima. The topological modifications are restricted exclusively to addition
of walls in the empty chambers, i.e. not allowing to cross any other walls, and it is questionable
if this process could yield global optima even for simple static examples. Nevertheless, from the
point of view of engineering practice, where the global optimality is not of the main interest, GHA
can be used successfully to improve the design of crash-relevant components based on explicit
crash simulations, which makes it a valuable tool for the industrial applications.

2.2.4. Hybrid cellular automata (HCA) methods

Another category of methods, very popular also in engineering practice, comprises the HCA tech-
niques. HCA methods rely on the concept of Cellular Automata (CA), well known in computer
science (Wolfram (2002)). In CA, the space is initially filled with a structured grid of cells, which
can take one of a finite number of states. The evolution of the state of the entire system is achieved
by successive updates of the states of individual cells, which depend on the states of their neigh-
bors. HCA techniques employ this idea, but the updates are additionally based on the global
information about the entire system. This approach has been used for the first time in structural
TO as a tool for simulation of the bone remodeling process (Tovar (2004)). Since the method re-
lies on the heuristic optimization criterion, being homogenization of strain energy density, it can
be used in the cases when the gradient information is not available. As a result, adaptations of this
approach, described below, have been successfully used in TO of crash structures.

Patel (2007) as well as Mozumder (2010) proposed HCA techniques for crash topology and topom-
etry optimization of solid and shell structures, respectively. In these cases, the optimality criterion
relies on the assumption that the energy absorption in the finite elements should be homogenized
to maximize energy absorption of the entire structure. Similarly to GHAs, these methods use
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high-fidelity explicit crash simulations. However, thanks to the used heuristics, the computational
costs are considerably lower, which makes them very attractive for the industrial applications. As
a consequence, these HCA methods were used as a basis for the development of commercial TO
software for crash, LS-TaSC (LSTC (2011)), which has been successfully used in optimization of
industrial problems (Salway and Zeguer (2013); Aulig et al. (2018)).

Despite the popularity of the standard HCA approach described above, it is arguable if the energy
homogenization criterion can be used for optimization of crash structures in general case. In partic-
ular, a lot of crash-relevant car body components are thin-walled structures, e.g. metal crash boxes.
It is well known that for this type of structures the energy absorption during crash is maximized via
progressive folding (Kanter (2006)), which is characterized by occurrence of local plastic hinges
with high energy concentrations. Therefore, the maximization of the overall energy absorption, in
this case, does not correspond to homogenization of energy absorption on the element level. In
order to address that problem, Hunkeler (2013) proposed a modification of HCA, a Hybrid Cel-
lular Automata for Thin-Walled Structures (HCATWS) approach, where cells consist of groups
of shell finite elements, e.g. rectangular walls. The energy absorption is homogenized therefore
among the walls, allowing for an inhomogeneous energy distribution on the local, finite element
level. The method can therefore allow for creation of local plastic hinge lines, which is crucial
in case of optimization of thin-walled components. The method has been successfully applied to
optimization of crash components under axial and oblique impact (Duddeck et al. (2016)) as well
as transverse bending (Zeng and Duddeck (2017); Zeng (2018)).

All in all, HCA methods, thanks to their low computational costs3 as well as the ability to use
explicit crash simulations directly, are very valuable in engineering practice. However, one has to
keep in mind that none of the HCA approaches is a formal optimization method, and the optimality
of the structures obtained with these methods cannot be guaranteed. In particular, the assumption
that energy absorption should be homogenized either on the element level, as in the standard HCA,
or on the macro-cell level, as in HCATWS, is questionable and can be true only in specific cases.
Therefore, the optimization of crash-relevant objective functions cannot be tackled directly and
one can only hope that the heuristic optimization criteria lead to improved designs for the problem
at hand. Finally, HCA methods have difficulties to address problems with more than one constraint
(Zeng (2018)), which is a severe limitation in industrial settings, where the problems are usually
highly constrained. One possible solution of that problem is to look at the optimization task from
the perspective of design exploration (Matejka et al. (2018)), where HCA can provide many dif-
ferent design concepts, based on the changes of boundary conditions, constraint values, or weights
of individual load cases in multi-objective optimization scenarios (Aulig et al. (2018); Ramnath
et al. (2019)). Alternatively, one can consider the above mentioned criteria for design variation
as global design variables for an optimization problem, where HCA-optimized structures play the

3 Usually, 20–70 nonlinear FE simulations are needed for the HCA/HCATWS optimization to converge (Patel (2007);
Mozumder et al. (2012); Zeng and Duddeck (2017); Raeisi et al. (2019)).
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role of the design representation (Roux (2016)). As a result, the user can choose between different
design concepts, based on various design criteria, which have not been taken into account in the
optimization process itself. Anyway, the price to pay is an increased computational cost of such
an approach, whereas the optimality of the structures w.r.t. the considered selection criteria is not
guaranteed.

2.2.5. Bi-directional evolutionary structural optimization (BESO) approaches

Evolutionary Structural Optimization (ESO) is a TO approach proposed first by Xie and Steven
(1997). In contrast to the methods proposed in this work, ESO does not use EAs, but is based on
a simple heuristic rule for "evolving" the design, which assumes that inefficient material has to be
gradually removed from the structure. The efficiency of the material can be measured using e.g.
equivalent (von Mises) stress in the finite elements. If it the ratio of the von Mises stress in a given
element to the maximum von Mises stress in the entire structure drops below a certain threshold,
referred to as the rejection ratio (Xie and Steven (1997); Huang and Xie (2010)), the element is
deleted from the finite element model.

An extension of ESO, Bi-directional Evolutionary Structural Optimization (BESO), allows both
for deletion as well as addition of material to the structure. The method was originally developed
for optimization for statics (Yang et al. (1999)), but later on has been also applied to optimization
of energy-absorbing structures (Huang et al. (2007)). More recently, the method has been fur-
ther improved by combining BESO with Entropy Tabu Search Simulated Annealing (Christensen
(2015)) and successfully applied to large-scale crash TO problems.

To summarize, since BESO methods do not use EAs, but, like HCA techniques, rely on heuristic
optimization rules, they are applicable only to selected optimization problems. The advantage of
those approaches is the ability to work with explicit crash simulations as well as their relatively
low computational cost.

2.2.6. State-based representation (SBR) approaches

The last group of methods discussed here proposes a modification on the level of design repre-
sentation. In all of the cases discussed above, the optimization relies on the changes of design
variables parametrizing individual unit parts composing the structure, usually arranged in a regular
grid. This results in a large number of design variables, which prohibits the use of non-gradient op-
timizations techniques, such as EAs or Efficient Global Optimization (EGO) (Jones et al. (1998);
Forrester et al. (2008)).

SBR approaches propose to cluster the elements of the design according to their structural state,
e.g. stress, internal energy density (Aulig and Olhofer (2016b)), or material density after initial
topology/topometry optimization (Liu et al. (2017)). The clusters represent therefore finite ele-
ments exhibiting similar structural behavior and can be used as a low-dimensional representation
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of the design. In such a case, a single density or thickness design variable can be assigned to the en-
tire cluster of finite elements and updated according to non-gradient optimization methods, which
address the optimization objectives and constraints directly. Alternatively, evolutionary-optimized
update signals that emulate the sensitivity of the design variables can be used, as well (Aulig and
Olhofer (2016b); Aulig (2017)). Although this approach is very promising, and has been success-
fully applied to an intrusion minimization problem in a crash scenario (Aulig and Olhofer (2016b);
Aulig (2017)), it requires expensive re-training and more testing would be required to confirm the
usefulness of this method. Recently, SBRs have been also used for optimization of an S-rail in an
axial impact scenario (Liu et al. (2017)), as well as multi-material TO (Liu (2018)).

All in all, the SBR methods constitute a growing field of research and small-scale applications
show their high potential. They can optimize crash structures of different types, including highly
important thin-walled structures, and rely on high-fidelity explicit crash simulations. By reducing
the dimensionality of the optimization problem, they allow for the use of such techniques as EAs
or EGO, which target the relevant crashworthiness objectives and constraints directly, instead of
using heuristic assumptions as in the state-of-the-art methods discussed previously. However, it is
not clear how good is the representation based on clusters constructed according to the structural
state of the design, especially for EAs or EGO. The high importance of representations used for
EAs has been emphasized in many works in the EC community (Rothlauf (2006); Richter et al.
(2015, 2016, 2018)). Obviously, the quality of the obtained designs would depend on the ability
of a parametrization to represent superior solutions. At the same time, the representation deter-
mines the difficulty of the optimization problem for the evolutionary optimizer. Most probably,
using different features for clustering would result also in considerably different design represen-
tations, so it is not clear which one should be used. Since the structural state of the design changes
during the optimization, the clustering should be repeated over and over again, thus changing the
representation of the design. For non-gradient optimization approaches, such as EAs or EGO,
this means that the collected information about the landscape of the optimization problem is lost,
which is a serious disadvantage, increasing the computational costs considerably. On the other
hand, when the representation is kept unchanged during the entire optimization, non-gradient op-
timization techniques can be used more efficiently, but the representation could considerably limit
the number of attainable designs, resulting in a sub-optimal solution. Finally, compared to the
methods described before, the computational costs of EAs or EGO are considerably higher, even
for a relatively low number of clusters, which might limit the applicability of the SBR methods in
the industrial setting.

2.3. Evolutionary computation in structural topology optimization

In general, the structural optimization community has been very critical about using non-gradient
methods, in particular EAs, in TO (Sigmund (2011)). To great extent, this criticism arises from the
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assumption that standard grid representations (as for density-based methods) are used, which was
the case for the early approaches (Sandgren (1990); Chapman et al. (1994)). The high number of
design variables resulting from such a parametrization made the evolutionary-based optimization
highly inefficient. As a result, the following criteria have been formulated as prerequisites for
developing non-gradient TO methods (Sigmund (2011)), where at least one should be fulfilled:

• Discretization – non-gradient methods should be able to deal with models with at least 1000
finite elements; they should perform better than or at least as good as gradient-based methods
based on numerical sensitivities; the optimized topologies should be free from artifacts such as
checkerboard patterns or one-node-connected elements.

• Problem type – non-gradient methods should deal with optimization problems not solvable with
standard gradient-based methods.

From this perspective, development of non-gradient methods for crashworthiness TO, which is the
goal of this work, is justified already by satisfying the second condition.

The key limitation of EAs, being strong dependency of their performance on the number of design
variables, motivated a development of alternative representations for non-gradient TO. A compre-
hensive overview of different representations for evolutionary-based TO has been given by Aulig
and Olhofer (2016a). Apart from already mentioned grid representations (Sandgren (1990); Chap-
man et al. (1994)), graph representations (Ahmed et al. (2013)), level-set representations based on
RBFs (de Ruiter and van Keulen (2000)) and Kriging (Hamza et al. (2013)), indirect representa-
tions (Steiner et al. (2008); Pedro and Kobayashi (2011)), and others (Aulig and Olhofer (2016a)),
have been investigated for evolutionary-based TO. Still, the limited quality of the results as well as
high computational costs, reaching millions of finite element simulations, made prohibitive prac-
tical applications of the most of the evolutionary-based TO methods in areas different from linear
elasticity.

2.4. Machine learning in structural topology optimization

Recent advances in the domain of ML (Bishop (2007)), and especially Deep Learning (DL) (LeCun
et al. (2015)), inspired structural optimization community to explore the potential of using those
methods in the field of TO. ML methods can be integrated into TO in many different ways. Based
on the methods from the literature, one could distinguish the following use cases of ML in TO:

• Optimal design prediction.
• Representation learning.
• Sensitivity learning.
• Surrogate-assisted TO.
• Learning of design rules.
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The two last categories, to the best of our knowledge, have not been addressed in the literature
before, and are novel fields of research, introduced in this thesis and our previous publications. As
such, they will be not addressed in this section. Below, the existing contributions belonging to the
first three groups are discussed.

2.4.1. Optimal design prediction

Optimal design prediction is probably one of the most straightforward strategies of using ML in
TO. Assuming that the standard TO methods can be used for generation of optimal designs for a
given optimization problem, one can create a dataset of optimal topologies for different boundary
conditions and constraints, e.g. different volume fractions. Provided that the number of such
samples is large enough, ML or even DL methods can be used for prediction of optimal designs
based exclusively on the input information about loads, supports, and the volume fraction.

For the first time, this approach was proposed by Ulu et al. (2014), where 1000 optimal topologies
for a compliance minimization problem were collected. Different topologies were obtained by
varying randomly the position and components of a single force placed in the design space. To
reduce the dimensionality of the problem, Ulu et al. (2014) use Principal Component Analysis
(PCA) on the element densities. As a result, the dimensionality of the design representation is
reduced from 80x40 elements to 80 PCA weights. A neural network is used to predict the PCA
weights based on a vector of four values specifying the x- and y-position of the force and its
components. A linear combination of the principal components multiplied by the predicted weights
yields the prediction of the density field of the optimal design.

A similar approach was proposed by Lei et al. (2018), where a representation based on MMCs was
used. Different samples are generated here by varying the position of a single load in the vertical
direction only. In spite of the fact that the number of design variables in this case is much lower
than for density-based representations, the authors use PCA to further reduce the dimensionality.
Finally, Support Vector Regression (SVR) and k-Nearest Neighbors (k-NN) are used as the models
for prediction of the PCA weights.

More recently, Yu et al. (2018) proposed to use Convolutional Neural Networks (CNNs) directly to
predict the optimal density distribution. As in the previous cases, the supports are kept always the
same and only the position and orientation of a single concentrated force, as well as the volume
fraction, are varied to generate 100,000 optimal designs, being the training samples for a CNN.
Finally, a conditional Generative Adversarial Network (GAN) is used to upscale the predicted
design to a high resolution.

The latest approaches (Sosnovik and Oseledets (2017); Banga et al. (2018); Zhang et al. (2019))
propose to overcome the key limitation on the generalization of the methods described above,
where the optimal topology is predicted based on the input specifying the boundary conditions
explicitly. Those approaches assume that the optimal topology can be predicted either based on
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the material distribution after the initial iterations of TO (Sosnovik and Oseledets (2017); Banga
et al. (2018)), or exclusively based on the initial distribution of structural state fields, such as
displacements or strains (Zhang et al. (2019)). The assumption made by Zhang et al. (2019) is
therefore very similar to the one used in the approaches proposed in our previous works (Krischer
(2018); Bujny et al. (2018)) as well as this thesis, where the sensitivities or topological variations
are predicted based on the structural state of the design.

To summarize, the ML-based methods for predicting optimal designs constitute a growing field
of research. Most of the approaches proposed so far, however, are limited only to very specific
cases, allowing for prediction of the optimal solution only for a single load and constant support-
ing conditions. On the other hand, potentially more general methods (Zhang et al. (2019)) require
hundreds of thousands of samples even for the cases when the supports remain the same. There-
fore, to make the model truly generalizable for more arbitrary boundary conditions, the effort for
generating the training samples would be extremely high.

2.4.2. Representation learning

ML techniques can be used also more indirectly in TO, by identifying favorable representations,
which could result in a reduced number of design variables. From this perspective, the represen-
tation learning techniques address a similar question as the SBR approaches discussed in Section
2.2, or even feature-mapping methods (Wein et al. (2019)), used in this work.

In one of the first approaches, Guo et al. (2018) used TO to generate 15,000 optimal topologies for
a heat conduction problem. In the next step, topologies were used to train an augmented Variational
Autoencoder (VAE), providing a low-dimensional representation of the design. Finally, the designs
were optimized for a new set of problems using GAs and the learned latent representation. A
similar idea was employed later on in structural TO (Oh et al. (2019)) by using GANs.

Although the representation learning approaches look very promising, they also require a lot of
training data, which has to be generated via costly TO. Once the low-dimensional representation
is learned, it has to be used again in a costly non-gradient optimization, thus reducing the effort
only partially. Finally, it is not clear how good are the learned representations if the optimiza-
tion problem changes strongly. Compared to the feature-mapping methods (Wein et al. (2019)),
like the MMC techniques (Guo (2014)), DL-based representations are also considerably harder to
understand and interpret.

2.4.3. Sensitivity learning

Another technique relying on the indirect use of ML methods, is the TO by Predicting Sensitiv-
ities (TOPS), proposed first by Aulig and Olhofer (2014b). In this approach, based on numeri-
cal estimation of the gradients of objectives and constraints, ML models of sensitivities are con-
structed and used for gradient-based TO. The models rely on input features related to the structural
state of the design, extracted from the finite element simulations. Later on, Aulig and Olhofer
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(2014a), proposed a modification of this approach by learning the update signal models using
neuro-evolution.

TOPS is a very promising approach, which can be used for learning sensitivity models in case
if analytical expressions are not available. Compared to the methods discussed before, ML tech-
niques can be used here based on much lower number of training samples, which are relatively
cheap to obtain. Furthermore, the obtained models can possibly generalize much better to the
new cases. The main problem remains the correctness of the models, which required frequent re-
training (Aulig (2017)). Therefore, relying fully on the correctness of ML models and using them
directly in gradient-based optimization methods might lead to sub-optimal solutions or even to a
complete divergence of the optimization.

2.5. Aim and objectives

Given very high complexity of vehicle structures produced today, rising material costs, stringent
CO2 emission targets, as well as the pressure from the market to shorten development cycles,
the use of numerical support in otherwise very time-consuming process of identifying optimal
crashworthy structures becomes very important. However, the state-of-the-art crashworthiness TO
methods available today suffer from very limited generality, due to the strong simplifications they
make or heuristic assumptions they use. As a result, they are applicable only to very specific cases
and only some optimization criteria can be taken into account.

On the other hand, non-gradient optimization methods, such as EAs or surrogate-assisted methods,
can target optimization for arbitrary quantifiable criteria. EAs can deal with problems involving
high levels of numerical noise, bifurcations, and discontinuities. The main challenge remains the
high dimensionality of TO problems, which makes most of the previously proposed evolutionary-
based TO approaches not applicable to crashworthiness.

LSMs, in particular approaches using geometric shapes as local basis functions, accommodate
two features crucial for the crashworthiness TO, being 0-1 material distribution and the possibility
to significantly reduce the number of design variables. The first property is very important for
a proper simulation of crash structures and manufacturability of the obtained topologies. The
elements occupying the non-material region have to be deleted from the mesh, since even small
regions with very low Young’s modulus can completely distort the crash behavior of the structure
due to their plastic incompressibility, often assumed in the material modeling. The second property
is of very high importance when evolutionary or surrogate-assisted methods are used, since their
performance heavily depends on the number of design variables.

Finally, ML techniques offer a great potential to reduce the computational costs of TO. However,
most of the approaches available today are not fully reliable, or need tremendous learning effort
to work only on a small number of cases. Therefore, in this work, different ML techniques are
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considered mainly as enhancements of expensive evolutionary-based search, allowing for a better
utilization of the data collected during the optimization or integration of the knowledge learned in
a prior offline process.

As a result, the aim of this work is to evaluate the feasibility of using approaches from the do-
main of AI, such as EAs and ML, together with a low-dimensional level-set representation, for
optimization of crash structures.

In particular, this can be decomposed into the following objectives:

• Development of an approach for optimization of crash structures using EAs and a suitable low-
dimensional representation of 2D and 3D designs.

• Reduction of computational costs via hybrid approaches utilizing approximate gradient infor-
mation, obtained with use of physical surrogates and supervised learning techniques.

• Evaluation of the potential of using surrogate modeling techniques for TO of low-dimensional
problems.

• Development and evaluation of an adaptive evolutionary approach utilizing learning-based topol-
ogy variations.

• Evaluation of applicability of the evolutionary-based methods to optimization of real-world
crash structures.

From the perspective of the optimization process, the proposed ML enhancements realize the fol-
lowing concepts to improve the convergence speed and reliability of the evolutionary search:

• Estimation of sensitivity information for the hybrid optimization methods.
• Prediction of objectives and constraints like in surrogate-based optimization.
• Biasing the mutation operator towards preferred designs.

Figure 2.1 illustrates the core concepts used in this thesis. The main contribution of this work
is the EA-LSM for crashworthiness optimization. The method, though, has a generic character
and can be potentially also used in different application areas of structural TO. To facilitate an
optimization with an adaptive representation, Adaptive Evolutionary Level Set Method (A-EA-
LSM), is proposed. The key difference between EA-LSM and A-EA-LSM is the way in which
topological variations take place. Since EA-LSM relies exclusively on a level-set representation
and evolutionary operators such as mutation and recombination, the optimizer is blind to the mod-
ifications of topology, which happen on the phenotype level as a result of modifications of the
genotype according to the evolutionary process. In contrast, in A-EA-LSM, the topology is ex-
plicitly encoded in the genotype in a form of graph, and topological modifications are introduced
using specialized topology variation operators. Finally, to reduce the computational costs of the
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purely evolutionary-based techniques, methods from the domain of ML, such as sensitivity learn-
ing, prediction of topology variations (directly related to the concept of learning of design rules),
as well as surrogate modeling techniques, are used.

Artificial Intelligence

Computational Intelligence

Evolutionary Computation

Evolutionary Algorithms:

• EA-LSM

• A-EA-LSM

Machine Learning

Sensitivity Prediction

Topology Variation Prediction

Surrogate Modeling

Enhancements

Topology variations 

on phenotype level

Topology variations 

on genotype level

Figure 2.1 Graphical overview of the core concepts used in the thesis.
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Chapter 3

Fundamentals of evolutionary computation

This chapter briefly introduces methods from the field of EC, necessary for understanding the TO
approaches proposed in this work. In particular, in the following sections, Evolution Strategies
(ESs), which are suitable for solving continuous optimization problems, are discussed. These
methods, with some problem-specific modifications, discussed in Chapter 5, are the core of the
approaches for solving crash TO problems used in this thesis.

3.1. Evolutionary computation

EC originated in 1960s and resembles models based on the principles of Darwinian evolution
(Darwin (1859)). In spite of the variety of different types of methods, e.g. Genetic Algorithms
(GAs), Evolution Strategies (ESs), Evolutionary Programming (EP), most of them are based on
the following concepts:

• Genotype is an object of the search space defined by the representation. In the context of engi-
neering optimization, genotype would correspond to the vector of design variables parametriz-
ing the design.

• Phenotype is an object of the solution space, determined by a genotype-phenotype mapping.
For numerical optimization, phenotype would be equivalent to the finite element representation
of geometry of the design generated for a given vector of design variables (genotype).

• Individual is typically defined by a genotype and additional parameters encapsulating its knowl-
edge about the fitness landscape, e.g. step sizes in ESs.
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• Fitness of the individual is determined by the behavior of the phenotype (e.g. finite element
mesh) in the environment (e.g. crash load cases). In case of computer-based optimization, the
fitness of an individual would be measured based on the quantities calculated using a numerical
simulation, relevant for the considered optimization criteria, e.g. compliance or intrusion of an
impactor. The fitness function maps the behavior of the individual to a fitness value.

• Population is a group of individuals competing with each other based on their fitness.
• Recombination produces new offspring individuals by combining the genotypes (and potentially

also strategy parameters, e.g. step sizes in ESs) of the individuals from the current parent
population.

• Mutation introduces small random variations of the genotype. In case of engineering optimiza-
tion problems, the mutation operator would modify the vector of design variables parametrizing
the design.

• Selection chooses the offspring individuals composing the parent population in the next gener-
ation according to the fitness values.

A typical EC optimization starts with an initialization of the population of individuals, whose fit-
ness values are computed in the evaluation step. Subsequently, an evolutionary process, based on
recombination, mutation, and selection, starts. Selection operator realizes the famous concept of
"survival of the fittest" by eliminating the individuals of low fitness values from the population.
Recombination operator combines the genotypes of multiple (parent) individuals to produce new
(offspring) individuals. By combining the genotypes of the fittest individuals obtained after the se-
lection step, one can explore different solutions, hoping that further improvement can be obtained.
Finally, the mutation operator introduces random variations of the genotype in order to find better
solutions in the neighborhood of the existing individuals. The process is continued until certain
convergence criteria are satisfied.

3.2. Evolution strategies (ESs)

The following section gives the formal definitions of the evolutionary operators and the ES itself,
used later on to describe the methods proposed in this thesis. The notations used here follow the
conventions introduced by Bäck and Schwefel (1993).

ESs were first proposed by Ingo Rechenberg and Hans-Paul Schwefel in Germany in 1970s (Rechen-
berg (1971); Schwefel (1977)). In contrast to GAs, ESs focus on mutation rather than recombina-
tion as the main source of genotypic variations. A typical ES can be summarized in the form of a
following pseudocode:
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iter := 0;
initialize P(0) :=

{
a1(0), ...,aµ(0)

}
∈ Iµ ;

evaluate P(0) :
{

f (a1(0)) , ..., f
(
aµ(0)

)}
;

while (ι (P(iter)) 6= true) do
recombine: P ′(iter) := rΘr (P(iter));
mutate: P ′′(iter) := mΘm (P ′(iter));
evaluate P ′′(iter) :

{
f (a′′1(iter)) , ..., f

(
a′′

λ
(iter)

)}
;

select: P(iter+1) := sΘs (P ′′(iter));
iter := iter+1;

end
Algorithm 1: Standard Evolution Strategy (Bäck and Schwefel (1993)).

with f : I→ R being the cost (fitness) function to be minimized (maximized). I denotes the space
of individuals, and a ∈ I is an individual. The size of the parent population is denoted by µ ≥ 1,
while λ ≥ µ is the size of the offspring population.

A population of parents at generation iter is expressed as P(iter)=
{

a1(iter), ...,aµ(iter)
}

. The
recombination operator can be defined as a mapping rΘr : Iµ → Iλ , which transforms the space
of parent individuals Iµ to a space of offspring individuals Iλ . A mutation operator of a form
mΘm : Iλ → Iλ , completes the reproduction stage. The recombination as well as the mutation
are controlled with use of operator parameter sets Θr and Θm, respectively. Finally, the selection
operator is defined as sΘs : Iλ → Iµ , and selects the fittest individuals to construct the population
of parents in the next generation. Similarly to the recombination and mutation operators, it is
controlled by a set of parameters Θs. The termination criterion for the algorithm is denoted by
ι : Iµ →{true, f alse}.

Most frequently, recombination is applied both to design variables as well as strategy parameters
of the mutation operator. Several different types of recombination were proposed in the past and
can be summarized as follows (Bäck and Schwefel (1993)):

z′i =



zS,i without recombination,

zS,i or zT,i discrete recombination,

zS,i +χ ·
(
zT,i− zS,i

)
intermediate recombination,

zSi,i or zTi,i global, discrete recombination,

zSi,i +χi ·
(
zTi,i− zSi,i

)
global, intermediate recombination,

(3.1)

where zi is the ith component of the vector of design variables z∈Rn, where n is the dimensionality
of the optimization problem. S and T stand for two randomly selected individuals, while χ ∈ [0,1]
is a random variable drawn from a uniform random distribution. For the global recombination,
parent individuals S and T as well as the parameter χ are taken independently for each of the
components of the vector of design variables.
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Usually, the best results are obtained for discrete recombination on design variables and inter-
mediate recombination on the strategy parameters (Bäck and Schwefel (1993)). Therefore, this
approach was also employed in this work when using standard ESs. Historically, the most com-
mon form of intermediate and global recombination is using a constant value of χ = 1

2 .

After applying the recombination operator to generate offspring individuals, they are modified by
means of mutation. A version of mutation operator with individual step sizes varies first the step
sizes σi and then the vector of design variables z according to the following expressions:

σ
′
i = σi · exp

(
τ
′ ·N(0,1)+ τ ·Ni(0,1)

)
,

z′i = zi +σ
′
i ·Ni (0,1) ,

(3.2)

with τ ′ and τ being global and local learning rates, respectively. N(0,1) and Ni(0,1) stand for
realizations of a random variable with a normal distribution with mean 0 and standard deviation 1.
The notation Ni(0,1) indicates that the random variable is sampled independently for each value
of the counter i.

In case of the simplest variant of ES, using a single step size σ for all components of the vector of
design variables z, Equation (3.2) can be simplified to:

σ
′ = σ · exp(τ0 ·N(0,1)) ,

z′i = zi +σ
′ ·Ni (0,1) ,

(3.3)

where τ0 is the learning rate.

Schwefel (1995) proposes to use the following values of the learning rates:

τ =
1√
2
√

n
,

τ
′ =

1√
2n

,

τ0 =
1√
n
.

(3.4)

The mutation mechanism in the form presented above allows for evolution of the strategy param-
eters during the optimization process by the algorithm itself. This is frequently referred to as the
"self-adaptation" mechanism, first formulated by Schwefel (1987).

Finally, the evaluation step is followed by selection, where the best individuals are selected to cre-
ate a new population of parent individuals. Among different types of selection operators (Bäck
(1996)), the most popular are (µ,λ )-selection and (µ +λ )-selection. In the first variant, the new
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population of parent individuals is formed exclusively out of the best individuals from the off-
spring population, which is frequently referred to as the non-elitist selection. In the second variant,
the best individuals out of a combined population of parents and offspring are selected, which
is commonly known as elitist selection. Please note that both variants have deterministic char-
acter, in contrast to the stochastic (proportional) selection operator used typically in GAs (Bäck
(1996)). In this work, (µ,λ )-selection is used due to its better performance on multi-modal and
noisy problems (Bäck and Schwefel (1993)).

3.3. Covariance matrix adaptation evolution strategy (CMA-ES)

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) (Hansen and Kern (2004)) is a de-
randomized ES, which adapts the covariance matrix of the normal distribution used in the mutation
operator according to the previous search steps (Hansen and Ostermeier (2001)). This concept is
very similar to the idea used in the gradient-based quasi-Newton methods, which estimate the Hes-
sian matrix in an iterative fashion during the optimization process. Instead, CMA-ES adapts only
the parameters of the normal distribution, which define the distribution of the offspring. CMA-ES
was initially designed for dealing with small population sizes and has demonstrated its robustness
and usefulness as an efficient local search method (Hansen and Ostermeier (1996)).

In particular, CMA-ES has shown to be very efficient in minimizing unimodal functions (Hansen
and Ostermeier (2001)). The method turned out to be also superior on ill-conditioned and non-
separable optimization problems as well as in real-world applications (Hansen and Kern (2004)).
CMA-ES was extended later on by introducing the rank-µ-update (Müller et al. (2002); Hansen
et al. (2003)), which allowed for improving its performance for large population sizes, as well.
Finally, the Python implementation of CMA-ES (Hansen (2016)) has been made available and was
used in this work.

3.4. Summary

In this chapter, a necessary background on EC was given. In particular, standard ESs and the state-
of-the-art CMA-ES, were briefly discussed. These methods, with problem-specific modifications,
are the basis for the approaches proposed in Chapters 5 and 6. Finally, the usefulness of these
methods for solving optimization problems in TO is demonstrated in Chapters 7, 8, and 9.
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Chapter 4

Representations for evolutionary-based structural topology
optimization

Evolutionary optimization methods offer a great potential to address a wide spectrum of different
problems. However, the efficiency of any evolutionary-based optimization approach is strongly de-
pendent on the used representation and its relation to the evolutionary operators. Arciszewski et al.
(1995) define representation as a computational description of an engineering system expressed
in terms of attributes. Depending on the representation, not only the dimensionality of the opti-
mization problem can be changed, but also the difficulty of the optimization task itself. Therefore,
finding representations that transform the landscape of the fitness function in a way that it is easier
to optimize by means of evolutionary operators such as mutation or recombination is a broad re-
search field alone (Rothlauf (2006)). Additionally, aspects such as evolvability of representations
(Menzel (2011); Lehmann and Menzel (2012); Richter et al. (2015, 2016, 2018)) or structural at-
tainability (Guirguis et al. (2015)), aiming to find parametrizations that allow for reaching as many
meaningful designs as possible with a minimal number of design variables, are of high importance.
As a result, the choice of a particular design representation, especially for high-dimensional TO
tasks, is a fundamental problem, which determines the success of the entire approach. Therefore,
this chapter provides an intuitive justification of the choice of the design representation used in this
work.

First of all, in Section 4.1, the taxonomy of design representations used in non-gradient TO is
briefly discussed. Subsequently, based on simple experiments, advantages and disadvantages of
different low-dimensional representations of topology are discussed. In particular, Section 4.2 dis-
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cusses the influence of different types of representations on the properties of the resulting fitness
landscape. The discussion is continued in Section 4.3, by focusing on the correlation of parameters
resulting from some types of representations as well as additional important aspects. Finally, Sec-
tion 4.4 concludes the chapter and presents prerequisites for development of good representations
for evolutionary-based TO problems.

4.1. Taxonomy

Aulig and Olhofer (2016a) gave a comprehensive overview of different representations used in
non-gradient TO. They distinguished three main categories, being: grid, geometric, and indirect
representations (Figure 4.1).

Figure 4.1 Taxonomy of representations for the black-box TO according to Aulig (2017).

The first approaches in the black-box continuum TO were based on the grid representation (Sand-
gren (1990); Chapman et al. (1994)). In a typical grid representation, the design domain is divided
into a fixed grid of cells, whose densities can take values in a continuous range between 0 (no
material) and 1 (full material), or, alternatively, one of two values – 0 or 1. As a consequence,
the approaches of the second type are referred also to as bit-array encodings (Aulig and Olhofer
(2016a)). Such representations result typically in thousands up to millions of design variables,
which usually correspond directly to the number of finite elements in the mesh, and offer the
highest flexibility to represent different designs. This leads to a tremendous number of possible
combinations, requiring millions of evaluations to optimize a structure.

The second group encapsulates different types of implicit representations, which can be some
kind of movable shape primitives or parametrized functions defining the location of material. The
phenotype in these cases is obtained by a mapping of the lower-dimensional representation on a
fixed grid of cells. The main advantage of this type of representations is a possible reduction of
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the dimensionality of the original optimization problem, which is no longer correlated with the
resolution of the finite element mesh.

The third group, with recent works by Aulig (2017); Liu et al. (2017); Ulu et al. (2014); Guo et al.
(2018), consists of indirect representations, which parametrize the design implicitly, e.g. based on
the structural state of the initial design in a crash simulation. The huge diversity of methods within
this group, as well as their indirect character, makes a direct comparison very difficult. Due to
their complexity and the variety of ongoing research, those methods will be not considered in this
chapter.

4.2. Properties of the fitness landscape

In order to understand better the properties of different representations and their influence on the
fitness landscape, let us consider a simple, 2D optimization problem as shown in Figure 4.2. A
cantilever beam is fixed at the left-hand side and loaded on the right-hand side with a static point
force ~F . The goal is to minimize the compliance (maximize stiffness) of the structure. There are
no constraints applied.

(a) Density-based repre-
sentation, where x1 and
x2 are continuous param-
eters scaling the Young’s
modulus in areas A1 and
A2, respectively.

(b) Binary representa-
tion, where x1 and x2 are
binary parameters scaling
the Young’s modulus
in areas A1 and A2,
respectively.

(c) RBF-based level-set rep-
resentation with x1 and x2 be-
ing interpolated values or the
weights of the local RBF ba-
sis functions, resulting in ma-
terial region A1 and void re-
gion A2.

(d) Geometric represen-
tation with x1 and x2 be-
ing the height and the
width of the area A1. A2
is the resulting void area.

Figure 4.2 Four representation types used for the investigations on a simplified 2D cantilever beam problem.

Figure 4.2(a) shows how the design can be parametrized using a density-based grid representation.
The design variables x1 and x2 define the density of the material in two regions of the design do-
main, A1 and A2, respectively. More specifically, the density x ∈ [0,1] is used to scale the Young’s
modulus of the material E(x) = E0 ·max(x,xmin), where E0 is the reference Young’s modulus value
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(a) Density-based parametrization. (b) Binary parametrization.

(c) RBF level-set parametrization. (d) Geometric parametrization.

Figure 4.3 Contour plots of compliance in dependency of design variables x1 and x2, for parametrizations defined in Figure 4.2.

and xmin is a small value, e.g. 0.01, introduced to avoid problems with numerical instabilities in
the finite element simulation. In such a case, the contour lines of the objective function being
minimized (compliance) look as shown in Figure 4.3(a). From the perspective of evolutionary
optimization, even this simple optimization problem would pose several difficulties. First of all,
the objective function is strongly nonlinear, taking very high values for the designs with at least
one cell having very low density. In higher-dimensional search spaces, this could potentially lead
to multi-modality of the considered objective functions. Moreover, as the density of both regions
increases, the objective function plateaus, requiring the algorithm to adapt constantly the step size
to the changing optimization landscape. The second problem is a strong correlation between the
design variables – the biggest improvement can be obtained only if both design variables change
by the same amount, at the same time. Thus, this information should be used to modify the proba-
bility distribution used by the mutation operator. This requires an additional effort for learning the
landscape of the optimization problem, which can be achieved only with more sophisticated EAs.
In this case, utilization of simpler algorithms, e.g. an ES with a single step size, would result in
a worse performance, especially for high-dimensional problems, which are inevitable in TO using
this type of representation.
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Despite the popularity of the density-based TO methods, in many applications, including crashwor-
thiness, it is crucial to parametrize the design in such a way that it does not allow for intermediate
densities. The simplest idea to obtain this is to use a binary representation, where every grid cell
can be either occupied by full-density material or void, i.e. x ∈ {0,1}. This representation is de-
picted in Figure 4.2(b). The contour plot for compliance minimization problem is shown in Figure
4.3(b). For the sake of illustration, the binary design variables were considered as continuous with
value of 1 for xi ≥ 0.5, i ∈ {1,2}, and 0 otherwise. This type of problems is usually solved with
use of optimization algorithms well-suited for discrete optimization tasks, such as GAs. However,
one should note that discrete optimization problems are usually more difficult to solve than their
continuous counterparts.

A possible solution of the problems of the intermediate densities and the continuity of the parame-
trization comes with LSMs. The main idea in LSMs is to define the material distribution implicitly,
with use of a level-set function (LSF). The regions occupied by material correspond to positive
values of the LSF, while the regions occupied by void are indicated by negative LSF values. As a
result, clear boundaries between material and void phases are obtained. A parametrization based
on the LSM concept was proposed by Hamza et al. (2013), where the Kriging model (Forrester
et al. (2008)) is used as a LSF. The model interpolates a set of control points, whose positions are
treated as design variables. Similar ideas were explored also by other authors (de Ruiter and van
Keulen (2000); Pehnec et al. (2016)). This approach can reduce significantly the dimensionality of
the optimization problem compared to the grid representation, while being still able to represent a
wide range of different designs. Figure 4.2(c) shows an example of a 2D level-set parametrization
interpolated with Gaussian RBFs. Without loss of generality, we consider weights for a linear
combination of RBFs as design variables instead of addressing the interpolation task as done by
Hamza et al. (2013). Figure 4.3(c) shows that, essentially, the landscape of the objective function
being optimized does not differ too much from the one for the binary representation (Figure 4.3(b)).
Again, there are four large plateaus, corresponding to the situations as depicted in Figure 4.2(c),
where, assuming that x1 remains constant, even relatively large variations of the parameter x2

would not correspond to any changes of the material distribution. For an optimizer, the plateaus
are very difficult to deal with, since the gradient of the objective function in this area equals zero
and all of the individuals existing on a plateau are equally good. As a result, the choices made by
the selection operator are arbitrary and the search becomes a random walk (Pearson (1905)). On
the other hand, as x2 increases, a lot of variation in the material distribution would happen in a very
small range of values of the x2 parameter. More formally, this is related to the strong nonlinearity
in the mapping of the design variables to the material distribution, which is demonstrated in Figure
4.4. The nonlinearity of the mapping, and consequently, even stronger nonlinearity of the objective
function, is a difficult problem for the optimizer, which has to constantly to adapt its parameters to
the changing optimization landscape. The problem of the strong nonlinearity in case of the RBF
representation could be probably partially solved by a careful choice of the lower and upper limits
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for the design variables, so that the optimizer operates mainly in an approximately linear range,
but it might be difficult in general case due to the influence of the neighboring basis functions on
the LSF in the region of interest (Figure 4.5).

(a) Material-void interface
tracking problem.
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(b) Plot of the position of the interface s as a func-
tion of the relevant design variable x (x = x2 for
RBF representation (Figure 4.2(c)) and x = 2x2−3
for geometric representation (Figure 4.2(d)), where
the linear transformation is applied to show both
plots on the same scale).

Figure 4.4 Problem of the strong nonlinearity in the mapping between design variables and the material distribution for the
Gaussian RBF-based level-set parametrization. Given x1 = 1 in the representation as in Figure 4.2(c), the position s of the
interface between material and void (Figure 4.4(a)) would change as depicted in Figure 4.4(b) (solid blue line) with the changes of
the second design variable x2. For comparison, in the geometric representation (Figure 4.2(d)), the position of the interface would
change linearly with the variation of the design variable x2 (dashed red line in Figure 4.4(b)).

(a) Contour plot of compliance for
weights of the RBFs outside the de-
sign domain set to −1.

(b) Contour plot of compliance for
weights of the RBFs outside the de-
sign domain set to 0.

(c) Contour plot of compliance for
weights of the RBFs outside the de-
sign domain set to +1.

Figure 4.5 Variations of the contour plots of compliance for the 2D optimization problem depicted in Figure 4.2(c), depending on
the weights of the neighboring RBFs, outside the design domain (fixed parameters).

4.3. Correlation of parameters and additional aspects

All of the representations discussed in the previous section are based on a concept of a localized
parametrization, where the topology is defined by parameters having only a local influence on the
material distribution. Moreover, each parameter is usually associated with a fixed region in the
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design domain. This results in several problems from the point of view of non-gradient optimiza-
tion:

• Density-based, binary, and RBF-based representations require extensive handling of structurally
infeasible designs. Since all possible solutions in a grid or a FE mesh can be represented, it is
very likely to obtain disconnected structures, which might even not connect the load and the
supports. Hence, even with a reduced dimensionality for RBF-based or similar representations,
the size of the search space is very large, with plenty of structurally infeasible solutions.

• In grid representations, including density-based (Figure 4.2(a)) and binary (Figure 4.2(b)), typ-
ical discretization problems such as single node connected elements and checkerboard patterns
occur. However, the filtering or projection methods used in gradient-based optimization (Bend-
søe and Sigmund (2004)) are not suited for the black-box optimizers.

• The local character of the representation results in a strong coupling between design variables,
which makes the optimization problem difficult.

Let us focus on the last point from the list above. As can be seen in Figure 4.3(c), only a correlated
change of both x1 and x2 results in a significant improvement in the stiffness of the structure. This
is logical, since if any of the two regions is not filled with material, the stiffness drops rapidly, with
the void regions being modeled with the weak (ersatz) material (Sigmund and Maute (2013); Zhang
et al. (2016)). A correlated change of both design variables is a difficult task for the evolutionary
optimizer, since it has to carefully choose the parameters of the distribution used in the mutation
operator and find a small region in the search space, corresponding to the topology that connects
the load to the support. This problem becomes much more important in high-dimensional search
spaces, which are essential for representing structures at a sufficient level of complexity. Figure
4.6 illustrates this problem based on a cantilever beam with 1, 2, and 3 grid cells (in case of grid
representation) or control points (in case of RBF representation). As the number of grid cells or
control points along the cantilever beam increases, so does the dimensionality of the optimization
problem. As a result, the relative size of the region in the search space corresponding to a structure
connecting the load to the support decreases exponentially fast, which is a special case of the curse
of dimensionality, a problem arising in many fields of computer science.

Figure 4.7 shows an extension of the cantilever beam problem to an 18-dimensional search space.
In order to connect the load to the support, a correlated change of 6 design variables is neces-
sary, which is already a very challenging task for the optimizer and requires a very explorative
search to find a small region in the search space corresponding to a structurally-feasible design.
In practice, in order to be able to represent simple topologies with a sufficient detail level, even
higher-dimensional cases have to be considered. Hamza et al. (2013) consider 2D TO problems
with 46 and 52 design variables, which require up to 1 million FEM evaluations with use of a GA1

1 Although the inferiority of GAs with respect to the ESs for continuous optimization problems has been widely
demonstrated (Bäck (1996)), it seems that for this representation type very explorative search is needed, justifying
the use of GA.
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(a) Compliance values for a 1D
problem, with a 1 grid cell or con-
trol point along the cantilever beam.

(b) Compliance values for a 2D
problem, with 2 grid cells or control
points along the cantilever beam.

(c) Compliance values for a 3D
problem, with 3 grid cells or control
points along the cantilever beam.

Figure 4.6 Illustration of the relationship between the relative size of the region in the search space corresponding to a material
distribution connecting the load to the supports and the dimensionality of the optimization problem in the grid (Figures 4.2(a) and
4.2(b)) or the RBF level-set (Figure 4.2(c)) representation. Nave blue points represent designs of very low compliance (the
connection exists). The size of this region changes as O(vn), where v ∈ (0,1) and n is the number of grid cells or control points.

to converge. This is a prohibitive computational cost in the context of expensive crash simulations,
not to mention 3D crash TO problems2.

Figure 4.7 An 18-dimensional TO problem parametrized with a fixed grid of RBFs/cells.

In geometric representations, like the one depicted in Figure 4.2(d), the main problems described
above – the nonlinearity of the material distribution mapping, strong correlation between the de-
sign variables, and the exponential decrease of the size of the search space region corresponding to
connected designs – seem to be solved to a great extent. Firstly, as one can see in Figure 4.3(d), the
contour lines for the compliance minimization problem are very uniformly spaced, with a dense
concentration in the region corresponding to a very small height of the geometric component. This
uniformity results partially from the linearity of the mapping between the material distribution and
the design variables depicted in Figure 4.4(b) and is very convenient for the evolutionary opti-
mizer, which does not have to adapt constantly the mutation step size to the changing optimization
environment. Of course, in general case, the optimization problem itself might be highly nonlin-
ear, but in this way, at least the nonlinearity coming from the geometry mapping can be avoided3.

2 Assuming two symmetry planes for a 3D TO problem, in order to achieve a similar detail level as in the 2D case, the
number of design variables should rise from 52 to 208. Using a simple rule of thumb for EA, with the convergence
speed c∼O( 1

n ) (Bäck (2014)), with n being the dimensionality of the optimization problem, the number of necessary
FEM evaluations would rise to a couple of millions.

3 A similar problem was observed when using binary encoding in GAs (Bäck (1996)). To avoid the nonlinearity
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Secondly, a strong dependency of the compliance on the design variable x1, corresponding to the
elongation of the component, can be observed. This seems to be obvious, since the principal goal
of the optimization in this case is to connect the load to the support, which corresponds to a signif-
icant rise in the stiffness of the structure, where the thickness of the connection plays a secondary
role. As shown in Figure 4.8, in a problem with three design variables, there is still only one dom-
inant direction in the search space, making the effective optimization problem one-dimensional.
This tendency should hold also for higher-dimensional problems, with more geometric compo-
nents of higher complexity, since there would be always a reduced set of components that play the
most important role from the perspective of carrying the load. This property helps considerably
to overcome the curse of dimensionality, which was the main problem of the grid representations.
Together with the ability of more sophisticated ESs to neglect the unimportant search directions
through a proper adaptation of the step sizes, this should allow for a significant reduction of the
effective dimensionality of the optimization problems, resulting in a much lower number of nec-
essary FEM evaluations. Thirdly, as shown in Figure 4.9, it seems that through an appropriate
parametrization of geometric components, a very strong decoupling of design variables can be
obtained. This contrasts with the grid representations, where only a correlated change of several
design variables could lead to a significant improvement of the structure.

(a) Geometric parametriza-
tion based on width (x1),
height (x2) and vertical posi-
tion (x3) of the component.

(b) Compliance values for the optimization prob-
lem with three design variables, based on a 2D ge-
ometric representation.

Figure 4.8 A three-dimensional optimization based on the geometric representation.

The analysis presented above is based on very simple optimization problems, with very few de-
sign variables. Obviously, the higher-dimensional problems are much more complex, and the
conclusions derived here do not have to hold in general case, especially in case of crash TO. Nev-
ertheless, if some of the problems discussed above appear already in case of a simple compliance
minimization task, it seems reasonable to assume that they may appear in more complicated cases,
as well.

introduced by the binary encoding, Gray code was proposed.
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(a) Geometric parametriza-
tion based on elongation (x1)
and rotation angle (x2).

(b) Contour plot of compliance of the optimization
problem.

Figure 4.9 Decoupling of the design variables in a geometric representation. A two-dimensional optimization problem shown in
Figure 4.9(a) could be in principle replaced by two 1D optimization problems, which could be solved one after another.

4.4. Conclusions

Taking the considerations from the previous sections, as well as the discussions from Chapter 2,
Section 2.3 into account, the following prerequisites for an efficient representation for evolutionary-
based structural TO can be formulated:

• The dimensionality of the optimization problem should be reduced as much as possible, since
it influences strongly the number of (potentially very expensive) FEM evaluations necessary to
converge to the optimum.

• With a low number of design variables (genotype), the representation should allow for an ex-
pression of as wide range of designs (phenotypes) as possible, but only with features useful from
the point of view of the problem being solved. For instance, if the optimal designs in structural
TO are frequently composed of beam-shaped components, justified also from the mechanical
point of view (Michell (1904)), it makes sense to include this feature already at the representa-
tion level. Moreover, representations allowing for generation of a large number of designs not
feasible from the structural point of view, e.g. not connecting the load to the supports, should
be avoided.

• One should avoid representations with inherently correlated design variables, where very slow
explorative search might be needed to obtain satisfactory solutions.

• If a given representation results in a more linear mapping between design variables and the ma-
terial distribution, it might also make the optimization problem at hand easier to solve. There-
fore, such a representation should be favored over representations introducing strong nonlinear-
ities already in the genotype-phenotype mapping.

From the perspective of engineering requirements for TO, the following features of the represen-
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tation are favorable:

• Representations allowing for an easy transformation of the geometric description to the finite
element and parametric Computer-Aided Design (CAD) models are of high importance for the
product development process.

• Representations using 0-1 material distribution, where the elements in the non-material regions
(density equal 0) are deleted from the finite element mesh and no intermediate density elements
exist, are a must for crashworthiness applications. Additionally, it is much easier to interpret
and manufacture such designs.

• The optimization results should be possibly independent of the particular finite element mesh
used for the simulations. Artifacts such as single-node connected elements or checkerboard
patterns should be additionally avoided.

• In particular, from the perspective of crashworthiness applications, the representation should
allow for a use of different than only density-based mapping to material domain. In particular,
conforming mappings (Dijk et al. (2013)), allowing for avoiding zig-zag-like finite element
meshes, which lead to stress singularities not appropriate for TO using plasticity or failure, are
recommended (Maute et al. (1998)).

• Relying on representations widely used in the structural optimization community would be an
advantage, allowing potentially for combining the evolutionary-based methods with efficient
gradient-based optimizers.

Following the requirements listed above, in the next chapter, a level-set-based representation suit-
able for solving crash TO problems with use of non-gradient optimization techniques, including
evolutionary optimization, is described.

Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning 59





Mariusz Bujny

Chapter 5

Evolutionary level set method (EA-LSM)

As discussed in Chapter 2, the state-of-the-art approaches for crash TO rely mostly on very strong
assumptions about the properties of the optimization problem and simplify it considerably. Those
assumptions, having frequently a heuristic character, are often arguable and might be not true in
general case. This motivates the development of novel TO approaches that would be free from
those heuristic assumptions. This chapter introduces a possible solution of this problem via uti-
lization of EAs and a suitable low-dimensional representation based on a level-set description.
The chapter is structured as follows. Section 5.1 gives an introduction to the proposed method
and justifies the choices made in this work. In Section 5.2, the parametrization used in EA-LSM is
formally defined. Section 5.3 describes the underlying optimization algorithm. Finally, Section 5.4
summarizes this part of the contribution and discusses the potential and limitations of the proposed
method.

5.1. Introduction

In Chapter 4, the role of representations in EC has been broadly discussed. Design of an appropri-
ate representation as well as dedicated search operators fitting well its properties is crucial for the
performance of any optimization process (Rothlauf (2006)). In the context of evolutionary struc-
tural TO, we distinguished such aspects as low-dimensional representation of the design, small
size of the search space and validity of the mutated designs, generality of the method, 0-1 material
distribution, direct connection to CAD modeling as well as compatibility with the mainstream TO
methods to be vital for the success of a method.
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Figure 5.1 Illustration of the core concept in the LSMs (Bujny et al. (2017a)). The LSF Φ (left) defines the regions occupied by
material (Φ(x)> 0) and void (Φ(x)< 0), where x = [x,y]T denotes the vector of Cartesian coordinates in a 2D design domain. As
a result, the interface between those two phases (right) is clearly defined by Φ(x) = 0. This is the key difference w.r.t. the
density-based methods (Bendsøe and Sigmund (2004)).

Following those requirements, this work proposes a representation based on an implicit description
inspired by the LSM (Allaire et al. (2004, 2005); Dijk et al. (2013)). In contrast to the density-based
approaches (Bendsøe and Sigmund (2004)), the design is not parametrized explicitly by defining
the densities of the voxels filling the design domain, but implicitly, by specifying the LSF indicat-
ing regions occupied by material and void (Figure 5.1). As a result, the interface between material
and void is clearly defined, solving the main problem of density-based approaches, being ambigu-
ous intermediate material densities. Unlike the methods based on explicit boundary description,
e.g. with NURBS (Cervera and Trevelyan (2005)), LSMs allow for a very convenient treatment of
any topological changes, by modifying the values of the LSF. Additionally, unlike density-based
approaches, most LSMs do not involve such numerical artifacts as checkerboard patterns or single-
node-connected elements. Finally, thanks to decoupling of the finite element mesh and the material
parametrization, the number of design variables can be considerably reduced by defining the LSF
in terms of local basis functions, which is a crucial property exploited in this work.

The method proposed here is not an LSM in a classical sense. Most of TO LSM approaches rely
on an analytical gradient information and use it to propagate the LSF boundaries by solving the
Hamilton-Jacobi partial differential equation (Dijk et al. (2013)). In this work, the global LSF is
composed out of parametrized geometric basis functions, which are directly modified by the op-
timizer by changing parameters describing their geometric features. Those basis functions can be
viewed as elementary beam components, which can deform and move inside the design domain.
Due to those properties, representations of this type are frequently referred to as Moving Mor-
phable Component (MMC) frameworks (Guo (2014)). The use of such representation complies
with the conclusions from Chapter 4, taking advantage of the fact that any type of topology can be
decomposed into a finite number of components. In particular, topologies optimized for various
structural criteria (e.g. maximization of stiffness or buckling loads) with gradient-based methods
can be often very easily decomposed into several beam components. This observation motivates
using beam-like components as the elementary building blocks of TO approaches
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Beside already mentioned benefits coming from using MMC-based representation, it offers much
more control over the geometric features of the design, e.g. length scale or curvature (Guo (2014)).
This is very difficult in density-based approaches, where no geometry information is explicitly em-
bedded into the representation. In particular, it becomes very important once manufacturing con-
straints are considered and plays a central role for approaches addressing the problem of structural
feature control, e.g. maximum/minimum length scale, minimum curvature, geometric complex-
ity. Within the MMC framework, components with curved skeletons (Guo et al. (2016)) and more
complex shapes (Zhang et al. (2015)), or even hollow structures (Bai and Zuo (2020)) can be
modeled.

Finally, the consistency of the used representation with the gradient-based MMC approaches of-
fers the possibility to benefit from the research developments of these methods. The approaches
based on an explicit parametrization of the design with use of geometric components (Guo (2014);
Norato et al. (2015)) gained a lot of attention in the past four years and are slowly becoming
widely accepted in structural TO community. This is especially interesting in the context of hybrid
methods, where the analytical gradient information can be used to enhance the evolutionary search
(Section 6.1.4).

The key advantage of the representation used in this work, being the possibility to significantly
reduce the number of design variables, is also its main drawback. Obviously, with limited num-
ber of MMCs, the number of designs which can be represented is considerably lower than for
the density-based approaches. As a result, for some problems, density-based methods can yield
better results even if they do not address specific objectives directly, thanks only to a much better
structural attainability.

5.2. Parametrization

As mentioned in the introduction, the parametrization of the design in this work is based on the
implicit level set description (Figure 5.1). The design is defined with use of a set of local level set
basis functions (or MMCs), which can overlap and freely move within the design domain. Below,
a formal description of the proposed representation is presented.

The global level set function, Φ, is given by:
Φ(x)> 0, if x ∈Ω,

Φ(x) = 0, if x ∈ ∂Ω,

Φ(x)< 0, if x ∈ D\Ω,

(5.1)

where x is a position vector in the design domain D and Ω is the area inside the design domain
occupied by the material phase. As a consequence, D\Ω is the part of the design domain occupied
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by void, and ∂Ω refers to the boundary between material and void.

Similarly, the local level set basis function of the ith MMC is defined as follows:
φi(x)> 0, if x ∈Ωi,

φi(x) = 0, if x ∈ ∂Ωi,

φi(x)< 0, if x ∈ D\Ωi,

(5.2)

with Ωi being the region in the design domain D where the ith MMC is located. As a result, the
part of the design domain occupied by the material is:

Ω =
M⋃

i=1

Ωi, (5.3)

where M is the number of MMCs. In this work, a local level set basis function as proposed by Guo
(2014)1 is used. For D = R2, x = [x,y]T , it takes the following form:

φi(x) =−
((

cosθi (x− x0i)+ sinθi (y− y0i)

li/2

)q

+

(
−sinθi (x− x0i)+ cosθi (y− y0i)

ti/2

)q

−1
)
,

(5.4)

where (x0i,y0i) is the position of the center of the ith MMC (Figure 5.2(a)) of length li and thickness
ti. The rotation of the component with respect to the horizontal direction is defined by the rotation
angle θi. Similarly to Guo (2014), we use q = 6 as a modeling exponent, which results in shapes
of MMCs close to rectangular. We assume that such shapes better represent bar-like connections
present usually in optimal designs than, for instance, elliptical MMCs obtained for q = 2. Figure
5.2 shows the resulting parametrization with the LSF given by Equation (5.4).

In order to map the LSF to the finite element model, as in the most of TO approaches (Bendsøe
and Sigmund (2004)), a standard density-based geometry mapping (Dijk et al. (2013)) is used2. In
such a case, the relation between the global LSF Φ and the material density ρ (x) at position x ∈D

is defined as:
ρ (x) = H (Φ(x)) , (5.5)

where:
Φ(x) = max(φ1(x),φ2(x), ...,φM(x)) , (5.6)

1 In the later works, Guo et al. (2016); Zhang et al. (2016) refer to this LSF as to the Topology Description Function
(TDF) (de Ruiter and van Keulen (2004)).

2 More sophisticated geometry mapping techniques, known from the field of level set TO, like immersed boundary
or conforming mapping (Dijk et al. (2013); Kudela et al. (2015)) could be also used with the presented approach.
We use the density-based mapping due to its simplicity and much lower computational costs. However, similarly
to density-based optimization approaches, this mapping results in a jagged geometry, showing frequently unrealistic
stress concentrations during the crash simulations.
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(a) Elementary structural component. (b) Local level set function.

Figure 5.2 Parametrization of the MMC and the corresponding LSF (with negative values set to zero) (Guo (2014); Bujny et al.
(2016c,b, 2017a)).

and H(x) denotes the Heaviside function:

H(x) =

0, if x < 0

1, if x≥ 0.
(5.7)

In case of static, linear elastic TO cases, the finite elements with ρ (x) = 0 are assigned a very small
density ρmin, e.g. ρmin = 0.01. Such a weak material is frequently referred to as ersatz material
(Sigmund and Maute (2013); Zhang et al. (2016)) and is used to guarantee better numerical stability
in the finite element simulation. The density ρ is used then to scale the stiffness tensor E as
follows:

E(x) = ρ (x)E0, (5.8)

where E0 is the reference stiffness tensor.

In contrast, in dynamic, nonlinear crash cases, the elements with ρ (x) = 0 are removed from the
finite element mesh, which is crucial to guarantee a proper physical behavior of the simulated
model3.

Equations (5.1)–(5.8) define the parametrization of the mechanical design. The entire procedure
of transforming the parametric description to design properties resulting from the numerical simu-
lation is shown in Figure 5.3.

The approach described above can be easily extended to 3D representations. In such a case, D=R3

3 For the plasticity models assuming incompressibility, e.g. von Mises or Tresca, even the elements with highly
penalized material properties show plastic strain and therefore keep the volume constant in the deformation.

Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning 65



Mariusz Bujny

Figure 5.3 Illustration of the mapping of design variables to the mechanical design used for evaluation of structural performance
via FEM in EA-LSM (Bujny et al. (2016c, 2017a)).

and x = [x,y,z]T . As a result, the local level set function defining the ith component, is given by:

φi(x) =−
((

x′

li/2

)q

+

(
y′

ti/2

)q

+

(
z′

hi/2

)q

−1
)
, (5.9)

with: 
x′

y′

z′


= Rt3 ·Rt2 ·Rt1 ·


x− x0i

y− y0i

z− z0i


, (5.10)

and:

Rt1 =


1 0 0

0 cosαi −sinαi

0 sinαi cosαi


, Rt2 =


cosβi 0 sinβi

0 1 0

−sinβi 0 cosβi


, Rt3 =


cosγi −sinγi 0

sinγi cosγi 0

0 0 1


, (5.11)

where, similarly to the 2D parametrization, (x0i,y0i,z0i) denotes the position of the center of the
ith component (Figure 5.4) of length li, thickness ti, and height hi. The translation and rotation of
the component are realized by a transformation of the coordinate system using Equations (5.10)
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and (5.11). The rotation transformation is carried out according to the Euler angles: αi, βi, and γi.
Figure 5.5 illustrates the rotation transformation according to Equations (5.10) and (5.11). In this
work, as for the 2D parametrization, q = 6 is used.

Figure 5.4 0th iso-surface of a level set basis function given by Equation (5.9).

(a) First rotation by angle α . (b) Second rotation by angle β . (c) Third rotation by angle γ .

Figure 5.5 Illustration of the rotation transformation according to Equations (5.10) and (5.11). Plots of the 0th iso-surface of the
local LSF (Equation (5.9)) before transformations (red) and after consecutive rotations according to the Euler angles α , β , and γ

(green).

Similarly to the 2D case, a finite set of local LSFs (Equation (5.9)) is used to compose the global
LSF according to Equation (5.6). The mapping of the global LSF to the material density is realized
with use of Equation (5.5).

The parametrization can be further extended by introducing level set basis functions of different
forms and complexity. Guo et al. (2016) proposed for instance to use curved MMCs or MMCs
with variable thickness over the length. However, it is not clear which parametrization is better.
On one hand, higher-order MMC representations can describe more complex shapes, but involve
more design variables per element. On the other hand, any design can be represented with use of a
sufficiently high number of low-order MMCs, as illustrated in Figure 5.6.
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Figure 5.6 Illustration of how a curved shape can be approximated with a finite number of straight components after Guo (2014).

5.3. Optimization algorithm

In general, optimization problems addressed in this work can be expressed in the following form:

min
z

fobj(z), z ∈ Rn;

s.t.res(t) = 0;

gC j(z)≤ 0, j = 1, ...,nineq,

hCk(z) = 0, k = 1, ...,neq,

zL
i ≤ zi ≤ zU

i ,

(5.12)

where fobj is the objective function to be minimized and z = [z1,z2, ...,zn]
T denotes the vector of

design variables, being a collection of all the parameters defining M basis functions (see Figure
5.3). As a result, the dimensionality of the optimization problem is n = np ·M, where np is the
number of parameters per basis function, equal to 5 for 2D and 9 for 3D representation in our
case. Functions gC j and hCk are the inequality and equality constraints, respectively. Additionally,
for each design variable zi, a lower bound zL

i and an upper bound zU
i can be defined. Finally, the

condition res(t) = 0 expresses the dynamic equilibrium of the structure at time t.

5.3.1. Algorithm overview

As the optimization method, EA-LSM uses EAs, in particular ES and CMA-ES, to solve structural
TO problems using the level-set-based parametrization defined in Section 5.2. These methods ex-
hibit better performance on continuous optimization problems than other EAs (e.g. GAs) (Bäck
(1996)). As a result, with a few problem-specific modifications, the optimization algorithm re-
sembles the standard ES/CMA-ES as described in Chapter 3. In particular, our initial experiments
(Bujny (2015); Bujny et al. (2016c)) showed that the state-of-the-art CMA-ES optimization al-
gorithm frequently offers superior convergence velocity in terms of the number of fitness/cost
function evaluations compared to a standard ES. However, standard ES turned out to be still very
useful in the numerical experiments with very large populations, evaluated in parallel on a compu-
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tational cluster, where the goal was to maximize the convergence velocity in terms of generations.
CMA-ES with larger than recommended (Hansen and Ostermeier (2001); Hansen (2016)) popu-
lation sizes gave results of inferior performance compared to ES in terms of the achieved fitness
values. Therefore, both standard ES and CMA-ES were used as optimization algorithms in this
work. The outline of the optimization algorithm with the proposed problem-specific modifications
is depicted in Figure 5.7.

Initialization Evaluation

Recombination Mutation

Stop 

criterion?

EvaluationSelection

End

False

True

Repair

Constraint 

handling

Figure 5.7 Outline of the optimization algorithm used in EA-LSM.

In the initialization step, the initial population of individuals is defined. Each of the µ individuals
created at this stage is characterized by a vector of design variables z encoding the layout of
level set basis functions, and a set of strategy parameters s. In the next step, the evaluation of
the initial population with use of FEM, e.g. dynamic nonlinear crash simulations, is carried out.
After that, the algorithm enters the main optimization loop consisting of the standard evolutionary
operators such as recombination, mutation, and selection as well as problem-specific repair and
constraint handling operators. Sections 5.3.2, 5.3.3, and 5.3.4 give a description of the operators
tailored to the proposed TO approach. The main optimization loop continues to execute until
certain stopping criteria are satisfied. In this work, usually a fixed budget of FE evaluations is
assumed and therefore, the optimization stops after reaching a defined number of iterations itermax,
often referred to as generations in the context of evolutionary optimization.

5.3.2. Initialization

It is a well-known fact that the initialization of an EA can strongly influence its convergence speed
and the quality of the final solution (Rahnamayan et al. (2007); Maaranen et al. (2007)). In general,
if no information about the optimum is available, a random initialization is the most frequently
used approach (Rahnamayan et al. (2007)). In such cases, the initial population should cover the
feasible region as uniformly as possible, giving the algorithm the possibility to reach a large part
of the feasible search space by means of recombination.

In case of TO approaches based on explicit parametrization with geometric components, an initial
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(a) Initial design used in
MMC approach by Guo
(2014).

(b) Initial design used in the geometry projection
method by Norato et al. (2015).

(c) Ground structure
used by Pedersen
(2003).

Figure 5.8 Initial designs used in gradient-based approaches using explicit component-based representations.

distribution as shown in Figures 5.8(a) and 5.8(b) is frequently used (Guo (2014); Norato et al.
(2015)). Indeed, this type of design offers very good space-filling properties and usually also good
structural performance thanks to its similarity to lattice or truss structures. In principle, one could
also view the method proposed in this work as an extension of the Ground Structure Approach
(GSA), where ground structures as depicted in Figure 5.8(c) are commonly used. Consequently,
in this work, diagonal initial designs as depicted in Figure 5.9 are used as a reference.

(a) Initial design with 16 MMCs in 2D. (b) Initial design with 64 MMCs in 3D.

Figure 5.9 Diagonal MMCs’ layouts used as reference designs for generation of initial population of individuals, for 2D (left) and
3D (right) problems.

Once the reference topology is generated, the initial population is created by varying the design
variable vector of the reference design according to the normal distribution with mean 0 and stan-
dard deviation σ , as in the mutation operator. This spreads the initial population around the refer-
ence design, creating moderate genetic diversity for small values of σ . For the used representation,
resulting in a search space with many structurally infeasible regions (e.g. disconnected structures),
this seems to be a reasonable way of creating the initial population. Random initialization would
very likely result in structurally-infeasible solutions, while the proposed approach creates mostly
connected designs thanks to the feasibility of the reference topology. Additionally, due to the re-
dundancy of the used representation (Rothlauf (2006)), expressed in the possibility of representing
the same design with several different vectors of design variables (Figure 5.10), high diversity in
the genotype space might result in a low diversity of phenotypes. All in all, using uniform ran-
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dom distribution to generate very diverse initial population of individuals is not a good solution in
this case and the above mentioned arguments speak in favor of using initial population normally
distributed around a good reference design.

MMC 1

MMC 2

MMC 3

MMC 3

MMC 1

MMC 2

MMC 2

MMC 3

MMC 1

Figure 5.10 Illustration of the redundancy of the used representation. Several different vectors of design variables, corresponding
to different configurations of MMCs, can be used to describe exactly the same material distribution.

5.3.3. Repair operators

This section introduces the repair operators, which help to avoid some unfavorable artifacts that
can appear during the optimization with EA-LSM. The artifacts are usually associated with the fact
of using MMC-based representation together with evolutionary optimizers, but the observations
made in this section might be also helpful for improving the performance of the gradient-based
optimization approaches as proposed by Guo (2014). Please note that the usage of the repair
operators, depending on the problem, can be treated as optional and using pure ES/CMA-ES would
already yield very good results in most cases.

Minimal step size

In case of the density-based mapping (Equation (5.8)), where the global LSF is mapped directly
on a fixed finite element mesh, a problem due to the discretization of space in the finite element
model arises. As illustrated in Figure 5.11, if the change of any design variable parametrizing the
design is smaller than a certain value, related to the resolution of the mesh, exactly the same finite
element model will be obtained. As a result, the performance of the structure will be exactly the
same, resulting in a small plateau in the optimization landscape. Such plateaus pose usually diffi-
culties for ESs, due to the lack of gradient of the objective function, and can result in a premature
convergence of the algorithm.

To overcome this problem, a minimal step size σmin can be enforced by introducing a repair op-
erator applied after the mutation step. If any of the step sizes drops below σmin during the self-
adaptation process, it is mapped back to σmin. Thanks to the used normalization of the design
variables, described in Section 5.3.5, usually the same value of σmin can be used for different types
of parameters, representing e.g. thickness or positions of the MMCs.
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Figure 5.11 Illustration of the discontinuity of the objective function due to the density-based mapping on a fixed finite element
mesh. Rotation of a specified component by a too small value can result in no change in the resulting finite element model and,
therefore, in no change of the objective function.

Thin components

Another problem associated with the density-based geometry mapping that might appear during
the optimization is the presence of MMCs of a very low thickness. Such MMCs can produce
artifacts such as single-node-connected or isolated finite elements, influencing the quality of the
final design. A simple yet effective solution of this problem is an application of a repair operator,
which sets the thickness of a component to zero, once it drops below a certain threshold tmin.

Overlapping components

In some cases, one of the key properties of the MMC approach, being the ability of the components
to overlap, might pose difficulties for stochastic optimizers. An illustration of such a situation is
given in Figure 5.12. Suppose that a component fully covers another one as shown in Figure
5.12(a), and the goal of the optimizer is to minimize the overall volume (or mass) of the structure.
To start reducing the volume, the optimizer would have to decrease the design variable x1 first,
since modifications of x2, corresponding to the thickness of the green component (fully covered
by the black one) would have no effect on the overall volume of the structure. At some point, the
optimization will lead to a situation when both of the components will have similar thicknesses.
Then, the only possibility to reduce the volume of the structure would be to decrease thicknesses
of both of the components simultaneously. This results in a similar problem as with the grid
representations (see Chapter 4), when only a correlated mutation of all design variables could result
in a significant improvement of the objective function. In case of the overlapping components, a
situation where at least one of the components does not decrease its thickness would result in a
mapping to exactly the same phenotype. The higher the number of overlapping components, the
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(a) Two overlapping beams
with thicknesses/heights as
design variables.

(b) Contour plot of volume in dependency
of design variables x1 and x2.

Figure 5.12 Illustration of the problem with overlapping components.

more difficult it would be to generate a correlated change of all relevant design variables by means
of a random mutation, which might finally lead to a premature convergence of the optimization.

In order to avoid such situations, a repair operator for modifying the overlapping components can
be introduced. In this work, the volume (or area) of the overlapping parts is computed using a
structured grid, as shown in Figure 5.13. The overlap o is estimated by calculating the ratio of the
elements of the structured grid occupied by the dashed MMC and the union of the other MMCs
(red area) to the total number of elements occupied by the dashed MMC only. Once the ratio of the
overlapping volume to the total volume of a component reaches omax, the thickness of the compo-
nent is set to zero. Each component is compared against the union of the remaining components to
calculate its overlap with the rest of the structure, yielding a simplified design without large over-
laps between MMCs at the end of the process. Please note that the computation of the overlap is
done each time based on the updated MMCs. Namely, if the thickness of a component was already
set to zero when computing the overlap for the ith MMC, this change will be taken into account
when computing the overlap for the (i+1)th MMC. As a result, it cannot happen that two strongly
overlapping MMCs are removed simultaneously, resulting in a complete deletion of a significant
amount of material. However, the decision which of the overlapping components should be elimi-
nated is quite arbitrary, especially if only very high omax are considered. As a result, in this work,
this results from the order in which the MMCs are compared with each other, which depends only
on the MMC index i.

In practice, situations when several components overlap strongly with each other happen relatively
rarely. Usually, only some parts of the components overlap and the problem is not as severe
as shown in Figure 5.12(b). However, even in such cases, a strong correlation between design
variables is observed and can slow down the optimization process considerably.
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Figure 5.13 Illustration of an MMC (dashed lines) strongly overlapping with the rest of MMCs.

Components outside the design domain

The proposed representation requires a special handling of the MMCs at the boundary of the de-
sign domain. During the optimization, it might come to situations as illustrated in Figure 5.14.
When one of the ends of the ith component extends beyond the design domain, in some cases, the
cost function would no longer change with changes of the parameters x0i, y0i or li, resulting in
a small plateau in the optimization landscape. As a result, some of the components, which play
an important role from the structural point of view, might always extend to the boundaries of the
design domain. Figure 5.14 illustrates that problem for a case of compliance minimization under
a volume constraint. The marked components (dashed red rectangles) are very long, although it
is not justified from the mechanical point of view. The upper parts (dotted green rectangles) do
not contribute significantly to the stiffness of the structure, but increase its volume. It would be
much more efficient to remove the upper parts and increase the thickness of the other components
in the structure. Nevertheless, the optimizer is not able to achieve that, since small variations of
the length or positions of the components in the mutation step do not result in any change of the
cost function. As a result, the components can change their length according to a random walk
(Pearson (1905)), due to the lack of selective pressure.

0 5 10 15 2

SimplePlot ; Parent  =  0; Iterat ion =  937; Fitness =  0.01453

Figure 5.14 Illustration of the problem with components extending outside the design domain for a cantilever beam compliance
minimization with a volume constraint. The MMCs marked using red dashed lines play an important role from the mechanical
point of view, but contribute to the volume of the structure much more than necessary. In such a situation, the optimizer does not
reduce their thickness to zero, but is also not able to shorten the beams to eliminate the redundant parts (green dotted rectangles)
due to the plateau in the optimization landscape.

In principle, the problem characterized above could be solved with use of penalty methods de-
scribed in the next section. However, this would make the optimization problem itself much more
difficult to solve, by considerably changing the landscape of the cost function. In particular, in the
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situations where the population of individuals focuses in the region close to the constraint, a lot of
them might be rejected due to constraint violation, resulting in a much slower convergence of the
optimization.

An alternative approach is to explicitly treat the problem with a suitable repair operator. For a 2D
TO problem and a rectangular design domain, one can easily find the coordinates of the ends of
the ith component:

(xend1 i, yend1 i) =

(
x0i−

li cos(θi)

2
, y0i−

li sin(θi)

2

)
(5.13)

(xend2 i, yend2 i) =

(
x0i +

li cos(θi)

2
, y0i +

li sin(θi)

2

)
(5.14)

The repair algorithm calculates the coordinates of the ends of all the MMCs and moves them back
to the boundary of the design domain, if necessary:

xendb i =

0, if xendb i < 0

wdd, if xendb i > wdd,
(5.15)

yendb i =

0, if yendb i < 0

hdd, if yendb i > hdd,
(5.16)

where b is an index indicating the end of an MMC (1 or 2), wdd is the width, and hdd is the height
of the rectangular design domain.

Finally, for each of the varied components, the parameters x0i, y0i, θi, and li are calculated based
on the following formulas:

x0i =
xend1 i + xend2 i

2
(5.17)

y0i =
yend1 i + yend2 i

2
(5.18)

li =
√(

xend1 i− xend2 i

)2
+
(
yend1 i− yend2 i

)2 (5.19)

θi =

arccos
(xend2 i

−xend1 i
li

)
, if yend1<yend2

π− arccos
(xend2 i

−xend1 i
li

)
, if yend1>yend2.

(5.20)
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Please note that, due to symmetry, the same MMCs are obtained for θi and θi + kπ with k ∈ Z,
which was used in Equation (5.20).

Similarly, for a 3D TO case, for the ith MMC, the coordinates of its ends can be easily found as
follows:


xend1 i

yend1 i

zend1 i


= Rt3 ·Rt2 ·Rt1 ·


− li

2

0

0


+


x0i

y0i

z0i


, (5.21)


xend2 i

yend2 i

zend2 i


= Rt3 ·Rt2 ·Rt1 ·



li
2

0

0


+


x0i

y0i

z0i


. (5.22)

If necessary, the ends of the MMC can be mapped back to the design domain using Equations
(5.15), (5.16) and additionally:

zendb i =

0, if zendb i < 0

ddd, if zendb i > ddd,
(5.23)

where ddd is a parameter defining the depth of the design space.

In addition, we find the angle of rotation of the MMC around its longitudinal axis ωi, which is
assumed to remain the same after moving of the ends of MMCs inside the design domain:

ωi =

arccos(rω z), if rω y > 0

π− arccos(rω z), if rω y < 0,
(5.24)

where rω y and rω z: 
rω x

rω y

rω z


= Rt3 ·Rt2 ·Rt1 ·


0

1

0


. (5.25)

76 Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning



Mariusz Bujny

In order to find the values of the MMC parameters after moving the ends into the design space,
the position of the center and the length of the MMC is calculated based on Equations (5.17) and
(5.18) as well as the following formulas:

z0i =
zend1 i + zend2 i

2
, (5.26)

li =
√(

xend1 i− xend2 i

)2
+
(
yend1 i− yend2 i

)2
+
(
zend1 i− zend2 i

)2
. (5.27)

The rotation angles αi, βi, and γi are found by solving a nonlinear system of Equations (5.22)
and (5.25) for the fixed value of ωi and updated values of x0i, y0i, z0i, and li . This can be done
numerically using e.g. the Newton-Raphson method (Gil et al. (2007)).

The proposed approach can be extended to deal with design spaces of more complex shapes, but
in this work, only rectangular/cuboid domains will be considered.

The repair operator presented in this paragraph, together with the repair operators for handling the
minimal step size, as well as deletion of thin and overlapping components, allows for an efficient
elimination of unfavorable artifacts appearing in EA-LSM.

5.3.4. Constraint handling

EAs are, in principle, unconstrained optimization methods. On the other hand, industrial cases are
usually highly constrained optimization problems. In the vehicle structural optimization context,
such constraints involve typically crashworthiness, stiffness, as well as manufacturing require-
ments. In order to incorporate constraint handling in EA, the constrained optimization problem
has to be transformed into an unconstrained one. After that step, the algorithm can be applied
directly to the transformed problem. Below, a description of the constraint handling methods used
in this work is given.

Inequality and equality constraints

Inequality constraints gC j(z) as well as equality constraints hCk(z) are handled with use of the
exterior penalty method with static penalties (Coello Coello (2002)), which is the most commonly
used approach for constraint handling in evolutionary optimization. The main idea in this approach
is to transform the constrained problem into unconstrained by adding penalty value to the objective
function being minimized whenever any of the constraints is violated. Unlike interior methods, it
does not require a feasible initial design and can explore infeasible designs, e.g. in order to move
between disjoint feasible regions in the search space.
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In the most general case, the minimized cost function f (z), including the constraint terms, would
take the following form:

f (z) = fobj(z)+
nineq

∑
j=1

Pj max
(
0,gC j(z)

)δ
+

neq

∑
k=1

Lk max
(
0,
∣∣hCk(z)− ε

∣∣)δ
, (5.28)

where Pj and Lk are the static penalty factors. In this work, usually Pj = Lk = P, with P being
a large constant. In order to handle equality constraints, which are very rare in crashworthiness
optimization, they are transformed to inequality constraints

(∣∣hCk(z)− ε
∣∣), where ε is a small

tolerance value. The exponent δ is normally equal to 1 or 2. Without loss of generality, only
inequality constraints will be considered later on in this work. The objective function fobj(z), as
well as constraints gC j(z), are always normalized using the values calculated for the reference
design (Section 5.3.5).

Although more sophisticated constraint handling methods for EA exist (e.g. adaptive penalty
methods, hybrid methods, multiobjective optimization techniques), the performance of different
approaches is usually similar (Coello Coello (2002)), which justifies the choice of the simpler
approach in this work.

The constraint handling method presented above does not impose limitations on the number of
constraints that can be considered in the optimization. This is a clear advantage over state-of-
the-art TO methods such as HCA, where dealing with more than one constraint causes difficulties
(Zeng (2018)).

Bounds on design variables

In order to enforce the bounds on the design variables (Equation (5.12)), a transformation as de-
scribed by Bäck et al. (2013) is applied individually to each of the n components of the vector z:

zi = zL
i +
(
zU

i − zL
i
) 2

π
arcsin

(∣∣∣∣∣sin

(
π
(
zi− zL

i
)

2
(
zU

i − zL
i
))∣∣∣∣∣

)
. (5.29)

The transformation is introduced to perform reflection at the bounds, which prohibits the design
variables to take values out of the specified range

[
zL

i ,z
U
i
]
. Imposing the bounds can be treated as

optional, e.g. to restrict the range of thicknesses of the MMCs in the optimized structures, and is
not used in numerical experiments presented in this work.

5.3.5. Normalization of design variables

Typically, numerical optimization methods aim for transforming the optimization problem in such
a way that the unit change of each design variable has a similar effect on the objective function
(Arora (2012)). In particular, in case of ESs, often separate step sizes for each of the design vari-
ables are used to achieve that (Bäck and Schwefel (1993)). However, if the influence of different
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design variables on the optimized cost function is radically different, this is associated with higher
learning effort for the optimizer, and reduces its convergence velocity.

As a result, to simplify the optimization problem already at the beginning, a common standard is
to normalize the design variables (Arora (2012)). Depending on the type of the parameters, we
propose to use the following transformation of the original variables parametrizing the MMCs, to
the design variables z′i manipulated by the optimizer (genotype):

z′i =
zi− z0

i + zs
i

2zs
i

for zi corresponding to position of the MMCs: x0i,y0i,z0i, (5.30)

z′i =
zi− zL

i

zU
i − zL

i
for zi corresponding to shape and orientation of MMCs: li, ti,hi,θi,αi,βi,γi, (5.31)

where zs
i is a suitable scaling parameter for the design variable i, and z0

i is the initial value of the
unscaled design variable in the reference design, respectively. As defined already before, zL

i and
zU

i , are the lower and upper bounds for the parameters. Please note that here they are used for
normalization only, which does not imply that zi cannot take values outside of the [zL

i ,z
U
i ] range.

This can be imposed only by using the technique described in Section 5.3.4.

Equation (5.31) transforms the parameters so that z′i = 0 corresponds to zL
i and z′i = 1 to zU

i . In case
of Equation (5.30), z′i = 0 implies zi = z0

i −zs
i , z′i = 1 results in zi = z0

i +zs
i , and z′i = 0.5 corresponds

to zi = z0
i . As a result, scaling factors are easier to interpret for a human. For lengths, thicknesses

and rotation angles, it is usually more convenient to express the scaling in terms of the maximum
and minimum values, corresponding to values of 0 and 1 for the normalized design variables z′i.
For the positional variables, one can specify the scaling factor zs

i , which is the distance from the
initial position z0

i at which z′i reaches values of 0 or 1. The value of zs
i has to be chosen in such a

way that the unit change of the scaled positional variables has similar effect as the unit change of
the normalized rotation angles, where usually zL

i = 0 and zU
i = π , due to the symmetry of MMCs,

would be chosen.

The backward transformation takes the following form:

zi = 2zs
i z
′
i + z0

i − zs
i for zi corresponding to: x0i,y0i,z0i, (5.32)

zi =
(
zU

i − zL
i
)

z′i + zL
i for zi corresponding to: li, ti,hi,θi,αi,βi,γi. (5.33)

Based on the initial experiments, the following heuristic for defining the scaling factors was found
to work well on multiple types of problems. For positional parameters, zs

i is determined as one
third of the size of the design space in a given direction, i.e. wdd for x0i, hdd for y0i, and ddd for z0i.
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For rotation angles θi, αi, βi, and γi, zL
i = 0 and zU

i = π is used. Finally, for the shape parameters li,
ti, and hi, the lower bound is 0 and the upper bound is three times the initial value of the parameter
from the reference design.

Of course, for specific problems, more suitable scaling factors can be found. However, satisfactory
results are already obtained when no considerable differences in the influence of design variables
can be observed, which is usually the case for the heuristic used in this work. The optimization
algorithm can efficiently handle the rest by adapting individual step sizes for each of the design
variables.

5.3.6. Symmetries

Rozvany (2011) widely discussed the problem of symmetry in structural TO. Based on the analysis
of known analytical solutions and theoretical considerations, he argues that there exists at least
one optimal structural layout that is symmetrical, provided that support and load conditions are
symmetric. In some special cases, there might be an infinite number of other symmetric and/or
nonsymmetrical optimal topologies. Although it is not clear if the same conclusions apply to crash
TO, symmetry conditions can reduce the number of design variables significantly, which is even
more important for evolutionary optimization methods, where the convergence velocity strongly
depends on the dimensionality of the optimization problem. With this in mind, we will usually
enforce symmetry conditions on the representation level in this work. One should note that this
is not equivalent to using symmetry conditions in the FE simulation, which we strongly avoid.
The main reason is the nonsymmetrical physical behavior of many nonlinear mechanical systems,
e.g. in case of buckling. Imposing symmetry conditions in simulation would lead to an improper
modeling of such physical systems.

5.4. Summary

This chapter presents a novel TO approach based on a suitable low-dimensional level-set repre-
sentation and EAs – EA-LSM. Additionally, problem-specific repair operators are proposed to
enhance the quality of the obtained structures as well as the convergence velocity of the algorithm.
The development of the method is motivated mainly by the applications in crashworthiness, where
analytical sensitivities are not available, but it has a generic character and can be potentially applied
to various problems in structural mechanics.

Compared to the state-of-the-art methods for crash TO, EA-LSM does not use any heuristic as-
sumptions or simplifications, and evaluates the performance of the design based on high-fidelity
nonlinear FE crash simulations. As a result, arbitrary quantifiable optimization criteria can be
taken into account, which is an important factor for the real-world applications, where frequently,
e.g. injury criteria are considered as constraints or objectives (Fang et al. (2016)). In principle, any
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number of constraints can be handled by the method, which is a clear advantage compared to some
of the state-of-the-art approaches, such as HCA.

The main disadvantage of the proposed method is a relatively high computational cost of evolution-
ary optimization, leading to a considerably higher number of FE evaluations than in case of ESL
or HCA approaches. Hence, whenever the assumptions of these approaches are satisfied for the
problem at hand, these methods should be used in the first place. However, EA-LSM is a general
alternative to these approaches. On the other hand, thanks to very good scalability of evolutionary
optimizers on parallel computer architectures, the performance of EA-LSM in terms of optimiza-
tion iterations (generations), representing the total time required to perform the optimization, can
be still comparable to state-of-the-art methods. This is very promising in the context of growing
power of the computer hardware, allowing potentially for large-scale industrial applications in the
future. Nevertheless, nowadays, a single high-fidelity crash simulation can require itself a lot of
parallel resources, which motivates the development of improvements of the proposed approach
aiming for reduction of the total number of the FE evaluations. This important problem is therefore
addressed in the following chapter.
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Chapter 6

Machine learning-based enhancements of EA-LSM

Although the EA-LSM presented in Chapter 5 offers great flexibility in terms of objectives and
constraints it can address, it is associated with very high computational costs compared to the state-
of-the-art methods. The following chapter targets this problem by incorporating enhancements
to EA-LSM, using methods from the domain of ML. In particular, this chapter proposes three
approaches to achieve that, all based on an improved utilization of the information collected prior
to, as well as during the optimization process:

• Based on the knowledge of the effects of parameter variations: Use an approximate gradient
information of the objective function to guide the search of the evolutionary optimizer. The gra-
dient approximations can be obtained from a simplified model of a physical system or learned
from the previously sampled data.

• Based on the knowledge of design quality: Utilize surrogate models of the objective functions
and constraints, which approximate computationally costly finite element simulations.

• Based on the knowledge of the effects of structural modifications: Introduce an adaptive repre-
sentation of the topology, with number of design variables rising during the optimization pro-
cess. The adaptation process can be based on random modifications of the design representation
or a pre-trained model predicting favorable topological variations.

The first two concepts are described already in the literature, however, in contexts different to the
one of this work. In contrast, the last approach represents very novel and challenging field of
research.

Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning 83



Mariusz Bujny

Depending on the characteristics of the considered problem, e.g. type of objectives and constraints,
number of design variables, desired complexity of the target topology, different methods can be
used to improve the performance of EA-LSM. Each of the approaches mentioned above can be
seen as a module that can be used separately or combined together, leading potentially to a further
reduction of computational costs.

The structure of the chapter follows the order of the methods described above. Section 6.1 dis-
cusses the methods for approximation and exploitation of the gradient information in hybrid EAs.
In Section 6.2, the possibilities of using surrogate models in evolutionary search are investigated.
Finally, Section 6.3 proposes the Adaptive Evolutionary Level Set Method (A-EA-LSM) with
learning-based topology variations, and Section 6.4 summarizes the chapter.

6.1. Exploiting approximate gradient information

Computationally efficient state-of-the-art methods for crash TO yield very good results for some
of the problems. This concerns particularly the objectives involving very limited deformations
of the structures, where the assumptions made by the ESL methods or HCA techniques seem to
be appropriate. For instance, both ESL and HCA have demonstrated their good performance on
intrusion minimization problems with low levels of plastic deformation (Bandi et al. (2013); Bujny
et al. (2017a)). As a result, in such cases, one can benefit from the efficiency of the gradient-based
or heuristic optimization methods, requiring considerably less FE evaluations than the evolutionary
approach proposed in Chapter 5.

The availability of very efficient methods for selected problems inspired the development of hybrid
optimization algorithms (Michalewicz (1996)), also frequently referred to as the memetic algo-
rithms (Neri and Cotta (2012)), which combine EAs with a domain-specific knowledge. As shown
in Figure 6.1, such a combination can be very effective, since it frequently benefits from both, the
good performance of EA on a wide range of optimization problems, as well as exceptionally good
properties of specialized methods for selected problems (Michalewicz (1996)). Furthermore, often
the combined approach not only performs as good as the best component, but also outperforms
each of the individual methods composing it (Michalewicz (1996); Bujny et al. (2016c)). On the
contrary, the utilization of domain-specific knowledge creates the risk of biasing the optimiza-
tion process towards certain designs, limiting the ability of the method to produce novel solutions
(Eiben and Smith (2003)). As a result, a good balance between generality and performance of such
a hybrid method should be found.

In the context of TO, especially the idea of combining EA with gradient-based approaches seems
to be very promising (Bujny (2015); Bujny et al. (2016c, 2017b)). Gradient-based methods are the
mainstream in structural TO and rely mostly on analytical derivation of the sensitivity informa-
tion, which provides a formal framework for solving large-scale optimization problems. As such,
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Figure 6.1 Illustration of the potential benefits coming from using hybridization techniques for optimization after Michalewicz
(1996). In special cases, analytical or heuristic methods offer very good performance. On the other hand, EAs perform well in a
wide range of problems. Hybridization of EA with specialized methods allows for exploitation of the benefits of both approaches.
In some situations, a hybrid approach can offer a better performance than each of the methods separately.

these methods should be used in the first place whenever the analytical sensitivity information is
available (Sigmund (2011)). Additionally, the availability of the analytical sensitivity informa-
tion for several important problem categories in structural optimization, as well as strong focus of
the research community on gradient-based approaches, justifies the choice of these methods for
hybridization with EA.

As discussed above, for crash TO, in many cases, one can use ESL approach to obtain an approx-
imation of the gradient information. However, even for the problems suitable for ESL, this could
be only seen as a rough estimation of the gradient for the underlying crash problem, e.g. intrusion
minimization. As a result, the hybrid approach has to take into account the uncertainty associated
with the estimation of the gradient information and use the gradient information only when it is
accurate enough.

For the crash problems where the gradient information cannot be reliably estimated using any of the
established methods, e.g. involving large plastic deformations, one can use ML methods to learn
the sensitivity information from the collected data. Such an approach for TO was first proposed by
Aulig and Olhofer (2014b) and further developed later on (Aulig (2017)). In this work, we extend
this approach to the level set representation relying on the concept of MMCs (Guo (2014)).

The methods described in this section are based mainly on the previous works of the author (Bujny
(2015); Bujny et al. (2016c, 2017b)) as well as on the master’s thesis of Lukas Krischer (Krischer
(2018)) supervised by the author of this dissertation, together with Prof. Fabian Duddeck (Techni-
cal University of Munich).

6.1.1. Sensitivity analysis for estimation of approximate gradients

Let us start with a derivation of sensitivities for the compliance minimization problem, which is
a basis for the approximations discussed in Sections 6.1.2 and 6.1.3. The approach described
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below follows, to great extent, the analysis presented by Guo (2014). However, we propose an
alternative method for numerical computation of derivatives, which turned out to give better results
in the previous experiments (Bujny (2015); Bujny et al. (2016c); Krischer (2018)). Below a formal
description of the method is presented.

Analytical derivation of sensitivities

Compliance minimization problem, neglecting body forces, can be defined as follows:

min
u∈U,E

C(u) = min
u∈U,E

∫
Γt

tudΓ, (6.1)

where t denotes the boundary tractions applied on the surface Γt (Figure 6.2), U is the space of
kinematically admissible displacements u, and E is used to denote the stiffness tensor.

Figure 6.2 Illustration of the static problem solved in structural mechanics (Bujny et al. (2016c)).

Using the adjoint method (Bendsøe and Sigmund (2004)), together with the chain rule (Apostol
(1974)), a partial derivative of compliance w.r.t. the LSF can be obtained (Zhang et al. (2017b)):

∂C
∂Φ

=−
∫∫
D

δ (Φ(x))εεε
T (x)E0

εεε (x) dΩ, (6.2)

where εεε denotes the elastic strain, while δ (x) is the Dirac delta function1 (Dirac (1930)):

δ (x) =

+∞, if x = 0

0, if x 6= 0,
(6.3)

satisfying the following property:
+∞∫
−∞

δ (x)dx = 1. (6.4)

1 Dirac delta is not a function in the classical sense, since no function defined on the real number has the properties
given below (Dirac (1930)). Formally, Dirac delta can be defined as a distribution (generalized function) (Hörmander
(2003)).
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The derivatives of the global LSF Φ w.r.t. any of the design variables, i.e. x0i, y0i, θi, li , ti, can be
expressed in the following form:

∂Φ

∂ pi
(x) =


∂φi
∂ pi

(x) , if Φ(x) = φi (x)

0, otherwise,
(6.5)

where pi, for generality, is used to denote any type of design variables listed above. The partial
derivative ∂φi

∂ pi
is easy to derive analytically based on the Equation (5.4):

∂φi

∂x0i
= q

(
cosθi (x− x0i)+ sinθi (y− y0i)

li/2

)q−1 cosθi

li/2

+q
(
−sinθi (x− x0i)+ cosθi (y− y0i)

ti/2

)q−1 −sinθi

ti/2
,

(6.6)

∂φi

∂y0i
= q

(
cosθi (x− x0i)+ sinθi (y− y0i)

li/2

)q−1 sinθi

li/2

+q
(
−sinθi (x− x0i)+ cosθi (y− y0i)

ti/2

)q−1 cosθi

ti/2
,

(6.7)

∂φi

∂θi
= q

(
cosθi (x− x0i)+ sinθi (y− y0i)

li/2

)q−1(sinθi (x− x0i)− cosθi (y− y0i)

li/2

)
+q
(
−sinθi (x− x0i)+ cosθi (y− y0i)

ti/2

)q−1(cosθi (x− x0i)+ sinθi (y− y0i)

ti/2

)
,

(6.8)

∂φi

∂ li
=

1
2

q
(

cosθi (x− x0i)+ sinθi (y− y0i)

li/2

)q−1 cosθi (x− x0i)+ sinθi (y− y0i)

(li/2)2 , (6.9)

∂φi

∂ ti
=

1
2

q
(
−sinθi (x− x0i)+ cosθi (y− y0i)

ti/2

)q−1 −sinθi (x− x0i)+ cosθi (y− y0i)

(ti/2)2 , (6.10)

Figure 6.3 shows the plots of Equations (6.6)–(6.10) normalized with the Euclidean norm of the
gradient of the LSF, which, as shown later in this section, have a very intuitive interpretation as
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weighting factors for the element strain energies. This property will be also used in Section 6.1.3
for constructing features for the ML models.

Figure 6.3 Local LSF φ and its derivatives w.r.t. the design variables (Bujny (2015); Bujny et al. (2016c)). Only the values in a
close neighborhood of the material interface are shown (the rest is set to zero). The partial derivatives are divided by the Euclidean
norm of the gradient of the LSF

(
∇φ =

[
∂φ

∂x ,
∂φ

∂y

])
.

Finally, the analytical sensitivity of the compliance w.r.t. any of the parameters of the ith MMC is
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given by:
∂C
∂ pi

=−
∫∫
D

δ (Φ(x))
∂Φ

∂ pi
(x)εεε

T (x)E0
εεε (x) dΩ. (6.11)

Similarly to the approach described above, one can derive the analytical sensitivities of the other
criteria taken as objectives or constraints in the optimization problem. In particular, volume con-
straint frequently plays an important role in TO. The total volume of the material phase in the
design domain D for a 2D case is given by:

V =
∫∫
D

H (Φ(x)) dΩ. (6.12)

Consequently, the sensitivity of the volume w.r.t. design variable pi is equal to:

∂V
∂ pi

=
∫∫
D

δ (Φ(x))
∂Φ

∂ pi
(x) dΩ. (6.13)

Numerical computation of sensitivities

Due to the discrete nature of the formulations used in the computer simulations, e.g. with FEM, the
equations derived above cannot be used directly for the computation of sensitivities. Instead, one
has to approximate them based on discrete mesh of nodal displacements, used to calculate other
quantities, such as stresses or element strain energies.

Due to the presence of the Dirac delta in the equations above, the numerical computation of the
integrals is challenging. The easiest approach relies on the introduction of an approximate Heav-
iside function with continuous derivative, which can be treated as an approximation of the Dirac
delta (Belytschko et al. (2003)). However, this approach turned out to result in low accuracy of
gradient approximations for the level-set parametrization used in this work (Bujny (2015); Bujny
et al. (2016c); Krischer (2018)). As a result, we propose an alternative approach for numerical
estimation of the gradients, which is easy and offers good accuracy according to the previously
conducted experiments (Bujny (2015); Krischer (2018)).

Analytical sensitivities derived above have the following form2:

ξ =
∫∫
R2

δ (Φ(x,y))F (x,y)dΩ (6.14)

where x = [x,y]T denotes the spatial location, while F is an arbitrary function of those variables.

2 Please note that the derivations are done for a 2D problem formulation, but can be easily generalized to 3D cases.
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After change of variables, the integral ξ can be rewritten as (Hörmander (2003)):

ξ =

∞∫
0

∫
K:Φ=t

δ (t)
|∇Φ(x(l, t),y(l, t))|

F (x(l, t),y(l, t)) dl dt. (6.15)

Since the Dirac delta term takes nonzero values only for Φ= t = 0, Equation (6.15) can be rewritten
as follows:

ξ =
∫

K:Φ=0

F (x(l),y(l))
|∇Φ(x(l),y(l))|

dl. (6.16)

Technically, the integral above can be numerically estimated by finding all of the elements crossed
by the 0th iso-contour of the LSF. After finding those elements, the expression F(x,y)/ |∇Φ(x,y)|
can be calculated in the center of each element and multiplied by an approximate length of the
material-void interface in the element. A summation of these values yields an efficient approxima-
tion of Equation (6.14):

ξ ≈ ∑
e∈G

F (xCe ,yCe)

|∇Φ(xCe ,yCe)|
le, (6.17)

where G denotes the set of indices of the elements crossed by the 0th level-set iso-contour, while
(xCe ,yCe) are the coordinates of the element’s center and le denotes the length of the material-void
interface inside the element.

Equation (6.17) can be directly used to compute the analytical sensitivities derived in the previous
subsection (Equations (6.11) and (6.13)).

As mentioned before, one can easily note that the term ∂Φ

∂ pi
(x,y)/ |∇Φ(x,y)|, where pi denotes a

design variable parametrizing an MMC (e.g. x0i, li), has a very intuitive interpretation. A compar-
ison of Equations (6.11) and (6.17) , shows that ∂Φ

∂ pi
(x,y)/ |∇Φ(x,y)| acts as a weighting factor in

the summation of the element strain energies
(1

2εεεT E0εεε
)
. For example, when numerically calculat-

ing the derivative of compliance w.r.t. the parameter x0i, one would multiply strain energies on the
left end of the MMC by −1, while multiplying the energies on the right-hand side by a weighting
factor equal to 1 (Figure 6.3). As a consequence, the sign of the derivative ∂C

∂x0i
will depend on the

ratio of magnitudes of strain energies at the MMC’s ends. One should note that the strain energies
of the elements located at the part of the 0th iso-contour parallel to the x-axis do not contribute
to the partial derivative ∂C

∂x0i
. In contrast, for the partial derivative ∂C

∂y0i
, the situation is exactly the

opposite.

The simplifications in the numerical estimation of Equation (6.15) described above do not guar-
antee high accuracy of gradient approximation, especially for very coarse meshes. However, the
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experimental evaluation of the gradient estimates carried out before (Bujny (2015)) has confirmed
satisfactory gradient estimation accuracy of this method for different mesh resolutions. In partic-
ular, in this work, the sensitivities of the compliance are used exclusively as an approximation of
the gradients for crashworthiness objectives, e.g. intrusion, energy absorption, so the accuracy of
the compliance sensitivity itself becomes a secondary factor.

6.1.2. Gradient approximation via global equivalent static loads method

The global ESL method, sometimes referred also to as replacement loading (Wehrle et al. (2015)),
belongs to the oldest approaches used in crashworthiness TO (Cavazzuti et al. (2010); Christensen
et al. (2012)), and is often used also in the engineering practice. The method assumes that the
dynamic crash loads can be replaced with static loads, which do not change over time. As a con-
sequence, one can use well-established gradient-based methods for TO of linear elastic problems
(Bendsøe and Sigmund (2004)). Global ESL is therefore appropriate for optimization problems
involving limited plastic deformations, e.g. design of safety cells (Duddeck et al. (2016)). Conse-
quently, ESL can be seen as a specialized approach, which can be used for enhancing the evolu-
tionary search. One of the potential realizations of this idea is described below.

In a first step, the equivalent static case consistent with the dynamic crash scenario has to be
defined. To a great extent, this relies on expert knowledge and is defined manually. Usually, the
load definition covers a wide area of the vehicle design space and represents roughly the time-
dependent loading conditions. As an example, consider the 2D test case used in this work (Figure
6.4(a)) and its equivalent static case (Figure 6.4(b)). The equivalent case represents roughly the
crash load just with a single point load. Of course, more detailed equivalent static modeling,
accounting for contact as well as large deformations and changing loading conditions in the crash
scenario, would be also possible in this case. However, the modeling accuracy is not of the main
interest in this work, which targets evaluation of feasibility of using evolutionary optimization
enhanced with an approximate gradient information in crash TO.

(a) Crash case (b) Equivalent static case

Figure 6.4 Example of a crash case and the corresponding equivalent static case.

Once the equivalent static case is defined, the gradient information can be obtained by performing
a static FE analysis and using the approach for numerical computation of sensitivities described in
Section 6.1.1. The gradient of compliance and volume can be used then directly in the approach
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presented in Section 6.1.4 as an approximation of sensitivities related to crash performance, e.g.
intrusion or energy absorption.

6.1.3. Gradient approximation by predicting sensitivities

Estimation of sensitivities described in Section 6.1.2 is limited only to the cases when the opti-
mization objective exhibits some similarity to the compliance. A potential solution to overcome
this problem is to use ML to model the relationships between the structural state of the design
under crash loading conditions and the sensitivities of arbitrary responses. This idea was first
proposed by Aulig and Olhofer (2014b) and used for the case of the standard density-based TO
of linear elastic structures. Later on, this approach was also evaluated in TO of crash problems
(Aulig (2017)). This section extends this idea to TO using the MMC framework. Furthermore, in
this work, we do not rely on the correctness of the sensitivity models, but use it as an approximate
gradient information in the hybrid approach proposed in Section 6.1.4.

Similarly to the approach introduced by Aulig and Olhofer (2014b), the method described in this
work relies on the assumption that the gradient of the cost function ∇ f can be predicted based on
the structural state of the design, evaluated using FEM. In particular, Aulig and Olhofer (2014b)
used a standard grid representation of the topology and assumed that the sensitivity of the objective
function w.r.t. the element density ρe can be predicted exclusively based on the state features of
the considered element, e.g. its strain energy, stress or nodal displacements. For that reason, the
features used for building sensitivity models by Aulig and Olhofer (2014b) were referred to as the
local state features.

Following a similar logic, in case of the MMC-based representation used in this work, one could
assume that the sensitivity of the objective function w.r.t. parameters describing an MMC, i.e.
x-position x0, length l, rotation angle θ , etc., can be predicted with use of the state features related
to the finite elements located spatially within the considered MMC. Indeed, in the special case of
compliance being the objective function for an optimization problem involving linear elastic cases,
the analytical sensitivities depend only on the strain energies of elements located within a given
MMC. However, instead of using the local state features to model the sensitivities w.r.t. element
densities and finding relationships between them and the sensitivities w.r.t. parameters of MMCs,
in this work, we construct compound Component State Features (CSFs) (Krischer (2018)) related
directly to the state of the entire MMC.

By observing the similarity of the term εεεT (x)E0εεε (x) in the Equation (6.11) to the compliance
sensitivities

(
∂C
∂ρe

)
in the density-based TO methods (Bendsøe and Sigmund (2004)), this work

assumes that the sensitivity of any objective function w.r.t. the parameters of an MMC can be
modeled with use of CSFs of the following form:

CSF =−
∫∫
D

δ (Φ(x))
∂Φ

∂ pi
(x)S(x)dΩ, (6.18)
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where S(x) can be an expression combining any quantities describing the state of the structure at
location x (local state features). In particular, S(x) = εεεT (x)E0εεε (x) would yield a CSF identical to
the analytical sensitivities of compliance, given by Equation (6.11).

Following the derivation of the numerical scheme for estimation of sensitivities of the form given
by Equation (6.14), described in Section 6.1.1, CSFs can be computed numerically as follows:

CSF ≈ ∑
e∈G

∂Φ

∂ pi
(xCe ,yCe)Se

|∇Φ(xCe ,yCe)|
le, (6.19)

where Se refers to the local state features at the finite element e.

In general, Se can be any combination of local state features describing the state of a given finite
element, which gives a possibility to handcraft features most suitable for a given problem. How-
ever, hand-crafting the features either requires certain prior knowledge about the function being
modeled or involves a cumbersome trial-and-error process to obtain the best model. From this
perspective, nodal displacements seem to be the most general features, whose transformations can
yield other quantities. Due to the generic character of such features, this work considers CSFs ex-
clusively based on displacements and their interactions. As a result, CSFs of the following forms
will be considered in this work:

CSF ≈ ∑
e∈G

∂Φ

∂ pi
(xCe ,yCe)ue, j

|∇Φ(xCe ,yCe)|
le, (6.20)

and:

CSF ≈ ∑
e∈G

∂Φ

∂ pi
(xCe ,yCe)ue, jue,k

|∇Φ(xCe ,yCe)|
le, (6.21)

where ue, j is the jth nodal displacement of the eth finite element, as shown in Figure 6.5. For
2D cases using the standard four-node shell elements or eight-node solid elements (assuming the
same displacement magnitudes of the corresponding degrees of freedom), we have the node index
j = 1,2, ...,8 and k = 1,2, ...,8.

Finally, the CSFs are used as the independent variables in the models of the partial derivatives
of the considered objective function. In contrast to the work of Aulig and Olhofer (2014b), we
propose to use independent models for each of the parameters defining an MMC:

∂ f
∂ pi
≈

(
∂̃ f
∂ p

)
ΘΘΘp

(CSFi) , (6.22)
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Figure 6.5 Naming convention of the displacements in four-node shell elements or eight-node solid elements (top view) used for
computation of the CSFs.

where CSFi is a vector of different CSFs computed for the ith MMC and used in the sensitivity

model
(

∂̃ f
∂ p

)
ΘΘΘp

, with a vector of parameters ΘΘΘp. For a two-dimensional MMC parametrization,

this would correspond to five independent models for p = x0, y0, θ , l, and t.

In general, different ML regression models (Bishop (2007)), e.g. Linear Regression (LR), Support
Vector Regression (SVR), Gaussian Processes (GP), Artificial Neural Networks (ANN), can be
used to model the sensitivities. The initial studies (Krischer (2018)) showed that, even for the
nonlinear crash cases, a satisfactory prediction accuracy can be obtained already with simple LR
models. Especially when the number of training samples is limited, LR is a good choice, due to
a relatively low number of trainable parameters, which helps to avoid overfitting (Bishop (2007)).
Therefore, in this work, we narrow down the discussion to the linear models only.

The training samples for the ML models are obtained via numerical estimation of sensitivities
using the Finite Difference (FD) method (Iserles (2008)). In particular, we focus on the central
finite differences, offering higher accuracy than forward or backward differences (Iserles (2008)).
For a set of different designs, which can be generated through Design of Experiments (DoE) or
obtained from intermediate steps during an optimization, each of the design variables is varied by
a small value ζ . The formula for estimation of the sensitivity of the objective function w.r.t. a
design variable z j takes then the following from:

∂ f
∂ z j
≈

f (z j+)− f (z j−)

2ζ
, (6.23)

with:
z j+ =

[
z1,z2, ...,z j +ζ , ...,zn

]T
, (6.24)
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and:
z j− =

[
z1,z2, ...,z j−ζ , ...,zn

]T
. (6.25)

Since each design variable is one of the five parameters describing an MMC (assuming a 2D case),
computing finite differences for all of the design variables in a single design results in n

5= M

samples of the sensitivities for each MMC parameter p.

In order to better illustrate the sampling process, let us consider modeling a sensitivity of a function
f w.r.t. the rotation angle θ , for a design with 16 MMCs. For the ith MMC, the objective function
is evaluated for a rotation angle θi + ζ and θi− ζ , with all the other design variables remaining
unchanged. Based on that, the central finite difference is calculated according to Equation (6.23).

This yields the first training sample for the sensitivity model
(

∂̃ f
∂θ

)
ΘΘΘθ

. This process is carried

out for all i = 1, ...,16 MMCs, yielding 16 samples for training the model
(

∂̃ f
∂θ

)
ΘΘΘθ

. By repeating

that process for the new designs, involving different configurations of MMCs, sufficient number
of samples for training a regression model of ∂ f

∂θ
can be collected. Similarly, data samples for the

models of ∂ f
∂x0

, ∂ f
∂y0

, ∂ f
∂ l , and ∂ f

∂ t can be gathered. Finally, five ML models:
(

∂̃ f
∂x0

)
ΘΘΘx0

,
(

∂̃ f
∂y0

)
ΘΘΘy0

,(
∂̃ f
∂θ

)
ΘΘΘθ

,
(

∂̃ f
∂ l

)
ΘΘΘl

,
(

∂̃ f
∂ t

)
ΘΘΘt

, can be trained based on the created data sets, resulting in a gradient

approximation:

∇̃ f (z) =

[(
∂̃ f
∂x0

)
ΘΘΘx0

(CSF1),

(
∂̃ f
∂y0

)
ΘΘΘy0

(CSF1),

(
∂̃ f
∂θ

)
ΘΘΘθ

(CSF1),

(
∂̃ f
∂ l

)
ΘΘΘl

(CSF1),(
∂̃ f
∂ t

)
ΘΘΘt

(CSF1), ...,

(
∂̃ f
∂x0

)
ΘΘΘx0

(CSFM),

(
∂̃ f
∂y0

)
ΘΘΘy0

(CSFM),

(
∂̃ f
∂θ

)
ΘΘΘθ

(CSFM),

(
∂̃ f
∂ l

)
ΘΘΘl

(CSFM),

(
∂̃ f
∂ t

)
ΘΘΘt

(CSFM)

]T

(6.26)

The entire process is summarized in Figure 6.6.

The obtained models could be, in principle, used directly in a gradient-based optimization, as in
the work of Aulig and Olhofer (2014b). In fact, using the finite differences as training samples
for a regression model rather than utilizing them directly in a gradient-based algorithm, allows
for reduction of the problem of the high noisiness of such numerical estimates, appearing usually
in crash simulations (Duddeck (2008); Wehrle (2015)). Taking into account limited accuracy of
such models, similarly to the approach described in Section 6.1.2, we consider them rather as an
approximation to enhance the hybrid methods discussed in the next section.

To summarize, the key advantage of the method discussed in this section, compared to the ap-
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Figure 6.6 Illustration of the sampling process via finite-differencing to generate a dataset for training ML models of sensitivities.

proaches described previously, is its generic character. Potentially, the same method can be used to
learn sensitivities of arbitrary quantifiable objectives and constraints. Although the initial cost of
creating the data set of sensitivities via finite differencing can be high, once the model is trained on
a sufficiently diverse set of designs, it can be used multiple times in different optimization cases.

6.1.4. Hybrid evolutionary algorithms

In the previous works (Bujny (2015); Bujny et al. (2016c, 2017b)) we proposed a set of hybrid
approaches, relying on different concepts for combining evolutionary optimization with gradient-
based search:

• Global Hybrid Evolution Strategy with Gradient-based Local Search (GHES), updating a part
of the offspring population using gradient information.

• Concurrent Hybrid Evolution Strategy with Gradient Individual (CHES), applying gradient-
based optimization to the best individual, while optimizing the rest of the population using
standard ES.

• Hybrid CMA-ES Method (HCMA-ES), updating the mean of the normal distribution used in
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the mutation operator of CMA-ES according to the gradient information.

Among the methods mentioned above, GHES turned out to be the most efficient approach for the
cases when the gradient information was inaccurate (Bujny (2015); Bujny et al. (2017b)), as it is
often in case of crashworthiness optimization (Duddeck (2008)). In these cases, the method is able
to preserve convergence velocity of the ES composing it, while going beyond the performance of
gradient-based or evolutionary search for the cases when the sensitivity information is accurate
enough (Bujny (2015); Bujny et al. (2016c, 2017b)). On the other hand, CHES performs only as
good as its best component, while any significant inaccuracies of the gradient information tend to
deteriorate the search of HCMA-ES. As a result, in this work, the discussion is narrowed down
exclusively to GHES. From now on, the TO method using the level set representation discussed in
Chapter 5 together with the GHES optimizer will be referred to as the Hybrid Evolutionary Level
Set Method (H-EA-LSM).

The H-EA-LSM algorithm can be summarized as follows (Algorithm 2):

iter := 0;
initialize P(0) :=

{
a1(0), ...,aµ(0)

}
∈ Iµ ;

evaluate P(0) :
{

f (a1(0)) , ..., f
(
aµ(0)

)}
;

while iter < itermax do
recombine: P ′(iter) := rΘr (P(iter));
mutate: P ′′(iter) := mΘm (P ′(iter));
evaluate P ′′(iter) :

{
f (a′′1(iter)) , ..., f

(
a′′

λ
(iter)

)}
;

improve: P ′′′(iter) := iΘi (P ′′(iter));
evaluate P ′′′(iter) :

{
f (a′′′1 (iter)) , ..., f

(
a′′′

λ
(iter)

)}
;

select: P(iter+1) := sΘs (P ′′′(iter));
iter := iter+1;

end
Algorithm 2: Pseudocode of the gradient-enhanced H-EA-LSM used in this work.

The naming convention used in Algorithm 2 follows the one introduced in Chapter 3. The main
difference between Algorithm 2 and the standard ES (Chapter 3) (Bäck and Schwefel (1993)) is
the introduction of the improvement operator iΘi : Iλ → Iλ with a set of parameters Θi, inspired by
the work of Eiben and Smith (2003).

In the improvement step, a part of the offspring population is selected for improvement with an
approximate gradient information obtained using one of the methods described in Sections 6.1.2–
6.1.3. Usually, only a small fraction (10%–30%) of the offspring population is sufficient for ob-
taining good results (Bujny (2015); Bujny et al. (2016c, 2017b)). In this work, the selection of the
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individuals for the improvement is done randomly. In fact, other selection rules for the improve-
ment, e.g. certain number of the best individuals, did not yield better results (Bujny (2015)). The
improvement is realized as a single Steepest Descent (SD) step (Rao (2009)):

z := z− s∇̃ f (z) , (6.27)

where s is the gradient step size, which can be a fixed value or determined at each iteration by
means of the line search, e.g. using the quadratic interpolation method (Arora (2012)). We use
∇̃ f (z) to denote the gradient approximation of the cost function w.r.t. the vector of design vari-
ables z.

After the improvement step, the algorithm continues by evaluating the improved individuals and
selecting the best individuals out of the offspring population, including both improved and not
improved individuals, to form the next parent population (non-elitist selection (Bäck (1996))). As
a result, the algorithm is able to reject the improved individuals when the gradient approximation
is not accurate enough, using exclusively the standard selection operator. This does not deteriorate
the performance of the algorithm, unless the fraction of the individuals influenced by the wrong
gradient prediction is considerable, which would reduce the effective offspring population size.
On the other hand, it turns out that frequently the application of the mutation operator prior to
the improvement step can considerably increase the convergence velocity due to the fact that the
mutation provides better starting points for the gradient improvements. Taking into account the
facts mentioned above, it becomes clear that the random strategy for selection of the individuals
for improvement can lead to better results, since initially worse individuals can be much better
after the joint mutation-improvement step. At the same time, a part of the best individuals after
mutation would still remain in the population and would not be deteriorated in case of inaccurate
gradient approximation.

After the selection step, the entire process is repeated until the maximal number of generations
itermax is reached.

6.2. Utilizing surrogate modeling techniques

Surrogate modeling techniques (Forrester et al. (2008)) have proven to be a valuable tool partic-
ularly in optimization problems involving costly simulations (Fang et al. (2005); Lee and Kang
(2007); Duddeck (2008); Yoshimura et al. (2016)). Especially when the number of design vari-
ables is low, the objectives and constraints can be efficiently approximated based on relatively low
number of samples, where each sample involves one costly simulation. For optimization prob-
lems of higher dimensionality, the use of surrogate modeling techniques, in particular Kriging
(Krige (1951)) within the EGO approach (Jones et al. (1998)), becomes prohibitive due the curse
of dimensionality (Bishop (2007); Forrester et al. (2008)). Because of the high dimensionality of
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structural TO problems using standard grid representation, surrogate modeling techniques have
not been applied in this field before. Thanks to the utilization of the low-dimensional level set
representation presented in Chapter 5, this became feasible also for structural TO (Raponi (2017);
Raponi et al. (2017, 2019a)), establishing a novel non-gradient TO approach. However, even with
this representation, one should note that the number of design variables should be kept on a low
level, to use the method efficiently. Therefore, the method discussed in this section is meant to be
applied mainly in the situations when the desired complexity of the target design is low, while the
finite element simulations are very costly.

The approach described in this section was developed within a master’s thesis of Elena Raponi at
the Honda Research Institute Europe in collaboration with the Technical University of Munich and
University of Camerino (Raponi (2017)) and presented in research papers (Raponi et al. (2017,
2019a)). The master’s thesis was supervised by the author of this dissertation, together with Dr.
Markus Olhofer, Prof. Fabian Duddeck, and Prof. Simonetta Boria.

6.2.1. Kriging-guided level set method (KG-LSM)

Given a level-set parametrization of the design as described in Chapter 5, Section 5.2, the proposed
optimization method follows the EGO (Jones et al. (1998)) approach with modifications crafted
for solving efficiently structural TO problems. For consistency of the description of the proposed
method, we introduce elements of the EGO approach in this section, instead of doing that in the
prior chapters. We follow a usual EGO (Forrester et al. (2008)), using Kriging (Krige (1951);
Sacks et al. (1989)) as the underlying surrogate model, which showed also the highest accuracy
in our initial numerical experiments (Raponi (2017)). As in the standard EGO, the method starts
with a Design of Experiments (DoE), where the design vectors are sampled and evaluated based
on a high-fidelity FE simulation model. Among different DoE methods, Optimal Latin Hypercube
Sampling (OLHS) has demonstrated its good properties as an initial sampling for EGO (Forrester
et al. (2008)) and is used in this work. OLHS distributes the points in the design space in such
a way that projection of the points onto an axis of each design variable is uniform (as in the
standard Latin Hypercube Sampling (LHS)), while the distances between the points in the design
space are maximized (Forrester et al. (2008)). As a result, even if one of the design variables has
very little influence on the objective functions or constraints, the information from the generated
samples can be used to efficiently model the relationships between the considered responses and
the other design variables. As illustrated in Figure 6.7, this information would be wasted in a Full
Factorial Sampling (FFS), with computational loss exponential in the number of non-influential
design variables.

First of all, a set of ns vectors of design variables Z =
[
z(1),z(2), ...,z(ns)

]T
is generated using

OLHS. Subsequently, for each of the vectors z(i) an FE model is created and evaluated in a sim-
ulation. Based on the data from the simulation, corresponding sets of responses, being objectives

and constraints, for rk =
[
rk

(1),rk
(2), ...,rk

(ns)
]T

, k = 1, ..,nineq +1 are collected, where nineq is the
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Figure 6.7 Comparison between the FFS and LHS. Even if one design variable has very low influence on the objective function,
thanks to the uniform projections onto each axis of the design space, LHS provides more information for the influential
dimensions than the FFS.

number of constraints3. To approximate each of the responses, nineq + 1 Kriging models (Krige
(1951); Sacks et al. (1989); Forrester et al. (2008)) are trained based on the provided input (Z) and
target (rk) data.

Each Kriging model treats the samples of the responses (rk) as a result of a stochastic process. This
can be described by using a set of random vectors:

Rk =


Rk

(
z(1)
)

...

Rk

(
z(ns)

)


, (6.28)

with a mean 1µsk , 1 being an ns by 1 vector of ones. The random variables are related to each other
by basis functions of the form:

cor[Rk(z(i)),Rk(z(l))] = exp

(
−

ns

∑
j=1

ηk j|z
(i)
j − z(l)j |

dk j

)
, (6.29)

where the parameters ηk j and dk j control the width of the basis function and smoothness of the
approximation in the neighborhood of the given samples, respectively.

3 Without loss of generality, a single-objective optimization problem with inequality constraints only is assumed here.
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Based on Equation (6.29), the following correlation matrix can be defined:

ΨΨΨk =


cor[Rk(z(1)),Rk(z(1))] · · · cor[Rk(z(1)),Rk(z(ns))]

... . . . ...

cor[Rk(z(ns)),Rk(z(1))] · · · cor[Rk(z(ns)),Rk(z(ns))]


, (6.30)

which is related to the covariance matrix by:

Cov(Rk,Rk) = σsk
2
ΨΨΨk. (6.31)

The parameter vectors ηηηk =
[
ηk1,ηk2, ...,ηkns

]T and dk =
[
dk1,dk2, ...,dkns

]T are estimated by
maximizing the likelihood of the data rk in the hope of minimizing the generalization error:

L(Rk
(1), ...,Rk

(ns)|µsk ,σsk) =
1

(2πσsk
2)ns/2 exp

−
ns
∑

i=1
(Rk

(i)−µsk)
2

2σsk
2


=

1
(2πσsk

2)ns/2|ΨΨΨk|1/2 exp

(
−
(rk−1µsk)

T ΨΨΨk
−1(rk−1µsk)

2σsk
2

)
.

(6.32)

By maximizing the natural logarithm of Equation (6.32) via setting its derivatives to zero, one
obtains the maximum likelihood estimates of the mean µsk and variance σsk

2:

µ̂sk =
1T ΨΨΨk

−1rk

1T ΨΨΨk
−11

, (6.33)

σ̂
2
sk
=

(rk−1µsk)
T ΨΨΨk

−1(rk−1µsk)

ns
. (6.34)

Since µsk and σsk
2 depend on the parameter vectors ηηηk and dk, the maximization of the likeli-

hood is achieved by inserting Equations (6.33) and (6.34) to Equation (6.32) and maximizing it
numerically. Once the values of the ηηηk and dk parameter vectors are determined, they can be used
for prediction of the responses for new input parameters z, based on already collected samples.
The predictions from the surrogate models have to be consistent with the previously collected data
as well as the correlation parameters. Therefore, they should maximize the likelihood of the al-
ready observed data together with the prediction itself. This is achieved by augmenting previously
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collected data by the new input and the corresponding outputs for the approximated responses:

r̃k = [rk, r̂k]
T , (6.35)

to obtain an augmented correlation matrix:

Ψ̃ΨΨk =

ΨΨΨk ψk

ψk
T 1

 , (6.36)

where ψk is a correlation vector between the observed data and the predictions:

ψk =


cor
[
Rk(z(1)),Rk(z)

]
...

cor
[
Rk(z(ns)),Rk(z)

]


, (6.37)

The maximization of the likelihood of the augmented data yields:

r̂k = µ̂sk +ψk
T

ΨΨΨk
−1 (rk−1µ̂sk) , (6.38)

and

ŝ2
k = σ̂

2
sk

[
1−ψk

T
ΨΨΨk
−1

ψk +
1−1T ΨΨΨk

−1
ψk

1ΨΨΨk
−11

]
. (6.39)

Finally, the surrogate model of the kth response is given by:

Rk(z) = N
(
r̂k(z), ŝ2

k
)
, (6.40)

where the right-hand side stands for the normal distribution with a mean r̂k(z) and a standard
deviation ŝ2

k .

Once the surrogate models of the responses are constructed according to the approach presented
above, based on the samples created during the initial DoE, the models can be updated by maxi-
mizing the Expected Improvement (EI) acquisition function (Forrester et al. (2008)):

E[I(z)] =

(r1min− r̂1(z))ΦG

(
r1min−r̂1(z)

ŝ1(z)

)
+ ŝ1(z)φG

(
r1min−r̂1(z)

ŝ1(z)

)
if ŝ1(z)> 0

0 if ŝ(z) = 0
, (6.41)
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where ΦG stands for the cumulative distribution function and φG for probability density function
of a Gaussian distribution. Since in this work only single-objective optimization problems are
considered, the response rk for k = 1, denoted as r1, is assumed to be the objective function.

The maximization of EI is usually carried out with use of non-gradient global optimization methods
such as EAs, e.g. Differential Evolution (DE) (Storn and Price (1997)), which is used in this work.
Since the evaluation of EI is computationally cheap compared to the FE simulations, the choice of
a particular method is not of the highest importance4.

In case of TO problems, during the optimization of EI, many designs would be infeasible from
the structural point of view, as illustrated in Figure 6.8. This is mainly due to the fact that the
maximization of EI leads to sampling of the points in the areas of high uncertainty of the surrogate
model, resulting in a much more global search than in case of EA-LSM.

(a) (b) (c)

Figure 6.8 Illustration of the possible violations of structural feasibility for a cantilever beam problem (Raponi et al. (2019a)).
Figure 6.8(a) shows a loss of the connection between the structure and the support, in Figure 6.8(b) the structure loses the
connection to the load, while Figure 6.8(c) presents an example of internally disconnected structure. Red dashed lines in the plots
correspond to the distances used to calculate the levels of violation of the structural feasibility constraints.

To eliminate such designs before performing costly FE evaluations, the EI criterion (Equation
(6.41)) is modified to penalize infeasible structures:

EI(z) =

E[I(z)] if z is connected,

−B(z) if z is disconnected,
(6.42)

where B(z) is a function proportional to the violation of the connectivity constraint measured by
the minimal distance between the MMCs necessary to build a structurally feasible design:

B(z) = κ (B1(z)+B2(z)+B3(z)) , (6.43)

with κ being a large constant playing the role of a penalty factor and B1(z), B2(z), and B3(z) are
levels of violation in the first, second, and the third type of infeasibility (Figure 6.8), respectively.

4 For high-dimensional optimization problems, the performance of the algorithm used for the optimization of EI could
become an important factor. For these cases, both the efficiency of the implementation as well as the properties of
the optimization method should be examined carefully. In this work, however, we assume that, in general, the cost
of a crash simulation is considerably higher than the numerical cost of the optimization of the acquisition function.
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The levels of violation are calculated as the normalized distances required to create a structurally
feasible design, being:

• Shortest distance from the material to the support (Figure 6.8(a)).
• Shortest distance from the material to the load (Figure 6.8(b)).
• Shortest distance between disjoint parts of the design (Figure 6.8(c)).

For more information regarding the computation of the levels of violations, please refer to the work
by Raponi et al. (2019a).

The modification of EI in the form given by the Equation (6.42) is necessary to avoid plateaus in
the optimization landscape, where the gradient of the objective function equals 0, which would
be the case if the structurally infeasible designs implied constant values of EI. Such plateaus are
usually difficult to deal with for evolutionary optimizers, since the selection operator is unable to
distinguish between the infeasible designs, which have exactly the same fitness. In particular, if the
entire population of individuals happens to be in the plateau, the optimization changes to a random
walk (Pearson (1905)). On the other hand, evaluating disconnected designs would either cause
problems with the FE simulations or lead to many high-fidelity simulations of inferior designs,
which would be computationally inefficient.

In fact, the problem of disconnected structures occurs also in case of optimization using EA-LSM
(Chapter 5), but is not so severe since EA-LSM performs mainly a search based on the mutation
operator and starts the optimization from a population of individuals normally distributed around
the reference design. As a result, it progresses by making relatively small modifications of the
previous designs and all of the structurally infeasible solutions are rejected during the selection
step. In principle, the penalization scheme could be helpful also in case of EA-LSM, but is not
used in this work in order to guarantee a high level of generality of the method. In more complex
cases, defining all the connections to the supports and loads prior to the optimization might be
difficult and too restrictive, leading to inferior designs. Therefore, penalization of structurally
infeasible designs can be considered as optional for EA-LSM, while it is a must for KG-LSM due
to a much more global character of the EI-driven search.

In case of constrained optimization problems, instead of maximizing EI (Equation (6.41)), so-
called Constrained Expected Improvement (CEI) is maximized:

CEI(z) = E[I(z)]
nineq

∏
i=1

P [Fi(z)] , (6.44)

where P [Fi(x)] is the probability of feasibility of the ith constraint, defined as:

P[Fi(z)] =
1

σ̂2
si+1

(z)
√

2π

∫
∞

0
exp

(
−(Fi− r̂i+1(z))2

2σ̂2
si+1

(z)

)
dRi+1, (6.45)
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and Fi = Ri+1(z)− ri+1min , is the measure of feasibility of the ith constraint, with ri+1min being the
limit value.

The product of probabilities in Equation (6.44) is justified by the assumption about the indepen-
dence of the random variables.

The penalized version of CEI (Equation (6.44)) is given by the following formula:

CEI(z) =

CEI(z) if z is connected,

−B(z) if z is disconnected.
(6.46)

Similarly to the unconstrained optimization problem, Equation (6.46) is maximized numerically
using DE. The obtained design vector zin f ill = argmax

z
(CEI) satisfies all of the constraints accord-

ing to the meta-models as well as guarantees structural feasibility of the design.

The design found by maximization of Equation (6.46), or alternatively, Equation (6.42) in case of
unconstrained optimization problem, is evaluated based on high-fidelity static or crash FE simu-
lation. The responses from the simulation are used to enhance the meta-models by adding new
samples to the datasets and updating all of the models. This procedure is repeated until con-
vergence, as outlined in the pseudocode of KG-LSM (Algorithm 3). In Algorithm 3, iter is the
iteration counter and itermax is the maximal number of iterations, set accordingly to the available
budget of FE evaluations. To denote the best design found by the algorithm, symbol zopt is used,
with the corresponding value of the objective function fob jopt

. The rest of the symbols used in
Algorithm 3 have been defined earlier in this section.

Please note that in the initial DoE, the structural feasibility criterion is not integrated into the
sample generation process. Instead, after the vectors of design variables are generated via DoE,
the vectors corresponding to the structurally infeasible designs are deleted and not evaluated using
FE simulations. As a result, the initial surrogate models are trained using exclusively structurally
feasible designs.

The approach described above can be extended to address problems with more than one objective
function by using multi-objective EGO approaches (Forrester et al. (2008); Jeong and Obayashi
(2005)). Furthermore, to improve the scalability of the algorithm, multi-modal optimization tech-
niques (Fender et al. (2016)) can be used to find multiple optima of EI or CEI, allowing for
evaluation of several infill points in parallel. Similarly, multi-objective optimization techniques
can be used to find a Pareto front of solutions balancing exploration and exploitation via weighting
the terms in Equation (6.41) (Grobler et al. (2018)), which can be then evaluated in parallel.

Another interesting extension is hybridization of KG-LSM with EA-LSM based on the observation
that KG-LSM converges very fast at the beginning of the optimization, while EA-LSM is much
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/* Design of Experiments */

Generate ns input samples using OLHS: Z =
[
z(1),z(2), ...,z(ns)

]T
;

/* Evaluation of the responses */
for i = 1 to ns do

Generate FE model based on parameters z(i);
for k = 1 to nineq +1 do

Evaluate response r(i)k using FEM;

Append r(i)k to the vector rk collecting the responses;
end

end
/* Elimination of the infeasible designs */
for i = 1 to ns do

if z(i) is infeasible then
(Z,rk) := (Z,rk)\

{
z(i),r(i)k

}
;

end
end
/* Main optimization loop */
while iter < itermax do

for k = 1 to nineq +1 do
Construct Kriging model for kth response based on collected data (Z,rk);

end
Find a feasible infill point using DE: zin f ill := argmax

z
(CEI) ;

Update the set of input samples: Z := Z∪ zin f ill;
for k = 1 to nineq +1 do

Evaluate response rk(zin f ill) using FEM;
Update the set of responses: rk := rk∪ rk(zin f ill);

end
end
Find the objective value: fob jopt

:= min(r1);
Find the best design: zopt = z ∈ Z : r1(z) = fob jopt

;
Algorithm 3: Pseudocode of the KG-LSM algorithm (Raponi et al. (2019a)).

more efficient in the final exploitation phase. This idea was used in the approach proposed by
Raponi et al. (2019b), where KG-LSM switches to EA-LSM once a given convergence criterion
is satisfied. This turned out to be a very efficient approach in reducing the number of costly FE
evaluations and could be further improved by initializing the covariance matrix used by CMA-ES
in EA-LSM with use of the data points collected during the optimization using KG-LSM (Moham-
madi et al. (2015)).

Finally, the latest developments of surrogate-assisted optimization techniques for large datasets
(van Stein et al. (2017)) and high-dimensional problems (Kyriacou et al. (2014); Wang et al.
(2016); Bouhlel et al. (2016, 2018)) seem to be very promising from the perspective of apply-
ing KG-LSM to real-world TO tasks. Some of those techniques can be combined also with a
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gradient information to enhance the surrogate models (Bouhlel and Martins (2019)), which is very
interesting in the context of the methods for gradient approximation described in Section 6.1.

6.3. Adaptive evolutionary level set method (A-EA-LSM)

This section follows a different strategy to mitigate relatively high computational costs of EA-LSM
compared to the state-of-the-art methods. Instead of improving the efficiency of the optimization
algorithm itself, it reduces the dimensionality of the search space by relying on the concept of
adaptive encoding (Olhofer et al. (2001)). Intuitively, this resembles the manual design process,
where the complexity of a part is gradually increased by adding new geometric features. The main
idea in the proposed approach is to take advantage of the fact that the convergence velocity of EA
increases when the number of design variables is decreased (Bäck (1996)). As a result, the compu-
tation time can be strongly reduced by limiting the dimensionality of the search space. In case of
ESs, used in this work, estimated convergence speed scales as O(n) to O

(
n2), depending on the

type of the objective function (Hansen and Ostermeier (2001)). Most of the adaptive approaches
start with a low-dimensional representation of the design to quickly find an optimum in the low-
dimensional space. When the optimization converges, the representation is extended to fine-tune
the solution. This idea is illustrated in Figure 6.9. The key assumption here is that the optimum
found in a low-dimensional space is a good approximation of the optimum when the representation
is extended. The adaptation process is repeated until a satisfactory resolution of the representation
is obtained. Still, one of the fundamental questions to be answered is how to extend the represen-
tation in a way that would offer the best convergence velocity, while not limiting considerably the
ability of the method to find the global optimum.

In general, the idea of using adaptive representations in TO is not new and has proven to be a use-
ful way of reducing the computational costs (Ortmann and Schumacher (2013); Ortmann (2015);
Gilbert and Tyas (2003); Hagishita and Ohsaki (2009)) in optimization of truss and thin-walled
structures. This work introduces an adaptive representation consistent with the MMC framework,
which can be used together with ESs. To achieve that, the method uses the idea of speciation of a
variety of topologies in niches (Stanley and Miikkulainen (2002)), while allowing for much more
diverse topology modifications than in the previously mentioned approaches. However, the main
contribution here is an introduction of a learning-based topology variation method (Bujny et al.
(2018)), which is a fundamental difference compared to the heuristics used by the existing ap-
proaches (Ortmann and Schumacher (2013)). As a result, the method solves the problem of how to
efficiently extend the representation using ML models, trained exclusively based on the data from
numerical experiments. The main assumption is that there are certain rules, reflected for instance
in the form of existing engineering intuition, which can be learned from the numerical simulations.
The existence of such rules can be also justified by the conclusions of the research carried out by
Schumacher and Ortmann (2013). From this perspective, the method presented in this work can
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Optimum in (n-1)
dimensional space

Optimum in n
dimensional space

Figure 6.9 Simplified illustration of the changes in the landscape of the cost function due to the introduction of new variables in
the parametrization after Olhofer et al. (2001). The simplification assumes that the introduction of new parameters does not
change the landscape of the initial, (n−1)-dimensional optimization problem (the shape of the solid line remains the same after
extension of the search space).

be seen as an alternative, data-driven approach for discovering engineering rules, potentially use-
ful also in other optimization methods, or even as a standalone AI assistance tool in engineering
software, capable of suggesting favorable design changes.

6.3.1. Graph-based parametrization

In the standard EA-LSM (Chapter 5), the parameters defining each of the MMCs (x0i, y0i, θi,
li, ti)5, are used as design variables for the optimization algorithm. This type of representation,
however, is not convenient for an adaptive encoding, where the number of MMCs is kept low at
the beginning and increased gradually as the optimization progresses. The main problem appearing
in such a case is schematically presented in Figure 6.10. Assume that the starting topology, in case
of a cantilever beam design problem, is composed of two MMCs connected at the right end. This
design can be represented in form of a graph having two edges and a single node (design A). As
far as this low-dimensional design representation is considered, this topology corresponds to the
global optimum. However, once an additional connection in the graph is introduced (design B),
the modified design, consisting of four MMCs, would be rather a local than the global optimum
(design C) in the extended parameter space. Now, in a standard MMC representation, the optimizer
would need to realize a correlated change of 12 design parameters to go from the local to the global
optimum. Considering mutation as the dominating operator in ESs (Bäck (1996)), this would be
very unlikely, and, most probably, the optimization would converge to the design A by reducing
the thickness of the new connection. An alternative approach would be to use the positions of
the nodes and the thicknesses of the edges of the graph corresponding to the structure as the

5 Without loss of generality, the discussion in this section is limited to 2D optimization problems.
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design variables. Using a graph-based representation, the transition from the design B to design C
would require a correlated mutation of only two parameters, which define the position of the newly
inserted node.

Figure 6.10 Starting topology (A), being a global optimum in a low-dimensional search space, topology modified by introducing a
topology variation (B) and the global optimum in the higher-dimensional search space (C) (Bujny et al. (2018)).

The situation discussed above is a standard problem occurring when using adaptive representations
and justifies using graph-based parametrization in such cases. Moreover, by assuming certain
connectivity between the components, a graph representation yields less design variables for the
same number of MMCs. This, however, is associated with a less general parametrization, where
the topological changes can no longer be realized by means of mutation and recombination, but
need a specialized adaptation operator. On the other hand, the reduction of design variables can
lead to a considerable increase of the convergence velocity of the optimization algorithm. The
arguments mentioned above support the idea of using graph-based parametrization, together with
a suitable mapping to the MMC representation, in the A-EA-LSM, discussed in this section.

The mapping of the graph representation of the design to the standard MMC-based parametrization
used in the EA-LSM takes the following form in a 2D case:

(x0i,y0i,θi, li, ti) =

(
x1i + x2i

2
,
y1i + y2i

2
,arctan

(
y2i− y1i

x2i− x1i

)
,

√
(x1i− x2i)

2 +(y1i− y2i)
2, t1,2i

)
,

(6.47)

with (x1i,y1i) and (x2i,y2i) being the coordinates of the first and the second node of the graph
edge with index i. The corresponding thickness of the edge is defined by the parameter t1,2i. All
of the parameters defining each of the graph’s edges (i = 1, ...,M), i.e.

(
x1i,y1i,x2i,y2i, t1,2i

)
,

compose the vector of design variables, which are modified by the optimizer. Two examples of the
graph representations of a design, together with a mapping to a material distribution via the MMC
framework, are shown in Figure 6.11.

6.3.2. Optimization algorithm

This section introduces modifications of the standard ES (Bäck (1996)), which enable efficient
optimization with the adaptive representation discussed above. The changes include:
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Figure 6.11 Exemplary material distributions with the corresponding graph representations (Bujny et al. (2018)). The designs
correspond to the global (left) and a local (right) optimum in a compliance minimization problem of a cantilever beam.

• Modified recombination operator.
• Additional topology variation operator.
• Introduction of the speciation of individuals.
• Derandomized step size adaptation.

The modifications are described in detail in the sections below.

Recombination

The simplest variant of EA-LSM uses standard ESs, where the dimensionality of the optimization
problem is assumed to remain constant. In case of an adaptive representation used in this section,
this is not true and requires a modification of the recombination operator. In ESs, recombination
plays a secondary role, due to the fact that the search is mostly based on random mutations. It
turns out that ESs can work without the recombination on design variables, but the recombina-
tion on strategy parameters is necessary (Bäck (1996)). Therefore, for the sake of simplicity, the
optimization approach presented in this section completely eliminates the recombination on the
vectors of design variables.

After the modification of the recombination operator, the optimization can be carried out with
individuals of different dimensionalities existing in the same population. The accelerating effect
of the adaptive representation can be fully exploited when the optimization starts from a design
of possibly lowest structural complexity and the representation is gradually extended when the
optimization converges to local optima in the lower-dimensional search spaces. The indication
of the convergence of the algorithm can be based for instance on the step size σbest of the best
individual. When σbest drops below a predefined threshold σth, the topology of the best individual
is extended.

Topology variation

In this work, two different approaches for introducing topological modifications are considered.
The first method relies on a random choice of a pair (node, edge) out of all of the possible com-
binations of already existing nodes and edges in the graph, excluding the cases when the node
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belongs to the edge. Once a (node, edge) pair is randomly selected, a new connection is created
between the node and the edge. As illustrated in Figure 6.16, we would always consider only the
topological variations introducing new graph edges from one of the already existing nodes (red)
to a new node (green) added by splitting an existing graph edge. The second method is based on
a pre-trained neural network classifier, which predicts potentially favorable topological variations
for a given objective, on the basis of the structural state of the design. This approach is described
in detail in Section 6.3.3.

After either random or model-based selection of the (node, edge) pair, it is very important to iden-
tify possibly the best position of the newly inserted graph edge, to go away from the local optimum
found by the optimization in the lower-dimensional search space. Otherwise, even good topology
variations would be removed in most cases. We propose to accomplish that by performing an inter-
mediate, fast optimization in a two-dimensional search space by sampling different configurations
via Optimal Latin Hypercube Sampling (OLHS) (Forrester et al. (2008)), as shown in Figure 6.12.
The proposed algorithm, using exclusively the objective function of the main optimization prob-
lem, attempts to find the best elongation of the added edge as well as the position of the inserted
node along the edge, which it splits. The position of the node along the edge is varied arbitrarily
between the ends of the edge, while the elongation can change within a predefined range – in this
work, corresponding to 20% of the height of the design domain. All of the other nodes and edges
of the graph remain unchanged. Finally, after finding the best position and elongation, the thick-
nesses of all the graph edges are scaled so that the modified design respects the volume constraint.
At the end, the modified individual is added to the population of the parent individuals.

Figure 6.12 Addition of a new connection (depicted with a green dashed line) at the (node, edge) pair (4, (2,3)) and the
parametrization of the new edge used to evaluate the improvement potential associated with the topology variation (Bujny et al.
(2018)). Different configurations are explored via OLHS on the elongation of the new edge and the position of the new node along
the edge, which it splits.

Speciation

Although the design after a topology variation is preliminary optimized, often, it cannot compete
with the simpler designs present in the parent population, which are already very close to the local
optimum in a lower-dimensional search space. Once a topology variation is introduced, all of
the design variables defining the modified structure have to be adapted to take advantage of the
extended representation. What is more, the optimization in a higher-dimensional search space is
slower, as well. Therefore, a protection of the extended representation is commonly recommended
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(Olhofer et al. (2001); Stanley and Miikkulainen (2002)) to allow the modified designs to improve
to a level allowing it to compete with the simpler structures. One of the easiest approaches is
to evolve the individual with an extended representation for a certain number of generations in
a completely separate population, and then to add it to the population of individuals of different
dimensionalities. However, this approach can be computationally costly and requires defining
another set of parameters for the sub-optimization beforehand. Alternatively, one could protect
the modified individuals by using niching techniques (Stanley and Miikkulainen (2002)), which
allow the individuals with modified topologies to compete in a niche, while still being a part of the
larger population. As a result, the designs in the niches have enough time to adapt and to be able
to compete with the simpler topologies. This concept is used in this work, where the niches are
created by modifying the cost function fk of the kth individual as follows:

f ′k = fksk, (6.48)

with sk being the total number of individuals belonging to the same species as the kth design, i.e.
with the same number of graph edges (or MMCs).

Step size adaptation

Finally, it turns out that the standard self-adaptation used in ESs (Schwefel (1987)) is not well-
suited for the optimization with the adaptive representations. The reason is that the main assump-
tion of the self-adaptation, that the designs with low cost function values result from utilizing the
most appropriate step sizes for a given landscape of the optimization problem (Schwefel (1987)),
is frequently violated due to the introduction of the topology variation operator. More precisely,
topology variations often result in large improvements in terms of the cost function, which is
completely independent from the particular choices of the step sizes, and leads to a very unstable
behavior of the step sizes adapted with use of the self-adaptation mechanism. In order to solve
that problem, this work proposes to use a derandomization of the step size adaptation proposed by
Hansen and Ostermeier (2001):

σ
(g+1)
k = σ

(g)
k exp

(
||uk||−E [||N(0,I)||]

dad
√

nk

)
, (6.49)

z(g+1)
k = z(g)k +σ

(g)
k uk, (6.50)

with σ
(g)
k and σ

(g+1)
k being the step sizes corresponding to the kth offspring individual for gener-

ations g and g+ 1, respectively. The vector uk is drawn from a multivariate normal distribution
N(0,I), where nk stands for the dimensionality of the parametrization of the kth individual, defined
by a vector of design variables zk. Finally, an adaptation damping parameter dad is introduced,
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as well. The A-EA-LSM optimization algorithm is summarized in form of a flowchart in Figure
6.13.

Initialization Evaluation

Recombination Mutation

Topology

Variation

Stop 

criterion?

Step size

below 

threshold?

EvaluationSpeciationSelection

End

False

False

True True

Derandomized step 
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Only on strategy 
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Figure 6.13 Flowchart of TO using A-EA-LSM.

6.3.3. Learning-based topology variation

As an alternative to a purely random way of selecting (node, edge) pairs for the introduction of
topological variations, in this section, an ML-based approach is proposed. In fact, A-EA-LSM
can give already satisfactory results with a random approach due to its ability to reject unfavorable
topology modifications. However, since using heuristic rules for topology variations turned out to
be a promising strategy for crash TO (Ortmann and Schumacher (2013)), one could assume that a
discovery of such rules based on the collected data should be possible. The data-driven approach
has clear advantages compared to the heuristic rules relying on the expert knowledge:

• The proposed method has a generic character. New rules for different optimization criteria
can be easily learned using the fully automated process, whereas the standard approach would
require an organizationally cumbersome process to acquire expert knowledge.

• Instead of using general expert rules for crashworthiness design, specific rules for particular
objectives can be learned from the data.

• The proposed approach gives the possibility to learn novel rules, not used in engineering prac-
tice before.

In this section, an automated approach for learning rules for topological variations in static and
crash cases is discussed. Exemplary data generation methods as well as the feature engineering
process are explained. More precisely, the description below covers the following aspects of the
data generation process:

Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning 113



Mariusz Bujny

• Generation of a diverse set of topologies.
• Sampling of different structural variations for each of the generated topologies.
• Feature generation based on the geometry and structural state of each topology.
• Transformation of the features for training of a classifier performing a pairwise comparison

between different candidate topology variations.

The last part of this section proposes an approach for building neural networks for the prediction
of favorable topological modifications, based on the geometric and structural state features of the
design, e.g. stresses or displacements.

Sampling

The process of automated rule learning starts with a generation of a dataset of different designs.
In particular, these designs could be already existing engineering structures, collected in the past
design cycles, or result from a TO process. In those cases, a corresponding graph representation
of a topology has to be found, which could be achieved e.g. using automated skeletonization
techniques (Kresslein et al. (2018)). For simplicity, in this work, only limited number of designs
parametrized using the graph representation is considered for sampling. For each of the generated
structures, several different boundary conditions are used to obtain sufficient variability in the
dataset of scenarios.

An example of a group of parametrized graph structures, used in this work for the generation of
the design database for static and crash cases, is shown in Figure 6.14. The green vectors indicate
the degrees of freedom determining the positions of the red nodes, which are modified to apply
both shape as well as topological modifications. The positions of the nodes are varied according
to a uniform random distribution, within ranges corresponding to the relevant dimensions6 of the
design space. The topological modifications occur when the variations of the positions of the nodes
result in a creation of new intersections in the topology (yellow nodes). The modifications of the
supporting and loading conditions for the static cases are realized by a random selection among one
of the 3 options shown in Figure 6.15. For crash cases, only the situation when the design domain
is fixed at both ends and the structure is impacted in the middle by a cylindrical pole, as in Figure
6.4(a), is considered. As a result of this process, NT different topologies with diverse boundary
conditions are generated and simulated using FEM. Please note that due to the possible topological
modifications of the base topologies resulting from that process (new intersections), the underlying
graph representation has to be identified again to include all of the newly created nodes and edges.
In the next step, for each of the generated cases, all (node, edge) pairs, excluding nodes belonging

6 For example, in the samplings performed in this thesis, the vertical positions of the red nodes on the boundary of the
design space were allowed to take any values in a range (0,hdd), corresponding to the bottom and top edge of the
design domain. Similarly, the positions of the red nodes along the graph edges (e.g. the graph in the first row and the
second column in Figure 6.14) were allowed to vary arbitrarily between both ends of the intersected edge.
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to a given edge, are listed as potential candidates for introducing topology variations. Those cases
will be later on referred to as the feasible topology variations, since they include exclusively the
cases when the topology, and not only shape or size, is modified. Subsequently, for each of the
listed (node, edge) pairs, a new connection is introduced by connecting the existing node with a
new node created at the edge. As an example, for the design B (Figure 6.10), all feasible topology
variations are illustrated in Figure 6.16. In order to estimate the improvement potential (in terms of
the considered objective function) offered by each of the topological variations, the exact position
of the new node along the edge is determined based on the procedure described in Section 6.3.2
(Figure 6.12). Finally, the objective’s improvement values for each topology variation are listed
along with the structural features describing the corresponding (edge, node) pair. These features
are extracted directly from the FE simulation results and are described in the next section.

Figure 6.14 Parametrized topologies for generation of samples for training topology variation prediction model (Bujny et al.
(2018)). Green vectors depict the degrees of freedom varied to generate the dataset of topologies. Yellow points correspond to the
new nodes created at the intersections of the edges as a result of the random variations of the parameters.

Figure 6.15 Three types of boundary conditions used in the sampling process (Bujny et al. (2018)). The nodes in the FE mesh can
be fixed on the left, right or on both sides. In all of the three cases, a single point load is applied in a random direction and at a
random position within the design space.

Feature extraction

In this work, we assume that, for a given design, the choice of a particular (node, edge) pair for
introducing topology variation can be made exclusively based on the structural features describing
the (node, edge) pair. A similar assumption was used for defining the heuristic rules for topology
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Figure 6.16 All feasible topology variations for a reference topology (solid blue lines) (Bujny et al. (2018)). Topology variations
are realized always by connecting an existing graph node (red) with a new node (green) by adding a new graph edge (dashed green
lines). In the sampling process, always all feasible topology variations are taken into account.

modifications (Ortmann and Schumacher (2013)), where, for instance, always the fastest deform-
ing walls are supported. The structural features will be used later on to predict the ranking of the
topology variations according to their improvement potential.

The structural features characterizing a given (node, edge) pair can be categorized as:

• Geometric features – encoding the information about the relative spatial position of the node
w.r.t. the edge as well as their geometry.

• State features – specifying the structural state of the node and the edge using such quantities as
displacements, equivalent stresses or strain energy density.

As an example, the geometric and the state features for linear elastic static cases, used in our
previous publications (Bujny et al. (2018)) and in this work, are defined in Table 6.1 and Table
6.2. Altogether, 13 different features encoding the information about the structural state of the
topology are considered. The features can consist of entire distributions of the quantities along the
graph edges, as well. For crash cases, we take into account only the maximal values of the state
quantities over time. The state features used for the crash cases are specified in Appendix A.1. The
same geometric features as in the linear elastic case (Table 6.1) are used for crash.

The overall process for generating the vectors of structural features describing each (node, edge)
pair, and the potential objective improvements associated with a topology modification by creating
the new connection between the considered node and edge, is depicted in Figure 6.17.

For convenience of building a model for predicting the ranking of topological variations, one has
to transform the original structural features describing (node, edge) pairs as well as the improve-
ments of objective resulting from topological modifications (targets). This work proposes to use a
pairwise transform of the feature and target vectors for each of NNEt (node, edge) pairs, using the
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Table 6.1 Geometric features used for prediction of favorable topological variations in linear elastic static cases (Bujny et al.
(2018)) as well as in nonlinear crash cases. Geometric features are normalized with the characteristic dimension of the design
space, e.g. length of the diagonal.

ID Feature

1 Minimal distance between the node and the straight line the edge lies on.

2 Distance between the node and the middle of the edge.

3 Shortest path along the graph from the node to the middle of the edge.

4 Length of the edge.

Table 6.2 Structural state features used for prediction of favorable topological variations in linear elastic static cases (Bujny et al.
(2018)). Structural features are normalized using the maximal value of each field (e.g. von Mises stress, strain energy,
displacement).

ID Feature

5 Maximal resultant displacement in the neighborhood of radius 1 around the graph node.

6 Maximal strain energy in the neighborhood of radius 1 around the graph node.

7 Maximal von Mises stress in the neighborhood of radius 1 around the graph node.

8 Maximal resultant displacement along the graph edge.

9 Maximal strain energy along the graph edge.

10 Maximal von Mises stress along the graph edge.

11 Maximal resultant displacement in the middle of the edge.

12 Maximal strain energy in the middle of the edge.

13 Maximal von Mises stress in the middle of the edge.

following formula:

(
X′k,Y′k

)
=
(
Xi−X j,sgn

(
Yi−Y j

))
, (6.51)

with X′k and Y′k being the kth (k = 1, ...,(NNEt)
2) feature and target vectors after pairwise trans-

formation, respectively. The vectors of features describing the ith (i = 1, ...,NNEt) and jth ( j =

1, ...,NNEt) (node, edge) pair, for a given reference topology, are denoted by Xi and X j. Finally,
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Figure 6.17 Illustration of the feature generation process based on the structural state features.

Yi and Y j are the ranking positions of those pairs, where the higher values correspond to better
performance. An example of the pairwise transform for the sampling shown in Figure 6.16 is pre-
sented in Figure 6.18. Each of the 6 sampled topologies is compared with the others, leading to
generation of 36 transformed feature and target vectors. Pairwise transformation of the samples

from NT different cases results in a total number of NS =
NT
∑

t=1
(NNEt)

2 samples, used for training of

an ML model.
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Original feature and
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Figure 6.18 Transformation of the feature and target vectors according to Equation (6.51).

Training

The transformed samples are used for training a classifier returning one of three values:

• +1 if the improvement potential of topology variation i is higher than for the variation j.
• 0 if the improvement potentials of topology variations i and j are equal.
• -1 if the improvement potential of topology variation i is lower than for the variation j.

By comparing each candidate topology variation with all the other feasible topology variations
based on the predictions of the classifier, the ranking of the most promising topology modifications
can be constructed.

In order to solve the classification problem, different types of methods, e.g. Logistic Regression,
Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), can be considered. In this work,
however, a Multilayer Perceptron (MLP) Artificial Neural Network (ANN) is used, due to its
superior test accuracy in the prior comparative studies. As outlined above, the classifier is used to
predict which of the two candidate topology variations offers higher improvement potential. The
process of feature transformation and classifier training is summarized in Figure 6.19. Finally, the
best topology variation according to the ranking constructed based on the pairwise comparisons is
used in A-EA-LSM.

The approach described in this section has a generic character and can be used to learn topology
variation rules for different objective functions. To improve the prediction accuracy for different
types of problems, further feature engineering might be required. As soon as appropriate features
are identified, the approach could be possibly used in different structural optimization problems.
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Figure 6.19 Illustration of the pairwise transformation of the original feature and target vectors and the training of a classifier used
for prediction of favorable topological variations.

Similarly, one could also use a comparable approach with different parametrizations, e.g. as an
alternative to the hand-engineered heuristic rules in the method proposed by Ortmann and Schu-
macher (2013).

6.4. Summary

This chapter proposes three methods for improving the efficiency of the EA-LSM, discussed in
Chapter 5. All of them take advantage of ML techniques to address different aspects of TO, i.e.
modeling of sensitivities, approximating objectives and constraints, or learning rules for introduc-
ing topology modifications. As such, the improvements can be treated as separate modules, which
could be potentially combined together.

In the first approach, H-EA-LSM, an approximate gradient information is used to accelerate the
evolutionary search. Depending on the optimization problem, the approximate gradient can be
obtained from physical or mathematical surrogate models. The usefulness of the method depends
on the accuracy of the gradient information for a given optimization problem. However, due to
the ability of the algorithm to reject the individuals affected by inaccurate gradient predictions, no
divergent behavior was observed in such cases.

The second method, KG-LSM, uses an adapted EGO approach to address TO problems. This is
a novel approach for TO, taking advantage of the low-dimensional level-set representation used
in this work. Due to the well-known limitations on the dimensionality of the surrogate-assisted
optimization problems (Lim et al. (2010); Jin (2011)), especially for Kriging models used within
the EGO approach (Wang et al. (2016)), KG-LSM is mainly applicable to optimization relying
on a 2D representation. This does not exclude, of course, optimization of extrusions (Patel et al.
(2009); Nutwell et al. (2017)), arbitrarily loaded plates (Goetz et al. (2012); Raeisi et al. (2019)),
or topometry optimization of thin-walled structures (Liu et al. (2015); Han et al. (2015)), where a
mapping between 2D MMCs and a 3D structure is explicitly specified. Thanks to very good con-
vergence speed of KG-LSM in terms of FE evaluations, the method is applicable to very expensive
TO problems, provided that the coarse, low-dimensional representation of the design is sufficient
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for the problem. On the other hand, the applicability of the method to higher-dimensional prob-
lems looks very promising in the light of the recent advances of the research on high-dimensional
surrogate-assisted optimization (Kyriacou et al. (2014); Wang et al. (2016); Bouhlel et al. (2016,
2018)).

Finally, the last approach, A-EA-LSM, utilizes the concept of an adaptive representation (Olhofer
et al. (2001)) to reduce the computational costs. The representation of the design is grown during
the optimization process, reducing the effective number of design variables, which directly influ-
ences the convergence velocity of the evolutionary search. Instead of using predefined rules for
extending the representation (Ortmann and Schumacher (2013)), the rules are learned from the
sampled data, which is a novel approach, interesting also from the perspective of assisting design
process in the engineering software.

Unlike KG-LSM, both H-EA-LSM and A-EA-LSM have the potential to be applied also to opti-
mization of 3D TO problems, but this work focuses on evaluation of performance of those methods
in 2D. In case of A-EA-LSM, the large number of possible combinations for topology variations in
3D problems could make the approach less effective. The main reason for that is the accumulation
of errors from pairwise comparisons using the predictions of the trained classifier to construct the
ranking of topology variations.

In the following chapters, the proposed enhancements of EA-LSM will be evaluated on suitable
static and crash TO problems.
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Chapter 7

Validation by linear elastic cases

Validation is a crucial step in development of any new TO algorithm. One should be able to show
that the new method is capable of providing solutions at least qualitatively similar to the broadly
accepted reference designs for selected benchmark problems. Especially in the crashworthiness
community, methods are frequently criticized for the lack of validation on representative cases.
The variety of test cases used in crash TO makes the comparison between methods very difficult.
In fact, even with consistent test cases, due to the heuristic assumptions made by the state-of-the-art
methods, it is difficult to consider the resulting topologies as reliable reference solutions.

In the ideal case, one would like to validate first the proposed method on benchmark cases that
can be solved with use of well-established gradient-based methods. Optimization of linear elastic
structures seems to be a perfect candidate for addressing this task. In particular, for such problems
as compliance minimization with a volume constraint, analytical sensitivities are available and
well-known reference solutions exist.

Compared to crash problems, linear elastic cases are associated with lower computational costs, as
well. This makes the structural-mechanical considerations and statistical evaluation of the investi-
gated methods significantly easier. What is more, existence of the simplified engineering models
for linear elastic problems allows for a much better understanding of the resulting topologies, giv-
ing an additional insight into the optimized designs as well as the optimization method itself. As a
result, carrying out TO on linear elastic cases seems to be a very good solution for demonstrating
the correctness of the methods proposed in this work. Although the efficiency of the proposed
evolutionary-based algorithms is considerably lower than the established methods, the main focus
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of this chapter is to evaluate the properties of the proposed approaches and check if they are able
to reproduce the solutions obtained with gradient-based optimizers. Therefore, the analysis pre-
sented in this chapter is just an intermediate step on the way towards applying those methods in
optimization of demanding crash problems.

The chapter is divided into two sections. Section 7.1 evaluates EA-LSM and its extensions based
on various 2D linear elastic problems. To investigate the properties of EA-LSM, a comprehensive
parameter sensitivity study is carried out. Finally, Section 7.2 addresses the question of feasibility
of using the 3D version of EA-LSM based on a high-dimensional cantilever beam optimization
problem.

7.1. Two-dimensional topology optimization for minimum compliance

The most common benchmark case in structural TO, used usually to validate new methods, is an
optimization of a linear elastic cantilever beam. Typically, the optimization problem for cantilever
beam involves minimization of the compliance, C, subject to a constraint on the total volume
(or mass) of the structure. In such a case, the analytical sensitivity information is available and
gradient-based methods can be used efficiently. Moreover, as a test scenario accepted in the TO
community, reference solutions for this problem with different methods exist. Taking the argu-
ments mentioned above into account, we choose it as the first test case used to validate the meth-
ods proposed in this work. Formally, the optimization problem addressed in this chapter can be
described as follows:

min
z
(C(z) = fu(z)), z ∈ Rn;

s.t.K(z)u = f;

V (z)≤Vreq,

(7.1)

where f is a vector of nodal forces and K is the stiffness matrix in a discretized FE model. Vreq is
the required volume (V (z)) of the structure. The vector of nodal displacements is denoted by u.

In this chapter, cantilever beam cases as depicted in Figure 7.1 are used. In order to investigate
the properties of EA-LSM, not only the standard 1:2 aspect ratio case with 50% volume fraction
is used, but also the cases of 1:1 and 1:3 aspect ratio. Each of those cases is considered with 30%,
50%, and 70% volume fraction constraint.

In addition to the cantilever beam case, we introduce a transverse bending scenario, being a linear-
elastic counterpart of the two-dimensional test cases used later on in TO for crashworthiness cri-
teria in Chapter 8. The test case is depicted in Figure 7.2. As in case of the cantilever beam, the
objective function minimized in this case is the compliance of the structure. However, only the
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(a) Aspect ratio 1:1. (b) Aspect ratio 1:2 (default). (c) Aspect ratio 1:3.

Figure 7.1 Design domain (different aspect ratios) and boundary conditions for the linear elastic cantilever beam test cases used
for validation of the EA-LSM and its extensions. Dimensioning in mm.

50% volume fraction constraint is considered here. The exact configuration of all of the test cases
considered in this chapter is given in Table 7.1.

Figure 7.2 Design domain and boundary conditions for the linear elastic transverse bending test case used for validation of the
EA-LSM and its extensions. Dimensioning in mm.

7.1.1. Evolutionary level set method (EA-LSM)

In this section, validation of the EA-LSM, as described in Chapter 5, is carried out. First of all,
the ability of the method to reproduce the results of the state-of-the-art gradient-based methods is
studied. Secondly, the study of the sensitivity of the algorithm with respect to the initial design
is presented. Thirdly, the influence of the mesh resolution and the number of basis functions on
the final solutions is investigated. Finally, we focus on the analysis of computational costs of the
method, which is the starting point for Sections 7.1.2, 7.1.3, and 7.1.4, addressing the issue of
mitigation of computational costs with methods proposed in Chapter 6.

Validation of the method

The validation of the method in this section is based on the cantilever beam and the transverse
bending test case presented above. In order to allow for a statistical evaluation of the results, for
each of those nine cases, 30 optimization runs are performed. For each of the optimization runs,
the initial population is created based on random variations (according to a normal distribution)
around the diagonal reference design, by following the procedure described in Section 5.3.2.

In all of the cases considered in this section, the EA-LSM algorithm with 16 basis functions is
used. As we show later, increasing the number of basis functions does not lead to a considerable
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Table 7.1 Configuration of the static test cases used for validation.

Property Symbol Value Unit

Young’s modulus E 2.1 ·105 MPa

Poisson’s ratio ν 0.3 -

Load F 1 N

Required volume fraction Vf 30%, 50%, 70% -

Mesh resolution cantilever, 1:1 aspect ratio - 50 x 50 -

Mesh resolution cantilever, 1:2 aspect ratio - 100 x 50 -

Mesh resolution cantilever, 1:3 aspect ratio - 150 x 50 -

Mesh resolution transverse bending - 160 x 40 -

Solver - CalculiX 2.9 (Dhondt (2004)) -

Element type - Four-node shell element (S4R) -

(a) Aspect ratio
1:1.

(b) Aspect ratio 1:2. (c) Aspect ratio 1:3.

Figure 7.3 Reference designs used for generation of the initial population of individuals for the cantilever beam test cases with
different aspect ratios.

improvement in the objective function for the cases considered in this chapter, and is sufficient to
represent topologically complex designs. Thanks to the use of symmetry conditions, this resulted
in a 40-dimensional optimization problem, solved with CMA-ES(7,15). The exact setup of the op-
timization algorithm as well as its justification is given in Appendix B.2. The reference structures
used for generation of the initial population of individuals for the cantilever beam cases are shown
in Figure 7.3. For the transverse bending case, an initial layout as shown in Figure 5.9(a) is used.
In all of the cases, the initial step size for CMA-ES and the standard deviation used to distribute
the initial population around the reference design is set to σinit = 0.025. For comparison, a state-
of-the-art gradient-based SIMP method1, as described by Andreassen et al. (2011), was used. The

1 More precisely, Solid Isotropic Material with Penalization (SIMP) (Bendsøe and Sigmund (2004)) itself is a material
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setup of the used SIMP method is defined in Appendix B.1.

Table 7.2 Comparison of the best topologies obtained with EA-LSM and SIMP (Andreassen et al. (2011)) for the cantilever beam
design problem.

Optimized topology

Volume fraction Aspect ratio EA-LSM SIMP

30% 1:1

30% 1:2

30% 1:3

50% 1:1

50% 1:2

50% 1:3

70% 1:1

70% 1:2

70% 1:3

interpolation scheme, which penalizes the intermediate densities using a power function. As such, SIMP is used in
different density-based methods, including also non-gradient approaches such as HCA (Patel (2007)). However, it
is a common practice to refer to the gradient-based approaches using SIMP interpolation scheme as to the "SIMP
methods" (Rozvany (2008); Dijk et al. (2013)). Those approaches rely on rigorously derived analytical sensitivities,
and frequently use Optimality Criteria (OC) as the underlying gradient-based optimizers (Sigmund (2014)). For con-
venience, we follow the same convention in this work, and refer to the OC-based approach using SIMP interpolation
simply as to "SIMP".
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Table 7.3 Material distribution, layout of basis functions, and the global level set function corresponding to the best designs for
50% volume fraction, for aspect ratios of 1:1 (top), 1:2 (middle), and 1:3 (bottom). MMCs with zero thickness were deleted from
the plots.

Material distribution MMC layout LSF

Table 7.2 shows the best designs obtained in 30 optimization runs for each of the nine cantilever
beam cases. Additionally, for the case of 1:2 aspect ratio with 50% volume fraction, the evolution
of the best design during the optimization is shown in Appendix C.1. The results show that, in
general, EA-LSM produces topologies consistent with the ones obtained with SIMP. With only
16 MMCs, the method is able to develop structures of high complexity, as in case of the 1:3
aspect ratio and 50% volume fraction. However, for some cases, clear differences between the
designs obtained with EA-LSM and SIMP are observable. The reasons for those differences are
threefold:

• The parametrizations used in EA-LSM and SIMP are completely different. On the one hand,
SIMP operates on thousands of design variables specifying densities of finite elements in a
continuous fashion. On the other hand, EA-LSM uses a small number of MMCs, limiting the
dimensionality of the search space to the order of tens, and restricts the densities to take two
discrete values – 0 or 1. It is clear that both optimization problems are different due to the
discrepancies in the representations and also that the optima for those two formulations might
be different. What is more, EA-LSM might be not able to represent the designs obtained with
SIMP, especially for very complex designs, since it is restricted by the number of design vari-
ables and the number of shape primitives. This problem is visible, for instance, for the structures
with the 1:3 aspect ratio, where more MMCs would be necessary to represent the structures with
higher accuracy. In contrast, for 70% volume fraction, SIMP has severe problems with the flex-
ibility of its representation, resulting in a high number of elements with intermediate densities.

• The results obtained with SIMP are highly dependent on the setup of the method, in particular
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filtering radius and mesh resolution. For instance, although the designs obtained with EA-LSM
and SIMP for 1:3 aspect ratio and 30% volume fraction are qualitatively different; for a different
set of hyperparameters, SIMP yields the same type of topology as EA-LSM.

• The optimization problem is nonconvex and local optima are likely to occur (Bendsøe and Sig-
mund (2004)). Especially the gradient-based methods might be very sensitive to that problem.
As a result, there is no guarantee that the designs obtained with SIMP or EA-LSM correspond
to the global optimum.

More insight into the topologies from Table 7.2 can be obtained by analyzing the layouts of MMCs
and LSF plots. For the case of 50% volume fraction and aspect ratios of 1:1, 1:2, and 1:3, they
are depicted in Table 7.3. The plots show how both, less and more complex structures can be
represented with 16 basis functions. In case of less complex structures (1:1 aspect ratio), EA-
LSM uses the limited number of basis functions to define precisely the shape of the design. In
contrast, for more complex structures (1:3 aspect ratio), 16 basis functions are used to give a
coarse representation of the design, grasping only the most important geometric features. This
shows that the complexity of the structures can be limited explicitly by defining different numbers
of MMCs. Unlike in the density-based approaches, where the computational costs depend mostly
on the resolution of the FE mesh, since the number of design variables is usually equal to the
number of finite elements, for EA-LSM, the number of MMCs is the parameter most strongly
influencing the cost of the method. This seems to be a convenient property from the practical
point of view, where less complex structures could be obtained with relatively low computational
cost, while being still simulated with a high-fidelity FE model. The aspects of complexity control,
structural attainability, and dependency of the solutions on the number of MMCs are discussed
later in this chapter, as well.

Most of the further investigations in this section are carried out based on the transverse bending
case, corresponding to the nonlinear dynamic crash test case considered in Chapter 8. Therefore,
it is the second test case analyzed here. Again, the best result for the 30 optimization runs is
compared with the design obtained in the SIMP approach and depicted in Figure 7.4. As in case
of the cantilever beam, the designs are qualitatively similar, showing the ability of EA-LSM to
optimize topologies for different sets of boundary conditions.

(a) EA-LSM. (b) SIMP.

Figure 7.4 Comparison of the best topology obtained with EA-LSM and SIMP (Andreassen et al. (2011)) for the transverse
bending problem.
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Uniqueness of solutions and repeatability

In the previous section, the ability of EA-LSM to reproduce the designs obtained with state-of-
the-art gradient-based methods was studied. The methodology we employed assumed running 30
optimizations for each of the cases and choosing the best result. However, in practice, the resources
are limited and such a broad analysis of every optimized component would not be possible. There-
fore, the repeatability of the solutions with EA-LSM is studied here based on the optimizations
from the previous section.

Unlike gradient-based methods, EAs are stochastic optimizers. Since problems addressed in this
work are generally nonconvex (Bendsøe and Sigmund (2004)), gradient-based approaches, being
deterministic methods, would always lead to the same (local or global) optima for the same starting
points, while evolutionary methods can potentially result in different solutions2. Therefore, from
the practical point of view, the average performance of the method is much more important.

For the sake of simplicity, let us focus exclusively on the cantilever beam cases with 50% volume
fraction. Figure 7.5 shows the box plots of the final compliance values for the aspect ratios of 1:1,
1:2, and 1:3. The compliance values are scaled to show relative performance improvement of the
designs compared to the median design. The corresponding best, median, and worst designs are
depicted in Table 7.4. Additionally, for each aspect ratio, Table 7.5 presents the three most often
appearing topology types and the frequency with which they were obtained in 30 optimization
runs.

Table 7.4 The best, median (15th), and the worst out of 30 cantilever beam designs obtained for the aspect ratios of 1:1, 1:2, and
1:3 with 50% volume constraint.

Aspect ratio

Design 1:1 1:2 1:3

Best

Median

Worst

2 In general, evolutionary methods are considered to be much more explorative and therefore much better in locating
the global optimum (Rao (2009)).
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Figure 7.5 Distribution of normalized compliance values for the cantilever beam test case with 50% volume fraction and aspect
ratios of 1:1, 1:2, and 1:3. Each of the box plots is based on 30 samples obtained in separate optimization runs. The compliance
values were normalized according to the formula: Ci−m

m ·100%, where Ci is the ith compliance sample and m is the median for a
given aspect ratio. Therefore, negative values show the percentage improvement of performance, while positive correspond to
percentage drop of performance. The line in center of each box indicates the median, while the top and bottom edges of the boxes
correspond to the 25th (q1) and 75th (q3) percentiles of the normalized compliance values, respectively. The whiskers, represented
using dash black lines, extend to the data points of the highest and lowest compliance values, excluding outliers, which are marked
using the red ’+’ symbol. The criterion for classification of a point as an outlier requires it to be greater than q3 +1.5(q3−q1) or
lower than q1−1.5(q3−q1).

The plots show that the spread of the compliance values and the variety of the obtained topologies
grows as the aspect ratio decreases. It seems that if the number of MMCs is low compared to
the complexity of the optimal topology, the optimizations end much more frequently in the local
optima, leading to the relatively high variance of topologies. Anyway, for all of the cases, over
half of the designs exhibit performance differing from the median by less than 2%. Therefore,
although the obtained topologies are frequently qualitatively different, they have similar structural
performance. It is both a weakness and strength of the proposed approach. On the one hand,
the optimization results are not repeatable and each optimization might result in slightly different
structural performance. In practical context, however, this is not so important, since in general,
one wants just to improve the performance and not to find the global optimum. On the other hand,
having a variety of different designs can be very beneficial in engineering practice. TO is meant to
be used in the conceptual phase of the part design. At that stage, it is usually very difficult to define
all objectives and constraints precisely. Therefore, having multiple designs gives the designer the
possibility to choose between different options once the optimization criteria change at the later
stages of the product development process.

In general, the idea of generating multiple designs for a given optimization problem points in the
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Table 7.5 The most frequent topologies for the cantilever beam case with 50% volume fraction and aspect ratios of 1:1, 1:2, and
1:3. For each aspect ratio, three most often appearing design types are presented and the frequency with which they were obtained
is specified.

Aspect ratio

1:1 1:2 1:3

Design Freq. Design Freq. Design Freq.

90% 57% 23%

3% 17% 43%

7% 7% 7%

direction of set-based approaches, where a set of attractive and distinct designs is derived via the
numerical optimization (Fender et al. (2016, 2017)). This contrasts with the idea of point-based
design, which does not take into account the fact that optimization targets and constraints them-
selves are subject to a development process. The set-based approaches, allowing for an exploration
of different design concepts and interaction with the designer, are gaining more and more attention
recently. With commercial solutions such as Autodesk Generative Design (Autodesk (2018)), the
companies are trying to introduce TO methods in the industry by providing engineers with a large
variety of concept structures that can be chosen according to their preferences. We believe that
the variety of the structures generated by EA-LSM can be used in a similar way, either through
the simple multi-start strategy, as demonstrated in this work, or by utilizing more sophisticated
approaches from the field of multi-modal (Fender et al. (2016)) and multi-objective optimization
(Duddeck (2008); Aulig et al. (2018); Wilson et al. (2001)).

Choice of the initial design

In Section 5.3.2, a procedure for creating the initial population of individuals for EA-LSM was
proposed. We argued that the initial distribution of individuals in the search space is very important
and can strongly influence the performance of the algorithm as well as the quality of the final
solutions. The goal of this section is to confirm those statements and test the proposed initialization
method against alternative approaches. Very strong dependency of the optimized design on the
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choice of the initial ground structure was one of the main drawbacks of the GSAs (Fredricson
et al. (2003); Pedersen (2003); Torstenfelt and Klarbring (2007)), which have some similarities
to EA-LSM, and limited significantly their use in practice. Therefore, since a good optimization
method should exhibit certain invariance of the final solutions w.r.t. different initial configurations,
the robustness of EA-LSM in this context is investigated.

The analysis is based on a comparison of final designs obtained for three different initial layouts
of the level set basis functions – diagonal (reference), orthogonal, and a filled one, resulting in a
design domain entirely occupied by material. The initial configurations are depicted in Figure 7.6.
In contrast to the previous section, only the transverse bending test case is considered here.

(a) Diagonal layout (reference).

p

(b) Orthogonal layout.

(c) Filled layout.

Figure 7.6 Illustration of the three initial layouts of MMCs used for the sensitivity study (Bujny et al. (2017a)).

In order to enable statistical investigations, for each layout, 30 optimization runs are carried out.
In all of the cases, CMA-ES(7,15) is used as the optimization algorithm. The performance of the
optimized designs is visualized in the box plots shown in Figure 7.7.

Table 7.6 Two main topology types obtained with EA-LSM and the frequency with which they occur in 30 optimization runs for
three different initial layout types (Bujny et al. (2017a)). The compliance values were normalized with the initial value of the
reference (diagonal) case.

Frequency of topology types w.r.t. layouts

Topology type Compliance Diagonal Orthogonal Filled

0.4276 90% 47% 3%

0.4527 10% 27% 7%

From the point of view of structural mechanics, the initial design corresponding to the diagonal
(reference) layout of MMCs, is almost nine times stiffer than the one with orthogonal layout,
resulting in a considerably better starting point for the optimization. In contrast, although the
design initialized with the filled layout has the highest possible stiffness, it violates strongly the
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Figure 7.7 Box plots based on 90 optimization runs of the EA-LSM for the linear elastic transverse bending problem (Bujny et al.
(2017a)). For each of the three initial layouts of MMCs, the compliance at the end of the optimization was taken to construct the
plots. The compliance values were normalized with the initial value of the reference (diagonal) case. The line in center of each
box indicates the median, while the top and bottom edges of the boxes correspond to the 25th (q1) and 75th (q3) percentiles of the
normalized compliance values, respectively. The whiskers, represented using dash black lines, extend to the data points of the
highest and lowest compliance values, excluding outliers, which are marked using the red ’+’ symbol. The criterion for
classification of a point as an outlier requires it to be greater than q3 +1.5(q3−q1) or lower than q1−1.5(q3−q1).

volume constraint, leading to very high values of the penalty, contributing heavily to the cost
function (Equation (5.28)). Consequently, the optimizations initialized with the orthogonal and
the filled layouts lead much more often to local optima, as shown in Table 7.6. This explains to
great extent why the average performance of the designs generated from the diagonal layout is
better3 and illustrates certain sensitivity of EA-LSM w.r.t. the initial configuration. One should
note also how the variance of the compliance rises for the orthogonal and filled layout, which
speaks again in favor of the diagonal layout.

Although EA-LSM seems to be quite sensitive to the choice of the initial layout of MMCs, in all
of the optimizations considered in this section, it never failed to find structures reasonable from
the mechanical point of view. In fact, as shown in Figures 7.8, 7.9, and 7.10, for each of the initial
layouts, it was able to find the best design type. This shows that, as long as the choice of the initial
configuration is not particularly unfavorable (e.g. when all MMCs reside initially in a small part
of the design domain), the global optimum can be found provided that the number of optimization
runs is sufficiently high.

To summarize, although EA-LSM exhibits some similarities to the GSAs, it allows the MMCs to

3 This statement was verified with the Wilcoxon rank sum test. The null hypothesis of equal medians was rejected at
the 1% significance level.
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(a) Generation 0. (b) Generation 10.

(c) Generation 25. (d) Generation 50.

(e) Generation 100. (f) Generation 927.

Figure 7.8 Evolution of the best individual during the optimization process for the diagonal initial layout (Bujny et al. (2017a)).

(a) Generation 0. (b) Generation 10.

(c) Generation 25. (d) Generation 50.

(e) Generation 100. (f) Generation 874.

Figure 7.9 Evolution of the best individual during the optimization process for the orthogonal initial layout (Bujny et al. (2017a)).

deform and move inside the design domain. This property, together with the ability of EAs to find
global optima, helps to reduce the dependency of the final solution on the initial configuration.
Nevertheless, some dependency still exists and the probability of finding global optimum can de-
crease significantly once an unfavorable initial configuration is used. The initialization based on
the diagonal layout, described in Chapter 5, performs the best in the considered scenario and seems
to be a reasonable choice in general case.

Effect of the mesh size

The dependency of the final optimization result on the mesh resolution is one of the main prob-
lems in the density-based methods, e.g. SIMP (Bendsøe and Sigmund (2004)). They stem from
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(a) Generation 0. (b) Generation 10.

(c) Generation 25. (d) Generation 50.

(e) Generation 100. (f) Generation 1000.

Figure 7.10 Evolution of the best individual during the optimization process for the filled initial layout (Bujny et al. (2017a)).

the direct coupling of the FE discretization with the parametrization of the optimization prob-
lem. In order to handle mesh-dependency, density-based methods employ often such techniques
as perimeter control and density or sensitivity filtering (Bendsøe and Sigmund (2004)).

Since in EA-LSM the parametrization is decoupled from the discretization used in the simulation,
EA-LSM should not exhibit the problem of mesh-dependency. To verify this hypothesis, 30 op-
timization trails for 3 different mesh sizes were carried out. As in the previous section, we used
CMA-ES(7,15) as the optimization algorithm. The best designs out of 30 for each mesh resolution
are depicted in Figure 7.11.

(a) Mesh size: 80 x 20. (b) Mesh size: 160 x 40. (c) Mesh size: 320 x 80.

Figure 7.11 The best designs obtained in 30 optimization runs with 3 different FE mesh resolutions (Bujny et al. (2017a)).

The optimized designs show very good invariance w.r.t. the mesh resolution. On the one hand,
finer meshes allow for more accurate FE modeling, but do not result in more detailed structures.
On the other hand, with a very coarse mesh, the method is still able to come up with a qualitatively
similar topology, with small differences resulting from the less accurate FE model. This is a
desired behavior of a TO method and is a one of the advantages of EA-LSM over density-based
methods.

Moreover, due to the macroscopic parametrization with MMCs, the checkerboard problem known
from the state-of-the-art density-based methods (Bendsøe and Sigmund (2004)) does not appear.
In principle, checkerboard patterns might develop for a very high number of MMCs provided that
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the mesh size is kept on a low level. This would make the parametrization to some extent simi-
lar to the density-based approaches, with a number of MMCs being close to the number of finite
elements. However, due to the high computational effort of EAs, rising significantly with the num-
ber of design variables, we assume that EA-LSM should use a low-dimensional representation
with sufficiently fine FE discretization. This would allow for both, efficient use of EAs and an
accurate modeling of the physical behavior of mechanical structures. Therefore, such consider-
ations are of limited practical interest, and EA-LSM could be assumed not to exhibit any major
mesh-dependency problems.

Structural attainability and influence of the number of basis functions

According to Bendsøe and Sigmund (2004), it is well-established that TO problems with 0-1 or
SIMP formulations have no solutions in a continuum setting, i.e. for a theoretical non-discretized
problem. In general, by introducing more holes into a structure, while keeping the volume fraction
constant, one should be able to increase structural performance of the design. In the limiting case,
this process would lead typically to a development of anisotropic microstructures that cannot be
modeled with the original isotropic design description. In discretized computational implementa-
tions, the existence of solutions is trivial due to a finite number of design options (Bendsøe and
Sigmund (2004)), but the problem described above embodies itself in a form of a rising complex-
ity of structures once more detailed modeling on the representation level is allowed. In case of
SIMP, this would correspond to larger number of holes for finer mesh sizes, as illustrated in Figure
7.12. In contrast, in EA-LSM, the complexity of the structure can be controlled explicitly with the
number of MMCs and their minimal thickness, irrespectively of the used FE mesh resolutions. In
practical engineering applications, where structures of low complexity are usually preferred, this
is a very useful property, since it allows for accurate modeling of physical behavior, while keeping
the number of design variables on a low level.

(a) Mesh size: 100 x 50. (b) Mesh size: 200 x 100. (c) Mesh size: 400 x 200.

Figure 7.12 Dependency of the final design obtained with SIMP on the mesh resolution. Settings of the SIMP approach as
described in Appendix B.1.

Figure 7.13 illustrates how more complex structures for the transverse bending problem can be
obtained with use of 64 MMCs. In comparison to the best design obtained with 16 MMCs (Figure
7.4), the best topology modeled with 64 MMCs has ca. 1.65% lower compliance. One should note,
however, that even for the problem with 64 MMCs, local optima corresponding to the best design
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with 16 MMCs can be found during the optimization process. Therefore, by specifying higher
number of MMCs, one can only limit the complexity of the design.

(a) Initial design (64 MMCs). (b) Best design (64 MMCs).

(c) Optimized design (64 MMCs) closest to
the best design for 16 MMCs.

(d) Best design (16 MMCs).

Figure 7.13 Designs obtained in 30 optimization runs with 64 and 16 MMCs (Bujny et al. (2017a)).

The best design obtained with EA-LSM with 64 MMCs no longer matches the reference design
obtained with SIMP (Figure 7.4(b)). In order to obtain structures of higher complexity with SIMP,
one can increase the resolution of the mesh and change the filter size. Figure 7.14 presents the
results of TO with SIMP for a mesh resolution of 320x80 and different filter sizes. The closest
EA-LSM design (second best) is depicted in Figure 7.14(d).

(a) SIMP filter size 3.0. (b) SIMP filter size 2.0.

(c) SIMP filter size 1.5. (d) EA-LSM design (second best) closest to
(b) and (c).

Figure 7.14 Optimization results with SIMP for the transverse bending case and mesh resolution of 320x80 and the closest design
obtained with EA-LSM (Bujny et al. (2017a)).

The problem of complexity in structural design is strictly associated with the concept of structural
attainability, being the ability of the method to represent the geometric features of a given design.
Table 7.7 shows how more complex topologies are represented with use of EA-LSM with 64
MMCs.

Computational costs and scalability of parallel EA-LSM

The previous sections discussed mostly the issues associated with the quality of the designs ob-
tained with EA-LSM. However, one of the most important factors in real-world optimization prob-
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Table 7.7 The best designs out of 30 optimization runs for the cantilever beam and transverse bending case showing the
topological attainability of EA-LSM.

Material distribution MMC layout LSF

lems is the computational cost of a method. This aspect is particularly important for crashworthi-
ness optimization, where each evaluation can take several hours.
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Figure 7.15 Convergence of the cost function for 30 optimization runs of CMA-ES(7,15) for a 40-dimensional transverse bending
optimization problem.

Figure 7.15 shows the convergence of the 30 optimization runs for the transverse bending case
with 16 MMCs. As the optimization algorithm, CMA-ES(7,15) was used. In most of the cases, the
algorithm converges between 100–200 generations, corresponding to 1500–3000 FE evaluations.
It is relatively high compared to the gradient-based methods – e.g. SIMP (Andreassen et al. (2011))
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needs ca. 40 FE analyses for an optimization problem with the same mesh resolution, resulting
in a qualitatively similar design. In the context of crashworthiness TO, also heuristic methods,
e.g. HCA or ESO/BESO, are very popular. In terms of computational costs, they require 1–2
orders less FE evaluations than EA-LSM, as well. The significantly higher computational costs of
EA-LSM, however, can be justified as follows:

1. EA-LSM is meant to be used for problems where gradient information is not available. This
holds especially for inherently non-differentiable problems, e.g. in crashworthiness, which are
characterized by high levels of numerical noise, discontinuities, and bifurcations.

2. The method is very general. It can be used with any quantifiable objective functions and con-
straints. In particular, it could be also used to solve problems in various subdomains of struc-
tural mechanics. This contrasts with both gradient-based and heuristic approaches, which are
dedicated exclusively for specific cases.

3. EA-LSM is a black-box optimization method. This means that it can be easily used with any
commercial software, without access to the source code.

4. In terms of generations, performance of EA-LSM and gradient-based as well as heuristic ap-
proaches is very similar. Provided that sufficient resources are available, the computations in
each generation can be done in parallel, justifying the comparison of the methods in terms of
iterations (generations) and not evaluations. In fact, the convergence velocity of EA-LSM (in
terms of generations) can be explicitly controlled by choosing appropriate population sizes.

5. EAs outperform gradient-based methods in finding global optima. Although this is of very
limited practical relevance, it can be an important aspect in some cases.

In fact, most of the arguments listed above would be true for any TO method based on EAs.
However, it seems that the representation employed in EA-LSM, together with the use of ESs,
allows EA-LSM to outperform by far the alternative non-gradient TO methods. For instance, the
method proposed by Hamza et al. (2013) needs almost up to one million evaluations to converge
using a GA for problems of similar dimensionality (46 and 52), not to mention the methods based
on grid parametrizations.

So far, we assumed to deal with a 40-dimensional optimization problem, corresponding to a
parametrization with 16 basis function and a one symmetry condition. As shown in the previ-
ous sections, such parametrization is usually sufficient to grasp the complexity of a wide spectrum
of 2D structures. However, if better-performing structures of higher complexity are targeted, one
would have to increase the number of MMCs. Similarly, to obtain a coarser concept structure, the
number of MMCs can be decreased. As pointed out earlier, those changes on the representation
level would influence the dimensionality of the optimization problem and consequently, will af-
fect the cost of using EA-LSM. Figure 7.16 shows the average number of evaluations required for
CMA-ES (with default population sizes (Appendix B.2)) to converge for parametrizations with 4,
16, and 64 MMCs, corresponding to problem dimensionalities of 10, 40, and 160, respectively.
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Figure 7.16 Average number of evaluations necessary for EA-LSM to converge for different dimensionalities of the optimization
problem, calculated based on 30 independent optimization runs for each case. In all of the cases, CMA-ES(µ ,λ ), with population
size determined according to the rule specified in Appendix B.2, was used as the underlying evolutionary optimization algorithm.

One can note that the computational cost of the method grows significantly as the problem dimen-
sionality rises. In many situations, it can already be prohibitive to carry out TO with EA-LSM
with such a detailed representation. However, as mentioned in the point 4, one can compensate
the growth of computational costs due to the problem dimensionality by choosing an appropriate
population size and parallelizing the computations.

A rule of thumb for standard ESs states that the convergence velocity of the algorithm depends as
c∼ µ ln

(
λ

µ

)
on the number of parents µ and offspring λ (Bäck (2014)). Provided that the whole

offspring population is evaluated in parallel, this allows usually for compensation of the drop in the
convergence velocity, which, for a fixed population size, depends on the problem dimensionality n

as c∼ 1
n . Taking into account virtually linear scalability of EAs due to the very low communication

effort4, it should be possible to compensate the doubling of the problem dimensionality by increas-
ing both µ and λ by a factor of 2. Similarly, it should be possible to scale linearly the convergence
velocity of EA-LSM by scaling µ and λ and keeping the problem dimensionality constant.

All in all, although the computational costs of EA-LSM are relatively high, it offers a great gen-
erality and can deal with the problems the other methods cannot. On the other hand, in the era of
parallel computing, almost perfect scalability of EAs gives EA-LSM a huge advantage, making its
performance in terms of computational time comparable with the gradient-based methods when
sufficient computational resources are available. Currently, however, this property can be utilized

4 For ESs, only the values of the cost function and design variables have to be communicated between the processors.
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only to limited extent in the real-world scenarios. As a result, alternative solutions to decrease the
computational effort of EA-LSM should be found. In the next sections, this problem is therefore
addressed with use of the methods proposed in Chapter 6.

7.1.2. Hybrid evolutionary level set method (H-EA-LSM)

In this section, the idea for improving the performance of EA-LSM via utilization of approximate
gradient information, as described in Section 6.1, is evaluated based on numerical experiments. In
case of linear elastic problems, considered in this chapter, the analytical sensitivities of objectives
and constraints are available. Therefore, this section aims for evaluation of the benefits coming
from the hybridization of EA-LSM with gradient-based search in an ideal case, when the gradients
can be computed exactly. Similarly, in the second part of this section, the ability of the ML-
based approach for gradient approximation to learn the gradient model from the sampled data is
verified.

Evaluation of H-EA-LSM using analytical sensitivities

To evaluate the effectiveness of the proposed approach for gradient-enhanced evolutionary search,
its performance is compared with EA-LSM using standard ES(20,100) and CMA-ES(8,17), as
well as a simple gradient-based approach – Steepest Descent (SD) method (Rao (2009)). All of
the algorithms used in this section are summarized in Table 7.8. For the purposes of a statistical
evaluation, 30 optimization runs were performed for each of the listed algorithms except from SD,
which yields always the same results due to its deterministic character.

Table 7.8 Optimization algorithms used for evaluation of H-EA-LSM.

Method Description

SD Steepest Descent optimization method (reference).

EA-LSM (ES) Standard ES(20,100) with 1 step size.

EA-LSM (CMA-ES) Covariance Matrix Adaptation (8,17) ES.

H-EA-LSM Hybrid ES(20,100) with 1 step size and 10% of improved individuals.

As a test case, the cantilever beam problem with an aspect ratio of 1:1 (Figure 7.1(b)) is used. The
reference structure used as a starting point for SD as well as for generation of the initial population
of individuals in EA-LSM and H-EA-LSM is shown in Figure 7.3(b).

To allow for a more convenient comparison of the methods, both gradient-based and evolutionary
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approaches target minimization of the following cost (Lagrangian) function:

f (z) =C(z)+λVV (z), (7.2)

where C(z) stands for compliance, V (z) is the total volume of the structure, λV is a Lagrange mul-
tiplier for volume, and z denotes the vector of design variables. Please note that in this case the op-
timization problem is unconstrained and the volume fraction is enforced by incorporating a penalty
factor λVV (z) directly into the cost function. As a result, the constraint-handling techniques do
not have to be used in this case, which makes the comparison between different optimization al-
gorithms, usually utilizing different methods for enforcing constraints, considerably simpler. The
exact values of the parameters used for the optimization are given in Table 7.9.

Table 7.9 Configuration of the optimization algorithms used in the evaluation of the gradient-enhanced evolutionary methods.

Parameter Symbol Value

Lagrange multiplier for volume λV 0.02

Step length in the line search s 0.2

Initial step size in the mutation operator σinit 0.1

Figure 7.17 presents an averaged convergence behavior of the algorithms based on 30 optimization
runs. The distribution of the values of the cost function after 10, 100, and 1000 optimization
iterations is shown in Figure 7.18.

The plots show that H-EA-LSM has superior convergence properties in terms of optimization it-
erations w.r.t. both of the methods composing it, namely SD and ES. On average, H-EA-LSM
converges faster at the beginning, which is very important in practical applications, and reaches
lower values of the cost function. Obviously, SD requires less cost function evaluations, where
each of them involves a static FE analysis, but H-EA-LSM is meant to be used in situations when
an exact gradient information is not available and SD is not applicable. Although H-EA-LSM
requires 20% more FE evaluations than EA-LSM (ES) in order to find the optimal step length for
the gradient improvement by the quadratic interpolation method (Arora (2012)), it is still more
efficient than EA-LSM in terms of evaluations. What is more, as shown in Table 7.10, H-EA-LSM
much more frequently results in the best topological concept and shows much lower variance of
the cost function values for the 30 optimization runs (Figure 7.18). To summarize, H-EA-LSM
does not only perform as good as its best component, but actually benefits from the synergy be-
tween ES and SD. By applying the mutation prior to the gradient improvement step, the algorithm
allows for exploration of multiple starting points for the gradient descent. As a consequence, the
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Figure 7.17 Convergence of the cost function in terms of optimization generations/iterations (top) and FE evaluations (bottom) for
EA-LSM using ES and CMA-ES, H-EA-LSM, and SD. The cost function is normalized with the initial value. For all the methods
except SD, the results are averaged over 30 optimization runs, which results in monotonic curves. SD run is not repeated due to a
deterministic character of the method. Since SD is not a population-based method, generations in this case should be interpreted
as the optimization iterations.

selection operator can choose between multiple individuals after a joint mutation-improvement
step and the non-improved individuals. This allows for finding the best gradient-improved indi-
viduals or rejecting them in favor of the standard individuals whenever the gradient information
is inaccurate. Therefore, the method offers additional speedup in the situations when the gradient
information is helpful, and can still work well in the situations when it cannot rely on the gradient
approximation.
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(a) After 10 generations.
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(b) After 100 generations.
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(c) After 1000 generations.

Figure 7.18 Distribution of the cost function values after 10, 100, and 1000 iterations/generations for different evolutionary
optimization algorithms and SD. The cost function is normalized with the initial value. The line in center of each box indicates the
median, while the top and bottom edges of the boxes correspond to the 25th (q1) and 75th (q3) percentiles of the normalized
compliance values, respectively. The whiskers, represented using dash black lines, extend to the data points of the highest and
lowest compliance values, excluding outliers, which are marked using the red ’+’ symbol. The criterion for classification of a
point as an outlier requires it to be greater than q3 +1.5(q3−q1) or lower than q1−1.5(q3−q1).

Figure 7.19 Topologies optimized with use of the SIMP approach (Sigmund (2014)) (left) and a standard LSM (Challis (2010))
(right).

Finally, as shown in Figure 7.19, for the same optimization problem, the state-of-the-art methods
for TO of linear elastic structures, SIMP (Sigmund (2014)) and a standard LSM (Challis (2010)),
result in qualitatively similar topologies as the best design presented in Table 7.10.
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Table 7.10 Four dominant topology types obtained with different optimization algorithms and the frequency with which they
occur in 30 optimization runs (Bujny et al. (2016c)). The topologies are ordered starting from the best performing designs on the
top to the worst ones at the bottom.

Method

Topology type EA-LSM (ES) EA-LSM (CMA-ES) H-EA-LSM SD

7% 0% 80% 100%

27% 63% 0% 0%

10% 10% 17% 0%

3% 0% 3% 0%

Gradient approximation by predicting sensitivities

In the situations when the gradient information cannot be estimated based on physical surrogate
models, such as ESL cases for the crash problems, an ML-based approach proposed in Section
6.1.3 can be used. This section demonstrates how a simple linear regression model can be trained
based on the collected gradient samples for the minimum compliance problem.

First of all, the samples of the gradients were collected for training the models. In case of linear
regression models considered in this chapter, usually a limited number of samples is sufficient to
obtain good prediction accuracy. Therefore, the gradient samples were collected during 80 itera-
tions of a single run of the SD algorithm, based on finite-difference approximation of sensitivities,
for the optimization problem considered in the previous section (Equation (7.2)). For a design
parametrized with 16 MMCs, this resulted in a total number of 16 ·80 = 1280 samples for training

of each model
(

∂̃ f
∂ p

)
ΘΘΘp

, where p = x0, y0, θ , l, and t.

Taking into account only the features of the form given by Equation (6.21), five independent first
order models of the following form were trained based on the collected data:

∂ f
∂ pi
≈

(
∂̃ f
∂ p

)
ΘΘΘp

(CSF) = c0 + c1CSF1 + c2CSF2 + ...+ c36CSF36, (7.3)
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where ci, i = 0, ...,36 are the coefficients determined by solving the linear regression problem
(Bishop (2007)). Please note that the total number of features is 36, since, for 8 degrees of freedom
of the considered 4-node shell elements, there are exactly 28 different terms of the form ue,iue, j

and 8 terms u2
e,i. The fitting of the models resulted in R2 values presented in Table 7.11.

Table 7.11 R-squared values calculated on the test data for the sensitivity models of compliance.

Model

∂̃ f
∂x0

∂̃ f
∂y0

∂̃ f
∂θ

∂̃ f
∂ l

∂̃ f
∂ t

R2 1.0 1.0 1.0 1.0 1.0

In case of all of the models, a perfect accuracy was obtained. In fact, it can be shown (Krischer
(2018)) that a linear combination of the features used in the models proposed in this section can
exactly represent the analytical gradients for the compliance minimization problem; such a result is
not surprising and shows the ability of the proposed method to reproduce the exact gradients based
exclusively on the sampled data. Obviously, an SD optimization based on the gradient models
would yield an identical topology to the one presented in the first row of Table 7.10. Similarly,
an optimization using H-EA-LSM based on the gradient models would also result in the same
convergence characteristics as shown in Figure 7.17.

Of course, in general case, for arbitrary objective functions, a linear combination of the features of
the form given by Equation (6.21) might be not sufficient to obtain good prediction accuracy. In
these cases, by collecting sufficient amount of training data and fitting more nonlinear regression
models, such as SVR or ANNs, higher gradient prediction accuracy could be potentially achieved.
If the amount of the training data is limited, also appropriate feature engineering for the linear
models can be an effective approach to achieve high prediction accuracy. Anyway, in this work,
we limit the investigations to the features of the form given by Equations (6.20) and (6.21), and use
them also for modeling of the gradients for the nonlinear dynamic crash cases (Section 8.1.2).

7.1.3. Kriging-guided level set method (KG-LSM)

In this section, an alternative concept for non-gradient level-set TO, based on problem-specific
version of the EGO technique, as described in Section 6.2, is evaluated on the cantilever beam
problem. Since it is well-known that the performance of EGO highly decreases with the rising
dimensionality of the optimization problem (Wang et al. (2016)), three test cases of different struc-
tural complexity are considered to evaluate the potential and limits of the proposed approach:

1. Representation using 2 MMCs with all parameters but the y-position (y0) and the rotation angle
(θ ) fixed. Together with a symmetry condition, this results in a two-dimensional optimization
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problem. Since the thickness of the MMCs remains constant, the volume constraint does not
have to be imposed, and an unconstrained optimization problem can be considered.

2. Representation using 6 MMCs, with the positional parameters (x0, y0, θ ) treated as design
variables and the shape parameters (l, t) fixed. Together with a symmetry condition, this results
in a total number of 9 design variables.

3. Representation using 6 MMCs, with a single symmetry condition, and all parameters subject to
optimization, resulting in a total number of 15 design variables.

In order to provide statistically significant results, the performance of all the used methods is
compared based on 30 optimization runs. To be able to compare different methods in a consistent
way, for an optimization problem of a given dimensionality, we generate first 30 different sets of
samples using DoE techniques and use them as a starting point for the considered optimization
techniques. As a result, we provide the same initial conditions for all of the algorithms.

The results presented in this section are based on the master’s thesis of Raponi (2017), supervised
by the author of this dissertation, and the following conference and journal publications (Raponi
et al. (2017, 2019a)).

Optimization problem with 2 design variables

At first, the efficiency of the KG-LSM is evaluated on a problem with 2 design variables. For sim-
plicity, the structural feasibility constraint, enforced usually by the penalization of the EI (Section
6.2), is not used here. As a result, the performance of a pure EGO-based search can be directly
compared with an unconstrained optimization with CMA-ES.

The reference design used for initialization of EA-LSM based on CMA-ES is shown in Figure
7.20. EA-LSM, as outlined in Section 5.3.2, creates the initial population of individuals by dis-
tributing the individuals around the reference design, using a normal random distribution. For a
two-dimensional optimization problem, according to the rule specified in Appendix B.2, a popula-
tion size of µ = 3 parent and λ = 6 offspring individuals is used for the optimization.

Figure 7.20 Reference design for the cantilever beam problem with 2 design variables (Raponi (2017); Raponi et al. (2019a)).
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In contrast to EA-LSM, KG-LSM samples the points uniformly in the search space with use of the
OLHS technique. For the first experiment, according to the recommendations of Forrester et al.
(2008), a relatively low number of 20 designs is generated using the sampling plan, for a total
budget of 500 FE evaluations, where the rest of the designs are created based on the maximization
of the EI criterion.
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Figure 7.21 Comparison of the convergence behavior of KG-LSM and EA-LSM based on an optimization problem with 2 design
variables, averaged over 30 optimization runs (Raponi et al. (2019a)).

The comparison of the convergence behavior of KG-LSM and EA-LSM averaged over 30 runs is
presented in Figure 7.21. Due to the unfavorable reference design used for the initialization of EA-
LSM, the initial value of the cost function corresponding to the best design resulting from the DoE
in KG-LSM is already considerably better than the one for EA-LSM. After the DoE phase, the
convergence rate of KG-LSM is significantly higher than the one of EA-LSM, as well. However,
EA-LSM shows much better performance in the final stage of the optimization, when it is able to
fine-tune the already highly-optimized design. This property has been used in our later work on
hybrid strategies (Raponi et al. (2019b)), taking advantage of both, the high convergence velocity
of KG-LSM in the initial phase of the optimization, and the superior exploitation performance
of EA-LSM. Anyway, a comparison of the final designs obtained for KG-LSM and EA-LSM
(Figure 7.22) does not show significant differences between the best topologies found with both
approaches.

Please note that the EA-LSM version compared here follows exactly the description from Chapter
5, including the method used for generation of the reference design. However, in this case, as
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(a) Best design from KG-LSM. (b) Best design from EA-LSM. (c) Michell structure.

Figure 7.22 Comparison of the MMC layouts for the cantilever beam problem with 2 design variables optimized using KG-LSM
and EA-LSM (Raponi et al. (2019a)). Both of the methods yield designs consistent with the corresponding Michell structure
(Michell (1904)) consisting of 2 components.

pointed out above, this results in a relatively low-performing initial population. Therefore, to elim-
inate the influence of the unfavorable initial designs for EA-LSM, we compared the performance
of both algorithms by using the best design from the DoE as a reference design for the genera-
tion of the initial population. In contrast to the previous experiments, for all 30 runs of KG-LSM,
always the same DoE was used. Figure 7.23 shows the comparison of the averaged convergence
characteristics for KG-LSM and EA-LSM in this case.
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Figure 7.23 Comparison of the convergence behavior of KG-LSM and EA-LSM using the best design from the DoE as the
reference (referred to as DoE-EA-LSM). Optimization problem with 2 design variables, averaged over 30 optimization runs
(Raponi (2017)). KG-LSM does no longer improve after the fast convergence in the initial phase of the optimization, since it
concentrates mostly on the exploration of the regions of the search space associated with high uncertainty of the surrogate model.

The results show that the KG-LSM still outperforms EA-LSM in the initial phase of optimization
even when the influence of the initialization of both algorithms is eliminated. This is consistent
with most of the studies on surrogate-assisted methods, where they turn out to require consider-
ably less function evaluations than EAs for low-dimensional optimization problems (Ratle (2001)
Lim et al. (2007)). Furthermore, as shown by Raponi et al. (2019a), an addition of the structural
feasibility check (Equation (6.42)) in the two-dimensional static problem results in a further im-
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provement of the performance of KG-LSM, which is able to outperform significantly the standard
EA-LSM.

Optimization problem with 9 design variables

As the next step, an optimization problem with 9 design variables parametrizing 6 MMCs was
studied. With this parametrization, the volume of the structure can change considerably by ad-
justing the overlap between the MMCs, and the probability of generating structurally infeasible
designs rises significantly, as well. Therefore, for KG-LSM, a 50% volume fraction constraint was
imposed by utilizing the CEI as the acquisition function. Furthermore, CEI was modified accord-
ing to Equation (6.46), to eliminate structurally infeasible designs, as well. For the initial DoE,
300 samples were created using standard OLHS. For each of the generated samples, the structural
feasibility of the corresponding design was first checked, which did not involve any FE evaluation.
Finally, only the structurally feasible designs were simulated and they compose the initial set of
samples used for fitting the first Kriging model. This results in an average number of 19 samples
among 30 different DoE sets.

The reference design used for initialization of the EA-LSM is shown in Figure 7.24. Again, the
state-of-the-art CMA-ES optimizer was used in the background. For a 9-dimensional optimization
problem, the rule from Appendix B.2 yielded a population consisting of µ = 5 parent and λ = 10
offspring individuals. Similarly to KG-LSM, a volume constraint is added. For EA-LSM, by
default, this is done by using penalty-based constraint handling (Section 5.3.4). Since EA-LSM
performs a much more local search than KG-LSM, the constraint on structural feasibility does not
have to be enforced, because the selection operator can eliminate all of the disconnected designs.

Figure 7.24 Reference design for the cantilever beam problem with 9 design variables (Raponi (2017); Raponi et al. (2019a)).

Figure 7.25 shows the evolution of the averaged compliance values in terms of FE evaluations for
both KG-LSM and EA-LSM. Similarly to the two-dimensional optimization problem, KG-LSM
converges much faster in the initial phase of the optimization. After ca. 250 evaluations, EA-LSM
reaches on average comparable values of compliance to KG-LSM, and is able to better fine-tune
the final solution probably due to its superior exploitative properties. The best designs obtained
with both approaches after 500 evaluations are depicted in Figure 7.26.
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Figure 7.25 Comparison of the convergence behavior of KG-LSM and EA-LSM based on an optimization problem with 9 design
variables, averaged over 30 optimization runs (Raponi et al. (2019a)).

(a) Best design from KG-LSM. (b) Best design from EA-LSM. (c) Michell structure.

Figure 7.26 Comparison of the MMC layouts for the cantilever beam problem with 9 design variables optimized using KG-LSM
and EA-LSM (Raponi et al. (2019a)). Please note that the corresponding Michell structure (Michell (1904)) for the design with 6
components might not correspond to the optimal design for the considered problem, where a part of parameters describing MMCs
is kept fixed.

The experiments carried out for the 9-dimensional problem demonstrate the ability of KG-LSM
to find solutions close to the reference ones for a problem with a volume constraint. The fast
convergence of the algorithm in the initial phase of the optimization makes it interesting especially
in the context of practical applications, where the total budget of FE evaluations is frequently
heavily restricted.
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Optimization problem with 15 design variables

Finally, an optimization problem with 15 design variables and 6 MMCs, subject to a symmetry
condition, was considered. Similarly to the case from the previous section, both the structural
feasibility as well as the volume constraint (50% volume fraction) were imposed. For all of the
KG-LSM optimization runs, 600 initial DoE samples were generated and only the structurally
feasible designs were evaluated, which corresponded to 29 samples on average.

For comparison, EA-LSM based on CMA-ES with µ = 6 parent and λ = 12 offspring individuals
(see Appendix B.2) was used. To initialize the population, the same reference design as in the
problem with 9 design variables, shown in Figure 7.24, was used.
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Figure 7.27 Comparison of the convergence behavior of KG-LSM and EA-LSM based on a optimization problem with 15 design
variables, averaged over 30 optimization runs (Raponi et al. (2019a)).

Figure 7.27 presents the averaged convergence of KG-LSM and EA-LSM in terms of evaluations.
For a 15-dimensional optimization problem, KG-LSM still outperforms EA-LSM in the initial
phase of the optimization, until ca. 200 evaluations. However, the difference between the methods
decreases, showing that for this problem dimensionality, at least for the compliance minimization
case, KG-LSM is no longer able to offer a significantly better performance than EA-LSM. The
comparison between the best designs optimized using KG-LSM and EA-LSM also shows that
EGO is not able to find the topology corresponding (most probably) to the global optimum. As
shown in Figure 7.28, the best designs obtained with KG-LSM and EA-LSM are qualitatively
considerably different. The compliance value for the best design obtained using EA-LSM is ca.
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10% lower than for the design optimized using KG-LSM.

(a) Best design from KG-LSM. (b) Best design from EA-LSM. (c) Michell structure.

Figure 7.28 Comparison of the MMC layouts for the cantilever beam problem optimized using KG-LSM and EA-LSM (Raponi
et al. (2019a)). Please note that only the design obtained using EA-LSM is consistent with the corresponding Michell structure
(Michell (1904)) consisting of 6 components.

To summarize, in all of the studied cases, KG-LSM was on average significantly better than EA-
LSM in the initial phase of the optimization. This is a very important property in practice, when the
number of costly FE evaluations is limited. In contrast, EA-LSM performs better in the final stage
of the optimization, which shows that hybrid approaches can be a promising direction for the future
research (Raponi et al. (2019b); Mohammadi et al. (2015)). However, with rising dimensionality
of the optimization problems, the performance of KG-LSM drops, which is related to the "curse
of dimensionality" (Bishop (2007); Forrester et al. (2008)) and is a common problem in surrogate-
assisted optimization. For 15-dimensional problem, the best topology obtained using KG-LSM
is significantly different from the one optimized using EA-LSM and corresponds only to a local
optimum. In this case, most probably, more evaluations would be needed to reach the design
found by EA-LSM. An interesting research direction in the future would be also to investigate
the performance of EGO algorithms for high-dimensional problems (Bouhlel et al. (2016, 2018))
within the proposed framework for structural TO. All in all, KG-LSM can be considered as an
interesting alternative to EA-LSM, especially for the problems where design evaluations are very
expensive, and the granularity provided by the representation relying on a very limited number
of design variables is satisfactory for the designer. This is especially valid for the problems in
structural crashworthiness, which are addressed with use of KG-LSM in Section 8.1.3.

7.1.4. Adaptive evolutionary level set method (A-EA-LSM)

This section demonstrates the potential of using an adaptive optimization approach based on a
graph representation (A-EA-LSM), as discussed in Section 6.3. Considering the cantilever beam
optimization problem with a design domain aspect ratio of 1:2, an intuitive interpretation of the
working principles of the A-EA-LSM is given. Finally, the efficiency of using the learning-based
topology variation prediction is evaluated by comparing the performance of the optimized struc-
tures with the performance of the designs obtained using the random approach based on 25 in-
dependent optimization runs5 for each approach. In all of the cases, a compliance minimization

5 Due to project-related time restrictions, 25 instead of 30 runs, as in the other studies in this thesis, were performed.
However, this is still sufficient to carry out statistical comparison between the methods.
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problem with 50% volume constraint is considered.

Table 7.12 Setup of A-EA-LSM using both learning-based and random topology variations (Bujny et al. (2018)).

Property Symbol Value

Number of parent individuals µ 20

Number of offspring individuals λ 70

Initial step size σinit 0.02

Adaptation damping dad 2

Penalty constant for the volume constraint P 1000

Step size threshold for topology variations σth 0.01

Number of topology variations NTV 10

Number of edges in the initial topology - 2

Number of LHS samples in variation step NLHS 8

For both, i.e. for the learning-based as well as for the random topology variation approach, a
setup of A-EA-LSM as specified in Table 7.12 is used. The large values of both, µ and λ , are
dictated mainly by the fact that in A-EA-LSM, multiple species, representing different types of
topologies have to coexist together. For low values of λ , the effective size of each species would
be too small to be able to optimize within a niche. In particular, similar approaches (Stanley and
Miikkulainen (2002)) also use relatively large population sizes. The ratio between parent and
offspring individuals was also kept above the default 1/7 value (Bäck and Schwefel (1993)), to
avoid too aggressive competition between the species. The value of the damping parameter dad

was chosen based on the initial experiments and the recommendations of Hansen and Ostermeier
(2001).

For the prediction of topology variations, we use a fully-connected neural network classifier with
2 hidden layers. The exact specification of the dataset and the parameters used for the training
process as well as the architecture of the network is given in Table 7.13. The hyperparameters of
the neural network were chosen based on an extensive grid search on the number of hidden layers
(NHL) and the number of neurons per hidden layer (NN). As a result, the network architecture
giving the highest accuracy on the validation set, with the same number of samples as in the test
set, was chosen. The test accuracy on the pairwise comparison task, as described in Section 6.3,
reached 85% for the best network. This network was used later on for prediction of favorable
topological variations in A-EA-LSM.
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Table 7.13 Setup of the neural network classifier (MLP) for prediction of topology variations (Bujny et al. (2018)).

Property Symbol Value

Number of hidden layers NHL 2

Number of neurons per hidden layer NN 100

Activation function − Rectified linear (LeCun et al. (2015))

Optimization algorithm − L-BFGS (Nocedal and Wright (2006))

Loss function − Log-loss

Number of sampled topologies NT 317

Number of training samples NS 259,025

Number of test samples NT S 28,780

To understand the working principles of the proposed method, let us have a look at the evolution
of different species in an exemplary optimization run with the learning-based topology variations,
shown in Figure 7.29. The optimization starts from a very simple topology, composed of 2 com-
ponents only, connected at one end, whose position along y-axis is chosen randomly. For the ca.
40 first iterations, the optimizer improves the design based on an 8-dimensional representation of
the topology. Once the optimization converges, the step size of the best individual decreases and
eventually drops below the predefined threshold σth = 0.01, which, according to the algorithm, is
the criterion for introducing a new topology variation to further improve the performance of the
design. At this stage, the best design is modified by inserting a topology variation, and over 50%
improvement in the compliance value is achieved. Even though the modified design is consider-
ably better than the 2-beam design, the algorithm protects the species of 4-beam structures in a
niche by modifying their cost function values according to the Equation (6.48), thus giving them
the chance to optimize before competing with already well-optimized, 2-beam designs. Directly
after the first topology modification, the adjusted cost of the newly created design, composed of
4 MMCs, is therefore equal to f ′4 = 0.11 ·1 = 0.11, because there is only one such individual. At
the same time, the adjusted cost of the best 2-beam design is equal to f ′2 = 0.24 · 69 = 16.61. As
a result, the number of individuals representing 4-beam topologies quickly rises, since they are
strongly favored by the (µ , λ )-selection operator. When the ratio of 4-beam and 2-beam topolo-
gies increases, the protection of the 4-beam designs decreases, to become neutral for the 50% ratio.
At this point, only the relative compliance values of the designs in two species decide about the
survival of the individuals. Since a 4-beam design is considerably better, the size of the 2-beam
species shrinks. As a smaller species, it is more and more strongly protected by decreasing the
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adjusted cost. However, the decreasing population size within the 2-beam species reduces the ef-
fective ratio of offspring and parent individuals within this class of topologies, which results in
a gradual decrease of the convergence velocity and eventually to a deterioration of the 2-beam
designs when non-elitist (µ , λ )-selection is used. In particular, for µ = λ , the search becomes a
random walk (Bäck (1996); Pearson (1905)). As a result, the population of 2-beam designs dies
out around the 65th generation. In the meantime, around the 60th generation, the third species,
composed of 6 MMCs, appears. This topology corresponds to the best designs obtained with both
EA-LSM and SIMP for the same optimization problem (5th row, Table 7.2). This species survives
during the entire optimization run and eliminates more complex designs to become the only species
around generation 200. Please note that the predicted intermediate topology variations are actually
reasonable from the mechanical point of view, but none of them generates a design able to take
over the population.

As can be seen in Figure 7.29, the algorithm converges fast at the beginning of the optimiza-
tion, partially due to the low-dimensionality of the initial search space. After introducing the first
topology variation, the compliance values do not change much until the end of the optimization.
The fast convergence at the beginning is a very important property in the industrial setting, where
typically the number of FE evaluations is strongly limited. Moreover, A-EA-LSM gives the user
the possibility to stop the optimization at any moment of time to favor simpler design concepts,
which are preferable in many cases, especially when traditional manufacturing technologies are
considered.

In the bottom part of Figure 7.29, the dotted red curve shows the convergence of the average step
size of the individuals in the population. One should note the stabilizing effect of the derandomized
step size adaptation, preventing the step size from reducing too much when the topology improves
considerably due to the topology variation. The step size slightly rises each time when topology
modification takes place to be able to exploit quickly the potential improvement introduced by the
extended representation. As a result, the step size stays at the level above σth = 0.01 until the last
topology variation. After 200 generations, the step size slowly drops, as the optimization with a
single species converges.

The example discussed above illustrates the mechanisms governing the A-EA-LSM optimization
based on a one out of the 25 runs used for the evaluation of topology variation methods. However,
neither the population size nor the initial step size were fine-tuned to maximize the efficiency of
the algorithm. To evaluate the effectiveness of the learning-based topology variations for differ-
ent initial configurations, as mentioned before, the exact position of the connection point between
the two beams was decided randomly, as well. As a result, the initial optimization phase takes
considerably longer than for a good initial design. However, once the optimization for a 2-beam
design converges, the optimization progresses very fast. From the moment of the first topology
variation, within 30 generations, corresponding to 2100 finite element evaluations, the optimiza-
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Figure 7.29 One of the runs of the A-EA-LSM with the learning-based topology variations illustrating the working principles of
the method (Bujny et al. (2018)). Visualization of speciation during the optimization with color-coded species (top). Topologies
are divided into species depending on the number of components specified in the legend. Convergence of the compliance
normalized with the initial value (solid blue curve) and evolution of the step size averaged over the population of parent
individuals (dotted red curve).

tion practically converges, with compliance values over 2 times lower than for the best 2-beam
design.

One should also note that with the current formulation of the criterion for qualifying a design to a
given species, relying exclusively on the number of MMCs composing the design, multiple differ-
ent topologies with the same number of beams can coexist together in a niche. As a result, the final
number of species appearing during the optimization is lower than the number of topology vari-
ations NTV . One disadvantage of this approach is that different topologies with the same number
of components are not protected against each other, which leads to domination of a single topol-
ogy within a niche. Potentially, this could be improved by considering other similarity metrics for
topologies, e.g. Graph Edit Distance (Sanfeliu and Fu (1983)). For readability, in Figure 7.29, only
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the best performing design within each species is shown.

The example presented above used the learning-based topology variation prediction. However, the
A-EA-LSM algorithm can also work with random topology variations, so it is not clear how much
beneficial are the predictions of the neural network in the overall optimization process. To evaluate
that, 25 optimization runs with random and learning-based topology variations were carried out.
All of the optimizations started from the simple, 2-beam design and 10 topology variations were
applied. In Figure 7.30, box plots of the normalized compliance values after 200 generations are
shown. The learning-based approach yields clearly better performing structures, which has been
verified with the Wilcoxon rank sum test. The hypothesis about equality of the medians from both
datasets was rejected at the 1% significance level. Moreover, the qualitative differences between
the obtained structures is shown in Table 7.14. A-EA-LSM using the learning-based topology
variations was able to find the design corresponding most probably to the global optimum in 72%
of cases. In contrast, in case of the random-based topology variations, only 8% of optimization
runs resulted in the best topology type.

Figure 7.30 Box plots for 25 A-EA-LSM optimization runs after 200 generations comparing the performance of random and
learning-based topology variations (Bujny et al. (2018)). The line in center of each box indicates the median, while the top and
bottom edges of the boxes correspond to the 25th (q1) and 75th (q3) percentiles of the normalized compliance values, respectively.
The whiskers, represented using dash black lines, extend to the data points of the highest and lowest compliance values, excluding
outliers. The criterion for classification of a point as an outlier requires it to be greater than q3 +1.5(q3−q1) or lower than
q1−1.5(q3−q1).

All in all, the results for a 2D linear elastic case look promising. Learning-based topology varia-
tion works significantly better than a random approach, which shows that such rules can be learned
from the sampled data, based on a fully automated process. However, the large population size,
necessary for the speciation mechanism to work, is a disadvantage of the approach. Also in case of
more complex designs, the number of combinations for feasible topology variations grows consid-
erably, and a higher prediction accuracy of the neural network would be required not to converge
to sub-optimal designs.
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Table 7.14 Dominant types of topologies obtained in 25 A-EA-LSM optimization runs with random and learning-based topology
variations (Bujny et al. (2018)). The compliance is normalized with the value for the best design. Two last columns show the
frequency with which a given type of topology has been obtained.

Topology type Compliance Random Learning-based

1.0 8% 72%

1.013 8% 4%

1.062 40% 4%

1.126 16% 8%

7.2. Three-dimensional topology optimization for minimum compliance

In this section, a study of the 3D variant of EA-LSM, as described in Chapter 5, is carried out. 3D
TO problems are considerably more complex than the 2D ones, and as such, deserve a separate
section in this work. For many methods, the main difficulty of extending them to 3D comes
from their inherently 2D character, e.g. (Ortmann and Schumacher (2013)). In other cases, e.g.
explicit parametrization of material boundaries with splines, the extension of the formulation to
three dimensions might be very complicated and computationally challenging. In contrast, one of
the key advantages of the representation based on the level set description is the simplicity, with
which it can be adapted to 3D problems. The second important problem is the high computational
cost which rises dramatically for most of the methods when moving from 2D to 3D. This problem
emerges from both higher costs of the FEA and the cost of the optimization problem, rising due to
the much higher number of design variables in 3D. The MMC-based approaches solve this problem
by decoupling the representation of the design and the FE discretization. However, also for those
methods, the dimensionality of optimization problem would rise, generally by a factor of 5–10,
depending on the number of used MMCs. For non-gradient optimization methods this can already
pose considerable difficulties.

All in all, this section aims to answer the question of feasibility of using the 3D version of EA-
LSM proposed in Chapter 5. As in Section 7.1, linear elastic cases are considered to be the most
suitable for the initial validation of the method.
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Figure 7.31 Design domain and boundary conditions for the 3D linear elastic cantilever beam test case used for validation of
EA-LSM. Dimensioning in mm.

(a) FE mesh. (b) 0th LSF isocontour.

Figure 7.32 Initial design used in the 3D cantilever beam case.

7.2.1. Optimization problem

Similarly to Section 7.1, a compliance minimization problem with a volume constraint of a form
given by Equation (7.1) is considered here. We focus on an analysis of a cantilever beam scenario
as depicted in Figure 7.31. In order to reduce the computational costs, two symmetry planes along
the longitudinal direction are introduced (dashed lines). With 64 3D MMCs, this results in a 144-
dimensional optimization problem. The initial LSF and the resulting FE mesh are depicted in
Figure 7.32. Finally, the exact configuration of the test case is defined in Table 7.15.

7.2.2. Results

Due to limited computational resources, the evaluation of EA-LSM is based on five independent
optimization runs of a standard ES(6,39) with a single step size. Although in the previous exper-
iments CMA-ES gave the best results in terms of the number of evaluations, we use the simpler
ES with higher population sizes to improve the performance in terms of generations. This was
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Table 7.15 Configuration of the 3D cantilever beam case.

Property Symbol Value Unit

Young’s modulus E 2.1 ·105 MPa

Poisson’s ratio ν 0.3 -

Load F 1 N

Required volume fraction Vf 20% -

Aspect ratio - 1:1:2 -

Mesh resolution - 25 x 25 x 50 -

Solver - CalculiX 2.9 -

Element type - Eight-node brick element (C3D8R) -

mainly motivated by the limitation of the total run time of jobs on the used computational cluster.
For similar (large) population sizes, CMA-ES gave inferior results compared to ES. The offspring
population size λ = 39 was determined based on the allocated computational resources. More
precisely, 5 computational nodes with 8 cores per node were used for each of the optimization
runs, parallelized using MPI. This resulted in 40 cores per optimization run, where 1 core is used
for controlling the optimization process, yielding 39 cores which can be used to evaluate all the
individuals in a population in parallel. Using the usually recommended ratio between the number
of parent and offspring individuals µ

λ
≈ 1

7 (Bäck (1996, 2014)), the number of parents was set to
µ = 6.

Table 7.16 shows the final designs obtained in five runs of EA-LSM using ES(6,39). The designs
are ordered according to their structural performance, which varies by up to 8.8%, depending on
the local optimum found by the algorithm. From the mechanical point of view, all the structures
make physical sense, exhibiting some similarities to the 2D designs shown at the beginning of this
chapter. As in case of the 2D examples, high diversity of designs is observed, being one of the
properties of EA-LSM, associated with the use of EAs. This effect might be even stronger for 3D
optimization cases due to the high dimensionality of the optimization problem and may strongly
depend on the optimization algorithm and the population sizes.

In order to validate the obtained results, the optimization problem was solved using the state-
of-the-art gradient-based SIMP approach, as well. The resulting topology is compared with the
best design obtained using EA-LSM in Table 7.17. Based on visual inspection from multiple
views, one can conclude that both solutions represent qualitatively similar design concepts. The
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Table 7.16 Final designs in five independent EA-LSM runs with ES(6,39). The compliance values are normalized with the
compliance of the best-performing structure.

Normalized compliance FE mesh 0th LSF isocontour

1.0

1.027

1.063

1.068

1.088

minor discrepancies between the topologies might predominantly come from differences in the
representations used by both algorithms (consider the front view in Table 7.17). First of all, EA-
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Table 7.17 Comparison of the best design among five independent EA-LSM runs with a structure obtained with use of the
state-of-the-art SIMP approach (DTU (2018)). Filter size 2.0.

View EA-LSM SIMP

Isometric

Side

Top

Front

LSM, unlike SIMP, does not allow for intermediate densities, which changes the optimization
problem as well as the shape of the optimal designs. Secondly, the representation used by EA-
LSM relies on only 64 MMCs, with 2 symmetry planes, resulting in 144 design variables. In
contrast, the optimization problem solved by SIMP in this case involves 8192 design variables,
which implies much higher structural attainability of this representation, allowing for fine-tuning
the final shape of the design.

In order to analyze the optimization process and estimate the computational costs associated with
the 3D EA-LSM, Figure 7.33 presents the evolution of the cost function during the optimization
process. Please note that the reference design (Figure 7.32), used for the optimizations in this
section, violates the 20% volume fraction constraint, which results in very high initial values of
the penalized cost functions. This is done on purpose, to demonstrate the ability of the algorithm
to start with an infeasible initial design, which would be usually the case for highly-constrained
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Figure 7.33 Convergence of the cost function for five optimization runs of ES(6,39) for 144-dimensional 3D cantilever beam
optimization problem. The numbers in the legend correspond to the ranks of the final solutions according to their compliances,
which are equivalent to the row numbers in Table 7.16.

industrial optimization problems. It is clear from the plots that all of the runs are able to find
feasible designs, converging after 100–200 generations, corresponding to 3900–7800 FE evalua-
tions. If sufficient computational resources are available, the number of generations is of higher
importance, demonstrating that EA-LSM can be used for optimization of 3D TO problems and in-
volves comparable computational times to the state-of-the-art gradient-based techniques (ca. 100
iterations for SIMP). This was the case for the experiments carried out in this section, where all 39
offspring individuals were computed in parallel. Otherwise, if the number of FE evaluations is the
limiting factor, ML-based enhancements as described in Chapter 6 can be used to further decrease
the computational costs. In particular, the H-EA-LSM seems to be a suitable solution, since its
performance, unlike for KG-LSM or A-EA-LSM, does not strongly depend on the dimensionality
of the optimization problem. The initial experiments with H-EA-LSM for 3D TO problems were
very promising (Krischer (2018)).

Finally, Figure 7.34 shows the convergence of the cost function, compliance, and the normalized
volume constraint for the best design. One can easily see how, directly after the second iteration,
the algorithm selects the individuals of much higher compliance to decrease slightly the volume of
the structure. This strong effect can be seen due to relatively high penalization of the constraint vi-
olations (Equation (5.28), P = 1000) compared to the value of the objective function. After just 20
generations, the volume constraint, violated initially by almost 30%, is satisfied and the optimizer
focuses on the reduction of compliance. After ca. 200 generations, only very small variations of
the value of compliance can be observed, indicating convergence of the optimization.

To conclude, this section demonstrates the ability of EA-LSM to address 3D structural TO prob-
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Figure 7.34 Convergence of the optimization for the EA-LSM run resulting in the design with the lowest compliance, shown in
Table 7.17.

lems. To the best of our knowledge, this is the first time to address problems of such complexity
level, close to the industrial cases, with use of evolutionary optimization methods. So far, an
extremely high dimensionality of the 3D optimization problems, introduced by the other repre-
sentations, was the key limiting factor. Thanks to the low-dimensional level-set representation
used in this work, 3D evolutionary-based TO became feasible within an affordable budget of FE
evaluations. Similarly to the 2D cases considered previously, due to its global search properties,
EA-LSM identifies multiple local optima which give rise to alternative design concepts. However,
within five optimization runs, a design consistent with the one derived with the state-of-the-art
SIMP approach was obtained, demonstrating the correctness of the proposed approach.

166 Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning



Mariusz Bujny

7.3. Summary

This chapter presents an experimental evaluation of EA-LSM, as well as of its extensions: H-EA-
LSM, KG-LSM, and A-EA-LSM, by analyzing linear elastic static test cases. A minimum compli-
ance optimization problem with a volume constraint is considered in all of the experiments. Since
for this problem analytical sensitivity information is available, the results can be directly compared
with the reference structures obtained with the state-of-the-art gradient-based approaches. How-
ever, one should note that the results obtained with the state-of-the-art methods depend also on the
chosen parameter settings. The discussions and comparisons are based on a statistical evaluation
of the proposed methods.

All of the proposed approaches yield results consistent with the gradient-based methods. The in-
vestigation of the key features of EA-LSM reveals its ability to derive multiple design concepts
for an ideation in the early phases of design process, relatively good robustness to different ini-
tial designs, and insensitivity of the final designs to different mesh sizes. EA-LSM can derive
designs of different structural complexity, depending on the number of basis functions used. For
a comparable number of design variables as in other TO approaches relying on EAs, the repre-
sentation based on MMCs results in solutions qualitatively more similar to the ones obtained with
gradient-based methods. The main drawback of EA-LSM compared to gradient-based or heuristic
approaches is a relatively high number of required FE evaluations. However, the performance of
those approaches and EA-LSM in terms of optimization iterations can be very similar when using
parallel computing, thanks to a very good scalability of EAs.

To further reduce the number of necessary FE evaluations, we show that the solutions from the
field of ML can be useful for achieving that goal. H-EA-LSM is able to considerably improve the
convergence properties of the evolutionary search, both in terms of convergence velocity as well
as the quality of the final solutions. We illustrate also how the models of sensitivities, matching
exactly the analytical gradients, can be built based on a supervised learning approaches and the
data sampled using finite-differencing. For MMC parametrizations leading to low-dimensional
optimization problems, we show that the number of costly evaluations can be reduced significantly
using KG-LSM, implementing a problem-specific variant of EGO. Finally, we demonstrate how
the concept of adaptive representations utilized by A-EA-LSM can be used in TO to reduce the
effective dimensionality of the search space, determining the convergence velocity of EAs. Again,
via learning of rules for performing topology variations within the A-EA-LSM framework, we
show that supervised learning techniques can be used to enhance TO methods.

Finally, the possibility to solve 3D TO problems with EA-LSM is demonstrated. To our knowledge,
this is the first successful application of evolutionary optimization to this type of problems. Though
the computational costs in this case rise considerably, the parallelization of computations makes the
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optimization affordable, and the further mitigation of computational costs, e.g. using H-EA-LSM,
is potentially possible.

We conclude that the proposed approaches are able to provide solutions consistent with the state-
of-the-art methods. The higher computational costs of the proposed methods is justified by their
generic character, implying their potential applicability to a wide range of diverse problems in
structural mechanics where the gradient-based approaches cannot be used. To evaluate that, in
the following chapter, the proposed methods are used to solve nonlinear dynamic crash TO prob-
lems.
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Chapter 8

Optimization of nonlinear crash cases

In this chapter, the applicability of EA-LSM and its extensions to crash problems is studied based
on academic test cases. We focus on two different types of optimization problems, addressing
typical criteria for crashworthiness design, such as intrusion and peak deceleration. Although
those criteria are of very high practical relevance, none of the state-of-the-art methods for crash
TO can address them directly. In particular, considering deceleration is very interesting, since it
could pose severe difficulties for the optimizers, due to very high levels of numerical noise. In
all of the numerical experiments, transverse bending problems, widely studied in literature, are
considered. Finally, the designs obtained with the proposed methods are discussed and compared
with the ones optimized with the state-of-the-art methods – ESL and HCA.

Similarly to Chapter 7, this chapter is divided into two parts. The first part – Section 8.1 presents
the results of optimizations with the proposed methods on 2D crash problems. First of all, in Sec-
tion 8.1.1, EA-LSM is thoroughly evaluated based on several crash problems. Based on the ob-
tained results, general conclusions about the properties of the method and the optimized structures
are derived. Secondly, in Section 8.1.2, H-EA-LSM, utilizing physical (ESL) and mathematical
(ML) sensitivity models, is used to optimize crash structures for minimal intrusion. Thirdly, the
properties of KG-LSM on a crash problem are evaluated in Section 8.1.3. Finally, the concept of
adaptive representations and learning-based topology variations is studied based on A-EA-LSM in
Section 8.1.4. In the second part of this chapter, Section 8.2, very high-dimensional 3D crash TO
problems are addressed with the use of EA-LSM. We show that the proposed method is suitable
for solving 3D crash problems involving very high levels of plastic deformations.
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8.1. Two-dimensional topology optimization for crashworthiness

Unlike in the case of TO of linear elastic structures, for crash TO, there is no general consensus
regarding the benchmark cases used in the community. The problem arises already at the level of
defining appropriate objectives and constraints, which is very challenging due to the complexity
of the entire vehicle design process. Overall crash performance of a car depends on interactions
between several components, developed usually by different departments. Therefore, precise defi-
nition of objectives, constraints, and boundary conditions at the early design stages of a structural
component is very difficult, resulting in a variety of optimization cases.

One of the more frequently used test cases in crash TO is the transverse bending of a 2D rectangu-
lar beam (Aulig (2017), Bujny et al. (2017a)) derived from the work of Patel (2007). It is inspired
by the side pole impact from the European New Car Assessment Programme (Euro NCAP), rep-
resenting situations when a driver loses the control over a vehicle due to e.g. slippery conditions
and the car is travelling sideways into rigid objects close to the road such as poles or trees. Such
situations lead very frequently to severe injuries or death. A properly designed car structure, in
such crash events, should prevent the intrusion of the pole into the passenger compartment, while
keeping the impact force on a low level.

The nonlinear dynamic crash test case used in this section is depicted in Figure 8.1 and its con-
figuration is defined in Table 8.1. The FE model used in the optimizations is shown in Figure
8.2. In this scenario, a rigid cylindrical pole impacts the middle of a rectangular aluminum beam,
which is fixed at both ends, concerning all three degrees of freedom: two in-plane displacements
and one in-plane rotation. In order to guarantee a 2D behavior of the system, the displacements
of all the nodes in the direction perpendicular to the plane are constrained to zero. To allow for
non-symmetrical displacements in the simulation, e.g. due to buckling, no symmetry conditions
are imposed at the level of FE modeling. But, the optimized design is restricted to be symmetric
w.r.t. the central axis, unless stated otherwise, to reduce optimization complexity. The distribution
of the material inside the beam is subject to TO, with deletion of finite elements in the void region
D\Ω (Equation (5.1)), i.e. having density equal to 0.

Figure 8.1 Design domain and boundary conditions for the 2D nonlinear dynamic transverse bending crash test case.
Dimensioning in mm. The thickness of the design space, i.e. out-of-plane dimension, equals 10 [mm].
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Figure 8.2 FE model used for 2D nonlinear transient crash cases (transverse bending).

Typical formulations of optimization problems for the transverse bending case involve maximiza-
tion of specific energy absorption, minimization of the intrusion of the impactor, or reduction of the
peak force or acceleration (Patel (2007); Bandi et al. (2013); Aulig (2017); Bujny et al. (2017a)).
In this section, two different optimization problems will be considered. The first case regarded
here as an example, the intrusion minimization problem with a mass constraint, can be formally
defined as follows:

min
z

(dmax(z)) , z ∈ Rn;

s.t.res(t) = 0;

m(z)≤ mreq,

(8.1)

where dmax is the maximal intrusion of the pole into the structure (before the elastic rebound), z
is the vector of design variables, m(z) is the mass of the whole structure, and mreq is the required
mass of the optimized design. The condition res(t) = 0 corresponds to the dynamic equilibrium
at time t. Such formulation of an optimization problem is directly related to the principal goal of
structural design for the side pole impact, and can be used to find optimal topologies for the side
sill or the door reinforcement beams. With some modifications of the load case, it can also be
transferred to design tasks of A-, B-, or C-pillars such that an overall protection of the passengers
can be derived by limiting the deformation of the safety cell.

The second important criterion in the design of crashworthy structures for the side pole impact
is the peak acceleration during the crash event. Although a structural criterion is regarded here,
it can be roughly related to the highly-important Head Injury Criterion (HIC). Therefore, as the
second optimization case, a mass minimization problem with constraints on the maximal structural
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Table 8.1 Configuration of the 2D crash test case. For simplicity, the strain rate dependency is not considered here.

Property Symbol Value Unit

Material model of the structure - Piecewise linear plasticity -

LS-Dyna material keyword (structure) - *MAT_024 (LSTC (2014)) -

Mass density ρm 2.7 ·103 kg/m3

Young’s modulus E 7.0 ·104 MPa

Poisson’s ratio ν 0.33 -

Yield strength Re 241.0 MPa

Tangent modulus Etan 70.0 MPa

Static coefficient of friction µs 0.2 -

Dynamic coefficient of friction µk 0.2 -

Material model of the pole - Rigid -

Reference pole velocity v 20 m/s

Reference pole mass mp 11.815 kg

Pole diameter D 139.154 mm

Required structure mass mreq 2.16 kg

Mesh resolution - 80 x 20 x 1 -

Solver - LS-DYNA R7.1.1 -

Element formulation ELFORM Constant stress solid element -

Hourglass control IHQ Flanagan-Belytschko -

Contact model - Penalty method -

acceleration and intrusion is selected. The optimization problem can be defined formally as:

min
z

(m(z)) , z ∈ Rn;

s.t.res(t) = 0;

amax(z)≤ areq;

dmax(z)≤ dreq,

(8.2)
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where amax denotes the maximal absolute acceleration of the impactor during the crash event and
areq its the maximal allowed magnitude. Similarly, dreq denotes the maximal allowed intrusion of
the pole into the structure. Such formulation makes the optimization problem much more chal-
lenging due to the high noisiness of the acceleration constraint. Moreover, some state-of-the-art
methods, like HCA, have difficulties with handling more than one constraint (Zeng (2018)), since
the constraints are often contradictory and cannot be easily satisfied using simple rules assuming
some relationships between their values and the mass of the structure. This is not the case for the
EA-LSM and its extensions, so the second problem serves as a relevant case for demonstrating the
ability to include multiple constraints within the proposed methods.

The use of the transverse bending crash case in this work is motivated mainly by its simplicity
and availability of some reference optimization results. Since the overall goal of this section is to
validate the proposed methods on highly nonlinear crash cases, taking into account a variety of
different design criteria, it serves as a suitable scenario. Finally, the simplicity of this test case
helps to understand the mechanical behavior of the obtained structures.

The results obtained in this section are compared with two state-of-the-art methods for crash TO –
HCA (Patel (2007)) and the simplest variant of the ESL method (Cavazzuti et al. (2010)), also re-
ferred to as the global ESL (Duddeck et al. (2016)) or replacement loading (Wehrle et al. (2015)).

As discussed in Chapter 2, unlike EA-LSM, HCA does not address a given optimization prob-
lem directly, but homogenizes the energy absorption all over the structure instead. This heuristic
criterion, however, turns out to yield very good topologies for a number of problems including
energy absorption maximization (Patel (2007)) and intrusion minimization (Bujny et al. (2017a);
Bandi et al. (2013)). This means that the optimization problems regarded here are not identical
and that the results are only in a limited manner comparable. This is justified, because there is,
to the knowledge of the author, no other method currently available enabling exact validations.
Therefore, HCA is proposed here as a suitable method for validating the EA-LSM approach on
the test cases described above. In this work, we use the commercial implementation of HCA from
LS-TaSC 3.21, which, to great extent follows the methodology proposed by Patel (2007). In all of
the cases, the default settings of the program are used.

In the simplified variant of the ESL method used in this work, the dynamic crash load is replaced
with a static force2 at the location of the contact between the impactor and the structure. Figure
8.3 depicts schematically the ESL counterpart of the crash case from Figure 8.1. In the next step,
the material model is replaced with the linear elastic one, with Young’s modulus of E = 7 · 104

[MPa] and Poisson ratio ν = 0.33. After that, a gradient-based SIMP approach as described in the

1 http://www.lstc.com/products/ls-tasc, retrieved January 17, 2020.
2 Due to the linearity of the system considered here for the ESL optimization, the actual magnitude of the force does

not matter. For any force level, the compliance minimization with a volume constraint leads to exactly the same final
topology.
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work of Sigmund (2014), with a filter size of 15 [mm] and the material penalization power p = 3,
is used to optimize the topology w.r.t. compliance.

Both of the state-of-the-art methods described above operate on densities3 of the finite elements
as the design variables. Since the densities can take any values in the range between 0 and 1, the
optimized topologies often contain elements with ambiguous, intermediate densities4. In order to
compare the topologies obtained with those methods and EA-LSM, the results have to be post-
processed to guarantee a 0-1 material distribution. To achieve that, we delete all the elements with
densities below a given threshold ρth and assign the full density to the rest of the elements. The
threshold ρth is chosen in such a way that the resulting design satisfies the specified volume or
mass constraint.

Figure 8.3 Equivalent static load for the crash case depicted in Figure 8.1.

8.1.1. Evolutionary level set method (EA-LSM)

In this section, properties of the standard EA-LSM, as described in Chapter 5, are investigated.
The general idea is to evaluate the performance of the method on different types of crash prob-
lems, including changing impact energy, impact velocity as well as the intrusion and acceleration
constraints. In addition, the impact of the mesh resolution on the final topologies is assessed. The
results described in this section are the base for evaluations of the extensions of EA-LSM, de-
scribed in Chapter 6. In all of the optimizations presented in this section, a representation with 16
MMCs is used. This results in a 40-dimensional optimization problem after imposing symmetry.
Consequently, a CMA-ES method with µ = 7 parent and λ = 15 offspring individuals is used.
The population sizes were determined according to the rules specified in Appendix B.2. The ini-
tial population is generated based on the reference design shown in Figure 5.9(a). The initial step
size for CMA-ES and the standard deviation used to distribute the initial population around the
reference design is set to σinit = 0.025.

3 The design variables used to scale the material properties such as mass density, Young’s modulus, yield strength,
or hardening modulus, are frequently referred to as element densities (Bendsøe and Sigmund (2004); Patel (2007)).
Please note that this is not equivalent to mass density of the material, although usually the density is used to scale the
mass density, as well.

4 To eliminate intermediate densities, penalization schemes such as SIMP (Bendsøe and Sigmund (2004)) are fre-
quently used in density-based TO. However, in many cases, they are still not sufficient to guarantee clear separation
of the material and void.

174 Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning



Mariusz Bujny

Validation of the method on intrusion minimization problem

At first, the intrusion minimization problem with 50% mass fraction constraint for the crash trans-
verse bending scenario is considered. In order to examine the sensitivity of EA-LSM to different
impact velocities (impact energies), corresponding to different levels of nonlinearity of the cost
function, optimizations are performed for initial impact velocities of 10, 20, and 40 [m/s]. The
mass of the impactor is kept constant. For each of the 3 impact velocities, 30 optimization runs are
carried out to allow for statistical evaluation of the results, accounting for the inherent randomness
of the algorithm.

Selected final designs out of the 90 optimization runs are depicted in Table 8.2. For each impact
velocity, the best designs are divided into 3 groups corresponding to different topology types,
most probably related to local optima of the optimization problem. The performance of the best
topologies under impact conditions is presented in Table 8.4.

The types of designs obtained with EA-LSM vary strongly with the changing impact velocity. This
questions the use of the ESL approach in general case and justifies the increased computational cost
of EA-LSM. For the impact velocity of 10 [m/s], the best design type corresponds to a ’supporting’
structure, with members in compression playing the most important role. For the 20 [m/s] impact
case, the thicknesses of the members in tension and compression are similar, representing therefore
a more ’balanced’ design. Finally, for 40 [m/s], the beams in tension play the most important role,
leading to a ’hanging’ structure. Those results are consistent with the ones presented by Buhl
et al. (2000), where the optimal designs for linear and nonlinear modeling, similar to some extent
to the crash cases considered here, were compared. To check the validity of the obtained results,
the performance of the best designs from EA-LSM was evaluated for all of the considered impact
velocities (Table 8.3). The comparison leads to a conclusion that the differences between the
structures optimized for different impact velocities are not related to the fact that EA-LSM finds
different local optima, but the designs optimized for a given velocity outperform significantly the
ones optimized for different impact velocities. Interestingly, the best design for the highest impact
velocity is the most robust one w.r.t. the variations of the impactor’s speed. What is more, Table
8.2 shows that the types of the optimized designs remain similar for different impact velocities, but
their relative performance changes with the velocity.

The results presented above demonstrate the ability of EA-LSM to optimize topologies for crash-
worthiness criteria, for different levels of nonlinearity associated with varying impact velocities
and reflected in different amounts of effective plastic strain. As for the linear elastic test cases, the
obtained designs exhibit certain structural diversity, corresponding to different local optima found
by the evolutionary optimizer.

In order to validate the obtained results, we compare the best EA-LSM designs with the ones ob-
tained with the state-of-the-art methods for crash TO – global ESL and HCA. The performance of
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Table 8.2 Comparison of the best designs obtained with EA-LSM for the intrusion minimization problem with different impact
velocities and a constant mass of the impactor (Bujny et al. (2017a)). Intrusions in mm. Designs within each group represent the
same type of topology, identified based on visual inspection.

EA-LSM designs in groups representing different (local) optima

Velocity Best optimum Second best optimum Third best optimum

10 [m/s]

Lowest intrusion: 5.18 Lowest intrusion: 5.22 Lowest intrusion: 5.24

20 [m/s]

Lowest intrusion: 15.01 Lowest intrusion: 15.22 Lowest intrusion: 15.37

40 [m/s]

Lowest intrusion: 51.30 Lowest intrusion: 51.79 Lowest intrusion: 53.76

the structures obtained with the three considered methods is evaluated based on nonlinear transient
FE simulations. The structures optimized with different methods are depicted in Table 8.5. In all
of the cases, the performances of the obtained structures are very similar. EA-LSM outperforms in
terms of maximal intrusions the global ESL for all impact velocities. As expected, once the plas-
ticity effects become stronger for the higher impact velocities, the intrusion difference between
EA-LSM and ESL rises up to 3.17 [mm] (over 6% increase w.r.t. EA-LSM) for the impact ve-
locity of 40 [m/s]. This is understandable, since the global ESL is meant to be used mainly for
the crash cases with very limited amount of plastic deformation (Duddeck et al. (2016)). For the
velocities of 10 and 20 [m/s], EA-LSM slightly outperforms HCA, while for 40 [m/s] the intrusion
of the impactor is ca. 0.2% lower for the HCA result. This is surprising since the HCA method

176 Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning



Mariusz Bujny

Table 8.3 Comparison of the best designs obtained with EA-LSM for constant impactor mass (Bujny et al. (2017a)). Percentage
values express growth of intrusion w.r.t. the design optimized for a given impact velocity.

Intrusion at different velocities

EA-LSM design Optimized for 10 [m/s] 20 [m/s] 40 [m/s]

10 [m/s] 5.18 [mm]
15.09 [mm]

+0.51%

53.48 [mm]

+4.25%

20 [m/s]
5.18 [mm]

+0.06%
15.01 [mm]

52.64 [mm]

+2.62%

40 [m/s]
5.27 [mm]

+1.70%

15.21 [mm]

+1.32%
51.30 [mm]

Table 8.4 Deformation of the best topologies obtained with EA-LSM under impact conditions with different velocities (Bujny
et al. (2017a)). Effective plastic strain and von Mises stress fields are shown on the deformed structures. The scales in each of the
plots are chosen independently to show clearly the variations in the distributions of the depicted fields.

State at the time of maximal intrusion

Velocity Effective plastic strain Von Mises stress [MPa]

After 1.25 [ms]

10 [m/s]

After 1.65 [ms]

20 [m/s]

After 2.65 [ms]

40 [m/s]

does not address the minimization of intrusion directly, but achieves it through a heuristic energy
homogenization criterion. In contrast, EA-LSM in this case tackles the intrusion minimization
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Table 8.5 Comparison of the best topologies obtained with EA-LSM, HCA, and global ESL for the intrusion minimization
problem.

Best designs obtained with different methods and their performance

Velocity EA-LSM HCA ESL

10 [m/s]
Intrusion: 5.18 [mm] Intrusion: 5.37 [mm] Intrusion: 5.21 [mm]

20 [m/s]
Intrusion: 15.01 [mm] Intrusion: 15.54 [mm] Intrusion: 15.58 [mm]

40 [m/s]
Intrusion: 51.30 [mm] Intrusion: 51.19 [mm] Intrusion: 54.40 [mm]

problem in a direct way, which results in higher computational costs and should lead to superior
performance of the obtained designs. Hypothetically, the reason for such situation lays in the
limited structural attainability of EA-LSM. More precisely, while HCA in the considered case op-
erates on 1600 design variables, representing the densities of the finite elements, EA-LSM uses
only 16 MMCs, corresponding to 40 design variables when a symmetry criterion is imposed. It
is visible from Table 8.5 that with such a coarse representation it is not possible to represent the
high complexity of the designs obtained with the HCA approach. One can note that with rising
impact velocity, the structures become more and more difficult to be represented with beam-like
components, explaining why HCA outperforms EA-LSM for the 40 [m/s] velocity. On the other
hand, HCA seems to be very good for the intrusion minimization problem (Bandi et al. (2013)).
It turns out that with rising impact velocity, the homogeneity of the effective plastic strain, corre-
lated with the internal energy, rises significantly for the best designs obtained with the EA-LSM
(Table 8.4). This partially explains why the design obtained with HCA method for 40 [m/s] impact
velocity performs so well. All in all, the following conclusions can be derived from the presented
results:

• HCA method performs very well for the intrusion minimization problem. Since it is associated
with very low computational costs, it is a preferred method for this type of problems.

• The performance of the structures obtained with EA-LSM would improve once the number of
MMCs is increased. In Section 7.1.1, we demonstrated on the linear elastic cantilever beam
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case that the performance of the structure can be improved by increasing the number of MMCs.
Therefore, EA-LSM should be still able to outperform HCA for all the cases, for the price of
higher computational costs.

Influence of impact velocity for constant impact energy

Since EA-LSM optimizes structures based directly on the nonlinear dynamic simulations, it takes
into account the inertial effects occurring in the crash events. In order to demonstrate the impor-
tance of this property, two additional impact scenarios are introduced. In these scenarios, the initial
velocity of the impactor is varied, but the impact energy is kept equal to the one from the reference
case, shown in Figure 8.1. We compare the topologies obtained with EA-LSM and the global ESL,
which neglects the inertial effects by introducing the replacement loads.

Table 8.6 Comparison of the best designs obtained using EA-LSM for constant impact energy (Bujny et al. (2017a)). Percentage
values express growth of intrusion w.r.t. the design optimized for a given impact velocity.

Intrusion at different velocities

EA-LSM design Optimized for 10 [m/s] 20 [m/s] 40 [m/s]

10 [m/s] 15.15 [mm]
15.04 [mm]

+0.17%

14.69 [mm]

+2.16%

20 [m/s]
15.15 [mm]

+0.01%
15.01 [mm]

14.57 [mm]

+1.38%

40 [m/s]
15.54 [mm]

+2.57%

15.38 [mm]

+2.48%
14.38 [mm]

The best designs (always out of 30) obtained with EA-LSM for different impact velocities are
presented in Table 8.6. The results show that the inertial effects have significant influence on the
type of topology that is found in the optimization. From the mechanical point of view, this time
the supporting structure turns out to be the best for the highest impact velocity. This is logical,
since this scenario corresponds to the lowest momentum of the impactor and involves comparably
small plastic deformations. This makes the problem similar to the 10 [m/s] case from the previous
section. What is more, this design is the least robust w.r.t. varying impact velocities (intrusion
growth w.r.t. reference case always above 2%). In contrast, the optimization case with 20 [m/s]
yields a balanced topology, absorbing impact energy in a much more uniform way (Bujny et al.
(2017a)).
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The comparison of the obtained results with the global ESL, presented in Table 8.7, confirms the
importance of the inertial effects; these results show that linear and static approaches for TO are
not capable to derive appropriate designs in cases where dynamic effects or stronger nonlineari-
ties become relevant. For all impact velocities, the structures optimized with EA-LSM perform
significantly better than the ones optimized with ESL.

Table 8.7 Comparison of the best topologies obtained with EA-LSM and global ESL for the intrusion minimization problem with
different impact velocities and constant impact energy.

Best designs obtained with different methods and their performance

Velocity EA-LSM ESL

10 [m/s]
Intrusion: 15.15 [mm] Intrusion: 15.71 [mm]

20 [m/s]
Intrusion: 15.01 [mm] Intrusion: 15.58 [mm]

40 [m/s]
Intrusion: 14.38 [mm] Intrusion: 15.00 [mm]

Influence of the mesh resolution

Similarly to the considerations regarding application of EA-LSM to optimization of linear elastic
structures, an analysis of the influence of the FE mesh resolution on the final topology is realized.
We perform this additional test due to the nonlinear character of the simulations considered in this
section, which might lead to a different outcome than in the linear elastic case.

The evaluation of the impact of the mesh resolution on the type of the obtained topology is based
on 15 independent optimization trials with mesh resolution doubled in each direction. This results
in an eight-fold increase of the number of elements in the FE model, from 1,600 to 12,800. The
best final topologies obtained with different FE mesh resolutions are compared in Table 8.8.

Similarly to the linear elastic case, the mesh resolution seems not to have a significant influence
on the type of topology developed by EA-LSM. This justifies the use of coarser meshes in the
analyses presented in this work in favor of computational efficiency.
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Table 8.8 Study of the influence of the mesh resolution on the optimized crash structures (Bujny et al. (2017a)). The best designs
obtained in 30 and 15 optimization runs with coarse and fine FE mesh, respectively. Test case with constant impactor mass.

Best EA-LSM designs for different mesh sizes

Impact velocity Mesh size: 80 x 20 x 1 Mesh size: 160 x 40 x 2

10 [m/s]

20 [m/s]

40 [m/s]

Mass minimization with intrusion and acceleration constraint

As shown in the previous sections, although EA-LSM can be used to solve the intrusion mini-
mization problem, considerably cheaper state-of-the-art methods yield structures of comparable
structural performance. However, real-world crashworthiness optimization problems are usually
highly constrained and frequently involve injury-related optimization criteria. This already limits
significantly the use of the state-of-the-art methods in the engineering practice.

Since EA-LSM does not make the heuristic assumptions about the properties of the optimization
problems the state-of-the-art methods do, it can optimize virtually any quantifiable objective func-
tions. Moreover, any number of constraints can be easily handled with the penalty methods, being
a clear advantage over the HCA approach. In this section, a more challenging scenario, aiming to
evaluate EA-LSM on optimization problems with more than one constraint, is considered.

In case of optimization of such structures as pillars, rockers, or side sills, it is crucial not only to
reduce the intrusion of the impactor into the structure, but also to keep the maximal acceleration
on a possibly low level. This is dictated mainly by biomechanical injury criteria, e.g. HIC. On
the other hand, the main objective of the lightweight structural design is the reduction of weight.
Therefore, in this section, we consider a problem of mass minimization with constraints on the
intrusion and maximal acceleration of the impactor. As in the previous sections, the transverse
bending scenario is used. The initial velocity of the impactor in all of the considered cases is set
to 20 [m/s]. For each of the four cases with the intrusion constraints of 15 [mm], 20 [mm], 25
[mm] and 30 [mm], 30 optimization runs are performed. In each case, a constraint on the maximal
acceleration calculated according to the following formula, is imposed:

areq = 1.1 · vinit
2

2dreq
, (8.3)
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where vinit is the initial velocity and dreq is the maximal allowed intrusion of the impactor. This
condition is motivated by the fact that in the ideal case, in order to minimize the maximal acceler-
ation for a given crash duration, the acceleration should be constant during the whole crash event,
until the impactor is stopped. Since it might be very challenging for the optimizer to fulfil this
condition, or even not feasible in general case, always an acceleration constraint on a level of 10%
higher than the constant one is chosen.

Table 8.9 shows the best topologies obtained with EA-LSM for each of the four cases. The perfor-
mance of the optimized designs in terms of intrusions and accelerations is presented in Figure 8.4.
The deformed structures and effective plastic strain distributions are shown in Figure 8.5. As can
be seen in Figure 8.4, the optimized structures exhibit the required behavior, meeting both of the
constraints. EA-LSM was able to come up with topologies showing favorable crash behavior for
the side pole impact, where the intrusion is limited, while the deceleration is kept almost constant
during the crash event.

Table 8.9 Comparison of the best designs obtained using EA-LSM for the mass minimization problem with the constrains on
intrusion and maximal absolute acceleration (Bujny et al. (2017a)).

Characteristics of the design

EA-LSM design Intrusion Maximal deceleration Mass

15 [mm] 1.4239 ·107 [mm/s2] 2.21 [kg]

20 [mm] 1.0566 ·107 [mm/s2] 1.65 [kg]

25 [mm] 8.6117 ·106 [mm/s2] 1.31 [kg]

30 [mm] 7.3057 ·106 [mm/s2] 1.11 [kg]

Obviously, with the relaxation of the intrusion constraint, the mass of the optimized structures de-
creases, being approximately inversely proportional to the allowed intrusion. The design concepts
change gradually from ’hanging’ to ’supporting’ structures as more intrusion is allowed, as well.
As shown in Figure 8.5, for high intrusions, EA-LSM develops structures with a two-phase crash
behavior, allowing for a further reduction of the maximal deceleration of the impactor. For in-
stance, in case of the structure optimized for 30 [mm] intrusion constraint, the first phase of crash
(until ca. 1.5 [ms]) involves similar deformations as in case of the designs optimized for minimal
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Figure 8.4 Intrusions and absolute accelerations for the best designs obtained with EA-LSM for the mass minimization problem
with constraints on intrusion and maximal absolute acceleration (Bujny et al. (2017a)). No numerical filters used.

(a) 15 mm intrusion constraint, after 2 ms (moment of
the highest intrusion).

(b) 20 mm intrusion constraint, after 2 ms (moment of
the highest intrusion).

(c) 25 mm intrusion constraint, after 1.5 ms. (d) 25 mm intrusion constraint, after 2.5 ms (moment of
the highest intrusion).

(e) 30 mm intrusion constraint, after 1.5 ms. (f) 30 mm intrusion constraint, after 3.5 ms (moment of
the highest intrusion).

Figure 8.5 Deformed structures and effective plastic strain distributions for the best designs obtained with EA-LSM for the mass
minimization problem with constraints on intrusion and maximal absolute acceleration (Bujny et al. (2017a)). The scales in each
of the plots are chosen independently to show clearly the variations in the distributions of the plastic strain fields.
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Table 8.10 Evaluation of the design obtained with the ESL method. The designs are optimized for minimal compliance with a
volume constraint to meet the masses of the designs optimized with EA-LSM (Table 8.9). The percentage values express the
growth of intrusion or peak acceleration w.r.t. the respective designs optimized with EA-LSM.

Characteristics of the design

ESL design Intrusion Maximal deceleration Mass

15.42 [mm]

+2.8%

1.468 ·107 [mm/s2]

+3.1%
2.21 [kg]

21.06 [mm]

+5.3%

1.0826 ·107 [mm/s2]

+2.5%
1.65 [kg]

25.14 [mm]

+0.6%

1.001 ·107 [mm/s2]

+16.2%
1.31 [kg]

30.37 [mm]

+1.2%

8.286 ·106 [mm/s2]

+13.4%
1.11 [kg]

intrusion (Table 8.4). In the second phase, however, the members in the bottom corners of design
space start to buckle, as well. The tendency towards the buckling behavior and lower masses of the
optimized structures would probably hold when further relaxing the intrusion constraint. For those
cases, using coarse FE meshes of solid elements would be no longer appropriate and alternative
evolutionary-based approaches, e.g. (Bujny et al. (2016a)), should be considered.

For comparison, the results obtained using the state-of-the-art ESL and HCA methods are pre-
sented in Tables 8.10 and 8.11, respectively. In case of the ESL approach, since the considered
optimization problem formulation cannot be used directly, the topologies were optimized for mini-
mal compliance with a volume constraint leading to the same masses as of the respective structures
from Table 8.9. Similarly, HCA method was used to meet the masses of the corresponding struc-
tures obtained with the EA-LSM approach.

The results presented above show that both ESL and HCA are unable to generate structures meeting
both of the constraints. Moreover, in most cases, the constraints are strongly violated and this
problem becomes more severe with relaxing the intrusion constraint. This is understandable, since
neither of these methods optimize the underlying problem directly, as EA-LSM does. The heuristic
assumptions used by the methods seem not to be valid for the considered case.
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Table 8.11 Evaluation of the design obtained with the HCA method. The designs are optimized using the heuristic energy
homogeneity criterion with a mass constraint to meet the masses of the designs optimized with EA-LSM (Table 8.9). The
percentage values express the growth of intrusion or peak acceleration w.r.t. the respective designs optimized with EA-LSM.

Characteristics of the design

HCA design Intrusion Maximal deceleration Mass

19.05 [mm]

+27.0%

1.4015 ·107 [mm/s2]

-1.6%
2.21 [kg]

22.46 [mm]

+12.3%

1.0145 ·107 [mm/s2]

-4.0%
1.65 [kg]

26.13 [mm]

+4.5%

1.1462 ·107 [mm/s2]

+33.1%
1.32 [kg]

33.07 [mm]

+10.2%

8.0582 ·106 [mm/s2]

+10.3%
1.11 [kg]

8.1.2. Hybrid evolutionary level set method (H-EA-LSM)

In this section, the H-EA-LSM, realizing the concept of gradient-enhanced evolutionary TO, is
evaluated based on a nonlinear dynamic crash scenario. In particular, we aim for answering the
question if an approximate gradient information obtained from a physical surrogate (equivalent
static case) or a pre-trained ML model can improve convergence properties of the evolutionary
search in a similar way as when an exact gradient information is available (Section 7.1.2).

In all of the cases discussed here, the intrusion minimization problem with a 50% volume/mass
constraint for the impact velocity of 20 [m/s] (Figure 8.1) is used. Similarly to Section 8.1.1,
the initial population is generated based on the reference design shown in Figure 5.9(a), using
a standard deviation of σinit = 0.025. For simplicity, we use a fixed step size s = 0.05 (design
variables normalized as described in Section 5.3.5) in the gradient-improvement step. In order
to minimize the influence of any additional mechanisms of EA-LSM (e.g. constraint handling)
on the comparison between the considered methods, we consider its simplest variant, without the
repair operators except the deletion of thin components, and transform the constrained problem
into unconstrained by penalizing the volume with use of a suitable Lagrange multiplier λV :

f (z) = dmax(z)+λVV (z), (8.4)

where f (z) is the cost function to be minimized.
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In the first part of this section, we evaluate the properties of H-EA-LSM using the compliance
gradient obtained with use of the global ESL method as an approximation of the gradient of in-
trusion ∂dmax

∂z in a dynamic crash case. In the second part, based on the samples collected via
finite-differencing, we train ML models of sensitivities and use them in an optimization of the
crash scenario with H-EA-LSM. This demonstrates the potential of data-driven sensitivity model-
ing, which is a generic approach that can be used when no suitable physical surrogate models can
be found.

Global equivalent static loads method

In order to obtain the approximate sensitivities via the global ESL approach, we consider the linear
elastic counterpart of the crash case (Figure 8.3). For this case, the gradient of the following cost
function is used as the approximation of ∂dmax

∂z :

fESL(z) =C(z)+λESLV (z), (8.5)

where λESL is again a suitable multiplier resulting in the required volume fraction (50%) for the
linear elastic case only. The analytical expressions for both ∂C

∂z and ∂V
∂z were given in Section

6.1.1.

Please note that the computation of approximate sensitivities in this case requires an additional
linear elastic FEA to compute the compliance C(z). However, in general case, the computational
cost of the static FE simulation can be assumed to be significantly smaller than that of the explicit
crash simulation. Since the individuals for the gradient improvement are selected randomly, the
hybrid approach requires exactly the same number of crash analyses per generation as the standard
EA-LSM. If an increase of convergence velocity can be obtained with this approach, the higher
computational costs due to the additional static simulation will be justified.

Finally, the approximate gradients are used in two variants of H-EA-LSM:

• H-EA-LSM-0.2-ESL – Hybrid ES(10,70) with a single step size and 20% of offspring individ-
uals selected randomly for the improvement with the approximate sensitivities.

• H-EA-LSM-0.5-ESL – Hybrid ES(10,70) with a single step size and 50% of offspring individ-
uals selected randomly for the improvement with the approximate sensitivities.

The algorithms mentioned above are compared against EA-LSM using standard ES(10,70) with a
single step size. The choice of the population sizes follows the general recommendations by Bäck
(1996). In order to focus on the evaluation of the influence of the approximate gradients on the
evolutionary search, the investigations in this section are narrowed down exclusively to the simple
variant of ES and its hybridizations.
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Figure 8.6 Convergence of the cost function in terms of optimization generations averaged over 30 runs of EA-LSM,
H-EA-LSM-0.2-ESL, and H-EA-LSM-0.5-ESL. The cost function is normalized with the initial value.

Figure 8.6 presents the convergence plots for each of the considered methods, averaged over 30
optimization runs. One can easily note the increase of convergence velocity due to utilization of
the approximate gradients, especially in the critical, initial phase of the optimization. For instance,
to reach a similar level of the cost function as H-EA-LSM-0.5-ESL after 10 generations, EA-
LSM needs almost twice as many generations, implying ca. 700 additional crash simulations.
After 30 generations, H-EA-LSM-0.5-ESL is almost 20 generations ahead of EA-LSM, implying
ca. 1400 less crash FEAs. Finally, the comparison between H-EA-LSM-0.2-ESL and H-EA-LSM-
0.5-ESL suggests that by increasing the fraction of gradient-improved individuals in the considered
optimization scenario, the convergence velocity can be generally improved. These results are
consistent with the ones obtained for the energy absorption maximization problem considered
in our previous works (Bujny (2015); Bujny et al. (2017b)), where even larger benefits due to
hybridization were obtained. Most probably, this effect was observed because of a much stronger
similarity between energy absorption and compliance gradients.

To investigate the distribution of the cost functions among the optimization runs, Figure 8.7 shows
box plots for each of the algorithms after 10, 30, and 200 generations. The plots confirm the
statements about the benefits of the hybrid approaches from above. A formal statistical evaluation
based on Wilcoxon test allows for rejection of the null hypothesis about equality of medians among
each of the methods at 5% significance level after 10, 30, and 200 generations. The only exception
is the comparison between H-EA-LSM-0.2-ESL and H-EA-LSM-0.5-ESL after 200 generations,
where the difference between medians is not statistically significant, implying that both of the
hybrid approaches yield designs of similar performance at the end of the optimization. Indeed, for
both of the hybrid approaches, in all of the 30 optimization runs, only designs of the type shown
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Figure 8.7 Distribution of the cost function values, in 30 optimization runs, after 10, 30, and 200 generations for EA-LSM,
H-EA-LSM-0.2-ESL, and H-EA-LSM-0.5-ESL. The cost function is normalized with the initial value. The line in center of each
box indicates the median, while the top and bottom edges of the boxes correspond to the 25th (q1) and 75th (q3) percentiles of the
normalized compliance values, respectively. The whiskers, represented using dash black lines, extend to the data points of the
highest and lowest compliance values, excluding outliers, which are marked using the red ’+’ symbol. The criterion for
classification of a point as an outlier requires it to be greater than q3 +1.5(q3−q1) or lower than q1−1.5(q3−q1).

in the first column, second row of Table 8.2 were obtained. In contrast, EA-LSM resulted in this
type of design only in ca. 50% of cases. Interestingly, running a gradient-based optimization for
the equivalent static problem only, with the same step size as used in the improvement step in H-
EA-LSM, resulted in an inferior design type, presented in the second row of Table 7.6. This shows
that H-EA-LSM is able to benefit from the gradient information, but at the same time, it has much
better global search properties compared to a pure gradient-based approach.

Finally, to give more insight into the utilization of the approximate gradients, Figures 8.8 and
8.9 show the average number of gradient-improved individuals selected as new parents and the
average frequency of the gradient-improved individual being the best, respectively. The algorithm
uses the gradient mainly in the initial phase of the optimization, up to ca. 20 generations, and
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Figure 8.8 Average number of gradient-improved individuals in the parent population. Results based on 30 optimization runs of
H-EA-LSM-0.2-ESL and H-EA-LSM-0.5-ESL.
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Figure 8.9 Average frequency of the gradient-improved individual being the best. Results based on 30 optimization runs of
H-EA-LSM-0.2-ESL and H-EA-LSM-0.5-ESL.

then the use of gradient gradually decreases. After ca. 30 generations, the ratio of the gradient-
improved individuals and non-improved ones in the parent population represents approximately
the frequency of gradient improvements in the offspring population. Around generation 100 the
number of gradient-improved individuals decreases almost to zero, indicating that the gradient-
improvements actually decrease the performance of individuals. To some extent, this might be
caused by the fixed step size in the gradient improvements, which does not allow for an accurate
fine-tuning of the final solution. This was also the case for the evaluation of H-EA-LSM on linear
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elastic cases (see Figure 7.18, Section 7.1.2). On the other hand, in the final optimization phase,
the ESL gradient might be just too inaccurate for the considered crash case.

To summarize, the use of approximate gradients from a physical surrogate such an ESL case can
improve the performance of an evolutionary-based search, which we demonstrated for the intrusion
minimization problem. In this case, the benefit from using approximate gradients was high espe-
cially at the beginning of the optimization. Later on, when gradient approximations were not ac-
curate enough, H-EA-LSM could successfully reject gradient-modified individuals. The obtained
result suggests that an adaptive strategy, where the frequency of gradient improvements would be
proportional to their success rate, would be an interesting future extension of the method.

Predicting sensitivities

For many objective functions and constraints considered in crashworthiness optimization, it is diffi-
cult to find an appropriate physical surrogate for the approximation of sensitivities. This motivates
a development of alternative approaches, using ML techniques. This section targets investigat-
ing the potential of using such an approach in H-EA-LSM. The data generation process as well
as the sensitivity models used here were developed within the master’s thesis of Krischer (2018),
supervised by the author of this dissertation.

The dataset of numerical sensitivities was obtained via three independent SD optimization runs
for the transverse bending problem with impact velocities of 20, 10, and 5 [m/s]. No symmetry
condition was imposed. In all of the cases, a fixed step size of s = 0.05 was used, and 50% volume
fraction was targeted via a dual optimization technique (Arora (2012)). All of the optimization
runs were restricted to 130 iterations. The sensitivity samples were obtained via the central finite
difference scheme, requiring additional 160 FE evaluations per optimization iteration. This re-
sulted in a total number of 6240 samples per model. Please note that the costly sampling process
is run just once, for a given objective function, and the trained ML models can be used for solving
multiple optimization problems at no additional cost.

In the next step, the sensitivity models, for each type of design variables, were fitted using a ran-
domly selected set of 5760 samples. For simplicity, only second order linear regression model
based on the Component State Features (CSFs) given by Equations (6.20) and (6.21) was consid-
ered. An initial investigation of the input features based on Spearman’s rank correlation coefficient
(Myers and Well (2003)) showed that the combined features corresponding to different coordinate
directions are not important. As a result, the CSFs containing combined terms, i.e. ue,iue, j with
i 6= j, were neglected, leading to a total number of 20 CSFs. The R2 values for the fitted models,
calculated on the remaining test samples, are shown in Table 8.12.

The accuracy of the obtained models is not very high. Probably, more complex models as well
as more training data would be needed to improve the results. However, one should note that the
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Table 8.12 R-squared values calculated on the test data for the sensitivity models trained by (Krischer (2018)).

Model

∂̃ f
∂x0

∂̃ f
∂y0

∂̃ f
∂θ

∂̃ f
∂ l

∂̃ f
∂ t

R2 0.10 0.37 0.21 0.24 0.66

models are used for prediction of individual components of the gradient ∇ f . As a result, the ac-
curacy of the predicted magnitudes of individual gradient components is of secondary meaning.
What counts for the gradient-based optimization is the accuracy of the prediction of the resul-
tant gradient, or, more precisely, only its direction. To evaluate that, Krischer (2018) carried out
gradient-based optimizations based on the gradient models. The resulting designs, together with
the reference solutions, are shown in Table 8.13.

Table 8.13 Final designs for gradient-based optimization with the Steepest Descent method using the pre-trained sensitivity
models (Krischer (2018)). Similarly to the problem considered in this section, a cost function of the form given by Equation (8.4)
was minimized. The load case shown in the second row of the table was never used during the sampling process.

Optimized design

Load case Reference solution SD using sensitivity models

The results show that, despite relatively low accuracy of the individual models, a pure-gradient
based optimization can lead to meaningful designs, comparable to the reference structures. This
shows the potential of the TO by predicting sensitivities (Aulig and Olhofer (2014b); Aulig (2017))
also for the MMC-based representation. However, the quality of the final designs, as well as the
oscillatory character of the performed optimization runs, suggest using the sensitivity models in
H-EA-LSM as a more promising approach.

Therefore, as a next step, 30 optimization runs for each of the following two hybrid approaches
were carried out:

Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning 191



Mariusz Bujny

• H-EA-LSM-0.2-PS – Hybrid ES(10,70) with a single step size and 20% of offspring individuals
selected randomly for the improvement with the approximate sensitivities.

• H-EA-LSM-0.5-PS – Hybrid ES(10,70) with a single step size and 50% of offspring individuals
selected randomly for the improvement with the approximate sensitivities.

The averaged convergence plots for EA-LSM, H-EA-LSM-0.2-PS, and H-EA-LSM-0.5-PS, is
shown in Figure 8.10. The corresponding box plots after 10, 30, and 100 generations are depicted
in Figure 8.11.
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Figure 8.10 Averaged convergence plots of the cost function in terms of optimization generations for EA-LSM,
H-EA-LSM-0.2-PS, and H-EA-LSM-0.5-PS . The cost function is normalized with the initial value.

The results show that, especially in the initial phase of the optimization, the hybrid approaches
converge faster than EA-LSM. A Wilcoxon rank sum test rejected the null hypothesis about the
equality of the medians among all of the methods after 10 generations at 5% significance level.
After 30 generations, there is no statistically significant difference between H-EA-LSM-0.2-PS
and H-EA-LSM-0.5-PS, but both hybrid approaches are significantly better than EA-LSM. Finally,
after 200 generations, there is no statistically significant difference among all of the considered
methods.

One can easily note that the performance of H-EA-LSM-0.5-PS deteriorates over time. This is
due to an inaccuracy of the gradient approximation in the final phase. Since a fixed fraction of
50% offspring individuals are affected by that, effectively, the optimizer can use only half of the
population, which deteriorates the search. For H-EA-LSM-0.2-PS, this effect is much less affect-
ing the optimization process. In fact, these unfavorable effects could be very easily eliminated at
no additional computational cost. For consistency with the optimization using the ESL approach,
as well as to keep the offspring population the same as in EA-LSM, the algorithm first mutates
the parent individuals to generate offspring, evaluates all of the offspring individuals to be able to
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(a) After 10 generations.
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(b) After 30 generations.
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(c) After 200 generations.

Figure 8.11 Distribution of the cost function values after 10, 30, and 100 generations for EA-LSM, H-EA-LSM-0.2-PS, and
H-EA-LSM-0.5-PS. The cost function is normalized with the initial value. The line in center of each box indicates the median,
while the top and bottom edges of the boxes correspond to the 25th (q1) and 75th (q3) percentiles of the normalized compliance
values, respectively. The whiskers, represented using dash black lines, extend to the data points of the highest and lowest
compliance values, excluding outliers, which are marked using the red ’+’ symbol. The criterion for classification of a point as an
outlier requires it to be greater than q3 +1.5(q3−q1) or lower than q1−1.5(q3−q1).

compute CFSs, and then improves a part of already evaluated population. The improved individ-
uals are evaluated again to take part in the selection step. One could simply replicate the mutated
(and already evaluated) individuals selected for improvement and perform gradient improvement
on the copies. As a result, with an extended offspring population, the performance of the hybrid
approaches would be always at least as good as EA-LSM. Since this section aims exclusively for
investigation of the addition of sensitivity models on the evolutionary search, this approach is not
studied here.

Interestingly, when comparing the final designs, the best topology type (first column, second row,
Table 8.2) was reached by H-EA-LSM-0.5-PS in ca. 90% of cases, while for H-EA-LSM-0.2-PS in
80% of cases. As mentioned in the previous section, EA-LSM came up with this design only in ca.
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50% of cases. This suggests that the inaccurate gradients introduce only some oscillations of the
objective function for H-EA-LSM-0.5-PS, but the global search properties of this strategy are still
the best. As suggested before, an adaptive strategy for choosing the fraction of gradient-improved
individuals could be very promising here, as well.

All in all, in this section, we showed that ML can be used to model the gradients of intrusion w.r.t.
the parameters of MMCs, thus providing a generic approach for sensitivity modeling. The H-EA-
LSM approach offers the possibility to benefit from the approximate gradients, even when their
accuracy is limited. In the future, one could consider also using several different gradient approx-
imations without a negative influence on the optimization process. However, more experiments
would be needed to show that the sensitivity models can be obtained for arbitrary optimization
criteria.

8.1.3. Kriging-guided level set method (KG-LSM)

This section continues the experimental evaluation of KG-LSM, started in Section 7.1.3. In par-
ticular, the examples studied below aim for answering the question of feasibility of using such an
approach in TO of nonlinear crash cases.

Similarly to Section 7.1.3, the results presented here are based on the master’s thesis of Raponi
(2017), supervised by the author of this dissertation, and the following conference and journal
publications (Raponi et al. (2017, 2019a)).

To evaluate KG-LSM on nonlinear crash cases, the transverse bending example as described at the
beginning of this chapter (Figure 8.1) is used. The performance of the method is tested based on a
level-set parametrization using 6 MMCs, with a symmetry condition as shown in Figure 8.12. In
the considered case, all of the parameters defining MMCs are changed by the optimizer, resulting
in a total number of 15 design variables. Additionally, CEI is used to enforce the 50% volume
fraction constraint. To guarantee sampling of only meaningful designs, the structural feasibility
constraint requires connectivity of the topology to the left and the right support (Figure 8.1). As a
result, out of 200 candidate sample points generated using OLHS, on average, in 30 optimization
runs, only 35 samples are evaluated using FE simulations and used for fitting the initial surrogate
model.

Figure 8.12 Reference design for the transverse bending crash problem with 15 design variables (Raponi (2017); Raponi et al.
(2019a)).
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For comparison, the EA-LSM algorithm using CMA-ES with µ = 6 parent and λ = 12 offspring
individuals (see Appendix B.2) is used. By default, the initial population is created based on the
reference design shown in Figure 8.12. Additionally, KG-LSM is compared against EA-LSM using
the best design found during the DoE phase of KG-LSM as a reference for creation of the initial
population. This strategy is referred to as DoE-EA-LSM. Due to the non-deterministic character
of all of the methods discussed here, for KG-LSM, EA-LSM, and DoE-EA-LSM, 30 optimization
runs are performed and the averaged results are used for comparison. The performance of the
methods is compared in terms of evaluations, assuming a fixed budged of 500 FE simulations.
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Figure 8.13 Comparison of the convergence behavior of KG-LSM, EA-LSM, as well as DoE-EA-LSM (EA-LSM using the best
design from the DoE as the initial reference design) on a crash optimization problem with 15 design variables, averaged over 30
optimization runs (Raponi et al. (2019a)). The values of the cost function are normalized based on the performance of the
reference design (Figure 8.12). Additionally, the evolution of the best designs out of 30 runs for each of the algorithms is shown
(background colors corresponding to the curves).

Figure 8.13 presents the averaged convergence plots. The results show that KG-LSM converges
on average considerably faster than both, EA-LSM as well as DoE-EA-LSM. The latter suggests
that the better performance of KG-LSM is independent of the superiority of the designs found in
the DoE phase over the reference design used for the initialization of EA-LSM. The distribution
of the values of the cost functions for all of the 90 optimization runs are summarized in a form of
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box plots shown in Figure 8.14. The statistical comparison of the methods after 100, 250, and 500
evaluations, based on the Wilcoxon rank sum test (Gibbons and Chakraborti (2011)), allows for
rejection of the null hypothesis about equality of the medians for KG-LSM and EA-LSM, as well
as KG-LSM and DoE-EA-LSM, which confirms superiority of KG-LSM for the considered test
case.
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(a) After 100 evaluations.
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Figure 8.14 Box plots for 30 optimization runs of KG-LSM, EA-LSM, and DoE-EA-LSM (Raponi et al. (2019a)). The values of
the cost function are normalized based on the performance of the reference design (Figure 8.12). The line in center of each box
indicates the median, while the top and bottom edges of the boxes correspond to the 25th (q1) and 75th (q3) percentiles of the
normalized compliance values, respectively. The whiskers, represented using dash black lines, extend to the data points of the
highest and lowest compliance values, excluding outliers, which are marked using the red ’+’ symbol. The criterion for
classification of a point as an outlier requires it to be greater than q3 +1.5(q3−q1) or lower than q1−1.5(q3−q1).

Finally, Table 8.14 shows the main types of topologies found in 30 optimization runs of each of
the methods. Additionally, based on visual inspection, the frequency of obtaining each of the
topology type by different methods is calculated. The results show that KG-LSM is able to find
much more frequently the superior design types. In contrast, EA-LSM and DoE-EA-LSM much
more often end up in local optima of considerably worse performance. One should note also the
qualitative differences between the most frequent designs obtained in this section and the previous
results for EA-LSM, presented in Section 8.1.1 (Table 8.2). Most probably, this results from the
reduced dimensionality of the representation used in this section. The structural attainability of
the representation using 6 MMC is considerably lower than for the one using 16 MMCs. As a
result, the relative performance of similar design concepts with two different representations can
change, which seems to be the case when comparing Table 8.14 and Table 8.2 (designs for the
initial velocity of 20 [m/s]).

The results presented in this section show that KG-LSM can be successfully used in the optimiza-
tion on nonlinear crash problems with a limited number of design variables. The surrogate-assisted
approach outperforms considerably EA-LSM in terms of both, convergence velocity and the qual-
ity of the final designs. In fact, this is quite surprising in the context of the evaluation of KG-LSM
on the linear elastic case with 15 design variables, discussed in Section 7.1.3, where, especially in

196 Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning



Mariusz Bujny

Table 8.14 Three dominant topology types obtained with KG-LSM, EA-LSM, and DoE-EA-LSM, and the frequency with which
they occur in 30 optimization runs. The topologies are ordered starting from the best performing designs on the top to the worst
ones at the bottom (Raponi et al. (2019a)).

Method

Topology type KG-LSM EA-LSM DoE-EA-LSM

3% 0% 3%

23% 7% 13%

17% 57% 23%

the final phase of the optimization, it was performing considerably worse than EA-LSM. Poten-
tially, this might be associated with the stronger multi-modality of the crash problem (Raponi et al.
(2019a)). EA-LSM distributes the initial population of individuals around the reference design and
performs a much more local search than KG-LSM. As a result, for highly multi-modal problems,
it might fail to locate the superior optima much more frequently than KG-LSM.

All in all, KG-LSM seems to be suitable for solving crash TO problems. Thanks to its superior
performance in terms of (potentially very costly) evaluations, it is very promising in the context
of industrial applications, where the budget of FE simulations is often heavily restricted. The
main limitation of the method, as demonstrated in Section 7.1.3, remains the dimensionality of the
optimization problems, which should be kept on the minimal level providing satisfactory structural
attainability for identification of novel design concepts.

8.1.4. Adaptive evolutionary level set method (A-EA-LSM)

This section discusses briefly an application of the A-EA-LSM to a crash problem. The main
goal here is to investigate if such an approach is suitable for this type of problems and understand
the overall optimization process. Again, we consider the transverse bending problem with 50%
volume fraction constraint and the initial velocity of impactor of 20 [m/s].

Following the data generation procedure described in Section 7.1.4, resulting in a total number
of 129,941 samples, and using the same parameters as for the linear elastic problem (Table 7.13,
Section 7.1.4), a neural network classifier was trained for the pairwise comparison task. The
accuracy of the network’s predictions on the test data, corresponding to 10% of the total number
of samples, reached 79%. The classifier was used for the prediction of the ranking of topology
variations in A-EA-LSM.
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Figure 8.15 shows the convergence of the normalized intrusion for an exemplary optimization run.
The configuration of the optimization problem for this case follows the one for the static problem,
given in Table 7.12. The corresponding illustration of different species during the optimization run
is presented in Figure 8.16.
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Figure 8.15 Convergence plot of the intrusion normalized with the initial value for an exemplary optimization run of A-EA-LSM
for a crash problem.

Figure 8.16 An exemplary run of the A-EA-LSM with the learning-based topology variations illustrating the working principles
of the method for a crash problem. Visualization of speciation during the optimization with color-coded species (top). Topologies
are divided into species depending on the number of components specified in the legend. The final best design is shown in a
dashed frame.

One can easily note a very fast descent of the intrusion in the initial phase of the optimization. In
that phase, the optimizer can take advantage of the low-dimensional parametrization of the design
as well as benefit from the first topology variation. Within the first 20 generations, the optimizer
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finds already a good design in the lower-dimensional search space. Subsequent topology variations
are hardly able to improve the objective, although they gradually lead to topologies qualitatively
more similar to the solutions known from the high-dimensional parametrizations (Table 8.2). The
final design is close, but not identical to the optima found by a pure EA-LSM (Table 8.2). Perhaps,
for a rising number of feasible edge-node combinations, the accuracy of the classifier performing
pairwise comparisons is not high enough to predict the necessary intermediate topology varia-
tions. However, please note that the predicted topology variations (Figure 8.16) are meaningful
from the mechanical point of view. The accuracy of the ranking prediction could be potentially
improved by collecting more data, training more complex ML models, or including more input
features. On the other hand, using exclusively the information about the structural state of a given
node and edge might be not sufficient to judge where to introduce the topology variation. In this
case, the information about the overall state of the structure might be necessary. To address that,
initial experiments with use of Convolutional Neural Networks (CNNs) (Bishop (2007)) led to
some promising results, but more investigations would be needed to prove the usefulness of such
an approach. Another problem associated with the solution based on CNNs is a very large amount
of data needed for training the models. Finally, there might be a more fundamental problem as-
sociated with the use of adaptive schemes in TO. Namely, it is not clear if an optimal design can
be always reached be performing a single topology variation at a time. In fact, it might frequently
happen that a transition from a simpler (good) design to a more complex (very good) design re-
quires an intermediate topology, whose performance would be considerably worse than the one of
the simplest design. The adaptive approach in the form proposed in this work would simply reject
the intermediate (bad) design, as it happens for the third topology variation shown in Figure 8.16,
and would not allow for the transition to the desired (complex) topology. Interestingly, this prob-
ably happens also for the state-of-the art GHA method (Ortmann and Schumacher (2013)), but,
since, to the best of our knowledge, GHA was never evaluated on linear elastic or crash problems
with known reference solutions, this cannot be explicitly shown. Anyway, in the practical context,
one wants just to improve the current design and not necessarily find the global optimum, which
can accomplished both by GHA and A-EA-LSM. The main advantage of the approach proposed in
this work is its generic character, with the rules not based on the expert knowledge, but extracted
explicitly from the sampled data with use of ML models.

To summarize, in this section, we demonstrated that A-EA-LSM can improve the performance
of crash structures through successive adaptations of the representation. Thanks to the low ini-
tial dimensionality of the optimization problem, it can converge very fast at the beginning of the
optimization process. The predictions of topology variations with an ML model lead to gradual
improvements of the design. However, it is not clear if this type of approach can lead to structures
identical to the ones obtained with EA-LSM and more investigations are necessary to evaluate
that.
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8.2. Three-dimensional topology optimization for crashworthiness

In the following section, 3D variant of EA-LSM, as described in Chapter 5, is evaluated on a
crash optimization problem with 144 design variables. This section aims to demonstrate the ability
of EA-LSM to solve strongly nonlinear, high-dimensional crash TO problems in 3D. This type
of problems, to the best of our knowledge, has never been addressed with use of evolutionary
optimization methods in the literature. As a result, experimental verification of the proposed opti-
mization concept would be valuable to demonstrate its potential.

8.2.1. Optimization problem

The experiments are carried out based on the test case depicted in Figure 8.17. As in case of the
2D optimizations, the test case is inspired by the side pole impact from the Euro NCAP. In the
optimized scenario, a rigid pole impacts in the middle of a beam structure, clamped at both ends.
The whole beam constitutes the design domain, which is occupied by 3D MMCs, constrained by
two symmetry planes as shown in Figure 8.17 (dashed lines). Initially, the MMCs are distributed
as shown in Figure 8.18. The FE model used in the optimizations is presented in Figure 8.19. It
is the same model as in the work of Aulig et al. (2015), with different boundary conditions. The
setup of the test case is defined in Table 8.15 and 8.16.

v

600

5
0

34.6

Figure 8.17 Design domain and boundary conditions for the 3D nonlinear dynamic transverse bending crash case. Dimensioning
in mm. Dashed lines indicate the location of the symmetry constraints applied to the distributions of MMCs.

In contrast to Section 8.1, only the intrusion minimization problem with a mass constraint is con-
sidered. The formal definition of the optimization problems considered here is identical to the one
given by Equation (8.1).

In all of the considered cases, a 50% mass fraction constraint is considered. The tests are carried
out for three different impact energy levels: 409 [J], 2000 [J], and 10000 [J], resulting in different
amounts of plastic deformation. Different impact energies are obtained by scaling the mass of the
impactor, while keeping the impact velocity constant, i.e. equal to 20 [m/s].

For the comparison of the results obtained in this section, both HCA and a simple variant of the
(global) ESL method are used. As shown already in Section 8.1, both HCA and ESL perform very
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(a) Axonometric view.

(b) Front view.

(c) Top view.

Figure 8.18 0th LSF iso-contour for the initial design used in the 3D nonlinear dynamic transverse bending crash case.

Figure 8.19 FE model used in the simulations of the 3D nonlinear dynamic transverse bending crash.

well on this type of problems, therefore they are suitable for validation of the results obtained with
EA-LSM. The optimizations with the HCA method are carried out with use of LS-TaSC 3.2, with
the default settings. The post-processing of the TO results follows the method described in Section
8.1.

Similarly to the approach described in Section 8.1, in the simple version of the ESL method, we
replace the dynamic crash load with a distributed load on the segment corresponding to the location
of the contact between the structure and the impactor in the dynamic crash scenario. The FE model
with the boundary conditions after the simplification is depicted in Figure 8.20. The material model
is changed to the linear elastic, with Young’s modulus of E = 2.7 · 103 [MPa] and Poisson ratio
ν = 0.33. Based on the simplified model, the topology is optimized with use of the gradient-
based SIMP approach with a filter size of 15 [mm] and the material penalization power p = 3.
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Table 8.15 Setup of the nonlinear dynamic 3D crash test case. For simplicity, the strain rate dependency is not considered here.

Property Symbol Value Unit

Initial pole velocity v 20.0 m/s

Pole mass mp 10.0 kg

Total mass of the design domain mtot 4.05 kg

Required structure mass mreq 2.025 kg

Mesh resolution - 120 x 10 x 10 -

Solver - LS-DYNA R7.1.1 -

Element formulation ELFORM Constant stress solid element -

Since the considered optimization problem cannot be addressed directly, the method optimizes the
structure to achieve the minimal compliance. As for the HCA method, the optimized structure
is post-processed using the approach described in Section 8.1. Finally, the performance of the
resulting topology is evaluated on the nonlinear dynamic crash case as defined at the beginning of
this section.

Figure 8.20 Boundary conditions for the ESL case corresponding to the considered crash problem.

8.2.2. Results

The structures optimized with EA-LSM, in five independent optimization runs, for the impact
energy of 409 [J] are presented in Table 8.17. For this scenario, EA-LSM based on a standard
ES(6,39) with µ = 6 parent and λ = 39 offspring individuals was used5. As in the case of the 3D

5 The dimensionality of the optimization problems considered in this section is identical to the one for the static 3D
cases (Section 7.2). Therefore, the same population sizes were used and are justified in Section 7.2.
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Table 8.16 Material model used in the nonlinear dynamic 3D crash test case. For simplicity, the strain rate dependency is not
considered here. A more realistic hardening model than for the 2D cases, consistent with the test cases considered in the literature
(Aulig et al. (2015, 2018); Ramnath et al. (2019)) is used.

Property Symbol Value Unit

Material model of the structure - Piecewise linear plasticity -

LS-Dyna material keyword (structure) - *MAT_024 (LSTC (2014)) -

Mass density ρm 2.7 ·103 kg/m3

Young’s modulus E 7.0 ·104 MPa

Poisson’s ratio ν 0.33 -

Yield strength Re 180.0 MPa

Effective plastic strain Effective stress [MPa]

0.01 190.0

0.02 197.0

0.05 211.5

0.10 225.8

0.15 233.6

0.20 238.5

0.40 248.5

optimizations for linear elasticity, each of the runs resulted in a distinct structural concept, with
intrusions ranging from 6.81 to 7.14 [mm]. The best design concept considerably differs from the
ones obtained with HCA and ESL, shown in Table 8.18. The intrusions of the impactor for the de-
signs obtained with HCA and ESL are by 3.2% and 4.3% higher than for the best design optimized
with EA-LSM, respectively. This shows that EA-LSM can be successfully used for optimization
of 3D crash structures and can lead to better structures than the ones obtained with state-of-the-art
methods. However, as shown in Figure 8.21, the deformation of the structures at the moments of
the highest intrusions among all the structures is very small. In fact, the structure reacts mostly
elastically, so this load case is very similar to the static one. Surprisingly, the obtained results show
that even for this case, EA-LSM outperforms considerably the ESL approach, so the dynamic ef-
fects play an important role even in the cases where very limited amount of plastic deformation
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Table 8.17 Final designs in five independent EA-LSM runs with ES(6,39) for the impact energy of 409 [J].

Intrusion [mm] FE mesh

6.81

6.94

7.07

7.11

7.14

appears. In fact, the second and the third best design for EA-LSM exhibit high similarity to the
structure obtained with the ESL method, suggesting that ESL might produce a design close to a
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local optimum for the considered dynamic problem.

Table 8.18 Comparison of the best EA-LSM design out of five independent optimization runs with ES(6,39) and the structures
obtained with HCA and ESL for the same mass fraction. Results for the impact energy of 409 [J]. The values in parentheses
express the percentage growth of intrusion w.r.t. the EA-LSM design.

Method Intrusion [mm] FE mesh

EA-LSM 6.81

HCA 7.03 (+3.2%)

ESL 7.10 (+4.3%)

(a) EA-LSM (b) HCA (c) ESL

Figure 8.21 Deformation of the topologies optimized using EA-LSM, HCA, and ESL, for the 3D transverse bending crash
problem at the moment of the highest intrusion of the impactor. Results for the impact energy of 409 [J].

In order to evaluate the potential of EA-LSM for optimization of 3D structures with larger amounts
of plastic deformation, the impact energy was increased to 2000 [J]. For this test case, again, we use
the ES(6,39) in five independent optimization runs. A comparison of the best design obtained with
EA-LSM with the ones generated with HCA and ESL is presented in Table 8.19. The deformed
structures at the point of the highest intrusion (after ca. 3 [ms]) are presented in Figure 8.22. It turns
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out that EA-LSM and HCA produce similar structures with comparable intrusions (difference less
than 1%). The very good performance of the HCA algorithm might be surprising, but it has already
showed very good performance on the intrusion minimization problems presented in Section 8.1.
On the other hand, EA-LSM is strongly limited on the representation level and could possibly yield
much better results for a higher number of MMCs. In contrast, the topology obtained with use of
the ESL performs almost 6% worse than the best design obtained with EA-LSM.

Table 8.19 Comparison of the best EA-LSM design out of five independent optimization runs with ES(6,39) and the structures
obtained with HCA and ESL for the same mass fraction. Results for the impact energy of 2000 [J]. The values in parentheses
express the percentage growth of intrusion w.r.t. the EA-LSM design.

Method Intrusion [mm] FE mesh

EA-LSM 25.67

HCA 25.46 (-0.8%)

ESL 27.23 (+6.1%)

(a) EA-LSM (b) HCA (c) ESL

Figure 8.22 Deformation of the topologies optimized using EA-LSM, HCA, and ESL, for the 3D transverse bending crash
problem at the moment of the highest intrusion of the impactor. Results for the impact energy of 2000 [J].

One should note that the optimized designs changed considerably compared to the structures ob-
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tained for the lowest impact energy (Table 8.18). In, fact the last design from Table 8.17 exhibits
some similarity to the best design in Table 8.19, showing a similar tendency as observed for 2D
structures, where, for different impact energies, similar local optima were always found, but their
relative performance was changing.

Table 8.20 Comparison of the best EA-LSM design out of five independent optimization runs with ES(6,39) and the structures
obtained with HCA and ESL for the same mass fraction. Results for the impact energy of 10000 [J]. The values in parentheses
express the percentage growth of intrusion w.r.t. the EA-LSM design.

Method Intrusion [mm] FE mesh

EA-LSM 81.7

HCA 81.2 (-0.6%)

ESL 94.5 (+15.6%)

(a) EA-LSM (b) HCA (c) ESL

Figure 8.23 Deformation of the topologies optimized using EA-LSM, HCA, and ESL, for the 3D transverse bending crash
problem at the moment of the highest intrusion of the impactor. Results for the impact energy of 10000 [J].

Finally, in order to evaluate the performance of EA-LSM on highly nonlinear 3D crash cases,
the impact scenario with energy of 10000 [J] was considered. The best design obtained in five
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independent optimization runs is shown and compared with HCA and ESL in Table 8.20. One can
easily note a strong change in the types of designs obtained with EA-LSM and HCA. Again, for
the considered objective, HCA provides very good results, showing that it is suitable for solving
problems where very stiff structures are required. The difference in terms of intrusion for the
structures obtained with EA-LSM and HCA stays below 1%. Most probably, the results with EA-
LSM could be considerably improved if more MMCs were used. When it comes to the design
obtained with the ESL approach, the intrusion is over 15% higher than for EA-LSM and HCA,
showing that it is not a suitable approach for the considered case. Finally, Figure 8.23 shows the
optimized structures at the moments of the highest intrusions of the impactor. In this case, the
intrusion is almost two times higher than the overall height of the beam, exhibiting considerable
amounts of plastic deformation.

To summarize this section, the results show that EA-LSM can be successfully used in optimization
of 3D crash structures involving highly nonlinear dynamic behavior. Though the problem dimen-
sionality for 3D TO is very high (144 design variables), the method can be still applied utilizing
extensive parallelization of computations. Irrespective of the involved nonlinearities, resulting
from different impact energies, the number of evaluations necessary to converge (ca. 6000) is
comparable to the one for the 3D static optimization problems of the same dimensionality (Section
7.2). Finally, the comparison of the structures optimized with ESL approach and EA-LSM show
that the dynamic effects are very important and the explicit FE crash simulations should be used
during the optimization to obtain satisfactory results.

8.3. Summary

This chapter shows the applicability of the EA-LSM and its extensions: H-EA-LSM, KG-LSM,
and A-EA-LSM, for nonlinear crash problems, based on high-fidelity explicit FE simulations. 2D
and 3D versions of a transverse-bending crash problem, frequently studied in literature, are used
to evaluate the properties of the proposed methods.

First of all, we show that the 2D version of EA-LSM is able to generate structures superior to the
ones obtained with the state-of-the-art methods – HCA and ESL. Hence, the increased computa-
tional costs related to EA-LSM can be justified by the better performance of the resulting designs.
However, in case of the considered intrusion minimization problems, the differences between EA-
LSM and HCA are often very small, showing only that the inertial and nonlinear effects play an
important role, and consequently, indicating the need for using nonlinear crash simulations in the
optimization process. Nevertheless, in case of the mass minimization problems with intrusion and
acceleration constraints, the differences between EA-LSM and both, HCA and ESL, become much
more significant, showing that for such problems the heuristic assumptions used by the state-of-
the-art methods are no longer applicable.
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In the second part of the chapter, we show the usefulness of the ML-based enhancements of EA-
LSM on the intrusion minimization problem. Firstly, we demonstrate how the approximate gradi-
ent information from physical and mathematical surrogates can increase the convergence velocity
and the quality of the obtained structures in the H-EA-LSM approach. Especially in the initial
phase of the optimization, H-EA-LSM can strongly benefit from the approximate gradients, reduc-
ing significantly the number of iterations required to reach similar performance as EA-LSM. When
the gradient information is not accurate enough, the proposed approach can successfully limit its
negative influence on the optimization process. Secondly, we evaluate the KG-LSM approach,
which uses ML for modeling of the crash responses considered in the optimization. The obtained
results show that the number of FE evaluations can be significantly reduced compared to EA-LSM,
provided that the dimensionality of the optimization problem is kept on a low level. This result is
very promising especially in the context of applications of KG-LSM to very expensive crash opti-
mization problems. Thirdly, we investigate the applicability of the concept of optimization based
on adaptive representation and learning-based topology variations using A-EA-LSM. Although
the obtained topology differs from the designs optimized using EA-LSM, A-EA-LSM takes ad-
vantage of the low dimensionality of the representation and converges fast in the initial phase of
the optimization.

Finally, the applicability of EA-LSM to high-dimensional optimization problems, resulting from
3D MMC parametrization, is demonstrated. For the considered intrusion minimization crash cases,
with three different impact energy levels, qualitatively similar structures to the ones optimized with
HCA were obtained, showing the validity of the proposed approach. However, for the lowest im-
pact energy, EA-LSM yielded a considerably different design concept, superior to the one coming
from HCA. In all of the cases, both EA-LSM and HCA were able to generate considerably better
designs than ESL, with intrusion difference reaching over 15% for the highest impact energy.

All in all, we conclude that EA-LSM and its extensions are capable of solving academic nonlinear
crash TO problems. Due to the generic character of the proposed methods, also other problems
in structural TO could be also potentially addressed using those approaches. The increased com-
putational costs of EA-LSM are justified by the superior performance of the obtained topologies
compared to the ones generated with the state-of-the-art methods, and can be further reduced using
ML-based enhancements.
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Chapter 9

Industrial applications with EA-LSM

This chapter presents an application of the EA-LSM to a challenging, real-world optimization
problem. Due to the rising interest of the industry in the metal Additive Manufacturing (AM) tech-
nology, a design of a hybrid S-rail concept structure, composed of an energy-absorbing, thin-walled
tube and a 3D-printed metal joint, was considered as an interesting and suitable optimization sce-
nario, exhibiting similar complexity as encountered in industrial optimization problems. The axial
impact case considered here belongs to one of the most difficult problems in crashworthiness opti-
mization, incorporating high noisiness and discontinuity of the responses, considered as objectives
and constraints. Together with a very high dimensionality of the optimization problem, all of the
aspects mentioned above make the considerations presented in this chapter relevant for addressing
the research question of feasibility of using EA-LSM for large-scale industrial applications. All
of the obtained structures are compared with the designs optimized using state-of-the-art methods
for crash optimization – the ESL method and the HCA approach. The robustness of the obtained
solutions w.r.t. the changing boundary conditions is studied, as well.

The chapter is structured as follows: Section 9.1 discusses concept 3D-printed crash structures
proposed recently in the automotive industry, which inspired the test cases used for the optimiza-
tion in this chapter. The test cases as well as the exact setup of the optimization algorithms are
presented in Section 9.2. In Section 9.3, the results of the first optimization problem, aiming for
minimization of mass subject to a displacement constraint of a joint, are described and analyzed.
Subsequently, in Section 9.4, a scenario with modified boundary conditions is studied to evaluate
the robustness of the optimized structures. Finally, Section 9.5 describes the second optimization
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case, striving for a minimal mass of the joint with a constraint on the peak deceleration of the
impactor. Section 9.6 summarizes the chapter.

9.1. Concept crash structures using additive manufacturing

AM, also called 3D printing, is a technology promising a lot in terms of efficient utilization of
material in design engineering. In particular, due to the minimal limitations on the shapes that
can be manufactured with this technology, it is seen as a great solution for the manufacturing of
parts generated with use of TO. Recent developments in the field of metal 3D printing, including
efficient simulation methods of the manufacturing process, allow for production of functional parts
in a wide spectrum of applications, i.a. in aerospace, automotive, civil, and medical engineering
(Gibson et al. (2015)). 3D printing allows for significant reduction of the number of parts com-
pared to subtractive manufacturing, resulting in a much easier assembly process and consequently,
much shorter production cycles. What is more, the possibility to manufacture parts of very high
complexity opens the potential of integrating multiple functions into the 3D-printed components,
resulting in innovative designs with superior properties. Although currently AM is seen rather
as a technology applicable mainly in a unit production and prototyping, the manufacturing costs
continue to decrease, offering a potential for using metal 3D printing in serial production. Com-
pared to 2017, the costs of the whole manufacturing process with metal 3D printing technology
are expected to decrease by 38% by 2020 and by 79% by 2026 (Canisius (2017)).

(a) 3D-printed VW Caddy front-end structure de-
veloped within the 3i-PRINT project.

(b) Hybrid space frame concept by LZN, EDAG,
BLM and Concept Laser (LZN (2017)).

Figure 9.1 Concept crash-relevant vehicle structures manufactured using metal 3D printing.

Despite the uncertainty regarding the potential of applying AM in serial production, the inter-
est of the industry in this technology, including automotive sector, tends to grow, reflecting in a
continuous growth of the AM market. In particular, the issue of applying metal 3D printing to
the manufacturing of the components relevant for crash performance of the car seems to be very

212 Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning



Mariusz Bujny

compelling. Interesting crash-relevant concept structures manufactured using metal 3D printing,
presented recently by 3i-PRINT1 and the Laser Zentrum Nord (LZN (2017)), are shown in Figure
9.1.

In the first case (Figure 9.1(a)), the entire front structure of the VW Caddy was 3D-printed in
separate parts and joined together with 59 welding seams. An industrial metal 3D printing system
EOS M 400 was used for manufacturing of the individual parts. The entire structure was fabricated
using the Scalmalloy® aluminum alloy, known for its high strength, fracture-resistance, and very
good weldability. The frame was designed based on the results from TO taking into account several
real-world load cases. The structure fulfills current requirements regarding crash and vehicle safety
as well as thermal management functions. The total weight of the complete frame concept before
connecting the individual parts was reduced to 34 [kg], which shows a great potential for using 3D
printing in manufacturing of vehicle components.

In the second vehicle concept structure (Figure 9.1(b)), AM was used to fabricate metal joints
connecting conventional thin-walled profiles. This is an interesting solution, since it allows for ex-
ploitation of the energy-absorbing properties of the thin-walled extrusions, while taking advantage
of the high stiffness of the 3D-printed joints. Joints are known to have very big influence on the
overall stiffness of the body-in-white as well as the energy absorption potential. Moreover, such
solution could be more easily integrated into the production, allowing for a gradual introduction
of metal 3D printing on an industrial scale. The concept structure is claimed to have 20% lower
weight than a functionally-equivalent structure used currently in the automotive industry.

9.2. Test case and optimization problems

Taking inspiration from the hybrid frame concept design described above, we prepared a simplified
model to evaluate the feasibility of using EA-LSM in optimization of industrial problems. The
FE model used in this work is presented in Figure 9.2. It is composed of a thin-walled tube with
thickness of 1.5 [mm] (brown) and a solid joint composed of a design domain (red) and an interface
(green). The joint is modeled using solid finite elements and the thin-walled structure using shell
finite elements. For simplicity, the interface nodes between tube and the joint are merged, meaning
that the translational degrees of freedom are transferred between solid and shell elements. The
detailed description of the numerical model can be found in Table 9.1. To enhance the initiation of
the crash at the front part of the structure, triggers, as shown in Figure 9.2, are added. Both parts of
the hybrid frame are modeled as aluminum with piecewise linear hardening characteristics defined
in Table 9.2.

Please note that, to fully account for the metal AM process, it would be needed to consider mod-
ified, more complex material models, as well as special techniques to integrate the manufactur-

1 Partnership between Altair, APWORKS, csi entwicklungstechnik, EOS, GERG, and Heraeus (www.3i-print.com).
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ing constraints into the optimization. For instance, one of the commonly addressed problems in
structural TO is generation of self-supporting designs, which do not require complex supporting
structures and their costly removal (Brackett et al. (2011); Leary et al. (2014); Gaynor and Guest
(2016)). Such an approach, for 2D structures, was integrated into EA-LSM in our past work (Bujny
et al. (2017c)), and extended later to the 3D domain in the master’s thesis of Mulard (2018), co-
supervised by the author of this dissertation. However, since neither the manufacturing constraints
nor the detailed material modeling for AM is the primary focus of this thesis, those problems are
not addressed here and pose an interesting direction for the future research.

In the considered crash scenario, a rigid wall of mass of 500 [kg] is impacting a hybrid structure
with an initial velocity of 5 [m/s]. All degrees of freedom of the surface nodes located at the lower
half of the joint are fixed. In all of the considered optimization cases, an additional constraint
ensures the absorption of the full energy of the impactor by requiring the rigid wall to move in the
opposite direction at the end of the simulation.

All degrees of 

freedom fixed

Design domain 

(solid FE)

Symmetry plane 

(only in optimization)

Shell FE, thickness = 1.5 mm

Rigid wall, mass = 500 kg, 

initial velocity = 5 m/s

Triggers at 

both sides

Figure 9.2 The hybrid S-rail FE model. A rigid wall impacts the structure composed of a thin-walled tube and a 3D-printed solid
joint. The lower part of the joint is clamped (orange hatching). The nodes marked with yellow lines are used for the measurement
of the displacement of the joint.

The axial impact case considered here belongs to one of the most challenging and important op-
timization scenarios in vehicle crashworthiness and is widely studied in the literature (Duddeck
et al. (2016); Liu (2008); Sun et al. (2014); Yin et al. (2014); Tang et al. (2013)). However, unlike
in most of the works, instead of optimizing the structure of the thin-walled tube, we focus on opti-
mization of the 3D-printed joint supporting it w.r.t. the performance metrics of the overall system.
This makes the problem potentially even more difficult for the state-of-the-art methods, due to the
indirect relationship between the design variables, which influence only the structure of the joint,
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Table 9.1 Configuration of the hybrid S-rail FE model.

Property Symbol Value Unit

Material model of the structure - Piecewise linear plasticity -

LS-Dyna material keyword (structure) - *MAT_024 (LSTC (2014)) -

Mass density ρm 2.7 ·103 kg/m3

Young’s modulus E 7.0 ·104 MPa

Poisson’s ratio ν 0.33 -

Yield strength Re 180.0 MPa

Joint dimensions - 160 x 100 x 80 mm

Joint mesh resolution - 40 x 25 x 20 -

Simulation time tend 120 ms

Number of shell finite elements - 9000 -

Number of solid finite elements - 21000 -

Table 9.2 Piecewise linear isotropic hardening defined by the effective plastic strain and the corresponding effective stress.
Employed material model is not taking into account strain-rate-dependent behavior.

Effective plastic strain Effective stress [MPa]

0.01 190.0

0.02 197.0

0.05 211.5

0.10 225.8

0.15 233.6

0.20 238.5

0.40 248.5

and the mechanical behavior of the entire system. From the perspective of an evolutionary opti-
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mizer, this problem does not make any difference, provided that the modifications of the joint can
lead to an improvement of the considered objective.

In order to fully evaluate the potential benefits of using EA-LSM in an industrial setting, two
different optimization problems are considered. In the first case, the maximal displacement of
the joint, in the longitudinal direction (z-direction), at any nodes marked with yellow color in
Figure 9.2 is constrained to a value below 2 [mm]. Additionally, as mentioned above, a constraint
requiring the impactor to bounce back at the end of the crash simulation is introduced. In such
a way, it is guaranteed that the simulation takes into account all of the dynamic loads during the
crash event. The mass of the joint is subject to minimization. The optimization problem can be
defined formally as follows:

min
z

(m(z)) , z ∈ Rn;

s.t.res(t) = 0;

dmax(z)≤ dreq;

vend(z)≤ 0,

(9.1)

where m is the mass of the structure, depending on the vector of design variables z. The condition
res(t) = 0 corresponds to the dynamic equilibrium at time t. dmax is the maximum displacement in
longitudinal direction of any of the measurement nodes marked in Figure 9.2 and dreq represents
its maximum allowed value (2 [mm]). Finally, vend denotes the longitudinal component of velocity
of the rigid wall at the end of the crash.

The formulation (9.1) is probably the most intuitive definition of an optimization problem for the
considered case. The main function of the joint is to stabilize and support the thin-walled structure,
which absorbs the energy during the crash event. Therefore, the target is to keep the maximal
displacement of the joint under a certain limit, while minimizing the mass to achieve a lightweight
design. Intuitively, this formulation should lead to a very stiff joint design, showing very small
plastic deformation. For that reason, also state-of-the-art methods suitable for that problem, such
as HCA or ESL, should come up with relatively well-performing designs.

In the second scenario, the objective is again to minimize the mass of the structure, but instead of
constraining the displacement of the nodes on the joint, we restrict the magnitude of acceleration,
which is relevant from the perspective of injury-related criteria, such as HIC. By the second New-
ton’s law of motion, this is equivalent to restricting the maximal force acting on the wall. Both of
these criteria are widely studied in the literature (Fang et al. (2016)). The formal definition of the
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optimization problem takes the following form:

min
z

(m(z)) , z ∈ Rn;

s.t.res(t) = 0;

amax(z)≤ areq;

vend(z)≤ 0,

(9.2)

where amax is the maximal magnitude of acceleration in the longitudinal direction.

The second formulation of the optimization problem gives the joint the possibility not only to
support and stabilize the thin-walled part to absorb the kinetic energy of the impactor, but also to
enhance the overall crash behavior of the hybrid structure by limiting the peak force. In such a way
the optimization problem is formulated to achieve the relevant performance goals directly, instead
of considering a surrogate problem for the TO of the joint only (e.g. stiffness maximization). One
of the main advantages of EA-LSM over the established methods is the fact that the optimization
problem presented above can be considered in a direct way, which does not make the problem
definition more difficult than the previous one. More precisely, the performance of the designs
considered during the optimization are evaluated exclusively based on the specified objective and
constraints, which can be arbitrary criteria, as long as they can be quantified. Therefore, instead of
considering objective functions such as displacements or specific energy absorption for particular
components, one can target optimization of relevant injury criteria for a bigger subsystem, which
determine at the end the safety of a vehicle.

Both of the test cases described above are optimized using the standard version of the EA-LSM,
as described in Chapter 5. The exact setup of the optimization algorithm is given in Table 9.3. In
both considered scenarios the objectives and constraints are normalized with the values obtained
in a simulation of a hybrid S-rail structure with a joint entirely filled with material.

The initial design used in all of the optimization runs with EA-LSM is shown in Figure 9.3. The
presented structure results from a diagonal distribution of MMCs, similar to the ones shown in
Chapter 7 and 8.

All of the crash simulations are performed using explicit MPP LS-DYNA solver, version R7.1.1,
double precision. The evaluations in each generation of EA-LSM are realized in parallel, using a
computational cluster and a parallelization with MPI for Python (Dalcín et al. (2005, 2008, 2011)).
As a consequence, the duration of the evaluation of the entire offspring generation is practically
equal to the time of a single FE simulation. Due to this fact, the choice of the optimization algo-
rithm and the population size is not dictated by the goal of minimizing the number of FE evalua-
tions, but by the total run time. This is the main motivation for choosing a relatively big population
size and a standard ES(µ ,λ ) instead of the CMA-ES, which is more efficient for smaller popula-
tion sizes. The ratio between the number of parent and offspring individuals is kept slightly lower
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Table 9.3 Setup of EA-LSM for the hybrid S-rail optimization.

Property Symbol Value

Algorithm type - Evolution Strategy (ES)

Parent population size µ 10

Offspring population size λ 79

Number of step sizes nσ 1

Initial step size length σinit 0.02

Number of MMCs - 64

Number of design variables - 288

Initial thickness of MMCs - 10.25 [mm]

Thickness threshold for deletion of MMCs tmin 4.0 [mm]

Volume fraction for deletion of overlapping MMCs - 0.9

(a) Isometric view. (b) Side view. (c) Front view.

Figure 9.3 Initial design of the 3D joint for the optimizations using EA-LSM. The structure is generated according to the
procedure described in Chapter 5.

than the recommended 1/7 level (Schwefel (1987)) to increase the convergence velocity. In order
to focus on the fast convergence rather than on global search reliability, the version of ES with a
single standard deviation (Section 3.2) is chosen, which minimizes the learning effort for the opti-
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mization algorithm. The optimization runs are continued until convergence, which is evaluated by
visual inspection of the cost function.

Similarly to the approach from Chapter 8, HCA and global ESL methods are used for comparison
purposes. In case of the HCA method, exactly the same FE model and setup as in case of the
EA-LSM is used (Figure 9.2). The structure of the joint is optimized with use of LS-TaSC 3.2
with the default settings. The mass constraint is set to meet the mass of the structure obtained
with EA-LSM. Since the parametrization in HCA introduces intermediate densities, the resulting
topology is post-processed to obtain a 0-1 material distribution and meet the mass constraint (for
details see Chapter 8). After the post-processing, the performance of the structure is validated in a
crash scenario.

(a) ESL case with forces applied at the contact surface between
the impactor and the structure.

(b) Simplified ESL
case with forces
applied directly at the
joint.

Figure 9.4 The equivalent static cases of the crash scenario. Though more appropriate, the case presented in Figure 9.4(a) causes
stability problems for the SIMP algorithm. Therefore, a simplified equivalent static case, presented in Figure 9.4(b), is used.

The ESL approach is based on the load case depicted in Figure 9.4(b). Unlike in the cases presented
in the previous chapters, the static forces are not applied at the contact surface between the impactor
and the S-rail, but applied directly on the design space for the joint, as shown in Figure 9.4(b). The
main reason for this simplification is the fact that the original equivalent static case (Figure 9.4(a))
leads to a TO problem with design-dependent loads. Such problems cannot be optimized with the
standard SIMP algorithm (Sigmund (2014)) and need to be addressed with specialized methods
(Bendsøe and Sigmund (2004); Chen and Kikuchi (2001); Du and Olhoff (2004)). Similarly to
the cases described in Chapter 8, the material of the joint is changed to linear elastic to carry out
the optimization of the topology. Since the algorithm used here has also difficulties with providing
stable solutions for very low volume fractions, in both of the test cases presented in this section, the
topology of the joint is optimized first for a 15% volume fraction. In the second step, the elements
with intermediate densities are either deleted or assigned full density to meet the required mass
constraint. Finally, the crash performance of the hybrid structure with the topologically-optimized
joint is evaluated based on the same setup as in case of the EA-LSM.
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9.3. Mass minimization under a node displacement constraint

In the following section, the optimization results for the first problem described in Section 9.2, are
presented. First of all, the topology of the joint is optimized with use of the standard EA-LSM
algorithm, as described in Chapter 5. The evolution of the cost function during the optimization
process is shown in Figure 9.5. The corresponding plots of the mass fraction of the joint and the
normalized constraints, taken into account in the optimization problem, are presented in Figure
9.6.
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Figure 9.5 Plot of the cost function for the 3D joint mass minimization problem with a constraint on the maximal displacement of
the joint, addressed using EA-LSM.
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Figure 9.6 Plots of the mass fraction (left) and the normalized constraints (right) for the 3D joint mass minimization problem with
a displacement constraint, addressed using EA-LSM. The constraint on the maximal displacement of the joint in the longitudinal
direction (red dashed line) is calculated as dmax−dreq, where dmax is the maximal displacement in the best design in a given
generation and dreq = 2 [mm] is the maximal allowed displacement. The second constraint (green solid line), requiring the
impactor to bounce back at the end of the simulation, or equivalently, to absorb the whole kinetic energy of the impactor, is
computed as vend−0

vinit
, where vend is the longitudinal component of velocity of the impactor (initially positive) at the end of the

simulation and vinit = 5 [m/s] is the initial velocity used to normalize the constraint. A constraint is violated if it is larger than 0.
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It should be noted that the initial design was already feasible, therefore the plot of the cost function
in this case is identical to the one of the mass fraction. Initially, the design satisfies the displacement
constraint with a large margin (the maximal displacement in the longitudinal direction is over 1.2
[mm] lower than the maximal allowed value). During the optimization, the mass of the joint is
reduced from almost 46% to only 8.21% of the mass of the full design domain. As a result, the
displacement constraint becomes active, while the second constraint, requiring the impactor to
bounce back at the end of the simulation, seems to be unaffected, with the final value of −0.065,
corresponding to the velocity of 0.33 [m/s] in the direction opposite to the initial one. This is
understandable, since the first constraint already requires the joint to support and stabilize the
thin-walled structure, allowing only for small deformations of the joint. Once the displacement
constraint is satisfied, most of the times the structure is stable enough to let the thin-walled structure
develop a desired folding pattern, leading to the absorption of the entire kinetic energy within the
time of the simulation (120 [ms]).

The final design obtained with EA-LSM as well as two other designs, generated using ESL and
HCA, are presented in Table 9.4. Table 9.5 presents the crash behavior of the considered struc-
tures, while Figure 9.7 shows the displacement history of the node with the highest displacement
(in the longitudinal direction) during the crash event. Finally, the performance of the three designs
is compared in Table 9.6. Additionally, the effective plastic strain of the joint structures in dif-
ferent phases of the crash event is presented in Figure 9.8 and the evolution of the velocity and
displacement of the rigid wall over time is depicted in Figure 9.9.
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Figure 9.7 Displacement history (in the longitudinal direction) of the nodes on the joint with the highest displacements for the
designs optimized with EA-LSM, HCA, and ESL. 3D joint mass minimization problem with the displacement constraint.

One can easily note considerable differences between the design concepts obtained with all the
three methods. The structures optimized with use of ESL and HCA support mainly the corners
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Table 9.4 Comparison of the joint structures obtained using EA-LSM, ESL, and HCA for the 3D joint mass minimization problem
with a displacement constraint.

View EA-LSM ESL HCA

Isometric

Side

Top

Front
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Table 9.5 Comparison of the crash behavior of the hybrid S-rails with joints optimized using EA-LSM, ESL, and HCA for the
mass minimization problem with a displacement constraint. Side view.

EA-LSM ESL HCA

Before crash:

After 1 [ms]:

After 30 [ms]:

After 60 [ms]:

After 110 [ms]:

of the interface plate, while the EA-LSM develops a design supporting more the center of the
plate. For ESL, this is an understandable result, due to the simplification of the loading conditions,
assumed to be constant over time and applied directly at the boundary of the design domain. In
contrast, EA-LSM takes into account the dynamic effects as well as changing loads during the
crash event, which leads to a structure supporting also the middle of the plate. The main benefit
of this solution is a better support of the thin-walled tube in the second phase of the crash, when
it buckles close to the joint and comes into contact also in the center of the plate. The changing
loading conditions of the joint are reflected in the plots of the von Mises stress at different mo-
ments of the crash simulation (Figure 9.10). Initially, the long, diagonal beams are heavily loaded,
while at the end, the central part of the joint is strongly compressed and supports the thin-walled
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Table 9.6 Comparison of performance of the structures obtained using EA-LSM, ESL, and HCA for the 3D joint mass
minimization problem with a displacement constraint (2 [mm]).

Property EA-LSM ESL HCA

Volume fraction 8.21% 8.24% 8.13%

Max. z-displacement 1.91 [mm] 3.13 [mm] 2.55 [mm]

Displacement increase (w.r.t. EA-LSM) 0% +64% +34%

(a) EA-LSM (b) ESL (c) HCA

Figure 9.8 Effective plastic strain at the end of the simulation (after 120 [ms]) for the designs optimized with EA-LSM, HCA, and
ESL. 3D joint mass minimization problem with a displacement constraint. The scales in each of the plots are chosen
independently to show clearly the variations in the distributions of the depicted fields.
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Figure 9.9 Velocity and displacement (in the longitudinal direction) of the rigid wall during the crash event for the designs
optimized with EA-LSM, HCA, and ESL. 3D joint mass minimization problem with a displacement constraint.

structure. As a result, the tube is well-stabilized during the whole crash event, keeping the max-
imal displacement of the joint under 1.91 [mm]. In contrast, the joints obtained using the ESL
or HCA method deform strongly after ca. 100 [ms] of the crash (Figure 9.7), when the loading
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(a) After 1 ms (peak force). (b) After 60 ms (folding). (c) After 110 ms (compaction).

Figure 9.10 Equivalent stress (von Mises) [MPa] and deformation of the joint optimized with EA-LSM in different phases of the
crash event. The scales in each of the plots are chosen independently to show clearly the variations in the distributions of the
depicted fields. The phases are characterized by the state of the thin-walled tube, specified in the parentheses in the captions. After
strong tension and plastic deformation of the lower members during the first contact of the structure with the impactor, the joint
operates mostly in the elastic range. 3D joint mass minimization problem with a displacement constraint.

conditions change substantially. All in all, the designs obtained using ESL and HCA result in 64%
and 34% higher maximal displacements compared to the EA-LSM design, respectively. This is a
considerable difference, showing that EA-LSM can lead to clearly superior designs compared to
the state-of-the-art methods even in case of scenarios with relatively moderate plastic deformations
of the part subject to optimization. This is quite surprising, since for the considered optimization
problem, maximization of the stiffness of the joint seems to be a reasonable simplification, which
should have a minor influence on the final result. Nevertheless, this demonstrates the importance
of the dynamic effects in the crashworthiness optimization. This may become even more relevant
in case of considering strain rate dependency in the material model.

To summarize, EA-LSM comes up with significantly better design than the ESL and HCA meth-
ods. Although the overall computational cost of EA-LSM is considerably higher than for the
state-of-the-art methods2, the individuals in each generation can be evaluated in parallel and the
method offers very fast convergence at the beginning (over 70% reduction of mass within the first
50 generations), which is crucial in real-world applications. Furthermore, EA-LSM shows its ca-
pability of dealing with more than one constraint, which is a big problem for approaches like HCA.
Finally, the optimized design provides a stable support for the thin-walled part during the entire
crash event, with the highest displacements of the joint appearing at the beginning of the crash
simulation.

In the following section, we analyze the robustness of the generated designs w.r.t. variations of the
load cases. Afterwards, in Section 9.5, the results for the second optimization problem, targeting
mass minimization under an acceleration constraint, will be discussed.

2 For ESL with SIMP, ca. 50 linear elastic static FE simulations were necessary for the optimization to converge. HCA
required 30 nonlinear explicit crash simulations.
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9.4. Robustness

One of the most important aspects in the design of crashworthy structures is their sensitivity w.r.t.
changing boundary conditions. In most real-world engineering problems, in particular involving
vehicle safety, there is a substantial degree of uncertainty, ranging from loading conditions to
manufacturing imperfections. For this reason, Robust Design Optimization (RDO) plays a more
and more important role in engineering applications, with specialized methods allowing for finding
designs whose performance does not strongly depend on the variations of the input parameters.
An overview of the RDO approaches used in crashworthiness optimization has been given by
Aspenberg (2011). Although these methods could be potentially integrated into the EA-LSM, the
computational costs would be high. On the other hand, evolutionary optimization itself can be
considered a RDO technique. The mutation operator used in ESs can be seen as a robustness tester
(Beyer and Sendhoff (2007)), leading to similar variations as the artificial noise in the standard
RDO approaches. Moreover, as discussed by Branke (1998), standard evolutionary optimizers
would usually focus on the hills of the fitness landscape rather than on sharp peaks since the
probability for an individual from the initial population to be located in the basin of attraction of
the hill is considerably higher. This concept is illustrated in Figure 9.11, depicting the test problem
used by Branke (1998) to validate this hypothesis. In 99% of cases, the EA would converge to
the solution A and only 1% of times to the solution B. The above mentioned properties of the
evolutionary search could explain why the species developed within the natural evolution process
appear to be optimal on average and are not concentrated on a particular point of the "design
space".

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
Solution A Solution B

Figure 9.11 Test function with two equally high maxima. A standard EA will turn to the smooth hill (solution A) rather than to the
peak (solution B) in 99% of optimization runs according to Branke (1998).

To demonstrate the ability of EA-LSM to develop robust solutions, in this section, the sensitivity of
the responses of the previously optimized structures w.r.t. small variations of the loading conditions
is tested. The evaluation is based on a modified crash scenario, where the impacting rigid wall is
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inclined relative to the initial orientation as shown in Figure 9.12. At first, the crash behavior of the
joints from Section 9.3 in a simulation with a rigid wall inclined by 5 [deg], which is the highest
inclination considered in this section, is compared. Secondly, to obtain statistically significant
results, 100 samples of inclination angles varying between −5 to +5 are generated using Monte
Carlo sampling according to a uniform random distribution. For each sample, an FE simulation is
run for the joints optimized using EA-LSM, ESL, and HCA and the performance of the structures
is compared. Finally, conclusions about the robustness of the structures obtained using different
methods are derived.

Figure 9.12 Modified crash test case of the hybrid S-rail for evaluation of robustness of the previously optimized designs. The
impacting rigid wall is rotated relative to the initial position by 5 [deg] and the impact direction is perpendicular to the rotated
wall. Besides, the FE model remains unchanged (see Figure 9.2). Top view.

First of all, we start with a study of crash behavior of the hybrid structures from Section 9.3 in the
limit case with inclination angle of 5 [deg]. Table 9.7 presents the evolution of the deformation
of the structures at different points in time. Until 60 [ms] of the simulation, all of the structures
deform in a similar way. After that, clear differences develop, which is reflected also in the plots of
maximal displacements of the nodes at the joint (Figure 9.13) as well as in the plots of velocity and
displacement of the rigid walls (Figure 9.14). The joint obtained using EA-LSM remains superior
compared to the structures generated with ESL and HCA, which show over 208% and 34% higher
displacements, respectively (Table 9.8). Especially in case of the design obtained using ESL, the
lack of the structure in the middle of the design space, supporting the thin-walled tube in the second
phase of the crash (when it comes in contact with the interface plate) has severe consequences. This
results in over 259% increase of the maximal displacement of the joint compared to the previous
crash scenario. It seems that in this case, at least two replacement load cases, representing two
different types of loading conditions occurring during the crash event should be taken into account
to obtain satisfactory results using ESL approach. Surprisingly, HCA leads to a well-behaving
structure, with only 36% increase of the maximal displacement, which is comparable to the EA-
LSM design with 38% higher maximal displacement than in the case without wall inclination.

Although the EA-LSM solution results in the lowest displacements of the joint, it actually achieves
that by allowing for the largest displacement of the rigid wall (Figure 9.14), while limiting the
force (acceleration) levels. At the same time, the use of this structure results in the highest energy

Level Set Topology Optimization for Crashworthiness using Evolutionary Algorithms and Machine Learning 227



Mariusz Bujny

Table 9.7 Comparison of the crash behavior of the hybrid S-rails with joints optimized using EA-LSM, ESL, and HCA for the
mass minimization problem with a displacement constraint. Modified impact scenario with a rigid wall inclined by 5 [deg]. Top
view.

EA-LSM ESL HCA

Before crash:

After 1 [ms]:

After 30 [ms]:

After 60 [ms]:

After 120 [ms]:

Table 9.8 Comparison of performance of the structures obtained using EA-LSM, ESL, and HCA for the mass minimization
problem with a displacement constraint, in a modified crash case with a rigid wall inclined by 5 [deg].

Property EA-LSM ESL HCA

Max. z-displacement 2.63 [mm] 8.10 [mm] 3.46 [mm]

Displacement increase (w.r.t. EA-LSM) 0% +208% +32%

absorption among all of the joint designs, related to the lowest velocity magnitude of the rigid wall
at the end of the simulation. This is a beneficial behavior from the point of view of crashworthiness,
which is achieved implicitly by constraining the displacement.
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Figure 9.13 Displacement history (in the longitudinal direction) of the nodes on the joint with the highest displacements for the
designs optimized with EA-LSM, HCA and ESL for the mass minimization problem with a displacement constraint. Test for a
modified crash scenario with a rigid wall inclined by 5 [deg] relative to the initial configuration (Figure 9.12).
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Figure 9.14 Velocity and displacement (in the longitudinal direction) of the rigid wall during the crash event for the designs
optimized with EA-LSM, HCA and ESL for the mass minimization problem with a displacement constraint. Test for a modified
crash scenario with a rigid wall inclined by 5 [deg] relative to the initial configuration (Figure 9.12).

The test case presented above shows the behavior of the structures at the limit case of an impact
with a rigid wall inclined by 5 [deg]. However, it cannot be used to assess the robustness of the
solutions obtained using different TO methods. To achieve that, for each of the joint designs,
100 crash simulations, with inclination angles ranging between −5 and +5 [deg] according to the
Monte Carlo sampling, were performed. Figure 9.15 shows the distribution of the maximal nodal
displacements at the joint for different inclination angles and summarizes them with corresponding
box plots. In Table 9.9 the means, medians, and standard deviations of maximal displacements are
compared.
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Figure 9.15 Distributions of the maximal displacements of the joint in the longitudinal direction for varying impact angles. Each
point in the left plot corresponds to a single FE crash simulation. The plot on the right-hand side summarizes the distributions of
the maximal displacements in form of box plots. On each box, the middle read line indicates the median, and the bottom and top
edges of the blue box indicate the 25th (q1) and 75th (q2) percentiles of the normalized compliance values from the 100
simulations. The whiskers (dash black lines) extend to the most distant data points excluding outliers. The outliers are plotted
individually using the red "+" symbol. Points are classified as outliers if they are greater than q3 +1.5(q3−q1) or smaller than
q1−1.5(q3−q1).

Table 9.9 Key statistics for the robustness study of structures generated using EA-LSM, ESL, and HCA in the mass minimization
problem with a displacement constraint.

Property EA-LSM ESL HCA

Mean max. z-displacement 1.99 [mm] 2.57 [mm] 1.86 [mm]

Median max. z-displacement 1.70 [mm] 1.74 [mm] 1.60 [mm]

Std. dev. of max. z-displacement 0.74 [mm] 1.88 [mm] 0.77 [mm]

Surprisingly, the joint optimized using HCA method achieves the lowest mean displacement, equal
to 1.86 [mm]. In turn, the EA-LSM structure keeps the mean maximal displacement just below
2 [mm], and the ESL design leads to the mean maximal displacement of 2.57 [mm]. In terms of
median values for the designs optimized with EA-LSM, ESL, and HCA, they are equal to 1.70,
1.74, and 1.60 [mm], respectively. However, a statistical evaluation of the data using the Wilcoxon
rank sum test on the significance level of 1% did not allow for rejection of the null hypothesis
assuming equality of medians. As a result, no statistically significant conclusions can be made
regarding the medians of the displacement distributions for the three optimized structures.

Both the means and the plots in Figure 9.15 reveal an interesting tendency – initially, for very low
inclination angles (between −0.5 and +0.5 [deg]), the maximal displacements grow considerably,
which is particularly severe for ESL, to drop below 2 [mm] for all joints for moderate inclination
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angles (between −2.0 and −0.5 [deg] as well as +0.5 and +2.0 [deg]). Most of the times, this is
a better performance than for the corresponding cases without wall inclination. It turns out, that
in those cases, the small inclination leads to higher stress concentrations in the contact region and
better initiation of crash, without building strong asymmetry in the folding pattern (as shown in
Table 9.7). As a result, the peak force at the beginning is reduced and the energy absorption in
the first phase of the crash simulation increases, leading to a weaker loading in the second phase.
Finally, the smaller forces acting on the structure result in smaller displacements of the joints
compared to the reference design without wall inclination.

Although the differences between medians are not statistically significant, the standard deviations
of the displacement distributions differ considerably, which is confirmed by statistical tests. Both
the Levene’s test (Levene (1961)) as well as the Brown-Forsythe test3 (Brown and Forsythe (1974))
reject the null hypothesis that the variance of the distributions corresponding to EA-LSM and ESL
are equal at 1% significance level. The tests did not allow for rejection of the variance-equality
hypothesis for the EA-LSM and HCA data sets. Indeed, especially for inclination angles below
−2.0 and above +2.0 [deg], the ESL approach shows very high sensitivity to small variations of
boundary conditions.

All in all, EA-LSM tends to result in solutions less sensitive to small variations of loading condi-
tions than the state-of-the-art ESL approach, which is crucial in case of crashworthiness optimiza-
tion. However, the structure optimized using the HCA method is also very robust. In principle,
HCA method gradually adapts the design by adding mass in the regions with internal energy con-
centrations, subject to changing loading conditions during the crash event, which implicitly tests
the robustness of the design. Still, the EA-LSM design offers comparable performance to HCA in
terms of robustness, while being over 34% better in the test without wall inclination.

9.5. Mass minimization under an acceleration constraint

The following section presents the optimization results for the second test case described in Section
9.2. Similarly to the optimization problem presented in Section 9.3, the optimization objective is
to minimize the mass of the joint with a constraint requiring the impactor to bounce back at the
end of the simulation. However, instead of considering the intrusion as the second constraint, the
maximal absolute acceleration4 of the impactor during the crash event is required to be kept below
a certain threshold areq. This problem formulation implicitly requires the structure of the joint to
provide a stable support for the thin-walled tube, while addressing explicitly the criterion relevant
from the perspective of the occupant protection.

3 Brown–Forsythe test uses median instead of mean (as the Levene’s test does), which is recommended since it results
in a better robustness against many kinds of non-normal distributions, while having a good statistical power (Derrick
et al. (2018)).

4 No numerical filters on the accelerations were used during the optimization or in the final evaluation of the structural
performance of the designs presented in this chapter.
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Figure 9.16 Plot of the minimized cost function for the mass minimization problem with a constraint on the maximal acceleration,
addressed using EA-LSM. Acceleration constraint is set 10% lower than the maximal acceleration in a scenario with a joint
occupying the entire design space.
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Figure 9.17 Plots of the mass fraction (left) and the normalized constraints (right) for the mass minimization problem with a
constraint on the maximal acceleration, addressed using EA-LSM. The constraint on the maximal acceleration of the impactor in
the longitudinal direction (green solid line) is calculated as amax−areq

ainit
, where amax is the maximal acceleration for the best design in

a given generation and areq = 84.6[m/s2] is its maximal allowed value. The second constraint (red dashed line), requiring the
impactor to bounce back at the end of the simulation, or equivalently, to absorb the whole kinetic energy of the impactor, is
computed as vend−0

vinit
, where vend is the longitudinal component of velocity of the impactor (initially positive) at the end of the

simulation and vinit = 5[m/s] is the initial velocity used to normalize the constraint. A constraint is violated if it is larger than 0.

The first optimization using EA-LSM resulted in a joint with very low mass, corresponding to only
5.44% of mass of the full design space. The maximal acceleration for this case was restricted to
90% of the peak acceleration for the crash case with a joint occupying the entire design domain.
The convergence plot of the cost function during the optimization is presented in Figure 9.16, while
the evolution of the objective and the constraints is shown in Figure 9.17. It is worth mentioning
that although the initial design violates strongly the maximal acceleration constraint, the use of the
exterior penalty method (Chapter 5) allows for finding a design satisfying both of the constraints
already after ca. 100 generations. At that point, the second constraint, requiring the impactor
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to bounce back at the end of the simulation, becomes active, which is understandable since the
reduction of the peak force results in a longer duration of the crash event, while the energy to be
absorbed remains unchanged. Once both constraints are satisfied, the optimizer further reduces
the mass of the joint and the optimization is stopped after ca. 1000 generations. One should note
a much more oscillatory character of the convergence plots compared to the ones presented in
Section 9.3, which results from the high noisiness of the numerical estimate of the acceleration.
However, even for this challenging optimization problem, EA-LSM is able to find a feasible design
with a considerably reduced mass. The resulting structure is shown in Table 9.10 (EA-LSM 1).

Since both joint structures obtained using ESL and HCA for a mass constraint below 6% led to
an unstable crash behavior, illustrated in Figure 9.18, another optimization using EA-LSM was
performed in hope for discovering a different design concept with a higher mass fraction, which
could be used for comparison with the state-of-the-art methods. To achieve that, a less stringent
acceleration constraint was applied, corresponding to 95% of the peak acceleration for the crash
case with a joint occupying the entire design space. The convergence of the cost function for
the second optimization is depicted in Figure 9.19. The optimization starts again in an infeasible
region and finds a feasible design after ca. 70 generations. After ca. 400 generations, the search
stagnates, finding a completely different design concept, illustrated in Table 9.10 (EA-LSM 2).
The mass of the optimized design corresponds to 6.96% of the mass of the full design space of the
joint.

(a) Loss of stability for joint with volume fraction of
6.96%, optimized with HCA.

(b) Loss of stability for joint with volume fraction of
6.05%, optimized with ESL.

Figure 9.18 Illustration of the problems with stability of the joints optimized with HCA and ESL for very low volume fractions.
The joint optimized with EA-LSM remains stable even for volume fraction of 5.44%.

Both of the structures differ considerably, showing the ability of EA-LSM to find different design
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Table 9.10 Comparison of the joint structures obtained using EA-LSM, ESL, and HCA for the 3D joint mass minimization
problem with an acceleration constraint. The values in parentheses express the percentage growth of maximal acceleration
magnitude w.r.t. the EA-LSM 1 design.

Method Design Volume fraction Max. acceleration [m/s2]

EA-LSM 1 5.44% 83.62 (+0%)

EA-LSM 2 6.96% 89.38 (+7%)

ESL 6.97% 93.33 (+12%)

HCA 7.01% FAIL
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concepts. The first design (EA-LSM 1) supports only a small portion of the interface plate, with
most of the material located in the bottom area. The design is relatively simple and composed of
two large, inclined plates connected to long, diagonal bars. In contrast, the second joint design
(EA-LSM 2) is considerably more complex, with four radial beams creating a strong connection
to the interface plate. The structural differences between designs result in a considerably different
crash behavior of both hybrid S-rails, presented in Table 9.11. As expected, the first joint undergoes
substantially larger deformations, resulting in a progressive folding of the thin-walled tube close
to the interface plate. On the other hand, the second design provides much more stable support,
with a non-standard folding pattern of the tube.
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Figure 9.19 Plot of the minimized cost function for the mass minimization problem with a constraint on the maximal acceleration.
Second optimization with EA-LSM. Acceleration constraint set 5% lower than the maximal acceleration in a scenario with a joint
occupying the entire design space.

After the second optimization run with EA-LSM, the experiments with ESL and HCA were re-
peated for a mass constraint corresponding to the mass of the second design (mass fraction 6.96%).
The optimized designs are presented in Table 9.10. This time, the ESL method was able to develop
a structure providing a stable support for the thin-walled tube. In contrast, the design obtained
using HCA approach was still unstable for the higher mass fraction (Figure 9.18). As a conse-
quence, the behavior of the structures optimized using EA-LSM were compared with the ESL
result only.

One should note that unlike EA-LSM, both ESL and HCA are not able to address the specified
optimization problem directly. Namely, EA-LSM explicitly minimizes the mass of the structure
under the constraint on maximal absolute acceleration, while ESL minimizes the compliance for
the equivalent static case for a given mass fraction constraint. Similarly, HCA homogenizes the
energy absorption under the constraint on the total mass. As a result, EA-LSM can offer consider-
able benefits for the optimization problems, which cannot be easily approximated using the above
mentioned criteria.
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Figure 9.20 shows a comparison of the absolute acceleration of the impacting rigid wall for both
of the structures optimized using EA-LSM as well as the design obtained with ESL. The design
optimized using state-of-the-art ESL approach results in a 12% higher peak acceleration than the
lighter EA-LSM design and 7% higher peak acceleration than the heavier EA-LSM structure. The
differences in the key performance metrics are reflected in deformation modes presented in Table
9.11. Additionally, Figure 9.21 shows the velocity and displacement history of the rigid wall
impacting the hybrid structures with different types of joints.

Table 9.11 Comparison of the crash behavior of the hybrid S-rails with joints optimized using EA-LSM and ESL for the mass
minimization problem with an acceleration constraint (HCA failed to find a stable structure for a similar mass fraction). Side view.

EA-LSM 1 EA-LSM 2 ESL

Before crash:

After 1 [ms]:

After 30 [ms]:

After 60 [ms]:

After 120 [ms]:

The results show that the EA-LSM can considerably outperform the HCA in the test scenario
considered in this section, but offers only up to 12% reduction of maximal acceleration compared
to ESL. It seems that the peak acceleration itself is very difficult to be reduced any further due to
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Figure 9.20 Absolute acceleration history (in the longitudinal direction) of the rigid wall impacting the hybrid S-rail structures
with joints optimized with EA-LSM, HCA, and ESL. Mass minimization problem with a constraint on the maximal acceleration.
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Figure 9.21 Velocity and displacement history (in the longitudinal direction) of the rigid wall impacting the hybrid S-rail structures
with joints optimized with EA-LSM, HCA, and ESL. Mass minimization problem with a constraint on the maximal acceleration.

the physical limitations requiring the joint to provide a stable support for the thin-walled tube in
the first phase of the crash. On the other hand, the obtained structures show a great potential of
EA-LSM in addressing other objectives, such as HIC. The HIC values are calculated according to
the following formula:

HIC = max
t1,t2


 1

t2− t1

t2∫
t1

a(t)dt

2.5

(t2− t1)

 , (9.3)
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where t1 is the initial and t2 the final time (given in [s]) maximizing the expression, while a(t) is the
acceleration expressed in [g], being the standard gravity acceleration (g = 9.81[m/s2]). The time
duration t2− t1 is restricted usually to 36 [ms] (for HIC36) or 15 [ms] (for HIC15). HIC expresses
the probability of the head injury during an impact and is a commonly used performance metric in
crashworthiness design. Although HIC is normally computed for the center of gravity of the head
of a dummy or a human model, for the test case studied in this section, it is calculated based on
the acceleration of the impacting rigid wall. Obviously, by the third Newton’s law of motion, both
approaches would yield results scaled by the ratio of the masses of the vehicle and the wall.

Table 9.12 Head Injury Criterion (HIC) and corresponding maximal average accelerations for the designs obtained using
EA-LSM and ESL.

Quantity EA-LSM 1 EA-LSM 2 ESL

HIC36 1.827 3.510 3.534

HIC15 1.038 2.033 1.740

Avg. acc. for HIC36 [g] 4.810 6.246 6.263

Avg. acc. for HIC15 [g] 5.446 7.126 6.695

Table 9.12 presents the values of the HIC36 and HIC15 as well as the corresponding maximal
average accelerations. The first design obtained with EA-LSM achieves almost two times smaller
value of HIC36 than the design produced by ESL. The corresponding average absolute acceleration,
calculated within t1 and t2 maximizing HIC36, is reduced by over 23% compared to ESL design,
which is a significant improvement. The second EA-LSM design offers comparable performance
in terms of HIC36 to the ESL joint. Of course, in none of the cases discussed above the HIC
value was minimized directly, but the obtained results demonstrate the potential of EA-LSM in
developing structures considerably better for this criterion than the ones offered by ESL or HCA.
In particular, in EA-LSM, HIC can be defined directly as the objective function or a constraint,
which could potentially result in structures outperforming the state-of-the-art methods to even a
greater extent.

All in all, this section shows the capability of EA-LSM to address challenging optimization prob-
lems, involving very noisy responses, such as accelerations. The method is able to develop designs
significantly better than the ones obtained with state-of-the-art methods – HCA, failing to provide
a stable support for the energy-absorbing tube, and ESL, offering designs with up to 14% higher
peak accelerations than the structures obtained with EA-LSM. Finally, the evaluation of the HIC
values for the optimized structures shows possibly even a higher potential of EA-LSM in delivering
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better structures than the state-of-the-art methods when addressing this criterion directly.

9.6. Summary

This chapter demonstrates the usefulness of EA-LSM in TO of real-world crash structures, involv-
ing hundreds of design variables. The axial impact load cases considered in this chapter belong
to one of the most challenging design problems in crashworthiness, concerning high nonlineari-
ties, bifurcations and discontinuous responses. As shown in the studies, EA-LSM can be useful
for generation of complex joint structures for novel hybrid design concepts involving metal AM.
Unlike the state-of-the-art approaches, it can address the optimization problem directly by mini-
mizing arbitrary quantifiable objectives. As a result, for the test cases considered in this chapter,
the method is able to generate considerably better designs than the state-of-the-art methods, such as
ESL method or HCA. In particular, EA-LSM was always able to provide mechanically stable de-
signs, while structures generated using HCA method exhibited considerable stability problems for
the second of the considered test cases. In both of the optimization problems, EA-LSM was able to
handle more than one constraint, which is a clear advantage compared to the HCA method. It was
also capable of providing feasible solutions for infeasible initial designs, which is an important
property in case of industrial optimization problems, being usually highly constrained. Finally, the
mutation operator used in ESs acts as a sensitivity tester, resulting in robust designs w.r.t. changing
loading conditions. All in all, the study shows that the proposed method is capable of address-
ing complex crash optimization problems, close to the industrial cases of component design, and
provides robust solutions superior to the designs obtained with the state-of-the-art methods.
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Chapter 10

Conclusions and future work

10.1. Summary

This thesis proposes topology optimization approaches integrating methods from the domain of
computational intelligence, in particular evolutionary computation and machine learning. The
main application area as well as the key driving factor for the development of the proposed meth-
ods is vehicle crashworthiness, which is a field of engineering of very high importance and com-
plexity, resulting from the strongly nonlinear character of the involved physical phenomena. As
a consequence, for those problems, the utilization of the standard gradient-based approaches be-
comes prohibitive and alternative approaches have to be found. However, instead of focusing on
problem-specific solutions, in this thesis, we aim for the development of topology optimization
methods of a generic character, which would be potentially also applicable to a wide range of
problems in structural mechanics, in particular when gradient-based methods cannot be used.

The main contribution of this dissertation is the development of the Evolutionary Level Set Method
(EA-LSM), using Evolutionary Algorithms (EAs) to optimize structures based on a low-dimensional
representation inspired by Level Set Methods (LSMs). EAs have demonstrated their applicability
to a wide range of difficult real-world optimization problems, involving highly nonlinear, multi-
modal, noisy, and discontinuous objective functions and constraints. Being non-gradient optimiza-
tion methods, they can address any quantifiable optimization criteria, which can be evaluated based
on black-box simulation software. As such, they are suitable for solving optimization problems in
structural crashworthiness, based on high-fidelity commercial crash simulation software. In par-
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ticular, we propose to use Evolution Strategies (ESs), including state-of-the-art Covariance Matrix
Adaptation Evolution Strategy (CMA-ES), which are very efficient for parametrizations based on
continuous design variables. Since the performance of EAs strongly depends on the dimension-
ality of the optimization problem, we represent the designs with a limited number of geometric
components, referred also to as Moving Morphable Components (MMCs), reducing the number
of design variables from thousands to tens, compared to the standard grid representations. Thanks
to the utilized representation and the underlying problem-specific evolutionary optimization ap-
proach, including specialized repair operators, EA-LSM was shown to be capable of generating
complex topologies for 2D and 3D optimization problems.

In order to validate the proposed method, its properties are thoroughly studied on established linear
elastic static problems with known optima. EA-LSM using 16 MMCs, corresponding to 40 design
variables when symmetry is enforced, is found to yield qualitatively similar designs to the ones
obtained with state-of-the-art gradient-based approach using a grid representation with 2500–7500
density parameters. In contrast to the density-based methods, EA-LSM results in structures with
clear material-void boundaries, which is visible especially for the test cases with high volume
fractions. However, due to the non-deterministic character of EAs, each optimization run with
EA-LSM can result in a different design concept, corresponding to a different optimum. We see
it as an interesting property of the method rather than a disadvantage, since in the early design
phases, the optimization criteria are frequently not precisely defined, and having the possibility to
choose between different design concepts becomes much more important, which is reflected in a
growing popularity of set-based optimization approaches. Finally, the experiments investigating
the influence of such aspects as the type of the used initial design, or finite element mesh resolution,
show that EA-LSM is robust w.r.t. the variations of the related parameters. The studies on the
representation level, evaluating the influence of the number of MMCs on the performance and
complexity of the obtained structures show that in EA-LSM, both computational costs and the
granularity of the designs can be easily controlled. Last but not least, we show that EA-LSM is
capable of addressing very high-dimensional optimization problems, involving up to 144 design
variables, and resulting from 3D structural topology optimization problems for linear elasticity.
Again, the method provides multiple design concepts, including topologies consistent with the
ones obtained using gradient-based methods.

The evaluation of EA-LSM on nonlinear crash cases, based on explicit high-fidelity crash sim-
ulations, proves the usefulness of the method in case of difficult optimization problems, where
standard gradient-based approaches are not applicable. For 2D and 3D transverse bending prob-
lems, frequently studied in the literature and targeting minimization of the intrusion of the im-
pactor into the design space under a mass constraint, EA-LSM yields most of the time superior
results to the state-of-the-art crash topology optimization methods – Hybrid Cellular Automata
(HCA) and Equivalent Static Loads (ESL). However, for this optimization problem formulation,
the differences between EA-LSM and HCA are often very small. As a consequence, the studies
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demonstrate mostly the importance of considering the inertial and nonlinear effects in the opti-
mization process. The true advantages of EA-LSM are clearly visible for the cases with more than
one constraint, involving such criteria as the maximum absolute acceleration of the impactor. For
those cases, EA-LSM can result in over 30% better performance than HCA, for the structures of
identical mass.

Finally, the application of EA-LSM to a demanding real-world optimization of a 3D-printed metal
joint in a hybrid S-rail structure shows its usefulness in the automotive industry. For this challeng-
ing, 288-dimensional optimization problem, EA-LSM can produce significantly better designs than
ESL and HCA. In fact, for problem formulations involving injury-related criteria, EA-LSM finds
designs of a very low mass, providing stable support to the energy-absorbing thin-walled tube. For
the same mass fraction, ESL and HCA yield structures which collapse already in the initial phase
of the crash event. For the problem of mass minimization with a displacement constraint of the
joint, which is much more consistent with the assumptions of ESL and HCA, EA-LSM provides
solutions with 64% and 34% lower displacements for the same joint mass, respectively. At the
end, we evaluate the capability of EA-LSM for providing robust solutions. The rationale behind
is that the mutation operator used in evolutionary optimization methods can itself act as a robust-
ness tester since it introduces artificial noise similar to the one used in the standard robust design
optimization techniques. Indeed, small variations of the impact angle lead to much smaller varia-
tions in terms of performance than for the design optimized using ESL approach. However, HCA
is also able to provide a relatively robust design thanks to consideration of the changing loading
conditions of the joint during the crash event.

The main disadvantage of EA-LSM remains its relatively high computational cost compared to the
state-of-the-art gradient-based or heuristic topology optimization methods. However, thanks to a
very good parallel scalability of evolutionary optimization methods, the number of optimization
iterations, corresponding to the total time of the optimization with EA-LSM, can be reduced to
similar levels, provided that sufficient computational resources are available. Nevertheless, due
to demanding computational requirements of the crash simulations themselves, this might be not
always feasible and it is very important to develop methods to reduce the number of costly finite
element evaluations. For that reason, the second focus area of this dissertation is a development
of optimization techniques based on machine learning to enhance the computational efficiency of
EA-LSM.

At first, we propose to use an approximate gradient information to increase the local search capa-
bilities of EA-LSM. The concept of hybridizing evolutionary search with gradient-based methods
is known in the literature and sometimes such methods are referred to as the memetic algorithms.
The method proposed in this work, Hybrid Evolutionary Level Set Method (H-EA-LSM), uses
approximate gradients to improve randomly selected individuals from the mutated offspring pop-
ulation by moving them in the steepest descent direction. Subsequently, all of the individuals are
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evaluated using the finite element software, and the standard non-elitist selection operator is ap-
plied both to the improved as well as the non-improved individuals. As a result, H-EA-LSM can
work successfully even when the gradient information is very inaccurate. This property is demon-
strated in this work both for static as well as crash load cases. For crash load cases, we propose
to obtain gradient approximations either from simplified physical models, such as equivalent static
cases, or from machine learning models of sensitivities, trained on previously acquired data. The
second option is a generic solution and can be used for criteria where no suitable physical surro-
gates are available. Based on the experiments on 2D linear elastic and nonlinear crash structures,
we show that even relatively simple linear regression models provide accuracy sufficient to increase
significantly the convergence velocity in terms of optimization iterations compared to EA-LSM.

The second proposal follows the ideas from the field of surrogate-assisted evolutionary optimiza-
tion. In case of very expensive crash simulation models, and when a coarse representation of
the topology with a limited number of MMCs is sufficient, an attractive alternative is to use ma-
chine learning for approximating the objectives and constraints directly. Although approaches
utilizing that concept, such as Efficient Global Optimization (EGO), are well-established in design
optimization, to the best of our knowledge, they have never been applied to structural topology
optimization problems before due to the high number of design variables in conventional represen-
tations. In this work, we describe the Kriging-Guided Level Set Method (KG-LSM) using EGO
and a low-dimensional MMC-based representation, with problem-specific modifications for car-
rying out topology optimization. Based on 2D static cases, we show that the method is able to
provide solutions consistent with the literature. In the experiments, the dimensionality of the opti-
mization problems is gradually increased from 2 to 15, showing the limits of the method due to the
curse of dimensionality, for the particular case of compliance minimization. Finally, we show that
for a 15-dimensional intrusion minimization crash problem, the method is able to significantly re-
duce the number of finite element simulations compared to EA-LSM. In the considered test case,
EA-LSM requires on average ca. 500 evaluations to reach similar intrusion values as KG-LSM
after 150 simulations. Based on the experiments for 15-dimensional static and crash cases, one
should note that the maximal dimensionality of the problems that can be addressed efficiently with
KG-LSM can strongly depend on a particular characteristics of the considered objective functions
and constraints.

Finally, we present the third, alternative, approach for improving the performance of EA-LSM,
taking advantage of machine-learning-based predictions of favorable structural changes. Inspired
by the concept of adaptive representations, which gradually increase the dimensionality of the
used representation during the optimization process, we propose the Adaptive Evolutionary Level
Set Method (A-EA-LSM). To allow for an easy and efficient handling of topological variations,
A-EA-LSM uses a graph representation of topology, which is mapped to a corresponding set of
MMCs. The method starts with a very few MMCs, which significantly increases the conver-
gence velocity of evolutionary optimization. Once the optimization converges, the representation
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is extended by adding new MMCs in the structure. In order to let the modified individuals to
optimize so that they are able to compete with simpler designs, a niching-like technique is used
and results in several topology types coexisting together in the population. The designs optimized
in a lower-dimensional space are assumed to be good approximations of the optimal structures
in higher-dimensional spaces. Since it is not clear where to add the new MMCs, we propose a
learning-based topology variation operator, which predicts potentially the best locations of new
structural connections. The operator uses a neural network classifier that compares different can-
didates for topological variations based on the structural state of the design. As a result, based
on the automatically sampled data, it can learn topology variation rules for specific optimization
objectives prior to the optimization. The main motivation behind this approach is the existence of
engineering rules for part design, including the ones for crashworthiness, which can be potentially
learned from the data. Hence, the proposed solution has a generic character and proves to be signif-
icantly better than random variations in the presented experiments. In the test for linear elasticity,
we are able to reproduce the reference solutions known from the literature. However, for the non-
linear crash case, A-EA-LSM yields a design close, but not identical to the solutions obtained with
EA-LSM. Thus, although the performance of the design improves during the optimization, it is not
clear if the adaptive process can always lead to the same optima as for the optimization carried out
directly in the high-dimensional search space. To investigate that and to prove the usefulness of
A-EA-LSM in general case, more research in this direction is needed.

All of the machine learning enhancements of EA-LSM can be seen as modules, which can be
potentially combined together. Obviously, the underlying assumptions are sometimes contradict-
ing, e.g. it might be not efficient to use A-EA-LSM together with KG-LSM, since all of the data
samples collected for lower-dimensional representations would be useless for the extended repre-
sentation. As a result, the interactions between the enhancements should be studied carefully. A
good example of the synergistic effects coming from such a hybridization is described in our recent
publication (Raponi et al. (2019b)), where KG-LSM was combined with EA-LSM. Another inter-
esting aspect, not discussed in this thesis, but highlighting the potential of the proposed method,
is the incorporation of manufacturing constraints into EA-LSM. We have demonstrated how to
embed such constraints in the approach for generating self-supporting structures for additive man-
ufacturing of crash components (Bujny et al. (2017c)). Finally, the concepts of EA-LSM were
also used in an evolutionary approach for optimization of thin-walled extrusions, based on shell
finite element meshes (Bujny et al. (2016a)). Since this is a problem of high practical relevance,
with most of the car body components being sheet metal structures, an integration of the methods
discussed here to this problem seems to be very interesting. The further ideas for promising future
research directions are given in the next section.
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10.2. Outlook

Beside the application of EA-LSM and its extensions to the optimization of thin-walled extrusions,
the research on the design representations compatible with the proposed methods would potentially
allow for addressing many interesting real-world structural optimization problems. In particular,
using higher-order MMCs, e.g. with curved skeletons (Guo et al. (2016)), might increase the
structural attainability of the method. It would be also very interesting to investigate if it is better
to use less components of higher complexity or many more simple MMCs. Using EA-LSM for
topometry optimization or joint shape and topology optimization seems to be also very interesting
in the context of the optimization of e.g. stamped parts, and some initial experiments carried
out in this direction were already very promising. As another important application, one could
think about using the proposed methods for optimization of thin-walled structures by utilizing
the hollow MMC approach (Bai and Zuo (2020)). One of the main shortcomings of the standard
density-based methods is the fact that they generate topologies hard to interpret as thin-walled
structures, which strongly limits the use of these methods in practice. Finally, using conforming
mapping techniques based on the level-set field would allow for elimination of the unrealistic stress
concentrations present in the standard density-based methods. Potentially, re-meshing techniques
could be used to generate shell meshes from the level-set fields to address the layout optimization
of thin-walled profiles.

Due to the interdisciplinary and stochastic character of the most of the real-world optimization
problems, another future research direction could focus on using known techniques from the field
of evolutionary optimization to address multi-objective problems (Deb (2001); Deb et al. (2002))
or robust design optimization (Beyer and Sendhoff (2007); Aspenberg (2011)). Using dimension-
ality reduction techniques such as principal component analysis (Wold et al. (1987)) or techniques
relying on decoupling of optimization problems, e.g. cooperative coevolution (Potter and Jong
(2000); Yang et al. (2008)), could be also very promising to further reduce the computational costs
of EA-LSM.

Regarding the machine-learning enhancements of EA-LSM, especially further extensions of KG-
LSM would be very interesting. For instance, one could combine KG-LSM with EA-LSM, via
initialization of the parameters of CMA-ES based on the data collected by KG-LSM, as proposed
by Mohammadi et al. (2015). However, the main limitation of KG-LSM is the low dimensionality
of the optimization problems it can address. Thus, using techniques targeting high-dimensional
surrogate-assisted optimization (Kyriacou et al. (2014); Wang et al. (2016); Bouhlel et al. (2016,
2018)) could substantially increase the applicability of KG-LSM.

Finally, the application of the proposed methods to the fields other than crashworthiness would
show the true benefits coming from their generic character. For instance, the problems in manufac-
turing (Tavakoli and Davami (2009); Kor et al. (2009)), soft robotics (Laschi et al. (2016); Rieffel
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et al. (2009); Hiller and Lipson (2012); Zhang et al. (2017a)), or selected types of compliant mech-
anism design problems (Kaminakis and Stavroulakis (2012); Tummala et al. (2013)) might pose
difficulties to standard gradient-based optimizers, and, consequently, could take advantage of the
methods proposed in this work.
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Appendix A

Methods

This section of the appendix contains an additional information about the methods proposed in this
work.

A.1. Features for learning-based topology variations

In Table A.1, the structural state features used by the topology variation predictor (Section 6.3.3)
for the crash cases are given.
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Table A.1 Structural state features used for prediction of favorable topological variations in the nonlinear crash cases. Since the
field variables change over time in the transient crash simulation, only the maximal values of the quantities are taken into account.
*The characteristic sections are specified at 25%, 50%, and 75% of the length of the graph edge.

ID Feature

5 Max. resultant displacement in the neighborhood of radius 1 around the graph node.

6 Max. strain energy in the neighborhood of radius 1 around the graph node.

7 Max. von Mises stress in the neighborhood of radius 1 around the graph node.

8-10 Max. resultant displacement at the 3 characteristic sections* along the edge.

11-13 Max. strain energy at the 3 characteristic sections* along the edge.

14-16 Max. von Mises stress at the 3 characteristic sections* along the edge.

17-19 Normal force at the 3 characteristic sections* along the edge.

20-22 Transverse force at the 3 characteristic sections* along the edge.

23-25 Bending moment at the 3 characteristic sections* along the edge.

26-28 Max. velocity at the 3 characteristic sections* along the edge.

29-31 Max. acceleration moment at the 3 characteristic sections* along the edge.
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Appendix B

Algorithm settings

In this section of the appendix, the parameter settings for selected algorithms used in this work is
given.

B.1. Parameter settings for SIMP

To validate the results obtained with EA-LSM in the 2D linear elastic cases, the state-of-the-art
density-based method, utilizing the SIMP approach as well as a gradient-based Optimality Cri-
teria (OC) optimizer, is used. In particular, we use the efficient MATLAB implementation by
Andreassen et al. (2011), based on the previous work by Sigmund (2014). SIMP is utilized also
within the ESL approach for the 3D crash cases, where an in-house Python code extending the
approach described by Sigmund (2014) is used. The exact parameter settings for the SIMP used in
the cases mentioned above is given in Table B.1.
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Table B.1 Settings of the SIMP approach used in this thesis. The definitions of the parameters can be found in the paper by
Sigmund (2014).

Parameter Value

Filter radius (divided by the element size) 3

Penalization power 3

Filtering type Sensitivity

B.2. Parameter settings for CMA-ES

In all of the EA-LSM optimization runs utilizing CMA-ES (Hansen and Kern (2004)), the hy-
perparameters of the algorithm are defined according to the rules specified in Table B.2, used by
default in the Python implementation of CMA-ES by Hansen (2016).

Table B.2 Selected rules for defining the settings of CMA-ES(µ , λ ) used in this work. The hyperparameters of the algorithm are
defined based on the dimensionality of the optimization problem (n).

Hyperparameter Rule

Number of offspring individuals λ = 4+ b3ln(n)c

Number of parent individuals µ = bλ

2 c

Maximum number of iterations itermax = b100+50(n+3)2

λ 0.5 c

Termination if no improvement over iterstag iterations iterstag = b100+100n1.5

λ
c

The rest of the hyperparametrs are set on the default levels, as well. To great extent, the rules used
by Hansen (2016), e.g. for defining the number of parents, µ , and offspring, λ , are justified in the
work by Hansen and Ostermeier (2001).
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Appendix C

Results

This section of the appendix contains a supplementary material from the numerical experiments
discussed in this thesis.

C.1. Design evolution in EA-LSM for the cantilever beam case

Table C.1 shows the evolution of the design represented with 16 MMCs during one of the optimiza-
tion runs with EA-LSM for the linear elastic static cantilever beam case of compliance minimiza-
tion with 50% volume constraint and aspect ratio 1:2, considered in Chapter 7. As an underlying
optimization algorithm, CMA-ES(7,15) is used. For each generation, the material distribution and
the layout of MMCs for the best individual in the population are shown. The initial design violates
the 50% volume constraint. As a consequence, at the beginning, mainly the thickness of the MMCs
on the right-hand side is reduced. After 75 generations, the most important structural connections
are already established, and only some redundant material on the right-hand side, represented by
four MMCs, has still to be removed. Between 200 and 900 generations, only minimal changes of
the material distribution can be observed. In this phase, the compliance of the structure reduces
by less than 2%. The final design is consistent with the solution obtained with the state-of-the-art
SIMP approach (Table 7.2, 5th row).
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Table C.1 Evolution of the best individual in EA-LSM for the cantilever beam test case with 1:2 aspect ratio and 50% volume
constraint.

Topology

Generation Material distribution MMC layout

0
0 5 10 15 20

0
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SimplePlot; Parent = 0; Iteration = 0; Fitness = 67.50972

10
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0

2

4

6

8

10
SimplePlot; Parent = 0; Iteration = 10; Fitness = 0.05975

25
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SimplePlot; Parent = 0; Iteration = 25; Fitness = 0.03438

50
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0
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10
SimplePlot; Parent = 0; Iteration = 50; Fitness = 0.02523

75
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10
SimplePlot; Parent = 0; Iteration = 75; Fitness = 0.01794

100
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0
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4
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8

10
SimplePlot; Parent = 0; Iteration = 100; Fitness = 0.01684

200
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10
SimplePlot; Parent = 0; Iteration = 200; Fitness = 0.01455

900
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0

2

4

6

8

10
SimplePlot; Parent = 0; Iteration = 900; Fitness = 0.01428
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