
Loose Coupling of Isolated Rotor-
blade Rotorcraft CFD/CSD Simula-
tions using preCICE

submitted in fulfillment of the requirements for the degree of Master
of Science (M.Sc.) to the Faculty of Informatics of the Technical
University of Munich.

Supervising
Professors

Univ.-Prof. Dr. Hans-Joachim Bungartz
Chair of Scientific Computing in Computer Science

Prof. Dr. Ing. Manfred Hajek
Institute of Helicopter Technology

Supervised by Abdelmoula, Amine M.Sc.

Chourdakis, Gerasimos M.Sc.

Submitted by Huang Qunsheng

Registration number 03693984

Document ID HT-MA 193/2019

Submitted on Garching, December 23, 2019

Statement of Authorship

I, Huang Qunsheng, confirm that the work presented in this thesis has been
performed and interpreted solely by myself except where explicitly identified
to the contrary. All verbatim extracts have been distinguished by quotation
marks, and all sources of information have been specifically acknowledged. I
confirm that this work has not been submitted elsewhere in any other form for
the fulfillment of any other degree or qualification.

Garching, 23 December 2019

Abstract

Accurate rotor blade analysis is a complex task—requiring the consideration
of the aerodynamics, motion and deformation of the rotor blade. The current
paradigm is to employ two separate solvers, each adept at solving for a single
physical phenomenon in the multi-physics problem. In this work, the fluid solver
TAU and the solid solver CAMRAD II are coupled. TAU is highly specialized in
solving fluid problems around complex geometries, while CAMRAD II describes
elastic blade behavior and provides trimmed solutions. A rudimentary fluid-solid
solver coupling between TAU and CAMRAD II has been developed at the Chair
of Helicopter Technologies [1]. However, the coupling is only intended for a
single simulation case. As a result, the code is not designed to be modular,
extensible or easy to use. Additionally, if this methodology would be used for
future couplings, a unique adapter would be required for each simulation case.

Hence, this work focuses on the development of general adapters that support
the “plug-and-play” of new solvers using the preCICE library. The structure of
the adapter code is designed to be modular, using an Object-Oriented approach.
The adapters minimize code dependencies between the two solvers and allow for
the modular removal or addition of specific pre- or post-processing steps when
passing data between solvers. Additionally, the TAU adapter allows the design
and introduction of new simulation loops using the TAU-Python API.

Additional methods were implemented to supplement the preCICE library,
which allowed for the passing of multiple timesteps of data in a single coupling
step in a loosely-coupled simulation. Similarly, an intermediate interpolation
step was implemented to allow for the 3D-1D passing of data from TAU to
CAMRAD II.

Three cases were implemented using the adapter code. A simple, tightly-
coupled simulation was used in the development of the TAU adapter as a proof
of concept. In this case, the TAU adapter replaced the OpenFOAM adapter in an
existing OpenFOAM-CalculiX coupling. The second case was a loosely-coupled
rotor blade simulation with only rigid body motion, where we saw preliminary

convergence of TAU and CAMRAD II results. This simulation was extended to
introduce elastic deformation in addition to rigid body motion to create a third
case. The aim was to model elastic blade motion in the fluid simulation.

This work acts as a foundation for the TAU and CAMRAD II preCICE
adapters, serving as a modular, extensible and easy to maintain codebase upon
which other TAU or CAMRAD II fluid-structure interaction simulations can be
developed. The adapter code also allows users to freely couple these two solvers
with any other existing preCICE adapters and provides a standard interface to
couple with new solvers in the future.

6

Acknowledgements

Firstly, I am grateful to Amine Abdelmoula and Gerasimos Chourdakis, my
two supervisors, for guiding me through my work on this thesis. I would not
have been able to accomplish a fraction of the work done in this thesis without
their constant willingness to put their own work on hold to provide much-needed
guidance and advice. I must thank Amine for his constant cheer and enthusiasm
and Gerasimos for his unending calm that kept me centered throughout this
work.

Additionally, I must thank Dominik Komp and Stefan Platzer at the Chair
for Helicopter Technologies for their technical guidance in using the CAMRAD II
and TAU solvers. Similarly, I must thank Isaan Desai for sharing his experiences
on running preCICE on the lrz supercomputers.

Finally, I must thank my friends and family for their undending support for
the duration of my studies. Special thanks to my brother, who always keeps me
grounded, and my parents, without whom none of this would be possible.

Contents

List of Figures xii

List of Tables xv

List of Algorithms xv

Nomenclature xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure of Work . 2

2 Literature Review 5

3 Theoretical Principles 7
3.1 Monolithic vs. Partitioned Coupling Strategies 7
3.2 Tightly-Coupled vs. Loosely-Coupled Rotor Blade Simulations . 8
3.3 Introduction to Chimera Grids 8
3.4 Introduction to Radial Basis Functions 9

4 Tools 11
4.1 TAU . 11

4.1.1 TAU Simulations . 11
4.1.2 TAU-Python API . 12
4.1.3 TAU Data Input . 14
4.1.4 TAU Data Output . 16

4.2 CAMRAD II . 17
4.2.1 CAMRAD II Simulations 17
4.2.2 CAMRAD II Data Input 19
4.2.3 Force Tables . 19
4.2.4 CAMRAD II Data Output 20

4.3 TAU & CAMRAD II Coordinate Systems 20
4.4 preCICE . 22

4.4.1 Data Mapping . 23
4.4.2 preCICE Coupling . 24
4.4.3 preCICE API . 27

Contents

5 Adapter Architecture 31
5.1 Goals . 31
5.2 Workflow of Original Code . 32
5.3 Workflow with TAU and CAMRAD II Adapters 35
5.4 TAU Adapter API . 43

5.4.1 Adapter class . 43
5.4.2 DataInterface class . 44
5.4.3 Config class . 45
5.4.4 DataHandler class . 47
5.4.5 Solver class . 49

5.5 CAMRAD II Adapter API . 51
5.5.1 Adapter class . 51
5.5.2 DataInterface class . 52
5.5.3 DataHandler class . 53
5.5.4 Config class . 54

6 Implementation 55
6.1 Toy Example: Perpendicular Flap 55

6.1.1 Simulation Setup . 56
6.1.2 TAU Solver . 57
6.1.3 TAU DataHandlers . 57
6.1.4 Folder Structure & Running Tutorial Case 57

6.2 Case 1: Loose Coupling without Deformation 59
6.2.1 Simulation Setup . 59
6.2.2 Simulation Coupling Workflow 62
6.2.3 CAMRAD II Solver . 63
6.2.4 TAU Solver . 64
6.2.5 Data Handling . 65
6.2.6 Folder Structure & Running Tutorial Case 74

6.3 Case 2: Loose Coupling with Deformation 76
6.3.1 Simulation Setup . 76
6.3.2 Deformation Calculation 76
6.3.3 Folder Structure & Running Tutorial Case 79

7 Results 81
7.1 Toy Example: Perpendicular Flap 81
7.2 Case 1: Loose Coupling without Deformation 82
7.3 Profiling . 85
7.4 Case 2: Loose Coupling with Deformation 88

8 Conclusion 93

References 97

Appendices 103

Contents

Appendix A User Guide 105
A.1 Getting Started with TAU . 105

A.1.1 Level 1: Using pre-existing Solver and DataHandlers . . 105
A.1.2 Level 2: Creating new DataHandlers and Config classes . 108
A.1.3 Level 3: Creating a new Solver class 109

A.2 Getting Started with CAMRAD II 109
A.2.1 Loosely-Coupled Helicopter Simulation 110

Appendix B Configuration File Definitions 113
B.1 preCICE Configuration File . 113
B.2 Parameters . 113
B.3 TAU Configuration File . 113
B.4 CAMRAD Configuration File 116
B.5 Parameters . 116

Appendix C User Extensibility 121
C.1 Extending TAU Adapter . 121

C.1.1 Updating Config class . 121
C.1.2 Extending DataHandler 123
C.1.3 Extending Solver class 126

C.2 Extending CAMRAD II Adapter 129
C.2.1 Updating Config class 129
C.2.2 Update DataHandler class 130

Appendix D Recreation of Data 133
D.1 Toy Example: Perpendicular Flap 133
D.2 Case 1: Loose Coupling without Deformation 133

D.2.1 Coupling Results . 133
D.2.2 Profiling Results . 133

D.3 Case 2: Loose Coupling with Deformation 134

List of Figures

3.1 Chimera Grid Example showing Chimera Block and Cross-section. 9

4.1 TAU Parafile Excerpt. 12
4.2 TAU Motion Hierarchy Excerpt. 14
4.3 TAU Motion Hierarchy Excerpt. 15
4.4 TAU Scatfile Excerpt. 16
4.5 CAMRAD II Jobfile Structure 18
4.6 CAMRAD II Force Table Excerpt. 19
4.7 Coordinate Definitions used in TAU 21
4.8 Rotor Blade Reference Conventions. 21
4.9 Consistent Mapping of Temperatures 23
4.10 Conservative Mapping of Forces 23

5.1 Original Workflow Sequential UML Diagram. 33
5.2 Original Coupling Folder Structure. 34
5.3 Overview of TAU and CAMRAD II Adapters. 35
5.4 Updated TAU UML Diagram. 36
5.5 Updated CAMRAD II UML Diagram. 36
5.6 TAU Library Folder Structure. 37
5.7 Sample TAU Simulation Folder Structure. 39
5.8 CAMRAD II Library Folder Structure. 39
5.9 Sample CAMRAD II Simulation Folder Structure. 39
5.10 New Workflow Sequential UML Diagram. 41
5.11 Simplified New Workflow Sequential UML Diagram. 42

6.1 Toy Example: Simulation Setup. 56
6.2 Toy Example: Pointwise Grid. 56
6.3 Perpendicular Simulation Folder Structure. 58
6.4 Rotor Blade Sections in CAMRAD II 60
6.5 Rotor Blade Aerodynamic Panels in CAMRAD II 60
6.6 Case 1: Rotor Blade Model . 61
6.7 Modified Delta Airloads Algorithm Workflow 62
6.8 CAMRAD II Output File Excerpt. 67
6.9 Json Handshaking Procedure . 68
6.10 Failed Mapping of Aerodynamic Loading Data 70
6.11 Successful Mapping of Aerodynamic Loading Data 71

xiii

6.12 Comparison of Nearest-Neighbor Interpolation and RBF Interpo-
lation. 72

6.13 Comparison of Full and Piece-wise Data Passing. 73
6.14 Passing of Full and Piece-wise Force Data in x- (left), y- (middle)

and z-axis (right). 73
6.15 Relative Error of Full and Piece-wise Force Data in x- (left), y-

(middle) and z-axis (right) . 73
6.16 Visualization of preCICE piece-wise configuration file. 75
6.17 Motion Hierarchy of the 4-bladed CFD rotor blade simulation. . 78
6.18 Isolated Rotor Blade Simulation with Deformation Folder Structure. 80

7.1 Snapshot of TAU-CalculiX Toy Example. 81
7.2 Displacements of watchpoint tracked in TAU-CalculiX and OpenFOAM-

CalculiX. 82
7.3 Flowfield Around Rotor Blade. 82
7.4 Comparison of TAU and CAMRAD II thrust distribution (Fz)

prior to coupling. 83
7.5 Comparison of TAU and CAMRAD II aerodynamic force and

moment data prior to coupling. 83
7.6 Comparison of TAU and CAMRAD II thrust distribution (Fz)

after 4 coupling iterations. 84
7.7 Comparison of TAU and CAMRAD II aerodynamic force and

moment data after 4 coupling iterations. 84
7.8 Case 1: Profile Analysis . 87
7.9 Comparison of CAMRAD II collocation point position and calcu-

lated collocation point position. 89
7.10 Comparison of calculated collocation point position and TAU

deformation + motion. 90
7.11 Average Relative Error of Deformation Case 91

A.1 Basic TAU Simulation Folder Structure. 106

List of Tables

6.1 Rotor geometry and test conditions. 60

7.1 Overview of CAMRAD II control values per coupling iteration. . 85
7.2 Profile of original script. 86
7.3 Profile of TAU adapter script. 86
7.4 Profile of CAMRAD II adapter script. 86

xiv

B.1 Parameters for TAU Config class 115
B.2 Parameters for TAU Interface class 115
B.3 Parameters for TAU Simulation class 115
B.4 Parameters for CAMRAD II Config class 117
B.5 Parameters for CAMRAD II Interface class 118
B.6 Parameters for CAMRAD II Simulation class 119
B.7 Parameters for CAMRAD II RotorInfo class 119

C.1 Member Attributes of TAU DataHandler class 125

List of Algorithms

1 Serial-explicit coupling scheme algorithm 25
2 Parallel-explicit coupling scheme algorithm 25
3 Serial-implicit coupling scheme algorithm 26
4 Parallel-implicit coupling scheme algorithm 26
5 Original coupling algorithm . 32
6 TAU-Python algorithm for tightly-coupled case 57
7 CAMRAD II algorithm for loosely-coupled case 63
8 TAU-Python algorithm for loosely-coupled case 65
9 TAU-Python algorithm for loosely-coupled case with deformation 77

xv

Nomenclature

Notation

symbol description unit

c blade chord length m
Mx rotor hub rolling moment (pos. forward) Nm
My rotor hub pitching moment (pos. right) Nm
Nb number of blades -
R rotor radius m
rtw zero twist radial station -
t time s
T rotor thrust N
T∞ air temperature ◦C
V∞ free stream velocity m/s

θ pitch angle deg
θS rotor shaft pitch angle deg

Θtw linear blade twist per span deg
µ advance ratio -
ρ air density kg/m3

σ rotor solidity, σ = Nbc/(πR
2) -

φ flap angle deg
φS rotor shaft roll angle deg
ψ azimuth angle, lag angle deg
ψt rotor unsteady rotation angle, ψt = ωt deg
ω rotational speed rad/s

Acronyms

AFDD US Army Aeroflightdynamics Directorate
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BVI blade-vortex interaction
CAMRAD II Comprehensive Analytical Model of Rotorcraft Aerodynamics

and Dynamics

xvii

Nomenclature

CFD computational fluid dynamics
CHANCE Complete Helicopter Advanced Computational Environment
CSD computational structural dynamics
DLR German Aerospace Center (Deutsches Zentrum für Luft- und

Raumfahrt)
DNW Deutsch-Niederländische Windkanäle
FPR Full Potential Rotor
FSI Fluid-Structure Interaction
HART Higher-Harmonic Control Aeroacoustics Rotor Test
HOST Helicopter Overall Simulation Tool
HPC High Performance Computing
NASA National Aeronautics and Space Administration
ONERA Office National d’Etudes et de Recherches Aérospatiales
OOP Object-Oriented Programming
preCICE Precise Code Interaction Coupling Environment
RBF Radial Basis Function
TUM Technical University of Munich
UML Unified Modeling Language
WAVES Without Artificial Viscosity Euler Solver

xviii

1. Introduction

1.1 Motivation

The accurate simulation of a rotor blade flowfield is a complex task—requiring
the consideration of the aerodynamics, motion and deformation of the rotor
blade. As these phenomena are strongly interlinked, this is not easy. One of
the major difficulties in simulating such a complex multi-physics problem is
the development of a high-fidelity solver that is able to consider both complex
phenomena in their entireties, which is no mean feat.

The current paradigm is to employ two separate solvers or simulation partici-
pants, each adept at solving for a single physical phenomenon in the multi-physics
problem. In this work, the coupling of two specialised solvers is of interest: a
computational structural dynamics (CSD) solver and a computational fluid dy-
namics (CFD) solver. The CSD solver is Comprehensive Analytical Model of
Rotorcraft Aerodynamics and Dynamics (CAMRAD II), developed by Johnson
Aeronautics. The CFD solver is TAU, developed by German Aerospace Center
(Deutsches Zentrum für Luft- und Raumfahrt) (DLR). TAU is highly special-
ized in solving fluid problems around complex geometries, while CAMRAD II
describes elastic blade behavior and provides trimmed solutions.

While a rudimentary coupling of these two solvers has been developed at
the Chair of Helicopter Technologies [1], the coupling is highly specialised for a
single simulation case. If this methodology would be used for future couplings,
a unique coupling adapter would be required for each simulation case. This
would be undesirable as each coupled simulations would need to be maintained
independently and new coupled simulations cannot easily exploit old code. This
problem is further exacerbated by the high customizability of TAU solvers, which
are typically written in the TAU-Python Application Programming Interface
(API) provided by DLR.

Hence, this work focuses on the creation of a general coupling framework
that supports the “plug-and-play” of new solvers. The development and imple-

1

1. Introduction

mentation of such a generalized framework can be split into two teps:

1. The development of a modular code structure that retains the easy cus-
tomizability provided by the TAU-Python API

2. The developement of a data exchange interface that minimizes code inter-
dependencies between two separate solvers

The first step is handled via an Object-Oriented Programming (OOP) ap-
proach by delegating portions of the general TAU-Python simulation code into
distinct classes that allow sub-classing. This approach isolates the interfaces
between separate solvers and allows the easy customization of critical segments
of the simulation work-flow.

The second step incorporates the Precise Code Interaction Coupling Envi-
ronment (preCICE) coupling library to oversee and control data passed between
simulation participants during a multi-physics simulation. preCICE employs a
“black-box” approach in coupling solvers and provides sophisticated support for
passing information along shared boundaries.

This thesis provides a preCICE adapter that supports custom TAU solvers us-
ing the TAU-Python API and a Python-based preCICE adapter for CAMRAD II.
Three tutorial cases are also implemented in this thesis: a simple example tutorial
example from the preCICE respository, the existing coupled simulation devel-
oped at the Chair of Helicopter Technologies and an extension of the existing
coupling to include grid deformation.

1.2 Structure of Work

This work is organized into eight distinct chapters. After the introductory
chapter, the second chapter gives a literature review of the previous work in the
field. Key concepts relevant to the work are introduced in Chapter 3, including
coupling strategies, an overview of the fluid and solid solver numerical solvers
and an introduction to Radial Basis Function (RBF) interpolation, which is
used when deforming grids. Chapter 4 introduces the software tools used in this
thesis, namely TAU, CAMRAD II and preCICE. Chapter 5 describes the areas
of possible improvement in the previous coupling, outlines the new code structure
addressing these issues and illustrates the workflows of the newly introduced
TAU and CAMRAD II adapters. Chapter 6 describes the implementation of
the three tutorial cases in greater detail, providing background information of
the various challenges faced and the resultant solutions. Chapter 7 examines

2

1. Introduction

the results of the coupled simulations. Finally, chapter 8 provides an overview
of the results, summarizes the most important points of this work and suggests
possible future improvements to the developed adapter code.

3

2. Literature Review

This chapter provides a short overview of the various advances in the coupling
of CSD and CFD solvers as related to the field of rotorcraft simulations.

As mentioned in the introduction, the coupling of a solid and fluid solver
is not a novel concept. However, the very first multi-physics simulations in
the field of rotorcraft simulations typically used a single solver. CSD solvers
employing Finite Element techniques were successfully used to model rotor blade
structural dynamics and control during rotorcraft operations [3]. These CSD
solvers typically incorporated simplified aerodynamics models to calculate the
aerodynamic loads for the problem to reduce computational costs [4]. Even
today, widely used Solid Dynamics solvers (such as CAMRAD II, RCAS and
DYMORE) do not inherently support highly-complex aerodynamic models due
to the extreme inherent difficulty of such an undertaking [5, 6, 7].

While tightly-coupled solvers were widely regarded as the more accurate
approach (see Section 3.2 for further details), hardware limitations forced the
development of computationally cheaper coupling methodologies. One of the ear-
liest coupling implementations include the loosely-coupled transonic simulations
developed by Tung et al. in 1986 that coupled CAMRAD with the Full Potential
Rotor (FPR) solver [8]. This work was followed by a series of loosely-coupled
solvers using similar techniques [9, 10, 11].

With advancements in hardware computational capabilities in the early 1990s
came the possibility of using Navier-Stokes or Euler solvers in coupled simula-
tions. Bauchau et al. developed a proof-of-concept tightly-coupled solver coupling
CAMRAD/JA and OVERFLOW to simulate isolated UH-60A Blackhawk rotor
blades [12, 13, 14]. They also developed a tightly-coupled solver using CAM-
RAD/JA and FPR to investigate the improvements of using a Euler solver to
replace the typical lifting-line aerodynamics model using the Puma helicopter
test results [15].

The next years saw the introduction of the delta airloads method used by
Pahlke et al., Servera et al. and Potsdam et al. [16, 17, 18]. Pahlke et al. and

5

2. Literature Review

Servera et al. both investigated the 7A and 7AD rotors [16, 17]. Pahlke et
al. used a loose coupling of FLOWer and the DLR CSD code S4 and Servera et
al. coupled Helicopter Overall Simulation Tool (HOST) and Without Artificial
Viscosity Euler Solver (WAVES) [16, 17]. Potsdam et al. used a loose coupling
of CAMRAD II and OVERFLOW-D [18].

Altmikus et al. provided a comprehensive direct comparison of loosely- and
tightly-coupled rotor blade simulations [19]. The simulation used the framework
developed by the Complete Helicopter Advanced Computational Environment
(CHANCE) project, coupling the DLR FLOWer CFD code and the EURO-
COPTER flight mechanics tool HOST to simulate the 7A model rotor developed
by ONERA and EUROCOPTER. This study was validated in the ONERA S1MA
wind-tunnel. The study determined that the results of the loosely-coupled simula-
tion were comparable with those of the tightly-coupled simulation, accompanying
a 2.5 overall decrease in time to solution. [19]

More investigations using the delta airloads method continued through the
mid 2000’s with Abras et al. experimenting with the use of unstructured grids
in loosely-coupled simulations of the UH-60A rotors [20]. They demonstrated
that these methods produced results comparable to uncoupled structured overset
code [20]. A series of NASA funded wind tunnel tests were run in May 2010 and
the results were used as validation data for a series of loosely-coupled simulations:
Marpu et al. coupled a hybrid CFD solver, GT-Hybrid, with DYMORE [21] and.
Lee-Rausch et al. performed their investigations with a FUN3D-CAMRAD II
coupling [22].

Loosely-coupled rotor blade simulations have also been used for rotorcraft
acoustic analysis or blade-vortex interaction (BVI). Boyd et al. and Lim et
al. investigated noise prediction of the Higher-Harmonic Control Aeroacoustics
Rotor Test (HART) II and UH-60A rotor using a loosely-coupled OVERFLOWII
and CAMRAD II simulation [23, 24].

6

3. Theoretical Principles

This chapter introduces the various basic theoretical principles required for the
remainder of the work, namely the coupling approches for partitioned solvers,
coupling approaches in rotor blade simulation, the Chimera meshing technique
as well as the mathematical principles behind the RBF interpolation method.

3.1 Monolithic vs. Partitioned Coupling Strategies

One of the earliest methods to couple aerodynamics and structural dynamic
equations in rotorcraft simulation was the monolithic approach, such as the one
proposed by Hübner et al. [25]. With such an approach, a single solver soft-
ware that incorporates the mathematical models of both rotor blade strucutural
dynamics and flow field fluid dynamics would be created. Certainly, such a
solver, if well-implemented, would be highly performant, containing inherent
internal coupling, a higher degree of robustness, and easier error control [25].
However, the investment required for the development process is significant and
most monolithic solvers must be developed fully in-house, as is the case for the
work by Geruswamy et al. [13, 14]. Such solvers are also highly specialized and
are typically limited to specific domains or sets of problems. Similarly, from
an implementation point of view, the upkeep, development and maintenance of
such complex, multi-disciplinary code would difficult, as maintainers would need
significant expertise across a broad range of domains.

On the other extreme is the partitioned approach, where multiple single-
physics solvers are coupled to solve multi-physics problems. This approach
adheres to the computing paradigm of “low coupling, high cohesion”—solvers
are run independently and data on shared interfaces is exchanged as needed.
The partitioned approach does introduce a degree of complexity when passing
information between two independent solvers, which, if handled without care, can
introduce mapping errors to the coupled simulation. However, the main benefits
of such an approach lies in its modularity—development of solvers can occur in

7

3. Theoretical Principles

parallel and maintenance is greatly simplified. As a result, two highly-specialised,
state-of-the-art solvers can be combined to exploit each others strengths.

3.2 Tightly-Coupled vs. Loosely-Coupled Rotor Blade Sim-
ulations

In a coupled rotor blade simulation, there are a further two approaches to
exchanging data between simulation participants. The first and more traditional
approach is to use a tightly-coupled simulation, in which data is exchanged
between solvers after each simulation time step [26].

A tightly-coupled approach produces more accurate results as data at the
shared boundaries remains time-accurate throughout the simulation (and this
approach is still necessary when solving for transient solutions). However, such
an approach is deeply involved and is very computationally expensive due to the
large volume of data that needs to be processed in each simulation time step.
Hence, for problems with a periodic solution, a loosely-coupled approach can be
employed.

A loosely-coupled simulation only exchanges information periodically, typi-
cally after the coupled participants complete one or several full revolutions [17].
Other than the decreased computational cost, such simulations also inherently
produce trimmed solutions: Given a set of aerodynamic loads, most contempo-
rary rotorcraft CSD software will iteratively determine the input controls which
satisfy a trim condition. The CSD solution under these conditions is known as
the trimmed solution and is useful to researchers as it reflects the operational
conditions of a rotorcraft in a steady-state situation (such as free flight, hover,
steady ascent, or descent). Additional steps are required for tightly-coupled
simulations to produce trimmed results, such as iteratively restarting the full
simulation after modifying the helicopter input controls. All these further add
to the computational resource requirements of a tightly-coupled simulation.

3.3 Introduction to Chimera Grids

The fluid solver in this work employs Chimera grids for meshing purposes.
Chimera or Overset grid approach is an adaptive meshing strategy first in-
troduced by Benek et al. in 1986 [27]. This technique was designed for use in
the aerospace field and resolves several difficulties when generating meshes for
rotorcraft simulations.

8

3. Theoretical Principles

(a) Overset Grids [20]. (b) Blade Cross-section [20].

Figure 3.1: Chimera Grid Example showing Chimera Block and Cross-section.

The Chimera grid strategy performs domain decomposition, allowing for
easier fine-mesh generation around areas of interest and a coarser mesh in the
farfield regions. One example is shown in Fig. 3.1, where four differently coloured
subdomains are embedded into the farfield mesh. These embedded meshes are
allowed to follow the movement of these areas of interest through the domain,
i.e. the embedded meshes can follow the movement of rotor blades through the
farfield mesh.

Similar domain decomposition strategies prior to this technique provide sim-
ilar benefits but require gridlines to be continuous across subdomain boundaries
[28, 29]. Chimera grids take a different approach: subdomains overlap at shared
boundaries and data along shared boundaries is interpolated from these shared
regions [27]. This can be seen in Fig. 3.1b, where the finer embedded mesh
overlaps with the coarser farfield mesh.

Additionally, Chimera grid approach supports adaptive meshing, in which
nodes in subdomains are modified depending on the state of the equations,
effectively clustering points around regions of high gradients. Hence, initial
Chimera grids do not need to fit the simulated model completely but instead are
adapted throughout the course of the fluid simulation. [27]

3.4 Introduction to Radial Basis Functions

The deformation executable used in this work to perform grid defomation employs
RBF interpolation. This interpolation method maps data between two distinct
grids or discretisations [30]. The general principle behind RBF interpolation is
simple; given an arbitrary discretisation xi ∈ Rd of a given domain with arbitrary
nodal values, we assume that each point has a decaying “influence” based solely
on a function φ of radial distance |x − xi|—known as a radial basis function.

9

3. Theoretical Principles

Then, the value of any arbitrary point in the given domain can be interpolated
by a linear combination of all “influences” in the domain [31]. Given a function
f : Rd → R that determines nodal values based on nodal position, an RBF
interpolant S : Rd → R approximating f can be represented by Eq. 3.1.

S(x) =
n∑
i=1

γiφ(x− xi) (3.1)

In this work, one possible function φ, the Gaussian RBF, is the default
function used in the TAU grid deformation executable, as seen in Eq. 3.2 [32].
Other RBFs include the original Multi Quadratic RBF, Gaussian and Thin Plate
Splines [30, 31].

φ(x− xi) = e(−(s||x−xi||)
2) (3.2)

However, considering every single grid point when performing this interpo-
lation is an O(N3) algorithm, and this is highly expensive. Thus, considering
that the “influence” of distant points is close to zero, an RBF cut-off radius can
be implemented [30]. Points beyond this cut-off radius are not considered when
performing the linear combination. The modified linear combination φw is seen
in Eq. 3.3, where the linear combination for point y ∈ Rd is calculated with a
cut-off radius of r [30].

φw(xi) =

0 , ||xi − y|| > r

φ(xi) , ||xi − y|| ≤ r
(3.3)

10

4. Tools

There are three main softwares used in the coupling: TAU, CAMRAD II and the
preCICE library. This section gives a brief overview of each tool used, how they
function and the ways by which the adapter code interacts with each software.

4.1 TAU

TAU is a CFD tool developed by DLR in Göttingen in the 1990s to solve fluid-flow
problems around complex geometries, ranging from the subsonic to hypersonic
regimes [33, 34, 35]. The software, while mainly used for internal projects at
DLR, has also been used in several national and international projects, such
as MEGAFLOW, FLOMANIA and DESider [36, 37, 38, 39] and boasts high
parallel efficiency for High Performance Computing (HPC) purposes [40, 41, 42].

The TAU software is not a single all-encompassing code, instead it employs
a modular approach, providing separate stand-alone executables for each func-
tionality. For this work, the modules for grid-partitioning or preprocessing,
turbulent 1-equation solver or turb1eq and grid-deformation or deformation
are used.

One of the main limitations of developing wrapper code for TAU is that the
source code is not open-source. Thus, direct interaction with the source code
is not possible. Instead, a Python interface, TAU-Python, is used to interact
with the TAU software. The adapter code uses this interface; further details are
provided in Chapter 5 and 6.

4.1.1 TAU Simulations

As mentioned in the previous section, the TAU software consists of multiple
stand-alone executables. Each of these executables is controlled by a single
parameter file or parafile. The parafile contains key-value pairs of significant
input parameters; a sample of these key-value pairs can be seen in Fig. 4.1.

These key-value pairs can be divided into two broad categories: variables

11

4. Tools

Parafile Excerpt

Files/IO ---
Boundary mapping filename: ./grid/boundary.bmap

Primary grid filename: ./grid/grid_primary
New primary grid prefix: ./grid_deform/deform.grid

Grid prefix: ./grid/dg/grid.dg

Output definition --------------------------------
Field output description file: (thisfile)

Output files prefix: ./output/heli
Field output values: Rrho_cp_mach_blank_xyzbody

Surface output description file: (thisfile)
Surface output values: xyz_fxyz_p_cp
Surface output period: 15

Figure 4.1: TAU Parafile Excerpt.

that control the simulation loop and the paths to input files for the simulation.
The former includes variables such as the number of inner iterations per solution
time step, the Reynold’s number or the period between surface/field solution
outputs. The latter points to input files that define the simulation (such as
grid files, partitioned or primary, that define the fluid mesh in serial or parallel
execution); motion files defining the movement of blades during the simulation;
text files defining point by point deformation (also referred to as scatfiles) and
output file locations. These are explained in greate detail in the TAU user guide
documentation [32]. Prior to discussing the handling of these inputs and outputs,
the following section briefly introduces the capabilities of the TAU-Python API.

4.1.2 TAU-Python API

The TAU-Python API allows the user to control the TAU simulation via spe-
cific classes, each class analogous to a TAU stand-alone executable. Prior to
initializing these classes, the user must first initialize the TAU-Python envi-
ronment to ensure that underlying TAU processes are initialized and the global
TAU-Python methods work as intended (such as the TAU steering methods
tau_mpi_rank(), tau_mpi_nranks() and tau_parallel_sync() for
control of parallel executions).

Then, the various TAU-Python classes can be initialized. For this work,
only the following four TAU classes are used, namely:

1. PyPara: This class extracts data from a given parafile and allows run-time

12

4. Tools

modifications to parafile contents, effectively modfying simulation input
variables at runtime.

2. PyPrep: This class controls the ptau3d.preprocessing stand-alone exe-
cutable. The executable controls the partitioning of the main grid in the
case of a parallel use-case.

3. PySolv: This class controls the ptau3d.turb1eq executable that runs the
simulation loop.

4. PyDeform: This class controls the deformation executable that creates a
deformed grid based off the primary gridfile and a user provided scatfile

After the completion of the TAU simulation loop, certain cleanup methods
should be called to ensure no memory leaks, namely the PySolv.finalize()
method and the exit(’TAU’) global method.

A sanitised basic execution loop is shown in Listing 4.1.

Listing 4.1: Simple TAU Simulation Loop.

1 import tau_python
2

3 """ Setup tau_init_variables and parafile_path """
4

5 # Initialize TAU environment
6 tau_python.init(tau_init_arguments)
7

8 para = PyPara(parafile_path)
9 prep = PyPrep(parafile_path)

10 solv = PySolv(parafile_path)
11 deform = PyDeform(parafile_path)
12

13 # Preprocess grid for parallel execution
14 prep.run(write_dualgrid=1, free_primgrid=1, verbose=1)
15

16 # Get number of unsteady time steps from parafile
17 unsteady_steps = para.get_para_value("Unsteady Timesteps")
18

19 # Initialize TAU solver
20 solv.init()
21

22 for i in range(unsteady_steps):
23 # Run single outer loop step
24 solv.outer_loop()
25 # Write solution files per parafile output period
26 solv.output()
27 # Deform grid based on scatfile in parafile
28 deform.run(read_primgrid=1, write_primgrid=1)
29 tau_python.tau_parallel_sync()
30

31 # Finalize solver environment
32 solv.finalize()
33 # Cleanup of TAU-Python environment
34 tau_python.tau('exit')

13

4. Tools

Note that the simulation algorithms used in this work are relatively straight-
forward and the extensive TAU-Python API allows for simulation loops of far
greater complexity. Additional classes allow, for example, for the reading of
raw TAU data from memory buffers or allow the creation of plt graphs (used
to visualize solutions) during runtime. This flexibility is a factor that must be
taken into consideration when designing the framework for the TAU adapter.

After the creation of a simulation loop, the next step is to modify simulation
inputs and outputs to facilitate coupling between the TAU solver and the coupled
solid solver.

4.1.3 TAU Data Input

This subsection deals with how TAU receives data input from solid solvers in a
coupled simulation. The two main inputs addressed in this work are the blade
motion and the deformation data received from CAMRAD II.

Motion Input

The motion of each component in a TAU simulation is defined by the motion
hierarchy file and motion definition file prescribed in the parafile. The motion
hierarchy in TAU defines specific nodes (where motion occurs) and the depen-
dencies between each node, shown in Fig. 4.2.

Motion Hierarchy

Node name: a
Node reference frame: inertial

Node controls grid block: -1
Node motion description id: a_id

hdf end

Node name: b
Node reference frame: a

Node controls grid block: 1
Node motion description id: b_id

hdf end

Figure 4.2: TAU Motion Hierarchy Excerpt.

The figure shows the definition of two nodes “a” and “b”. “a” is the root node
and takes reference from the inertial reference frame with additional motion
defined as “a_id” in the motion definition data. “b” takes reference from “a”
(i.e. moves with “a”) with additional motion defined as “b_id”. We see from the

14

4. Tools

Motion Definition

Motion description id: a_id
Type of movement: periodic

Origin of local coordinate system: 0 0 0
Degree of polynomial for rotation: 1

Polynomial coefficients for rotation yaw: 0 -6245.24524

Reduced frequency for rotation: 3.3333
Reduced frequency reference length: 1 1 1

Number of time steps per period: 360
mdf end

Motion description id: b_id
Hinge - specify vector: 0 -1 0

Degree of Fourier series for rotation: 1
Hinge - reduced frequency for rotation: 3.3333

Hinge - reduced frequency reference length: 1
Hinge - Fourier coefficients for rotation (cos): 2.0525 -0.0014802
Hinge - Fourier coefficients for rotation (sin): 0 0.0022614

mdf end

Figure 4.3: TAU Motion Hierarchy Excerpt.

motion hierarchy that node “b” controls grid block 1, which references a set of
nodes defined in the primary grid. On the other hand, “a” controls no nodes in
the grid; this node acts as a simple reference frame.

The motion definition supplements the motion hierarchy and sets the exact
motion at each node; a sample excerpt is seen in Fig. 4.3. Motion is defined in
blocks and the end of each block is indicated by the string mdf end . Within
a block, motion can be defined via a polynomial. For example, in the motion
definition block a_id, “a” periodically rotates in the yaw direction around coor-
dinates (0, 0, 0) at −6245.245 24°/s. Alternatively, we can provide motion data
as a Fourier series: node “b” rotates along hinge vector (0,−1, 0) with an angular
deflection calculated via the Fourier series defined in the block.

Deformation Files

TAU deformation is defined in American Standard Code for Information Inter-
change (ASCII) style text files, referred to as scatfiles, which contain deformation
locations (where deformation occurs in the grid) and magnitudes (in x-,y- and
z-axes) in the TAU-Code-Grid frame. A sample of a scatfile is seen in Fig. 4.4.

The first number, 1200, indicates the total number of deformation locations.
Each row then lists the x, y, and z coordinates and deformations in the x-, y- and

15

4. Tools

Scatfile Excerpt

1200
-0.05000 0.48000 -0.00750 -0.00439 -0.00106 -0.01730
-0.04474 0.48000 -0.00750 -0.00440 -0.00102 -0.01741
-0.03947 0.48000 -0.00750 -0.00440 -0.00098 -0.01751
-0.03421 0.48000 -0.00750 -0.00440 -0.00093 -0.01762
-0.02895 0.48000 -0.00750 -0.00440 -0.00089 -0.01772
-0.02368 0.48000 -0.00750 -0.00440 -0.00085 -0.01782
-0.01842 0.48000 -0.00750 -0.00440 -0.00080 -0.01793

Figure 4.4: TAU Scatfile Excerpt.

z-axes. For example, at coordinates (−0.05000.0.48000.−0.00750), a deformation
of (−0.00439− 0.00106− 0.01730) will occur. This deformation is applied to the
primary grid listed in the TAU parafile via RBF interpolation, as mentioned in
Section 3.4.

4.1.4 TAU Data Output

This subsection deals with TAU data output. During the investigation of tight
and loose coupling techniques, there were a multitude of methods to access
solution data during runtime [43]. The more traditional approach is to access
data from output files. Alternatively, there are several more efficient methods
that do not involve access data written to disk. Many C/C++ implementations
would implement forms of pointer passing or exploit data stored in memory
buffers to exchange data between the coupled participants [43].

In TAU, the usage of both methods is possible. TAU writes solution data to
disk in the netCDF format, which is supported in Pythonvia the netCDF4 li-
brary. The data is stored in a Python dict object. Additionally, the TAU-Python
API also supports the use of memory buffers, which allow access to solution data
during runtime.

Certainly, the latter method is ideal. However, the methods employed in
this work are strongly constrained by the capabilities of the TAU-Python API.
The methods used to buffer solution data in memory only have access to data
in the current time step. This poses a problem in a loosely-coupled simulation,
where data from multiple time steps is passed at each coupling step. If a coupled
simulation is restarted just before the coupling step occurs, the TAU-Python
API would not be able to provide data from previous time steps. In order to
deal with this situation, the data exchange must still rely on data written to

16

4. Tools

disk.

4.2 CAMRAD II

CAMRAD II was developed by Johnson Aeronautics in 1992 to provide an
aeronautical analysis tool; the software supports multi-body dynamics with a
finite-elements scheme using non-linear elements in a trim model [4, 5]. This
software, along with similar CSD codes, such as RCAS and DYMORE [6, 7], is
one of the most widespread software solutions for structural dynamics codes in
the field of rotorcraft technologies.

4.2.1 CAMRAD II Simulations

The CAMRAD II software functions by splitting a complex aeromechanical sys-
tem into multiple pieces, categorized in the CAMRAD II documentation as
environmental, physical and logical pieces [44].

The environmental pieces define the simulation case, such as forward flight,
hover, ascent or descent; system operation (which includes the system environ-
ment, such as the earth axes, density, operating altitude etc.); wind conditions
(including wind speeds, direction and gust axes); operating conditions of the
physical system (which defines flight speed, orientation of the various frames
of reference, turning rate and physical system constraints); and the periods,
which define the period of rotation for the various components of the physical
system. [44]

The physical pieces define the physical system components, such as the rotor
blades, fuselage, drivetrain etc. CAMRAD II defines a list of supported structure
classes. These are listed in the CAMRAD II documentation [44] and define the
required geometrical definitions as well as the various relevant inter-component
couplings. The physical input also defines the required solution data, such
as position, force and pressure values and specific sensor locations along the
simulated component where such output is of interest. [44]

The logical pieces define the procedure for solving simulation equations; more
specifically, they describe the algorithm used to reach convergence. CAMRAD II
supports various algorithms, such as implicit time-stepping methods or Newton-
Raphson methods, which are applicable for both time or harmonic finite element
problems. [44]

The CAMRAD II executable accepts input via shell or a series of tables
defining the various simulation pieces listed above. The shell method allows quick

17

4. Tools

Figure 4.5: CAMRAD II Jobfile Structure [5].

input of various variables but lacks flexibility. Hence, the typical method of choice
is via tables, in which an ASCII jobfile lists the various input parameter identifiers
with their values. A typical jobfile structure can be seen in Fig. 4.5. CAMRAD II
accepts jobfiles in the form of Standard, C81 or CAMRAD style tables. The
definition of each type of table format can be found in the CAMRAD II user
guide [44].

The CAMRAD II software provides a lifting-line aerodynamics model, which
assumes a high-aspect ratio of the wing. Thus, the rotor blade aerodynamics
problem can be split into an inner and an outer problem, described as the wing
and wake problems [44]. The outer problem or the wake problem is solved to
determine the angle of attack for a predefined span or panel along the wing.
The angle of attack then utilizes a look-up table correlating angle of attack to
lift, drag and moment coefficients specific to the simulated wing to determine
aerodynamic loads. In this work, we supplement the aerodynamic loads from
this model with loads generated by the TAU fluid solver.

Noting that the software is proprietary, access to the CAMRAD II source code
is not possible. As a result, we wrap the CAMRAD II software with a Python
script that parses CAMRAD II ouput data and post-processes aerodynamic
load data from the coupled fluid solver. Updated aerodynamic loading data

18

4. Tools

is provided as a series of input loading tables acceptable by the CAMRAD II
executable during start-up. A more detail description of this process is provided
in the next subsection, Section 4.2.2.

4.2.2 CAMRAD II Data Input

This subsection describes how CAMRAD II receives data from fluid solvers in
a coupled simulation. This work mainly deals with incorporating aerodynamic
load data into CAMRAD II’s trimmed simulations.

4.2.3 Force Tables

CAMRAD II accepts external aerodynamic loads in the form of ASCII delta
tables, which add a correction to the output of its internal lifting line aerodynamic
solver. A sample force table is shown in Fig. 4.6. The type of data is indicated
by the term FQCX (meaning the x-component of force along the rotor blade
quarter-chord position) in the top left corner.

CAMRAD II Force Table Excerpt

21 25 FQCX
0.00 15.00 30.00 45.00 ...
120.00 135.00 150.00 165.00 ...
240.00 255.00 270.00 285.00 ...

0.24 4.502272E-01 3.694587E-01 2.853749E-01 ...
1.469075E-01 2.010710E-01 2.555786E-01 ...
8.717851E-02 1.334834E-01 2.308048E-01 ...
4.502272E-01

0.28 5.609823E-01 5.179287E-01 4.461996E-01 ...
3.379185E-01 3.835550E-01 4.232441E-01 ...
1.091121E-01 1.148474E-01 1.850540E-01 ...
5.609823E-01

Figure 4.6: CAMRAD II Force Table Excerpt.

The two numbers in front of the type of data, 21 and 25 indicate the spatial
and temporal discretisation of the correction values respectively. These correc-
tional forces and moments are applied at the 21 sensor positions along the rotor
blade for each of the 25 azimuth positions in a single revolution. Each data value
(at a given time and position) indicates the difference between the calculated
CAMRAD II aerodynamic loads and the aerodynamic loads provided by the

19

4. Tools

external fluid solver. Note that the lines in these ASCII files wrap around such
that data from a single collocation point can span multiple lines—this must be
considered when updating or writing these delta table files.

4.2.4 CAMRAD II Data Output

CAMRAD II output data is written to disk in large ASCII text files. Unlike
in TAU, no interface exists for the CAMRAD II standalone executable. Hence,
data must be read from output files. A custom regex parser for the CAMRAD II
output files was introduced to improve the original CAMRAD II parser [1].

Recalling that CAMRAD II produces trimmed solutions (refer to Section 3.2
for details) for whole revolutions, data in CAMRAD II simulations is written in
two forms: as time-discretized values spaced 15° apart or as Fourier series. This
work reads and passes the Fourier series information during coupling as TAU can
accept motion data as Fourier series coefficients. Similarly, this greatly reduces
the amount data that needs to be passed in each coupling step.

4.3 TAU & CAMRAD II Coordinate Systems

Before discussing the coupling library, it is pertinent to discuss the coordinate
systems used when handling the data. Both TAU and CAMRAD II present
solution data in a variety of coordinate systems and the data from these systems
must be consistent in order to map the correct data values when coupling.

Fig. 4.7 displays the four coordinate systems used by TAU. The TAU-Code-
Grid frame is the coordinate system defined in the primary grid file. The Body-
fixed frame is similar to the TAU-Code-Grid, other than the fact that the origin
is defined by the user in the parafile and that the x and z axis are flipped. Both
axes rotate with the motion of the body and do not change as the simulation
progresses. The Geodesic frame does not rotate with the body and is the inertial
frame of the system. The Aerodynamic frame is, effectively, a rotated Geodesic
frame such that the x axis is parallel with the flight velocity vector V∞. In this
work, the velocity vector is already parallel to the Geodesic frame x axis and,
thus, the two frames are identical. [45]

CAMRAD II also offers several reference frames for solution data. However,
only two are relevant to this work: the Wing-fixed axes and the Inertial axes.
These two axes are analogous to the Body-fixed frame and Geodesic frame in
TAU, shown in Fig. 4.7 and can be similarly customized in the input tables.
However, the Body-fixed axes in CAMRAD II flips the x and z axis of the

20

4. Tools

xg

zg

xB

zB

xα

zα

xτ

zτ

V∞

Figure 4.7: Coordinate Definitions used in TAU. τ: TAU-Code-Grid frame,
B: Body-fixed frame, g: Geodesic frame, α: Aerodynamic frame.
Adapted from the TAU User Gudie [45].

Body-fixed frame in TAU—which must be kept in mind when processing data.
A second consideration when passing data between these two packages is

blade alignment. The conventions in TAU and CAMRAD II can differ and care
must be taken to ensure that the correct blades are referenced. For example, it is
possible that the blades are oriented as in Fig. 4.8 in the respective Body-fixed
frame in TAU and the Body-fixed axes in CAMRAD II

yB

xB

1

2

3

V∞

(a) TAU Convention: Rotor with refer-
ence blade (1) aligned with Body-fixed
axes.

yB

xB

1

23

V∞

(b) CAMRAD II Convention: Rotor
with reference blade (1) pointing away
from incoming flow velocity (CAM-
RAD II convention).

Figure 4.8: Possible differences in axes convention shown in (a) and (b) [1].

In this situation, there are two issues when passing data in this coupling:

1. The orientation of the axes in TAU and CAMRAD II differ

2. The referenced blades are not the same: Blade #1 in TAU refers to Blade
#2 in CAMRAD II

21

4. Tools

Thus, these factors must be considered when handling data from each solver.
A standard orientation must be defined for each coupling.

4.4 preCICE

preCICE is a coupling library developed at the Technical University of Munich
(TUM), the University of Stuttgart and the University of Erlangen. The library is
designed to support multi-physics simulations by coupling multiple single-physics
solvers using a partitioned, “black-box” approach. Using this approach, preCICE
requires no information about the inner workings of either solver. Instead,
preCICE exchanges information at user-defined interfaces shared by the coupled
participants while minimizing interference with their source code or internal
operations. The pre- and post-processing of exchanged data is performed by an
adapter, which ensures that data is processed and formatted to a given standard
defined by the specific coupling, sets the time step and implements checkpointing
as necessary.

For the purposes of this work, this coupling library is chosen for several
reasons. Firstly, one of the main deliverables of the work is the modularity of
the final product. The “black-box” approach of preCICE allows the multiple
participants to work completely independently—any coupled component can
then be switched out or replaced with newer, more performant or more efficient
solvers.

The second advantage of preCICE is passing data between non-identical
or partitioned grids. preCICE supports multiple methods for data mapping,
described in Section 4.4.1.

Additionally, preCICE can be used to control the simulation loops of the
various participants and ensures that equation coupling occurs at the correct
time steps. This is particularly useful when coupled solvers have vastly different
time steps or if the implicit coupling schemes described in Section 3.2 are used.

The last advantage of using preCICE is ease of use. preCICE is designed
to be inserted into existing code and the various components of the library can
be placed in a typical simulation loop. An example is provided in Section 4.4.3.
However, before moving to the details of the preCICE API, we should first
examine how data is mapped between shared interfaces.

22

4. Tools

Figure 4.9: Consistent Mapping of Temperatures [46].

Figure 4.10: Conservative Mapping of Forces [46].

4.4.1 Data Mapping

The preCICE library supports both conservative and consistent data mappings
along shared interfaces with differing discretizations via a variety of methodolo-
gies. Consistent mapping ensures that point values between the two discreti-
sations are consistent, as shown in Fig. 4.9. This form of mapping is used for
data that is non-conservative, such as temperature, pressure or displacement.
Conservative mapping, on the other hand, ensures that the integral values on
the shared surface are conserved, as shown in Fig. 4.10. This form of mapping
is used for data that must be conserved, such as force or moment data.

These interpolations are linear and can be represented as a matrix product,
shown in Eq. 4.1.

X̃A = MABXB, X̃A ∈ Rn, XB ∈ Rm,MAB ∈ Rnxm (4.1)

In Eq. 4.1, we have a mapping matrix MAB representing a mapping ΓB →
ΓA, MAB, with initial values XB and interpolated values X̃A. The mapping is
consistent if the sum of all rows in the mapping matrix MAB sum up to one [47],
or: ∑

(MAB)ij
n
i=1 = 1,∀j = 1, ...,m. (4.2)

A mapping is conservative if the sum of all columns in the mapping matrix

23

4. Tools

sum up to one [47], or:∑
(MAB)ij

m
j=1 = 1,∀i = 1, ...,m. (4.3)

Hence, a consistent mapping induces a conservative mapping, such that:

(MAB)conservative = (MBA)Tconsistent. (4.4)

There are currently three different mapping methodologies supported by
preCICE. The following descriptions provide a explanation of how each algorithm
is implemented in a consistent manner, given a mapping ΓB → ΓA:

1. Nearest Neighbor: Each point in ΓA finds the nearest point in ΓB via
an arbitrary norm and directly copies the value of this “nearest neighbor”
point. This is a simple first order method that does not require additional
topological information [47].

2. Nearest Projection: Each point in ΓA determines its orthogonal pro-
jection onto ΓB. The value at this point can be determined via linear
interpolation of point values in the relevant cell or face in ΓB. Note that
such an interpolation then requires connectivity data of the discretizations.
This method is of second-order if the orthogonal distance between the
projected point from ΓA and the points in ΓB are significantly smaller than
cell size [47].

3. RBF: The RBF interpolation is described in Section 3.4.

Note that the conservative mappings for each method are induced by the
existence of the consistent mapping. A more in-depth look into the various
implenentations can be found in the dissertation of Benjamin Uekerman and the
paper by Lindner et al. [47, 30].

4.4.2 preCICE Coupling

Other than how data is mapped between shared interfaces, the when is also
similarly important. A coupling scheme, as defined in preCICE, determines
this interaction between coupled solvers. There are two variables which control
the interaction between solvers: if the coupling is run in serial or in parallel
and if time-stepping of the coupled simulation occurs explicitly or implicitly.
Note that, when referring to coupling schemes, the four listed variables have
different definitions compared to their classical meanings in informatics or solver
terminology. These variables will be explained in the following algorithms. First,
we define two solvers which exchange data across a shared interface. Each solver

24

4. Tools

requires the output of the other solver to calculate results for the next time step,
shown in Eq. 4.5.

S1 : B2 → B1, S2 : B1 → B2 (4.5)

An explicit coupling exchanges boundary data at a set interval without
convergence checks of boundary values B. For simplicity, we can assume that S1

and S2 have time steps of the same length and exchange data with every time
step in a tightly-coupled simulation. We begin by examining the serial-explicit
coupling scheme. In a serial scheme, the two solvers have a set order and the one
solver completes the computation of a time step before the next solver continues1.
Given the two solvers defined above, a serial-explicit coupling that runs for n
coupling steps is shown by Algorithm 1.

Algorithm 1: Serial-explicit coupling scheme algorithm
for t = 1, 2, . . . n do

B
(t+1)
1 = S1

(
B

(t)
2

)
B

(t+1)
2 = S2

(
B

(t+1)
1

)
The first solver S1 uses old data B(t)

2 to calculate the updated values B(t+1)
1 ,

which are used for the update step of solver S2. This form of coupling ensures
that solver S2 always receives updated information.

If the explicit scheme is run in parallel, however, the two solvers are instead
run simultaneously. In this case, the coupling can be seen as Algorithm 2.

Algorithm 2: Parallel-explicit coupling scheme algorithm
for t = 1, 2, . . . n do

B
(t+1)
1 = S1

(
B

(t)
2

)
B

(t+1)
2 = S2

(
B

(t)
1

)
Unlike in the serial coupling, both solvers S1 and S2 use old data from the

previous time step. This may increase the number of coupling iterations required
for convergence but may decrease the overall time to solution as the two solvers
can run at the same time.

While an explicit coupling is the simplest method to couple two solvers, some
coupled simulations are often inherently unstable regardless of time step size
restrictions. In such cases, an implicit coupling scheme can be employed, where
a fixed-point iteration of the boundary values takes place. While the general
1 This does not mean that the individual solvers are run with only one process per the classical
informatics definition of “serial”.

25

4. Tools

principles of serial or parallel coupling remain the same, implicit coupling adds
a convergence criterion before advancing the time of the coupled simulation see
Algorithms 3 and 4.

Algorithm 3: Serial-implicit coupling scheme algorithm
for t = 1, 2, . . . n do

converged = False
B1 = B

(t)
1

B2 = B
(t)
2

while not converged do:
B̃1 = S1(B2)
B̃2 = S2(B̃1)
if CheckConverged(B1, B̃1, B2, B̃2) == True then

B
(t+1)
1 = B̃1

B
(t+1)
2 = B̃2

converged = True
else

B1 = B̃1

B2 = B̃2

Algorithm 4: Parallel-implicit coupling scheme algorithm
for t = 1, 2, . . . n do

converged = False
B1 = B

(t)
1

B2 = B
(t)
2

while not converged do:
B̃1 = S1(B2)
B̃2 = S2(B1)
if CheckConverged(B1, B̃1, B2, B̃2) == True then

B
(t+1)
1 = B̃1

B
(t+1)
2 = B̃2

converged = True
else

B1 = B̃1

B2 = B̃2

In these two algorithms, a method CheckConvergence is introduced repre-
senting the convergence criterion. If this check fails, the coupling step is repeated
using the updated B̃1, B̃2 values. A typical convergence check determines if the
change in the coupled data is below a threshold error or |B̃ − B| < Tolerance.
Note that this is a simplification of preCICE capabilities as the library is not
limited to only checking for convergence. preCICE can also insert additional

26

4. Tools

acceleration methods to speed up convergence of B, such as the Anderson Ac-
celeration Quasi-Newton(IQN-ILS) or the Generalized Broyden Quasi-Newton
(IQN-IMVJ) fixed-point acceleration methods [47]. However, these methods are
beyond the scope of this master’s thesis.

In summary, preCICE supports four possible coupling schemes, which can
be employed when using the adapters developed in this work. They allow the
user to run simulations serially or in parallel and allow for fixed-point iteration
methods to ensure convergence along shared interfaces. For this work, serial-
explicit coupling schemes are employed as prior work has shown that implicit
coupling schemes are not necessary for convergence [1].

4.4.3 preCICE API

The preCICE library is written in C++. However, we utilize the Python bindings
for preCICE to increase usability. The Python bindings are centered around the
Interface object and provide a variety of methods to control the coupling
between simulation participants. These methods can be classified into three
categories: steering methods, auxiliary methods and data access methods.

Steering methods are used to direct preCICE, initializing the preCICE envi-
ronment, controlling the time stepping of the coupled simulation and terminating
the preCICE environment upon completion of the simulation. These methods
ensure that coupled solvers with varying time-steps continue to couple at the
correct points in time.

Auxiliary methods allow the user to modify coupling logic during execution
and act under specific circumstances. These methods are useful in more complex
couplings, such as when implicit coupling schemes are used. These methods are
not the most relevant to this work as the examined coupled simulations all use
explicit coupling schemes.

Data access methods control the passing of data between coupled participants
along shared interfaces. preCICE supports the passing of 2D or 3D data along
shared interfaces.

A solver can be adapted to couple with other solvers by inserting these
methods at specific points in existing solver code. An example is the basic TAU
simulation loop (Listing. 4.1), now modified in Listing 4.2. Updated or new
lines are highlighted in blue. Note that performing a preCICE coupling for a
loosely-coupled simulation is far more involved and will be further explained in
Chapter 6.

In this sanitized code snippet, we show the multiple stages required to insert

27

4. Tools

Listing 4.2: TAU simulation loop with preCICE coupling.

1 import tau_python
2 import precice
3 import mpi4py
4

5 """ Setup `tau_init_variables`, `parafile_path`, `precice_config`
6 and simulation `timestep`. Determine variables `mesh_name` and `read_data_name`
7 and `write_data_name` describing coupled interface name and names of data to be
8 handled. `rank` and `size` are defined from mpi4mpy.COMM_WORLD"""
9

10 # Initialize TAU environment
11 tau_python.init(tau_init_arguments)
12

13 # Setup precice interface participant
14 precice_interface = precice.Interface(size, rank)
15 precice_interface.configure(precice_config)
16

17 """ Initialize TAU-Python classes"""
18 # Preprocess grid for parallel execution
19 prep.run(write_dualgrid=1, free_primgrid=1, verbose=1)
20 # Initialize TAU solver
21 solv.init()
22 """ Define the local discretisation of shared interface `mesh_name`"""
23 # Setup precice interface
24 mesh_id = precice_interface.get_mesh_id(mesh_name)
25 write_data_id = precice_interface.get_data_id(data_name1, mesh_id)
26 read_data_id = precice_interface.get_data_id(data_name2, mesh_id)
27 precice_ids = np.zeros(data_size)
28 precice_interface.set_mesh_vertices(mesh_id, data_size, data_coordinates,

precice_ids)↪→
29

30 # Initialize precice interface
31 precice_interface.initialize()
32

33 while precice_interface.coupling_ongoing():
34 # Run single outer loop step
35 solv.outer_loop()
36 # Write solution files per parafile output period
37 solv.output()
38 """ Store TAU output data in `write_data`, create empty buffer `read_data`
39 to store data from other solver """
40 # Pass data to solid solver at end of time step
41 precice_interface.write_block_vector_data(write_data_id, data_size,

precice_ids, write_data)↪→
42 # Advance time for the coupled simulation
43 dt = precice_interface.advance(timestep)
44 # Pass data to solid solver at end of time step
45 precice_interface.read_block_vector_data(read_data_id, data_size,

precice_ids, read_data)↪→
46 # Deform grid based on scatfile in parafile
47 deform.run(read_primgrid=1, write_primgrid=1)
48 tau_python.tau_parallel_sync()
49 # Finalize precice and solver environment
50 precice_interface.finalize()
51 solv.finalize()
52 # Cleanup of TAU-Python environment
53 tau_python.tau('exit')

28

4. Tools

preCICE Python bindings methods into existing code:

1. The preCICE environment is initialized in (lines 14 and 15), where the
preCICE Interface object is instantiated. The arguments for the In-
terface are used to determine if the simulation is run in serial or parallel.
The call to configure() then configures the Interface object via an
external preCICE configuration file and sets up communication between
parallel processes inside the solver, if necessary.

2. The coupling interfaces are then defined in lines 24-28. The discretizations
of shared interfaces in preCICE are known as meshes, each with a specific
name defined in the preCICE configuration file. Each coupled solver defines
the discretization of their preCICE meshes—in this case, the points in the
discretisation are given by data_coordinates. Each mesh can contain
multiple types of data that share the same discretization. In this case, the
code passes the data data_name. Each mesh and data type is defined by
a unique integer value, mesh_id and data_id, respectively.

3. Once the various interfaces are defined, the precice_interface can
then be initialized in line 31. This step sets up the various data structures
required for the shared interfaces and the communication channels between
coupled solvers.

4. The simulation loop is then started. Note that preCICE now controls the
simulation code with the auxiliary method is_coupling_ongoing()
in line 33. preCICE ensures that the number of coupled iterations required
by the coupled simulation is performed before the simulation finalizes.

5. In a tightly-coupled simulation, data is exchanged with each simulation
time step This is triggered by lines 41-45. The preCICE method ad-
vance() accepts the time step of the current solver and acts as a synchro-
nization barrier across all coupled participants; the method ensures that
solvers with larger time steps effectively “wait” for slower solvers prior to
performing coupling steps. Hence, data is written to coupled solvers at the
end of each time step and read at the start of each time step (after synchro-
nization) to ensure that data is time accurate between participants. The
read_block_vector_data() and write_block_vector_data()
methods read and write data from and to coupled participants. preCICE
supports the passing of both scalar and vector data.

29

4. Tools

6. Once the simulation is concluded, the preCICE environment is finalized
(line 50). This performs cleanup to ensure that communication channels
are properly destroyed and used memory buffers are freed.

Note that this code listing provides a very bare-bones preCICE implemen-
tation to give an idea of how the library can be incorporated into existing
code. preCICE additionally supports more complex coupling logic, such as
check-pointing, implicit coupling schemes and post-processing of boundary data
[47].

30

5. Adapter Architecture

This chapter focuses on the architecture of the TAU and CAMRAD II adapters,
namely the structure of the code and the various techniques employed. The
chapter first lists the various goals of the adapter before providing a comparison
of the original code and the updated adapters. Finally, the interfaces of the
CAMRAD II and TAU adapter are described in greater detail.

5.1 Goals

The main deliverables for this master thesis include the preCICE adapters for
TAU and CAMRAD II. As mentioned in the motivation, these adapters must
be modular, extensible and easy to use.

In this context, modularity is the ease of switching out solvers. One of the
major benefits of preCICE is that once an adapter is created for the solver, the
interface to couple said solver with any other previously made adapter is then
possible. The adapters written in this work will allow TAU and CAMRAD II to
freely couple with existing and future preCICE adapters.

Extensibility refers to the ease of introducing new features or modifying
features within existing code. Several features have been proposed by the Chair
of Helicopter Technologies, the most pertinent being allowing the modification
simulation loop logic, which widely differs between simulations. Additionally,
the code should be able to handle changes to the structure of the rotorcraft
simulation, the integration techniques for calculating aerodynamic loads and
possibly include additional simulation participants.

The final requirement is ease of use. The code is intended to be made available
throughout the Chair. Hence, the code must be easy to use and to debug. Note
that the main text of this master’s thesis only gives a brief overview of how to
run adapter code and extensibility. Please refer to Appendixes A, B and C for
the user guide, configuration guide and extension guide respectively.

31

5. Adapter Architecture

5.2 Workflow of Original Code

The original coupling implemented at the Chair of Helicopter Technologies re-
sulted in an efficient TAU-CAMRAD II coupled rotor blade simulation. The
code was implemented in a single Python script that used methods across multi-
ple files. The general algorithm of the original coupling simulation is shown in
Algorithm 5 [1].

Algorithm 5: Coupling algorithm implemented in coupled.py [1].
1 setup logging using config file
2 read input file and validate parameters
3 write zeros delta table as a placeholder
4 load restart data if available
5 while not converged do
6 create new output directory
7 update CAMRAD job file with new settings
8 if CAMRAD data is missing then
9 run CAMRAD job
10 read control values from CAMRAD output
11 if control value residual < tolerance then
12 set converged = True . Simulation converged
13 exit loop
14 read CAMRAD output and update TAU motion file with new blade

motion
15 update TAU parameter file with new motion file name and output di-

rectory
16 if TAU data is missing then
17 run TAU
18 if restart data is unavailable then
19 partition mesh
20 save partition data for restarting
21 calculate forces and moments from TAU output data
22 calculate forces and moments from CAMRAD output data
23 save data from TAU and CAMRAD to results file
24 write delta table using the output data

The resulting coupling algorithm is clear and easy to understand—a serial-
explicit style coupling occurs between CAMRAD II and TAU; CAMRAD II
control values are used to determine convergence. However, the underlying code
implementation can still be improved. The workflow from the original code is
shown in a Sequential Unified Modeling Language (UML) diagram: Fig. 5.1. The
folder structure of the original coupling script and simulation inputs is presented
in Fig. 5.2 [1].

32

5. Adapter Architecture
F
ig
u
re

5.
1:

O
ri
gi
na

lW
or
kfl

ow
Se
qu

en
ti
al

U
M
L
D
ia
gr
am

.

33

5. Adapter Architecture

root
CAMRAD

camrad_inputs
TAU

tau_inputs
Output Folder

tau_outputs
camrad_outputs

Coupled Script
coupled.py
tau_functions.py
camrad_functions.py
tau_controller.py
tables.py

Figure 5.2: Original Coupling Folder Structure.

The first step to reaching the three goals is to ensure the independence or
modularity of the adapter code. This means that methods which access input
or output data from both solvers, such as edit_tau_motion(), must be
reformatted so they only access data from a single solver.

Secondly, we can note that the type of data exchanged between the two
solvers is fixed in the algorithm—data is exchanged in specific, non-standardized
formats. Changing the data exchange or how post-processing works is an involved
process that would require a deep understanding of the current code. By creating
a standardized API on how data is parsed and handled internally, we can make
the code more readable and easier to extend.

We can also note from Fig. 5.1 that there is a high level of coupling and low
cohesion in certain parts of the code. For example, the main code coupled.py
handles a majority of the responsibilities in the algorithm. We can likely simplify
this script by refactoring certain functionalities and wrapping them in the right
classes.

Finally, we have to ensure that ease of use is maintained. The original
code introduced a single configuration file that could control the entire coupling.
Similarly, the coupling could be called with a single command. We have to ensure
that updating the code interface does not introduce additional complexities of
use.

34

5. Adapter Architecture

5.3 Workflow with TAU and CAMRAD II Adapters

Based on the remarks in the previous section, we proceed with defining the code
structure. A general overview of the two adapters was created and can be seen
in Fig. 5.3.

Figure 5.3: Overview of TAU and CAMRAD II Adapters.

The TAU adapter combines calls to the preCICE library and the TAU-Python
API. The CAMRAD II adapter is a script that runs the CAMRAD II executable
via bash. The two adapters modify the input files mentioned in Sections 4.2.2
and 4.1.3. It is worth noting that typical preCICE adapters are not so complex;
additional difficulty stems from limitations of the used solvers and the preCICE
library for these specific use-cases.

With this overview of the code, we can now look at the code structure of the
individual adapters, starting with the more complicated TAU adapter. The TAU
adapter code takes an OOP approach and uses a set of classes which represent
the core components of a given TAU simulation. These classes can be seen in
the UML diagram Fig. 5.4.

The Adapter class initializes the simulation environment and the various
simulation components, namely the DataInterface and Solver objects
shown in the UML diagram. The DataInterface class serves to perform
communication with other solvers via preCICE and controls multiple DataHan-
dler objects. As the simulation loop and datahandling must be customizable,
Solver and DataHandler are abstract base classes, standardizing their in-
teractions with other classes. The Solver base class can be subclassed to
implement custom TAU simulation loops, while the DataHandler base class
can be subclassed to implement new data processing steps.

35

5. Adapter Architecture

Figure 5.4: Updated TAU UML Diagram.

Figure 5.5: Updated CAMRAD II UML Diagram.

36

5. Adapter Architecture

The CAMRAD II adapter code does not require the same level of complexity
as the TAU adapter. This is because the simulation loop is controlled via input
files and we cannot modify the source code. Instead, we create a simplified
version of the TAU adapter for CAMRAD II, seen in Fig. 5.5. The Solver
base class is removed entirely as the simulation loop is sufficiently simple to
handle DataHandler objects.

Now that we have a basic idea of the various components of the adapters,
we can take a look at folder structure. In order to create a simple structure,
we separate the base adapter code (which is not modified by the user) and the
simulation-specific files into two folders. We refer to the first folder as the library
folder and the second as the simulation folder. This naming is motivated by the
fact that the library folder can be converted to a Python library that could be
uploaded to PyPI and installed via pip for easy distribution and convenience.

The library folder for the TAU adapter is shown in Fig. 5.6. The classes
which apply to every simulation are defined in the top-level folder tauadapter.
These include the Adapter and DataInterface classes and the abstract base
classes DataHandler and Solver, all of which do not need to be modified
when creating a customized simulation.

tauadapter
adapter.py
datahandler.py
datainterface.py
solver.py
utility.py
...
tight

tightsolver.py
forcehandler.py
...

helicopter
helicoptersolver.py
forcehandler.py
...

Figure 5.6: TAU Library Folder Structure.

Then, two subclassed Solver classes, TightSolver and Helicopter-
Solver, are provided. The two solvers run a tightly-coupled simulation and

37

5. Adapter Architecture

a loosely-coupled rotor blade simulation respectively. These are defined in the
folders “tight” and “helicopter”. The subclassed DataHandler classes used by
these solvers, such as ForceHandler are also included in these folders. The
folder structure reflects the class hierarchy of the API and allows for the addi-
tion of new verified Solver and DataHandler subclasses. Each new Solver
subclass should be placed in its own folder, accompanied with its custom Data-
Handler subclasses. This is to ensure that DataHandler subclasses with the
same name (such as ForceHandler) are not confused when running different
types of simulations.

The name “loose” is avoided when naming the HelicopterSolver as it is
a highly-specialised subclass of Solver that is intended only for isolated rotor
blade rotorcraft simulation. This is because, in this work, the coordinates of
nodes on each rotor blade are aligned to a single reference blade before setting up
preCICE mesh vertices and output data is also aligned before being passed to the
solid solver (this facilitates the aggregation of multiple timesteps of data when
communicating with the solid solver). As a result, the pre- and postprocessing
steps of preCICE mesh coordinates and TAU output data are unique for isolated
rotor blade simulations and the HelicopterSolver cannot be generalized for
other loosely-coupled simulations.

In constrast to the library folder, the simulation folder contains the simulation
inputs, scripts and user defined subclasses. An example of a TAU simulation
folder is seen in Fig. 5.7. The simulation folder contains all the basic components
of a TAU simulation, namely the parafile, a primary grid file and an output
location. A script to run the coupled simulation tau_coupled_script.py
and the coupled simulation configuration file config.yaml must be provided
by the user. Additionally, user defined DataHandler and Solver subclasses
are stored in the “tau_precice” folder. This folder name is arbitrary and can be
modified.

The CAMRAD II library folder is quite similar to that of TAU and is shown
in Fig. 5.8. However, we see that additional subclassed DataHandlers are
provided at the top level. This is because CAMRAD II has a standardized
output that does not vary. Hence, the DataHandler subclasses used in this
work should already be applicable to most CAMRAD II simulations, though new
DataHandler subclasses can still be created by the user. Additionally, the
CAMRAD II Solver class should not need to be subclassed as CAMRAD II
simulation logic is changed by input parameters and the CAMRAD II Solver
class only wraps the CAMRAD II executable.

38

5. Adapter Architecture

tauasimulation
tau_coupled_script.py
tau_parafile
config.yaml
grid

primary_grid
output

heli.pval.unsteady...
tau_precice

userdefinedhandler1.py
userdefinedsolver.py

Figure 5.7: Sample TAU Simulation Folder Structure.

camradadapter
adapter.py
datainterface.py
datahandler.py
...
motionhandler.py
azimuthhandler.py

Figure 5.8: CAMRAD II Library Folder Structure.

camradsimulation
camrad_coupled_script.py
jobs

jobfile.lnx
config.yaml
precice-config.xml
inputs

camrad_inputs
output

camout
camrad_precice

customhandler1.py

Figure 5.9: Sample CAMRAD II Simulation Folder Structure.

39

5. Adapter Architecture

A sample CAMRAD II simulation folder is shown in Fig. 5.9. Similar to
the TAU simulation folder, the folder contains all the required inputs for a
CAMRAD II simulation, namely the CAMRAD II inputs (in the “input” folder)
and the CAMRAD II jobfile (in the “jobs” folder). Additional customized Data-
Handler classes are included in the “camrad_precice” folder.

Given this basic code structure, we can now visualize the new workflow in
another Sequential UML diagram, shown in Fig. 5.10. We can see from the
new sequential workflow that the overall structure of each adapter has been
standardized. The responsibilities of each class are more clearly defined. More
importantly, the handling of the data is separated from solver simulation loop
logic. We can then introduce or remove pre- or post-processing steps in a modular
way.

However, the current workflow may seem as complicated or even more com-
plicated than the original workflow but since the interactions between classes
has been standardized, a large portion of the code no longer requires attention
from the user during runtime. The Adapter manages the specific Solver and
the DataInterface handles the individual DataHandlers automatically.
Hence, from the point of view of the user, the workflow is now simplified to what
is seen in Fig. 5.11.

Additionally, we can see from either workflow that we have removed all
dependencies, other than when data is exchanged, between the two adapters.
Now, interaction between solvers only takes place in the DataInterface class
(highlighted in red in the Sequential UML diagrams), while major areas of
customization of the two solvers are retained. This structure is more modular,
flexibile and maintainable.

As the general workflows have been presented, the following two sections will
describe the specific API of the TAU and CAMRAD II adapters respectively.

40

5. Adapter Architecture

F
ig
u
re

5.
10

:
N
ew

W
or
kfl

ow
Se
qu

en
ti
al

U
M
L
D
ia
gr
am

.

41

5. Adapter Architecture

F
igu

re
5.11:

Sim
plified

N
ew

W
orkflow

SequentialU
M
L
D
iagram

.

42

5. Adapter Architecture

5.4 TAU Adapter API

The following subsections will introduce the various classes in the TAU adapter.

5.4.1 Adapter class

The Adapter class is the user interface of the TAU-Python adapter. This
class oversees the initialization and utilization of the preCICE interface and the
TAU solver and designed for ease of use. Typical users that do not develop the
code should only need to know the Adapter API to use the code. A sanitized
version of the various Adapter class methods can be seen in Listing 5.1.

Listing 5.1: Adapter class for TAU adapter.

1 class Adapter(object):
2 """Adapter class controls the DataInterface and Solver classes
3 Oversees the instantiation of the two classes and their interactions"""
4

5 def __init__(self, config_file):
6 """ Adapter class constructor. Reads configuration file, sets of basic

variables """↪→
7

8 def initialize(self):
9 """ Main function called to initialize precice environment, TAU environment,

10 Solver subclass. Also calls Solver to setup DataHandler objects for
11 DataInterface
12 """
13

14 def initialize_solver(self):
15 """ Determines type of Solver subclass to instantiate based on configuration
16 file, run TAU preprocessing if necessary """
17

18 def initialize_precice(self):
19 """ Instantiate and configure precice interface via precice.Interface
20 class """
21

22 def initialize_tau_python(self):
23 """ Initialize tau_python environment (parallel or sequential) by call to
24 tau_python.tau_init() """
25

26 def execute(self):
27 """ Runs simulation loop in Solver subclass. Also supports running
28 simulation loop without preCICE if coupling is not needed """
29

30 def update_tau_solver(self, solver_name, solver_class):
31 """ Set custom solver class """
32

33 def update_config(self, config_class):
34 """ Set custom config class """
35

36 def add_data_handler(self, handler_name, handler_class):
37 """ Add a custom DataHandler subclass """
38

39 def add_data_handlers(self, handler_dict):
40 """ Add multiple DataHandler subclasses """

43

5. Adapter Architecture

Usage of the Adapter is simple: initialize the preCICE environment and
the TAU-Python environment before instantiating the solver by calling the
initialize() method and setting up data handlers via the setup_data_
handlers() method. Then, run the solver via execute(). Note that the
execute() method is able to run the solver coupled with preCICE or com-
pletely stand-alone (without coupling) depending on the input paramers in the
config file.

A typical example of code running the TAU simulation is seen in Listing 5.2.

Listing 5.2: Sample Adapter Code for TAU adapter.

1 from tauadapter.adapter import Adapter
2

3 config_file = "config.yml"
4 adapter = Adapter(config_file)
5

6 adapter.initialize()
7 adapter.setup_data_handlers()
8 adapter.execute()

Note that additional customizability is also provided. The update_tau_
solver() method and update_config() method allows the addition of a
completely new Solver or Config subclass. Users can also include new Data-
Handler subclasses via the add_data_handler() or add_data_handlers()
methods. An exact guide on how to use these methods is provided in Appendix
C.

5.4.2 DataInterface class

The DataInterface class serves as the interface between the TAU solver and
the other coupling participants. This class controls multiple DataHandler
objects in the simulation, allowing control of when and what information is
passed or received from the various coupling participants during the simulation.
By design, The DataInterface is the single interface by which the TAU
adapter communicates with simulation participants via the preCICE API. The
various method signatures in this class are given in Code. 5.3.

The DataInterface class has six methods: add_read_data_hander(),
add_write_data_hander(), read_all(), write_all(), read() and
write(). The first two methods add a specific read or write DataHandler
to DataInterface while the latter four control the passing of information to
and from preCICE. The DataInterface object supports the read/write of all

44

5. Adapter Architecture

Listing 5.3: DataInterface class for TAU adapter.

1 class DataInterface(object):
2 """ DataInterface class controls the communication between TAU and preCICE"""
3

4 def __init__(self, precice_interface, config):
5 """ DataInterface constructor. Creates empty lists to store DataHandlers
6 that read or write simulation data. (self.data_readers and
7 self.data_writers respectively) """
8

9 def initialize_data(self):
10 """ Function that reads initialized data, to be used if coupling scheme is
11 serial """
12

13 def add_read_data_hander(self, data_reader):
14 """ Appends DataHandler object to self.data_readers list. Returns index of
15 appended DataHandler """
16

17 def add_write_data_hander(self, data_writer):
18 """ Appends DataHandler object to self.data_readers list. Returns index of
19 appended DataHandler """
20

21 def read_all(self, iteration):
22 """ Loops through all existing data readers, communicates with preCICE
23 interface and passes data to the DataHandler objects for post-processing """
24

25 def write_all(self, iteration):
26 """ Loops through all existing data writers, communicates with preCICE
27 interface and passes data from DataHandler objects to preCICE """
28

29 def read(self, iteration, index):
30 """ Function that communicates with preCICE and passes data to a specified
31 DataHandler object for post-processing """
32

33 def write(self, iteration, index):
34 """ Function that communicates with preCICE and passes data from a specific
35 DataHandler object to preCICE"""

DataHandler objects via a single call via read_all(), write_all(). The
methods to add DataHandler objects returns the specific index of the added
DataHandler, which allows the user to read/write using a specific DataHan-
dler via the methods read() and write().

5.4.3 Config class

Before described the two customizable base classes, the DataHandler and
Solver, it is apt to introduce the Config class. A set of classes inherting
from the Python jsonobject library is used to read input variables, store runtime
data and share information between different components (such as different
DataHandlers). A sample Config class structure is seen in Listing 5.4.

The main configuration file is read as a Config object, which stores the input
variables required to start TAU and preCICE. These include the name of the
TAU or preCICE configuration files, the parafile location, and folder structure

45

5. Adapter Architecture

Listing 5.4: Sample Config yaml for TAU adapter.

1 logging_location: ./log
2 precice: true
3 preprocessing: false
4 participant: TAU
5 parafile: parafile_orig
6 precice_config: precice-config.xml
7 restart_location: ./restart
8 solver: HelicopterSolver
9

10 interfaces:
11 - mesh: TAU_Collocations
12 size: 200
13 read_data:
14 - CollocationsHandler
15 - mesh: TAU_Mesh0
16 boundary_markers: [5, 6, 15]
17 blade: 0
18 write_data:
19 - ForcesHandler_0_0
20 - MomentsHandler_0_0
21

22 simulation:
23 - total_azimuths: 24
24 - interpolation_type: piece-wise

information. The contents of the Config object should not be changed during
runtime of the coupled simulation.

The attribute “interfaces” is a list of Interface jsonobjects that define
the preCICE meshes and specify specific DataHandler subclasses. There is
a specific syntax required when defining the “interfaces” attributes and further
detail is provided in the Appendix A. There are two preCICE meshes defined in
the given example. The first, “TAU_Collocations”, passes non mesh-based data
(collocation points or CAMRAD II sensor positions). This is indicated by the
“size” attribute. The contents of “read_data” indicates the specific DataHan-
dler class used to read collocation data. The second preCICE mesh, “TAU_
Mesh0” writes aerodynamic force and moment data. These data are mesh-based.
This is indicated by the presence of the “boundary_markers” attribute, which is
a list of associated TAU boundary markers.

Finally, the “simulation” attribute is read as Simulation jsonobject. This
class acts as a shared pointed between multiple DataHandlers in the case of
data dependencies. This exploits the fact that Python effectively uses “pass-by-
reference” to allow different objects to share data.

There are several advantages to using the Python jsonobject library. Firstly,
it can apply requirements to input variables, such as enforcing type-setting,
raising errors if required variables are not set and inherently supports default

46

5. Adapter Architecture

values for variables. Secondly, jsonobjects are flexible. New object attributes
can be added directly and accessed without prior definition; the Simulation
“shared-pointer” is easily used. Finally, the jsonobject.Jsonbject class is
easily subclassed for high customizability (see Appendix C for more details).

In this example, the Interface class has been subclassed to also provide
the “blade” attribute (seen in Line 17) used to rotate (and align) output data to
the correct orientation in a multi-bladed rotorcraft simulation. This allows users
to add custom required attributes when reading user defined configuration files.

5.4.4 DataHandler class

The DataHandler class is an abstract class that defines how coupled data is
proccesed in the simulation: either data sent from TAU or data received by TAU
from other coupling participants via preCICE. There were several problems when
designing this class as it had many requirements. Firstly, the base class needs to
have a standard interface—so that a standard DataInterface class would be
able to handle new user defined subclasses instances. Additionally, the fluid and
solid solver introduce non-mesh based data, such as azimuth positions, Fourier
series and collocation points. This data is not associated with a particular
mesh or discretisation, which preCICE was not designed to handle. Finally,
the standardization should not reduce the flexibility of the code. The function
definitions in the base class are shown in Listing 5.5.

To address the first issue, we designate two virtual methods using the Python
ABCMeta library read() and texttwrite(), while trying to keep the syntax as
simple as possible. Understanding that preCICE passes either scalar or vector
data, we implement the is_scalar() virtual method used by the DataIn-
terface class to determine which preCICE method to call.

The read() method is analogous to the read_block_scalar_data()
and read_block_vector_data() found in the preCICE library. This method
accepts data as a 1D array (as provided by the preCICE API) and the coupling
iteration number (sometimes required to write output files) and post-processes
the received data.

The write() method is analogous to the write_block_scalar_data()
and write_block_vector_data(). This method accepts the coupling iter-
ation number, reads the required data from a TAU memory buffer or an output
file and returns a 1D array of processed data.

We want most of the calculation steps to be handled by these objects so that
the simulation loop can be kept generic; the resultant modularity of DataHan-

47

5. Adapter Architecture

Listing 5.5: DataHandler class for TAU adapter.

1 class DataHandler(object):
2 """ DataHandler class controls the pre- or post-processing of a single data
3 type """
4 def __init__(self, args):
5 """ DataHandler constructor. Sets up self.mesh_id and self.data_id """
6 self.mesh_id = args[constant.MESH_ID]
7 self.data_id = args[constant.DATA_ID]
8 self.precice_vertex_ids = args[constant.PRECICE_VERTICES]
9 self.length = len(list(self.precice_vertex_ids))

10

11 self.vertex_ids = args[constant.VERTEX_IDS]
12 self.coordinates = args[constant.COORDINATES]
13

14 self.tau_para = args[constant.PARAFILE]
15 self.comm = args[constant.COMMS]
16

17 self.config = args[constant.CONFIG]
18 self.interface = args[constant.INTERFACE]
19 self.simulation = self.config.simulation
20

21 @abstractmethod
22 def write(self, iteration):
23 """ Abstract function used to write data to preCICE """
24

25 @abstractmethod
26 def read(self, data, iteration):
27 """ Abstract function used to read data from preCICE """
28

29 @abstractmethod
30 def is_scalar(self):
31 """Function returns True if data type is scalar """
32

33 @abstractmethod
34 def get_dimensions(self):
35 """Function returns number of dimensions of simulation as int """

dlers also allows us to avoid as much unnecessary calculations as possible.
Hence, we have to address the information required by an arbitrary DataHan-

dler class to peform pre-processing or post-processing—what data would a user
need for most calculation steps. So, we list the data required for communication
with preCICE and pre- or post-processing of data.

In order to send or receive data from preCICE, we need four pieces of in-
formation: the mesh id, the data id , the preCICE vertex ids and the length
of the sent or received data. Then, we need the relevant TAU vertex ids (or
the global node ids) to access mesh-based data from TAU. Some calculations
required the exact coordinates of the relevant nodes. So, these are provided
as well. Some pre- or post- processing requires updating the TAU parafile or
reading data from the parafile. Hence, the PyPara object is provided. Finally,
the customizable jsonobjects storing configuration, simulation or interface data
are provided. These provide users with an interface to pass arbitrary data to
the DataHandler on the fly. Finally, an mpi4py Intracomms object is passed

48

5. Adapter Architecture

that allows communcation between parallel processes.
The base DataHandler class now looks quite cluttered with many member

attributes. We want this data to be accessible by the user but do not want them
to have to keep this process in mind when designing a custom DataHandler.
Additionally, we do not want users to have to consider if data is mesh-based or
not. In order to facilitate this, we contain all the aforementioned data in a single
Python dict, which is unpacked by the DataHandler base class.

A custom class DataHandlerFactory was then designed set up Data-
Handlers. This class parses the config.yaml, automatically determines
the DataHandler subclass to instantiate, checks if data is mesh-based or non
mesh-based and performs the provides the required data. This wraps several
complicated processes, such as determining the node ids associated with a given
boundary marker for a given parallel process at runtime and reduces accesses to
hard-drive memory as much as possible. This class does not need to be modified
by users when creating new DataHandler subclasses.

Understanding the overall explanation of this class may be confusing, please
refer to Appendix A and C, which provides information on how to subclass and
use the DataHandler base class.

5.4.5 Solver class

Recalling in Section 4.1, the TAU-Python API allows the design of highly
customizable fluid solvers which have extremely variable simulation loops. Hence,
the replacing of solvers prior to runtime with minimal effort is highly desirable.
The Solver class is an abstract class (created using the Python ABCMeta
library) designed to serve as base class for any TAU-Python solver. It contains
several virtual functions that standardize its interaction with other classes. These
methods are shown in Listing. 5.6.

The Solver class constructor accepts config_file and data_interface.
These arguments are automatically provided when running the Adapter method
initialize(). The update_config() method is used for a custom Config class
and add_data_handler() allows the inclusion of custom DataHandler
classes.

When creating a new Solver class, the execute() and execute_precice()
methods should be implemented. This allows users to specify the specific simu-
lation loop required. Subclassing the Solver method will require some under-
standing of the preCICE Python bindings. The subclassing procedure will be
described in greater detail in Appendix C.

49

5. Adapter Architecture

Listing 5.6: Solver class for TAU adapter.

1 class Solver(object):
2 def __init__(self, config_file, data_interface, config_class=Config):
3 """ Constructor for solver base class.\n
4 Instantiates the various tau_python classes required to control the TAU
5 simulation"""
6 # Instantiate PyPara, PySolv, PyPrep, PyDeform
7 self.config = utility.config(config_file, config_class)
8 self.data_interface = data_interface
9 self.precice_interface = data_interface.precice_interface

10

11 self.datahandlerfactory = DataHandlerFactory(self.config,
12 self.precice_interface,
13 self.data_interface,
14 self.tau_para)
15 MPI.COMM_WORLD.barrier()
16

17 def preprocessing(self):
18 """ Runs TAU preprocessing if necessary """
19

20 def add_data_handler(self, class_dict, handler_type):
21 """ Update dictionary of datahandler types
22

23 Arguments:
24 class_dict (dict): dict containing key-value pair, where key is the name
25 of the new datahandler and value is the datahandler class type.
26 handler_type (str): updates DATA_READERS or DATA_WRITES dict depending
27 on input
28 """
29 self.datahandlerfactory.add_data_handler(class_dict, handler_type)
30

31 def setup_data_handlers(self):
32 """ Used to set up the various data handlers defined in config file
33 """
34 self.datahandlerfactory.initialize()
35 for interface in self.config.interfaces:
36 self.datahandlerfactory.create_data_handlers(interface)
37

38 self.logger.info("Completed setting up data readers and writers")
39

40 @abstractmethod
41 def execute_precice(self):
42 """ Abstract method that is unique to each solver case. Executes solver with
43 preCICE """
44

45 @abstractmethod
46 def execute(self):
47 """ Abstract method that is unique to each solver case. Executes solver
48 without precice """
49

50 def define_deformation_function(self, function):
51 """ Sets the deformation function if run without preCICE """

50

5. Adapter Architecture

5.5 CAMRAD II Adapter API

The following subsections will introduce the various classes in the CAMRAD II
adapter.

5.5.1 Adapter class

The Adapter class in CAMRAD II functions as a script for the CAMRAD II
executable. It is analogous to the combination of Solver and Adapter classes
in the TAU adapter. The method signatures found in the class are seen in Listing
5.7.

Listing 5.7: Adapter class for CAMRAD II adapter.

1 class Adapter(object):
2 def __init__(self, config):
3 """ Constructor for adapter class. """
4

5 @staticmethod
6 def update_config(self):
7 """ Static method used to update Config class in Adapter class. """
8

9 def add_data_handler(self, handler_name, handler_class):
10 """ Add a custom DataHandler subclass """
11

12 def add_data_handlers(self, handler_dict):
13 """ Add multiple DataHandler subclasses """
14

15 def setup_data_handlers(self):
16 """ Sets up data handlers. """
17

18 def initialize(self):
19 """ Executes solver with precice. """
20

21 def execute(self):
22 """ Runs simulation loop in CAMRAD. """

The method setup_data_handlers() creates the various DataHan-
dler objects specified in the configuration file and the method execute()
runs the simulation loop. No standalone method was written as this can be
accomplished by running the jobscript with the CAMRAD II executable directly.
Similar to the TAU Adapter class, new DataHandler or Config subclasses
can be added with the add_data_handler()/add_data_handlers() and
update_config() methods.

51

5. Adapter Architecture

Listing 5.8: DataInterface class for CAMRAD II adapter.

1 class DataInterface(object):
2 """ DataInterface class controls the communication between CAMRAD and preCICE
3 """
4 def __init__(self, precice_interface, config):
5 """ DataInterface constructor. Creates empty lists to store DataHandlers
6 that read or write simulation data. (self.data_readers and
7 self.data_writers respectively) """
8

9 def initialize_data(self):
10 """ Function that reads initialized data, to be used if coupling scheme is
11 serial """
12

13 def add_read_data_hander(self, data_reader):
14 """ Appends DataHandler object to self.data_readers list. Returns index of
15 appended DataHandler """
16

17 def add_write_data_hander(self, data_writer):
18 """ Appends DataHandler object to self.data_readers list. Returns index of
19 appended DataHandler """
20

21 def add_force_moment_readers(self, data_writer):
22 """ Adds DataHandler object to self.force_moment_readers
23 """
24

25 def read_all(self, iteration):
26 """ Loops through all existing data readers, communicates with preCICE
27 interface and passes data to the DataHandler objects for post-processing """
28

29 def write_all(self, iteration):
30 """ Loops through all existing data writers, communicates with preCICE
31 interface and passes data from DataHandler objects to preCICE """
32

33 def read_forces_moments(self):
34 """ Reads forces moments data from fluid solver and arranges it in order """
35

36 def read(self, iteration, index):
37 """ Function that communicates with preCICE and passes data to a specified
38 DataHandler object for post-processing """
39

40 def write(self, iteration, index):
41 """ Function that communicates with preCICE and passes data from a specific
42 DataHandler object to preCICE"""

5.5.2 DataInterface class

The DataInterface class for the CAMRAD II adapter is similar to that
used in TAU. However, there are an additional two methods not present in
the TAU DataInterface class, add_forces_moments_handler() and
read_forces_moments(). These new methods are required to aggregate
force and moment data over a full revolution due to the inherently different
outputs of the fluid and solid solvers. CAMRAD II, similar to many contem-
porary CSD solvers used for rotor blade simulations, calculates data for a full

52

5. Adapter Architecture

revolution each time it runs in order to produced a trimmed solution. However,
most fluid solvers calculate data for each timestep. Hence, the adapter code
must aggregate the multiple timesteps of data passed by the fluid solver when
updating CAMRAD II input files.

The passing of periodic data is handled in this work by treating data from
each timestep as a new set of data in preCICE. Each set of data is then handled
by a single DataHandler object in the fluid solver (more details are presented
later in Section 6.2.5). The read_forces_moments() method aggregates
data passed by multiple DataHandler objects to generate the aerodynamic
loading delta table file required by CAMRAD II.

5.5.3 DataHandler class

The abstract DataHandler class for the CAMRAD II adapter are largely iden-
tical to that used in TAU. However, unlike TAU, fewer variables are required
by the DataHandler. Hence, we do not package the various objects into a
dict object but instead pass them individually. The sanitized DataHandler
base class is shown in Listing 5.9, with largely similar methods seen in the TAU
DataHandler class. Refer to Appendix C for more details in subclassing this
base class.

Listing 5.9: DataHandler class for CAMRAD II adapter.

1 class DataHandler(object):
2 """ DataHandler class controls the pre- or post-processing of a single data
3 type """
4 def __init__(self, mesh_id, data_id, precice_vertex_ids):
5 """ DataHandler constructor. Sets up self.mesh_id and self.data_id """
6 self.mesh_id = mesh_id
7 self.data_id = data_id
8 self.precice_vertex_ids = precice_vertex_ids
9 # Number of dimensions in problem

10 self.length = len(self.precice_vertex_ids)
11

12 @abstractmethod
13 def write(self, iteration):
14 """ Abstract function used to write data to preCICE """
15

16 @abstractmethod
17 def read(self, data, iteration):
18 """ Abstract function used to read data from preCICE """
19

20 @abstractmethod
21 def is_scalar(self):
22 """Function returns True if data type is scalar """
23

24 @abstractmethod
25 def get_dimensions(self):
26 """Function returns number of dimensions of simulation as int """

53

5. Adapter Architecture

5.5.4 Config class

The CAMRAD II Config class is largely similar to that for TAU. The main
difference is the removal of boundary markers as an attribute for the Interface
class and the inclusion of the RotorInfo jsonobject, which contains rotor
blade definition information. For more details of the inputs for the CAMRAD II
configuration files and how to extend the class, please refer to Appendix B and
C.

54

6. Implementation

This chapter takes a closer look at the actual implementation of the TAU and
CAMRAD II code for the three test cases implemented in this work: a tightly-
coupled perpendicular flap simulation [2], a loosely-coupled case, based on the
simulations performed in the original work [1] and a loosely-coupled case that
includes deformation of the TAU grid. Recalling the folder structures discussed
in Chapter 5, we divide the library folders and the simulation folders into different
gitlab respositories. The library folders for the TAU1 and CAMRAD II2 adapters
are each a gitlab repository. The various tutorials are included in the TAU
adapter tutorials gitlab repository3.

6.1 Toy Example: Perpendicular Flap

A tightly-coupled case was used when designing the basic TAU adapter [2]4. This
case was chosen for its low computation cost compared to the extremely com-
putationally expensive rotor blade simulations. Originally, this tutorial coupled
the OpenFOAM fluid solver with the CalculiX solid solver. The OpenFOAM
adapter was replaced by the TAU adapter.

Note that, due to time constraints, this coupled simulation was not tuned to
match the original simulation. Additionally, the original simulation was itself not
designed to produce physical results. Thus, the behavior of the TAU-CalculiX
coupling is not intended to fully replicate the results from the original work and
the results from this simple coupling case are not used to validate this work.
Instead, this test case was used in the initial development of the TAU adapter
before implementing more complex models.

1 https://gitlab.lrz.de/KeefeHuang/tauadapter
2 https://gitlab.lrz.de/KeefeHuang/camradadapter
3 https://gitlab.lrz.de/KeefeHuang/tau-adapter-tutorials.
4 https://github.com/precice/tutorials

55

https://gitlab.lrz.de/KeefeHuang/tauadapter
https://gitlab.lrz.de/KeefeHuang/camradadapter
https://gitlab.lrz.de/KeefeHuang/tau-adapter-tutorials
https://github.com/precice/tutorials

6. Implementation

6.1.1 Simulation Setup

This example models fluid flowing through a channel that interacts with a solid,
elastic perpendicular flap that is fixed to the channel floor. The setup can be
seen in Fig. 6.1.

Figure 6.1: Toy Example: Simulation Setup [2].

The flow domain is 6 units long and 4 units high. The flap is located at the
center of the length of the flow domain, has a thickness of 0.1 units, a height of
1 unit and a width (into the direction of the page) of 0.3 units. The flow speed
is variable and can be manually changed. For this test case, the default speed
of 10 units/s was used.

Figure 6.2: Toy Example: Pointwise Grid.

A grid was generated by the pointwise software, shown in Fig. 6.2. During
coupling, TAU passes force data at the interface to CalculiX and CalculiX
passes displacement information to TAU.

56

6. Implementation

6.1.2 TAU Solver

A simple TAU simulation loop was written using the turbulent one equation
model via the TAU-Python API. This simulation loop is implemented in the
TightSolver class available in the TAU adapter gitlab repository in the tight
folder.

Algorithm 6: TAU-Python algorithm for tightly-coupled case
1 init TAU-Python classes: PyPara, PySolv, PyPrep, PyDeform with TAU
Parafile

2 init solver via PySolv
3 while self.precice_interface.is_coupling_ongoing() do
4 init outer loop
5 advance time and motion in TAU simulation
6 solve multigrid
7 run inner loop nin times . nin = number of inner time steps in Parafile
8 print monitoring data
9 save output data per Parafile settings
10 process and send TAU data to solid simulation via DataInterface
11 update time in preCICE coupling
12 receive and process solid simulation data
13 write deformation scatfile and call PyDeform class to deform grid
14 stop and finalize solver
15 stop and finalize preCICE coupling interface

The coupling runs in serial, with the fluid solver (TAU) running first. Data
is passed from TAU to CalculiX at the end of each fluid solver time step, seen
in Line 10 and data is received from CalculiX via preCICE at the beginning
of each new solver time step, seen in Line 12.

6.1.3 TAU DataHandlers

In this coupling simulation, the data from the TAU simulation was extracted
directly from the TAU output files and no processing of force data was re-
quired. Two DataHandler subclasses were created: the ForceHandler class
reads output data from TAU and the DisplacementHandler reads data from
CalculiX. These two classes can be found in TAU adapter gitlab respository.

6.1.4 Folder Structure & Running Tutorial Case

The folder structure for this simulation is slightly different from the simulation
folder structures introduced in Chapter 6. The CalculiX simulation runs in

57

6. Implementation

the same folder as the TAU simulation, which follows the folder structure of the
original tutorial case [2], as seen in Fig. 6.3.

flapsimulation
precice-config.xml
precice-config_parallel.xml
tau_coupled_script.py
tau_parafile
tau_config.yaml
config.yml
flap.grid
flap.bmap
output

heli.pval.unsteady
...

grid_deform
deformed_grid_0
...

scat_files
test.scat
...
rot_test_0.scat

runSolid
Solid

flap.inp
...

Figure 6.3: Perpendicular Simulation Folder Structure.

To run the simulation, call the TAU adapter code with tau_coupled_
script with tau_config.yaml and run the runSolid to run the coupled
CalculiX simulation.

58

6. Implementation

6.2 Case 1: Loose Coupling without Deformation

After succesfully coupling the TAU solver with an existing CalculiX preCICE
implementation, the next step would be to couple TAU with CAMRAD II based
off an existing coupled simulation developed by Carnefix [1]. This section details
the individual simulation setups of the two solvers, the overall coupling workflow
as well as the individual algorithms used by each solver.

6.2.1 Simulation Setup

The simulation uses a rotor model based off the rotor tested in the second HART.
This was an international joint project by DLR, Office National d’Etudes et de
Recherches Aérospatiales (ONERA), National Aeronautics and Space Adminis-
tration (NASA) Langley, US Army US Army Aeroflightdynamics Directorate
(AFDD) and Deutsch-Niederländische Windkanäle (DNW) to better understand
rotor BVI with the intent of improving rotor noise and vibration [48]. The
test was performed in the 4-bladed Bo-105 main rotor, of which a TAU and
CAMRAD II model was been developed [48, 1]. The simulation inputs were
set to the baseline test conditions in the HART II test, seen in Table 6.1 [49].
One modification to these parameters was performed in the Carnefix’s coupling
simulation to reduce time to solution, in which the rotor pitch angle was pitched
towards the front by 4.5° instead of the rear [1]. The forwards tilt of the blade
would reduce vortices on the blade surface, accelerating the convergence of the
simuation.

CAMRAD II Simulation Setup

Recalling the requirements in Section 4.2.1, each CAMRAD II simulation has
three necessary pieces: the physical model, the simulation environment, and the
simulation logic.

The physical model is defined based on the rotor used in the HART II exper-
iment and can be separated into the structural definition and the aerodynamics
definition. The structural definition of the rotor is defined in nodes and sections.
These regions are defined using normalized radial positions along the length of
the rotor blade r, where r = xpos

R
, xpos being the position along the blade and

R the blade radius. The nodes, located at r = 0.22 and r = 0.61, determine
the degrees of freedom in the rotor blade. The sections determine the structural
properties of the rotor blade, such as chord-wise center of gravity, section mass,
and bending stiffness. The rotor blade used in this work is divided into 10

59

6. Implementation

sections, which is represented in Fig. 6.4.

Table 6.1: Rotor geometry and test conditions [49].

Parameter Symbol Value Units

Advance ratio µ 0.15 -
Air density ρ 1.2055 kg/m3

Air temperature T∞ 17.3 ◦C
Airfoil - NACA 23012 -
Blade chord c 0.121 m
Blade twist Θtw −8 deg/R
Number of blades Nb 4 -
Pitch moment (pos. forward) My −20 Nm
Roll moment (pos. right) Mx −20 Nm
Rotational speed ω 109 rad/s
Rotor radius R 2.0 m
Rotor solidity σ 0.077 -
Rotor shaft pitch angle (pos. aft) θS −4.5 deg
Rotor thrust T 3300 N
Zero twist radial location rtw 0.75 -

I II IIIIV V VI

VII

VIII

IX X

r/R0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.4: Locations of Sections defining the Structural Properties of Rotor
Blades in CAMRAD II [1].

The aerodynamics definition of the rotor blade determine where aerodynamic
forces and moments can be input or read. The root cutout, sections I-IX, is not
relevant to the coupling and is ignored. The remaining portion of the rotor blade
is separated into 21 panels, as seen in Fig. 6.5. The 21 panel discretisation is
based off studies performed on the CAMRAD II model in [50, 51].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920 21

r/R0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 6.5: Locations of Aerodynamic Panels in CAMRAD II Rotor Blade
Model [1].

The center of each panel is known as a collocation point and determines where
motion data is recorded. Collocation points are also the centroids of each panel

60

6. Implementation

and are where the aerodynamic forces and moments are applied when calculated
via the internal lifting-line model or supplied by an external Fluid Solver.

The simuation environment mimics that of the HART II experimental setup
and the rotorcraft speed is set to zero with a variable wind speed. The simulation
runs iteratively to determine a trim solution, using moments as the trim condition.
The settings described above are found in the inputs/HART_II.list file in
the CAMRAD II simulation folder of the tutorial case.

TAU Simulation Setup

The TAU simulation requires a mesh as well as a parafile. For this case, a
reference velocity of 34 m/s was used. A cartesian mesh was created using the
pointwise software based on the parameters shown in Table 6.1. A chimera
meshing strategy, described in Section 3.3, was employed. The chimera block
can be seen in Fig. 6.6a and the cross-section of the chimera grid along the shown
slice is seen in Fig. 6.6b.

(a) Rotor Blade model with single
Chimera block shown.

(b) Cross-section of Chimera block
shown in (a).

Figure 6.6: Rotor Blade model for TAU.

The discretisation was performed on a single blade that was rotated multiple
times to recreate the 4-bladed model used in the HART II experiments. The
TAU simulation runs via the standard Spalart-Allmaras Negative model, which
is more robust than the standard Spalart-Allmaras model. In order to achieve
sufficiently accurate results for convergence, 360 time steps per revolution were
used (effectively one degree per time step). A total of seven full revolutions
were run in TAU prior to coupling. This removes non-physical vortices around
the rotor blades, increasing the stability of the coupled simulation. 250 inner
iterations per time step were used for the initial revolutions, this was reduced to
100 inner iterations during the coupling to speed up the time to solution.

Surface values required for coupling are output every 15°, resulting in 24
output files per revolution. This represents the effective temporal discretisation

61

6. Implementation

of the TAU output data which will be referred to as azimuth data for the purposes
of coupling. This simulation setup is the same setup described by Carnefix in
his initial implementation of this coupling [1].

Note that this simulation was not designed to produce physically accurate
results but rather produce results that would result in convergence as a proof-of-
concept. For example, an unoptimized mesh is used for simulations. Additionally,
this simulation does not consider the elastic motion of the blade, only rigid body
motion. Finally, the rotor hub was used as the center of rotation when applying
the rigid body motion, which does not accurately reflect the physical behavior
of rotor blades.

6.2.2 Simulation Coupling Workflow

These two independent solvers are coupled using a workflow similar to that
employed by Potsdam in [18], also known as the delta airloads method mentioned
in the literature review. This workflow is most easily described via Fig. 6.7.

Initialize: ∆F0 = 0; M0 = 0; i = 1

Fi = F LL
i +

(
F CFD
i−1 − F LL

i−1
)

Mi = MLL
i +

(
MCFD

i−1 −MLL
i−1
)

Run CSD: F LL
i & MLL

i

Extract blade motion and control inputs

i = i+ 1
Convergence?

(i > 1)
i = i+ 1

Run CFD: F CFD
i & MCFD

i

stop

no

yes

Figure 6.7: Modified Delta Airloads Algorithm Workflow [18].

62

6. Implementation

The simulation is started with CSD simulation. For the initial CSD computa-
tion, no CFD data is available. Hence, the simulation runs using the aerodynamic
lifting-line method described in Section 4.2.1, producing a trimmed solution FLL

0

and MLL
0 . Blade motion is passed to the CFD simulation, which computes the

aerodynamic loading data FCFD
0 and MCFD

0 . A correction to the lifting line
aerodynamic loads is calculated and the CSD simulation is restarted, producing
a new trimmed solution. After the initial coupling step, a convergence check is
implemented at the completion of the CSD solver. Unlike the Potsdam example
[18], however, which checks both input controls and aerodynamic loads, we pro-
vide a simpler convergence criteria; the simulation is assumed to have converged
if the trimmed controls converge with a given absolute tolerance, as shown in
Algorithm 7. Note that due to the data dependencies inherent in this workflow,
the coupled simulation uses a serial-explicit coupling scheme detailed in Section
4.4.2.

6.2.3 CAMRAD II Solver

This coupling scheme means that CAMRAD II is run first, followed by TAU
in each coupling step. Recalling that CAMRAD II is a stand-alone executable
that produces trimmed solutions. No additional work is required to create a
CAMRAD II simulation loop other than updating the aerodynamic loads in the
CSD simulation inputs. Otherwise, the CAMRAD II simulation functions as
follows in Algorithm 7.

Algorithm 7: CAMRAD II algorithm for loosely-coupled case
1 exchange initial data with solid solver
2 while self.precice_interface.is_coupling_ongoing() do
3 run CAMRAD II jobfile, calculate controls Ci . i is the current
loose-coupling iteration

4 if ∆Ci = |Ci − Ci−1| < Tolerance then
5 signal preCICE that coupling is complete
6 process and send motion and sensor position data to fluid simulation
7 update time in preCICE coupling
8 receive and process aerodynamic load data and time azimuth data from
fluid simulation

9 update input controls and aerodynamics input table
10 stop and finalize solver
11 stop and finalize preCICE coupling interface

Of note in the algorithm is the data that needs to be exchanged between the
coupled solvers, seen in Lines 6 and 8. The CAMRAD II solver sends the updated

63

6. Implementation

motion and collocation point data and receives the aerodynamic loading and the
azimuth data. Collocation and azimuth data are the additional discretisation
information required to interpret the motion data and aerodynamic loading data,
respectively.

Unlike the TAU solver case, we do not have an abstract class for CAMRAD II
simulation loops. This is due to the fact that we are unable to interact with the
CAMRAD II executable. Hence, we have a generic loop that runs CAMRAD II
executable. This script is applicable to almost all CAMRAD II simulation cases—
as the simulation logic and inputs are defined externally in the input tables, as
described in Section 4.2.1. One highly requested feature, error handling of the
CAMRAD II scripts, was also implemented. Noting that the coupled script is
expected to run for several days and CAMRAD II is run multiple times. This is
problematic if the the CAMRAD II script exitted with errors or was suddenly
interrupted. The implemented error handling detects and logs errors in the
CAMRAD II output and restarts the CSD simulations as necessary.

6.2.4 TAU Solver

The TAU algorithm for the loosely-coupled simulation is seen in Algorithm 8.
The simulation loop algorithm for the TAU case is quite similar to that shown
in Algorithm 6.

There are four main differences between the two algorithms. Firstly, the
initial simulation iterations required to remove the non-physical vortices around
the rotor blades prior to coupling are run in Line 3.

Secondly, an additional receive step is implemented in Line 9. We run the two
solvers in serial with the CSD solver first to ensure that the CFD solver receives
updated information in each iteration; the fluid solver is far more computationally
expensive compared to the solid solver and savings from running the CFD fewer
times far outweigh the benefits of running the two solvers in parallel. Hence,
motion data and sensor position data are read prior to running the CFD solver.

Thirdly, we have to consider that the simulation is now loosely-coupled: data
is exchanged periodically, requiring an additional loop inside the coupling loop,
seen in 11. This has larger implications on the design of DataHandler objects,
which will be discussed in Section 6.2.5.

Lastly, for simplicity in this test case, the deformation step has been removed.
Referencing the code structure defined in Chapter 5, we create the Solver
subclass, HelicopterSolver, to implement the loosely-coupled simulation
loop.

64

6. Implementation

Algorithm 8: TAU-Python algorithm for loosely-coupled case
1 init TAU-Python classes: PyPara, PySolv, PyPrep, PyDeform with TAU
Parafile

2 init solver via PySolv
3 for t = 1, 2, . . . , tinit do . tinit = number of initial iterations
4 init outer loop
5 advance time and motion in TAU simulation
6 solve multigrid
7 run inner loop nin times . nin = number of inner time steps in Parafile
8 while self.precice_interface.is_coupling_ongoing() do
9 receive motion and sensor position data from solid solver
10 update motion input file
11 for t = 1, 2, . . . , trev do . trev = number of iterations per coupling step
12 init outer loop
13 advance time and motion in TAU simulation
14 solve multigrid
15 run inner loop nin times
16 print monitoring data
17 save output data per Parafile settings
18 process and send aerodynamic loading and azimuth data to solid simu-

lation
19 update time in preCICE coupling
20 receive and process updated motion data from solid solver
21 update motion input file
22 stop and finalize solver
23 stop and finalize preCICE coupling interface

6.2.5 Data Handling

After the main simulation logic is defined as above, we move on to the actual
data handling required by the coupled simulation. Per the code structure defined
in Chapter 5, we subclass the DataHandler abstract class for each type of
data handled. Recalling that the DataHandler class can be subclassed to read
or write information to and from any coupled solver, this step can be performed
generically.

Four sets of data need to be passed: TAU passes aerodynamic data and
azimuth data to CAMRAD II, CAMRAD II passes motion data and collocation
data to TAU.

Non Mesh-Based Data

preCICE is designed to map data along a shared interface between two arbitrary
discretisations. However, for this simulation, there are several handled forms of

65

6. Implementation

data that are not mesh-based and cannot be mapped. Instead, we have to pass
exact variables, such as Fourier series coefficients. preCICE has yet to implement
this capability, but we can define identical discretizations and use a consistent
mapping to pass data between the two solvers—a step which is normally not
needed. This might prompt the notion to use another communication protocol
instead of preCICE to handle these data formats. However, this is not a trivial
undertaking. The new protocol would have to manage communication between
multiple solvers, a task which preCICE already accomplishes. This would mean
a significant amount of repeated work, which would involve a series of additional
verification and validation steps. It is worth noting that the code enhancements
required to deal with this problem, such as allowing the re-initialization of
preCICE buffer sizes after passing data or handling non-mesh data, are known
issues in the preCICE github repository and will be addressed in the future.
Hence, the solutions raised in this section are mainly stop-gap measures until
the preCICE library supports this functionality in the future.

However, we are currently still faced with this problem—how do we define
CAMRAD II buffer sizes? We could manually calculate the buffer sizes apriori.
However, this imposes additional responsibility on the user that the configuration
files for both TAU and CAMRAD II are updated each time the discretisation is
modified. Additionally, the calculation may not be trivial and introduces human
error to the situation.

We could also use “sufficiently large” buffer sizes and append additional
structural information when passing data. However, the definition of “sufficiently
large” depends on which data is being passed. This method works well if we
can easily provide a range of buffer sizes apriori. This is the case when passing
azimuth data, which describes the temporal discretisation of the TAU simulation
output. If we output CFD simulation data every 15°, we define a structure
[25, 0, 15, 30, 45, ..., 360], where we store the number of azimuths postions, 25, at
the first position in the buffer. Because CAMRAD II only accepts aerodynamic
load data at a discretisation of 15°, this limits the buffer size to 25 integers.
The user could change the output discretisation in the TAU parafile without
consequence. This method also works passingly for collocation data, which
requires a maximum buffer size of 2001 floats as CAMRAD II supports up to
2000 sensors per rotor blade. However, this may cause issues when handling
motion data.

CAMRAD II provides the absolute displacement at each sensor position in
the form of displacement in the x-, y-, z-axis as well as a pitch angle. These

66

6. Implementation

CAMRAD II Output File Excerpt

OUTPUT = ROTOR 1 BLADE 4 POS 1.0000R
...
MOTION VALUE FLAP LAG PITCH AXIAL
...
HARMONICS (FROM 24 TIME STEPS)

MEAN 0.341838E-01 -0.392337E-02 2.95509 0.979348
COSINE 1 -0.153296E-04 -0.482019E-02 2.70720 -0.201911E-05
SINE 1 0.149269E-03 -0.235455E-02 -1.70087 -0.412899E-04

Figure 6.8: CAMRAD II Output File Excerpt.

displacements include both rigid body motion and the elastic deformation of
the blade. They are referred to as flap, lag, axial as well as pitch motions,
respectively, and are provided as Fourier series coefficients. An example of the
motion data on Blade 4 at the collocation point located at the blade tip or
1.000R is seen in Fig. 6.8.

As seen from Fig. 6.8, we need to store twelve floats for motion data at a
single collocation point for a single harmonic and CAMRAD II stores up to ten
harmonics. Hence, the buffer size for motion data can vary in size immensely.
We cannot define a standardized buffer size for motion data and an alternative
solution is required.

An ideal solution would be to pass buffer size data between the two solvers
prior to defining preCICE meshes. However, this poses a problem as preCICE
mesh discretizations must be fully defined before the preCICE Interface is
initialized. Hence, we cannot use preCICE to pass buffer size data. The feature
to pass variable data prior to initializing the preCICE Interface is a requested
preCICE functionality but development of the feature will only take place after
the conclusion of the master thesis. Hence, an additional class was designed to
implement this feature, the Variables class.

preCICE utilizes a series of written files to define the addresses of each simu-
lation participant. These written addresses are used for inter-solver communica-
tion. As a result, a shared directory must be defined in the precice configuration
xml. The Variables class leverages this existing inherent structure in coupled
preCICE code and shares information via files written to the shared directory.
The procedure is shown in Fig. 6.9.

Firstly, a json file is written to the shared folder containing the buffer size
data, a boolean read set to false. Each solver reads the json file from its
counterpart, shown in Fig. 6.9b. Then, once all parallel processes have read from

67

6. Implementation

(a) Each participant writes json files to shared folder location.

(b) Each solver reads json file from coupled partners.

(c) Each solver deletes written json file when partner has finished reading.

Figure 6.9: (a) Writing of json file to shared folder location (b) Reading json
file by each simulation participant (c) Clean up of read json files.

the json file, the boolean read is set to True. This triggers each solver to delete
the json file and proceed with the simulation, seen in Fig. 6.9c.

This rudimentary handshaking currently only supports two participants,

68

6. Implementation

though it can be easily extended to multi-solver couplings. The main bene-
fit of such data sharing would be to minimize information overlap between input
configurations. Solvers should be able to transmit input variable information
such that the user does not need to verify agreement of configuration files prior
to startup.

Now that we have a handshaking procedure in place to pass information, we
can discuss the actual post-processing of the passed data. The azimuth data from
TAU and the collocation point data from CAMRAD II do not require any post-
processing and are instead stored in a Simulation jsonobject (referenced as
needed during runtime). The motion data, however, does require post-processing.

The previously described flap, lag and axial motion data in CAMRAD II
output files are provided as displacements. However, the TAU motion file only
accepts Fourier coefficients for angle displacements. Hence, the coefficients are
approximated as angles:

coeffθ ≈ arctan(coeffdisplacement) (6.1)

In this simulation, the rigid body motion is approximated by the Fourier
coefficients read at the CAMRAD II sensor position the furthest away from the
rotor hub, i.e. the far tip of the rotor blades. These coefficients are then used to
fill in the TAU motion file described in Section 4.2.1. Of note is that the TAU
PySolv class is bugged and solver ouput does not reflect the updated motion
values despite the solver logging output indicating corrected motion angle values.
Instead, the PySolv memory must be freed each time motion data is updated
to ensure that blade motion is correctly updated.

Mesh Based Data

Having dealt with the non mesh-based data, we can now look at the mesh-
based data, which requires a slightly more involved implementation. The force
and moment data or the aerodynamic loading data represent the most complex
portion of data handling, with multiple difficulties in the coupling. We can split
the implementation into two portions: mapping between blades and the passing
of revolution data.

The first step is to be able to map aerodynamic loading data from TAU to
CAMRAD II. However, this poses some difficulty as TAU has a 3D discretisation,
while, as described in Section 6.2.3 and shown in Fig. 6.5, CAMRAD II splits
the rotor blade into panels in a 1D discretisation. In order to determine the
aerodynamic loading on each panel in the CAMRAD II discretisation, we must
aggregate the data in the TAU discretisation in a conservative manner.

69

6. Implementation

As mentioned in Section 4.4.1, preCICE supports nearest-neighbor, nearest-
projection and RBF interpolation. However, none are suitable to be directly
applied to this 3D-1D mapping as these mappings do not consider the positions
of panel edges. This is also a known issue in preCICE and these conversions are
typically handled by adapter code. We can see from Fig. 6.5 that panel lengths
are irregular as a finer discretisation is used at regions of interest. Hence, if any of
the mapping methods are used directly, the cells in the TAU discretisation would
not be mapped to the correct collocation point in TAU; Fig. 6.10 demonstrates
the result of directly applying the nearest neighbour approach. The figure shows
a top-down view of a TAU 3D discretization (at the top of the figure) and a
1D CAMRAD II discretisation below. The data values of each cell in the TAU
discretization are mapped to the nearest collocation point of the same color below.
Ideally, the red and blue divisions in the TAU discretization should match with
the panel edges seen in the CAMRAD II discretization. However, this is not the
case in Fig. 6.10; the blue cells highlighted in orange are erroneously assigned to
the first panel as they are physically closer to the collocation point of the first
panel.

TA
U

preC
IC

E
M

apping

C
A
M
R
A
D

Figure 6.10: Incorrect Passing of Aerodynamic Loading Data from TAU (above)
to CAMRAD II (below). TAU cells are allocated to the CAMRAD II collocation
point of the same color using a nearest-neighbor mapping. TAU cells highlighted
in orange are incorrectly mapped to the first CAMRAD II panel and should be
allocated to the second panel.

In order to address this issue, a 2D intermediate grid based on the CAMRAD II
discretisation is generated in the CAMRAD II solver code, seen in 6.11. Thus,
the preCICE mapping can work as intended when coupling data. An additional

70

6. Implementation

internal aggregation step is then performed in the CAMRAD II code to compute
the aerodynamic loads at each collocation point. The intermediate grid provides
additional structural information required by the preCICE mapping techniques
to work.

TA
U

preC
IC

E
M

apping

In
te
rm

ed
ia
te

G
ri
d

Internal
A
ggregation

C
A
M
R
A
D

Figure 6.11: Successful Mapping of Aerodynamic Loading Data from TAU to
CAMRAD II with Intermediate Grid.

The implementation of the preCICE mapping methods was tested by compar-
ing force data aggregated in the TAU code as well as the calculated force values
at the collocation points in CAMRAD II. In order to examine the accuracy of
the mapped sections, we compared the summation of forces on panels using the
nearest-neighbour interpolation and the RBF interpolation. The results can be
seen in Fig. 6.12. We can see that the nearest-neighbor approach has far lower er-
ror for this application. This is expected: we require the force data to be cleanly
divided between panels as defined in CAMRAD II. However, when using the
RBF interpolation, the influence of points disregards panel edge discretisation.
This leads to force values “leaking” between panels, which explains the errors
when using RBF interpolation for mapping between the two solvers. Certainly,
reducing the cut-off radius of the RBF mapping does increase the accuracy. How-
ever, this requires the cell size in the intermediate grid to approach the cell size

71

6. Implementation

in the TAU discretization before the effect of “leaking” is resolved. Additionally,
the RBF interpolation is more computationally expensive, requiring more than
10x longer to complete for the same discretisation. Hence, for this work, only
nearest-neighbour interpolation was used.

0 7 14
−4

−2

0

2

4

Collocation Points

F
x
(N

)

0 7 14

−2

0

2

Collocation Points

F
y
(N

)

0 7 14
−50

0

50

Collocation Points

F
z
(N

)

Nearest-Neighbour RBF

Figure 6.12: Comparison of Nearest-Neighbor Interpolation and RBF Interpo-
lation.

The second step is to allow for the passing of a full revolution of data at
each coupling step. We could try to pass a fourth dimension of data (time) via
preCICE. However, this is not currently feasible as this particular functionality
is not supported by preCICE; the library only allows passing data in a tightly-
coupled manner. This is because we are unable to interpolate in time in the
same way that field variables are interpolated between different discretizations.
Instead, we treat data at each azimuth as a separate data type in the preCICE
configuration. In the base simulation, we have 4 blades and 24 azimuth positions
per revolution. If we approached this naively, we would then define 4 meshes (one
for each blade) with 24 data types (one for each azimuth position) in the preCICE
configuration, effectively passing 96 arrays of data from TAU to CAMRAD II
at each coupling step.

However, we understand that the four blades in the simulation are identical,
the simulation output is periodic in nature, and the fluid simulation should reach
steady state before data is passed. Hence, we can, instead of passing the full
data from 24 azimuth positions for each blade, pass data in a piece-wise manner.

The difference in the two methods is shown in Fig. 6.13a and 6.13b. In
Fig. 6.13b, each of the 4 blades only passes data from 1

4
of a revolution. This

is then combined to form a full revolution of data. In order to determine if
the piece-wise implementation is feasible, we implemented both methods and
compared the passed force data. We ran the individual solvers to steady state
solutions and passed data via preCICE using the two methods. The results are
plotted in Fig. 6.14; there is no significant difference between the two methods.

72

6. Implementation

(a) Passing of full data (b) Passing piece-wise data.

Figure 6.13: (a) Passing of Full data. Each blade passes data from full revolu-
tion (b) Passing of Piece-wise data. Each blade only passes data from part of a
full revolution.

0 90 180 270 360

2

4

6

8

ψ (deg)

F
x
(N

)

0 90 180 270 360

−4

−3

−2

−1

ψ (deg)

F
y
(N

)

0 90 180 270 360
20

40

60

80

ψ (deg)

F
z
(N

)

Piece-wise Full

Figure 6.14: Passing of Full and Piece-wise Force Data in x- (left), y- (middle)
and z-axis (right).

0 90 180 270 360
0

0.5

1

1.5

2

ψ (deg)

R
el

.
E

rr
or
F
x
(1
0
−
3
%
)

0 90 180 270 360
0

2

4

6

ψ (deg)

R
el

.
E

rr
or
F
y
(1
0
−
3
%
)

0 90 180 270 360
0

2

4

ψ (deg)

R
el

.
E

rr
or
F
z
(1
0
−
3
%
)

Figure 6.15: Relative Error of Full and Piece-wise Force Data in x- (left), y-
(middle) and z-axis (right). Rel. Error = (Fpiece-wise − Ffull) /Ffull.

The relative error for the forces in the x, y and z axes are shown in Fig. 6.15.
The error is in the order of 10−3%, which is negligible in this scenario. Hence,
for the remainder of the work, employ the piece-wise methodology when passing
data. This saves time and there is almost no change in the final results.

Writing the coupling configuration and preCICE configuration is a daunting

73

6. Implementation

task with so many datatypes. To give an idea of the complexity of the piece-
wise case, the preCICE configuration file is visualized with the preCICE config-
visualizer tool in Fig. 6.16, which only shows data from a single blade fully. Each
blade requires two sets of data (force and moment) for each azimuth position.
This sums to a total of 50 different sets of data that must be properly defined in
the preCICE, TAU and CAMRAD II configuration files for a single revolution.
Ensuring the correctness of these definitions is difficult and prone to human
error. Thus, configuration file generators are included in the tutorial respository
containing this simulation case to automate this step.

6.2.6 Folder Structure & Running Tutorial Case

The folder structure for this simulation is almost identical to the folder structure
discussed in Chapter 5. Hence, it will not be discussed in this work. Please refer
to the Gitlab repository to see instructions to run this tutorial simulation.

74

6. Implementation

F
ig
u
re

6.
16

:
V
is
ua

liz
at
io
n
of

pr
eC

IC
E

pi
ec
e-
w
is
e
co
nfi

gu
ra
ti
on

fil
e.

O
nl
y
D
at
a
fr
om

M
es
h0

is
fu
lly

vi
su
al
iz
ed

[5
2]
.

75

6. Implementation

6.3 Case 2: Loose Coupling with Deformation

After completing the simple coupling case without deformation, the next step
is to implement deformation. One of the limitations of the previous coupling
implementation was that it only considered rigid body motion of the blades
in the fluid simulation. We attempt to remedy this by implementing a simple
deformation case in the TAU solver using the passed motion information.

6.3.1 Simulation Setup

CAMRAD II Simulation Setup

The simulation setup for TAU and CAMRAD II is identical to the setup in Case
1. The CAMRAD II Solver is identical, as is the CAMRAD II input files, see
Section 6.2.3 for more details.

TAU Simulation Setup

The TAU HelicopterSolver is modified to add a deformation step to the
simulation loop. The updated algorithm can be seen in Algorithm 9. There are
two main updates to the algorithm. First, before the running the outer loop
iterations, a series of Fourier functions are created from received motion data
that calculate the angular displacements at a given azimuth position. This step
is seen in Line 10. Next, a new scatfile is created for each outer loop timestep
and the primary grid is deformed. This occurs in Line 17 and 18.

While the steps to include deformation into the HelicopterSolver may
seem trivial, the calculation of the displacements and the creation of the scatfiles
is quite involved. The exact deformation calculations are presented in the next
section.

6.3.2 Deformation Calculation

The CAMRAD II solver outputs the absolute positions of the collocation points.
However, we cannot directly deform the TAU grid based on the absolute position
of these collocation points; we would opt to reduce the amount of necessary
deformation as much as possible to prevent badly-conditioned cells.

Instead, TAU allows for a combination of rigid body motion and grid defor-
mation, such that grid deformation can be minimized. The approach taken in
this work is to re-use the rigid body motion implemented in Section 6.2.1 and
supplement the rigid body motion with grid deformation to recreate the elastic
motion output by CAMRAD II.

76

6. Implementation

Algorithm 9: TAU-Python algorithm for loosely-coupled case with deforma-
tion
1 init TAU-Python classes: PyPara, PySolv, PyPrep, PyDeform with TAU
Parafile

2 init solver via PySolv
3 for t = 1, 2, . . . , tinit do . tinit = number of initial iterations
4 init outer loop
5 advance time and motion in TAU simulation
6 solve multigrid
7 run inner loop nin times . nin = number of inner time steps in Parafile
8 receive motion and sensor position data from solid solver
9 update motion input file
10 create Fourier series for deformation
11 while self.precice_interface.is_coupling_ongoing() do
12 for t = 1, 2, . . . , trev do . trev = number of iterations per coupling step
13 init outer loop
14 advance time and motion in TAU simulation
15 solve multigrid
16 run inner loop nin times
17 create scatfile for deformation
18 deform primary grid
19 print monitoring data
20 save output data per Parafile settings
21 process and send aerodynamic loading and azimuth data to solid simu-

lation
22 update time in preCICE coupling
23 receive and process updated motion data from solid solver
24 update motion input file
25 stop and finalize solver
26 stop and finalize preCICE coupling interface

Deformation in TAU is performed by the “deformation” executable or the
PyDeform TAU-Python class. Both operations require the writing of a scatfile,
described in Section 4.1.1. Recalling that scatfiles apply an RBF interpolation,
we do not need to provide the deformation magnitudes at every node in the
primary grid. Instead, the deformation methods in TAU accepts a coarser grid
and interpolates values at these points. This is referred to as the deformation
grid. The deformation grid discretisation was set to 200 nodes along the blade
length and 4 nodes along the blade width, resulting in a mesh approximately 30
times coarser than the primary TAUmesh. While this discretisation produced
good results (detailed in Section 7.4), a further mesh refinement study should
be conducted optimize the used discretization.

77

6. Implementation

The next difficulty is then to calculate the deformation magnitudes after
ommitting the effects of rigid body motion on the deformation grid. In order
to do so, we now have to calculate the movement of the nodes due to the rigid
body motion implemented in Section 6.2.5. Recalling the hierarchy discussed in
Section 4.1.3 and shown in Fig. 6.17, we have to determine the correct order to
apply the rotational matrices.

Blade 1 Flap: φ1

Blade 1 Lag: ψ1

Blade 1 Pitch: θ1

Blade 2 Flap: φ2

Blade 2 Lag: ψ2

Blade 2 Pitch: θ2

Blade 3 Flap: φ3

Blade 3 Lag: ψ3

Blade 3 Pitch: θ3

Blade 4 Flap: φ4

Blade 4 Lag: ψ4

Blade 4 Pitch: θ4

Farfield: θS, φS

Rotor Head: ψt

Figure 6.17: Motion Hierarchy of the 4-bladed CFD rotor blade simulation [1].

Now that we are calculating these angles instead of relying on TAU internal
calculations, we have to consider timestep or azimuth position when using the
Fourier series. Hence, we refer to the blade flap, lag, and pitch angles at time
t1 or azimuth position 1 as θ(t1), ψ(t1), and φ(t1). The other angles listed in the
motion heirarchy are constant and do not change with time in this work.

For the case of Blade 1 at t = t1, we first apply the blade motion in the given
order: θ(t1)1 , ψ(t1)

1 , and φ
(t1)
1 . We then apply the helicopter blade rotation, ψt.

We then apply the rotor shaft and pitch angles θS, φS. The application of the
respective rotation matrices in this order then maps mesh nodes in TAU-Code-
Grid frame to the Geodesic or inertial frame. Rotation matrices are defined
as rotation around axes in the TAU-Code-Grid frame. We use the following
notation to describe rotation matrices: the rotation matrix for an angle θ around
the X-axis in the TAU-Code-Grid frame is RXθ, which is defined in Eq.6.2.

RXθ =

1 0 0

0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)

 (6.2)

Thus, we can represent the application of these matrices mapping coordinates
on Blade 1 in the TAU-Code-Grid frame to the Geodesic frame in Eq. 6.3. We

78

6. Implementation

simplify this long string of rotation matrices into a single motion matrix M (t1).

xG = RXφSRY θSRZψtRXφ
(t1)
1
R
Zψ

(t1)
1
R
Y θ

(t1)
1︸ ︷︷ ︸

M(t1)

xτ (6.3)

Now that we understand how rigid body motion is implemented, we can then
similarly convert the deformation into a series of such matrices. The method is
identical. However, unlike the rigid body motion, where the Fourier coefficients
from the tip of the rotor blade are applied to the entire rotor blade, we now
generate a different set of blade motion angles at each point along the rotor
blade. Thus, as seen in Eq. 6.4, we can calculate a specific deformation matrix
Di for an arbitrary TAU node xi with the specific blade motion angles (θ(i))1,
(ψ(i))1 and (φ(i))1.

(x(i))deformed = RXφSRY θSRZψtRX(φ(i))
(t1)
1
R
Z(ψ(i))

(t1)
1
R
Y (θ(i))

(t1)
1︸ ︷︷ ︸

D
(t1)
i

(x(i))τ (6.4)

However, the CAMRAD II output does not have the same discretisation as
the deformation grid. Hence, we cannot immediately determine the specific blade
motion angles required for each point. Instead, the flap, lag and pitch angles are
calculated at each CAMRAD II collocation point and linearly interpolated for
each point in the deformation grid.

Putting everything together, we can then calculate the displacement δ(t1) at
t = t1 for one node x(i) as follows:

Mδ(t1) = D
(t1)
i xi −M (t1)xi,

δ(t1) = (M (t1))−1D(t1)x− x,

=
(

(M (t1))−1D
(t1)
i − I

)
︸ ︷︷ ︸

Q

xi.
(6.5)

We call the final matrix required to calculate δ(t1) directly Q. As Q is a
3× 3 matrix, when we assemble the deformation matrices for each point in the
deformation grid, we get a sparse block-wise diagonal matrix, which we can
exploit to perform this calculation step efficiently.

6.3.3 Folder Structure & Running Tutorial Case

The TAU folder structure for this simulation is slightly different from the simu-
lation folder structures introduced in Chapter 6. While the CAMRAD II folder
structure remains the same. For the TAU folder structure, an additional tau_
precice folder is used to store newly introduced classes and subclassed He-
licopterSolver and HelicopterConfig classes. The new TAU folder
structure is shown in Fig. 6.18.

79

6. Implementation

tausimulation
tau_precice

helicoptersolver.py
helicopterconfig.py
deformation.py

precice-config.xml
tau_coupled_script.py
tau_parafile
tau_config.yaml
output

initial_revolutions
heli.pval.unsteady
...

revolution0
heli.pval.unsteady

...
grid_deform

deformed_grid_0
...

scat_files
rot_0.scat
...
rot_test_0.scat

Figure 6.18: Isolated Rotor Blade Simulation with Deformation Folder Struc-
ture.

A new deformation.py script is introduced. This contains a custom
Deformation class which calculates the deformation described in Eq. 6.5 and
writes out a scatfile in the scat_files folder. The reason that deformation
cannot be handled generically is because deformation settings are stored in blocks
in the TAU parafiles. Ensuring that the correct deformation is calculated, the
correct input block in the parafile is updated and that the deformation occurs at
the correct position in the simulation loop is highly variable. Hence, for this case,
a new HelicopterSolver class was created and introduced as new Solver
subclass.

80

7. Results

This section discusses the results from the implementations discussed last chapter.
The exact code used to produce these results is listed in Appendix D.

7.1 Toy Example: Perpendicular Flap

The perpendicular flap was run with the input parameters listed in Section 6.1.
A snapshot at time t = 2.0s showing the pressure distribution can be seen in
Fig. 7.1. The displacement of a watchpoint located at the tip of the perpendicular
flap is tracked in the original OpenFOAM-CalculiX coupled simulation. The
same watchpoint was tracked in the TAU-CalculiX simulation and the results
are plotted in Figs. 7.2.

Figure 7.1: Snapshot of TAU-CalculiX Toy Example.

We can see that the TAU-CalculiX simulation has not been tuned to match
the OpenFOAM-CalculiX simulation. Hence, the flow conditions of the two
simulations are different. This can be seen from the different amplitudes of the
displacements in the new adapter and the original coupling. However, we can
see that the overall movement of the two flaps are similar: the flap bends in the
direction of the flow before returning to a similar original position. Thus, we
can see that the passing of data works in this coupling.

81

7. Results

0 1 2 3 4 5

0

0.5

1

Time (t)

D
is

p.
X

-a
xi

s
(m

)

0 1 2 3 4 5
0.6

0.8

1

Time (t)

D
is

p.
Z
-a

xi
s
(m

)

OpenFOAM-CalculiX TAU-CalculiX

Figure 7.2: Displacements of watchpoint tracked in TAU-CalculiX and
OpenFOAM-CalculiX in X-axis (left) and Z-axis (right).

7.2 Case 1: Loose Coupling without Deformation

The results of the loosely-coupled simulation without deformation are described
in this section. As mentioned in Section 6.2, a total of seven initial revolutions
were run prior to coupling. This was to remove unphysical vortices around the
rotor blades and increase the stability of the coupling. The flowfield around the
rotor blades is visualized in the Fig. 7.3.

Figure 7.3: Flowfield Around Rotor Blades.

The coupled simulation ran for a total for four coupling iterations. Three sets
of data are shown in this section, the data prior to coupling, the data after four
coupling iterations, and a table of the CAMRAD II control values. Firstly, the
thrust distribution prior to coupling across a full revolution are shown in Fig. 7.4.
The force and moments values at the collocation point located at r = 0.87 for
both TAU and CAMRAD II simulations are presented in Fig. 7.5.

82

7. Results

Figure 7.4: Comparison of TAU (left) and CAMRAD II (right) thrust distri-
bution (Fz) over a single revolution prior to coupling.

0 90 180 270 360
2

4

6

8

ψ (deg)

F
x
(N

)

0 90 180 270 360

−4

−3

−2

−1

ψ (deg)

F
y
(N

)

0 90 180 270 360

40

60

80

ψ (deg)

F
z
(N

)

0 90 180 270 360

0

5

10

ψ (deg)

M
x
(1
0
3
N
m
)

0 90 180 270 360

−30

−20

−10

0

ψ (deg)

M
y
(1
0
3
N
m
)

0 90 180 270 360
−2

−1

0

1

ψ (deg)

M
x
(1
0
3
N
m
)

TAU CAMRAD II

Figure 7.5: Comparison of TAU and CAMRAD II aerodynamic force and
moment data over a single revolution prior to coupling at CAMRAD II sensor
position r = 0.87. Force data in x-, y-, z-axis from left to right of top row.
Moment data in the x-, y-, z- axis from left to right of bottom row.

After four coupling iterations, the simulation tends towards convergence.
We can see that the general thrust distribution of the TAU and CAMRAD II
simulation are quite similar in Fig. 7.6. Additionally, the force and moment data
are in good agreement in Fig. 7.7. However, we can observe some oscillating
behavior of subsequent coupling steps. This can be observed when examining
the changes in the control inputs shown in Table 7.1. We see that after the initial

83

7. Results

Figure 7.6: Comparison of TAU (left) and CAMRAD II (right) thrust distri-
bution (Fz) over a single revolution after 4 coupling iterations.

0 90 180 270 360
2

4

6

8

ψ (deg)

F
x
(N

)

0 90 180 270 360

−4

−3

−2

−1

ψ (deg)

F
y
(N

)

0 90 180 270 360

40

60

80

ψ (deg)

F
z
(N

)

0 90 180 270 360

0

5

10

ψ (deg)

M
x
(1
0
3
N
m
)

0 90 180 270 360

−30

−20

−10

0

ψ (deg)

M
y
(1
0
3
N
m
)

0 90 180 270 360
−2

−1

0

1

ψ (deg)

M
x
(1
0
3
N
m
)

TAU CAMRAD II

Figure 7.7: Comparison of TAU and CAMRAD II aerodynamic force and
moment data over a single revolution after 4 coupling iteration at CAMRAD II
sensor position r = 0.87. Force data in x-, y-, z-axis from left to right of top row.
Moment data in the x-, y-, z- axis from left to right of bottom row.

shift from the first coupling step, subsequent steps oscillating with a decreasing
amplitude towards convergence.

This oscillating behavior is reminiscent of explicit time-stepping schemes
with overly large timesteps, which leads to the solver overcorrecting when a
new gradient is calculated instead of quickly reaching convergence. While there
was insufficient time to fully experiment with input parameters to mitigate this

84

7. Results

Table 7.1: Overview of CAMRAD II control values per coupling iteration.

Iteration ∆Θcoll ∆Θlat ∆Θlong Θcoll Θlat Θlong

N/A N/A N/A N/A 6.45 −2.03 2.69
1 −0.1 0.9 −0.5 6.35 −1.13 2.19
2 0.1 −0.6 0.37 6.45 −1.73 2.56
3 −0.06 0.41 −0.18 6.39 −1.32 2.34
4 0.03 −0.27 0.15 6.42 −1.59 2.49

Units deg deg deg deg deg deg

phenomenon, several promising avenues can be explored. Firstly, we could reduce
the relaxation factor in the coupling code when passing aerodynamic loads from
TAU to CAMRAD II and when passing motion data from CAMRAD II to TAU.
This would reduce the effect of the passed forces and motions which could prevent
the oscillations seen. However, these specific relaxation factors would require
further experimentation.

Additionally, it is worth exploring implicit coupling schemes in the preCICE
coupling as some convergence of boundary conditions could improve the stability
of the coupled simulation. However, this would required further implementation
of checkpointing in the TAU adapter, which is currently not supported. Moreover,
implicit coupling schemes may increase the number of time the TAU solver would
need to run, which could increase the time to solution.

7.3 Profiling

After examining the output of the adapter, the TAU adapter was profiled against
the original base code. Both codes were run on the cluster in the Chair of Heli-
copter Technologies on node TUM-WE140. Both codes were run with identical
preprocessing with 24 processes. Both codes were run with zero inner iterations
as the simulation loops were largely identical. The two codes were allowed run
for two full coupling iterations.

The profiles of the orginal script, the TAU adapter and the CAMRAD II
adapter generated are seen in Tables 7.2, 7.3 and 7.4 respectively. The output
has been sorted based on cumulative time to allow an easy comparison of the
main methods called to initialize and couple the simulations.

We see that the runtime of the solvers is roughly the same. The original code
runs for approximately 300 minutes (1.7721̇04 seconds) and the TAU adapter
running for approximately 257 minutes (1.5411̇04 seconds). The solver loop

85

7. Results

Table 7.2: Profile of original script.

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.0796 0.0796 1.84e+04 1.84e+04 coupled.py:31(<module>)
2 1.772e+04 8862 1.772e+04 8862 :0(<posix.waitpid>)
2 0.000194 9.7e-05 1.772e+04 8862 subprocess.py:1379(wait)
2 0.000185 9.25e-05 1.772e+04 8862 subprocess.py:514(call)
4 9e-05 2.25e-05 1.772e+04 4431 subprocess.py:473(_eintr_retry_call)
2 4.5e-05 2.25e-05 1.772e+04 8862 subprocess.py:525(check_call)
2 0.04564 0.02282 653.2 326.6 tau_functions.py:398(tau_rotor_forces_moments)
96 228.4 2.379 645 6.718 tau_functions.py:253(tau_blade_forces_moments)

2739648 146.4 5.343e-05 396 0.0001446 numeric.py:1701(cross)
8218944 61.96 7.539e-06 211.5 2.574e-05 numeric.py:1620(moveaxis)

Table 7.3: Profile of TAU adapter script.

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.3075 0.3075 1.541e+04 1.541e+04 tau_coupled_script.py:18(<module>)
1 6.2e-05 6.2e-05 1.541e+04 1.541e+04 tau_coupled_script.py:28(main)
1 0.001427 0.001427 1.519e+04 1.519e+04 helicoptersolver.py:403(execute_precice)
1 3.5e-05 3.5e-05 1.519e+04 1.519e+04 adapter.py:160(execute)
3 0.101 0.03366 1.516e+04 5055 helicoptersolver.py:516(tau_simulation_loop)
720 1.5e+04 20.84 1.5e+04 20.84 :0(<_tau_python.tau_solver_unsteady_advance_motion>)
1 9.6e-05 9.6e-05 216.9 216.9 adapter.py:69(initialize)
4 0.001176 0.000294 178.4 44.59 PySolv.py:88(init)
1 0.001011 0.001011 154.8 154.8 helicoptersolver.py:60(__init__)
1 0.000114 0.000114 154.8 154.8 adapter.py:85(initialize_solver)
4 90.31 22.58 90.31 22.58 :0(<_tau_python.tau_solver_init_params>)
720 72.51 0.1007 72.51 0.1007 :0(<_tau_python.tau_solver_write_output_conditional>)
1 0.2093 0.2093 61.79 61.79 helicoptersolver.py:131(setup_data_handlers)
4 51.05 12.76 51.1 12.77 helicoptersolver.py:345(filter_surface_nodes)
.
2 0.000693 0.0003465 19.33 9.667 interface.py:107(write_all)
.
1 2.826 2.826 2.826 2.826 :0(<method ’initialize’ of ’precice.Interface’ objects>)
.
2 7.9e-05 3.95e-05 0.02105 0.01053 interface.py:76(read_all)

Table 7.4: Profile of CAMRAD II adapter script.

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.8984 0.8984 1.541e+04 1.541e+04 camrad_coupled_script.py:18(<module>)
2 1.519e+04 7594 1.519e+04 7594 :0(<method ’advance’ of ’precice.Interface’ objects>)
1 218.5 218.5 218.5 218.5 :0(<method ’initialize’ of ’precice.Interface’ objects>)
1 0.05565 0.05565 1.585 1.585 __init__.py:106(<module>)
4 0.000671 0.0001677 1.308 0.3271 camrad_functions.py:182(camrad_blade_forces_moments)
1 0.06242 0.06242 1.304 1.304 camrad_utility.py:11(<module>)
24 0.7455 0.03106 1.052 0.04383 camrad_functions.py:83(read_sensor_data)
1 0.2736 0.2736 0.8952 0.8952 __init__.py:1(<module>)
1 0.8764 0.8764 0.8764 0.8764 :0(<method ’finalize’ of ’precice.Interface’ objects>)
1 0.0258 0.0258 0.8112 0.8112 __init__.py:93(<module>)

in the TAU adapter may be slightly optimized by using newer TAU-Python
methods, which may account for the difference in solver runtime. However, the
original code runs the solver in a subprocess and we cannot clearly analyze the
reasons for the differences in the solver time. This difference should also be
ignored as it does not involve the adapter code and native TAU users should be
able to optimize their simulation loops.

86

7. Results

Instead, we look at the changes introduced by the new adapter code. This is
separated into two categories: setup time and coupling time. The former refers
to the time at startup required to setup a simulation and the latter refers to the
time required to process and pass data between coupled solvers.

0 100 200 300 400 500 600 700 800

preCICE Adapter

Original Code

9.67

326.6

216.9

Execution Time (s)

Setup Time Coupling Time 1 Coupling Time 2

Figure 7.8: Bar graph showing setup time and coupling time.

Of the two preCICE adapters, the TAU adapter requires a longer setup time
and requires more computation during each coupling step; the CAMRAD II
adapter always waits for the TAU adapter when setting up or coupling. Hence,
as the TAU adapter is the slower adapter, we can compare it against the original
coupling to determine how performance has changed in the new code. A graph
of the cumulative setup and coupling time of the TAU adapter and the original
coupling is shown in Fig. 7.8.

The first difference is that the original code shows no initialization time.
This is because both CAMRAD II and TAU are run inside subprocesses and this
information is difficult to extract. On the other hand, we can determine the setup
time of the adapter code. The TAU adapter requires about 216 seconds to run the
initialize() method of the Adapter class. This time, indicated in red in
Fig. 7.8, includes partitioning the TAU grid and setting up the preCICE meshes
(approximately 61 seconds); instantiating TAU-Python classes (approximately
154 seconds); and initializing preCICE (approximately 2.8 seconds).

Despite this unfair comparison (as the setup time in the original script is
effectively hidden), we see that the adapter code actually runs faster within
one coupling iteration. The main method called in the original coupled script
to calculate aerodynamic loads is tau_rotor_forces_moments(). The
method takes approximately 300 seconds per call (shown in blue in Fig. 7.8).
The original code performs a gather step to combine the outputs from multiple

87

7. Results

parallel processes before processing data in a sequential and non-vectorized
manner. The TAU adapter skips this step and instead processes data in parallel.
Additionally, the mathematical method used in the original code was vectorized
and simplified in the TAU adapter. As a result, the reading and writing of all
passed data (including the calculation and passing of non mesh-based data) takes
less than 10 seconds per coupling iteration in the new adapter code.

This speedup does appear impressive at first glance but a coupled rotor
blade simulation can run for many hours, even days. Thus, when we put things
into perspective, the actual performance gain by using the adapter code is not
significant. However, we can clearly show that introducing preCICE does not
impede performance of the coupled simulation.

7.4 Case 2: Loose Coupling with Deformation

A study was conducted to ensure that the applied deformation was an accu-
rate reflection of the CAMRAD II output. There are two points that required
verification. Firstly, we need to determine if the angular approximation of the
displacement is accurate. Secondly, we have to examine if the applied deforma-
tion in the TAU output files occurs. A coupled TAU simulation was run on the
LRZ to produce deformed grids that are compared with the deformation output
from CAMRAD II. The coupled simulation was run for one coupling step and
the examine data compares the output of the first coupled iteration.

The first study creates a 1D discretisation matching the sensor output posi-
tions in CAMRAD II and applies the displacements prescribed in the CAMRAD II
output files. This is the CAMRAD II collocation points in the blade local frame
per the CAMRAD II simulation. Next, we apply the rotation matrices calculated
per Eq. 6.5 and compare the two results. We see the output from CAMRAD II
and the effect of the rotation matrices in Fig. 7.9, the CAMRAD II ouput is seen
in Fig. 7.9a, the positions calculated via rotation matrices is seen in Fig. 7.9b.
The two plots are overlayed in Fig. 7.9c.

88

7. Results

(a) CAMRAD II collocation point position over
one revolution .

(b) Collocation point calculated with rotational
matrices over one revolution.

(c) Overlay of CAMRAD II collocation point po-
sition and calculated collocation point position.

Figure 7.9: Comparison of CAMRAD II collocation point position and calcu-
lated collocation point position.

89

7. Results

(a) Collocation point calculated with rotational
matrices over one revolution.

(b) TAU deformation + motion over one revolu-
tion.

(c) Overlay of calculated collocation point position
and TAU deformation + motion.

Figure 7.10: Comparison of calculated collocation point position and TAU
deformation + motion.

90

7. Results

0 90 180 270 360
0.5

0.6

0.7

0.8

ψ (deg)

R
el

.
E

rr
or

(1
0
−
2
%
)

0 90 180 270 360
0.6

0.7

0.8

0.9

ψ (deg)

R
el

.
E

rr
or

(1
0
−
2
%
)

Figure 7.11: Average Relative Error per Azimuth position (left) for CAM-
RAD II collocation point position and calculated collocation point position.
Average Relative Error per Azimuth position (right) for calculated collocation
point position and TAU deformation+motion.

The relative error was calculated for each azimuth position and the average
relative error for each azimuth position was plotted in Fig. 7.11. We see that
the relative error for each point as in the order of 0.01%. Therefore, the use of
rotational matrices is a good approximation of the deformation prescribed by
CAMRAD II.

Next, we generate the scatfiles per the method described in Section 6.3.2.
For this case, we gather the node ids of nodes in the TAU grid which are as
close to the collocation points in the CAMRAD II descretization as possible. We
take note that there is a surface at the top of the rotor blade and one at the
bottom which is deformed. Hence, we gather two nodes per collocation point.
We then apply the rotation matrix D to these points and compare it to the
deformed TAU grid, which sees both rigid body motion and the effects of the
scatfile deformation. The results are presented below in a similar fashion to the
rotational matrices above.

We see that the average relative error in Fig. 7.11 at each node is in the order
of 0.01%. Thus, the application of deformation via scatfile and rigid body motion
provides a good approximation of the deformation prescribed by CAMRAD II.

91

8. Conclusion

In response to a need for a modular, extensible and easy to use solution to imple-
ment coupled Fluid-Structure Interaction (FSI) simulations, preCICE adapters
for the TAU fluid solver and CAMRAD II solid solver were developed. These
adapters facilitate the future implementation of more complex, multi-participant
coupled simulations. This was a multi-step development process that involved
working around several limitations presented by the two solvers and the employed
coupling library preCICE.

Looking at the solvers, one of the main limitations with TAU and CAMRAD II
is the fact that both are closed-source and do not allow modification of the
source code. Hence, a different approach had to be taken to implement preCICE
adapters. These are detailed in Sections 4.1 and 4.2.

For CAMRAD II, it was not possible to interact with the solver at all. In-
stead, a script was written that would read CAMRAD II output from output
files, post- and pre-process output and incoming data and write new inputs to
CAMRAD II input files. For TAU, greater customizability was possible using
the TAU-Python API and the adapter combined calls to TAU-Python and
preCICE. As a result, an adapter structure with an improved workflow (detailed
in Section 5.3) was designed.

This structure centered around the Adapter class (for both TAU and
CAMRAD II solvers), which functions as the user interface for the preCICE
adapters. The DataHandler and Solver base classes were developed for
the TAU adapter. They allow users to customize pre- or post-processing steps
and design specific simulation loops in TAU (detailed in Section 5.4). Similar
modularity is provided in the CAMRAD II adapter using a slightly modified
DataHandler class (detailed in Section 5.5).

Once the basic adapter structure was developed, three cases were imple-
mented. The first case is based off a simple tightly-coupled OpenFOAM-CalculiX
simulation and the OpenFOAM adapter was replaced with the newly developed
TAU adapter. In both cases, we were able to observe fluid-structure interaction

93

8. Conclusion

due to the communication of the coupled solvers. This serves as a proof of
concept for the TAU adapter. However, as the flow conditions of the original
and the new coupling differ, a direct comparison between the results of the two
couplings is not valid.

Once this case was implemented, we moved on to the loosely-coupled simula-
tion developed by Aaron Carnefix [1]. This implementation was more complex
and posed several challenges due to the limitations of the preCICE library. These
mainly included the passing of non mesh-based data, the exchange of period
data in a loose coupling and the 1D-3D mapping of data. While these are known
problems in preCICE, the developed solutions would not be available before the
end of this work. Hence, stopgap measures were developed to address them.
These challenges are discussed in greater detail in Section 6.2.5.

This coupled simulation was run for four coupling iterations and the results
showed good agreement. This was shown by comparing the aerodynamic forces
and moments in TAU and CAMRAD II. Additionally, this case profiled against
the original code and the results showed that the introduction of the adapter
code did not impede performance.

In the final implemented case, we introduced grid deformation to simulate
elastic blade motion. This was accomplished by splitting the CAMRAD II output
into rigid body motion and elastic motion in TAU. We then compared the motion
in CAMRAD II with the deformed grids in TAU to determine the accuracy of
this methodology. The relative error was observed to be in the order of 0.01%.
Hence, we can conclude that this method is able to replicate the elastic motion
from CAMRAD II with high accuracy in TAU.

The TAU and CAMRAD II adapters developed in this work function as a
preliminary prototype and have many areas for improvement. There are two
areas where work is still needed: user-friendliness of the TAU and CAMRAD II
adapters and efficiency of the adapter code.

Regarding the user-friendliness of the adapters, most of the methods for
producing extensible code were worked on by a single person. Hence, the code
still requires users to experiment with the features and provide feedback to
improve usability and functionality. This project would be greatly aided by such
developments as it continues to mature.

Finally, implementation of the code in the Datahandlers focused on func-
tionality as opposed to efficiency. There are a great many ways to improve the
speed of calculation in the code to decrease time to solution. While most of the
mathematical operations were vectorized via the Python numpy library, there

94

8. Conclusion

are definitely more efficient methods to perform these calculations. Similarly,
work can be done to use memory buffers when accessing TAU boundary markers
or output data, which would vastly improve computation speed by removing the
need to read and write output files to the hard drive. While workarounds can
be found to address these issues, a more direct approach would be to modify the
TAU-Python API directly to increase useability.

95

References

[1] A. Carnefix, “Development of a framework for trimmed rotorcraft simu-
lations using loose coupling of CFD and CSD software,” Master’s thesis,
Technical University of Munich, 2017.

[2] D. Risseeuw, “Fluid structure interaction modelling of flapping wings,” Ph.D.
dissertation, 01 2019.

[3] O. A. Bauchau, C. L. Bottasso, and Y. G. Nikishkov, “Modeling rotorcraft
dynamics with finite element multibody procedures,” Math. Comput.
Model., vol. 33, no. 10-11, pp. 1113–1137, May 2001. [Online]. Available:
http://dx.doi.org/10.1016/S0895-7177(00)00303-4

[4] L. Ahaus, S. Makinen, T. Meadowcroft, H. Tadghighi, L. Sankar, and
J. Baeder, “Assessment of CFD/CSD analytical tools for improved rotor
loads,” Annual Forum Proceedings - AHS International, vol. 2, pp. 1164–
1186, 01 2015.

[5] W. Johnson, “A history of rotorcraft comprehensive analyses,” NASA TP
2012-216012, 04 2012.

[6] H. Saberi, M. Khoshlahjeh, R. Ormiston, and M. Rutkowski, “Overview of
RCAS and application to advanced rotorcraft problems,” AHS International
4th Decennial Specialists’ Conference on Aeromechanics, pp. 741–781, 01
2004.

[7] O. Bauchau, “Computational schemes for flexible, nonlinear multi-body
systems,” Multibody System Dynamics - MULTIBODY SYST DYN, vol. 2,
pp. 169–225, 06 1998.

[8] C. Tung, F. Caradonna, and W. Johnson, “The prediction of transonic flow
on an advancing rotor,” Journal of the American Helicopter Society, vol. 31,
no. 2, pp. 4–9, 07 1984.

97

http://dx.doi.org/10.1016/S0895-7177(00)00303-4

References

[9] K.-C. Kim and I. Chopra, “Effects of three-dimensional aerodynamics on
blade response and loads,” AIAA Journal, vol. 29, no. 7, pp. 1041–1050,
1991. [Online]. Available: https://doi.org/10.2514/3.10702

[10] C.-Y. Chow, I.-C. Chang, and L.-M. Gea, “Transonic aeroelasticity analysis
for rotor blades,” Journal of Aircraft, vol. 29, 02 1989.

[11] R. Strawn, A. Desopper, J. Miller, and A. Jones, “Correlation of puma
airloads: Evaluation of CFD prediction methods,” 09 1989.

[12] O. Bauchau and J. Ahmad, Advanced CFD and CSD methods for
multidisciplinary applications in rotorcraft problems. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.1996-4151

[13] G. Guruswamy, “ENSAERO - a multidisciplinary program for fluid/struc-
tural interaction studies of aerospace vehicles,” Computing Sytems in Engi-
neering, vol. 1, pp. 237–256, 1990.

[14] J. Alonso, L. Martinelli, and A. Jameson, “A multigrid unsteady navier-
stokes calculations with aeroelastic applications,” AIAA Paper 95-0048,
1995.

[15] W. Bousman, C. Young, F. Toulmay, N. Gilbert, R. Strawn, J. Miller,
T. Maier, M. Costes, and P. Beaumier, “A comparison of lifting-line and
CFD methods with flight test data from a research puma helicopter,” 11
1996.

[16] K. Pahlke and B. van der Wall, “Calculation of multibladed rotors in high-
speed forward flight with weak fluid-structure-coupling,” 09 2001.

[17] G. Servera, P. Beaumier, and M. Costes, “A weak coupling method be-
tween the dynamics code HOST and the 3d unsteady euler code WAVES,”
Aerospace Science and Technology - AEROSP SCI TECHNOL, vol. 5, pp.
397–408, 09 2001.

[18] M. Potsdam, H. Yeo, and W. Johnson, “Rotor airloads prediction using
loose aerodynamic/structural coupling,” Journal of Aircraft, vol. 43, no. 3,
pp. 732–742, 2006. [Online]. Available: https://doi.org/10.2514/1.14006

[19] A. Altmikus, S. Wagner, P. Beaumier, and G. Servera, “A comparison: Weak
versus strong modular coupling for trimmed aeroelastic rotor simulations,”
06 2002.

98

https://doi.org/10.2514/3.10702
https://arc.aiaa.org/doi/abs/10.2514/6.1996-4151
https://doi.org/10.2514/1.14006

References

[20] J. Abras, C. Lynch, and M. Smith, “Advances in rotorcraft simulations with
unstructured CFD,” Annual Forum Proceedings - AHS International, vol. 3,
01 2007.

[21] R. Marpu, L. Sankar, T. Norman, T. Egolf, and S. Makinen, “Analysis of
the UH-60A rotor loads using wind tunnel data,” 01 2013.

[22] R. Biedron and E. Lee-Rausch, “Computation of UH-60A airloads using
CFD/CSD coupling on unstructured meshes,” American Helicopter Society
67th Annual Forum, 05 2011.

[23] J. D. D. Boyd, “Hart-II acoustic predictions using a coupled CFD/CSD
method,” 2013.

[24] H. K. Lee, S.-H. Yoon, S. Shin, and C. Kim, “Coupled CFD/CSD anal-
ysis of a hovering rotor using high fidelity unsteady aerodynamics and a
geometrically exact rotor blade analysis,” 2008.

[25] B. Hübner, E. Walhorn, and D. Dinkler, “A monolithic approach to fluid-
structure interaction using space-time elements,” Computer Methods in
Applied Mechanics and Engineering, vol. 193, p. 2087–2104, 06 2004.

[26] A. Boschitsch and T. Quackenbush, Prediction of rotor aeroelastic
response using a new coupling scheme. [Online]. Available: https:
//arc.aiaa.org/doi/abs/10.2514/6.1994-2269

[27] J. A. Benek, J. L. Steger, F. C. Dougherty, and P. Buning, “Chimera. a
grid-embedding technique,” 1986.

[28] K. Lee, 3-D transonic flow computations using grid systems with block
structure. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.1981-
998

[29] P. Rubbert and K. Lee, Numerical Grid Generation, 1982, pp. 235–252.

[30] F. Lindner, M. Mehl, and B. Uekermann, Radial Basis Function Interpola-
tion for Black-Box Multi-Physics Simulations, 05 2017.

[31] W. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical
Recipes, 3rd ed. The Edinburgh Building, Cambridge CB2 8RU, UK:
Cambridge University Press, 2007.

99

https://arc.aiaa.org/doi/abs/10.2514/6.1994-2269
https://arc.aiaa.org/doi/abs/10.2514/6.1994-2269
https://arc.aiaa.org/doi/abs/10.2514/6.1981-998
https://arc.aiaa.org/doi/abs/10.2514/6.1981-998

References

[32] “Technical documentation of the DLR TAU-code release 2018.1.0,”
Deutsches Zentrum für Luft- und Raumfahrt, Tech. Rep., 2018.

[33] D. Schwamborn, T. Gerhold, and R. Heinrich, “The DLR TAU-code: Recent
applications in research and industry,” 01 2006.

[34] T. Gerhold, M. Galle, O. Friedrich, and J. Evans, Calculation of complex
three-dimensional configurations employing the DLR-TAU-code. AIAA
ARC, 1997. [Online]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.
1997-167

[35] D. S. T. Gerhold, V. Hannemann, “On the validation of the dlr-tau code,”
in New Results in Numerical and Experimental Fluid Mechanics II - Contri-
butions to the 11th AG STAB/DGLR Symposium, Berlin, Germany, 1998,
W. Nitsche, H.-J. Heinemann, and R. Hilbig, Eds. Berlin, Heidelberg:
Springer, 1999, pp. 426–433.

[36] C.-C. Rossow, N. Kroll, and D. Schwamborn, “The MEGAFLOW project -
numerical flow simulation for aircraft,” vol. 8, 01 2006.

[37] B. Eisfeld, “Implementation of reynolds stress models into the DLR-FLOWer
code,” 01 2004.

[38] W. Haase, B. Aupoix, U. Bunge, and D. Schwamborn, FLOMANIA - a
European initiative on flow physics modelling. Results of the European-Union
funded project, 2002 - 2004, 01 2006, vol. 94.

[39] W. Haase, M. Braza, and A. Revell, DESider: A European effort on hybrid
RANS-LES Modelling (Notes on numerical fluid mechanics and multidisci-
plinary design, Vol. 103), 01 2009, vol. 103.

[40] M. Galle, T. Gerhold, and J. Evans, Parallel computation of turbulent flows
around complex geometries on hybrid grids with the DLR-TAU code, 12 2000,
pp. 223–230.

[41] N. Kroll, T. Gerhold, S. Melber, R. Heinrich, T. Schwarz, and B. Schöning,
Parallel Large Scale Computations for Aerodynamic Aircraft Design with
the German CFD System MEGAFLOW, 01 2002, pp. 227–236.

[42] T. Alrutz, “Investigation of the parallel performance of the unstructured
DLR-TAU-Code on distributed computing systems,” 09 2005, pp. 509–516.

100

https://arc.aiaa.org/doi/abs/10.2514/6.1997-167
https://arc.aiaa.org/doi/abs/10.2514/6.1997-167

References

[43] A. A. Zaki, “Using tightly-coupled CFD/CSD simulation for rotorcraft sta-
bility analysis,” Ph.D. dissertation, Georgia Institute of Technology, 2012.

[44] W. Johnson, CAMRAD II. Palo Alto, California: Johnson Aeronautics,
2012, vol. 1.

[45] TAU-Code User Guide.

[46] G. Chourdakis, “A general OpenFOAM adapter for the coupling library
preCICE,” Masterarbeit, Technical University of Munich, Oct 2017.

[47] B. Uekermann, “Partitioned fluid-structure interaction on massively parallel
systems,” Dissertation, Institut für Informatik, Technische Universität
München, Oct. 2016. [Online]. Available: https://mediatum.ub.tum.de/
doc/1320661/document.pdf

[48] B. Wall, “2nd hhc aeroacoustic rotor test (hart ii) - part i: Test documenta-
tion -,” 01 2003.

[49] M. Smith, J. Lim, B. Wall, J. Baeder, R. Biedron, D. Jr, B. Jayaraman,
S. Jung, and B.-Y. Min, “The HART II international workshop: an assess-
ment of the state of the art in CFD/CSD prediction,” CEAS Aeronautical
Journal, vol. 4, 12 2013.

[50] J. Lim and B. Wall, “Investigation in the effect of a multiple trailer free wake
model for descending flights,” 01 2005, pp. TechnicalSession:DynamicsII–.

[51] A. Carnefix, “Analysis of low speed helicopter flight using a comprehensive
rotorcraft model,” Technische Universität München, Tech. Rep., 2017.

[52] F. Simonis. (2019) preCICE config-visualizer. [Online]. Available: https:
//github.com/precice/config-visualizer

101

https://mediatum.ub.tum.de/doc/1320661/document.pdf
https://mediatum.ub.tum.de/doc/1320661/document.pdf
https://github.com/precice/config-visualizer
https://github.com/precice/config-visualizer

Appendices

103

A. User Guide

This guide will provide a short introduction to the different levels of customization
required to start using the TAU and CAMRAD II preCICE adapters.

A.1 Getting Started with TAU

The TAU preCICE adapter can be integrated to an existing TAU simulation.
There are three levels of customization possible using the TAU preCICE adapter,
with more advance features requiring greater customization.

A.1.1 Level 1: Using pre-existing Solver and DataHandlers

There are two pre-existing cases which are implemented in this work:

1. A tightly-coupled simulation only passing force data from TAU to the solid
solver and receiving displacement information on the shared interfaced.

2. A loosely-coupled isolated rotor-blade simulation passing force and moment
data from TAU to the solid solver and receiving motion data in the form
of Fourier series coefficients.

If only these two cases are required, it is possible that that the existing
TightSolver and HelicopterSolver cases are suitable and no new code
needs to be introduced.

Tightly-Coupled Simulation

The TightSolver should be applicable to any basic FSI simulation. The
TightSolver employs a very generic TAU simulation loop. If your code
requires any specific on-the-fly changes to the parafile or deviates significantly
from the basic TAU simulation loop, please review the tau_simulation_
loop() method found in tight/tightsolver.py in the TAU preCICE
adapter root directory. This guide assumes that you are passing force data

105

A. User Guide

along certain boundary markers and receiving displacement data on the same
boundaries.

First, copy the precice-config.xml, tau_config.yaml, and tau_
coupled_script.py from the Flap tutorial into your TAU simulation folder.
Your folder structure should now look like Fig. A.1.

tausimulation
tau_coupled_script.py
precice-config.xml
tau_config.yaml
grid

primary_grid.grid
...

tau_script.py
tau_parafile
output

heli.pval.unsteady
boundary.bmap
...

Figure A.1: Basic TAU Simulation Folder Structure.

Then, update the tau_config.yaml file.

1. Fill in the logging location

2. Provide the TAU parafile and preCICE configuration file

3. Ensure solver type is TightSolver

Next, update the interfaces used in the simulation. There are two DataHan-
dler subclasses created for the TightSolver case. ForceHandler writes
TAU forces on the given boundary markers to the solid solver. Displacement
handler reads displacements on the interface and writes a scatfile to the indicated
location in the parafile. Your final .yaml file should look similar to Listing A.1.

The example shown in Listing A.1 gives an example of a coupled simulation
with a single shared interface. There are two things the user must ensure for
each interface. The name of each entry in write_data must start with “Forces”
and the name of each entry in read_data must start with “Displacements” as
the text is used to identify the type of DataHandler to instantiate. The next
character after the DataHandler name must be a number or an underscore to

106

A. User Guide

Listing A.1: Config Example

1 logging_location: ./log
2 preprocessing: false
3 participant: TAU
4 parafile: parafile_orig
5 precice_config: precice-config.xml
6 solver: TightSolver
7

8 interfaces:
9 - mesh: TAU_Mesh0

10 boundary_markers: [5, 6, 15]
11 write_data:
12 - Forces0
13 read_data:
14 - Displacements0

prevent mistakes while parsing, i.e. Forcesx is not acceptable but “Forces_x”
or “Forces0” is.

After filling in the tau_config.yaml check to ensure that the data types
match the data names provided in the preCICE configuration file. Please refer
to the preCICE wiki to learn how to fill this in, you may use the precice-
config.xml in the Flap tutorial as a basis. Then, once these two have been
set up, you may run ‘ python tau_coupled_script.py tau_config.yaml‘ to start
up the simulation.

Loosely-Coupled Helicopter Simulation

There is greater difficulty in determining the HelicopterSolver is relevant
to your simulation. The calculations when determining the forces and moment
values are relatively involved. The specific handling of the data for in the
Helicopter Solver tutorial is specific for coupling with CAMRAD II. This guide
shows how to replace the helicopter simulation in the tutorial with a custom
TAU simulation.

First, make a clone of the gitlab repository containing the Helicopter-
Solver class. Replace the parafile parafile_orig with your parafile. Ensure
that the primary gridfile, boundary mapping file, motion file and output prefix
for the TAU simulation are correct (they do not have to be in the same folder
but relative paths from the folder where the script is executed must be correct).
The adapter code also automatically tries to create folder locations if they do
not exist.

Next, rename the yaml file to tau_config_piecewise.yaml or the tau_
config_full.yaml file in the repository depending on the type of interpola-
tion method to be used. Create the skeleton using the autogen scripts found in

107

A. User Guide

“tutorial/config_autogen” in the Tutorials git repository.

1. Run the preCICE config generator, precice_generator.py. Run
“python precice_generator.py -h” for more details.

2. Create a numpy object containing a list of the boundary markers for each
blade in the simulation and order the blades in a clock-wise direction
starting with the reference blade. For example, a simulation with 3 blades
might contain [[1, 3, 5], [7, 9, 11], [13, 15, 17]], with boundary markers [1, 3, 5]

relating to the reference blade

3. Run the TAU config generator, tau_config_generator.py. Run
“python tau_config_generator.py -h” for more details.

These steps should create the working precice-config.xml and a skele-
ton for the TAU configuration yaml file. Next, update the configuration yaml
file as follows.

1. Set the folder locations: logging_location, logging_name, and
restart_location

2. Check that the default settings of the booleans debug, precice, pre-
processing, deformation_required and partitioning are cor-
rect. Refer to Section B.3 for exact definitions. For the standard case,
keeping the default values found in the git repository should be correct

3. Fill in the simulation details. Enter the number of azimuths to be passed
per revolution. The number of blades in the simulation, the interpolation
type, the revolutions per coupling (defaults to 2) and the number of initial
revolutions.

The end result should look like Fig. A.2. Then, once these have been set up,
you may run “python tau_coupled_script.py tau_config.yaml” to start up the
simulation.

A.1.2 Level 2: Creating new DataHandlers and Config classes

The next level of customization is when a new DataHandler or Config sub-
class. This often comes about if a new data type needs to passed to the coupled
simulation. In this case, simply subclass the respective base classes, described
in Section C.1.1 and C.1.2.

108

A. User Guide

Listing A.2: Sample config.yaml for TAU Simulation for HelicopterSolver

1 logging_location: ./log
2 logging_name: tau_log
3

4 restart_location: ./restart
5

6 debug: true
7 precice: true
8 preprocessing: false
9 deformation_required: false

10 partitioning: true
11

12 participant: TAU
13 parafile: parafile_orig
14 precice_config: precice-config_piecewise.xml
15 solver: HelicopterSolver
16

17 simulation:
18 total_azimuths: 24
19 blades: 4
20 interpolation_type: piece-wise
21 revolutions: [1]
22 initial_revolutions: 6

A.1.3 Level 3: Creating a new Solver class

The final level of customization is when a new Solver subclass is required.
This comes about if the simulation loop logic needs to be changed. In this case,
simply subclass the Solver class, as described in Section C.1.3

A.2 Getting Started with CAMRAD II

Unlike in TAU, where the TAU solver loop is modified via code, the CAMRAD II
solver loop logic is modified by the input files. Hence, subclassing of the ba-
sic CAMRAD II CamardSolver class is not supported. The CAMRAD II
preCICE adapter was designed to work specifically with the TAU preCICE
adapter for loosely-coupled rotor blade simulations. Extending this adapter to
be used in a more general way is a relatively involved process as modifying the
code requires understanding of the structure of the coupled fluid solver (namely
what data is passed from the fluid solver and in what format). The guide below
demonstrates how to replace the CAMRAD II simulation in the given Helicopter
tutorial. The second provides some guidelines to use the CAMRAD II preCICE
adapter in a more general way.

109

A. User Guide

A.2.1 Loosely-Coupled Helicopter Simulation

To replace the CAMRAD II simulation in the Helicopter tutorial, simply replace
the inputs and the “Helicopter/CAMRAD” folder. Then, update the camrad_
config.yaml.

1. Run the preCICE config generator, camrad_config_generator.py.
Run “python camrad_config _generator.py -h” for more details.

2. Set the folder locations: logging_location, logging_name, out-
put_location, output_prefix.

3. Set jobfile information: jobfile and jobinfo_file. jobfile is the
script to run the CAMRAD II simulation. jobfile_info contains the
rotor blade definitions

4. Set the preCICE configuration file: precice_config

5. Set if data is overwritten if it exists: overwrite_data

6. Fill in the simulation details:

(a) blades: number of blades in the simulation

(b) blade_width width of the blade (used to calculate intermediate
grid)

(c) lengthwise_elements and widthwise_elements: elements
in each panel of intermediate grid

(d) delta_table_location and delta_table_prefix: location
of delta force tables

The final result should look something like Listing A.3.

110

A. User Guide

Listing A.3: Sample config.yaml for CAMRAD II Simulation for Helicopter-
Solver

1 participant: CAMRAD
2 logging_location: ./log
3 logging_name: camrad_log
4 output_location: ./output
5 output_prefix: camout
6

7 job_file: ./jobs/job.lnx
8 job_info_file: ./input/HART_II_rotor.list
9

10 precice_config: ../TAU/precice-config_piecewise.xml
11

12 overwrite_data: false
13

14 simulation:
15 results_dict: ./results/result
16 blades: 4
17 blade_width: 0.1
18 lengthwise_elements: 10
19 widthwise_elements: 5
20 delta_table_location: ./tables
21 delta_table_prefix: delta

111

B. Configuration File Definitions

This appendix describes the input files used to configure the coupled solution.

B.1 preCICE Configuration File

The preCICE configuration file is used to configure the preCICE coupling. An au-
tomated script used to generate a preCICE configuration file for loosely-coupled
rotorcraft simulations has been created. This supports loosely-coupled rotorcraft
using an serial-explicit coupling.

B.2 Parameters

B.3 TAU Configuration File

The TAU configuration file is stored as a yaml file. This file is produced when the
Config class is dumped using the yaml library. This section only provides the
basic variables required by the base Config, Interface and Simulation
classes described in Section 5.4. This file is used to define the folder structure,
choose the type of Solver subclass to be used in the simulation and link the
various boundary markers in the boundary bmap file to preCICE data types. A
script to automatically generate the boundary mapping links has been created
for the loosely-coupled rotorcraft simulation.

Parameter Name Type Default Required Description

logging_location str N/A True Name of logging location

logging_name str N/A True Name of logging prefix

output_location str N/A False Name of output location, read
from parafile directly

113

B. Configuration File Definitions

output_prefix str N/A False Name of output prefix, read from
parafile directly

deform_location str N/A False Name of deformation location

deform_prefix str N/A False Name of deformation prefix

scatfile_location str N/A False Name of scatfile location

scatfile_prefix str N/A False Name of scatfile prefix

debug bool False False Set to True to enable debug out-
put

precice bool True False Run with preCICE if set to True,
else run standalone

preprocessing bool False False Runs TAU preprocessing if set to
True

partitioning bool False False Repeats grid partitioning step if
set to True, else reads partitioning
from restart dict

deformation_required bool False False Set to true to enable deformation

participant str N/A True Name of TAU participant in pre-
cice xml config file. Must match
with preCICE config to run

partner str N/A False Name of coupling partner to ex-
change variable data before pre-
cice interface initialization

shared_folder str N/A False Name of shared folder to be used
to exchange variable data before
preCICE interface initialization

parafile str N/A True Path to parafile location

precice_config str N/A True Path to preCICE xml config file

solver str N/A True Name of solver class used in cou-
pled simulation

114

B. Configuration File Definitions

Table B.1: Parameters for TAU Config class

Parameter Name Type Default Required Description

name str N/A False Name of preCICE interface

mesh str N/A True name of preCICE mesh, must
match with mesh name in
preCICE config xml file

boundary_markers list N/A False list of TAU boundary markers re-
lated to this interface for mesh-
based data

size int N/A False size of preCICE buffer for non
mesh-based data

read_data list N/A False list of names of DataHandlers
used to write to preCICE in cou-
pled simulation. must match data
name in preCICE config xml file

write_data list N/A False list of names of DataHandlers
used to read from preCICE in cou-
pled simulation. must match data
name in preCICE config xml file

Table B.2: Parameters for TAU Interface class

Parameter Name Type Default Required Description

iteration int N/A False Number of coupled iterations.
used when restarting at a certain
coupled iteration

Table B.3: Parameters for TAU Simulation class

115

B. Configuration File Definitions

B.4 CAMRAD Configuration File

The CAMRAD II configuration file is stored as a yaml file. This file is produced
when the Config class is dumped using the yaml library. This section only
provides the basic variables required by the base Config, Interface and
Simulation classes described in Section 5.5. This file is used to define the
folder structure, choose the type of Solver subclass to be used in the simulation
and link the various boundary markers in the boundary bmap file to preCICE
data types. A script to automatically generate the boundary mapping links has
been created for the loosely-coupled rotorcraft simulation.

B.5 Parameters

Parameter Name Type Default Required Description

logging_location str N/A True Name of logging location

logging_name str N/A True Name of logging prefix

output_location str N/A False Name of output location, read
from parafile directly

output_prefix str N/A False Name of output prefix, read from
parafile directly

deform_location str N/A False Name of deformation location

deform_prefix str N/A False Name of deformation prefix

scatfile_location str N/A False Name of scatfile location

scatfile_prefix str N/A False Name of scatfile prefix

debug bool False False Set to True to enable debug out-
put

precice bool True False Run in coupled mode if set to
True, else run standalone

overwrite_data bool True False Does not overwrite existing
CAMRAD II output files if set to
True

participant str N/A True Name of TAU participant in pre-
cice xml config file. Must match
with preCICE config to run

116

B. Configuration File Definitions

partner str N/A False Name of coupling partner to ex-
change variable data before pre-
cice interface initialization

shared_folder str N/A False Name of shared folder to be used
to exchange variable data before
preCICE interface initialization

job_file str N/A True Path to CAMRAD II jobfile loca-
tion

job_info_file str N/A True Path to CAMRAD II rotor defini-
tion location

precice_config str N/A True Path to preCICE xml config file

solver str N/A True Name of solver class used in cou-
pled simulation

Table B.4: Parameters for CAMRAD II Config class

Parameter Name Type Default Required Description

name str N/A False Name of preCICE interface

mesh str N/A True name of preCICE mesh, must
match with mesh name in
preCICE config xml file

boundary_markers list N/A False list of TAU boundary markers re-
lated to this interface for mesh-
based data

size int N/A False size of preCICE buffer for non
mesh-based data

read_data list N/A False list of names of DataHandlers
used to write to preCICE in cou-
pled simulation. must match data
name in preCICE config xml file

write_data list N/A False list of names of DataHandlers
used to read from preCICE in cou-
pled simulation. must match data
name in preCICE config xml file

117

B. Configuration File Definitions

Table B.5: Parameters for CAMRAD II Interface class

Parameter Name Type Default Required Description

iteration int 1 False Number of coupled iterations.
used when restarting at a certain
coupled iteration

delta_table_location str N/A True location of output delta table

delta_table_prefix str N/A True prefix for output delta table

blades int N/A True number of blades for rotor blade
simulation

azimuths int N/A False number of azimuth positions in
one revolution of data

blade_width float N/A True width of rotor blade. used to con-
struct intermediate grid for pass-
ing mesh-based data

blade_thickness float N/A True thickness of rotor blade. used
to construct intermediate grid for
passing mesh-based data

lengthwise_elements int N/A False number of lengthwise elements
per panel in intermediate grid

widthwise_elements int N/A True number of widthwise elements per
panel in intermediate grid

num_collocation_points int N/A True number of collocation points in
simulation. will be filled by solver
automatically

interpolation_type float N/A False type of interpolation (full | piece-
wise) received from fluid solver

num_harmonics int 1 False Number of coupled iterations.
used when restarting at a certain
coupled iteration

iteration int N/A False Number of coupled iterations.
used when restarting at a certain
coupled iteration

118

B. Configuration File Definitions

Table B.6: Parameters for CAMRAD II Simulation class

Parameter Name Type Default Required Description

radius float N/A False rotor blade radius as float

nblade int N/A False number of rotor blades in simula-
tion as int

omega float N/A False rotational velocity of rotor blade
in rad/s as float

ashaft float N/A False rotor shaft angle of attack in de-
grees as float

acant float N/A False rotor cant (roll) angle in degrees
as float

rprop list N/A False radial stations of XQC and ZQC
properties as list of floats

xqc list N/A False x-axis quarter chord offset from
reference line in m as list of floats

zqc list N/A False z-axis quarter chord offset from
reference line in m as list of floats

blade_spacing list N/A False azimuth angles (in degrees) of
each blade in rotor as list of floats

redge list N/A False radial coordinates of blade panel
edges as list of floats, length of
number of panels + 1

rpos list N/A False radial coordinates of CAMRAD
blade sensors as list of floats

Table B.7: Parameters for CAMRAD II RotorInfo class

119

C. User Extensibility

This chapter describes how the provided adapters can be extended. This guide
is valid for the code submitted alongside this master’s thesis. For the latest,
up-to-date guide, please refer to the gitlab respository of the tauadapter and
camradadapter.

C.1 Extending TAU Adapter

The TAU adapter can be extended in three ways: updating the input configura-
tion, adding new datatypes to be passed, adding a new solver simulation loop or
updating the input configuration. These three methods will be explored in this
order

C.1.1 Updating Config class

Please refer to this guide if new input parameters are required during runtime.
The adapter currently uses yaml files parsed using the jsonobject Python
library. Hence, additional variables can be arbitrarily added to yaml files and
referenced during runtime without modifying the classes. However, if additional
type-checking is required or if a new parameter is necessary for running the
simulation, one can subclass the Config class and add new parameters and
input requirements. Please refer to the jsonobject PyPi guidelines for the exact
datatypes supports by the jsonobject library: jsonobject.

It is highly recommended that users not modify the Config class directly
as it should only contain the minimum inputs required to run a coupled TAU
simulation. Adding additional requirements will introduce errors in other users
code. Note that the utility.configure() does accept a Python class
keyword argument which allows users to parse a given yaml file with a subclassed
Config class at runtime. An example of a simple subclassing is shown in Listing
C.1.

In this example, we replace the interfaces attribute in Config with a list

121

https://gitlab.lrz.de/ga53vuw/tauadapter
https://gitlab.lrz.de/ga53vuw/camradadapter
https://pypi.org/project/jsonobject/

C. User Extensibility

Listing C.1: Config class subclassing example

1 import jsonobject
2 from config import Config
3 from config import Interface
4

5 class MyInterface(Interface):
6 """ NewInterface includes additional data for rotorcraft simulation.
7

8 Attributes:
9 blade (int): blade number provided as int, required property

10 flight_speed (float): flight speed of rotorcraft as float, default
11 is 34.7
12 """
13

14 blade = jsonobject.IntegerProperty(required=True)
15 flight_speed = jsonobject.FloatProperty(default=34.7)
16

17

18 class MyDeformation(jsonobject.JsonObject):
19 """ MyDeformation stores additional data required for performing deformation
20

21 Attributes:
22 deformation_type (str): type of deformation performed, required
23

24 """
25 deformation_type = jsonobject.StringProperty(required=True)
26

27

28 class MyConfig(Config):
29 """ Customized Config class. Includes MyInterface and MyDeformation classes
30

31 Attributes:
32 interfaces (list): lis of MyInterface objects used to create
33 DataHandlers
34 deformation (MyDeformation): contains data used for deformation
35 deformation_required (bool): set to "true" if deformation required.
36 defaults to false.
37 """
38

39 interfaces = jsonobject.ListProperty(jsonobject.ObjectProperty(MyInterface))
40 deformation = jsonobject.ObjectProperty(MyDeformation)
41 output_file = jsonobject.StringProperty()

of MyInterface, defined in Line 5. This new class inherits from Interface
but includes a new required attribute and provides a default flight_speed
input.

We also create a new class MyDeformation, which inherits from the JsonOb-
ject base class determine the type of deformation used, defined in Line 18.

These two classes are now included in MyConfig along with a new string
that stores the location of simulation output files.

Now that we have a new class used to parse out input file, we pass the specific
class when before initializing the Adapter as seen in Listing C.2. The Adapter
defaults to Config class if no new class is provided.

You may refer to the subclass of the Config class for the loosely-coupled he-

122

C. User Extensibility

Listing C.2: Reading config file with MyConfig

1 from myconfig import MyConfig
2 from tauadapter.adapter import Adapter
3

4 ...
5 adapter = Adapter(config_file)
6 adapter.update_config(MyConfig)
7 adapter.initialize()
8 adapter.setup_data_handlers()
9 adapter.execute()

10 ...

licopter solver case, HelicopterConfig. In this example, two new jsonobject
classes Simulation and Deformation were added to Config. Additionally,
HelicopterInterface was created to provide azimuth position and blade
number when setting up the DataHandler objects.

C.1.2 Extending DataHandler

Adding a new data type to be passed means extending the abstract base class
DataHandler. The DataHandler class has the four virtual methods: read(),
write(), is_scalar() and get_dimension(). These must be imple-
mented by the new subclass in order to interface with the DataInterface class.
The DataHandler base class has arguments mesh_id, data_id, precice_
vertex_ids and dimensions. These are the preCICE mesh id, preCICE
data id, the preCICE vertices as provided by the set_mesh_vertices() call
and an integer of the dimensions of the simulation.

The method is_scalar() returns True if the handled data is scalar,
otherwise it returns False. This determines the preCICE call made when
passing or receiving data. The method get_dimension() returns the 2 or 3
depending if the simulation is run in 2D or 3D. These two methods should be
implemented based on the data you intend to read or write.

The method read() will recieve a 1D numpy array of the given data type
from preCICE and is intended to perform the post-processing of the data for
TAU. The method write() should return a 1D numpy array of the data type
to be written.

In the following example, we wish to write 3D velocity data to preCICE. We
create a new class VelocityHandler that passes this data.

In this new class, we simply implement the 4 required virtual methods. The
main work happens in Line 5, where the new read method should process and

123

C. User Extensibility

Listing C.3: DataHandler class subclassing example

1 import jsonobject
2 from datahandler import DataHandler
3

4 class VelocityHandler(DataHandler):
5 """ VelocityHandler passes 3D velocity ouput to preCICE
6 """
7

8 def __init__(self, args):
9 """ Constructor for CollocationsHandler class.

10 Arguments:
11 args (dict): dictionary of multiple values, see DataHandler
12 base class for more information.
13 """
14 super(VelocityHandler, self).__init__(dict)
15

16 def read(self, data, iteration):
17 """ Not implemented!"""
18 self.logger.error("We do not read Velocity data from Solid Solver!\n")
19 raise NotImplementedError
20

21 def write(self, iteration):
22 """ Implements datahandlers.DataHandler.write() abstract function. Returns
23 3D velocity data as a 1D array.
24 Arguments:
25 iteration (int): current coupled iteration as int
26 Returns:
27 returns velocity data as a 1D array of size a 1D array of size
28 (3*self.length). data is arranged as [vx1, vy1, vz1, vx2, vy2, vz2 ...]
29 """
30 output_file = self.config.output_file
31 # Read velocity data to variable 'data'
32 return data
33

34 def is_scalar(self):
35 """Returns:
36 Returns false as this is not a scalar data type
37 """
38 return False

output a 1D array that is passed to preCICE. Note that the base class DataHan-
dler unpacks the args dict and provides several member attributes accessible
to the user. The member attributes listed in Table C.1 are available in any
DataHandler subclass.

Parameter Name Description

self.tau_para TAU-Python PyPara object used to update parafile

self.mesh_id unique integer id identifying the specific mesh in
preCICE interface

self.data_id unique integer id identifying the specific data type in
preCICE interface

124

C. User Extensibility

self.length number of nodes on interface (n) for current process as
int

self.coordinates 1D numpy array of TAU-Code-Grid coordinates corre-
sponding to preCICE vertex ids

self.precice_vertex_ids 1D numpy array of precice vertex ids

self.vertex_ids 1D numpy array of TAU vertex ids corresponding to
precice vertex ids

self.interface interface jsonobject (by default config.Interface class)
used to store simulation input parameters

self.config configuration jsonobject (by default config.Config class)
used to store simulation input parameters

self.simulation simulation jsonobject (by default config.Simulation class)
used to store and pass simulation data between Data-
Handlers

Table C.1: Member Attributes of TAU DataHandler class

The new DataHandler can be passed to the The Adapter after initializa-
tion via a dict, as shown in Listing C.4.

Listing C.4: Reading config file with MyConfig

1 from myconfig import MyConfig
2 from mydatahandler import VectorHandler
3 from tauadapter.adapter import Adapter
4

5 ...
6

7 DATA_READER = {"MyDataHandler": VectorHandler}
8

9 adapter = Adapter(config_file)
10 adapter.update_config(MyConfig)
11 adapter.initialize()
12 adapater.add_data_handlers(DATA_READER, "read")
13 adapter.setup_data_handlers()
14 adapter.execute()
15 ...

The key for each new DataHandler ("MyDataHandler" in this case) is
used to match Interface entries in the TAU config yaml file. An acceptable
sample yaml file excerpt is shown in Listing C.5.

125

C. User Extensibility

Listing C.5: Config

1 ...
2 interfaces:
3 - mesh: My_Vectors1
4 read_data:
5 - MyDataHandler1
6

7 - mesh: My_Vectors2
8 read_data:
9 - MyDataHandler_2

10

11 - mesh: My_Vectors3
12 read_data:
13 - MyDataHandler_III
14 ...

All three data readers (MyDataHandler1, MyDataHandler_2 and MyData-
Handler_III) will be recognized by the TAU adapter code as instances of the
new VectorHandler class (see implementation in DataHandlerFactory class).
Only letters (a-zA-z) are accepted as key values, numbers and underscore values
are not acceptable key values. Recalling that the names of data readers must
match their respective data type in the preCICE configuration xml file, this is
to prevent issues from arising when enumerating multiple instances of the same
reader (as is the case in the Listing). This also allows greater back-compatibility
as existing preCICE adapters do not have a standardized method for enumerating
datatypes in the preCICE configuration xml file.

You can refer to the DataHandler subclasses for the rotorcraft simulation,
MotionsHandler, AzimuthsHandler, CollocationsHandler, Force-
sHandler and MomentsHandler as examples of subclassing the DataHan-
dler base class.

C.1.3 Extending Solver class

The Solver class can also be extended to introduce a new simulation loop.
This particular subclassing is slightly more involved than introducing a new
DataHandler or Config class. This is because some preCICE methods need
to be included in the simulation loop. There are three methods that need to
be considered when subclassing the solver class: the class constructor __init_
_(), the execute() method and the execute_precice() method. The
subclassing process will be demonstrated via the following example.

We try to create a custom Solver class called MySolver. We begin by
defining the class constructor. The __init__() method is shown in Listing C.6.

126

C. User Extensibility

Listing C.6: Implementing constructor for Solver subclass

1 class MySolver(Solver):
2 def __init__(self, config_file, data_interface):
3 super(MySolver, self).__init__(config_file, data_interface)
4

5 """
6 self.data_interface = data_interface
7 self.simulation = self.config.simulation
8 self.precice_interface = data_interface.precice_interface
9 """

10

11 # Initialize tau_solver now to access node/vertex information for setting up
12 data handlers
13 self.logger.info("Initializing tau solver")
14 self.tau_solver.init()
15 tau_python.tau_parallel_sync()

Firstly, we need to ensure that the constructor arguments remain the same.
The Solver class receives the name of the TAU config file as a str config_
file and an instance of the DataInterface class, data_interface. Next,
the base Solver should be instantiated via the call to super(). The Solver
class instantiates the four TAU-Python classes PyPara, PyPrep, PySolv and
PyDeform as self.tau_para, self.tau_prep, self.tau_solver, and
self.tau_deform respectively. The base Solver class also instantiates the
chosen Config class, filling the self.config member variable. The PySolv
object should be initialized with the call to init() as seen in Line 14. This
should be done on construction of the class to allow access to solver variables
(such as inner iteration number or minimum residual) or TAU memory buffers.
Otherwise, calls to these methods will cause TAU to crash. Of note is that the
three commented lines between 5 - 9 are run in the base Solver class. You
may store these variables under different names but please do not modify these
member attributes. These are used when setting DataHandler objects and
modifying these in the Solver subclass constructor may lead to unintended
effects. Next, the execute_precice() method should be implemented. You
simply need to include a few lines of preCICE code before you are done, see
Listing C.7.

The important lines of code that must be included in every implementa-
tion are highlighted in blue. Firstly, the preCICE Interface object must
be initialized, shown in Line 4. The initialization step is performed here be-
cause the setting up of DataHandler objects must occur before the preCICE
Interface object can be initialized. Next, simulation loop control is han-
dled by preCICE, shown in Line 9. Hence, loop condition is is_coupling_

127

C. User Extensibility

Listing C.7: Implementing execute_precice() for Solver subclass

1 class MySolver(Solver):
2 def execute_precice(self):
3

4 self.precice_interface.initialize()
5

6 if self.config.iteration is None:
7 self.config.iteration = 0
8

9 while self.precice_interface.is_coupling_ongoing():
10 self.data_interface.initialize_data(self.config.iteration)
11

12 if self.precice_interface.is_action_required(
13 precice.action_write_iteration_checkpoint()):
14 # Write Checkpoint
15 self.precice_interface.fulfilled_action(
16 precice.action_write_iteration_checkpoint())
17

18 """ Insert TAU simulation code here """
19

20 self.data_interface.write_all(self.coupling_iteration)
21 if self.precice_interface.is_action_required(
22 precice.action_read_iteration_checkpoint()):
23 # Read Checkpoint
24 self.precice_interface.fulfilled_action(
25 precice.action_read_iteration_checkpoint())
26 else:
27 self.precice_interface.advance(1)
28 self.config.coupling_iteration += 1
29 self.data_interface.read_all(self.coupling_iteration)
30

31 """ Insert post-processing code here """
32

33 tau_python.tau_parallel_sync()
34

35 tau_python.tau_solver_output_field()
36 tau_python.tau_solver_output_surface()
37 tau_python.tau_parallel_sync()
38 self.tau_solver.stop()
39 self.precice_interface.finalize()

ongoing(), which returns True as long the preCICE coupling runs. Then next
line is analogous to the preCICE initialize_data() call, which reads data
from other participants if a serial coupling scheme is used (refer to Section 4.4.2
for more details).

The actual TAU simulation loop should be inserted at Line 18. For a tightly-
coupled simulation, this should just be single outer loop iteration. For a loosely-
coupled simulation, another loop should be used which runs the simulation for
the period between coupling steps.

After the TAU simulation loop is run, TAU should be in a state ready for
the coupling step. The DataInterface class wraps the complicated reading
and write of this step. Simply write data to other coupling participants (Line
20, advance time in the coupled simulation (Line 28 and read data from the new
timestep (Line 29).

128

C. User Extensibility

At this point, the code in lines 12 - 16 and 21 -25 have not been discussed.
These code segments are only used if an implicit coupling scheme is used. This
requires the saving and reading of checkpoints. This is not discussed in this work
because only explicit coupling schemes are used. However, this syntax may be
helpful if you with to do so as an extension of this work.

Now, the new Solver subclass can be passed to the Adapter, as shown in
Listing C.8.

Listing C.8: Reading config file with MyConfig

1 from myconfig import MyConfig
2 from mydatahandler import VectorHandler
3 from mysolver import MySolver
4 from tauadapter.adapter import Adapter
5

6 ...
7

8 DATA_READER = {"MyDataHandler": VectorHandler}
9

10 adapter = Adapter(config_file)
11 adapter.update_config(MyConfig)
12 adapter.update_solver(MySolver)
13 adapter.initialize()
14 adapater.add_data_handlers(DATA_READER, "read")
15 adapter.setup_data_handlers()
16 adapter.execute()
17 ...

The method is similar to that for updating the Config class, simply call
update_solver() before calling initialize().

C.2 Extending CAMRAD II Adapter

The CAMRAD II adapter should require less modification compared to the TAU
adapter. This is because changes to the simulation loop is handled by input files.
Instead, only the Config and the DataHandler class can be customized.

C.2.1 Updating Config class

Updating the Config class for the CAMRAD II adapter is identical to that
when updating the TAU adapter. Simply subclass the base Config class using
the same steps in Section C.1.1. The code to update the Config class is also
identical, shown in Listing C.9.

129

C. User Extensibility

Listing C.9: Reading config file with MyConfig

1 from myconfig import MyCamradConfig
2 from camradadapter.adapter import Adapter
3

4 ...
5 adapter = Adapter(config_file)
6 adapter.update_config(MyCamradConfig)
7 adapter.initialize()
8 adapter.execute()
9 ...

C.2.2 Update DataHandler class

Updating the DataHandler class is different to that in TAU. As CAMRAD II
has fewer pieces of information required to perform postprocessing, the amount
of information passed to the base DataHandler class is also reduced. This
allows us to clearly pass each required argument to the DataHandler without
use of a dict. An example of an extended CAMRAD II DataHandler class is
below.

As the CAMRAD II outputs are read from ASCII files, it is easiest to find
data via use of regex. It may be helpful to refer to the existing DataHandler
subclasses for CAMRAD II as a base and replacing the regex with what is
required or adding additional post-processing logic to get what is desired.

130

C. User Extensibility

Listing C.10: DataHandler class subclassing example for CAMRAD II

1 import jsonobject
2 from datahandler import DataHandler
3

4 class MotionHandler(DataHandler):
5 """ MotionHandler passes 3D motion ouput to preCICE
6 """
7

8 def __init__(self, mesh_id, data_id, precice_vertex_ids):
9 """ Constructor for CollocationsHandler class.

10 Arguments:
11 args (dict): dictionary of multiple values, see DataHandler
12 base class for more information.
13 """
14 super(MotionHandler, self).__init__(mesh_id, data_id, precice_vertex_ids)
15

16 self.mesh_id = mesh_id
17 self.data_id = data_id
18 self.precice_vertex_ids = precice_vertex_ids
19 # Number of dimensions in problem
20 self.length = len(self.precice_vertex_ids)
21

22

23 def read(self, data, iteration):
24 """ Not implemented!"""
25 self.logger.error("We do not read Velocity data from Solid Solver!\n")
26 raise NotImplementedError
27

28 def write(self, iteration):
29 """ Implements datahandlers.DataHandler.write() abstract function. Returns
30 3D velocity data as a 1D array.
31 Arguments:
32 iteration (int): current coupled iteration as int
33 Returns:
34 returns motion data as a 1D array of size a 1D array of size
35 (3*self.length). data is arranged as [x1, y1, z1, x2, y2, z2 ...]
36 """
37 output_file = self.config.output_file
38 return data
39

40 def is_scalar(self):
41 """Returns:
42 Returns false as this is not a scalar data type
43 """
44 return False

131

D. Recreation of Data

This guide will provide documentation on the exact input parameters to recreate
all results presented in this work.

D.1 Toy Example: Perpendicular Flap

The results for the Toy Example was run on the cluster at the Chair for Helicopter
Technologies using the code present in the TAUadapter git repository 1 with
commit SHA cccdae1d and tagged as “Flap_Case_Reference”.

D.2 Case 1: Loose Coupling without Deformation

D.2.1 Coupling Results

The coupling results for Case 1 presented in this work were run on the cluster at
the Chair for Helicopter Technologies using the code present in the TAU adapter
git repository Footnote 1 with commit SHA 37164a60 (tagged as “Case_1_
Reference”) and the CAMRAD II adapter git repository 2 with commit SHA
e287d26e (tagged as “Case_1_Reference”). The tutorial code can be found in
the Tutorials/Helicopter folder.

Seven initial revolutions were run in TAU before this coupling was run. These
initial revolutions were run on the LRZ with a specific motion and parafile (both
passed to the Chair of Helicopter Technologies) and available in a reference gitlab
repository 3 under the Helicopter/TAU folder. The bash script used to run
the simulation on the LRZ is also provided.

D.2.2 Profiling Results

The profiling of the Case 1 code (same commits as above) against the baseline
case was run on the cluster at the Chair for Helicopter Technologies on node
1 https://gitlab.lrz.de/KeefeHuang/tauadapter 2 https://gitlab.lrz.de/KeefeHuang/camradadapter
3 https://gitlab.lrz.de/KeefeHuang/adapter-results-reference

133

D. Recreation of Data

TUM-WE140. The baseline code is from the Chair of Helicopter Technologies.
Several changes were made to the simulation settings to compare the coupling:

1. Number of inner iterations was changed from 250 to 0

2. Number of coupling steps was changed to 2 (preCICE only runs for 2
coupling iterations)

The exact files used to run the profiling case can be found in the reference repo
Footnote 3 under the Profile folder. The bash script used to run on the Chair’s
cluster (sbatch.cmd) and the output cprofiles for the TAU and CAMRAD II
script (tau.cprofile and camrad.cprofile) are also provided. The out-
put from the original coupling is provided as coupled.cprofile.

D.3 Case 2: Loose Coupling with Deformation

The deformation results for Case 2 were run on the LRZ using the code present
in the TAU adapter git repository Footnote 1 with commit SHA 37164a60
(tagged as “Case_1_Reference”) and the CAMRAD II adapter git repository
Footnote 2 with commit SHA e287d26e (tagged as “Case_1_Reference”). The
tutorial code can be found in the Tutorials/Deformation folder. The exact
CAMRAD II and TAU input files can be found in the reference repo Footnote 3
under the Deformation folder. The bash script used to run the simulation on
the LRZ is also provided. The simulation was run for one coupling iterations
and the data from CAMRAD II output “camout1” and TAU azimuths 1080 to
1440 were analyzed.

134

	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	Introduction
	Motivation
	Structure of Work

	Literature Review
	Theoretical Principles
	Monolithic vs. Partitioned Coupling Strategies
	Tightly-Coupled vs. Loosely-Coupled Rotor Blade Simulations
	Introduction to Chimera Grids
	Introduction to Radial Basis Functions

	Tools
	TAU
	TAU Simulations
	TAU-Python API
	TAU Data Input
	TAU Data Output

	CAMRAD II
	CAMRAD II Simulations
	CAMRAD II Data Input
	Force Tables
	CAMRAD II Data Output

	TAU & CAMRAD II Coordinate Systems
	preCICE
	Data Mapping
	preCICE Coupling
	preCICE API

	Adapter Architecture
	Goals
	Workflow of Original Code
	Workflow with TAU and CAMRAD II Adapters
	TAU Adapter API
	Adapter class
	DataInterface class
	Config class
	DataHandler class
	Solver class

	CAMRAD II Adapter API
	Adapter class
	DataInterface class
	DataHandler class
	Config class

	Implementation
	Toy Example: Perpendicular Flap
	Simulation Setup
	TAU Solver
	TAU DataHandlers
	Folder Structure & Running Tutorial Case

	Case 1: Loose Coupling without Deformation
	Simulation Setup
	Simulation Coupling Workflow
	CAMRAD II Solver
	TAU Solver
	Data Handling
	Folder Structure & Running Tutorial Case

	Case 2: Loose Coupling with Deformation
	Simulation Setup
	Deformation Calculation
	Folder Structure & Running Tutorial Case

	Results
	Toy Example: Perpendicular Flap
	Case 1: Loose Coupling without Deformation
	Profiling
	Case 2: Loose Coupling with Deformation

	Conclusion
	References
	Appendices
	Appendix User Guide
	Getting Started with TAU
	Level 1: Using pre-existing Solver and DataHandlers
	Level 2: Creating new DataHandlers and Config classes
	Level 3: Creating a new Solver class

	Getting Started with CAMRAD II
	Loosely-Coupled Helicopter Simulation

	Appendix Configuration File Definitions
	preCICE Configuration File
	Parameters
	TAU Configuration File
	CAMRAD Configuration File
	Parameters

	Appendix User Extensibility
	Extending TAU Adapter
	Updating Config class
	Extending DataHandler
	Extending Solver class

	Extending CAMRAD II Adapter
	Updating Config class
	Update DataHandler class

	Appendix Recreation of Data
	Toy Example: Perpendicular Flap
	Case 1: Loose Coupling without Deformation
	Coupling Results
	Profiling Results

	Case 2: Loose Coupling with Deformation

