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Abstract

The quadratic system provided by the Time of Arrival technique can be solved
analytically or by nonlinear least squares minimization. An important problem
in quadratic optimization is the possible convergence to a local minimum,
instead of the global minimum. This problem does not occur for Global Navi-
gation Satellite Systems (GNSS), due to the known satellite positions. In appli-
cations with unknown positions of the reference stations, such as indoor local-
ization with self-calibration, local minima are an important issue. This article
presents an approach showing how this risk can be significantly reduced. The
main idea of our approach is to transform the local minimum to a saddle point
by increasing the number of dimensions. In addition to numerical tests, we ana-
lytically prove the theorem and the criteria that no other local minima exist for
nontrivial constellations.

1 INTRODUCTION

In position estimation, the Time of Arrival (ToA)1 tech-
nique is standard. The area of applications extends from
satellite-based systems like GPS,2 GLONASS,3 Galileo,4

mobile phone localization (GSM),5 and radar-based sys-
tems such as UWB6 and FMCW radar7 to acoustic systems.8

The ToA technique leads to a quadratic equation. Opti-
mization algorithms used to solve this system depend
on the initial estimate. Unfortunately chosen initial esti-
mates can cause the optimization algorithm to converge
to the local minimum. With known reference station posi-
tions, it is possible to transform the quadratic to a lin-
ear system.9-11 This linear system can be used to provide
an initial estimate. On the other hand, the linear system
is more affected by noise, compared with the quadratic
system.9,10 In general, local minima are not an issue in

applications with known reference station positions such
as GNSS. This changes if it is necessary to obtain the
locations of the reference stations without additional mea-
suring equipment, which is also known as self-calibration.
The most robust self-calibration solution with noise is
nonlinear optimization.12 This solution suffers if the ini-
tial estimates are not close to the global minimum.13-15 In
Mekonnen and Wittneben16 and Biswas et al,17 it was pro-
posed to use semi-definite relaxation (SDP) as an initializa-
tion for the maximum likelihood (ML) estimator. Nuclear
norm-based methods18-20 also reduce the risk of being
trapped in a local minimum. Alternatively, non-iterative
methods can be used. A two-dimensional non-iterative
method was proposed for the case with three transpon-
ders and three receivers in Stewénius.21 The solution for
the three-dimensional case was the subject of the investi-
gation in Kuang22 and Pollefeys and Nister.23 The authors
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provided a non-iterative solution for the cases with (5,
5), (6,4), and (10,4) transponders and receivers. The roles
of the base stations and the transponders are equivalent;
hence, it does not matter if six base stations and four
transponders are used or vice versa. In the case that one
of the base station positions coincides with the position of
one of the transponders, it is possible to obtain a closed
form solution.24,25 An alternative approach is called far
field.26 If the distances between the base stations and the
transponders are considerably larger than those between
the base stations, it is also possible to use a linear sim-
plification. Real measurement data are highly non-convex
and nonlinear optimization still provides the most robust
solutions.12

We present a new approach which does not require an
initial estimate at all. The idea is that an additional dimen-
sion in the l2 norm transforms the local minimum of the
ToA equation to a saddle point without adding more local
minima. This is not equivalent to a receiver time offset,
which would be added or subtracted outside the norm.
Under the constraint that the position of the reference
stations is known, we prove that with our approach, the
local minimum becomes a saddle point and no further
local minima exist for nontrivial constellations. This paper
focuses on proving our approach. Further publications will
be based on this concept and will investigate its practical
use for self-calibration.

Our approach is based on introducing an additional
dimension. It can be seen as a kind of lifting method, a
generic term covering many numerical methods introduc-
ing an additional variable. Lifting methods have been used
for solving nonlinear optimization problems,27 machine
learning problems,28 optimal control problems,29 bound-
ary value problems,30 and parameter estimation problems
in ordinary differential equations (ODE).31 To the best of
our knowledge, our specific approach has not been applied
before, in particular in the context of ToA localization. It
does not work with every objective function, but we will
show that it is suitable for ToA localization equations.

This paper is organized as follows. The next section
introduces the objective functions F and the correspond-
ing improved objective functions FL. In Section 3, we
use the Levenberg-Marquardt algorithm32 to illustrate the
optimization steps for F and FL. The last section addresses
the results of the optimization algorithm with randomly
selected constellations.

2 METHODOLOGY

Table 1 provides notations used throughout this paper.
Figure 1 shows three base stations Bi at known positions

(ai, bi, ci) and one object T at unknown position (x, y, z).
The distance measurements di between base stations Bi

TABLE 1 Used notations

Notations Definition

x, y, z Estimated position of object T
xG, yG, zG Ground truth position of object T
ai, bi, ci Ground truth position of base stations Bi, 1 ≤ i ≤ N
di Distance measurements between base stations Bi

and object T
𝜆 Additional variable

B1

B2

B3

T
d1

d3

d2

FIGURE 1 The dashed circles are the distances between the base
stations Bi and object T. The object T is located at the intersection
point between the three dashed circles

and object T are known and derived from time of flight
measurements. The unknown position of object T can be
estimated by the known positions of the base stations Bi

and the distance measurements di. Measurement errors
are neglected in this paper; therefore, distance measure-
ments can be referred to as distances.

2.1 Mathematical formulation
The distances between the base station Bi and object T are
defined as follows:

d2
i = (xG − ai)2 + (𝑦G − bi)2 + (zG − ci)2. 1 ≤ i ≤ N.

• Objective function F1:

F1(x, 𝑦, z) ∶= 1
4

N∑
i=1

[√
(x−ai)2+(𝑦−bi)2+(z−ci)2−di

]2

(1)
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• Objective function F2:

F2(x, 𝑦, z) ∶= 1
4

N∑
i=1

[
(x − ai)2 + (𝑦 − bi)2 + (z − ci)2 − d2

i
]2
.

(2)

(see Douglass2 and Thompson33). Finding the minimum
of the objective function of (1) or (2) can be done by non-
convex optimization.34 Alternatively, the nonlinear sys-
tem can be transformed into a linear system.9,10 With the
assumptions made in Section 2.1, it is possible to obtain
a linear system. With regard to future extensions to deter-
mining the base station positions as well as the location of
the object T, this article focuses on finding a solution with
a non-convex optimization algorithm.

2.2 Reason for the approach
The objective functions (1) and (2) are nonlinear and non-
convex. Numerical optimization can cause convergence to
a local minimum L instead of the global minimum G. In
our approach, instead of F1 (1) and F2 (2), the improved
objective functions FL1 and FL2 are used. Both have an
additional variable 𝜆 compared with the F functions.

• Improved objective function FL1:

FL1(x, 𝑦, z, 𝜆) ∶= 1
4

N∑
i=1[√

(x − ai)2 + (𝑦 − bi)2 + (z − ci)2 + 𝜆2 − di

]2
.

(3)

• Improved objective function FL2:

FL2(x, 𝑦, z, 𝜆) ∶= 1
4

N∑
i=1[

(x − ai)2 + (𝑦 − bi)2 + (z − ci)2 + 𝜆2 − d2
i
]2
.

(4)

In the next section, we prove that FL2 (4) has a saddle
point at every position of the local minimum L(xL, yL, zL) of
F2 (2) . Therefore, the Levenberg-Marquardt algorithm has
a lower probability of converging to a local minimum. The
additional variable𝜆 is not equivalent to a receiver time off-
set in GNSS, which would be added or subtracted outside
the norm.

2.3 Characteristics of a local minimum
2.3.1 Assumption
The objective function has a unique global minimum
at G(xG, yG, zG) and at least one local minimum at
L(xL, yL, zL).

2.3.2 Criterion
It is known that the first derivative of FL with respect to x,
y, and z is zero at the local minimum. The criterion is that
the second derivative of FL at the same position is positive
(Table 2).

2.4 Assertion
The first derivative of FL with respect to the additional
variable 𝜆 is zero, and the second derivative is less than
zero at the local minimum (Table 3). In combination
with the assumption and the criterion, the local mini-
mum becomes a saddle point. The Levenberg-Marquardt
(derivative-based optimization algorithm) would not con-
verge to a saddle point.

2.4.1 Assertion for function F1
Every local minimum of function F1 (1) becomes a saddle
point at the same coordinates with function FL1 (3). We
have no analytical proof of this assertion, but the numeri-
cal results in Section 3 demonstrate its validity in practice.

2.4.2 Assertion for function F2
Every local minimum of function F2 (2) becomes a sad-
dle point at the same coordinates with function FL2 (4).
This assertion is proven analytically in Appendix A and
demonstrated numerically in Section 3.

TABLE 2 Criterion

First Derivative Second Derivative(
𝜕

𝜕x
FL

)
(xL, 𝑦L, zL, 0) = 0

(
𝜕2

𝜕x2 FL

)
(xL, 𝑦L, zL, 0) > 0(

𝜕

𝜕𝑦
FL

)
(xL, 𝑦L, zL, 0) = 0

(
𝜕2

𝜕𝑦2 FL

)
(xL, 𝑦L, zL, 0) > 0(

𝜕

𝜕z
FL

)
(xL, 𝑦L, zL, 0) = 0

(
𝜕2

𝜕z2 FL

)
(xL, 𝑦L, zL, 0) > 0

TABLE 3 Assertions of our approach

First Derivative Second Derivative(
𝜕

𝜕𝜆
FL

)
(xL, 𝑦L, zL, 0) = 0

(
𝜕2

𝜕𝜆2 FL

)
(xL, 𝑦L, zL, 0) < 0(

𝜕2

𝜕x𝜕𝜆
FL

)
(xL, 𝑦L, zL, 0) = 0(

𝜕2

𝜕𝑦𝜕𝜆
FL

)
(xL, 𝑦L, zL, 0) = 0(

𝜕2

𝜕z𝜕𝜆
FL

)
(xL, 𝑦L, zL, 0) = 0
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2.5 The effect of an additional variable
on the global minimum
At the global minimum, the additional variable 𝜆 must be
zero, and the second derivative must be positive. The sec-
ond derivative of FL2 (4) with respect to 𝜆 at the global
minimum is the following:(

𝜕2

𝜕𝜆2 FL2

)
(xG, 𝑦G, zG, 𝜆G) = 3𝜆2

GN = 0.

If the second derivative is zero, a higher-order derivative is
required.(

𝜕3

𝜕𝜆3 FL2

)
(xG, 𝑦G, zG, 𝜆G) =

N∑
i=1

6𝜆GN = 0.

The third derivative is also zero. Finally, the fourth deriva-
tive is greater than zero; hence, the additional variable has
no effect on the global minimum.(

𝜕4

𝜕𝜆4 FL2

)
(xG, 𝑦G, zG, 𝜆G) = 6N.

2.6 No new local minima for FL2
with 𝜆 ≠ 0
We have shown that the modified objective function FL2
(4) turns the local minima of F2 (2) into saddle points
and leaves the global minimum unaffected. It must still
be proven that FL2 does not introduce new local min-
ima that might adversely affect convergence to the global
minimum.

In this section, we will show that in practically relevant
base station arrangements, FL2 has no stationary points for
𝜆 ≠ 0 and x ≠ xG, and therefore, no minima that would
lead an optimization method astray. We will show that if
the first derivative of FL2 with respect to 𝜆 vanishes when
𝜆 ≠ 0, its gradient in the spatial directions is nonzero for
x ≠ xG. This proof is best presented in vectorial notation.
We will use x = (x, y, z)T for the position argument and
ai = (ai, bi, ci)T for the base station locations.
𝜕

𝜕𝜆
FL2(x, 𝜆) = 𝜆

∑
i

(
(x − ai)2 + 𝜆2 − d2

i
)
= 0, 𝜆 ≠ 0

⇒
∑

i

(
(x − ai)2 + 𝜆2 − d2

i
)
= 0, (5)

gradx FL2(x, 𝜆) =
∑

i

(
(x − ai)2 + 𝜆2 − d2

i
)
(x − ai). (6)

Equation 5 allows us to add or subtract any term not
dependent on the summation index i in the right-hand fac-
tor of (6). We subtract x and add a∗ = 1

N

∑N
i=1 ai, the

geometrical center of the base stations:

gradx FL2(x, 𝜆) =
∑

i

(
(x − ai)2 + 𝜆2 − d2

i
)
(x − ai − x + a∗)

= −
∑

i

(
(x − ai)2 + 𝜆2 − d2

i
)
(ai − a∗) .

By the construction of a∗, we have
∑N

i=1(ai − a∗) = 0, so
now we can add or subtract any term not depending on the
summation index in the left-hand factor. We add−𝜆2−x2+
x2

G and substitute di = |xG − ai|, expand the squares and
simplify, obtaining the following:

gradx FL2(x, 𝜆) = −
∑

i

(
(x − ai)2 − x2 + x2

G − d2
i
)
(ai − a∗)

= −
∑

i

(
(x − ai)2 − x2 + x2

G − (xG − ai)2)
(ai − a∗)

=
∑

i
(2xai − 2xG ai) (ai − a∗)

= 2 (x − xG)T
∑

i
ai ⊗ (ai − a∗)

= 2 (x − xG)T M .

Here, u⊗v denotes the outer product, resulting in a matrix
with the entries uivj. The matrix M can be expressed in the
following form:

M =
∑

i
ai ⊗ ai −

(∑
i

ai

)
⊗ a∗ =

∑
i

ai ⊗ ai − N a∗ ⊗ a∗

=
∑

i
(ai − a∗)⊗ (ai − a∗) .

The last step is analogous to the well-known derivation of
the variance of a data set. The result represents M as a sum
of unnormalized projection matrices onto the directions to
the base stations from their center.

The calculation above shows that the gradient of FL2
has the form of a vector times a sum of projection matri-
ces at all local minima with 𝜆 ≠ 0. Projection matrices
are positive semidefinite by construction, and their null
space is the subspace orthogonal to the projection direc-
tion. When adding several positive semidefinite matrices,
the null space of the result is the intersection of the null
spaces of the individual matrices, in our case the subspace
orthogonal to all projection directions. For unambiguous
location in n (2 or 3) dimensions, at least n + 1 base stations
are needed, and they must be arranged in a nondegenerate
way, ie, so that the ai − a∗ are a spanning set of the whole
space. This makes the matrix M positive definite, and the
gradient of FL2 cannot be zero for x ≠ xG. Therefore, there
are no local minima that prevent an optimization method
from converging to the global minimum.

2.7 Two-dimensional example
In Appendix A, it is proven that the FL2 (4) has a saddle
point at the coordinates of the local minimum of F2 (2) . In
this section, an example is created with known coordinates
of the global G(1, 0) and local minimum L(0, 0). The aim
of this example is to illustrate the converging steps of the
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Levenberg-Marquardt algorithm for F2 and FL2. The posi-
tions of the local minimum and global minimum leads to
the coordinates of base stations Bi (see Table A3).

Figure 2 shows a top view perspective of the base stations
Bi and object T positions inside a Cartesian coordinate
system. The circles represent the distance measurements
between the base stations Bi and the object T. In this
example, the measurements are not corrupted by noise;
hence, the ground truth position of object T is located at the
intersection point between all circles. Nonlinear optimiza-
tion algorithms can find the ground truth by minimizing
the residues of the predefined objective function to obtain
the global minimum. Under certain constellations of the
base station, it is possible that the objective function used
has a global minimum in addition to at least one local min-
imum. A more detailed description of the requirements for
this kind of constellation can be found in the Appendix
A.3. The local and global minima both have the com-
monality that the first derivative is zero and the second
derivative is higher than zero. This attribute makes the
local minimum a trap for derivative-based nonlinear opti-
mization algorithms. In this example, the local minimum
is located at L(0, 0) and the global minimum at G(1, 0).

FIGURE 2 The circles represent the true distance between base
stations Bi and the global minimum. The blue, red, yellow, and
magenta circles are the distances between base stations B and object
T, respectively [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

Figure 3 shows the search space of objective function
F2 (2) and the zoom at the global minimum. The x-axis
of Figure 3 is equivalent to the x-axis in Figure 2 and the
y-axis represents the result of objective function F2. It can
be observed that the first derivative is zero, and the sec-
ond derivative is higher than zero for the local minimum
L(0, 0) and the global minimum G(1, 0). The only differ-
ence between both minima is the result of the objective
function. At the ground truth position G(1, 0), the result
of the objective function is zero and at the local minimum
L(0, 0) it equates to one. In the case of bad initial esti-
mates, close to the local minimum, it is possible that the
derivative-based nonlinear optimization algorithm con-
verges to the local minimum and remains there. The main
aspect of our approach is to transform this local minimum
to a saddle point and eliminate this trap.

2.7.1 Local optimization
The Levenberg-Marquardt algorithm uses the derivative to
obtain the stepsize; therefore, it is important that the initial
estimate for the additional variable 𝜆 is nonzero. Other-
wise, 𝜆 remains zero, and FL2 (4) is effectively reduced to F2
(2). The initial estimates for the optimization are x = −1,
y = 2 and 𝜆 = 1.

Figure 4 is equivalent to Figure 2. The x-y axes rep-
resent the positions of the base stations Bi and object T
inside a Cartesian coordinate system. The circles are the
two-dimensional euclidean distances between the base
stations Bi and object T. The main difference between
Figures 2 and 4 is the additional dimension 𝜆 with
the initial estimate one. The stepsize of the optimiza-
tion algorithm is obtained by the first derivative of
the objective function. The first derivative for the addi-
tional dimension at 𝜆 = 0 is always zero and leads
to a stepsize with the value zero.

(
𝜕

𝜕𝜆
F2

)
(x, 𝑦, z) =∑N

i=1
[
(x − ai)2 + (𝑦 − bi)2 + 𝜆2 − d2

i

]
𝜆.
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FIGURE 3 The Local minimum is at L(0, 0) and global minimum
at G(1, 0). Colors ranging from blue to yellow show the residues of
the objective function [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]
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FIGURE 4 Iteration steps of the Levenberg-Marquardt algorithm
for F2 and FL2. F2: Objective function F2. FL2: Improved objective
function FL2. Blue line: Opimization steps of F2. Green line:
Optimization steps of FL2. The circles blue, red, yellow and magenta
are the distances between base stations Bi and object T [Color figure
can be viewed at wileyonlinelibrary.com and www.ion.org]

Without using the additional dimension, the nonlinear
optimization algorithm converges to the local minimum
L(0, 0). On the other hand, if the improved objective func-
tion FL2 is used, the same optimization algorithm con-
verges to the global minimum G(1, 0). The optimization
steps with objective function F2 are represented by the
green line and, for the improved objective function FL2,
by the blue line. It can be seen that the improved objec-
tive function FL2 allows the optimization algorithm to use
the additional dimension of freedom to bypass the local
minimum.

Figure 5 is divided in to two plots. Both plots are based
on the same coordinate system as Figure 2, with the same
positions for base stations Bi, object T, the local L(0, 0) and
global minimum G(1, 0). The colored lines represent the
optimization steps. Blue lines indicate the convergence to
the local minimum and the green lines to the global min-
imum. In the left plot, it can be observed that the correct
convergence for the objective function F2 highly depends
on the initial estimate of the x-coordinate. With an initial
estimate x > 0, the optimization algorithm converges to
the global minimum, otherwise to the local minimum. In
the right plot, the improved objective function FL2 is used.
At this point, the initial estimates for the x axis are not
relevant anymore. The optimization algorithm always con-
verges to the global minimum G(1, 0) if the initial estimate
for the additional dimension 𝜆 is not equal to zero.

3 NUMERICAL RESULTS

The base stations Bi, object T and initial estimates were
randomly generated by the MATLAB “randn()” function.

This function provides normally distributed random num-
bers in a predefined range. This range was limited to a
10 × 10 × 10 cube. Randomly generated base station posi-
tions have the risk of creating collinear constellations with
two solutions. These constellations have been avoided by
considering the normalized singular value of the covari-
ance matrix. These values provide information about how
spread out the base stations are relative to each other. The
threshold used for the normalized singular value was set to
0.1. Constellations with a higher value were rejected. The
quality of the result is evaluated by the euclidean distance
between the fitted value xF, yF and zF and the ground truth
position xG, yG, and zG .

• Error term:

E =
√
(xF − xG)2 + (𝑦F − 𝑦G)2 + (zF − zG)2. (7)

The tests were carried out with the MATLAB
Levenberg-Marquardt algorithm using the default settings
(Table 4).

3.1 Results with the objective function F1
and FL1

In the following section, the results of the optimization
with a two-dimensional F1 and FL1 are presented.

Figure 6 shows the error term with different constel-
lations of the four base stations Bi (N = 4). The x-axis
indicates the number of tests carried out. Every scenario
was done with random constellations and random initial
estimates. The y-axis represents the error term (7). The
blue dots are the error with the objective function F1 and
the red dots the improved objective function FL1. It can be
seen that FL1 has no outlier. It has yet to be proven that the
local minimum of F1 becomes a saddle point for FL1. How-
ever, the results show a significant effect of the FL1 on the
optimization process.

3.2 Results with the objective function F2
and FL2

In the following section, the results of the optimization
with a two-dimensional F2 and FL2 are presented.

Figure 7 has the same axis notations as Figure 6. The
x-axis indicates the number of tests carried out and the
y-axis the error term (7). The main difference from Figure 6
is that the blue dots now indicate the error with objective
function F2 and the red dots the improved objective func-
tion FL2. In this case, it was proven that the local minimum
of F2 becomes a saddle point with an additional variable.
This fact is also underpinned by the error term of FL2 ,
which is always less than 0.5.

http://wileyonlinelibrary.com
www.ion.org
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FIGURE 5 Left figure shows F2 and the right figure shows FL2 with different initial estimates. Green: Convergence to global minimum.
Blue: Convergence to local minimum [Color figure can be viewed at wileyonlinelibrary.com and www.ion.org]

TABLE 4 Default MATLAB “Levenberg Marquardt algorithm” parameters

Value

Maximum change in variables for finite-difference gradients Inf
Minimum change in variables for finite-difference gradients 0
Termination tolerance on the function value 1e-6
Maximum number of function evaluations allowed 100*numberOfVariables
Maximum number of iterations allowed 400
Termination tolerance on the first-order optimality 1e-4
Termination tolerance on x 1e-6
Initial value of the Levenberg-Marquardt parameter 1e-2

FIGURE 6 Blue dots: Objective function F1. Red dots: Improved
objective function FL1 [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

3.3 Summary of the results
Tables 5 and 6 summarize the obtained results. For each
number of objects (N), 10 000 constellations have been
created and tested with Levenberg-Marquardt. FL never

FIGURE 7 The blue dots are the results of the error term of F2.
The red dots are the results of FL2 [Color figure can be viewed at
wileyonlinelibrary.com and www.ion.org]

converges to a local minimum. It can be observed that
the risk to converge to a local minimum is decreasing for
the objective function F1 and F2 with higher number of
base stations. This is probably due to the increase in the
convergence radius with a higher amount of base stations.

http://wileyonlinelibrary.com
www.ion.org
http://wileyonlinelibrary.com
www.ion.org
http://wileyonlinelibrary.com
www.ion.org
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TABLE 5 Examples are based on a 2-D modela

N Objective Function F1: L F2: L

4 F 1357 634
4 FL 0 0
5 F 982 399
5 FL 0 0
6 F 810 286
6 FL 0 0
7 F 586 182
7 FL 0 0

aN, number of base stations Bi; F1, objective function one; F2, objective func-
tion two; L, number of convergences to local minima (Error greater than 0.5).

TABLE 6 Examples are based on a 3-D modela

N Objective function F1: L F2: L

7 F 494 216
7 FL 0 0

aN, number of base stations Bi; F1, objective function one; F2, objective func-
tion two; L, number of convergences to local minima (Error greater than 0.5).

4 CONCLUSIONS

In the Section 2, it was proven that the improved objec-
tive function FL2 has no local minima for nontrivial con-
stellations. In addition to the mathematical proof, a sim-
ple two-dimensional example was created with one local
minimum and one global minimum. This example illus-
trates how the optimization algorithm uses the additional
dimension to bypass the local minimum and converges
to the global minimum. This was underpinned by more
than 100 000 numerical tests with reasonable constella-
tions. It still has to be proven that the local minimum of
F1 becomes a saddle point with FL1. However, the results
show a significant effect of FL1 on the optimization process.
The objective function F2 performed better than the objec-
tive function F1. Furthermore, the number of false results
L decreases with a higher number of base stations Bi .

5 DISCUSSION

It is important that the initial estimate of the additional
variable is not equal to zero. Otherwise, gradient-based
optimization algorithms like Levenberg-Marquardt would
not converge to the additional dimension. This is due to
the fact that the optimization algorithm used is estimating
the stepsize for every dimension by the first derivative of
the objective function. With 𝜆 = 0, the derivatives for this
additional dimension are always zero; thus, the stepsize
also equals zero. The test scenarios were carried out with at

least four base stations. This is due to the fact that the addi-
tional dimension requires one more measurement. In all
test scenarios, the positions of base stations Bi were known.
Under the condition that the reference stations are known,
it is also possible to obtain the solution analytically. In the
case of unknown positions of base stations Bi and objects
Tj, with real measurements it is no longer feasible. At this
point, our approach becomes extremely valuable.
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APPENDIX A: PROOF OF THE ASSERTION
FOR OBJECTIVE FUNCTION F2

In Section 2.3, the assumption and the criterion was intro-
duced. In this section, the assertion will be proven for the
objective function F2 (2) . The proof of the assertion for
objective function F1 (1) has yet to be found. The empiri-
cal results show that the approach works for both objective
functions. First, a new coordinate system is defined. This
coordinate system is centered at the local minimum with
global minimum on the positive x-axis.

A.1 Definition of the new coordinate
system
Without loss of generality, the following coordinate system
can be used

and

The distances between the base stations Bi and object T
are defined in Section 2.1. With the new coordinate system
the equation becomes

d2
i = (xG − ai)2 + (bi)2 + (ci)2.

https://doi.org/10.1002/navi.277
https://doi.org/10.1002/navi.277
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The second objective function can also be written as
follows:

F2(x, 𝑦, z) =
N∑

i=1
𝜑i(x, 𝑦, z)2,

with the auxiliary function 𝜑i(x, y, z)

𝜑i(x, 𝑦, z) ∶= (x − ai)2 + (𝑦 − bi)2 + (z − ci)2 − d2
i .

At the position of the local minimum L, the auxiliary
function becomes

𝜑i(0, 0, 0) =
[
ai

2 + bi
2 + ci

2 − d2
i
]
=

=
[
ai

2 + bi
2 + ci

2 − (xG − ai)2 − bi
2 − ci

2] =
=
[
ai

2 − (xG − ai)2] = [
2aixG − (xG)2] = xG [2ai − xG] .

(A1)

Therefore, the second objective function at the local
minimum can be written as follows:

F2(0, 0, 0) = x2
G

N∑
i=1

[2ai − xG]2. (A2)

In Section 2.3, the assumption and the criterion for the
approach were presented.(

𝜕2

𝜕𝜆2 FL

)
(xL, 𝑦L, zL, 0) < 0. (A3)

In the following, it will be shown that the assertion
(A3) is always correct for the improved objective func-
tion FL2 (4). Equations A4 and A5 are the first and second
derivatives of objective function FL2 with respect to 𝜆.(

𝜕

𝜕𝜆
FL2

)
(x, 𝑦, z, 𝜆) =

N∑
i=1

[
(x − ai)2 + (𝑦 − bi)2

+(z − ci)2 + 𝜆2 − d2
i
]
𝜆,

(A4)

(
𝜕2

𝜕𝜆2 FL2

)
(x, 𝑦, z, 𝜆) =

N∑
i=1

[
(x − ai)2 + (𝑦 − bi)2

+(z − ci)2 + 𝜆2 − d2
i
]
+ 2N𝜆2.

(A5)

At the local minimum L(xL, yL, zL),(
𝜕2

𝜕𝜆2 FL2

)
(0, 0, 0, 0) =

N∑
i=1

[
a2

i + b2
i + c2

i − d2
i
]

=
N∑
i
𝜑i(0, 0, 0) =

= xG

N∑
i=1

[2ai − xG] = 2xG

N∑
i=1

ai − N x2
G.

We want to show that
(

𝜕2

𝜕2𝜆
FL2

)
(xL, 𝑦L, zL, 0) < 0; hence,

we have to prove the inequality (A6).

2xG

N∑
i=1

ai − N xG
2 < 0

2
N∑

i=1
ai < N xG. (A6)

In the next step, the condition at the local minimum is
analyzed. The first derivative of objective function F2 (2)
equates to (A7),(

𝜕

𝜕x
F2

)
(x, 𝑦, z) =

N∑
i=1

[
(x − ai)2 + (𝑦 − bi)2

+(z − ci)2 − d2
i
]
(x − ai) =

=
N∑
i
𝜑i(x, 𝑦, z)(x − ai), (A7)

in combination with (A1), the first derivative becomes
(A8).

(
𝜕

𝜕x
F2

)
(0, 0, 0) =

N∑
i=1

𝜑i(0, 0, 0)(−ai)

=
N∑

i=1
xG [2ai − xG] (−ai) =

=

[
xG

2
N∑

i=1
ai − 2xG

N∑
i=1

a2
i

]
. (A8)

At the local minimum L(xL, yL, zL), the first derivative of
objective function F2 is equal to zero.

x2
G

N∑
i=1

ai − 2xG

N∑
i=1

a2
i = 0

xG

N∑
i=1

ai = 2
N∑

i=1
a2

i . (A9)

This leads to
∑N

i=1 ai > 0. The objective function F2 has
a higher result at the local minimum compared with the
global minimum. It is assumed that the objective func-
tions have no errors; therefore, the result of F2 at the global
minimum must be zero.

F2(0, 0, 0) > F2(xG, 0, 0) = 0, (A10)

xG
2

N∑
i=1

(2ai − xG)2 > 0 (A11)

N∑
i=1

(2ai − xG)2 > 0

4
N∑

i=1
a2

i − 4xG

N∑
i=1

ai + N x2
G > 0
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4xG

N∑
i=1

ai < 4
N∑

i=1
a2

i + N x2
G. (A12)

The term F2(0, 0, 0) of (A10) is replaced by (A2).
Equation A11 can be converted to A12. Combined with
(A9), the new inequality equates to A13.

8
N∑

i=1
a2

i < 4
N∑

i=1
a2

i + N x2
G

4
N∑

i=1
a2

i < N x2
G. (A13)

A.2 Proof by Cauchy-
Bunyakovsky-Schwarz inequality
The final step of the proof for the assertion requires the
Cauchy-Bunyakovsky-Schwarz inequality35 for RN .

Here, it is desired to prove that2ΣN
i=1ai < N xG.

The Cauchy-Bunyakovsky-Schwarz inequality states
that |||⟨x⃗, 𝑦

⟩||| ≤ ‖‖x⃗‖‖ · ‖‖𝑦‖‖. In our case, the vectors are the
following:

x⃗ =

( 1
⋮
1

)
and 𝑦 =

( a1
⋮

an

)
.

Therefore, the left term 2
∑N

i=1 ai of (A6) must be less

than or equal to 2
√

N
√∑N

i=1 ai2.

2
N∑

i=1
ai ≤ 2

√
N

√√√√ N∑
i=1

a2
i . (A14)

From (A13), it is known that
∑N

i=1 (ai)2 <
1
4

N ·
(xG)2; therefore, the right side of (A14) can be written as
2
√

N
√

1
4

N xG2.
The inequality becomes

2
N∑

i=1
ai < 2

√
N
√

1
4

N x2
G = N xG.

A.3 Possible constellations for the
example
The coordinate system was described in Section A.1. We
want to find base station constellations with a local mini-
mum at xL, yL, zL and a global minimum at xG, yG, zG .

A.4 Analysis of the first derivative
The first derivative of objective function F2 has to be zero
at the local minimum. This means(

𝜕

𝜕x
F2

)
(0, 0) =

N∑
i=1

[
(a2

i − (xG − ai)2) · (−ai)
]
= 0, (A15)

(
𝜕

𝜕𝑦
F2

)
(0, 0) =

N∑
i=1

[
(a2

i − (xG − ai)2) · (−bi)
]
= 0. (A16)

The simplest constellation that fulfills (A15) and (A16)
is the following:{[

(a2
i − (xG − ai)2) · (−ai)

]
= 0 1 ≤ i ≤ N[

(a2
i − (xG − ai)2) · (−bi)

]
= 0 1 ≤ i ≤ N.

There are two obvious options that fulfill these
equations. The first one is ai = bi = 0 . The second one
ai = 1

2
xG with any bi. The number of base stations using

the first and second options are denoted as S1 and S2,
respectively. Only sensible constellations are considered;
therefore, S1 can only be one or zero.

A.5 Analysis of the second derivative
The second derivative of objective function F2 (2) must be
positive at the local minimum. This means,(

𝜕2

𝜕x2 F2

)
(0, 0) =

N∑
i=1

[
2a2

i + a2
i − (xG − ai)2] > 0, (A17)

and(
𝜕2

𝜕𝑦2 F2

)
(0, 0) =

N∑
i=1

[
2b2

i − x2
G + 2aixG

]
> 0. (A18)

Inserting (A15) into (A17) leads to the first condition.
N∑

i=1
3ai > NxG. (A19)

The second and third conditions are obtained by insert-
ing the options S1 and S2 into (A17) and (A18), respec-
tively. Therefore, the second derivative of objective func-
tion F2 becomes(

𝜕2

𝜕x2 F2

)
(0, 0) = −S1x2

G + 1
2

S2x2
G > 0,

and (
𝜕2

𝜕𝑦2 F2

)
(0, 0) = −S1x2

G + 2
S2∑

i=1
b2

i > 0.

All the conditions required for a local minimum at
L(0, 0) are listed in Table A1.
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TABLE A1 Conditions required for a local minimum at L(0, 0)

Conditions

1 3
∑N

i=1 ai > NxG

2 0.5 · S2 > S1

3 2
∑S2

i=1 b2
i > x2

GS1

TABLE A2 Assumptions used for the example

Assumptions

S1 = 1
S2 = 3

TABLE A3 Coordinates of object B

Base Stations Bi With Index X-Axis Y-Axis

1 0 0
2 0.5 · xG -2
3 0.5 · xG 1
4 0.5 · xG 3

A.6 Constellations used in the example
The assumptions used in the example and the coordinates
of the base stations Bi can be found in Tables A2 and A3.
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