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With more complex networks need for automation!
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This Talk: Use Machine Learning to Benchmark Networks
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Use Cases of this Talk

(1) Benchmarking Open vSwitch

<

m Security: VLAN K\ Monitoring: Netflow,
isolation, traffic filtering ‘N, sFlow, SPAN, RSPAN

A y N y.
: ¢ Automated Control:
QuSstiatticiquedtiy OpenFlow, OVSDB
and traffic shaping
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(2) Benchmarking Data Center
Traffic Scheduling Algorithms
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AAlgorithmic complexity attacks (software domain): Why Important?
A SlowFuzz
A PerfFuzz

AAutomated Synthesis of Adversarial Workloads for Implementation aspects can
Network Functions, ACM Sigcomm 2018 harm performance

APolicy Injection: A Cloud Dataplane DoS Attack, ACM

Sigcomm DEMO 2018 Could even be used to attack
your systems!

We propose NetBOA to automatically create network traffic input
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Packets over time

Goal: Find Network Traffic Configuration that Maximizes CPU/Latency
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Network Benchmarking is Challenging: Complex and Huge M
Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.

[ ]
&—

> > >
Number of Network Batch Size Packet Inter Arrival Time VLANS
Packets [1000 i 5000] [1-5] [Ims T 13ms] [1-5]

< :
Human still

Involved!
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NetBOA: A Bayesian Optimization-based Approach TUTI

(2) Measure until
confidence is reached

Traffic

Generator

(3) New measurement

(1) Set configuration

points
NetBOA 1
£ 5000 30

Bayesian Optimization - =5

(4) Machine Learn y %

Acquisition Function Performance Model -

Maximize Expected Improvement g - g
Update Posterior %

Fit Gaussian Process Z 10004 T T T T T T 0

1 4
Inter arrival times [milliseconds]



