
Chair of Communication Networks
Department of Electrical and Computer Engineering
Technical University of Munich

©2019 Technical University of Munich

Adversarial Network Benchmarking

Joint work with:

Johannes Zerwas*, Patrick Kalmbach*, Laurenz Henkel*, 

Sebastian Lettner, Gábor Rétvári^, Wolfgang Kellerer*, 

Stefan Schmid°

*Technical University of Munich, Germany

^Budapest University of Technology and Economics, Hungary

°Faculty of Computer Science, University of Vienna, Austria

Communication Technologies Group,

Faculty of Computer Science, University of Vienna

Andreas Blenk*



Today’s Approach of Operating Networks?

2



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem

Optimizes Solution



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem

Optimizes Solution

Performance 

Evaluation
Designs



Today’s Approach of Operating Networks?

2

Monitors
Network

Problem

Optimizes Solution

Performance 

Evaluation
Designs

With more complex networks need for automation!



What Self-Driving Networks Should Do

3



What Self-Driving Networks Should Do

3

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Self-Optimizing Solution

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Self-Optimizing Solution

Performance 

Evaluation
Self-Benchmarking

Source: https://www.pinterest.at/pin/318137161149129652/



What Self-Driving Networks Should Do

3

Self-Monitoring
Network

Problem

Self-Optimizing Solution

Performance 

Evaluation
Self-Benchmarking

Source: https://www.pinterest.at/pin/318137161149129652/

NetBOA (NetAI’19)



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Not always 

available



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Not always 

available

Not 

generalizing



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Not always 

available

Not 

generalizing

Hmm…

Biased?



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Data-Driven

Not always 

available

Not 

generalizing

Hmm…

Biased?



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

Traces Models Human‘s 

Best 

Guesses

Data-Driven

Not always 

available

Not 

generalizing

Hmm…

Biased? Alternative 

opponent?



Benchmarking Network Algorithms, Architectures etc…

The Traditional Way …

4

This Talk: Use Machine Learning to Benchmark Networks 

Traces Models Human‘s 

Best 

Guesses

Data-Driven

Not always 

available

Not 

generalizing

Hmm…

Biased? Alternative 

opponent?



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

The Traditional Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Our ML/AI Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Old!!!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

O’zapf t is [BIG DAMA’17]

Old!!!

Empowerement [SelfDN’18]

ISMAEL [TNSM’19]



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Receive training signal – learn from solution quality



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality

challenge



Towards Automated Network Optimization and Design

5

Benchmark

Instance

Generator

Problem 

Instance

Network Algorithm, 

Function

Problem 

Solution

Machine

Learning

Solution

Information

Our ML/AI Way!

Machine

Learning

Adversarial

Problem 

Instance

Receive training signal – learn from solution quality

NetBOA [NetAI’19]

TOXIN [CoNEXT Com‘19]

challenge

ML/AI vs ML/AI



Adversarial Network Algorithm Benchmarking: Use Cases

6



Use Cases of this Talk

7

(1) Benchmarking Open vSwitch (2) Benchmarking Data Center 

Traffic Scheduling Algorithms



(1) Benchmarking Open vSwitch

8



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

What Could be Seen as Related

9



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

What Could be Seen as Related

9



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9

Why Important?



 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9

Why Important?

Implementation aspects can 

harm performance

Could even be used to attack 

your systems!



We propose NetBOA to automatically create network traffic input

 Algorithmic complexity attacks (software domain):

 SlowFuzz

 PerfFuzz

 Automated Synthesis of Adversarial Workloads for 

Network Functions, ACM Sigcomm 2018

 Policy Injection: A Cloud Dataplane DoS Attack, ACM 

Sigcomm DEMO 2018

What Could be Seen as Related

9

Why Important?

Implementation aspects can 

harm performance

Could even be used to attack 

your systems!



Host 2

Example: Benchmark Open vSwitch

10

Open

vSwitch

Match Rule

Forward

* DROP



Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch

Traffic

Generator

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch
Packets over time

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch
CPU

Latency

Packets over time

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Config



Host 3Host 2Host 1

Example: Benchmark Open vSwitch

10

Open

vSwitch
CPU

Latency

Packets over time

Traffic

Generator

Traffic

Sink

Match Rule

Forward

* DROP

Goal: Find Network Traffic Configuration that Maximizes CPU/Latency

Config



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]



How many packets to send? How should headers look like? What protocol to use? When to send 

packets? Etc.

Network Benchmarking is Challenging: Complex and Huge 

Configuration Space

11

Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]



How many packets to send? How should headers look like? What protocol to use? When to send 
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Number of Network 

Packets [1000 – 5000]

Batch Size

[1-5]
Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]

Human still

Involved!
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 Performance models are non-trivial

 Surprising: Sending less network packets over time can lead to significantly higher CPU

 But: Can we find such weak-spots automatically?

0-1 % CPU

20 % CPU4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms



Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter
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NetBOA Random Search

24 % higher CPU utilization
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 Use case: NetBOA is a Bayesian Optimization-based data-driven approach to generate 

network traffic configurations for benchmarking network function implementations

NetBOA can efficiently find challenging network traffic configurations (maximize 

CPU/Latency)

NetBOA can also be used to minimize, e.g., CPU or Latency

 Open questions and problems:

 Does beating the machine means it generalizes?

 Does it scale?

 Alternatives?

 Bayesian Optimization needs also tuning!

Part 1: Conclusion

17



(2) Benchmarking Data Center Traffic Scheduling Algorithms

18



O(n * log(n)) on average case

O(n * n) on worst case (e.g. inversely sorted 

list for pivot on last element)

Motivation: Automation Helps Finding Weak-Spots

19

Quick-Sort

[1] https://igoro.com/archive/quicksort-killer/

Worst case can be calculated



O(n * log(n)) on average case

O(n * n) on worst case (e.g. inversely sorted 

list for pivot on last element)

Motivation: Automation Helps Finding Weak-Spots

19

Quick-Sort

[1] https://igoro.com/archive/quicksort-killer/

Worst case can be calculated

Question: How to apply automation to data center traffic?
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Data Center Scenario
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Time

SD:13-2 SD:9-10SD: 5-7

V:100Mbit V: 40Mbit V:110Mbit

T=2ms T=5ms T=8

0

F1 F2 F3

What can be changed? 

What we change

Flow-Level Simulator evaluates traffic loads

F: Flows

T: Arrival Times
V: Volume

SD: Source-

Destination

Assignment from volumes to flows

Set of flow volumes stays constant
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Given Set of Flows:

Source 

Destination 

Arrival Time

Volume

Find the order of Volumes such that:

FCT: Flow Completion Time

Time0

Arrival F1 Data has been transmitted

1

F1 F2 F3 F4 F5 F6
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Pseudo Code

1. Sample N flows

2. Extract the sequence of volumes V

3. Generate permutations of V by changing is 

order (=initial population)

4. Repeat (until convergence)

Approach: Genetic Algorithm

22

Crossover

Mutation

Selection

Fitness



Simulator:

 500 Mbit Links

 Uniform Volume between 1 and 500 Mbit

 Poisson Arrival Times (mean 0.7 sec)

 Uniform Src-Dst pairs

Fitness Function

23

Flow Completion Time 

(Fitness)

[3]

Data Center 

Simulator
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GA Behavior over Generations for Different Population Sizes
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Population with N = 10 flows Population with N = 30 flows

+ 0.1 sec

+ 0.25 sec

More Flows Higher margin of optimization

17% more challenging 35% more challenging
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Flow Volume over Time (N=100)
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BUT: Simulations consume a lot of time! 

Idea: Use Machine Learning in Genetic Algorithm [Bha13]
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(Fitness)
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Data Center

Simulation

Flow 

Completion 

Time Prediction

 Needs to be evaluated very frequently

 slow, does not scale

Approximate Fitness Function with Deep Neural Network



The Training Data
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Spatial Distribution

 Test Set Score: 87% of the samples achieved a relative error of less then 5%

FCT Distribution of Labels
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 Neural network cannot predict the fitness of population correctly

 Best population members cannot be found correctly

Idea: combine 

Simulation and NN
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Performance even better than

simulation

 Simulations can be used to determine current best simulation members

 More than one simulation needed to improve population

And what did

we save?



Runtime Comparison (10 runs, CI 95%)
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Neural Net < Mixed < Simulation

Mixed 4 times slower than NeuralNet

… but Mixed 4 times faster than 

Simulation



 Genetic Algorithm can automate adversary Traffic Generation 

Automated Benchmarking

 Neural Network can significantly accelerate Genetic Algorithms

Scalability

Limitations:

 Long training time of GA

 Accelerator trades-off solution quality and compute time

 Accelerator needs to be re-trained when fitness function changes

Potentials and Future Work:

 Utilize current network state (e.g., demand matrix)

 Make a prediction for the next arrival(s) – e.g., investigate existing network traces

Part 2: Conclusion

31
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Thank you!

Questions?
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