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Self-Driving and Data Driven Networks?

It IS not about cars!

N. Feamster and J. Rexford, “Why (and How) Networks Should Run Themselves,” CoRR, vol. abs/1710.11583, 2017.
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But Data-Driven Systems Can be Tricked
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But Data-Driven Systems Can be Tricked

(Self) Driving Under the Influence:
Intoxicating Adversarial Network Inputs

Roland Meier'), Thomas Holterbach(),
Stephan Keck!", Matthias Stahli‘",
Vincent Lenders(), Ankit Singla(!,
Laurent Vanbever(

“panda” “gibbon”
57.7% confidence 909.3% confidence M )
ETHzurich
In typical ML applications ... and in networking

Source: https://openai.com/blog/adversarial-example-research/
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Adversarial Input
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Why?

... but this is also true for existing solutions by human!
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Adversarial input is not only critical for self-driving networks

It’s already a problem!
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Data-Driven Adversarial Network Benchmarking in Data Centers:

(1) NetBOA and (2) TOXIN

NetBOA: Self-Driving Network Benchmarking

Johannes Zerwas, Patrick Kalmbach, Laurenz
Henkel
Technical University of Munich, Germany

Wolfgang Kellerer, Andreas Blenk

Technical University of Munich, Germany

ABSTRACT

Communication networks have not only become a critical infras-
tructure of our digital society, but are also increasingly complex and
hence error-prone. This has recently motivated the study of more
automated and “self-driving” networks: networks which measure,
analyze, and control themselves in an adaptive manner, reacting
to changes in the environment. In particular, such networks hence
require a mechanism to recognize potential performance issues.
This paper presents NetBOA, an adaptive and “data-driven” ap-
proach to measure network performance, allowing the network
to identify bottlenecks and to perform automated what-if analy-
sis, exploring improved network configurations. As a case study,
we demonstrate how the NetBOA approach can be used to bench-
mark a popular software switch, Open vSwitch. We report on our
implementation and evaluation, and show that NetBOA can find
performance issues efficiently, compared to a non-data-driven ap-

Gabor Rétvari
Budapest University of Technology and Economics,
Hungary

Stefan Schmid

Faculty of Computer Science, University of Vienna, Austria

1 INTRODUCTION

Motivated by the complex, manual, and error-prone operation of
today’s communication networks, as well as the increasing depend-
ability requirements in terms of availability and performance, the
network community is currently very much engaged in developing
more automated approaches to manage and operate networks, A
particularly interesting vision in this context are self-driving net-
works [10, 17]: rather than aiming for specific optimizations for
certain protocols and objectives, networks should learn to drive
themselves, maximizing high-level goals (such as end-to-end la-
tency), in a “context-aware”, data-driven manner. At the heart of
such self-driving networks hence lies the ability to adaptively mea-
sure, analyze, and control themselves. While over the last years,
many interesting first approaches have been proposed related to
how self-driving networks can control themselves [4, 10, 16), less
is known today about how self-driving networks can analyze and

Adversarial Network Algorithm Benchmarking

Sebastian Lettner
TU Miinchen
sebastian.lettner@tum.de

ABSTRACT

Most research papers should have one thing in common: a clear and
expressive evaluation of proposed solutions to problems. However,
evaluati lutions is i ingly a challenging task: when using

human-constructed examples or real-world data, it is difficult to
assess to which degree the data represents the input spectrum also
of future d ds. Moreover, evaluations which fail to show gener-
alization might hide algorithm weak-spots, which could eventually
lead to reliability and security issues later on, To solve this problem
we propose Toxin, a framework for automated, data-driven bench-
marking of, e.g.. network algorithms. In a first proof-of-concept
implementation, we use Toxin to generate challenging traffic data-
sets for a data center networking use case.

CCS CONCEPTS

« Networks — Traffic engineering algorithms; Network simulations;
Network performance analysis; « Computing methodologies —
Machine learning; Artificial intelligence.

KEYWORDS

adversarial traffic generation artificial intellicence data center

Andreas Blenk
TU Miinchen
andreas.blenk@tum.de

Unfortunately, obtaining challenging input data is a problem of
its own. Even human experts are often not able to construct inputs
exposing these weaknesses [5, 7, 12], not at least because of the
high effort it takes. Asa q evaluations might i
be biased and actually fail to show generalization, This is, however,
problematic since overlooked performance issues can have negative
implications not only on the reliability but also on the security of
the system [9, 14] because it could open the door for exploitation.

To address this problem we propose Toxin, an automated, data-
driven benchmarking framework for data center network algo-
rithms. We d. rate that ing challengi luation data
sels is a suitable task for machine learning and artificial intelligence.
Those machine generated data-sets consist, e.g., of traffic matrices
(demands), which are trained to maximize certain network met-
rics, e.g. the Flow Completion Time (FCT) in data centers. Using
an automated, data-aware and unified way of benchmarking (ie.,
attacking) algorithms, evaluation becomes more representative and
even reproducibility might be simplified.

Previous work on algorithm complexity attacks has already
shown methods for generating challenging, often called adversary,
algorithms inputs [8, 10, 13, 17, 18]. With the help of these inputs
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(1) Benchmarking Open vSwitch: NetBOA
N

VMware buys Nicira for $1.05 billion

VMware eyes software-defined networking as it aims to take its
virtualization efforts to the network.
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Network Traffic Generation in a Real Testbed: Setup TUTI

VM 1 VM 2

Traffic
Generator

Packets over time = Match Rule
open )
Forward

* DROP

vSwitch

Goal: Find network traffic configuration that maximizes CPU load
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How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.
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Configuration Space

How many packets to send? How should headers look like? What protocol to use? When to send
packets? Etc.
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Packet Inter Arrival Time VLANS
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qa I .
Human still > >
involved! Number of Network Batch Size

Packets [1000 — 5000] [1-5]
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(2) Measure until
confidence is reached
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Traffic

Sink

Generator vSwitch

(3) New measurement

(1) Set configuration

points
NetBOA 1
£ 50004 30
- —
(4) Machine learn y %
Acquisition Function performance model E
Maximize Expected Improvement 8 - .2\0.
U.pdate .Posterior § 1000 -
Fit Gaussian Process ]: T T T T |4 0

Inter arrival times [milliseconds]



Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter TUTI

Update Gaussian iteration 0 iteration 4 iteration 10

Process at
runtime
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|
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gives confidence

PU time/fs]
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0.01 N Stopping criteria
L] () [-) aborts search
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guides search
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OVS Performance for Number of Packets and Inter-arrival Times

NetBOA finds this implementation weak spot! 30% CPU increase!
5000 packets, -

IAT 1 ms

—

0-1 % CPU

'
20 % CPU

4000 packets,
IAT 3 ms

o

(N

Num. packets

—

1 3 5 7 9 11 13
IAT [ms]

= Performance models are non-trivial
= Surprising: Sending less network packets over time can lead to significantly higher CPU
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CENN CENN N N RN | | e e

Drop 1 Drop 1 Drop | 2 Drop 1 S triggers 2 times

2 Drop 2 Drop 3 Drop 2 Drop a COSt_ly_
3 Drop 3 Drop array res_lzmg
operation!

Drop :
Drop Drop N Drop

B 8- - ..-

_ Time
OvS rule timeout 10 seconds

= We are using the OvS switch with the Megaflow Cache enabled
= For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

-> Forcing OvS to continuously run through the array + resizing it
14
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Use Cases of this talk: data center network benchmarking
(1) Benchmarking Open vSwitch: NetBOA

Milliseconds
matter!!!

APACHE JZI

oar

o e SR, + >

cassandra

kubernetes

TUTI

() Security: VLAN C " Monitoring: Netflow,
IS isolation, traffic filtering %, sFlow, SPAN, RSPAN

Automated Control:
OpenFlow, OVSDB
Il %~ mgmt. protocol

QoS: traffic queuing
and traffic shaping

(2) Benchmarking Data Center
Traffic Scheduling Algorithms: TOXIN

Network flows arrive over time
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Routing algorithm takes decision over time
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Problem Scope: Flow Completion Time in Data Centers

The input: set of flows (a

population)
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The input: set of flows (a
population)

FL F2 F3 F4 F5 F6

Arrival Time | 12ms | 14ms | 17ms | 18ms | 21ms | 24ms

Source 3 4 13 2 3 12

Destination 14 12 7 7 1 6

Volume | 10ombit | 400Mbit| 90Mbit ' 200MBit, 9Mbit | 110Mbit
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The input: set of flows (a FCT: Flow Completion Time
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The input: set of flows (a FCT: Flow Completion Time
p 0 p u I atl O n) Arrival F1 Data has been transmitted
FI F2 F3 F4 F5 F6
Arrival Time | 12ms | 14ms | 17ms | 18ms | 21ms | 24ms F % R
0 Time
Source 3 4 13 2 3 12
Destination 14 12 7 7 1 6

Find the order of volumes such that:
1 N
argmax - E FCT(f;)

Fn i= 1

TOXIN: Use genetic algorithms to find challenging flow input

16



Flow-based Simulation Results of TOXIN for Data Center Networks
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Flow-based Simulation Results of TOXIN for Data Center Networks TUTI

Population with N = 30 flows

35% more challenging

| —— Optimized Input
—— Random Input

o
©

+ 0.25 sec

o
o)

o
~

Mean FCT per simulation

o
o

0 25 50 75 100
Generations

TOXIN creates more challenging input requests than random generation
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Flow Volume Over Time and Network Connections Over Time
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Larger flows go together on the same links! Makes sense ...




Summary TLTI

Adversarial input can harm your systems!

This talk: Data-Driven approach to automatically generate to find
weak spots, security holes ... to make your systems bullet-proof!

Information missing in this talk: measurement details, simulation details, details on the
used machine learning and artificial intelligence algorithms, ... anything else :D?

Use concepts like NetBOA and TOXIN to receive continuous feedback about
your solutions/implementations
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Thank youl!

Questions?
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