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… but this is also true for existing solutions by human!

Adversarial input is not only critical for self-driving networks …

It’s already a problem!

Machine Learning-

based solution

Solution designed by 

human

Adversarial InputAdversarial Input

Why?
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Our idea: Use ML to automatically find adversarial input to benchmark 

legacy and self-driving networks 
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Number of Network 

Packets [1000 – 5000]
Batch Size

[1-5]

Packet Inter Arrival Time 

[1ms – 13ms]

VLANs

[1-5]

Human still

involved!
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Bayesian Optimization: NetBOA for Inter Arrival Time (IAT) Parameter
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gives confidence
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▪ Performance models are non-trivial

▪ Surprising: Sending less network packets over time can lead to significantly higher CPU

0-1 % CPU

20 % CPU4000 packets, 

IAT 3 ms

5000 packets, 

IAT 1 ms

NetBOA finds this implementation weak spot! 30% CPU increase!



▪ We are using the OvS switch with the Megaflow Cache enabled

▪ For instance for 5000 packets: We trigger roughly every >2 ms a flow insertion + removal

→ Forcing OvS to continuously run through the array + resizing it

Why? Let Us Look At OvS Behavior!

14
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operation!
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(1) Benchmarking Open vSwitch: NetBOA

(2) Benchmarking Data Center 

Traffic Scheduling Algorithms: TOXIN

Routing algorithm takes decision over time

Network flows arrive over time

Milliseconds

matter!!!
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The input: set of flows (a 

population)

Source 

Destination 

Arrival Time

Volume Find the order of volumes such that:

FCT: Flow Completion Time

Time0

Arrival F1 Data has been transmitted

1

F1 F2 F3 F4 F5 F6

TOXIN: Use genetic algorithms to find challenging flow input
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Population with N = 30 flows

+ 0.25 sec

TOXIN creates more challenging input requests than random generation

35% more challenging



Flow Volume Over Time and Network Connections Over Time

18



Flow Volume Over Time and Network Connections Over Time

18



Flow Volume Over Time and Network Connections Over Time

18



Flow Volume Over Time and Network Connections Over Time

18

Larger flows go together on the same links! Makes sense …



Adversarial input can harm your systems!

This talk: Data-Driven approach to automatically generate adversarial input to find 

weak spots, security holes … to make your systems bullet-proof! 

Information missing in this talk: measurement details, simulation details, details on the 

used machine learning and artificial intelligence algorithms, … anything else :D?

Use concepts like NetBOA and TOXIN to receive continuous feedback about 

your solutions/implementations

Summary

19
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Thank you!

Questions?


