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A B S T R A C T

Background: A prerequisite for many eye tracking and video-oculography (VOG) methods is an accurate loca-
lization of the pupil. Several existing techniques face challenges in images with artifacts and under naturalistic
low-light conditions, e.g. with highly dilated pupils.
New method: For the first time, we propose to use a fully convolutional neural network (FCNN) for segmentation
of the whole pupil area, trained on 3946 VOG images hand-annotated at our institute. We integrate the FCNN
into DeepVOG, along with an established method for gaze estimation from elliptical pupil contours, which we
improve upon by considering our FCNN's segmentation confidence measure.
Results: The FCNN output simultaneously enables us to perform pupil center localization, elliptical contour
estimation and blink detection, all with a single network and with an assigned confidence value, at framerates
above 130 Hz on commercial workstations with GPU acceleration. Pupil centre coordinates can be estimated
with a median accuracy of around 1.0 pixel, and gaze estimation is accurate to within 0.5 degrees. The FCNN is
able to robustly segment the pupil in a wide array of datasets that were not used for training.
Comparison with existing methods: We validate our method against gold standard eye images that were artificially
rendered, as well as hand-annotated VOG data from a gold-standard clinical system (EyeSeeCam) at our in-
stitute.
Conclusions: Our proposed FCNN-based pupil segmentation framework is accurate, robust and generalizes well
to new VOG datasets. We provide our code and pre-trained FCNN model open-source and for free under www.
github.com/pydsgz/DeepVOG.

1. Introduction

Many disciplines in clinical neurology and neuroscience benefit
from the analysis of eye motion and gaze direction, which both rely on
accurate pupil detection and localization as a prerequisite step. Over
the years, eye tracking techniques have been contributing to the ad-
vancement of research within these areas. Examples include the ana-
lysis of attentional processes in psychology (Rehder and Hoffman,
2005) or smooth pursuit assessment in patients with degenerative
cerebellar lesions (Moschner et al., 1999). One important area of ap-
plication for eye tracking is vestibular research, where measurements of
the vestibulo-ocular reflex (VOR) and nystagmus behavior are essential
in the diagnostic pathway of balance disorders (Ben Slama et al., 2017).

Beyond neuroscientific applications, eye-tracking was also utilized by
autonomous driving industry for driver fatigue detection (Horng et al.,
2004). Other than that, the trajectories and velocities of eye movements
over a viewing task can serve as individual biometric signature for
identification purpose (Bednarik et al., 2005; Liang et al., 2012). In
consumer-behaviour research, eye-tracking has been used to study the
dynamics and locations of consumers’ attention deployment on pro-
moted products in order to improve the design of advertisement (Lohse,
1997; Reutskaja et al., 2011). It is clear that pupil detection and
tracking techniques build a fundamental block for eye movement ana-
lysis, enabling advancement in neuroscientific research, clinical as-
sessment and real life applications.

Despite their importance, robust, replicable and accurate eye
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tracking and gaze estimation remain challenging under naturalistic
low-light conditions. Most of the gaze estimation approaches, such as
Pupil-Centre-Corneal-Reflection (PCCR) tracking (Guestrin and
Eizenman, 2006) and geometric approaches based on eye shapes
(Krafka et al., 2016; Chen and Ji, 2008; Yamazoe et al., 2008; Yang and
Saniie, 2016; Ishikawa et al., 2004) depend on inferring gaze in-
formation from the pupil's location and shape in the image. However,
the pupil is not always clearly visible to the camera. As summarized in
(Schnipke and Todd, 2000), the pupil appearance can suffer from oc-
clusion due to half-open eyelids or eyelashes, from reflection of external
light sources on the cornea or glasses, from contact lenses or from low
illumination, low contrast, camera defocusing or motion blur. All these
artifacts pose challenges to pupil detection, and eye tracking algorithms
which were not specifically designed with these artifacts in mind, may
fail or give unreliable results under these circumstances.

In medical image analysis and computer vision, dramatic im-
provements in dealing with such artifacts have been achieved in
recent years due to the introduction and rapid advancement of deep
learning, specifically convolutional neural networks (CNN). An im-
portant distinction to hand-designed algorithms is that a CNN can
achieve robust pupil segmentation, by automatically learning a se-
quence of image processing steps which are necessary to optimally
compensate for all image artifacts which were encountered during
training.

1.1. Related work

Conventional gaze estimation is often based on the Pupil-Centre-
Corneal-Reflection (PCCR) method (Guestrin and Eizenman, 2006),
which requires accurate localization of the pupil centre and glints,
i.e. corneal reflections. Localization algorithms for the pupil and
glints are often based on image processing heuristics such as adaptive
intensity thresholding, followed by ray-based ellipse fitting (Li et al.,
2005), morphological operators for contour detection (Fuhl et al.,
2015a), circular filter matching (Fuhl et al., 2015b), Haar-like fea-
ture detection and clustering (Świrski et al., 2012), or radial sym-
metry detection (Kumar et al., 2009). It is important to note that
most of these approaches assume the pupil to be the darkest region of
the image (Fuhl et al., 2015a), which is susceptible to different il-
lumination conditions and may require manual tuning of threshold
parameters (Satriya et al., 2016; Kumar et al., 2009; Santini et al.,
2017). Previous to our approach, several deep-learning based pupil
detection approaches have been proposed to improve the robustness
to artifacts by learning hierarchical image patterns with CNNs. Pu-
pilNet (Fuhl et al., 2016) locates the pupil centre position with two
cascaded CNNs for coarse-to-fine localization. In Chinsatit and Saitoh
(2017), another CNN cascade first classifies the eye states of “open”,
“half-open” and “closed”, before applying specialized CNNs to esti-
mate the pupil centre coordinates, based on the eye state. However,
current CNN approaches output only the pupil centre coordinates,
which alone are not enough to determine the gaze direction without
calibration or additional information from corneal reflection. Some
studies focus on end-to-end training of a CNN, directly mapping the
input space of eye images to the gaze results (Krafka et al., 2016;
Naqvi et al., 2018), but they are confined to applications in specific
environment, such as estimating gaze regions on the car windscreen
(Naqvi et al., 2018) or mobile device monitors (Krafka et al., 2016),
which are not suitable for clinical measurement of angular eye
movement.

1.2. Contribution

In this work, we propose DeepVOG, a framework for video-oculo-
graphy based on deep neural networks. As its core component, we
propose to use a fully convolutional neural network (FCNN) for seg-
mentation of the complete pupil instead of only localizing its center.

The segmentation output simultaneously enables us to perform pupil
center localization, elliptical contour estimation and blink detection, all
with a single network, and with an assigned confidence value. We train
our network on a dataset of approximately four thousand eye images
acquired during video-oculography experiments at our institute, and
hand-labeled by human raters who outlined the elliptical pupil contour.
Though trained on data from our institute, we demonstrate that the
FCNN can generalize well to pupil segmentation in multiple datasets
from other camera hardware and pupil tracking setups. On consumer-
level hardware, we demonstrate our approach to infer pupil segmen-
tations at a rate of more than 100 Hz. Beyond pupil segmentation, we
re-implement a published and validated method for horizontal and
vertical gaze estimation and integrate it as an optional module into our
framework (Świrski and Dodgson, 2013). We show that the integration
of gaze estimation is seamless, given that our FCNN approach provides
elliptical pupil outline estimates. We further show that by considering
ellipse confidence measures from our FCNN output, the accuracy of the
gaze estimation algorithm can be increased. Our implementation is
fully Python-based and provided open-source for free usage in academic
and commercial solutions. Our code, pre-trained pupil segmentation
network and documentation can be found under: www.github.com/
pydsgz.

2. Materials and methods

2.1. Datasets

For this study, we acquired three datasets at the German Center for
Vertigo and Balance Disorders, two for training validation of the pupil
segmentation network and one for validation of the gaze estimation.
Training sequences were acquired in a challenging environment, i.e.
inside a MRI scanner, during a neuroscientific experiment setup in-
volving VOG and simultaneous functional MRI (fMRI) assessment. Both
training datasets were collected on a cohort of healthy young adults.
Training dataset A was acquired from 35 subjects (16 male, 19 female,
age 28.1 ± 4.0 years) in a fully darkened MRI scanner room. Training
dataset B was acquired from 27 subjects (8 male, 19 female, age
25.5 ± 3.7 years) in a scanner room with normal illumination. For
MRI-compatible recording, we utilized a commercial VOG system (NNL
EyeTracking Camera, NordicNeuroLab AS, Bergen, Norway), yielding
VOG videos at a 320× 240 pixel resolution and a framerate of 60 Hz.
Both datasets A and B contained video sections with challenging pupil
appearance, leading to high dropout rates of eye tracking and mis-lo-
calizations of the pupil center with two commercial eye tracking soft-
ware solutions (ViewPoint EyeTracker, Arrington Research, Arizona,
USA; EyeSeeCam, EyeSeeTec GmbH, F+1/4rstenfeldbruck, Germany).
Typical example images from both datasets are shown in Fig. 1. Pupil
detection failures occur e.g. due to highly dilated pupils in dark en-
vironments, dark circular borders from ocular mount gaps, hetero-
geneous illumination and pupil occlusion from ocular borders, eyelids
and eyelashes.

For network training, we randomly sampled 3946 eye image frames
from both datasets (training set A: 1539 frames, training set B: 2416
frames). Five human raters segmented the pupil in all images (one rater
per image), using a custom labeling tool implemented in Python, by
manual placement of at least five points on the visible part of the pupil
boundary, followed by least-squares fitting of an ellipse to the boundary
points.

Validation of the pupil segmentation performance was done on
the test images from datasets A (959 frames) and B (1043 frames),
i.e. images that were not seen by the network during training. In
order to test the generalization capability of our network to entirely
novel eye appearances, we tested its pupil detection performance on
previously unseen third-party data, including Delhi Iris Database
(Delhi) (Kumar and Passi, 2010), Labelled Pupil in the Wild (LPW)
(Tonsen et al., 2015) and Multimedia-University Iris (MMU Iris)
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(Multimedia-University, 2019). Furthermore, we acquired one more
set of video sequence data (Dataset C) at our institute, for the
quantitative validation of gaze estimation (see below). LPW and
MMU Iris were provided with labels of pupil centre coordinates in
their images, which enables quantitative analysis on our network's
performance of localizing pupil centers. To quantitatively validate
the segmentation accuracy on the other unlabelled datasets, we la-
beled pupils in a small subset of each dataset (cf. Table 1a). As a pre-
processing step, all images or video frames with different resolution
were resized to 320× 240 in pixel for the analysis.

Dataset C, the validation set for gaze estimation, was acquired from
9 healthy subjects (5 male, 4 female, age 33.8 ± 5.9 years), in the
neuro-ophthalmological examination laboratory of the German Center
for Vertigo and Balance Disorders. The setup included a commercial

system for clinical video oculography (EyeSeeTec GmbH,1 F+1/
4rstenfeldbruck, Germany; video resolution 320×240 pixels, 120 Hz
framerate). To calibrate each subject's gaze, a gold standard calibration
was performed using a projector-assisted five-point calibration para-
digm (8.5° horizontal and vertical gaze extent). For 3D eye model fitting
using our framework, each subject additionally performed two pro-
jector-free, unassisted calibrations with three trials each (for details, see
Section 2.5). To validate the accuracy of gaze estimates, each subject
underwent an oculomotoric examination comprising four clinical tests:
saccade test, fixation nystagmus, smooth pursuit and optokinetic nys-
tagmus. We then compare gaze estimates from our framework to

Fig. 1. Examples of input eye images in training dataset A (a, b, c) and dataset B (d, e, f). Observations and artifacts include: (a, b) pupil merging with dark
background from ocular edge, (b) motion blur, (c) eyelid occlusion, (d) clear pupils with glint reflection, (e) inhomogeneous illumination, (f) half occluded pupil with
dark iris. All images have a resolution of 320× 240 in pixel.

Table 1
(a) Difference between predicted and manually labelled pupil regions, measured in terms of median values (inter-quartile range) of Dice's coefficient, Euclidean
distance between pupil centers, and Hausdorff distance between pupil contours. Results on different datasets (blink images excluded for datasets A and B) are
shown. Notably, the DeepVOG network was only trained on datasets A and B, but is able to generalize with high pupil segmentation accuracy to the five other
datasets. (b) Blink detection rate analyzed on dataset A and B. Pupil ellipses with confidence<0.96 were classified as blink.

(a)

Datasets Dice's coefficient Euclidean distance (px) Hausdorff distance (px)

Dataset A &B (1892) 0.966 (0.948–0.976) 1.0 (0.6–1.6) 2.8 (2.0–4.0)
Dataset C (323) 0.97 (0.958–0.978) 0.9 (0.6–1.3) 2.8 (2.0–3.2)
Delhi (763) 0.978 (0.971–0.983) 0.8 (0.5–1.2) 2.8 (2.0–3.0)
LPW (466) 0.938 (0.914–0.957) 0.9 (0.6–1.4) 3.2 (2.2–4.0)
MMU Iris (167) 0.958 (0.947–0.968) 1.0 (0.6–1.4) 2.2 (2.1–3.0)
Blender (361) 0.965 (0.901–0.982) 1.8 (1.3–2.4) 3.6 (2.0–8.2)

(b)

Datasets Accuracy (%) Sensitivity (%) Specificity (%)

Dataset A &B (2002) 0.93 0.94 0.93

1 www.eyeseecam.com.
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estimates from the clinical gold standard calibration and system.

2.2. Pupil segmentation network

The general structure of deep CNNs features stacked convolutional
image filters and other signal processing layers (e.g. for image re-
sampling), arranged in a sequence of processing layers (LeCun et al.,
2015). These filters are trained towards optimally fulfilling a defined
goal given an input image, in this study the robust segmentation of
pupils, despite challenging appearance. Initially, i.e. before training,
these filters extract meaningless information from images and fail to
achieve the segmentation task. During training, the network is re-
peatedly presented with different pupil images and corresponding
human pupil segmentations as a gold standard, including highly chal-
lenging examples. By means of back-propagation of the residual seg-
mentation error through the network (LeCun et al., 2015), the filters in
the network weights gradually get adapted to compensate for artifacts
and iteratively make better and better estimates for the optimal pupil
area.

2.3. CNN architecture and pupil segmentation

Numerous architectures for medical image segmentation have been
proposed to date, and surveys like (Litjens et al., 2017) provide a good
entrypoint into this fast growing field. A well-established architecture is
the U-Net (Ronneberger et al., 2015), which has shown to be adaptable
to many segmentation problems in various medical imaging modalities.
For this work, we adapt a basic U-Net architecture for pupil segmen-
tation in 2D greyscale images. A U-Net consists of multiple layers of
feature extraction, which are arranged in a down-sampling path on the
left side and an up-sampling path on the right side. Horizontal skip
connections relay high-resolution image features from the down-sam-
pling path into the up-sampling path, in order to preserve high-fre-
quency image features and achieve a sharp segmentation output.

Our architecture is depicted in Fig. 2. Compared to the original U-
Net, we previously proposed several architectural changes as V-Net
(Milletari et al., 2016), which we partly adopt in this work as well. At
each stage of the up- and down-sampling path, we utilize a convolu-
tional layer with 10× 10 filters which outputs feature maps with the
same size of the input by appropriate padding. The down-sampling path
reduces the size of the feature maps and increases the size of receptive
fields of convolutional filters at each stage, such that more complex
features in a larger context can be extracted. Compared to
(Ronneberger et al., 2015), which performs down- and up-sampling

through pooling operations, we utilize strided convolution (2× 2 filter
kernel size, stride 2) for downsampling and transposed convolution
(Noh et al., 2015) for upsampling, which is more memory efficient
(Springenberg et al., 2014; Milletari et al., 2016) and able to learn
optimal down-/up-sampling filters.

The final output layer has two output maps for pupil and back-
ground, with the same size as the input layer (320× 240 pixels). We
employ a softmax layer (Litjens et al., 2017) to perform smooth max-
imum activation across regions. The prediction yields a probabilistic
output, to which we can fit an elliptical contour representing the pupil
center and eccentricity of the boundary. To determine the contour
points for ellipse fitting, we incorporate a simple post-processing on the
network's probabilistic prediction of the pupil foreground: the predic-
tion posterior is thresholded at a probability of p > 0.5, denoised
through morphological closing (Soille, 2003), and the largest connected
component is extracted to reject small false positive regions (cf. Fig. 3c).
For both pupil area and center, a detection confidence value can be
determined by computing the average prediction confidence within the
detected pupil area. Finally, a blink can be detected if this confidence
falls under a pre-defined threshold.

The pupil fitting procedure, including probabilistic network output,
post-processing and ellipse fitting, is depicted in Fig. 3. Importantly,
compared to previous approaches (Fuhl et al., 2016; Chinsatit and
Saitoh, 2017; Krafka et al., 2016; Naqvi et al., 2018), our fully con-
volutional approach does not require a cascade of several CNNs to
achieve the pupil detection, neither are we restricted to pure center
localization. Pupil segmentation, center estimation and blink detection
can be performed with a single FCNN, and outputs are assigned with
confidence values which can be further utilized for gaze estimation and
VOG evaluation.

2.4. Augmentation

To make the network more robust to expectable variations in
camera pose and eye appearance, we artificially enhance the training
dataset through random augmentation of image-segmentation pairs.
During training, we apply random rotation within the range of± 40°.
Images were further randomly translated in the range of± 20% of
height and width. We also applied random zooming by a factor of± 0.2
and random flipping in horizontal and vertical direction.

2.5. Gaze estimation

As derived by Świrski and Dodgson (2013), it is possible to

Fig. 2. Architecture of the fully convolutional neural network
(FCNN) for pupil detection, inspired by U-Net (Ronneberger
et al., 2015) and V-Net (Milletari et al., 2016). The network
takes a single eye image as input, and produces an image-sized
output with pixel-wise estimates for the pupil area. The net-
work consists of a sequence of convolutional image filters
which robustly extract features to distinguish the pupil from
the background. The numbers on the top-right corner of the
feature maps represent the number of filter channels. Several
down-sampling operations allow the network to localize and
segment the pupil at multiple image resolutions. In the up-
sampling path, the low-resolution image representation gets
inflated back to the original size, while reconstructing the
location and shape of the pupil. Horizontal skip connections
preserve high-frequency image information and sharp edges
throughout the down-/up-sampling operations. During
training, all image filters are tuned towards optimally com-
pensating for image artifacts encountered in the training set.
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reconstruct a 3D model of the eyeball and perform gaze estimation,
purely based on a set of estimated 2D pupil ellipses from a video se-
quence, and without further fixation-based or projector-assisted cali-
bration. Using the fitted 3D model, estimates of horizontal and vertical
gaze angles can then be derived in each frame of a newly recorded VOG
video, using the location and eccentricity of pupil ellipses. The re-
construction of the 3D eye model is based on the un-projection algo-
rithm by Safaee-Rad et al. (1992). Its extension to gaze estimation is
described in detail in Świrski and Dodgson (2013). Notably, it is as-
sumed that the eyeball is of spherical shape and the pupil is a perfect
circular disk (with varying radius) on the sphere surface, whose pro-
jections onto the camera's image plane form the 2D ellipse shapes. For a
detailed derivation of the eye model fitting theory and algorithm, we
refer the reader to (Świrski and Dodgson, 2013). Likewise, our Python-
based re-implementation of the method with documentation can be
found in our public code repository. Here, we want to emphasize that
this “self-calibration” method can be very well complemented by our
FCNN model, since it directly outputs a full segmentation of the pupil
and elliptical pupil outlines. In particular, we can make the 3D eye
model fitting more robust and gaze estimates more accurate by in-
corporating the confidence estimates of our FCNN into the fitting pro-
cedure. To this end, we extend the original formulae (6) and (9) in
(Świrski and Dodgson, 2013) by incorporating a confidence factor αi for
each image frame (and elliptical pupil estimate) that is considered
during 3D model fitting and gaze estimation. Our confidence-weighted
fitting formulae for the 3D eyeball center C and radius R can be denoted
as:

= <
>

0, confidence
1, confidence ,i

i

i (1)

=Ĉ I n̂ n̂ I n̂ n̂ p̂( ) ( )
i

i i i
T

i
i i i

T
i

1

(2)

= p CR 1
i i i

i i
(3)

Here, following the notation of (Świrski and Dodgson, 2013), Ĉ
denotes the projection of the eyeball center to the 2D image plane, in
which all projected pupil normals n̂i have to intersect, given projected
pupil centres p̂i estimated by the FCNN. The symbol p i is the inter-
section between p̂i and the parameterized line (C+ nt), as illustrated in
Fig. 4b.

To fit the 3D eyeball model, the camera needs to be fixed with re-
spect to the participant's head and eye, while the participant performs
some form of eye motion that yields sufficiently many image frames
with pupils of elliptical appearance. This can be achieved with different
unassisted calibration paradigms. In this study, we fit and compare the
3D eyeball model based on three such calibration paradigms. The mo-
tivation is to assess the robustness of gaze estimation against different
calibration methods and to discuss the requirements of a correct model
fitting protocol which maximizes the estimation performance. The first
paradigm is “Free-looking”. Here, participants need to keep their head
fixed, while freely and smoothly looking all around the periphery of
their visual field, thus yielding highly elliptical pupil appearances. The
second is inspired by “CalibMe”, a recently proposed unassisted cali-
bration approach for eye tracking, proposed by Santini et al. (2017).
Here, participants select a stationary marker in their visual field and
move their heads around it in a circular motion, while keeping her gaze
fixed at the selected marker. The third one is “narrow-ranged”, a pro-
jector-assisted calibration approach that is commonly utilized in clin-
ical eye-tracking systems and experiments. At our clinical center, par-
ticipants focus their gaze on five sequentially presented fixation points

Fig. 3. Procedure of fitting an ellipse to a probability map of segmented pupil area. (a) Original input image. (b) Probabilistic pupil prediction output from the
network. (c) Binarization of the output with threshold 0.5 and morphological closing for filling in small gaps. (d) Isolation of largest connected area, and extraction of
perimeter points of the area. (e) Fitted ellipse (blue line) from perimeter points. (f) Fitted pupil contour on the input image. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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located at the screen's centre in both horizontal and vertical direction
at± 8.5°. We investigate whether unassisted calibration is feasible
under these circumstances, which is particularly relevant towards a
retrospective evaluation of datasets in which large-range gaze angles
were not yet considered during the calibration protocol.

3. Results

3.1. CNN-based pupil detection results

3.1.1. Robustness
Our network successfully segmented the pupil areas in images under

difficult conditions such as occlusion from eyelid or eyelashes, specular
reflections, non-homogeneous illumination and naturalistic low-light,
leading to highly dilated pupils. Several examples are illustrated in

Fig. 5. It is also robust to glint reflection, motion blur, camera de-fo-
cusing, and even to the appearance of unexpected dark edges from off-
center ocular placement (see Fig. 5f), which is not a consistent feature
throughout the dataset.

3.1.2. Network validation
We tested the performance of DeepVOG on the testing images of

datasets A and B, which were similar to the training images but had not
been seen by the network during the training process. The accuracy of
pupil center detection is measured by the Euclidean distance (unit:
[pixel]) between the predicted and manually labelled pupil centers. The
accuracy of pupil area segmentation is computed by the Dice overlap
coefficient and Hausdorff distance. The Dice coefficient computes the
overlap between predicted and manually labelled areas of the pupil
(range …[0 1], with 1.0 indicating perfect overlap), while the Hausdorff

Fig. 4. Gaze estimation procedure, as adopted from Świrski
and Dodgson (2013). Given a set of FCNN-based pupil seg-
mentations in the camera image frame, the method re-
constructs a 3D eyeball geometry that optimally explains the
observed elliptic pupil projections. (a) Estimation of projected
eye sphere centre Ĉ . Gaze normals (yellow arrows, +n̂
pointing outward and n̂ pointing towards Ĉ) intersect in Ĉ ,
its location is approximated in a least-squares fashion. (b)
Estimation of eye sphere radius R. The orange line denotes the
possible candidates of pupil centres (p̂) after unprojection,
which intersects with the parameterized line (C+ nt) at p′.
The difference vector between p′ and C gives information
about eye radius R, and after the fitting stage, gaze direction
n′ (not shown here). For details, see (Świrski and Dodgson,
2013) and our documented open-source implementation. (For
interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Pupil detection results under different difficult or noisy conditions. Red lines are pupil ellipses manually labeled by human raters. Blue lines are pupil ellipses
fitted to the FCNN segmentations in DeepVOG. The resolution of images are 320× 240 in pixel. (a, b) Eyelid occlusion and dilated pupils. (c) Eyelashes occlusion. (d)
Camera de-focusing. (e) Motion blur and dark edge. (f) Contact lenses and non-homogeneous illumination. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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distance (unit: [pixel]) measures the maximum pupil contour distance
between prediction and manual labeling. Overall, the FCNN in
DeepVOG achieved a high accuracy in pupil tracking on the 2002 un-
seen images of datasets A and B (see Table 1a). The median Euclidean
distance was 1.0 pixel (IQR: 0.6–1.6 pixels), which is visually difficult
to discern in a 320× 240 image. The Dice coefficient (median=0.966)
and Hausdorff distance (median=2.8 pixels) further suggest that not
only the pupil centre, but the entire segmented pupil areas were highly
similar to the manually labelled ground truths.

3.1.3. Generalizability to other datasets
Test images from datasets A and B were similar to training images.

To test whether the network can generalize to images from other
completely novel datasets, we utilized a wide variety of datasets in-
cluding dataset C, Delhi, LPW, MMU Iris and artificially rendered eye
images using Blender. Fig. 6 shows an example image and segmentation
result for each of these datasets. Although images from Delhi, MMU Iris
and LPW differ significantly with the training datasets A and B in terms
of their illuminance, contrast, camera angles, shadows and reflection,

our network was still able to segment a perfect pupil shape. Particularly
in Fig. 6, the segmentation results are still robust against low pupil-
boundary contrast in dataset C and LPW, contact lenses in Delhi and
glasses in MMU Iris. On the other hand, there are a few failure cases in
novel datasets if the surrounding of the pupil is shadowed and com-
parably dark (cf. Fig. 7). Regarding quantitative measures in Table 1a,
the performance of pupil centre detection on the third-party datasets
LPW (median of Euclidean distance=0.9 pixels) and MMU Iris
(median of Euclidean distance=1.0 pixel) is on par with results on
datasets A and B, which our network was trained on. The accuracy of
pupil segmentation remains high on Dataset C and Delhi, as indicated
by the decent quantitative results of Dice's coefficient, Euclidean dis-
tance and Hausdorff distance. This demonstrates a robust detection of
pupil centres in unseen datasets, without much decrease of accuracy.

Among the datasets above, we tested the performance of DeepVOG
on artificially rendered eye images which we generated with a VOG
simulation (Świrski and Dodgson, 2014) in the 3D modeling software
“Blender”, as well as on oculomotoric examination data from our
clinical center (for details, see Sections 3.2 and 3.3). Here, a remarkable

Fig. 6. Generalization capability of the FCNN pupil segmen-
tation in DeepVOG. Examples of eye images (320× 240 in
pixel) from all datasets in this study. Left column: the original
image used as an input to the network. Middle: the output of
the network as a probability map of the pupil area. Right: the
ellipse fitting result based on the network's output. Light blue
contours denote the fitted ellipse by our model and red con-
tours denote the manually fitted ellipse (shown only in data-
sets A and B). It is noteworthy that even though the FCNN was
only trained on images from datasets A and B, the segmenta-
tion maps in all other datasets represent the pupil accurately
and with a high confidence. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the
web version of this article.)
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accuracy can also be observed for both datasets, which adds to the
impression that DeepVOG can generalize to new data distributions to a
great extent.

3.1.4. Blink detection
To realize blink detection, we utilize the fact that when the FCNN is

uncertain about the classification, it will yield a lower confidence es-
timate, which we calculate as the average confidence of the output pixel
values within the fitted ellipse area. Here we analyze how reliable this
confidence indicator is in identifying blinks. Table 1b shows that a
straightforward confidence thresholding is able to classify blinks with
high accuracy, sensitivity and specificity on dataset A and B where
image frames with during blinks (n=110) had also been manually
labelled.

3.1.5. Inference speed
The FCNN forward-pass and inference speed is important with re-

spect to real-time measurement of eye positions, as well as efficient
offline data analysis. We tested the forward inference speed of
DeepVOG network on a consumer-level workstation with a Nvidia GTX
1080 Ti graphics processing unit (GPU). The results show that
DeepVOG runs at a 30 Hz detection rate if segmentations are inferred
frame-by-frame (corresponding to 17ms latency). If segmentations are
computed in batches of 32 frames (i.e. 533ms latency), inference can
reach a framerate of more than 130 Hz (see Fig. 8), demonstrating the
potential of fast offline data inference, and real-time pupil detection

above 100 Hz and with latencies well below one second.

3.2. Gaze estimation on artificial data

Using the 3D modeling software “Blender”, we generated artificial
gold standard eye images and gaze directions using a dedicated VOG
simulation (Świrski and Dodgson, 2014). DeepVOG performed the pupil
centre detection on Blender's dataset with high accuracy, as indicated
by small Euclidean distances between the predicted centres and simu-
lation ground-truths (Table 2). Further, our model can estimate gaze
directions with very small angular errors at a median of around 0.5°.
We further investigated the effect of using only confident pupil seg-
mentations predicted by the network for 3D eye model fitting. If we
filter out gaze estimation results based on low-confidence network's
outputs, the median of angular errors is reduced by around 0.13° and its
upper-quartile by 0.2°–0.4°. Fig. 9 visualizes the comparison between
the predicted and ground-truth pupil centre coordinates. The visuali-
zation demonstrates a highly accurate performance on Blender images
for both pupil centre detection and gaze estimation, except at the top
left corner where the pupil shape becomes highly elliptical or barely
visible from the camera angle (example shown in Fig. 7). With con-
fidence thresholding, these relatively inaccurate predictions can be
identified and optionally omitted (cf. Fig. 9c and d).

3.3. Gaze estimation on clinical data

3.3.1. Accuracy and precision
We evaluated the gaze estimation accuracy of the DeepVOG fra-

mework, given three calibration paradigms (Free-looking, CalibMe and
narrow-ranged calibration), using the oculomotoric examination videos

Fig. 7. Examples of failed pupil segmentation results (320×240 in pixel). The light blue contour denotes the fitted ellipse by our model. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Prediction speed: Forward inference frequency (in frames per second) of
the FCNN in DeepVOG, with various input batch sizes at test time. At a batch
size and latency of 32 frames, the FCNN can segment pupils at a rate of more
than 130 Hz.

Table 2
Median (inter-quartile range) of absolute angular errors for horizontal and
vertical eye movements, as well as Euclidean distance between predictions and
simulation ground-truth. Confident prediction includes only data with pupil
segmentation confidence>0.96 while normal prediction includes all data.

Prediction type Absolute horizontal
angular errors (°)

Absolute vertical
angular errors (°)

Euclidean
distance (px)

Normal 0.61 (0.24–1.29) 0.51 (0.26–1.01) 1.78 (1.36–2.42)
Confident 0.45 (0.20–1.02) 0.38 (0.22–0.66) 1.56 (1.22–1.99)
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of 9 participants (Dataset C, cf. Section 2.1). Each examination was
repeated for 3 trials to assess the repeatability of each calibration
paradigm. Our gaze estimation results were validated against the results
of the clinical gold standard system (EyeSeeTec). An example of gaze
estimation results for the oculomotor examination video sequence is
shown in Fig. 10. The median angular errors range between 0.3° and
0.6° (Table 3a), which demonstrates an accurate detection of eye an-
gular movement. This also implies that the FCNN in DeepVOG is able to
generalize well to this novel dataset of oculomotoric examination vi-
deos, given that the correctness of gaze estimation is substantially de-
termined by the success of pupil area segmentation.

3.3.2. Robustness to self-calibration paradigm
All three self-calibration paradigms in this study enabled sub-degree

performance of angular eye movement tracking, demonstrating the
robustness to all three calibration paradigms. Nonetheless, there are
differences. The Free-looking and CalibMe paradigms produced less
angular errors than the narrow-ranged paradigm, as indicated in the
accumulative distributions of angular errors (Fig. 11a and b). Im-
portantly, in Świrski's and Dodgson's model (Świrski and Dodgson,
2013), the 3D eyeball parameters are more accurately fitted if a large
range of pupil motion and elliptical appearances is covered. Here, the
free-looking and CalibMe paradigms provide observations from a wider

distribution of gaze angles, while the narrow-ranged paradigm gives
only small gaze angles at five distinct directions, which is not diverse
enough for estimating an accurate 3D eyeball model. Consequently, this
leads to larger angular deviations.

3.3.3. Repeatability
To assess the repeatability of 3D eye model fitting, we computed the

intra-class correlation coefficient (ICC) across the measurements of
three trials of each calibration paradigm (Table 2b), using ICC's two-
way mixed effect, single-measures and absolute agreement model, i.e.
ICC(A,1). Results revealed that the gaze predictions from the three trials
achieved an excellent (ICC> 0.9, (Koo and Li, 2016)) reliability on
their absolute agreement. The high reliability of measurement implies
that DeepVOG can produce consistent and repeatable results across
several experiment trials. Again, the Free-looking and CalibMe cali-
brations lead to similar ICC values, which are higher than if only
Narrow-ranged gaze angles are used during 3D eye model fitting.

4. Discussion

In this manuscript, we describe DeepVOG, a novel eye-tracking
framework that uses fully convolutional neural networks to perform
pupil segmentation. It outputs pupil centers, pupil areas, elliptical

Fig. 9. Results of DeepVOG gaze estimations compared to gold-standard artificial eye images rendered with a VOG simulation (Świrski and Dodgson, 2014) in the 3D
modeling software Blender. (a) Predicted pupil centre positions (blue dots) by the FCNN on images rendered by Blender, overlaid on ground-truth centre positions
(red dots). (b) Predicted gaze directions by DeepVOG (blue dots) on rendered images, overlaid on ground-truth gaze directions (red dots). (c) Same figure as a, but
with unconfident pupil detections crossed out (confidence<0.96). (d) Same figure as b, but with the unconfident gaze estimation points shown as green dots. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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contour estimates and blink events, as well as a measure of confidence
for these values. In addition, gaze direction is estimated using an es-
tablished method for 3D spherical eyeball model fitting, which we
improve upon by incorporating confidence estimates from our network.
Our results show our FCNN-based pupil segmentation, center localiza-
tion and blink detection to be highly accurate and robust. Likewise,
FCNN-based elliptical pupil contours are accurate enough to be directly
used for robust, accurate and repeatable gaze estimation, which we
validated with a clinical gold standard VOG system.

4.1. Utility of DeepVOG

Traditionally, and in most related works, hand-engineered steps
such as thresholding, edge detection and rejection were used to seg-
ment the pupil area in images. Instead, we utilize a deep-learning model
to autonomously learn the optimal image filters and segmentation rules
from training data. The trained FCNN model yields robust pupil fitting
results even in noisy, underexposed and artifact-ridden images. Though
trained on hand-annotated data from our institute, we demonstrated a
high level of generalizability to new datasets from various eye tracking
setups, which is why we hope that DeepVOG can be readily used by
other research labs in the community. It should be emphasized that
DeepVOG can segment a pupil's shape robustly from low-contrast
images with heterogenous illuminance and highly dilated pupils. This
makes it particularly useful in low-light environments such as darkened

Fig. 10. Example gaze estimation results on an oculomotor examination video sequence (Dataset C). The blue line represents the estimations from DeepVOG and the
red line from the gold-standard clinical VOG setup and eye tracking system (EyeSeeCam, EyeSeeTec GmbH, F+1/4rstenfeldbruck, Germany). The oculomotor
examination comprises measurement of saccades, fixation nystagmus, smooth pursuit and optokinetic nystagmus (shaded regions, from left to right). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
(a) Absolute horizontal and vertical angular errors (in °), across calibration
paradigms (Free-looking, CalibMe and Clinical standard) and three trials. (b)
Intra-class correlation coefficient (ICC) as a measure for the repeatability of
DeepVOG method under each calibration paradigm.

(a)

1st Trial 2nd Trial 3rd Trial

Free-looking Free-looking Free-looking
Horizontal 0.364 (0.187–0.691) 0.383 (0.211–0.763) 0.404 (0.209–0.837)
Vertical 0.54 (0.2–1.223) 0.477 (0.191–1.116) 0.476 (0.189–1.16)

CalibMe CalibMe CalibMe
Horizontal 0.309 (0.158–0.557) 0.329 (0.165–0.717) 0.315 (0.158–0.574)
Vertical 0.569 (0.22–1.144) 0.591 (0.235–1.213) 0.565 (0.22–1.167)

Narrow-ranged Narrow-ranged Narrow-ranged
Horizontal 0.472 (0.191–1.209) 0.547 (0.208–1.464) 0.604 (0.235–1.512)
Vertical 0.561 (0.248–1.172) 0.59 (0.255–1.21) 0.567 (0.258–1.212)

(b)

Intra-class correlation coefficient Free-looking CalibMe Narrow-ranged

Horizontal 0.996 0.998 0.980
Vertical 0.996 0.998 0.958
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MRI scanner rooms, a scenario for which we had difficulties performing
eye tracking using established solutions. The unique feature of pupil
region segmentation separates DeepVOG from previously proposed
CNN-based approaches that only infer pupil centre coordinates (Fuhl
et al., 2016; Chinsatit and Saitoh, 2017). This not only allows gaze
inference based on pupil shape, but also enables other applications in
neuroscientific research. For example, a change in pupil size is an au-
tomatic response to affective stimuli and an objective measure for
emotional arousal (Bradley et al., 2008). The pupil segmentation may
then aid or even replace the extra measurements of skin conductance
and heart rate in some studies of emotion. Additionally, the output as a
probability map informs the user about the confidence of the segmen-
tation, which gives valuable information on data reliability, inter-
pretation and blink detection.

The pupil ellipse estimates and confidence estimates from our FCNN
lay the foundation for accurate gaze estimation with median angular
errors of around 0.5°, as compared to RMSE of 1.6° in the original study
of (Świrski and Dodgson, 2013), and 0.59° in EyeRecToo (Santini et al.,
2017), one of the best-performing, recently proposed methods. We
further show that if the network's confidence output is considered for
3D model fitting and gaze estimation, the accuracy can be further im-
proved to angular errors around 0.38°–0.45°. Such accuracy could im-
prove the validity of results in eye-tracking based experiments, for ex-
ample, clinical assessment of vestibular and ocular motor disorders as
well as visual attention studies in cognitive neuroscience. Further,
DeepVOG demonstrates a high repeatability given multiple trials of two
unassisted calibration paradigms, making it a stable tool for gaze data
acquisition. Naturally, a projector-assisted, fixation-based calibration
routine as in the neuro-ophthalmological examination laboratory of our
clinical center can further improve the accuracy of gaze estimates.
However, if such a procedure is impossible, for example due to hard-
ware constraints, or in patients with fixation problems, the investigated
unassisted calibration and gaze estimations in DeepVOG might be a
very interesting option. Finally, we highlight the accessibility of
DeepVOG as an open-source software, which does not depend on cor-
neal reflections or stimulus-based calibrations, leaving a head-mounted
low-cost camera as the only required equipment.

4.2. Limitations and future work

Even though DeepVOG's FCNN-based pupil segmentation can gen-
eralize well to unseen datasets, mis-segmentations still do occur (cf.
Fig. 7). In particular, if videos are recorded from a longer distance, thus
containing other facial features such as eyebrows or the nose, DeepVOG
is likely to fail, since it did not encounter such images during training.
Further, if DeepVOG is used for gaze estimation, our experiments de-
monstrated that a narrow-angle calibration yields inferior accuracy
during unassisted calibration. Hence, study conductors should make
sure that study participants cover a sufficiently wide angular range of
gaze directions (e.g. larger than 20°), to achieve highly elliptic pupil
shapes ideally in the entire visual periphery. A fundamental limitation
of the gaze estimation method which we employ in DeepVOG is the
assumption of a spherical eye model, as proposed by Świrski and
Dodgson (2013). Several improvements can be made here, since the
real pupil is not exactly circular, and elliptical shapes are distorted by
light refraction through the cornea. To this end, in a very recent work
by Dierkes et al. (2018) and Pupil Labs Research (Pupil Labs GmbH,
Berlin, Germany), the Le Grand eye model (Le Grand, 1968) was em-
ployed instead, which assumes the eye to consist of two intersecting
spheres, i.e. the eyeball and the cornea. The non-elliptical appearance
of pupils caused by corneal refraction leads to reported gaze estimation
errors similar to those observed in our experiments (cf. Fig. 9d). An
improved 3D eye model fitting loss function and algorithm were pro-
posed (Dierkes et al., 2018), which could help in further improving gaze
estimates in future work. Further, DeepVOG is not applicable in eye
tracking setups where no video can be recorded and provided as input
to the algorithm as a video file or as a real-time video stream. Certain
eye tracking systems, especially those operating at high frequencies
around 1 kHz (e.g. EyeLink 1000, SR Research, Ottawa, Canada),
commonly process eye tracking data internally and do not provide an
interface to high-quality video data in real-time and at a high framerate.

4.3. Conclusion

DeepVOG is a software solution for gaze estimation in neurological

Fig. 11. Cumulative frequency plots for absolute (a) horizontal and (b) vertical angular errors, for three calibration paradigms (free-looking, CalibMe and narrow-
ranged, represented by blue, green and red line respectively). To assess repeatability, each paradigm was repeated three times, represented by solid, dashed and
dotted lines, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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and neuroscientific experiments. It incorporates a novel pupil locali-
zation and segmentation approach based on a deep fully convolutional
neural network. Pupil segmentation and gaze estimates are accurate,
robust, fast and repeatable, under a wide range of eye appearances. We
have made DeepVOG's pupil segmentation and gaze estimation com-
ponents open-source and provide it to the community as freely avail-
able software modules for standalone video-oculography, or in-
corporation into already existing frameworks.

In future work, we aim to incorporate a large number of images
from third-party public eye datasets into training of the DeepVOG
FCNN. This would extend the FCNN's generalization capability and
robustness to an even wider variety of eye and pupil appearances and
avoid mis-segmentations that still do occur (cf. Fig. 7). An easy-to-use
graphical user interface will also be a focus of development. To this end,
it is possible to integrate our segmentation part into other existing
frameworks where gaze inference is based on pupil information, since
DeepVOG is modularised as two parts: pupil segmentation by FCNN and
gaze estimation by Świrski et al. model. Especially Pupil Labs Research
(Dierkes et al., 2018), with its more realistic Le Grand eye model (Le
Grand, 1968) and its Python-based open-source user interface,2 serves
as an inspiration to our next step of improvement.
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