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Motivated by extreme value theory, max-linear Bayesian net-
works have been recently introduced and studied as an alternative
to linear structural equation models. However, for max-linear sys-
tems the classical independence results for Bayesian networks are
far from exhausting valid conditional independence statements. We
use tropical linear algebra to derive a compact representation of the
conditional distribution given a partial observation, and exploit this
to obtain a complete description of all conditional independence rela-
tions. In the context-dependent case, where conditional independence
is queried relative to a specific value of the conditioning variables, we
introduce the notion of a source DAG to disclose the valid condi-
tional independence relations. In the context-independent case we
characterize conditional independence through a modified separation
concept, ∗-separation, combined with a tropical eigenvalue condition.
We also introduce the notion of an impact graph which describes how
extreme events spread deterministically through the network and we
give a complete characterization of such impact graphs. Our analysis
opens up several interesting questions concerning conditional inde-
pendence and tropical geometry.

1. Introduction. Max-linear graphical models were introduced in [16] to model causal
dependence between extreme events. The underlying graphical structure of the model is a
directed acyclic graph (DAG) and to emphasize this aspect, we shall here use the term max-
linear Bayesian network, to allow for generalizations and extensions (see Section 7.2 at the
end of this paper).

A max-linear Bayesian network is specified by a random vector X = (X1, . . . ,Xd), a
directed acyclic graph D = (V,E) with nodes V = {1, . . . , d}, non-negative edge weights
cij ≥ 0 for i, j ∈ V , and independent positive random variables Z1, . . . , Zd. These, known as
innovations, have support R> := (0,∞) and have atom-free distributions. Then X is specified
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by a recursive system of max-linear structural equations as

(1.1) Xi =
∨

j∈pa(i)

cijXj ∨ Zi, i = 1, . . . , d.

Without loss of generality, we assume that the basic probability space is Ω = RV
> equipped

with the standard Borel σ-algebra, so all randomness in the model originates from the inno-
vations Z1, . . . , Zd. The equation system (1.1) has solution

(1.2) Xi =
∨

j∈an(i)∪{i}

c∗ijZj , i = 1, . . . , d,

where an(i) denotes the set of nodes j where there is a directed path from j to i, and c∗ij
is a maximum taken over all the products along such paths (see [16], Theorem 2.2). Any
such path that realizes this maximum is called critical (max-weighted under C). The max-
linear coefficient matrix C∗ = (c∗ij) is also known from tropical algebra as the Kleene star of
C = (cij), cf. (2.3) below.

In [22], it was observed that the conditional independence properties for max-linear Bayesian
networks are very different from standard conditional independence properties of a Bayesian
network. In particular, they are often not faithful to their underlying DAG D. This means
that the usual d-separation criterion ([14]) on the DAG typically will not identify all valid
conditional independence relations, in contrast to the situation for most Bayesian networks
based on discrete random variables or linear structural equations. Example 1.1 below gives a
simple example of this phenomenon.

Example 1.1 (Diamond). Consider the DAG in Figure 1. The path 1→ 2→ 4 is critical

1

2

c21

3

c31

4

c42 c43

Fig 1: Diamond graph with the set K = {2} being observed, as indicated by shading. If c42c21 ≥
c43c31, it holds that X1⊥⊥X4 |X2.

if and only if c42c21 ≥ c43c31. If this is the case, the joint distribution of (X1,X2,X4) has the
representation

X1 = Z1, X2 = c21X1 ∨ Z2,

and

X4 = c42X2 ∨ Z4 ∨ c43X3

= c42(Z2 ∨ c21Z1) ∨ Z4 ∨ c43(Z3 ∨ c31Z1)

= c42Z2 ∨ c42c21Z1 ∨ Z4 ∨ c43Z3 ∨ c43c31Z1

= c42Z2 ∨ c42c21Z1 ∨ Z4 ∨ c43Z3 since c42c21 ≥ c43c31

= c42X2 ∨ Z4 ∨ c43Z3
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and hence we have X1⊥⊥X4 |X2 which does not follow from the d-separation criterion. Here,
the fact that 1 → 2 → 4 is critical renders the path 1 → 3 → 4 unimportant for the
conditional independence X1⊥⊥X4 |X2, even if 1→ 3→ 4 were also critical (that is, even if
c42c21 = c43c31). �

In Example 1.1, the complicating issue was associated with paths being critical or not.
However, this is not the only way standard d-separation fails. In Example 1.2 below, the
complications are associated with double colliders along a path.

Example 1.2 (Cassiopeia). We shall show later (see Example 4.2) that a max-linear
Bayesian network on the graph in Figure 2 will satisfy X1⊥⊥X3 |X{4,5} for all coefficient

1

4

2

5

3

Fig 2: The Cassiopeia DAG with observed nodes K = {4, 5}. Here it holds that X1⊥⊥X3 |X{4,5}.

matrices C. However, this conditional independence statement does not follow from the d-
separation criterion since the path from 1 to 3 is d-connecting relative to {4, 5}. �

Example 1.2 shows that not only are max-linear Bayesian networks often not faithful to d-
separation, but d-separation is not complete in the sense of [14] for conditional independence
in these networks. That is, there are conditional independence statements which are valid for
any choice of coefficients C, but cannot be derived from d-separation.

Also, in contrast to standard results for Bayesian networks, some conditional independence
relations are highly context-dependent, i.e. depend drastically on the particular values of the
conditioning variables, as in Example 1.3 below. To control this, we introduce the notion of
a source DAG C(XK = xK) for a given context {XK = xK}, see Definition 3.16 for details.

1 2

3 4 5

D

3

1 2

4 5

C(XK = xK)

Fig 3: The left-hand figure displays what we shall name the tent DAG D. For all coefficients
equal to 1, the source DAG C(XK = xK) for K = {4, 5} and x4 = x5 = 2 is obtained from the
left-hand figure by removing the edges 1→ 3 and 2→ 3, which become redundant in the context
{X4 = X5 = 2}.

Example 1.3 (Tent). Consider the DAG D to the left in Figure 3 with all edge weights
cij = 1. Let K = {4, 5} be the set of observed nodes; we seek all independence relations
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conditionally valid in the context X4 = X5 = 2. Writing out the model (1.1) we find

X1 = Z1, X2 = Z2, X3 = Z3 ∨X1 ∨X2

X4 = Z4 ∨X1 ∨X2 = 2

X5 = Z5 ∨X1 ∨X2 = 2.

Since Z1, . . . , Z5 are a.s. different given that the innovations have atom-free distributions, it
holds apart from a null-set that X1 ∨ X2 = Z1 ∨ Z2 = 2. This introduces bounds on the
innovations: Z1, Z2, Z4, Z5 ≤ 2, and on X3: X3 ≥ 2. Also, we then have

X1 = Z1, X2 = Z2, X1 ∨X2 = 2, X3 = Z3 ∨ 2,

X4 = Z4 ∨ 2 = 2

X5 = Z5 ∨ 2 = 2,

whence we conclude that X3⊥⊥ (X1,X2) |X4 = X5 = 2, since now the dependence of X3 on
X1,X2 has disappeared. This independence statement is reflected in the lack of edges 1→ 3
and 2→ 3 in the source DAG C(X4 = X5 = 2), shown to the right in Figure 3. �

In this paper we give a complete description of valid conditional independence statements
for a given matrix C, conditional independence statements that hold for all C supported on a
given DAG D, as well as those that depend on the specific values of the conditioning variables.

We achieve this by introducing three separation criteria. These are less restrictive than
d-separation, as they focus on paths that are critical (see Example 1.1), do not have multiple
colliders (see Example 1.2), and, for a given context, refer to the source DAG, obtained by
removing edges that are redundant in the context (see Example 1.3).

Before we state and prove results for conditional independence, we investigate how extreme
events at selected nodes spread through the network. We define impact graphs g as realizations
of a random graph on V , containing the edge j → i ⇐⇒ Xi = c∗ijZj , i.e. if Xi is realized
(determined) by Zj (see Definition 3.1). Since the distributions of the innovations are atom-
free, it holds with probability one that any node i has at most one parent in such a graph. We
give a complete description of all impact graphs with positive probability in Theorem 3.3.
As we shall see in Remark 2, the impact graphs index partitions of the innovation space into
regions of linearity for the max-linear map in (1.2).

Impact graphs can be compatible with a context {XK = xK} or not, and vice versa, a
context {XK = xK} can be possible under a certain impact graph or not. For instance, for
the Cassiopeia graph in Example 1.2, the possible impact graphs are: the empty graph, all
subgraphs with a single edge, and the four subgraphs with two edges displayed in Figure 4.
On the other hand, the impact graph g2 implies that X4 > X5, so only events satisfying this
restriction are possible under g2.

The union of all impact graphs compatible with a context {XK = xK} describes all possible
ways that an extreme innovation could spread across the network while conforming with the
context. However, as seen in Example 1.3, the given context can cause max-linear combina-
tions of variables to be constant under specific scenarios, such that they do not influence the
distribution of random variables Xv, v /∈ K as expected. This effect is taken care of by the
removal of edges to yield the source DAG C(XK = xK) compatible with the context.

Moreover, we classify all nodes into non-constant nodes (active) and constant nodes with
specific properties (see Proposition 3.18). This classification plays an important role when
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1 2 3

4 5

g1

1 2 3

4 5

g2

1 2 3

4 5

g3

1 2 3

4 5

g4

Fig 4: The four impact graphs with two edges in the Cassiopeia Example 1.2. Suppose all co-
efficients are equal to one. Then, only the impact graphs g2 and g4 are compatible with the
context {X4 = 3, X5 = 2}, whereas only the impact graph g3 is compatible with the context
{X4 = X5 = 2}, see Example 3.9 below.

modifying the solution in (1.2) to obtain a compact representation of the conditional distri-
bution.

This compact representation is given in Theorem 4.3 and can be seen as a version of
Theorem 6.7 in [16] and of Theorem 1 in [31]. More precisely, [31] studies a general max-
linear model where the max-linear coefficient matrix C∗ is not necessarily the Kleene star of
a max-linear Bayesian network, hence not necessarily idempotent; they further give a more
detailed description of the conditional distribution, using a collection of hitting scenarios,
describing specific elements of Z which obtain their upper bounds. An important endeavour
of the present article is to further identify characteristics of the hitting scenarios, exploiting
the graphical structure of the model, and this is done in Theorem 4.3.

We formulate three different theorems to clarify conditional independence for max-linear
Bayesian networks. All three have the following structure, using what we shall term ∗-
separation (⊥∗) in appropriate derived DAGs.

Theorem Let X be a max-linear Bayesian network over a directed acyclic graph D = (V,E).
Then for all I, J,K ⊆ V ,

I ⊥∗ J |K in D̃ =⇒ XI ⊥⊥XJ |XK

The DAG D̃ — derived from D, C, and the specific context {XK = xK}— depends on the
situation and we distinguish the following three: Theorem 5.13 refers to a fixed C and also
a fixed context {XK = xK}, thus yielding conditional independence relations that are valid
for the particular values xK ; Theorem 5.15 considers a fixed coefficient matrix C and also
yields additional independence relations that may depend on C; whereas Theorem 5.16, the
coefficient matrix C is arbitrary with support included in D and this yields all conditional
independence relations that are universally valid under these conditions. In all three scenarios,
the derived DAG D̃ is different, and the ∗-separation has to be considered in this derived
DAG. In addition, we give conditions for these criteria to be complete in the sense of [14],
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that is, they yield all conditional independence statements that are valid under the specified
conditions.

The paper is organized as follows. In Section 2 we introduce basic concepts and notation.
We define the impact graphs, describing how effects of extremes spread to other variables, and
the source DAG, describing the possible sources for a given value of observations, in Section 3.
Section 4 is devoted to deriving a compact representation of the conditional distribution and
the conditional independence results are stated and proved in Section 5. Section 6 is devoted to
the discussion of completeness. We conclude by indicating potential future work and research
directions in Section 7.

2. Preliminaries.

2.1. Graph terminology. We use the same graph notation as in [22]. A directed graph is a
pair g = (V,E) of a node set V = {1, . . . , d} and edge set E = {j → i : i, j ∈ V, i 6= j}. An
edge j → i points from j to i, with j called a parent of i and i is a child of j. In a graph g,
the set of parents of i is pag(i) and the set of children of i is chg(i). A path between i and j
of length n is a sequence of distinct nodes [j = k0, k1, . . . , kn = i] such that kr−1 → kr ∈ E
or kr → kr−1 ∈ E for all r = 1, . . . , n and we say that i and j are connected. A graph is
connected if there is a path between any two vertices.

A directed path from i to j has kr−1 → kr ∈ E for all r. If there is a directed path from
j to i in g, we say that j is an ancestor of i and i a descendant of j. Such a directed path
is a directed cycle if i = j. A directed acyclic graph (abbreviated DAG) is a directed graph
with no directed cycles. A DAG is well-ordered if all edges point from low to high, that is,
j → i =⇒ j < i. A connected DAG is a tree if every node has at most one parent. The root
of a tree is the unique node in the tree without parents. The height of a tree is the length
of the longest directed path in the tree. A forest is a collection of trees. A star is a tree of
height at most one, and we call a forest of stars a galaxy. For a forest g on node set V and
i ∈ V , we let Rg(i) denote the root of the tree containing i and R(g) denotes the set of roots
in g. A matrix A ∈ Rd×d

≥ defines a weighted directed graph D(A), where j → i ∈ D(A) if and
only if its edge weight aij > 0. The weight of a path π in D(A) is then the product of its edge
weights.

2.2. Tropical linear algebra. A number of theorems in our paper are proved using tech-
niques from tropical linear algebra. Here we recall some essential facts of this field. For a
comprehensive text, we recommend [5] and [8]; see also [19] and [27].

Tropical linear algebra is linear algebra with arithmetic in themax-times semiring (R≥,∨,⊙),
defined by

a ∨ b := max(a, b), a⊙ b := ab for a, b ∈ R≥ := [0,∞).

Note that many authors (including those above) use the isomorphic semirings max-plus or
min-plus, but we have chosen max-times to conform with the literature on extreme value the-
ory. The operations extend to Rd

≥ coordinate-wise and to corresponding matrix multiplication

for A ∈ Rm×n
≥ and B ∈ R

n×p
≥ as

(A⊙B)ij =

n
∨

ℓ=1

aiℓbℓj
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and we also write

λ⊙ x = (λx1, . . . , λxd) for λ ∈ R≥ and x ∈ Rd
≥ .

The recursive structural equation system in (1.1) can be rewritten as the following tropically
linear equation

X = C ⊙X ∨ Z(2.1)

where C = (cij) ∈ RV×V
≥ and X,Z ∈ RV

>. We consider the weak transitive closure ([8, Section
1.6.2]) Γ = Γ(C) = (γij) of C given as

Γ = Γ(C) =

d−1
∨

k=1

C⊙k.(2.2)

Here γij > 0 if and only if there exists a directed path in D(C) from j to i, and γij equals
the maximum weight over all such paths. We name D∗(C) the weighted reachability DAG of
D(C) and D∗ the unweighted counterpart. When D(C) is a DAG, by [5, Theorem 3.17], (2.1)
can be solved uniquely for X as

(2.3) X = C∗ ⊙ Z,

where C∗ = I ∨ Γ is the Kleene star of C. Since Kleene stars are idempotent, that is,
C∗ ⊙ C∗ = C∗, we also have

(2.4) X = C∗ ⊙X.

If V is well-ordered, the matrix C is lower triangular and so are Γ and C∗. The Kleene star
C∗ corresponds to the max-linear coefficient matrix B in [16], [22], and in particular, [16,
Theorem 2.2] is a special instance of [5, Theorem 3.17]. For K ⊆ V we let

(2.5) LCK =
{

xK : ∃z ∈ RV
> with xK = (C∗ ⊙ z)K

}

denote the image of the projection to K-coordinates of the max-linear map determined by
C∗. A matrix A = (aij) ∈ Rd×d

≥ has tropical eigenvalue λ and tropical eigenvector x ∈ Rd
≥ if

(2.6) A⊙ x = λ⊙ x.

The maximum geometric mean of weights along a directed cycle in D(A) is the maximum
cycle mean of A, denoted λ(A). Note that if D(A) is acyclic then λ(A) = 0. For any matrix
A, the number λ(A) ≥ 0 is always a tropical eigenvalue, called the principal eigenvalue of
A [8, Theorem 4.2.4]. A cycle achieving the maximum mean is a critical cycle. Similarly, a
vector x ∈ Rd

> is called a tropical subeigenvector of A for λ > 0 if

(2.7) A⊙ x ≤ λ⊙ x.

The following fact about tropical subeigenvectors will be useful.

Proposition 2.1. Let A ∈ RV×V
≥ . We then have

(a) There exists x ∈ RV
> such that A⊙ x ≤ x if and only if λ(A) ≤ 1.
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(b) Suppose λ(A) = 1, S ⊆ V is the union of the support of its critical cycles, and that
x ∈ RV

> satisfies A⊙ x ≤ x. Then ASS ⊙ xS = xS.
(c) There exists x ∈ RV

> such that A⊙ x < x if and only if λ(A) < 1.

Proof. Statement (a) is shown in [8, Theorem 1.6.18]. Now we prove (b). First consider
the case S = V . Let x be such that A⊙x ≤ x. Fix any i ∈ V . Then i belongs to some critical
cycle σ of length r that achieves the tropical eigenvalue. For each edge v → u in this cycle,
A⊙ x ≤ x implies

(2.8) auvxv ≤ xu.

Therefore,

∏

v→u∈σ

auv ≤
∏

v→u∈σ

xu
xv

= 1 since σ is a cycle.

But σ is critical, so
∏

v→u∈σ

auv = c(σ) = λr = 1.

Thus all the inequalities in (2.8) must be equalities; that is, auvxv = xu for all nodes u, v in
the support of σ. In particular, this holds for u = i. Thus, for the edge v → i ∈ σ,

xi ≥ (A⊙ x)i ≥ aivxv = xi.

So (A ⊙ x)i = xi. Since i was chosen arbitrarily, it follows that A ⊙ x = x. Now suppose
S ⊂ V . Let S̄ = V \S. Then

xS ≥ (A⊙ x)S = ASS ⊙ xS ∨ASS̄ ⊙ xS̄ ≥ ASS ⊙ xS .

Since λ(ASS) = 1, applying the previous argument to ASS gives ASS ⊙ xS = xS .
Now we prove (c). Suppose λ(A) < 1. Let x be an associated eigenvector to the principal

eigenvalue of A. Then A ⊙ x = λ(A)x < x. For the converse, if A ⊙ x < x it also satisfies
A ⊙ x ≤ x so by (a) we have λ(A) ≤ 1. If λ(A) = 1 then by (b), there exists some S ⊆ V ,
|S| ≥ 2, such that ASS ⊙ xS = xS . But then

xS = ASS ⊙ xS ≤ (A⊙ x)S < xS ,

a contradiction. Thus λ(A) < 1.

We recall one more useful fact from tropical linear algebra which will be used in the proof
of Theorem 5.15.

Lemma 2.2 ([8], Lemma 1.6.19). Let A ∈ RV×V
≥ with λ(A) = 1 and eigenvector x ∈ RV

>.
Let σ be a critical cycle in A. Then for all edges v → u ∈ σ,

auvxv = xu.
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2.3. Conditional independence. Conditional independence is concerned with probability
distributions on product spaces X =

∏

i∈V Xi, where Xi are measurable spaces. For I ⊆ V
we write xI = (xv , v ∈ I) to denote a generic element in XI =

∏

v∈I Xv, and similarly
XI = (Xv)v∈I . If P is a probability distribution on X , we use the short notation

I ⊥⊥J |K ⇐⇒ XI ⊥⊥XJ |XK

where ⊥⊥ denotes probabilistic conditional independence w.r.t. P.
Graphical models identify conditional independence relations through a separation criterion

⊥σ applied to a graph. A probability distribution ofX is faithful to ⊥σ if for all disjoint subsets
I, J,K of V ,

I ⊥⊥J |K ⇐⇒ I⊥σJ |K.

Thus the distribution of X is in particular Markov w.r.t. ⊥σ. Such a separation criterion is,
for example, given by d-separation ⊥D ([14]) for a given DAG D; see for example [23], [25],
or [26] for further details.

3. Auxiliary graphs. In this section we introduce the concept of an impact graph, an
impact graph compatible with a context, and a source DAG. These are devices that translate
probabilistic statements to graph-theoretic and algebraic statements, and at the same time
keep track of all deterministic relationships in a max-linear Bayesian network.

3.1. The context-independent impact graph.

Definition 3.1. Consider the max-linear Bayesian network (2.1) with fixed coefficient
matrix C. The (context-independent) impact graph is a random graph G = G(Z) on V
consisting of the following edges:

j → i ⇐⇒ Xi = c∗ijZj

and we let E(g) = {z ∈ RV
> : G(z) = g} denote the event that {G = g}.

In the following, we let G = G(C) denote the set of impact graphs for a given coefficient
matrix C, i.e. impact graphs with positive probability.

Remark 1. Since the distributions of the Zj are atom-free, it holds with probability one
that any node i has at most one parent and thus if P(E(g) > 0), i.e. g ∈ G, g will be a forest.
We shall only consider configurations of Z that conform with this and we emphasize that we
are only ignoring a null-set in Ω = RV

>.

Remark 2. Define the restricted Kleene star C∗
g as

(3.1) (C∗
g )ij =











1 if i = j ∈ R(g)

c∗ij if j → i ∈ g

0 otherwise.

The impact graphs induce a partition of RV
> into regions where the map Z → X is linear with

matrix C∗
g . In other words, we have an alternative representation of X as

(3.2) X = C∗ ⊙ Z
a.s.
= C∗

G ⊙ Z = C∗
GZ,
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where the product in the rightmost expression is a standard linear matrix product as C∗
G has

exactly one positive number in each row. See also Example 3.7 below.

The main result of this section is Theorem 3.3, which gives a precise and complete char-
acterization of all impact graphs G in a max-linear Bayesian network (2.1). To establish this
characterization, we need to define the impact exchange matrix of a given forest g. Recall
that chg(i) denotes the set of children of i in g (Section 2.1).

Definition 3.2. Consider a DAG D with coefficient matrix C and Kleene star C∗ and
let g be a forest with root set R = R(g). The impact exchange matrix M(g) = M(g,C∗) of g
with respect to C∗ is an |R| × |R| matrix with entries defined by mrr = 0 for all r ∈ R, and
for r 6= r′:

(3.3) mrr′ := max
i∈chg(r)

c∗ir′

c∗ir
.

Note that mrr′ = 0 if chg(r) = ∅. Finally, recall from Section 2.2 that D∗ is the reachability
DAG and λ(M(g)) is the principal eigenvalue ofM(g). We now have the following fundamental
theorem:

Theorem 3.3. Consider a max-linear Bayesian network with coefficient matrix C and
Kleene star C∗. Then g ∈ G if and only if the following four conditions hold:

(a) g is a subgraph of D∗.
(b) g is a galaxy, i.e. a forest of stars.
(c) If j → i in g and c∗ij = c∗ikc

∗
kj then k 6→ i and j → k in g.

(d) λ(M(g)) < 1.

Before we proceed to the proof of this result, some explanation of the elements of the
theorem might be appropriate. Theorem 3.3 describes all possible impact scenarios. With
probability one, any outcome of the max-linear Bayesian network has a system of (extreme)
root variables ZR and the value at all other nodes will be a.s. constant and appropriate
multiples of these, their impact spreading across the network as determined by the galaxy
g ∈ G.

The conditions (a) and (b) in Theorem 3.3 are necessary, but not sufficient. To understand
condition (d), consider the definition of the impact exchange matrix M(g). Intuitively, the
entry mrr′ measures the worst possible relative cost for a node i to be reassigned from root r to
root r′ in g. The graph induced by positive entries ofM(g) may have directed cycles. A directed
cycle in this graph starting at a root r creates an inequality involving Zr. Condition (d) of
Theorem 3.3 ensures that this inequality can be satisfied. The following example shows that a
violation of the condition on the principal eigenvalue λ(M(g)) of the impact exchange matrix
M(g) yields an inconsistent model, even if the other conditions are satisfied. The argument
in this example also illustrates the key step in the proof that establishes the necessity of
condition (d).

Example 3.4 (Bipartite). Consider the weighted graph D with weights given in Figure 5.
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1 2

3 4

D(C)

1

2

1

2
1 1

1 2

3 4

λ(M(g)) = 2

g

Fig 5: Bipartite DAG: The subgraph g to the right is not an impact graph for the weighted DAG
D(C) to the left as it violates the principal eigenvalue condition (d).

The subgraph g to the right in Figure 5 satisfies conditions (a)-(c) of Theorem 3.3. However,
it fails to satisfy condition (d) because

M(g) =

[

0 2
2 0

]

,

since

m12 = max
i∈chg(1)={3}

c∗i2
c∗i1

=
c∗32
c∗31

=
1

1/2
= 2, m21 = max

i∈chg(2)={4}

c∗i1
c∗i2

=
c∗41
c∗42

=
1

1/2
= 2.

Then λ(M(g)) = 2 > 1, so g is not an impact graph. Indeed if it were, 1 → 3 would imply
X3 = 1

2Z1 > Z2 but 2 → 4 would imply X4 = 1
2Z2 > Z1 and thus Z1 > 2Z2 > 4Z1, which is

inconsistent since Z1 > 0. �

Proof of Theorem 3.3. First we show that all conditions are necessary. Let g ∈ G. If
c∗ij = 0, then Xi > 0 = c∗ijZj , which means that j → i /∈ g. So g is a subgraph of D∗, and this
proves (a). As noted in Remark 1, g must be a forest. To establish (b), we shall argue that
any tree in the forest has height at most one. Suppose j → i ∈ g. Then

Xi = c∗ijZj > Zi on E(g).

Now, for any k ∈ V , either c∗ki = 0 so i→ k /∈ g by (a), or by the idempotency of (2.4),

Xk ≥ c∗kic
∗
ijZj > c∗kiZi on E(g),

and therefore there is no edge i→ k in g. This proves (b).

Now consider the triple of nodes in (c). By (b), k → i /∈ g. Since j → i we have as before

Xi = c∗ijZj on E(g).

Using (2.4) again, we know that Xi ≥ c∗ikXk. Then c∗ij = c∗ikc
∗
kj yields

Xk ≥ c∗kjZj =
c∗ij
c∗ik

Zj =
Xi

c∗ik
≥ Xk on E(g)

and hence we must have the equality Xk = c∗kjZj on E(g). This proves (c).
For condition (d), if λ(M) = 0 then it is certainly less than 1. So assume λ(M) > 0. There
exists a critical cycle r1 ← r2 · · · ← rk ← r1 with r1, . . . , rk ∈ R such that

(3.4) 0 < (λ(M))k = mr1r2mr2r3 . . . mrkr1 .
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In particular, this implies each edge in the cycle is not 0, so for each edge, say, r2 → r1, there
exists a node i ∈ V that achieves this maximum so that r1 → i in g and

c∗ir2
c∗ir1

= mr1r2 .

Now, since r1 → i in g and i has at most one parent, this implies c∗ir1Zr1 > c∗ir2Zr2 , whereby
Zr1 > mr1r2Zr2 by rearranging. Tracing this cycle, we obtain the equation

Zr1 > (mr1r2mr2r3 . . . mrkr1)Zr1 .

Dividing by Zr1 > 0, we obtain from (3.4) that λ(M) < 1. Thus, all four conditions are
necessary.

To see that they are sufficient, let g be a graph that satisfies all four conditions. Let ǫ > 0
be an arbitrarily small constant, and

(3.5) α = max
i,j,k,ℓ:c∗ji,c

∗

ℓk
>0

c∗ℓk
c∗ji

.

Let v be a tropical eigenvector of M for λ(M) < 1. This means

(M ⊙ v)r = λ(M)vr < vr,

for vr > 0, so that the event

E = {vr > Zr > (M ⊙ v)r for r ∈ R s.t. vr > 0 , Zr > αǫ for r ∈ R s.t. vr = 0,

and Zj < ǫ for j /∈ R}.

satisfies P(E) > 0. We now argue that E is a subevent of E(g). Since the collection of events
{E(g) : g ∈ G} partitions the innovation space Z, the event E must be partitioned into finitely
many events E ∩ E(g′1), · · · , E ∩ E(g

′
s), each with positive probability. By definition of g, each

i belongs to a unique star with root r. Under the event E , for all r′ ∈ R, r′ 6= r,

Zr > max
r′

mrr′vr′ > max
r′

mrr′Zr′ ,

therefore, Zr > mrr′Zr′ that is, c∗irZr > c∗ir′Zr′ whence r′ 6→ i for all g′ ∈ {g′1, . . . , g
′
s}.

Similarly, for any r′ /∈ R with c∗ir′ > 0,

c∗irZi > c∗irα ≥ c∗ir
c∗ir′

c∗ir
ǫ > c∗ir′Zr′

and hence r′ 6→ i in any of g′ ∈ {g′1, . . . , g
′
s}. Thus r → i in any g′ and we must have E ⊆ E(g),

so P(E(g)) ≥ P(E) > 0, as needed.

Example 3.5 (Half-butterfly). Let D be the weighted DAG given in the leftmost part of
Figure 6. Its weighted reachability DAG D∗(C) is shown to its right. For example, we have
c∗41 = c∗43c

∗
31 = 3.

Now consider two different subgalaxies g1 and g2, shown on the right of Figure 6. We shall
see that g2 is an impact graph for the given coefficient matrix C while g1 is not. Indeed,
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1

3
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4 5

1
0.
5

3
3

4

D(C)

1

3

2

4 5

3
3 1.5

D∗(C)

1

3

2

4 5

3 4

0.5

g1

1

3

2

4 5

1

3 4

g2

Fig 6: The half-butterfly graph D(C) and its weighted reachability DAG D∗(C) where only edge
weights for additional edges are indicated. The galaxy g1 is not an impact graph for this DAG,
while the galaxy g2 is.

g1 /∈ G as it violates the triangle condition (c) in Theorem 3.3: 1 → 4 ∈ g1 and c∗41 = c∗43c
∗
31

but 1 → 3 /∈ g1. On the other hand, 1 → 3 ∈ g2 as required. Furthermore, g2 has impact
exchange matrix given by

M(g2) =

[

0 1
2

3
4 0

]

,

because

m12 = max
i∈chg2 (1)={3,4}

c∗i2
c∗i1

= max

{

1/2

1
,
3/2

3

}

=
1

2
, m21 = max

i∈chg2 (2)={5}

c∗i1
c∗i2

=
c∗51
c∗52

=
3

4
.

We have then λ(M(g2)) =
√

1
2 ·

3
4 =

√

3
8 < 1 and so condition (d) also holds. We con-

clude by Theorem 3.3 that g2 ∈ G. A possible realization in terms of Z is given by Z =
(z1, z2, z3, z4, z5) = (2, 3, 0.1, 0.4, 0.2) leading to X = (x1, x2, x3, x4, x5) = (2, 3, 2, 6, 12). �

The following simple lemma shall be used in the subsequent analysis.

Lemma 3.6. Consider the max-linear Bayesian network (2.1) with fixed coefficient matrix
C. Let g ∈ G be an impact graph with root set R = R(g). Then it holds for all z ∈ E(g) that

(3.6) M ⊙ zR ≤ zR

where M = M(g,C) is the impact exchange matrix of g and zR = (zr)r∈R is the truncation
of z to the root set.

Proof. Let Z ′ = {z does not satisfy (3.6)}. Note that Z ′ decomposes as the union of
R(R− 1) sub-events Z ′

rr′ , where

Z ′
rr′ = {mrr′zr′ > zr}.

We shall next show that E(g)∩Z ′
rr′ = ∅ for each pair r, r′ ∈ R, r 6= r′. Suppose for contradiction

that there exists some z ∈ E(g) ∩ Z ′
rr′ . By definition, mrr′ = maxi∈chg(r)

c∗
ir′

c∗ir
. Let i ∈ chg(r)

be a node that achieves this maximum. Then z ∈ Z ′
rr′ implies

c∗ir′zr′ > c∗irzr.
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But now the max-linear representation of X implies that on Z ′
rr′ ,

xi 6= c∗irzr

which contradicts that r → i in g. Hence we conclude that E(g) ∩ Z ′
rr′ = ∅ and thus further

that
E(g) ∩ Z ′ = E(g) ∩

⋃

rr′

Z ′
rr′ = ∅,

as needed.

3.2. Impact graphs compatible with a context. As mentioned in Remark 2, the impact
graphs represent a partition of the innovation space Z = RV

> into regions of linearity. We can

also represent these as linear maps Lg : z ∈ R
R(g)
> 7→ x ∈ RV

> via

Lg(z)r = zr, Lg(z)i = c∗irzr iff r → i in g.

We shall illustrate this in a small example.

Example 3.7 (Bipartite). Consider again the DAG and coefficient matrix of Example 3.4.
Figure 7 displays all impact graphs for this DAG, save for their symmetric counterparts.

1 2

3 4

g1

1 2

3 4

g2

1 2

3 4

g4

1 2

3 4

g6

1 2

3 4

g8

Fig 7: Impact graphs G for the bipartite DAG in Figure 5. There are a total of eight such graphs,
the remaining three (g3, g5, and g7) obtained by the reflection (1, 3)↔ (2, 4) of g2, g4, and g6.

Of the 16 edge-induced subgraphs of the DAG D, only nine are forests and one of them,
displayed to the right in Figure 5, violates the principal eigenvalue condition; so there are
eight valid galaxies left, five of which are displayed in Figure 7, and the remaining three
obtained by appropriate relabeling. The max-linear map is

C∗ ⊙ z =









1 0 0 0
0 1 0 0
1
2 1 1 0
1 1

2 0 1









⊙









z1
z2
z3
z4









=









z1
z2

1
2z1 ∨ z2 ∨ z3
z1 ∨

1
2z2 ∨ z4









and the corresponding matrices C∗
g for the pieces of linearity are









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
1
2 0 0 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

















1 0 0 0
0 1 0 0
1
2 0 0 0
1 0 0 0

















1 0 0 0
0 1 0 0
0 1 0 0
1 0 0 0









mapping z respectively into








z1
z2
z3
z4

















z1
z2
1
2z1
z4

















z1
z2
z3
z1

















z1
z2
1
2z1
z1

















z1
z2
z2
z1









.
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These maps can also be considered as maps Lg from the root set to the node set and would
then have matrices









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0
0 1 0
1
2 0 0
0 0 1

















1 0 0
0 1 0
0 0 1
1 0 0

















1 0
0 1
1
2 0
1 0

















1 0
0 1
0 1
1 0









where the roots (1, 2, 4) in g2 have been renumbered as (1, 2, 3). Indeed these matrices are
simply obtained by removing zero-columns in the first set of matrices. Note that the rank rg
of the maps are all equal to rg = |R(g)|, the number of stars in the galaxy, i.e. 4, 3, 3, 2, 2 in
these cases. �

Definition 3.8. Let now K ⊆ V and ΠK(x) = xK the projection onto the coordinates
in K. For xK ∈ L

C
K we define

(a) A graph g ∈ G is compatible with the context {XK = xK} if the following are true:

(i) E(g) ∩ {XK = xK} 6= ∅.

(ii) the rank of ΠK ◦ Lg is minimal among those g ∈ G which satisfy (i).

(b) The set of compatible graphs g is called the impact graphs for the context {XK = xK},
denoted G(XK = xK).

(c) We further say that the context {XK = xK} is possible if G(XK = xK) 6= ∅ and possible
under g if g ∈ G(XK = xK). Else the context {XK = xK} is said to be impossible or
impossible under g respectively. For brevity we shall also use the expression that xK is
possible.

Note that although all events of the form {XK = xK} have probability zero, we are now
distinguishing between those that are exceptions from events of the form E(g) (impossible
contexts) and those that are not (possible contexts). In other words, xK might still satisfy
xK ∈ L

C
K as defined in (2.5), without being possible. In the following we shall only pay

attention to possible contexts. Furthermore, this definition also applies to the special case
K = V so we now can speak about {X = x} being possible or impossible under g ∈ G.

The rank condition (a) (ii) ensures that if any subevent E(g∗) includes xK and the map
ΠK ◦ Lg∗ has higher rank than ΠK ◦Lg, then the entire collection of contexts {XK = xK} in
the image of ΠK ◦ Lg is a null-set in E(g∗). Therefore, the set of points in LCK that are not
possible has measure zero and can be ignored when discussing conditional distributions.

Example 3.9. Consider the Cassiopeia graph in Example 1.2 with all coefficients equal to
one and the event {X4 = X5 = 2}. The impact graphs g3 and g4 are the only impact graphs
among those in Figure 4 that satisfy condition (i) in Definition 3.8, as the other impact graphs
imply strict inequalities between x4 and x5. In addition, the empty galaxy, and all galaxies
with a single edge satisfy condition (i). However, the rank of ΠK ◦ Lg3 is one, whereas the
rank of all other maps ΠK ◦Lg is two. Hence only g3 is compatible with {X4 = X5 = 2}. �

Definition 3.10. Suppose {XK = xK} is possible. Say that Xj is a.s. constant on {XK =
xK} if there exists x∗j ∈ R> such that

{XK∪j = xK∪j} is possible if and only if xj = x∗j .
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Similarly, Xj is a.s. constant on {XK = xK} ∩ E(g) if there exists x∗j ∈ R> such that

{XK∪j = xK∪j} is possible under g if and only if xj = x∗j .

Define the set of constant nodes on {XK = xK} as

K∗ := K∗(XK = xK) := {j ∈ V : Xj is a.s. constant on {XK = xK}}

and nodes that are constant under g as

K∗(g) := K∗(XK = xK , g) := {j ∈ V : Xj is a.s. constant on {XK = xK} ∩ E(g)}.

Note that K ⊆ K∗ ⊆ K∗(g) for specific g ∈ G. Often these inclusions can be strict (see
Example 3.14). The following lemma characterizes these sets. Recall from Theorem 3.3 that
each impact graph g ∈ G is a galaxy.

Lemma 3.11. Suppose g ∈ G(XK = xK) and S = V (σ) is the node set of a star σ in the
galaxy g. Then, either

(a) S ∩K 6= ∅, in which case S ⊆ K∗(g) and we call S a constant star; or
(b) S ∩K = ∅, in which case S ∩K∗(g) = ∅.

In particular,

K∗(g) =
⋃

σ∈g:S∩K 6=∅

V (σ).

Proof. (a) Note that if j → i ∈ g, then on E(g), Xi = c∗ijZj and thus Xi = c∗ijXj .
Therefore, if either Xi or Xj is a.s. constant on {XK = xK} ∩ E(g), then both must be a.s.
constant. So if one node in S is in K, all nodes in S must be in K∗(g). This proves (a).
(b) Let R be the set of root nodes in g, R1 ⊂ R be the set of root nodes for all stars S
in g such that S ∩ K = ∅, and Rc = R \ R1 be the set of roots of the constant stars.
By the first statement, Xr is a.s. constant for all r ∈ Rc on E(g) ∩ {XK ∈ xK}. Indeed, on
E(g)∩{XK = xK}, M⊙zR ≤ zR by Lemma 3.6. Furthermore, by the minimal rank condition,
we must have strict inequality, that is, M⊙zR < zR. This equation splits up into the following
lower and upper-bounds for zR1 in terms of zRc :

MR1Rc ⊙ zRc < zR1 ,(3.7)

MRcR1 ⊙ zR1 < zRc .(3.8)

Since g ∈ G(XK = xK), the upper and lower bounds cannot coincide. In particular, there
exist two values of xr such that {XK∪r = xK∪r} is possible under g. This implies that
R1 ∩ K∗(g) = ∅, and since R1 are the roots, none of their children can be in K∗(g). This
completes the proof.

Example 3.12 (Bipartite). Consider again the DAG and coefficient matrix of Example 3.4
and let K = {3}. Figure 8 again displays impact graphs for this DAG, now with the constant
nodes shaded. Nodes are constant in the context {X3 = x3} if and only if they belong to the
same star as the node 3. �

Lemma 3.13 below identifies a crucial property of a compatible impact graph.
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Fig 8: Impact graphs in G(X3 = x3) for the DAG in Figures 5 and 7. Shaded nodes are constant
under g for the context {X3 = x3}, i.e. elements of K∗(g). These are nodes that are in the same
star as the node 3.

Lemma 3.13. Let g ∈ G be an impact graph. If g is compatible with the possible context
{XK = xK}, we have for all i, j, h ∈ V that

xh
c∗hj

<
xi
c∗ij

, h, i ∈ K∗(g) =⇒ j 6= Rg(i),(3.9)

∃j ∈ V :
xh
c∗hj

=
xi
c∗ij

, h, i ∈ K∗(g) =⇒ Rg(i) = Rg(h).(3.10)

Proof. Consider (3.9). Clearly j 6= i; suppose then for contradiction that j → i. Since
i ∈ K∗(g), Lemma 3.11 implies that j ∈ K∗(g). Then xi = c∗ijxj, so (3.9) implies that
xh/c

∗
hj < xi/c

∗
ij = xj , so xh < c∗hjxj. But xh ≥ c∗hjxj , a contradiction. Now consider (3.10).

Write r = Rg(i) and r′ = Rg(h). Then xi = c∗irxr and xh = c∗hr′xr′ . Suppose for contradiction
that r 6= r′. Substituting into the hypothesis of (3.10) we get

c∗hr′

c∗hj
xr′ =

c∗ir
c∗ij

xr,

which is a linear relation on the roots xr and xr′ of two different stars in g. But this contradicts
that g has minimal rank according to Definition 3.8 and thus {XK = xK} is not possible under
g. Hence (3.10) must hold.

Example 3.14 (Half-butterfly). Consider again the DAG and coefficient matrix C of
Example 3.5 and the context {XK = xK} where K = {4, 5} and x4 = x5 = 1. We claim that
K∗ = {3, 4, 5}, {x4 = x5 = 1} = {x4 = x5 = 1, x3 = 1/3}, and that there are exactly two
impact graphs compatible with this context, depicted in Figure 9.

To see this, let g ∈ G(X4 = X5 = 1). Since x4/c
∗
43 = 1/3 = x5/c

∗
53, apply (3.10) with

i = 4, h = 5, j = 3, we have that 4 and 5 belong to the same star in g, with common
root Rg(4) = Rg(5). By Theorem 3.3(a), Rg(4) ∈ {1, 2, 3, 4}, and Rg(5) ∈ {1, 2, 3, 5}. So
Rg(4) = Rg(5) implies Rg(4) = Rg(5) ∈ {1, 2, 3}. On the other hand, it also holds that
x5/c

∗
52 = 1/4 < 1/1.5 = x4/c

∗
42. Then (3.9) implies that 2 /∈ pag(4), so Rg(4) = Rg(5) ∈ {1, 3}.

By Theorem 3.3(b), g is a star so each node can not have more than one parent. So either
Rg(4) = Rg(5) = 1, or that Rg(4) = Rg(5) = 3. In the second case, 1 and 2 are left as
isolated roots. In the first case, 1 → 4 implies that 1 → 3 too by Theorem 3.3(c), that is,
3 must belong to the same star with 1 as a root. This gives the two impact graphs to the
right in Figure 9. In both cases, there is at most one non-isolated root, so M(g) has no cycles
and thus λ(M(g)) = 0 < 1. Thus both graphs are in G(X4 = X5 = 1). By Definition 3.10,
K∗ = {3, 4, 5}, X3 = 1/3 on {X4 = X5 = 1}, so {X4 = X5 = 1} = {X4 = X5 = 1,X3 = 1/3}.

We can double-check that G(X4 = X5 = 1) = G(X4 = X5 = 1,X3 = 1/3) by computing
the latter set of graphs. Let g ∈ G(X4 = X5 = 1,X3 = 1/3). Apply (3.10) with i = j = 3 and
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Fig 9: Impact graphs g3 and g4 for the half-butterfly compatible with the context {X4 = X5 = 1}
are displayed to the right. To the left, the original DAG D(C) and its weighted reachability DAG
D∗(C) are shown.

h = 5 implies Rg(3) = Rg(5). By Theorem 3.3(a), Rg(3) ∈ {1, 2, 3} and Rg(5) ∈ {1, 2, 3, 5}.
Therefore, Rg(5) 6= 5. Apply (3.9) with j = 2, i = 3 and h = 5 implies that 2 6= Rg(3). So
Rg(3) ∈ {1, 3}. The two cases Rg(3) = 1 and Rg(3) = 3 yield the two impact graphs to the
right in Figure 9 as expected. �

Remark 3. Although in Definition 3.1 we have defined the impact graph G = G(Z) (for
almost all Z), G can also be expressed in terms of X, as we indeed have for any g ∈ G which
is compatible with {X = x} that

(3.11) j → i ∈ g =⇒ xi/xj = c∗ij on E(g)

since on E(g) we must have j ∈ R(g) and thus Xj = Zj. Hence with probability one there is a
unique g ∈ G that is compatible with {X = x}. Another way of expressing this is to say that
the map z → g is almost surely σ(X)-measurable, where σ(X) is the sigma-algebra generated
by the max-linear map z → x given by x = C∗ ⊙ z.

3.3. The source DAG. Impact graphs describe how extreme events at their roots spread
deterministically to other nodes. In this section we shall capitalize on this, but from the
perspective of identifying which are the possible sources of extreme values responsible for a
given possible context of the form {XK = xK} (see Definition 3.8(c)). This will eventually
make it possible for us to answer interesting queries concerning conditional independence.

We first let I(XK = xK) denote the union of impact graphs which are compatible with the
context:

(3.12) I(XK = xK) =
⋃

g∈G(XK=xK)

g

and we shall refer to this as the total impact graph and note that it is a subgraph of the
reachability DAG D∗. In other words, this graph yields all possible ways that impact could
have spread across the network in a way that conforms with the observation {XK = xK}.

Definition 3.15. Let K ⊂ V and K∗(g) the set of constant nodes under g as in Def-
inition 3.10. An edge j → i in I(XK = xK) is redundant in the context {XK = xK} if
either
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• j ∈ K∗, or
• i /∈ K∗ and Xj is a.s. constant under all g ∈ G(XK = xK) that contains the edge.

The set of redundant edges is denoted E− = E−(XK = xK):

(3.13) E− = {j → i : j ∈ K∗ or i /∈ K∗ and ∀g ∈ G(XK = xK), j → i ∈ g ⇒ j ∈ K∗(g)}.

Definition 3.16. The source DAG C(XK = xK) of a possible context {XK = xK} is the
graph obtained from I(XK = xK) by removing redundant edges as defined in (3.13).

Example 3.17 (Tent). Consider the DAG D to the left in Figure 10 with all edge weights
cij = 1. Let K = {4, 5} and x4 = x5 = 2. Note that I(XK = xK) = D(C). However,
C(XK = xK) is the strict subgraph of I(XK = xK) obtained by removing the dashed edges
from the graph to the right in Figure 10 .

1 2

3 4 5

D = I(XK = xK)

3

1 2

4 5

C(XK = xK)

Fig 10: Tent graph: To the left, this displays D(C) = D∗(C) = I(XK = xK) when all coefficients
are equal to 1. To the right, the source DAG C(XK = xK) for K = {4, 5} and x4 = x5 = 2 is
obtained by removing the dashed edges, which are redundant.

The edge 1→ 3 is in E− since 1 is constant under all impact graphs containing this edge,
and similarly with the edge 2 → 3. To see this, note that 1 → 3 ∈ g ∈ G(X4 = X5 = 2) if
and only if 1 → 4, 1 → 5 ∈ g, which then implies 1 ∈ K∗(g). Therefore, 1 → 3 /∈ C(X4 =
X5 = 2) by (3.13). A similar argument applies to the edge 2→ 3. From the node partition of
Proposition 3.18 below we see that the active nodes are A = {1, 2, 3} and the constant nodes
K∗ = K = L = {4, 5}. �

We first prove some results on the structure of the source DAG before linking it up to prob-
abilistic statements. In particular we establish that the source DAG admits a nice partition
structure, see Figure 11 for an illustration.

Proposition 3.18. Fix a possible context {XK = xK}, let I = I(XK = xK) and C =
C(XK = xK) be the corresponding total impact graph and source DAG, respectively. Then for
either of these graphs, its node set V can be partitioned into disjoint sets A∪U ∪H∪L, where

(a) A: a ∈ A ⇐⇒ a /∈ K∗ is the set of active nodes (non-constant);
(b) U : u ∈ U ⇐⇒ u ∈ K∗ and ∃k ∈ K∗, k 6= u such that xu = c∗ukxk
(c) H: h ∈ H ⇐⇒ h ∈ K∗ and ∃g ∈ G(XK = xK) such that h ∈ R(g), and
(d) L: ℓ ∈ L ⇐⇒ ℓ ∈ K∗\(H ∪ U)

In addition, we have the following.

(e) For all k ∈ H ∪ L, paC(k) = paI(k).
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(f) For k, k′ ∈ H ∪ L, k 6= k′, either paC(k) ∩ paC(k
′) = ∅ or paC(k) = paC(k

′) 6= ∅.
(g) If h ∈ H, then paC(h) ∩ paC(k) = ∅ for all k ∈ H ∪ L, k 6= h.
(h) The set H ∪ L can be partitioned into equivalence classes where k ≡ k′ ⇐⇒ paC(k) =

paC(k
′). Under this equivalence relation, elements of H are singletons, and L is parti-

tioned into disjoint subsets L = L1 ∪ · · · ∪ Lm.
(i) Any ℓ ∈ L has at least two parents.
(j) For all a ∈ A and ℓ ∈ L, there exists some i ∈ paC(ℓ) such that i /∈ paC(a).

Proof. By definition, V = A ∪ U ∪H ∪ L, and all pairs are mutually disjoint except for
possibly U and H. Indeed, suppose u ∈ U . Let k ∈ K∗ be such that xu = c∗ukxk, k 6= u. Let
g ∈ G(XK = xK). By (3.10), Rg(u) = Rg(k). But D is a DAG, so c∗uk > 0 implies c∗ku = 0,
so in particular, u 6= Rg(k), hence, u cannot be a root in g. Thus u /∈ H, so U ∩H = ∅. This
proves (a) to (d). Consider (e). By definition, paC(k) ⊆ paI(k). Suppose for contradiction
that the containment is strict, that is, there exists some i ∈ V such that i → k ∈ I but
i → k /∈ C. Then i → k ∈ E−. Since k ∈ K∗, we must have i ∈ K∗. Then k ∈ U , so
k /∈ H ∪ L, a contradiction. This proves (e). Consider (f). Let k, k′ be two such nodes. Let
i ∈ paC(k) ∩ paC(k

′). If this set is empty then we are done. Otherwise, consider xk/c
∗
ki and

xk′/c
∗
k′i. If one of these two quantities are bigger, then either i → k or i → k′ is not in g

for all g ∈ G(XK = xk) by (3.9), so i /∈ paC(k) ∩ paC(k
′). So these two quantities must be

equal. By (3.10), for all g ∈ G(XK = xK), pag(k) = pag(k
′). Thus paI(k) = paI(k

′). Since
k, k′ ∈ H ∪ L, (e) then implies (f). Now consider (g). Suppose for contradiction that there
exists some k ∈ H ∪ L such that paC(h) = paC(k). As argued previously, this implies h and
k cannot be the root of any g ∈ G(XK = xK). So in particular, h /∈ H, and we obtain the
desired contradiction. Statement (h) follows immediately from (f) and (g). Now we prove
(i). Suppose for contradiction that ℓ ∈ L has only one parent i ∈ V . Since i → ℓ /∈ E−,
i → ℓ ∈ I(XK = xK). In other words, for all g ∈ G(XK = xK), Rg(ℓ) = i. By Lemma
3.11(a), this implies i ∈ K∗, so ℓ ∈ U , a contradiction, as desired. Now we prove (j). Suppose
for contradiction that there exists some a ∈ A and ℓ ∈ L such that paC(ℓ) ⊆ paC(a). Let
r ∈ paC(ℓ) be a node with smallest coefficient c∗ajxℓ/c

∗
ℓj among j ∈ paC(ℓ), that is,

c∗ar
xℓ
c∗ℓr
≤ c∗aj

xℓ
c∗ℓj

for all j ∈ paC(ℓ).

Since r → a ∈ C(XK = xK), there exists some g ∈ G(XK = xK) such that r → a ∈ g and
r /∈ K∗(g). Thus this implies r→ ℓ /∈ g, so there exists some j ∈ paC(ℓ) with j → ℓ ∈ g. Since
g is a galaxy, j → a /∈ g. Then by definition, on the event E(g), j → ℓ ∈ g and r → ℓ /∈ g
together imply

xℓ = c∗ℓjZj > c∗ℓrZr.

Rearranging gives

c∗ajZj = c∗aj
xℓ
c∗ℓj
≥ c∗ar

xℓ
c∗ℓr

> c∗arZr,

but this contradicts the fact that j → a /∈ g and r→ a /∈ g, since these two imply

Xa = c∗aj′Zj′ < c∗arZr.

So we have a contradiction, as needed.
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H

L1 L2

Fig 11: Illustration of the partitioning in Proposition 3.18. Nodes in H and L are gray, nodes in
U are blue. Active nodes A are white or yellow, where the yellow nodes are parents of constant
nodes in K = H ∪ L ∪ U . All edges, including the dashed edges, are in I(XK = xK), while only
the solid edges are in C(XK = xK).

The nodes in U have no direct effect on the conditional distribution, as their effect is
mitigated through their (constant) parents. Proposition 3.18 is illustrated in Figure 11.

Corollary 3.19. Let C(XK = xK) be the source DAG of a possible context {XK = xK}
and consider the node partition V = A ∪K∗ = A ∪H ∪ L ∪ U as given by Proposition 3.18.
If j → i ∈ g for some g ∈ G(XK = xK), j, i /∈ K∗ and j ∈ K∗(g), then j → h ∈ g for some
h ∈ H ∪ L.

Proof. Let S = V (σ) ⊆ V be the set of nodes in the star σ with root j in the galaxy
g. Since G(XK = xK) = G(XK∗ = xK∗), apply Lemma 3.11(a) to G(XK∗ = xK∗) giving
S ∩K∗ 6= ∅. Let u ∈ S ∩K∗. If u /∈ U , then take h = u and we are done. Else, by Proposition
3.18, there exist some h 6= u, h ∈ K∗ such that xu = c∗uhxh. By Theorem 3.3(c), j → h ∈ g, so
h ∈ S ∩K∗. If h /∈ U then we are done, else we repeat the above argument once more to find
another node in S ∩K∗. Since D is a DAG, every time we repeat this argument we obtain
a new node. Since the graph is finite, this procedure eventually terminates and returns some
node h ∈ S ∩K∗ and h /∈ U . By Proposition 3.18, h ∈ K ∪ L.

4. Representing the conditional distribution. Before we derive conditional inde-
pendence results, we need to have a good control of conditional distributions in a max-linear
Bayesian network. We first derive a basic representation in Section 4.1 and subsequently a
more compact representation without redundancy in Section 4.2.

4.1. Basic representation. Let K ⊂ V and K̄ = V \ K. The conditional distribution
of XK̄ |XK = xK can be represented by a system of max-linear equations over a tropical
polyhedron in the ZK̄ variables [13, 19, 29]; more precisely, we have:
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Proposition 4.1. The following is a representation for X |XK = xK with respect to the
innovations Z

(4.1) XK = C∗
KK
⊙ xK ∨ C∗

KK
⊙ ZK ,

where the distribution of Z is that of independent components, conditioned to satisfy

(4.2) xK = C∗
KK ⊙ ZK ∨ C∗

KK
⊙ ZK .

Proof. By (2.4) we have X = C∗ ⊙X so

X ≥

[

0 0
C∗
KK

0

]

⊙

[

XK

XK

]

.

Now, X = C∗ ⊙ Z, therefore,

X =

[

0 0
C∗
KK

0

]

⊙

[

XK

XK

]

∨ C∗ ⊙ Z and X =

[

C∗
KK C∗

KK̄
C∗
K̄K

C∗
K̄K̄

]

⊙

[

ZK

ZK

]

.

Writing out these equations, we obtain

XK = C∗
KK
⊙ xK ∨ C∗

KK
⊙ ZK ∨ C∗

KK
⊙ ZK ,(4.3)

xK = C∗
KK ⊙ ZK ∨ C∗

KK
⊙ ZK .(4.4)

The second equation is (4.2). For the first equation, note that c∗ii = 1 for all i, so xK ≥ ZK .
Thus C∗

KK
⊙ xK ∨C∗

KK
⊙ ZK = C∗

KK
⊙ xK , so (4.3) is equivalent to (4.1). Thus the context

{XK = xK} is equal to the conjunction of the events (4.2) and (4.4). The result follows.

Example 4.2. We now illustrate Proposition 4.1 for the Cassiopeia graph of Figure 2
in Example 1.2. Assume that we have cji = c∗ji = 1 for all edges in this DAG and let
xK = (x4, x5). Then (4.1) becomes





X1

X2

X3



 =





0 0
0 0
0 0



⊙

[

x4
x5

]

∨ I3 ⊙





Z1

Z2

Z3



 =





Z1

Z2

Z3



 ,

whereas (4.2) becomes

[

x4
x5

]

=

[

1 0
0 1

]

⊙

[

Z4

Z5

]

∨

[

1 1 0
0 1 1

]

⊙





Z1

Z2

Z3



 .

This means that x4 ≥ Z4, x5 ≥ Z5 and

[

x4
x5

]

≥

[

1 1 0
0 1 1

]

⊙





Z1

Z2

Z3



 =

[

Z1 ∨ Z2

Z2 ∨ Z3

]

.

Depending on whether x4 < x5, x4 > x5, or x4 = x5, these inequalities are a.s. equivalent
to respectively

[

x4
x5

]

≥

[

Z1 ∨ Z2

Z3

]

,

[

x4
x5

]

≥

[

Z1

Z2 ∨ Z3

]

,

[

x4
x5

]

≥

[

Z1

Z3

]

and Z2 = x4 = x5.

Thus the conditioning under this restriction renders Zi bounded in all cases, and in the third
case Z2 becomes a.s. constant. Note also that in these reduced inequalities, Z1 and Z3 never
occur together in any inequality, rendering X1⊥⊥X3 |X{4,5}. �
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4.2. Compact representation. The main result of this section, Theorem 4.3, states that
the source DAG gives a representation of the active nodes XA |XK = xK with respect to
the innovations Z. Compared to the representation of the conditional distribution in Propo-
sition 4.1, this is a representation with fewer terms. Most importantly, we shall show below
that the system of equations involving Z can be separated into blocks where no terms are
redundant.

Theorem 4.3. Let C(XK = xK) be the source DAG of a possible context {XK = xK},
with node partition V = A∪H∪L∪U = A∪H∪(L1 · · ·∪Lm)∪U as given by Proposition 3.18.
For each t = 1, . . . ,m, select a node ℓt ∈ Lt. Then the following system of equations yields a
representation for XA |XK = xK with respect to Z:

(4.5) Xa = αa ∨ Za ∨
∨

j∈paC(a)

c∗ajZj, a ∈ A,

where the constants αa are given by

(4.6) αa =
∨

k∈K∗

c∗akxk ∨





∨

j∈A,j→a∈E−

∨

k∈chD(j)∩(H∪L)

c∗aj
xk
c∗kj



 , a ∈ A,

and the distribution of Z is that of independent components, conditioned to satisfy the bounds

Zi ≤
∧

k∈K∗:c∗
ki
>0

xk
c∗ki

, i ∈ V,(4.7)

as well as the equations

xh = Zh ∨
∨

j∈paC(h)

c∗hjZj, h ∈ H,(4.8)

xℓt =
∨

j∈paC(ℓt)

c∗ℓtjZj , t = 1, . . . ,m.(4.9)

Furthermore, each innovation term on the right-hand side of (4.5), (4.8) and (4.9) has positive
probability of being the unique term that achieves equality.

Proof. Our goal is to start with the representation of X |XK = xK given by Proposi-
tion 4.1 and then simplify the redundant terms until we obtain the representation above.
The contexts {XK = xK} and {XK∗ = xK∗} are clearly equivalent, so we may assume that
K = K∗ and A = K̄. This gives for (4.1) and (4.2) the representations

XA = C∗
AK∗ ⊙ xK∗ ∨ C∗

AA ⊙ ZA,(4.10)

xK∗ = C∗
K∗K∗ ⊙ ZK∗ ∨C∗

K∗A ⊙ ZA.(4.11)

First we simplify (4.11). For clarity, with K∗ = H∪L∪U , we expand this system of equations
as follows:

xH = C∗
HK∗ ⊙ ZK∗ ∨ C∗

HA ⊙ ZA(4.12)

xL = C∗
LK∗ ⊙ ZK∗ ∨ C∗

LA ⊙ ZA(4.13)

xU = C∗
UK∗ ⊙ ZK∗ ∨ C∗

UA ⊙ ZA.(4.14)
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For each i ∈ V and each k ∈ K∗, all inequalities on Zi implied by (4.11) are

xk ≥ c∗kiZi

whenever c∗ki > 0, and in particular this is equivalent to (4.7).
Next we keep track of the equalities. For u ∈ U , by Proposition 3.18, xu = c∗ukxk for some

k ∈ K∗, k 6= u. We have

xu = c∗ukxk

= c∗ukC
∗
kK∗ ⊙ ZK∗ ∨ c∗ukC

∗
kA ⊙ ZA by (4.11)

≤ C∗
uK∗ ⊙ ZK∗ ∨ C∗

uA ⊙ ZA

= xu by (4.11).

Thus we conclude

C∗
uK∗ ⊙ ZK∗ ∨ C∗

uA ⊙ ZA = c∗uk (C
∗
kK∗ ⊙ ZK∗ ∨ C∗

kA ⊙ ZA) , k ∈ K∗, k 6= u,

whence the constraint imposed upon Z by xu is identical to the constraint imposed upon Z
by xk. Therefore all equations in (4.14) are redundant. So (4.11) is equivalent to (4.12) and
(4.13).

Next we simplify the terms that appear on the right-hand side of (4.12) and (4.13). Fix
k ∈ H ∪ L. By definition of the source DAG, we keep a term c∗kiZi for i 6= k if and only
if i → k ∈ g for some g ∈ G(XK = xK), and we keep the term c∗kkZk = Zk if and only if
k ∈ R(g) for some g ∈ G(XK = xK). Since each g is a galaxy, each remaining term has a
positive probability of being the unique term that achieves the maximum. Since each positive
probability event under G(XK = xK) must corresponds to some g, among the remaining
terms, there is always one that achieves the maximum. Since k ∈ K∗, i → k ∈ g for some
g ∈ G(XK = xK) if and only if i→ k ∈ C(XK = xK). Therefore, by Proposition 3.18, (4.12)
simplifies to (4.8), and (4.13) simplifies to

(4.15) xℓ =
∨

j∈paC(ℓ)

c∗ℓjZj .

Write L = L1 ∪ · · · ∪Lm as given by Proposition 3.18. If ℓ, ℓ′ ∈ Lt for some t = 1, . . . ,m, then
they share the same set of parents. By Lemma 3.13, this implies

xℓ
c∗ℓj

=
xℓ′

c∗ℓ′j

for all j ∈ paC(ℓ) = paC(ℓ
′). So (4.15) for xℓ and xℓ′ are constant multiples of each other. So

for each t = 1, . . . ,m (4.15) for all ℓ ∈ Lt is equivalent to the single equation (4.9).
Now we simplify (4.10). Like in the previous step, we can for a, j ∈ A drop terms c∗ajZj

where j → a /∈ g for every g ∈ G(XK = xK). This gives

Xa = C∗
aK∗ ⊙ xK∗ ∨





∨

j∈A,j→a∈E−

c∗ajZj



 ∨ Za ∨
∨

j∈paC(a)

c∗ajZj, a ∈ A.

Now we argue that each term in
∨

j∈A,j→a∈E− c∗ajZj can be replaced by an appropriate con-

stant. Let j ∈ A be a node with j → a ∈ E−. Let E be the sub-event of G(XK = xK) where
j is the root of a, that is,

E =
⋃

{E(g) : g ∈ G(XK = xK), j → a ∈ g} .
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By definition, for each g ∈ G(XK = xK) such that j → a ∈ g, we have that a, j ∈ K∗(g).
Since a, j /∈ K∗(g), it follows that there exists some k = k(g) ∈ K∗(g) such that j → k ∈ g.
Thus, on the event E(g) ∩ {XK = xK}, we have

Xa = c∗ajZj = c∗aj
xk(g)

c∗k(g)j
, a ∈ A.

By Corollary 3.19, we may assume that k(g) ∈ H ∪ L. Therefore, on E ,

(4.16) Xa =
∨

k∈chD(j)∩(H∪L)

c∗aj
xk
c∗kj

, a ∈ A.

By definition of E , on the complement {XK = xK} \ E , Xa > c∗ajZj . Therefore, the term
c∗ajZj can be dropped from the representation of Xa and be replaced by the right-hand side
of (4.16). This gives

Xa = C∗
aK∗ ⊙ xK∗ ∨





∨

j∈A,j→a∈E−

∨

k∈chD(j)∩(H∪L)

c∗aj
xk
c∗kj



 ∨ Za ∨
∨

j∈paC(a)

c∗ajZj , a ∈ A.

This is (4.5), with αa equal to the constant terms in the equation above, which is the formula
in (4.6). Finally, by definition of C(XK = xK), for each j ∈ paC(i) there exists some g ∈
G(XK = xK) such that j → i and j /∈ K∗(g). Since g is a galaxy and Xi is not constant
on the event E(g) ∩ {XK = xK}, on this event, c∗ijZj is the unique term that achieves the
maximum in (4.5).

Remark 4. We note that in (4.7), only the bounds for the variables ZA∪H are directly
relevant for the conditional distribution of XA given XK = xK , as the variables ZL∪U do not
enter into any of the equations (4.5), (4.6), (4.8), or (4.9). However, we have included these in
Theorem 4.3 to provide a full description of the conditional distribution of Z given XK = xK ,
which may be of interest for other purposes.

The following example of an umbrella graph illustrates some aspects of this representation.

1

4 5

2 6 7 3

1

4 5

2 6 7 3

Fig 12: Umbrella: To the left, D(C) = D∗(C) = D∗
K(C); to the right: source DAG C(XK = xK)

for K = {6, 7} and x6 = x7 = 3. Black edges have weights 1, blue edges have weights 2.

Example 4.4 (Umbrella). Consider the graph to the left in Figure 12 where black edges
have weights 1 and blue edges have weights 2. The partitioning in Theorem 4.3 yields nodes
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A = V \K∗ = V \K = {1, 2, 3, 4, 5}, and K = L = {6, 7}. The non-zero constants (4.6) in
the representation of the active variables are α2 = α3 = 3, calculated as

α2 = 0 ∨
∨

5:5→2

∨

k∈{6,7}

c∗25
xk
c∗k5

= max(3, 3) = 3,

since c∗2k = 0 for k = 6, 7 and there is only one edge 5 → 2 ∈ E− pointing to 2. A similar
calculation yields α3 = 3. The full representation (4.5) then becomes

X1 = Z1, X4 = Z4, X5 = Z5

X2 = 3 ∨ Z2 ∨ 2Z1 ∨ 2Z4

X3 = 3 ∨ Z3 ∨ 2Z1 ∨ 2Z5

with inequalities from (4.7) yielding the bounds Z1, Z4, Z5 ≤ 3 (and Z6, Z7 ≤ 3). Further, we
have the equality (4.9) yielding

(4.17) x6 = x7 = 3 = Z4 ∨ Z5

whereas (4.8) is void.
For Z1, we claim that it cannot simultaneously achieve the bound in both of the equations

for X2 and X3, illustrating Proposition 3.18(g). In fact, if X2 = 2Z1 then 3 < 2Z1 ≤ 6,
so that 2Z4 < 2Z1 ≤ 6. Then (4.17) yields that Z4 < 3 and thus Z5 = 3, but then X3 =
6 > 2Z1. Moreover, since Z4 and Z5 both enter into the equation (4.17) we conclude that
X2 6⊥⊥ X3 |X{6,7} = (3, 3). �

We next present some important consequences of Theorem 4.3, enabling us to identify
conditional independencies.

Corollary 4.5. For each pair i, j ∈ V , either Zi, Zj appear together in exactly one
equation amongst those in (4.8) and (4.9), or they do not appear together in any of those
equations. In the first case it holds that they are conditionally dependent, i.e. Zi 6⊥⊥ Zj |XK =
xK . In the second case they are conditionally independent, i.e. Zi⊥⊥Zj |XK = xK .

Proof. By Theorem 4.3, the distribution of Z |XK = xK is the distribution of Z given
the events defined by (4.7), (4.8), and (4.9). The bounds (4.7) only involve one variable at
a time and thus play no role for independence issues. Groups of Z’s that appear in different
equations in (4.8) and (4.9) are independent. It remains to show that, if Zi, Zj appear in the
same equation, then they are dependent. Indeed, suppose that Zi, Zj appear in (4.8) for some
h ∈ H, with coefficients ai, aj > 0. The event Eh defined by this equation can be rewritten as

aiZi ≤ xh, ajZj ≤ xh or aiZi ≤ xh, ajZj ≤ xh, aj′Zj′ ≤ xh for some other j′ ∈ paC(h),

and exactly one of these terms achieves equality. Further, each term has a positive probability
of achieving equality. That is,

P(aiZi = xh | Eh),P(ajZj = xh | Eh) > 0,

but
P(ajZj = xh | aiZi = xh, Eh) = 0.

Therefore, Zi 6⊥⊥ Zj | Eh. A similar argument applies for the equation (4.9).
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Corollary 4.6. For i, j ∈ A, j → i ∈ C(XK = xK), suppose that j → k ∈ C(XK = xK)
for some k ∈ H ∪L. Then there exists g ∈ G(XK = xK) such that j → i, j → k ∈ g. In other
words,

(4.18) P(Xi = c∗ijZj , Zj = xk/c
∗
kj |XK = xK) > 0

Proof. Since j → i ∈ C(XK = xK), there exists some g ∈ G(XK = xK) such that
j → i ∈ g and j /∈ K∗(g), so in particular, j → k /∈ g. Let E(g) as usual denote the Z-values
corresponding to the impact graph g. Since j → k /∈ g, there exists some other j′ 6= j such
that zj′ = xk/c

∗
kj′ and zj < xk/c

∗
kj for all z ∈ E(g). Transform the region E(g) to another

region φ(E(g)) via the following linear map φ, where

φ(z)j = xk/c
∗
kj , φ(z)j′ = zj , φ(z)j′′ = zj′′ for all j

′′ 6= j, j′.

Since this is an invertible map and P(E(g) |XK = xK) > 0, we have P(φ(E(g)) |XK = xK) >
0. Thus there exists some g′ ∈ G(XK = xK) such that P(E(g′) ∩ {XK = xK} ∩ φ(E(g))) > 0.
By definition of φ, for such g′ we must have j → i, j → k ∈ g′. This concludes the proof.

Corollary 4.7. For each a ∈ A, the atomic component of the distribution of Xa is
supported precisely on the following points:

(a) αa defined by (4.6) if αa > 0
(b) c∗ajxk/c

∗
kj for each j ∈ paC(a) ∩ paC(k) for some k ∈ H ∪ L

Proof. Suppose Xa has an atomic component at some c ∈ R>. This happens if and only
if there exists some g ∈ G(XK = xK) such that Xa = c on E(g) ∩ {XK = xK}. In particular,
we must have a ∈ K∗(g). Since a /∈ K∗, a ∈ K∗(g) if and only if j → a ∈ g for some j ∈ V ,
and either j ∈ K∗ or chg(j) ∩K∗ 6= ∅. We consider these two cases separately.

(a) Suppose j ∈ K∗. Then c = c∗ajxj ≤ αa by (4.6). If c < αa then P(Xa = c |XK = xK) = 0
by (4.5), a contradiction. So c = αa.

(b) Suppose j /∈ K∗. By Corollary 3.19, there exists some k ∈ chg(j)∩H ∩L. By Corollary
4.6, P(Xa = c∗ajZj, Zj = xk/c

∗
jk |XK = xK) > 0, so the distribution of Xa has an atom

at c∗ajxk/c
∗
kj .

So all the atomic components of the distribution of Xa must be of the form given.

5. Markov properties of max-linear Bayesian networks. In this section we intro-
duce the relevant separation criteria and state and prove the three conditional independence
theorems. We first consider the most difficult context-dependent case and then use this to
derive the more generic results which are valid in all contexts.

5.1. Graphs and separation. In addition to the source DAG as defined in Definition 3.16,
we shall need the following graphs to identify Markov properties of a max-linear Bayesian
network.

Definition 5.1. Fix a DAG D on V and K ⊂ V . Say that a directed path π from j to
i factors through K if there exists a node k ∈ π, k 6= i, j such that k ∈ K. The conditional
reachability DAG D∗

K is the graph on V consisting of the following edges: j → i ∈ D∗
K if and

only if there exists a directed path from j to i that does not factor through K.
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Definition 5.2. Fix a DAG D on V , K ⊂ V and a coefficient matrix C supported by D.
The critical DAG D∗

K(C) is the graph on V consisting of the following edges: j → i ∈ D∗
K(C)

if and only if c∗ij > 0 and no critical directed path from j to i factors through K.

Note that in contrast to Definition 5.1 the existence of a single critical path through K
removes the corresponding edge in the critical DAG D∗

K(C); this conforms with Example 1.1
in the introduction where it is sufficient to block a single critical path to obtain conditional
independence.

When K = ∅, we write D∗ = D∗
∅ for the reachability DAG of D, and D∗(C) = D∗

∅(C) if the
support of C is D. The source DAG C(XK = xK) for K = ∅ does not have a direct meaning,
but by convention we let this be C(X∅ = x∅) = D

∗.

Lemma 5.3. Let C be a coefficient matrix with support D, K ⊂ V , and {XK = xK} a
possible context. Then

D∗
K ⊇ D

∗
K(C) ⊇ C(XK = xK).(5.1)

Proof. First we prove that D∗
K(C) ⊆ D∗

K . Let j → i ∈ D∗
K(C). Since c∗ji > 0 and all

critical directed paths from j to i do not factor through K, there exists at least one critical
directed path from j to i that does not factor through K. Therefore, j → i ∈ D∗

K . Now we
prove that C(XK = xK) ⊆ D∗

K(C). Suppose j → i ∈ C(XK = xK). Clearly we must have
c∗ji > 0. Suppose for contradiction that j → k → i is critical for some k ∈ K. Then on
{XK = xK},

c∗ijZj = c∗ikc
∗
kjZj ≤ c∗ikxk.

So j → k /∈ C(XK = xK), a contradiction. Therefore all critical paths from j to i do not
factor through K, so j → i ∈ D∗

K(C) by definition.

Definition 5.4. An undirected path π between j and i in a DAG is ∗-connecting relative
to K if and only if is one of the paths in Figure 13.

j

i

(a)

j′

j i

(b)

j

k

i

(c)

j′

k

i

j

(d)

j′

k

i′

j i

(e)

Fig 13: Types of ∗-connecting paths between i and j. Shaded nodes are in K.

We shall consider ∗-connecting paths in the conditional reachability DAG D∗
K , in the critical

DAG D∗
K(C), and in the source DAG C(XK = xK). Edges in these DAGs represent directed

paths in the original DAG D. Hence each of the paths in Figure 13 in these derived graphs
may represent longer paths in the original DAG D. Note also that any ∗-connecting path in
a derived DAG corresponds to a d-connecting path in D, but not vice versa, as illustrated in
Example 5.8 below.
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We now define three independence models by applying ∗-separation to D∗
K , D∗

K(C) and
the source DAG C(XK = xK), respectively.

Definition 5.5. For three disjoint subsets I, J , and K of the node set V we say that I
and J are D∗-separated by K in D if there are no ∗-connecting paths from I to J in D∗

K and
we then write I ⊥D∗ J |K or I ⊥∗ J |K in D∗(C).

Definition 5.6. For three disjoint subsets I, J , and K of the node set V we say that I
and J are critically separated by K in D if there is no ∗-connecting path π from I to J in
D∗

K(C). We then write I ⊥C∗ J |K or I ⊥∗ J |K in D∗
K(C).

Definition 5.7. For three disjoint subsets I, J , and K of the node set V we say that I
and J are source separated by XK = xK in D if there are no ∗-connecting paths from I to J
in C(XK = xK). We then write I ⊥(C∗,xK) J |K or I ⊥∗ J |K in C(Xk = xk).

Example 5.8 (Cassiopeia). Example 1.2 illustrates that D∗-separation is strictly weaker
than d-separation. Here D = D∗

K = D∗
K(C) for any C with support D. The path between 1

and 3 is d-connecting, but it is not ∗-connecting. �

We emphasize that our separation criteria follow the form of the moralization procedure
in [26], which is not stated in a directly path-based form. Rather, we check for separation by
constructing derived graphs and then use a single common separation criteria for all of these.
This formulation shall simplify some of the proofs. As a consequence of Lemma 5.3 we get:

Corollary 5.9. For I, J,K disjoint subsets of V and any possible context {XK = xK},
it holds that

I ⊥D J |K =⇒ I ⊥D∗ J |K =⇒ I ⊥C∗ J |K =⇒ I ⊥(C∗,xK) J |K,

where ⊥D denotes d-separation.

We note that these implications are strict, as illustrated in the next example and other
examples further below.

Example 5.10 (Diamond). Consider the DAG in Figure 14 in a situation where the path
1 → 2 → 4 is critical: c42c21 ≥ c43c31. It then holds that 1⊥⊥ 4 | 2 even though there is a d-
connecting path 1→ 3→ 4. By Definition 5.4, this path is ∗-blocked in D∗

K(C) so 1 ⊥C∗ 4 | 2.
Note also that ⊥D∗ is strictly weaker than ⊥C∗ , as 1 ⊥C∗ 4 | 2 if c21c42 ≥ c31c43, but it holds
that ¬(1 ⊥D∗ 4 | 2) since 1→ 3→ 4 is ∗-connecting in D∗

K . �

5.2. The context-dependent case. The next lemma is used several times in the proof of
Theorem 5.13.

Lemma 5.11. Suppose there is a ∗-connecting path between i and j in C(XK = xK) of types
(a) or (b) in Figure 13. Suppose further for type (b) that there exists some g ∈ G(XK = xK)
such that j′ → i, j′ → j ∈ g and j′ /∈ K∗(g). Then Xi 6⊥⊥ Xj |XK = xK .
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1

2

c21

3

c31

4

c42 c43

1

2

c21

3

c31

4

c42 c43

1

2

c21

3

c31

4

c42 c43

D(C) D∗

K(C) D∗

K(C) if c42c21 ≥ c43c31

Fig 14: Diamond graph with K = {2}. The conditional reachability DAG (middle figure) is equal
to the reachability DAG D∗, whereas the edge 1 → 4 is missing in the critical DAG (right-hand
figure) since the path 1→ 2→ 4 is critical and factors through K. Note that the path 1→ 3→ 4
in D∗

K(C) is not ∗-connecting as it is not one of the configurations in Figure 13.

Proof. By Corollary 4.7(b), type (b) implies

P

{

Xi

c∗ij′
=

Xj

c∗jj′
6= an atomic value of Xi or Xj

∣

∣

∣

∣

∣

XK = xK

}

≥ P(g |XK = xK) > 0,

and in type (a), we have the same inequality with j = j′. In either case, Xi 6⊥⊥ Xj |XK = xK ,
as claimed.

The main difficulty in proving Theorem 5.13 below is that having j′ → i, j′ → j ∈ C(XK =
xK) does not in general (as in the above Lemma 5.11) imply that there exists a compatible
impact graph g ∈ G(XK = xK), where both of these edges appear simultaneously. Indeed,
Example 4.4 above shows that this need not be the case, whereas Corollary 4.6 establishes this
fact in a specific case. To prove Theorem 5.13, where source separation implies independence,
we need the following lemma.

Lemma 5.12. Let C(XK = xK) be the source DAG of a possible context {XK = xK}.
Then i, j ∈ A are source separated if and only if

(5.2) ({i} ∪ paC(i)) ∩ ({j} ∪ paC(j)) = ∅,

and that there is no triple of nodes i′, j′, k such that

(5.3) i′ ∈ ({i} ∪ paC(i)) , j′ ∈ ({j} ∪ paC(j)) , k ∈ H ∪ L and i′, j′ ∈ paC(k).

Proof. The nodes i and j are ∗-connected if and only if there exists a path π ⊂ C(XK =
xK) that matches one of the five configurations in Figure 13. One can choose a path π of
type (a) or (b) if and only if (5.2) does not hold. For types (c) to (e), let j′ = j, i′ = i for
case (c), j′ = j for case (d), and j′, i′ be as-is for case (e). By definition of C(XK = xK),
π ⊂ C(XK = xK) if and only if (5.3) holds for this particular triple of nodes i′, j′, k.

We are now ready for the proof of the main theorem of this section.



CONDITIONAL INDEPENDENCE IN MAX-LINEAR BAYESIAN NETWORKS 31

Theorem 5.13 (Context-dependent). Let X be a max-linear Bayesian network over a
directed acyclic graph D = (V,E) with fixed coefficient matrix C. Let K ⊆ V and C(XK = xK)
be the source DAG of the possible context {XK = xK}. For all subsets I, J ⊆ V ,

I ⊥∗ J |K in C(XK = xK) =⇒ XI ⊥⊥XJ |XK = xK

Proof. Suppose that I and J are source separated by {XK = xK}. By Lemma 5.12, this
implies that

(I ∪ paC(I)) ∩ (J ∪ paC(J)) = ∅,

and that there are no pairs i′ ∈ I ∪ paC(I), j
′ ∈ J ∪ paC(J) that simultaneously appear in the

same equation among those in (4.8) and (4.9). By Corollary 4.5, this implies

{Zi : i ∈ I ∪ paC(I)}⊥⊥{Zj : j ∈ J ∪ paC(J)} |XK = xK

and by the representation (4.5), this implies XI ⊥⊥XJ |XK = xK .

Example 5.14 (Tent). Applying Theorem 5.13 to the source DAG in Figure 10 of Ex-
ample 3.17 yields the conditional independence statement X3⊥⊥ (X1,X2) |X4 = X5 = 2, as
also stated in the introduction, see Example 1.2. �

5.3. The context-independent cases. In the previous subsection we identified sufficient con-
ditions for conditional independence given a specific possible context {XK = xK}. We now
exploit this result to derive conditions for independence that are valid in any context.

Theorem 5.15 (Context-free, fixed C). Let X be a max-linear Bayesian network over a
directed acyclic graph D = (V,E) with fixed coefficient matrix C. For all I, J,K ⊆ V . It then
holds that

I ⊥∗ J |K in D∗
K(C) =⇒ XI ⊥⊥XJ |XK .

Proof. It is enough to prove the result for K 6= ∅. Suppose that there are no ∗-connecting
paths in D∗

K(C). For any possible context {XK = xK}, by Lemma 5.3,D∗
K(C) ⊇ C(XK = xK),

therefore there is no ∗-connecting path in C(XK = xK). Thus we have Xi⊥⊥Xj |XK by
Theorem 5.13.

Finally, we can give the generic Markov condition which does not involve knowledge of the
coefficient matrix C:

Theorem 5.16 (Context-independent, independent of C). Let X be a max-linear Bayesian
network over a directed acyclic graph D = (V,E). Then for all I, J,K ⊆ V ,

I ⊥∗ J |K in D∗
K =⇒ XI ⊥⊥XJ |XK for all C with support included in D

Proof. By Lemma 5.3, D∗
K ⊇ D

∗
K(C), so if there are no ∗-connecting paths in D∗

K , then
there are also no ∗-connecting paths in D∗

K(C) for all C supported by D. Thus Xi⊥⊥Xj |XK

for all such C by Theorem 5.15.

6. Completeness. In this section, we shall investigate to what extent the separation cri-
teria developed in Section 5 are complete for conditional independence in max-linear Bayesian
networks, i.e. yield all valid conditional independence relations. As before, we divide the dis-
cussion into the context-dependent and context-free cases.
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6.1. The context-dependent case. We first establish the converse to Theorem 5.13 in the
context-dependent case.

Theorem 6.1 (Context-dependent completeness). Let X be a max-linear Bayesian net-
work over a directed acyclic graph D = (V,E) with coefficient matrix C. Let K ⊆ V and
C(XK = xK) be the source DAG of a possible context {XK = xK}. For all subsets I, J ⊆ V
it holds that

XI ⊥⊥XJ |XK = xK =⇒ I ⊥∗ J |K in C(XK = xK)

Proof. To prove this, we separately consider the five different types of ∗-connectivity in
Figure 13 and in each of them establish that the variables are dependent, using the represen-
tation in Theorem 4.3 and its corollaries.

First we claim that it is sufficient to consider the case where I = {i} and J = {j} are
singletons with i, j ∈ A. For if I and J are ∗-connected, there must be i ∈ I, j ∈ J such that
i and j are ∗-connected, so if i and j are dependent, so are I and J .

Throughout the proof we consider the partition V \ U = A ∪ H ∪ L as in Theorem 4.3.
Suppose then that i and j are ∗-connected, i.e. there is a path π of the types shown in
Figure 13. The proof considers the five different cases (a)–(e) of this figure in turn and gives
an appropriate event for each one to establish conditional dependence.

Case (a): This follows directly from Lemma 5.11.
Case (b): For each t = 1, . . . ,m, let

Ĩt = paC(ℓt) ∩ paC(i), J̃t = paC(ℓt) ∩ paC(j).

There are two mutually exclusive subcases.

Case(b)I. For each t = 1, . . . ,m we have Ĩt ∪ J̃t ( paC(ℓt). In particular, for each such t,
there exists some rt ∈ paC(ℓt) such that

(6.1) rt /∈ paC(i) ∪ paC(j).

Our goal is to construct an appropriate g and appeal to Lemma 5.11. Apply (4.7) to j′, let
βj′ be the constant on the right-hand side of this inequality. For a sufficiently small constant
ǫ > 0, consider the event E defined by

• βj′ − ǫ < Zj′ < βj′ (Zj′ is only slightly smaller than the largest value possible in the
context {XK = xK})
• Zr < ǫ for all r ∈ paC(i) ∪ paC(j) \ {j

′} (any other parent of i or j, except j′, has very
small Z-value)
• Zi, Zj < ǫ (i and j also have very small Z values)
• for each h ∈ H, set Zr′ < ǫ for all r′ ∈ paC(h)\{j

′}, and Zh = xh (any node in h realizes
itself: its parents have small Z-values, and its own Z-value is xh.)
• for each ℓt for t = 1, . . . ,m, let rt satisfy (6.1), and set it to achieve the maximum in
(4.9). (Each block Lt gets a parent whose Z-value is not already constrained by the
previous conditions).

In the above, the only nodes that were mentioned but did not get set to be less than ǫ are
Zj′ , Zrt for t = 1, . . . ,m and Zh for h ∈ H. By Proposition 3.18 and (6.1), these nodes are all
distinct, so the event E is well-defined. Furthermore, by Proposition 3.18 and Corollary 4.5,
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{Zrt , Zh : t = 1, . . . ,m, h ∈ H} are independent, and either Zj′ is independent of {Zrt , Zh :
t = 1, . . . ,m, h ∈ H}, or it is independent of all but exactly one of them, say, Zu for u ∈ {rt :
t = 1, . . . ,m} ∪ H. In both cases, by Theorem 4.3 and Corollary 4.5, P(E |XK = xK) > 0.
So there exists at least one g ∈ C(XK = xK) such that P(E(g) ∩ E |XK = xK) > 0. By
construction of this event, j′ → i, j′ → j ∈ g and j′ /∈ K∗(g). Hence Xi 6⊥⊥ Xj |XK = xK by
Lemma 5.11.

Case (b)II. There exists at least one t = 1, . . . ,m such that

(6.2) Ĩt ∪ J̃t = paC(ℓt).

Fix such a t. Define

E1 =

{

Xi < min
r∈Ĩt

c∗irxℓt
c∗ℓtr

}

and E2 =

{

Xj < min
r∈J̃t

c∗jrxℓt
c∗ℓtr

}

.

By Proposition 3.18(j), Ĩt, J̃t 6= ∅, so the above events are well-defined. Let r0 denote a node
r ∈ J̃t that achieves the minimum in E2 above. Since r0 → j ∈ C(XK = xK), there exists
some g ∈ G(XK = xK) such that r0 → j, r0 /∈ K∗(g). This implies that on E(g),

Zr0 < xℓt/c
∗
ℓtr0 , Xj = c∗jr0Zr0 .

Together these
imply that on E(g),

Xj <
c∗jr0xℓt
c∗ℓtr0

= min
r∈J̃t

c∗jrxℓt
c∗ℓtr

.

So E(g) ⊆ E2. Therefore, P(E2 |XK = xK) > 0 and, by symmetry, P(E1 |XK = xK) > 0.
By (4.9) in Theorem 4.3, for each g ∈ G(XK = xK), pag(ℓt) ∈ paC(ℓt). By (6.2), either

pag(ℓt) ∈ Ĩt or pag(ℓt) ∈ J̃t; note that both can occur simultaneously as we are not claiming

that Ĩt ∩ J̃t = ∅. Consider all g such that pag(ℓt) ∈ J̃t. Let r = pag(ℓt). By definition of the
max-linear model,

Xj ≥ c∗jrZr =
c∗jrxℓt
c∗ℓtr

on E(g) for any g s.t. r = pag(ℓt) ∈ J̃t.

In particular, for any g such that pag(ℓt) ∈ J̃t,

P(E(g) ∩ E2 |XK = xK) = 0.

By the same argument, for any g such that pag(ℓt) ∈ Ĩt,

P(E(g) ∩ E1 |XK = xK) = 0.

But pag(ℓt) ∈ Ĩt ∪ J̃t for all g ∈ G(XK = xK) as mentioned above. Therefore, there is no
g ∈ G(XK = xK) such that E(g) ⊆ E1 ∩E2. That is,

P(E1 ∩E2 |XK = xK) = 0.

But P(E1 |XK = xK) > 0,P(E2 |XK = xK) > 0, so the events E1 and E2 are not independent
conditioned on {XK = xK}. Therefore, Xi 6⊥⊥ Xj |XK = xK .
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Cases (c), (d) and (e): We may assume that cases (a) and (b) do not apply. In particular,
(5.2) holds. For case (c), let

E1 =

{

Xi =
xk
c∗ki

,XK = xK

}

, E2 =

{

Xj =
xk
c∗kj

,XK = xK

}

.

For case (d), let

E1 =

{

Xi =
xk
c∗ki

,XK = xK

}

, E2 =

{

Xj =
c∗jj′xk

c∗kj′
,XK = xK

}

.

For case (e), let

E1 =

{

Xi =
c∗ii′xk
c∗ki′

,XK = xK

}

, E2 =

{

Xj =
c∗jj′xk

c∗kj′
,XK = xK

}

.

We now claim that in all three cases,

P(E1 |XK = xK) > 0, and P(E2 |XK = xK) > 0.

Indeed, these follow in case (c) from i → k, j → k ∈ C(XK = xK), and in cases (d) and (e)
from Corollary 4.6 applied to the triples k ← j′ → j and k ← i′ → i. By (3.10) in Lemma 3.13,
any g ∈ G(E1) must have Rg(k) = Rg(i). Similarly, any g ∈ G(E2) must have Rg(k) = Rg(j).
But (5.2) implies Rg(i) 6= Rg(j) for all g ∈ G(XK = xK). Therefore,

P(E1 | E2,XK = xK) = P(E2 | E1,XK = xK) = 0.

So Xi 6⊥⊥ Xj |XK = xK in each of the three cases, as needed.
Since all cases have been considered, this concludes the proof.

6.2. The context-free cases. Next we consider the context-free case for a given coefficient
matrix C. We begin by showing that the direct converse to Theorem 5.15 is false, as demon-
strated in the following example.

Example 6.2. Consider the graph in Figure 15 with all edge weights equal to one.

1

4

3

2

5

Fig 15: The counterexample with D = D∗
K and observed nodes K = {4, 5}. Here it holds that

X1⊥⊥X2 |X{4,5} even though 1 and 2 are ∗-connected relative to K with the path 1→ 4← 3→ 2.

We have

X5 = Z5 ∨ Z1

X4 = Z4 ∨ Z1 ∨ Z3

X2 = Z2 ∨ Z3 ∨ Z5
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The important feature of this example is that c∗21 = c∗25c
∗
51, i.e. there is a critical directed path

from 1 to 2 that factors through K, so 1→ 2 /∈ D∗
K(C) and 1→ 2 /∈ D∗

K . On the other hand,
π = 1→ 4← 3→ 2 is a ∗-connecting path. Nevertheless, we claim below that X1⊥⊥X2 |X4,5.

Indeed, if x5 ≥ x4, then also x5 ≥ Z3 so C(x4, x5) is a subgraph of the graph to the left in
Figure 16

1

4

3

2

5 1

4

3

2

5

Fig 16: The source DAG C(x4, x5) in a context satisfying {x5 ≥ x4} is a subgraph of the graph
to the left and of the graph to the right if {x5 < x4}.

On the other hand, if x5 < x4, then 1 → 4 /∈ C(x4, x5) so that C(x4, x5) is a subgraph of
the graph to the right in Figure 16.

In both cases there is no ∗-connecting path between 1 and 2, hence by Theorem 5.13 we
have X1⊥⊥X2 |X{4,5}. �

6.2.1. Effective edges and paths. To obtain converses for the context-free cases, we wish to
construct a possible context {XK = xK} that violates the context-specific Markov condition.
However, Example 6.2 above shows that this is not always possible. We need to ensure that
no inequalities along ∗-connecting paths imply further equalities and to control this we need
the following concept.

Definition 6.3. Let X be a max-linear Bayesian network over a directed acyclic graph
D = (V,E) with fixed coefficient matrix C and K ⊂ V . For an edge j → i ∈ D∗

K(C), the

substitution matrix Ξij
K of this edge relative to K is a |K| × |K| matrix with the following

non-zero entries:

(ξijK)kℓ =
c∗kjc

∗
iℓ

c∗ij
for k ∈ K ∩ chD∗(j), ℓ ∈ K ∩ (paD∗(i) ∪ {i}), k 6= ℓ.(6.3)

If π is a ∗-connecting path between i and j, then its substitution matrix Ξπ
K relative to K is

defined as
Ξπ
K =

∨

v→u∈π

Ξuv
K .

Remark 5. Example 6.2 above features a path π = 1 → 4 ← 3 → 2, such that π ⊂
D∗

K(C) but there is no xK such that π ⊂ C(XK = xK). More importantly, as we show in
Proposition 6.13 below, existence of such an xK is equivalent to the additional condition (6.4)
ensuring that the path is effective, as defined below.

Definition 6.4. A ∗-connecting path π from I to J in D∗
K(C) is said to be effective if it

satisfies the tropical eigenvalue condition

(6.4) λ(ΓKK ∨ Ξπ
K) < 1,

where Ξπ
K is the substitution matrix of π with respect to K and ΓKK is the restriction of the

weak transitive closure Γ as in (2.2) to the components in K.
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Example 6.5. The condition (6.4) is necessary in general. In Example 6.2 we have a
single ∗-connecting path π in D∗

K(C) between 1 and 2 and for this path (6.4) fails, as we shall
now show. The substitution matrix for the path π = 1→ 4← 3→ 2 is

Ξπ
K = Ξ41

K ∨ Ξ43
K ∨ Ξ23

K .

We find positive entries

b4154 =
c∗51
c∗41

= 1 and b2345 =
c∗43c

∗
25

c∗23
= 1

so

ΓKK ∨ Ξπ
K =

(

0 1
0 0

)

∨

(

0 1
1 0

)

=

(

0 1
1 0

)

and hence we get
λ(ΓKK ∨ Ξπ

K) = 1,

which violates (6.4). Here, as noticed in Example 6.2, Xi⊥⊥Xj |XK despite the existence of
a ∗-connecting path. �

As we shall show, it turns out that condition (6.4) is often automatically satisfied. As we
shall study effective edges in a specific context, we need the following concept.

Definition 6.6. The completion of the coefficient matrix C with respect to a possible
context {XK = xK} is the |V | × |V | coefficient matrix C̄, with

c̄ij =

{

xi/xj if i, j ∈ K∗,
cij else.

We write C̄∗ = (c̄∗kh) for the Kleene star of C̄ and note that all cycles in D(C̄) that only
involve nodes in K∗ have weight equal to one:

c̄i1i2 c̄i2i3 · · · c̄iki1 =
xi1
xi2

xi2
xi3
· · ·

xik
xi1

= 1.

Lemma 6.7. Let C̄ be the completion of C with respect to a possible context {XK = xK}.
Then λ(C̄) = 1.

Proof. If |K| = 1 this is obviously true for a self-loop. Assume that |K| ≥ 2. Since D(C)
is acyclic and all cycles in D(C̄) involving only nodes in K∗ have length 1, it is sufficient to
consider simple cycles π = 1 → 2 · · · → r → 1, with 1, r ∈ K∗ and other nodes not in K∗.
Write c̄(π) for the product of the edge weights of this cycle in C̄. We claim that c̄(π) ≤ 1.
Indeed,

c̄(π) ≤ c∗r2c
∗
21c̄1r = c∗r2c

∗
21

x1
xr
≤

c∗r1x1
xr

≤ 1

where we have used that c∗r1 ≥ c∗21c
∗
r2 and the context {XK = xK} is possible, so xr ≥ c∗r1x1.

Hence the maximum cycle mean is λ(C̄) = 1, as desired.

Corollary 6.8. For k, h ∈ K∗ we have that c̄∗kh = c̄kh = xk/xh.



CONDITIONAL INDEPENDENCE IN MAX-LINEAR BAYESIAN NETWORKS 37

Proof. If h = k this is obviously true. Now assume h 6= k. By definition of the Kleene
star, c̄∗kh ≥ c̄kh. Since λ(C̄) = 1, λ(C̄∗) = 1. Since k → h and h→ k are edges in C̄, we may
consider the cycle k → h→ k and get

1 = λ(C̄∗) ≥ c̄∗khc̄
∗
hk ≥ c̄khc̄hk =

xk
xh

xh
xk

= 1.

Thus we must have equalities; that is c̄∗kh = c̄kh and c̄∗hk = c̄hk.

Definition 6.9. Say that an edge j → i in D∗
K(C) is effective in the possible context

{XK = xK} if j /∈ K∗, no critical directed paths from j to i factor through K∗, and c∗ij = c̄∗ij .
Let E+(XK = xK) denote the set of effective edges in the context {XK = xK}. Edges in
D∗

K(C) which are not effective are ineffective. Finally, a path π is effective in a context if all
its edges are.

Now we give an algebraic characterization of edges that are effective in a context.

Lemma 6.10. Let j → i ∈ D∗
K(C) and consider a possible context {XK = xK}. Then

j → i ∈ E+(XK = xK) if and only if for all k ∈ K∗ ∩ chD∗(j), ℓ ∈ K∗ ∩ (paD∗(i) ∪ {i}), it
holds that

(6.5) (ξijK∗)kℓxℓ < xk,

for Ξij
K∗ being the substition matrix relative to K∗ as defined in (6.3).

Proof. Suppose j → i ∈ E+(XK = xK). For each k ∈ K∗ ∩ chD∗(j) and ℓ ∈ K∗ ∩
(paD∗(i) ∪ {i}), the path j → k → ℓ→ i (or j → k → i if i = ℓ) has C̄-weight

c∗iℓ
xℓ
xk

c∗kj .

Since this path factors through K∗, it is not critical, so

c∗iℓ
xℓ
xk

c∗kj < c∗ij .

Rearranging gives (6.5). Conversely, suppose that (6.5) holds. Let π be a path from j to i
in D(C̄) that factors through K∗. If it only goes through one node of K∗, then it is also a
path in C that factors through K∗, so c̄∗(π) = c∗(π). Since j → i ∈ D∗

K(C), by definition of
D∗

K(C), we have
c̄∗(π) = c∗(π) < c∗ij .

If π goes through two or more nodes of K∗, then without loss of generality we can assume

π = j → · · · → k1 → · · · → k2 → · · · → kr → · · · → i,

where r ≥ 2, k1, . . . , kr ∈ K∗, and → · · · → are sequences of critical edges that do not go
through K∗. By this criticality assumption, we get the equality

c̄∗(π) = c∗k1j c̄
∗
k2k1 . . . c̄

∗
krkr−1

c∗ikr .

By Corollary 6.8,

c̄∗k2k1 . . . c̄
∗
krkr−1

= c̄∗krk1 =
xk1
xkr

.
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Note that k1 ∈ chD∗(j) and kr ∈ paD∗(i). Apply (6.5) with k1 = k and kr = ℓ, we get

c∗kjc
∗
iℓ

c∗ij
xℓ < xk.

Rearranging, we get

c̄∗(π) = c∗kj
xℓ
xr

c∗iℓ < c∗ij .

This shows that any critical path π that factors through K∗ has weight strictly less than c∗ij ,
as desired.

A simple corollary is the following, showing that all edges in the source DAG for a given
context are indeed effective in that context.

Corollary 6.11. If j → i is an edge in C(XK = xK) then j → i ∈ E+(XK = xK).

Proof. Assume that j → i ∈ C(XK = xK) so we have j /∈ K∗ and c∗ij > 0. First we claim
that j → i ∈ D∗

K(C). Indeed, suppose for contradiction that a critical path from j to i in D
factors through some node k ∈ K, then

c∗ijZj = c∗ikc
∗
kjZj ≤ c∗ikxk.

Since
Xi = c∗ikxk ∨ c∗ijZj ∨ . . . ,

this implies that j → i /∈ C(XK = xK), a contradiction as needed.
Now suppose for contradiction that j → i /∈ E+(XK = xK). By Lemma 6.10, this implies

for some k ∈ K∗ ∩ chD∗(j) and ℓ ∈ K∗ ∩ (paD∗(i) ∪ {i}),

(ξijK∗)kℓxℓ ≥ xk.

We apply the definition of the substitution matrix Ξij
K∗ in (6.3) and rearrange; then we get

c∗iℓxℓ ≥
c∗ij
c∗kj

xk.

Since j → k ∈ D∗
K(C), xk ≥ c∗kjZj , so

c∗ij
c∗kj

xk ≥ c∗ijZj.

Since
Xi = c∗iℓxℓ ∨ c∗ijZj ∨ . . . ,

it follows that j → i /∈ C(XK = xK), a contradiction as needed.

Example 6.12. Consider the graph to the left in Figure 17. Here C = C∗. In this case
we have X1 6⊥⊥ X4 |X2,X3 although this is not true in all contexts. We first show that the
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1

2

c21

3

4

c43
c41

D(C) = D∗(C)

1

2 3

4

g

1

2 3

4

D(C̄∗)

Fig 17: The graph to the left displays D(C) = D(C∗) with coefficients. The impact graph g in
the middle is not compatible with {XK = xK} if c43c21x3 ≥ c41x2, as shown in Example 6.12,
thus rendering the edge 1→ 4 ineffective. The graph to the right is the completion D(C̄∗).

graph g in the middle is not compatible with {XK = xK} if c43c21x3 ≥ c41x2. We thus write
out the max-linear model:

X1 = Z1

x3 = Z3

x2 = c21Z1 ∨ Z2(6.6)

X4 = c43x3 ∨ c41Z1 ∨ Z4.(6.7)

From (6.6), we have that Z1 ≤ x2/c21, so c41Z1 ≤ c41x2/c21. Thus, if c41x2/c21 ≤ c43x3, or
equivalently, c41x2 ≤ c43c21x3, we also have c41Z1 < c43x3 and hence (x2, x3) is not in the
image of Lg so g is not compatible with the context.

Further, the support of C̄∗ is shown to the right of Figure 17. With the addition of the
edges c̄23 = x2/x3 and c̄32 = x3/x2, we have

c̄∗41 = c41 ∨ c43c̄32c21 = c41 ∨ c43
x3
x2

c21.

So in particular, 1→ 4 is not effective w.r.t. {XK = xK} if c41 < c43(x3/x2)c21. �

Remark 6. By definition of C̄ and the critical graph D∗
K∗(C), if j → i ∈ E+(XK = xK),

then j → i ∈ D∗
K∗(C) ⊆ D∗

K(C). But the converse fails. That is, E+(XK = xK) can be a
strictly smaller set of edges than those in D∗

K(C) or D∗
K∗(C).

The following says that if a path is effective in a context, it is effective in the sense of
Definition 6.4. Note that, crucially, Definition 6.4 refers to the original set of conditioned
variables K, while being effective in a given context {XK = xK} is a property that involves
the potentially bigger set K∗ of variables which are a.s. constant in this context.

Proposition 6.13. Let π be a ∗-connecting path in D∗
K(C). If π is effective in a possible

context {XK = xK}, then λ(ΓKK ∨ Ξπ
K) < 1.

Proof. For each edge j → i ∈ π, let Ξij
K be the substitution matrix of this edge with

respect to K (cf. Definition 6.3). Since K ⊆ K∗(XK = xK), by Lemma 6.10,

Ξij
K ⊙ xK < xK .
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Thus
(

∨

j→i∈π

Ξij
K

)

⊙ xK = Ξπ
K ⊙ xK ≤ xK .

Since xK satisfies the max-linear model, we have

xK = (C∗ ⊙ x)K ≥ ΓKK ⊙ xK .

So
(ΓKK ∨ Ξπ

K)⊙ xK = ΓKK ⊙ xK ∨ Ξπ
K ⊙ xK ≤ xK .

By Proposition 2.1(a), this implies λ(ΓKK ∨ Ξπ) ≤ 1. Now we want to argue that this eigen-
value must be strictly less than 1. By Proposition 2.1(b), it is sufficient to show that there does
not exist a cycle in D(ΓKK ∨Ξ

π
K) with weight 1. Suppose for contradiction that there exists a

cycle σ with weight w(σ) = 1 and let S be its support. Further and D = (ΓKK ∨Ξ
π
K)SS Since

D(ΓKK) is a DAG and Ξπ
K has zero diagonal, we must have |S| ≥ 2. Again by Proposition

2.1(b),
D ⊙ xS = xS .

By definition of D,

duv = c∗uv ∨
∨

j→i∈π,i/∈K

(ξijK)uv ∨
∨

j→i∈π,i∈K

(ξijK)uv.

Consider an edge v → u ∈ σ. By Lemma 2.2 we have duvxv = xu and by (6.3),

∨

j→i∈π,i/∈K

(ξijK)uvxv < xu.

Thus
duv = c∗uv ∨

∨

j→i∈π,i∈K

(ξijK)uv

for all edges v → u ∈ σ. By definition, for i ∈ K, (ξijK)uv > 0 if and only if v = i. In
other words, for each edge v → u ∈ σ such that duv > c∗uv, one must have v ∈ K ∩ π.
Since π is a ∗-connecting path, |K ∩ π| ≤ 1, so there is at most one edge v → u of σ where
duv = (ξvjK )uv > c∗uv, while for all other edges v

′ → u′ of σ, du′v′ = c∗u′v′ . Since D(C) is a DAG,
there must be exactly one such edge. Therefore,

w(σ) = (ξvjK )uvc
∗
vu1

c∗u1u2
. . . c∗uru = (ξvjK )uvc

∗
vu =

c∗ujc
∗
vu

c∗vj
,

with v, u ∈ K, c∗vu > 0 and j → v, j → u ∈ D∗
K(C). But j → u→ v is a path from j to v that

factors through K. Since j → v ∈ D∗
K(C), we have

c∗vuc
∗
uj < c∗vj .

Rearranging gives w(σ) < 1, which is our desired contradiction.
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6.2.2. Context-free completeness. To establish context-free completeness, we must under-
stand the geometry of the set LCK as defined in (2.5).

For an edge j → i ∈ D∗
K(C) we let xK(j → i) be the set of xK such that j → i is an

effective edge in the possible context {XK = xK}. That is,

xK(j → i) = {xK : j → i ∈ E+(XK = xK)}

and further for a path

xK(π) =
⋂

v→u∈π

xK(v → u).

Let further π be a ∗-connecting path in D∗
K(C) and let

Σ(π) = {xK ∈ L
C
K : (ΓKK ∨ Ξπ

K)⊙ xK < xK}.

We then have

Lemma 6.14. Let π be a ∗-connecting path in D∗
K(C). Suppose there exists xK such that

all edges of π are effective in the possible context {XK = xK}. Then Σ(π) is a non-empty
full-dimensional subset of RK

> .

Proof. By Proposition 6.13, λ(ΓKK ∨ Ξπ
K) < 1 so Σ(π) 6= ∅ by Proposition 2.1(c). Now,

the invertible map x 7→ log(x) takes Σ(π) and maps it to the relative interior of a classical
polyhedron P defined by strict inequalities of the form

y ∈ P ⇐⇒ for all u, v ∈ V, yv − yu > log((ΓKK ∨ Ξπ
K)uv),

where we have let log(0) = −∞. Thus, P is an intersection of finitely many open half-spaces.
Since Σ(π) 6= ∅ we have P 6= ∅ and P is full-dimensional. So Σ(π) is full-dimensional.

Proposition 6.15. Consider a ∗-connecting path π in D∗
K(C) with Σ(π) 6= ∅. Then

there exists some xK ∈ Σ(π) such that in the possible context {XK = xK} with vertex set
decomposition V = A ∪H ∪ L ∪ U , we have L = ∅, K∗ = K, and all edges of π are effective
with respect to {XK = xK} .

Proof. For each v ∈ V and each pair h, k ∈ K such that c∗hv, c
∗
kv > 0, let

Lhkv =

{

xK :
xh
c∗hi

=
xk
c∗ki

for some i ∈ V

}

and L =
⋃

h,k,v:Lhkv 6=∅

Lhkv.

Note that L is a finite union of subspaces, each of codimension 1 in RV
>. By Lemma 6.14,

Σ(π) is full-dimensional and non-empty, so Σ(π) \ (L∩Σ(π)) is non-empty. Let xK be in this
set. Write V = A ∪H ∪ L ∪ U w.r.t. the context {XK = xK}. Since xK ∈ Σ(π),

ΓKK ⊙ xK ≤ (ΓKK ∨ Ξπ
K)⊙ xK < xK .

Thus there are no pairs h, k ∈ K with h 6= k such that xh = c∗hkxk. So U = ∅. In addition,
xK /∈ L. Thus by definition, L = ∅. So K∗(XK = xK) = H. Define Z ⊂ RV

> via

• Zk = xk for all k ∈ K
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• maxk∈K:c∗
ik
>0 c

∗
ikxk < Zi < mink∈K:c∗

ki
>0 xk/c

∗
ki for all remaining i ∈ V . If the lower-

bound is over an emptyset, set it to be 0. If the upperbound is over an emptyset, set it
to be +∞.

Since U = ∅, for each i, maxk∈K:c∗
ik
>0 c

∗
ikxk < mink∈K:c∗

ki
>0 xk/c

∗
ki. Thus Z is well-defined. By

construction, Z ⊂ {XK = xK} and it is full-dimensional w.r.t. this set. Thus there exists at
least one g ∈ G(XK = xK) such that E(g) ∩ Z 6= ∅. For this g, the only constant stars of g
have roots in K and have no children. Thus K∗(g) = K. Since K ⊆ K∗ ⊆ K∗(g), it follows
that K∗ = K. Finally, since xK ∈ Σ(π),

Ξπ
K ⊙ xK ≤ (ΓKK ∨ Ξπ

K)⊙ xK < xK .

So in particular, for each edge j → i ∈ π,

Ξij
K ⊙ xK < xK .

Since K = K∗(XK = xK), (6.5) holds. Lemma 6.10 then implies j → i ∈ E+(XK = xK).

Lemma 6.16. Let π be a ∗-connecting path in D∗
K(C) with Σ(π) 6= ∅. Let xK ∈ Σ(π) that

satisfies the conclusion of Proposition 6.15. Then π ⊆ C(XK = xK).

Proof. Fix an edge j → i of π and xK as above. Since π is ∗-connecting, j /∈ K. There
are two cases.
Case 1. i /∈ K. We shall show that there exists some g ∈ G(XK = xK) that contains the
edge j → i, and that this edge is not part of a constant star of g. To do this, we construct a
region Z in the manner similar to the proof of Theorem 5.13, case b(I). Apply (4.7) to j, let
βj be the constant on the right-hand side of this inequality. That is,

βj = min
k∈K:k∈ch∗K(j)

xk
c∗kj

.

Let

γj =
1

c∗ij
max

ℓ∈pa∗
K
(i)

xℓc
∗
iℓ.

Since j → i ∈ E+(XK = xK) and i /∈ K, by (6.5),

(ξijK)kℓxℓ < xk

for all k ∈ chD∗(j) and ℓ ∈ paD∗(i). Rearranging gives

xk
c∗kj

>
xℓc

∗
iℓ

c∗ij
for all k ∈ ch∗K(j), ℓ ∈ pa∗K(i),

or equivalently, βj > γj. For a sufficiently small constant ǫ > 0, consider the region Z defined
by

• γj < Zj < βj
• for each h ∈ H, set Zh = xh
• Zr < ǫ for all other nodes
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In the above, the only nodes that were mentioned but did not get set to be less than ǫ are Zj

and Zh for h ∈ H. By Proposition 3.18 and (6.1), these nodes are all distinct. Since βj > γj ,
Zj is well-defined. Since L = ∅, Z is a non-empty polyhedron in RV

>, Z ⊆ {XK = xK}, and
Z is full-dimensional relative to the region {XK = xK}. Therefore, there exists at least one
g ∈ G(XK = xK) with E(g) ∩ Z 6= ∅. Now suppose Z ∈ Z. Then Zj > γj implies

c∗ijZj > c∗iℓxℓ

for all ℓ ∈ K. In addition, Zj ≫ ǫ > Zr, Zi implies

c∗ijZj > c∗irxr

for all r 6= j, r /∈ K such that c∗ir > 0. Thus Rg(i) = j, so in particular, j → i ∈ g.
Since Zj < βj , it follows that

c∗kiZj < xk

for all k ∈ K ∩ ch∗K(j). Since K∗ = K, j /∈ K∗(g), so j → i /∈ E−(XK = xK). Thus
j → i ∈ C(XK = xK). We are done.
Case 2. i ∈ K. Since j → i ∈ E+(XK = xK), we can rearrange (6.5) to obtain

(6.8) min
k∈chG(j),k 6=i

xk
c∗kj
≥

xi
c∗ij

.

As L = ∅, by definition of L, xK satisfies the stronger inequality

(6.9) min
k∈chG(j),k 6=i

xk
c∗kj

>
xi
c∗ij

.

Since i ∈ K, it is sufficient to show that j → i ∈ I(XK = xK). That is, we need to construct
g ∈ G(XK = xK) such that j → i ∈ g. For a very small constant ǫ > 0, consider the region
Z1 defined by

• for each h ∈ H,h 6= i, set Zh = xh
• Zj =

xj

c∗ij
• Zr < ǫ for all other nodes

Since L = ∅, Z is well-defined and is full-dimensional relative to the region {XK = xK}. By
(6.9), Zj satisfies (4.7), so Z ⊂ {XK = xK}. Therefore, there exists some g ∈ G(XK = xK)
such that E(g) ∩ Z1 6= ∅. On Z1, by construction, j → i ∈ g. So we are done.

The context-free completeness result for a given matrix C is now:

Theorem 6.17. (Context-free, fixed C) Let X be a max-linear Bayesian network over a
directed acyclic graph D = (V,E) with fixed coefficient matrix C. It then holds that

XI 6⊥⊥ XJ |XK .

if and only if there is an effective ∗-connecting path in the critical DAG D∗
K(C).

Proof. By Theorem 5.13, XI 6⊥⊥ XJ |XK if and only if there exists some i ∈ I, j ∈ J ,
some possible xK , and some ∗-connecting path π between i and j such that π ⊆ C(XK = xK).
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Thus Theorem 6.17 is equivalent to the claim that: there exists xK such that π ⊆ C(XK = xK)
if and only if (6.4) holds.

So suppose xK is such that π ⊆ C(XK = xK). By Corollary 6.11, each edge of π is in
E+(XK = xK). By Proposition 6.13, this implies (6.4).

For the converse, suppose (6.4) holds. By Proposition 2.1(c), Σ(π) 6= ∅. By Proposition 6.15,
we can pick a special xK . Applying Lemma 6.16 to this special xK , we get π ⊆ C(XK =
xK).

Finally we are able to establish completeness of ⊥D∗-separation for an unspecified coefficient
matrix C.

Theorem 6.18 (Completeness of ⊥D∗-separation). Let X be a max-linear Bayesian net-
work over a directed acyclic graph D = (V,E) and assume there is a ∗-connecting path in D∗

K

between I and J . Then there is a coefficient matrix C with support included in D such that
the corresponding max-linear Bayesian network satisfies

XI 6⊥⊥ XJ |XK .

Proof. Let π be a ∗-connecting path in D∗
K between I and J . For each of the five types,

our goal is to construct a C such that π ⊂ D∗
K(C) and that (6.4) holds, i.e. the path π is

effective.
For each edge v → u ∈ π, let πuv ⊂ D be a path in D from v to u that does not factor

through K. Define C = C(π) as follows.

• If a→ b ∈
⋃

v→u∈π πuv, set cba = 1
• Otherwise, set cba to be some constant such that cba < 1.

First we claim that for this choice of C, π ⊂ D∗
K(C). That is, for each edge a → b ∈ π, no

critical paths from a to b on C factor through K. Indeed, fix such an edge a→ b ∈ π. Let π′
ba

be another path in D. Then either π′
ba contains an edge not in

⋃

u→v∈π πvu, in which case

c(π′
ba) < c(πba) = 1,

or that it only uses edges in
⋃

v→u∈π πuv and

c(π′
ba) = c(πba) = 1.

But in this case, since none of the paths πvu factor through K, π′
ba does not factor through

K. This establishes our first claim.
We now prove (6.4). Note that all relevant substitution matrices are formed by combining

substitution matrices for single edges Ξij
K for j /∈ K and we now claim that each entry of such

a matrix is strictly less than 1.
As shown above, we must have c∗ij = 1. Let k ∈ K ∩ chD∗(j), ℓ ∈ K ∩ (paD∗(i)∪{i}), k 6= ℓ

so we again have c∗iℓ = 1. Since k /∈ π, any path in D from j to k must utilize an edge of C
whose weight is strictly less than 1 with the choice of C made above. Thus c∗kj < 1. By (6.3),

(Ξij
K)kℓ =

c∗kjc
∗
iℓ

c∗ij
= c∗kjc

∗
iℓ = c∗iℓ < 1.
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So each entry of Ξij
K is strictly less than 1, as claimed, and hence this also holds for Ξπ

K . Since
cuv ≤ 1 for all edges v → u ∈ D, we have γuv = c∗uv ≤ 1 for all edges v → u ∈ D∗. Thus

λ(ΓKK ∨ Ξπ
K) ≤ 1.

Suppose now for contradiction that λ(ΓKK ∨Ξ
π
K) = 1. Since all entries of Ξπ

K are strictly less
than 1, a critical cycle of ΓKK ∨ Ξπ

K must only involve edges in ΓKK. But D is a DAG, so
D(ΓKK) is cycle-free, yielding a contradiction. This concludes the proof.

7. Outlook.

7.1. Properties of max-linear independence. We note that we have defined two abstract
independence models ([28]) ⊥D∗ and ⊥C∗ in the previous section to identify valid conditional
independence statements in a max-linear Bayesian network, and showed that they are sound
and the former is complete, whereas the latter needs additional conditions for completeness.

One can show without too much effort that these are both compositional graphoids (we
refrain from giving the details) as also holds for most other graphical separation criteria (see
e.g. [24]). However, we should emphasize that ⊥D∗ is not strongly complete as the Diamond
shows: in this example the classical d-separation ⊥D and ⊥D∗ coincide and there is no single
coefficient matrix C such that the corresponding max-linear Bayesian network is faithful to
⊥D∗, i.e. in that case ⊥D∗ is strictly weaker than critical separation ⊥C∗, and the same
will happen for DAGs with more than a single directed path between any two points. But
even in this case, the context-dependent analysis typically yields further valid conditional
independence statements.

Generally, the study of properties of conditional independence for max-linear models opens
up several new avenues: concerning e.g. Markov equivalence as in [30, 12], or the algebraic
properties of maxoids as an analogue of Gaussoids; see, for example [6].

7.2. Extensions and special cases. We have so far in this article not discussed identifiabil-
ity, estimation, or any other statistical issues associated with these models. These have been
briefly considered in [17]; see also [15]. This work was extended to a recursive max-linear
model with propagating noise in [7], but we are not considering models with noise in this
article.

Extreme value models often rely on regular variation and several publications have com-
bined Bayesian networks with such heavy-tailed innovations. In [18] and [21], algorithms have
been proposed for statistically learning the model based on the estimated tail dependence
matrix and on a scaling method, respectively. In [11] for undirected graphs the authors apply
a peaks-over-threshold approach giving a multivariate generalized Pareto distribution for ex-
ceedances such that a density exists. For a decomposable graph, this density factorizes into
lower dimensional marginal densities, whereas [9] deals with conditional densities.

Natural extensions in the framework of recursive max-linear models are based on making
dependent innovations (Z1, . . . , Zd), thus defining the analogue of classical path analysis ([32,
33]), or recursive causal models; see [20]. The models introduced in [11] could be interesting
candidates for this.

An alternative for an appropriate model may originate from multivariate max-stable Fréchet
distributions with distribution function (see e.g. [10], Section 6.1.4 and in particular Re-
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mark 6.1.16 with parametrization given in Theorem 1.1.3)

F (z) = exp
{

−

∫

Sd−1

∨

1≤i≤d

ωi

zi
Θ(dω)

}

, z = (z1, . . . , zd),

where ω = (ω1, . . . , ωd) ∈ S
d−1, the unit sphere in Rd

+ (with respect to any norm), and Θ is a
finite measure on Sd−1, called the spectral measure. Then the innovation vector (Z1, . . . , Zd)
has Fréchet margins with algebraically decreasing tails. If the spectral measure has a Lebesgue
density, then the above integral becomes a Lebesgue integral. Then a large jump can happen
in every direction with the same probability. The Bayesian network introduces additional
dependence into the model, which directs the large jumps in special directions.

7.3. Some open problems. Proposition 3.18 gives some necessary conditions for a graph
to be the source DAG for some context {XK = xK}. It would be of interest to know whether
these are also sufficient. Formally this is stated as Problem 1 below:

Problem 1. Fix D. Find a characterization for all possible source DAGs.

Further, even though we have a full characterization of situations with conditional inde-
pendence, there is still an issue about how to verify conditional independence from a compu-
tational point of view. Formally, we state this as

Problem 2. Give an efficient algorithm to compute the source DAG C(XK = xK) and
analyze its complexity.

Critical directed paths in a graph can be computed with tropical matrix multiplication [8,
§3], and thus D∗

K and D∗
K(C) can both easily be computed in time at most O(d4). However,

computing the source DAG is harder. A straight-forward algorithm using the characterization
of the impact graphs G(XK = xK) in Lemma 3.13 goes as follows.

1. Enumerate all elements in G(XK = xK) using the system of equations and inequalities
given in Theorem 3.3 and Lemma 3.13, with K∗(g) characterized by Lemma 3.11.

2. Compute K∗ = K∗(XK = xK) from G(XK = xK) via Definition 3.10.
3. Compute the source DAG via Theorem 4.3.

Of these steps, step 1 is the most computationally intensive. The set G(XK = xK) represents
all possible hitting scenarios in [31]. For general C (not necessarily supported on a DAG), [31]
noted that enumerating G(XK = xK) is related to the NP-hard set covering problem. For our
case, C is a DAG, so we were able to characterize G(XK = xK) in much greater detail than
[31]. However, it is unclear what is the complexity of enumerating this set. The difficulty is
that the inequalities correspond to (3.3), (3.9) and (3.10) depends on g. So while it is easy to
check whether g ∈ G(XK = xK) for a given g, there are exponentially many impact graphs g
one needs to consider.

We remark that Problem 2 can be seen as finding the tropical analogue of Gaussian elim-
ination. While there has been work on the tropical Fourier-Motzkin elimination [1], we are
not aware of algorithms to solve tropical Gaussian elimination. The geometric relative of this
problem is to find minimal external representations of tropical polyhedra, to which algorithms
and characterizations in terms of hypergraphs have been developed e.g. in [2, 3, 4]. It would
be interesting to deepen these connections between extreme value theory and tropical convex
geometry. A related problem is
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Problem 3. Give an efficient algorithm to simulate from the conditional distribution of
X, given a context {XK = xK}.

This problem was also considered by [31] and has particular interest for Bayesian inference
about the unknown parameters of a max-linear Bayesian network. Most Markov chain Monte
Carlo (MCMC) algorithms will have such a simulation step built in at some point. In addition,
this could be of interest if an unknown source for an observed extreme event should be
identified, potentially of interest in environmental science.
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