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Abstract

The simulation of molecular dynamics with high numbers of particles is a very computa-
tionally intensive task. To keep resource and time consumption minimal, it is, therefore,
necessary to use algorithms that are well suited for the specific simulation environment. One
library that can be used by N-body simulation programs is AutoPas, which can automatically
select optimal combinations of algorithms during runtime through different tuning strate-
gies. In this thesis, external auto-tuning tools, namely Active Harmony, were integrated
into AutoPas and evaluated by simulating a common physical mechanism, the spinodal
decomposition. In this simulation, Active Harmony was able to achieve a lower runtime than
previous, in AutoPas implemented tuning strategies by optimizing configuration selection
during the tuning process.
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Zusammenfassung

Molekulardynamiksimulationen mit hoher Anzahl an Partikeln stellen eine sehr rechen-
intensive Aufgabe dar. Um Resourcen- und Zeitverbrauch zu minimieren, ist es daher
notwendig Algorithmen einzusetzen, die für die jeweilige Simulationsumgebung möglichst
gut geeignet sind. Eine Bibliothek, die von N-body Simulationsprogrammen verwendet
werden kann, ist AutoPas, welche zur Laufzeit automatisch optimale Kombinationen von
Algorithmen auswählt, indem verschiedene tuning Strategien benutzt werden. In dieser
Arbeit wurden externe Werkzeuge für auto-tuning, namentlich Active Harmony, in AutoPas
integriert und durch die Simulation eines geläufigen physikalischen Mechanismus, dem Spin-
odalen Zerfall, ausgewertet. In dieser Simulation konnte Active Harmony die Laufzeit im
Vergleich zu vorherigen, in AutoPas implementierten tuning Strategien verringern, indem
während dem tuning Prozess bessere Konfigurationen zur Auswertung gewählt werden.
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Introduction and Background
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1. Introduction

Observation of natural phenomena is an important part of most natural sciences to improve
understanding of the world. However, not every experiment is feasible to run in the real
world, as the cost of required materials or equipment can become too high. In such cases,
the simulation of these experiments on a computer can present a viable alternative and
as improvements in computer technology are made, increasingly complex scenarios can be
simulated within a reasonable time frame. But still, the computation of high numbers of
particles in molecular dynamics simulations is a very hardware-intensive and time-consuming
task, what makes it necessary to optimize the program as much as possible. However, it is
impossible to create a configuration of algorithms and data structures that will be optimal for
every simulation [Bro87] and not every non-computer scientist can be expected to perfectly
judge the advantages and disadvantages of all algorithms to achieve optimal performance.

For reasons like this, the C++ library AutoPas was created. It aims to select the best
options for several parameters during a simulation of molecular dynamics without further
user interactions, a process called auto-tuning. This is done dynamically during runtime to
adapt to changes in the simulation.

But particle simulations are not the only application of auto-tuning. Technically every
program with parameters that can influence its performance can be subjected to auto-tuning.
This led to the creation of general-purpose auto-tuning tools such as Active Harmony.

The goal of this paper is to bridge the gap between general-purpose tools and AutoPas by
integrating them into AutoPas to improve the performance of programs using the AutoPas
library to auto-tune N-Body simulations.

2



2. Theoretical Background

2.1. Lennard-Jones Potential

Newton’s second law [New87] states that the sum of forces F on an object is equal to the
product of its mass m and its acceleration a:

F = m · a (2.1)

This means to calculate a molecule’s acceleration — and therefore its movement — one needs
to know the forces acting on the molecule. As it is impracticable to exactly calculate every
interaction between microscopic particles, the overall force on the molecule is approximated
by using various potentials. One such potential, frequently used in molecular dynamics
simulations, is the Lennard-Jones 12-6 potential [LJ24]

ULJ(rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

(2.2)

where rij is the distance between two particles.

The Lennard-Jones potential consists of one attracting and one repulsing part.

The attracting part is the van-der-Waals potential U1, which is a result of the van-der-Waals
force.

U1 = −4ε(
σ

rij
)6 (2.3)

Electrons in an atom can move relativly freely within the shell of the atom. So when two
atoms come closer, since two equal charges will repulse each other, the electrons of one
atom will be pushed away from the other, while the electrons of the other, attracted by the
positive nucleus, will move in between both atoms, thus creating two temporary dipoles,
that will attract each other.

The repulsing part U2 models the Pauli repulsion, that is created by two electron-clouds
overlapping [BZBP14].

U2 = 4ε(
σ

rij
)12 (2.4)

The parameters ε and σ describe the strength of the bond between the two particles and
the distance at which the van-der-Waal force becomes stronger than the Pauli repulsion
respectively [GKZ07]. Figure 2.1 visualizes the Lennard-Jones potential with σ = ε = 1.
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2. Theoretical Background

Figure 2.1.: Lennard-Jones 12-6 potential for σ = ε = 1.

Since ( σ
rij

)12 > ( σ
rij

)6 for 0 < σ
rij

< 1 and ( σ
rij

)12 < ( σ
rij

)6 for σ
rij

> 1, is the Lennard-

Jones potential negativ, thus attracting, if rij > σ and positiv, thus repulsing, if rij < σ.
Furthermore, as rij approaches positive infinity, the potential will approach zero:

lim
rij→∞

ULJ(rij) = 0 (2.5)

2.2. Newton’s Third Law

Newton’s third law of motion states that to every action there is a reaction of equal magnitude
and opposing direction [New87]. For the simulation of molecular dynamics, this means that
the force exerted from a particle A on a particle B can be calculated by simply negating the
force exerted from B on A, which effectively cuts the number of necessary distance- and
force-calculation in half. Since those calculations take up the largest part of the runtime,
this optimization can theoretically reduce the total runtime by up to 50%.

2.3. Algorithms

The simulation of molecular dynamics relies heavily on computing forces between two
particles. How the simulation iterates through them can be done by different algorithms,
three important ones described here.
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2.3. Algorithms

2.3.1. Direct Sum

The simplest approach to computing intermolecular forces is the Direct Sum algorithm.
This algorithm iterates through all possible combinations of two (different) particles and
calculates the pairwise forces between them. Due to its lack of a complex overhead, this
method can be efficient for small simulations.

However, even when making use of Newton’s third law, a simulation of N particles results
in N ∗ N−12 unordered pairs, that all require a calculation of their distance. Therefore, the
time complexity of this algorithm is O(N2), which makes it unsuitable for larger simulations.

2.3.2. Linked Cells

As mentioned in Section 2.1 the force between two particles approaches zero, the further
apart they are, so if the distance is sufficiently high, the interaction between particles barely
influences their behavior and can, therefore, be neglected. Regarding molecular simulations,
this means you can define a cutoff radius rc limiting the distance after which forces are no
longer calculated.

One algorithm to implement this optimization is the Linked Cells algorithm [GST+19],
which divides the domain of the simulation into cubes (cells) with a side length, equal to
(or slightly bigger than) the cutoff radius. It is also possible to choose a smaller cell-size to
more closely approximate the interaction sphere and therefore further reduce the amount of
unnecessary distance calculations while increasing the number of neighboring cells [MR99].

At the beginning of the simulation, all particles are assigned to different cells based on
their position and every time a particle moves, it potentially needs to be moved to a different
cell. During force-calculation, only particles within the same or neighboring cells need
to be considered due to the aforementioned property of the Lennard-Jones Potential. By
choosing the amount of cells proportional to the total number of particles, the number
of particles within each cell, and therefore the possible pairs for every particle, remains
constant, resulting in a time complexity of O(N).

While it should be clear, that this approach greatly reduces the amount of unneeded
distance calculations compared to the Direct Sum algorithm, the probability of two particles
in neighboring cells being within cutoff radius remains very low. With a cell size equal to
the cutoff radius rc, the probability can be calculated as follows:

CutoffVolume

SearchV olumeLC
=

4
3r

3
cπ

(3rc)3
≈ 0.155 (2.6)

This means that there is only a 15.5% chance the particles are sufficiently close, leaving
84.5% unrequired calculations. Since maintaining the cells also adds a small memory and
computational overhead, this algorithm is only beneficial for large enough simulations.
Figure 2.2 visualizes the Linked Cells.
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2. Theoretical Background

Figure 2.2.: Interactions between particles in the Linked Cells algorithm. Blue points are
within the cutoff radius of the black point, red points are in neighboring cells
but outside the cutoff radius, green points are completely outside interaction
range.

Special care needs to be taken when running the simulation on multiple threads, as race
conditions can occur when multiple threads try to update particles simultaneously. Two
exemplary parallelization techniques are c08 and sliced:

c08 While processing one cell without further optimizations, particle updates are possible in
the base cell and all 26 neighboring cells, resulting in 27 cells that cannot be modified
by other threads. This number can be reduced by half by applying Newton’s third
law, so only cells with a higher index than the current one are considered for force
calculations. Interactions between particles of the base cell and cells with a lower
index are subsequently computed while processing the lower indexed cell. However,
it is possible to reduce the number of modified cells even further. By calculating
interactions between certain cells other than the base cell, only a square of 8 cells
needs to be locked, which is visualized in Figure 2.3. The c08 traversal [TWG+15]
assigns every base cell one of eight colors in a way, that no two neighboring cells have
the same color, as can be seen in Figure 2.4a. This allows all cells of the same color to
be processed simultaneously in the described method without the possibility of race
conditions. Since individual cells can be scheduled dynamically with OpenMP, this
technique can yield good load balancing, while at the same time requiring an increased
overhead [GST+19].
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2.3. Algorithms

Figure 2.3.: Basic cell interactions. By calculating all displayed interactions for every cell,
all interaction in the simulation are accounted for.
Source: [GST+19]

sliced This traversal divides the domain into several slices along one axis, which are then
processed sequentially by one thread. In every slice the last plane is locked until
the first plane in the neighboring slice is fully processed to prevent race conditions.
Figure 2.4b shows a division of the domain into three slices. Due to the lack of a
complex scheduling overhead, this approach works well in a homogenous system, as
the last plane for each slice will probably be already unlocked when the thread reaches
a cell in it. However, since the sliced traversal does not allow load balancing, it can be
suboptimal in an inhomogeneous system. Furthermore, the total number of threads
is limited by the size of the domain, as every slice has to be at least two cells wide
[TSH+19].

(a) c08: Cells outside the brown box are
halo cells.

(b) sliced: Dark cells can only be pro-
cessed after the next column has
been processed entirely.

Figure 2.4.: Parallelization methods for the Linked Cells algorithm.

2.3.3. Verlet Lists

The Verlet Lists algorithm [Ver67] saves neighbor lists for each particle containing all particles
within a specified radius equal to the cutoff radius plus a positive skin radius, as shown in

7



2. Theoretical Background

Figure 2.5. These lists need to be frequently updated, otherwise particles not initially inside
the Verlet skin could have moved inside the cutoff radius without being included in force
calculations.

The frequency of list updates depends on the velocity of particles and the skin radius.
Every timestep the distance between two particles can be reduced by not more than 2∗dmax,
where dmax is the maximum distance traveled by any particle in a single timestep. The
factor two is a consequence of the possibility of two particles moving directly towards each
other. Therefore, the (additional) skin radius rs has to be at least rs = 2 ∗ dmax ∗ q, where q
is the number of consecutive timesteps without rebuilding the Verlet Lists. If, for example,
the Verlet Lists are updated every tenth timestep, then q = 9.

Figure 2.5.: Particle (black) with cutoff radius rc and skin radius rs. Blue and red particles
are stored in the Verlet List and thus require distance calculations but only
blue particles are considered for force calculations. Green particles are ignored
entirely.

The probability of a particle in the Verlet List also being within cutoff radius can be
calculated the same way as in Subsection 2.3.2:

CutoffVolume

SearchV olumeV L
=

4
3r

3
cπ

4
3(rc + rs)3π

=
1

( rc+rsrc
)3

(2.7)

It becomes apparent, that the probability depends on the relative size of the skin radius rs.
For example, a skin radius rs = 0.2 ∗ rc results in a probability of 1

1.23
≈ 0.579, a significant

increase compared to the Linked Cells algorithm. However, the need for maintaining the
Verlet Lists adds extra computational and memory overhead.

Building the Verlet lists requires to compute the distance between all particles, so it has
complexity O(N2) if done unoptimized. It is, however, possible to use the Linked Cells
algorithm to limit the number of distance calculations [YWLC04].
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2.4. Data Layout

2.4. Data Layout

Intuitively one would store the data representing the state of the simulation as an array
of particle objects. This layout is called Array-of-Structures (AoS). On the other hand,
it is possible to instead store the individual attributes in their own arrays. The values
representing one particle can then be found at the same index in those arrays. This layout
is called Structure-of-Arrays (SoA).

Most modern processors offer the possibility to apply the same operation on multiple values
at once, these operations are called Single Instruction Multiple Data (SIMD) instructions.
Since most calculations within the simulation have to be repeated for multiple particles,
this can be used to reduce runtime. However, when using AoS layout the data needed for
those calculations are spread across the memory, hindering the effectiveness of this feature.
This problem is resolved when SoA layout is used instead, as the data is already stored
consecutively in memory.

2.5. Algorithm Selection

With several algorithms introduced, the question remains on how to decide which combination
of algorithms to use, as the relative performance of different algorithms depends on the state
of the simulation, as well as the employed hardware. Therefore, it is impossible to select one
algorithm, that is guaranteed to always be the best.

When trying to find the best algorithm for a given problem, one first needs to determine
what exactly shall be optimized. In simulations, two main aspects need to be considered.
First, resource consumption should be minimized. These resources can be runtime, usage of
memory or bandwidth, or other hardware related aspects. Second, the solution quality, as in
the accuracy of the simulation, should be maximized. Often one aspect can be improved by
worsening another, for example, can abstractions and approximations, like the Lennard-Jones
potential, reduce runtime, while also reducing the precision of the result [Ewa12].

Therefore, it is necessary to define, which aspects are more important than others, or
to select limits, determining acceptable values. In this context, optimizing the runtime of
the simulation will be the main focus. All presented simulation options provide the same
accuracy.

After specifying, how to evaluate different algorithms, one has now two options on how
to perform the evaluation. It might be possible to judge an algorithm solely based on
theoretical information about the algorithm and the problem definition. As an example,
different parallelization methods of the Linked-Cells algorithm can be expected to perform
better or worse depending on how homogenous the particles are distributed over the domain
[GST+19]. However, with an increasing amount of algorithms and millions of particles in the
simulation, it becomes increasingly difficult to make definite statements about the relative
performance of different methods.

Alternatively one can gather empirical data to evaluate algorithms. It would be simplest
to only test each algorithm once at the beginning of the simulation, however over time the
state of the simulation changes, which can lead to suboptimal performance. Therefore, it
makes sense to regularly probe each algorithm and select the optimal, which is exactly what
is currently done by the AutoPas library, although in a suboptimal manner.
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Active Harmony
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3. Introduction to Active Harmony

3.1. Concept of Active Harmony

Active Harmony 1 is a C library developed by the Paraydn2/Dyninst3 project, used to find
optimal values for parameters of another application, a process known as auto-tuning. These
parameters are represented in Active Harmony as tuning parameters of type int, real, or
enum. The int type and the real type are defined by a minimum value, a maximum value,
as well as a step range, while the enum type is an explicit list of possible values. The cross
product of all variables forms the search space.

Tuning begins with the tuning session informing the client application about the new
point, so it can measure the performance of the specified configuration. This performance is
then reported back to the tuning session, where it is analyzed according to the processing
layers and search strategies described below. Active Harmony always aims to minimize
the observed performance value. Therefore, if the client wants to instead maximize the
performance value, it has to be negated before being passed to the tuning session.

One key feature of Active Harmony is, that it allows multiple clients to be part of the
same tuning task. This is achieved by running an Active Harmony server, that handles the
tuning process. Multiple clients can then connect to the server, to receive configurations
and report performances. The hostname and port of the server are handled by environment
variables HARMONY HOST and HARMONY PORT. One server can also handle multiple
different tuning tasks simultaneously. By connecting to the server with a Javascript-enabled
web browser, one can access detailed information as well as a visualization of the tuning
process. Figure 3.1 shows an example of the browser interface.

1https://github.com/ActiveHarmony/harmony/
2http://www.paradyn.org/index.html
3https://www.dyninst.org/
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3. Introduction to Active Harmony

Figure 3.1.: Active Harmony browser interface

3.2. Processing Layers

Processing layers can be used to modify data or perform operations before a strategy receives
a performance report or right after the point is generated. Each layer generally consists
of an analyze- and a generate-phase. Whenever the tuning session receives a performance
report, it will pass through the analyze-phase of all layers, before being handed to the
search strategy. After the next point has been selected, this point will pass through the
generate-phase of all layers in the opposite order than during analyzation, before reaching
the client application [Par]. The most important layers, that come bundled with Active
Harmony, will be described below.

Aggregator can be used to reduce the impact of outliers by forcing multiple evaluations of
the same configuration. Once the specified number of trials for one point is reached,
a single performance report will be calculated according to the selected aggregation
function. Available functions are minimum, maximum, mean, and median.

Point Caching/Replay layer saves reported performances in its analyze-phase, so this value
can be reported back to the tuning process in its generate-phase if the same configu-
ration is chosen later. Therefore, the target application only needs to evaluate every
configuration once.

Input Grouping layer allows the user to split the input variables into groups, which will
then be tuned individually. This means variables in one group will be adjusted until
an optimal configuration is found, while variables in other groups remain unchanged.

Point Logger writes reported performance/configuration pairs to a specified file.

XML Writer same as Point Logger except the log file is in XML format.

12



3.3. Search Strategies

Omega Constraint layer allows the user to define dependencies between multiple tuning
variables. If a point generated by the search strategy does not fulfill those dependencies,
it will be rejected and a new point will be selected. This processing layer requires an
external program, the Omega Calculator4, to work.

3.3. Search Strategies

Active Harmony has four built-in search strategies: exhaustive, random, Nelder-Mead and
parallel rank order [Par].

Exhaustive explores the entire search space and selects the optimal configuration afterward.
It is possible to specify how often the entire search space has to be evaluated before
convergence.

Random randomly chooses points within the search space. It will never converge, but keep
generating new points, even after the entire search space has been evaluated. However,
it is still possible to manually interrupt the search task and select the so far best
configuration.

Nelder-Mead this algorithm [NM65] uses a simplex defined by (n+ 1) points to find the
local minimum of an n-dimensional function, which in this case is the function assigning
every configuration its reported performance. In Active Harmony, this means that
every point in the initial simplex and every newly calculated point has to be passed to
the client application for evaluation before the next phase in the algorithm can begin.

In every cycle, the worst, meaning highest function value, point Ph is replaced by a
better point through reflection, expansion, or contraction. The first step is always to
calculate the point Pr by reflecting Ph on the point P̄ , which is defined as the centroid
of all points in the simplex except Ph:

Pr = (1 + α)P̄ − αPh (3.1)

Here α > 0 denotes the reflection coefficient, which is a multiplier for the distance
between P̄ and Pr. If the function value of Pr is lower than the maximum but higher
than the minimum among the points of the simplex excluding Ph, then Ph is replaced
by Pr and the cycle restarts by performing the reflection on the new simplex.

If, however, Pr is better than all other points, then the expanded point Pe is calculated
through

Pe = γPr + (1− γ)P̄ (3.2)

with γ > 1 being the expansion coefficeent, that denotes the relative increase in
distance between P̄ and Pe. Then the cycle is restarted by replacing Ph with either
Pr or Pe, whichever has the lower function value.

If Pr is worse than any other point ignoring Ph, then Pc is calculated by contraction:

Pc = βPh + P (1− β)P̄ (3.3)

4https://github.com/davewathaverford/the-omega-project/
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3. Introduction to Active Harmony

with 0 < β < 1 as contraction coefficient. If Pc is better than both Ph and Pr, the
cycle restarts with Ph being replaced by Pc

Otherwise, none of the above operations could produce a better point than Ph. In this
case the entire simplex is shrunk by replacing every point Pi, except for the best point
Pl, with P ′i defined by

P ′i = Pl + σ(Pi − Pl) (3.4)

with i 6= l and 0 < σ < 1 as shrinking coefficient. The resulting simplex is then used
to restart the cycle.

(a) Example for reflection (blue), expan-
sion (green) and contraction (red)
with α = 1, β = 0.5, γ = 2 (b) Example for shrinking with σ = 0.5

Figure 3.2.: Examples for Nelder-Mead operations with a two-dimensional simplex.

This is repeated until a given convergence criterion is reached. One such criterion is
the difference of function values falling below a certain threshold, which is also one of
two criteria Active Harmony is using. The second criterion for Active Harmony is the
relative volume of the simplex becoming too small. Figure 3.2 shows a visual example
for all operations on a two-dimensional simplex.

Active Harmony uses α = 1, β = 0.5, γ = 2, σ = 0.5 as defaults. Also, the Nelder-
Mead algorithm is defined for continuous numbers, but ActiveHarmony has a discrete
parameter space. This issue is resolved by rounding the resulting values to the next
integer [Chu04]. Enum tuning variables are assigned an integer value for every option,
starting with zero and increased by one in the order, in which the options are defined.

Parallel Rank Order works similarly to the Nelder-Mead strategy, but is better suited for
parallel tuning, as it allows evaluating multiple points in the search space simultane-
ously. However, as the tuning within AutoPas is done on a per-timestep basis and

14



3.3. Search Strategies

timesteps have to be computed sequentially, the Nelder-Mead strategy is used in this
implementation.
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4. AutoPas

4.1. Introduction to AutoPas

AutoPas1 — a part of the TalPas2 project — is a C++ library aimed at optimizing node-level
performance for particle simulations [GST+19]. This is achieved by implementing multiple
algorithms for force calculations and selecting an optimal configuration during runtime to
adapt to changing simulation environments. AutoPas acts as a black box to provide optimal
performance for users without a need for an in-depth understanding of the advantages and
disadvantages of different algorithms.

4.1.1. AutoPas Interface

The main interface between the AutoPas library and the user is the AutoPas class, which
offers functionality to insert and remove particles from the simulation, as well as to iterate over
all particles. It also handles general simulation parameters, such as domain size, cutoff radius,
tuning interval, and allowed options for tuning parameters described in Subsection 4.1.2.

To make the library adaptable to different simulations types, users can implement their
own particle- and functor-class by inheriting from their respective base-class. A particle
class has to have member variables for at least position, velocity, acting force and ID of the
particle, as well as if it belongs to the current AutoPas object. Additional requirements
depend on the used functor. The functor defines how to compute interactions between
particles, which is usually based on various forces and potentials to simulate different physical
phenomenons. A functor and particle class for the Lennard-Jones 12-6 potential is part of
the default AutoPas distribution.

4.1.2. Tuning

AutoPas will begin the tuning phase at simulation start or after a specified amount of
non-tuned iterations have passed. During the tuning phase, a configuration is generated by
the chosen tuning strategy. The configuration defines values for the following parameters:

Particle Container is the basic algorithm such as the ones described in Section 2.3.

Traversal specifies in which order particles are traversed. Particle containers can allow
different traversal, but every traversal can only be used in combination with one
container. Subsection 2.3.2 specifies two different traversals for the Linked Cells
container.

Data Layout AoS or SoA as described in Section 2.4.

1https://github.com/AutoPas/AutoPas
2https://wr.informatik.uni-hamburg.de/research/projects/talpas/start
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4.2. Integrating Active Harmony into AutoPas

Cell Size Factor multiplier for the sidelength of cells in the Linked Cells algorithm.

Newton-3 wether the optmization using Newton’s third law (see Section 2.2) should be
used or not.

If the configuration is invalid, for example, because the traversal does not support the
selected Newton-3 or Data Layout option, a new configuration is generated until a valid one
is found. This configuration is then used for a predefined number of timesteps to measure its
performance. Multiple measurements will be reduced to a single one according to a specified
strategy, such as calculating the minimum, mean, or median of all measurements.

This process is repeated until the tuning strategy indicates that it found an optimal
configuration, which is then used for a fixed number of time steps.

Currently, AutoPas offers three tuning strategies apart from Active Harmony:

Full Search works just as Active Harmony’s exhaustive search by measuring the performance
of every configuration and selecting the best afterward.

Random Search similarly to Active Harmony’s random search configurations are chosen
randomly, but unlike Active Harmony’s version, this one stops after a predefined
number of configurations were tried and selects the best of those.

Bayesian Search models the stochastic distribution of performances as a Gaussian Process
to estimate the benefit of measuring a certain configuration next. It stops after
evaluating a specified number of configurations.

4.2. Integrating Active Harmony into AutoPas

To integrate Active Harmony into AutoPas a new class ActiveHarmony inheriting from the
TuningStrategyInterface was created. It acts as an additional TuningStrategy option, which
can be chosen at initialization.

Active Harmony requires an environment variable pointing to the installation directory
to be set. Therefore, cmake was used to define a macro containing the path to the Active
Harmony directory, which is then used to set the environment variable.

The Active Harmony search task is set up by first initiating the Harmony descriptor

1 hdesc = ah a l l o c ( ) ;
2 i f ( hdesc == nu l l t p r ) {
3 except ion ( ”Error a l l o c a t i n g Harmony d e s c r i p t o r . ” ) ;
4 }

Listing 4.1: Allocation of the harmony descriptor

which is then connected to a newly started Harmony session:

1 i f ( ah connect ( hdesc , nu l lp t r , 0) != 0) {
2 except ion ( ”Error connect ing to Harmony s e s s i o n . ” ) ;
3 }

Listing 4.2: Connection to the Harmony session
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At this step, it is also possible to connect to an already running Active Harmony server by
providing its address and port. However, as tuning in AutoPas is currently done within a
single instance of AutoPas, a local session suffices.

After setting up the tuning session, one now has to create a task definition, holding
information about tuning variables, potential processing layers, and the search strategy. The
definition also assigns a name to the search task, which is used to identify different tasks if
a server is hosting multiple tuning processes.

1 hde f t ∗hdef = ah d e f a l l o c ( ) ;
2 i f ( hdef == nu l l p t r ) {
3 except ion ( ”Error a l l o c a t i n g d e f i n i t i o n d e s c r i p t o r ” ) ;
4 }
5
6 i f ( ah def name ( hdef , ”AutoPas” ) != 0) {
7 except ion ( ”Error s e t t i n g s search name” ) ;
8 }
9

10 ah d e f s t r a t e gy ( hdef , ”nm. so ” ) ;
11 ah d e f c f g ( hdef , ”INIT RADIUS” , ” 0 .5 ” ) ;

Listing 4.3: Setup of the tuning task definition

Most tuning variables were defined as an enum, as shown in Listing 4.4, with the allowed
cell size factors being the only special case for now. Allowed cell size factors can be defined
by a finite or infinite number set. Since both number types of Active Harmony (int and real)
are defined as a range of equidistant points, a finite number set has to be declared as an
enum, just like the other parameters. Infinite number sets, however, are defined as a real
with step size max−min

100 , with min being the lower bound of the allowed cell size factors and
max the upper bound. This adjusts the step size to always fit 100 sample points into the
number set.

Trivial parameters — parameters with only one possible value — are not forwarded to
Active Harmony, instead, they are automatically set, when the selected configuration is
handed to AutoPas. Another parameter, that is set automatically, is the particle container
option. As mentioned in Subsection 4.1.2, every traversal is only applicable for one par-
ticle container, therefore it makes sense to only tune the traversal, and set the container
accordingly.

1 void conf igureTuningParameter ( hde f t ∗hdef , const char ∗name , const std : : set<O
> opt ions ) {

2 i f ( opt ions . s i z e ( ) > 1) {
3 i f ( ah def enum ( hdef , name , nu l l p t r ) != 0) {
4 except ion ( ”Error d e f i n i n g enum . ” ) ;
5 }
6 for (auto &opt ion : opt ions ) {
7 i f ( ah def enum value ( hdef , name , opt ion . t o s t r i n g ( ) . c s t r ( ) ) != 0) {
8 except ion ( ”Error d e f i n i n g enum value . ” ) ;
9 }

10 }
11 }
12 }

Listing 4.4: Definition of tuning variables
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Tuning variables can also be provided with a — depending on the tuning variable type —
string, int, or double pointer, which allows Active Harmony to update variables automatically
upon configuration retrieval.

As of now, no processing layers (see Section 3.2 for detailed information) are used, as the
aggregation of time measurements is already handled by AutoPas and logging by md-flexible.
The Point Caching/Replay layer would be useful, however, the necessity of sometimes
needing to restart the Harmony search task during one tuning phase requires a manual
implementation of this feature.

This behavior is a consequence of the search space containing invalid configurations,
usually because the selected traversal does not support the selected data layout option.
In most cases, this is no problem, since reporting the worst possible performance — the
upper bound of the double data type — ensures, that every valid performance is better and
therefore, the invalid configuration will not be selected as the optimal configuration. However,
if the initial simplex in the Nelder-Mead algorithm consists of solely invalid configurations,
it will immediately converge and be locked in a state, where all considered configurations
are invalid. The only way to resolve this is by restarting the search task to create a new
simplex. Therefore, all evidence is stored in a map, mapping configurations to their recorded
performance. Every time a configuration with an entry in this map is generated by the
search strategy, its performance is immediately reported back to Active Harmony, to create
a new configuration.

1 htask = ah s t a r t ( hdesc , hdef ) ;
2 a h d e f f r e e ( hdef ) ;
3 i f ( htask == nu l l p t r ) {
4 except ion ( ”Error s t a r t i n g task . ” ) ;
5 }

Listing 4.5: Start of the tuning task
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5. Evaluation

5.1. Simulation Environment

5.1.1. md-flexible

The program md-flexible [Fot19] was used to run the simulation. It is an example of
a simulation program using the AutoPas library and is part of the AutoPas repository.
Particles are initiated as a grid in the shape of a cube or sphere. It is also possible to
distribute particles randomly with uniform or Gaussian distribution within a cube. The
specification of the simulated scenario can be provided either via the command line or as a
YAML1 configuration file. To make it easier to re-run the simulation with small changes,
YAML files were used as input.

5.1.2. Linux-Cluster

All simulations were run on the CoolMUC-2 segment of the Linux Cluster of the Leibniz
Rechenzentrum (LRZ). The Hardware of the cluster is described in Table 5.1.

CooLMUC 2

CPU Intel Xeon E5-2690 v3

CPU Architecture Haswell

Frequency 2.6 GHz

Number of Nodes 384

Cores per Node 28

Hyperthreads per Core 2

Memory per Node 64

Table 5.1.: CoolMUC-2 overview.
Source: https://doku.lrz.de/display/PUBLIC/CoolMUC-2

5.2. Simulation of Spinodal Decomposition

To compare the Active Harmony implementation with existing tuning strategies, a simulation
of spinodal decomposition was performed. This phenomenon describes the rapid unmixing
of a homogenous solution, which results in the creation of two different thermodynamic
phases [CHK+94]. In the simulation, this experiment has to be performed in two parts: An
initial equilibration phase, followed by a decomposition phase.

1https://yaml.org/
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5.2. Simulation of Spinodal Decomposition

5.2.1. Equilibration

The simulation is initiated with a grid of 512000 particles, which are then equilibrated. This
is done by initializing the velocity of the particles according to Brownian motion and then
running the simulation for 100000 timesteps while keeping the temperature constant. After
the particles are equilibrated a vtk-file is created, that is used by the second simulation as
a checkpoint. The state of the simulation at the end of the equilibration can be seen in
Figure 5.1.

(a) frontal view (b) side view

Figure 5.1.: End of equilibration phase with 512000 particles.

5.2.2. Decomposition

For the simulation of the actual decomposition, the previously generated checkpoint is used
to initialize the particles. The simulation is then continued for 30000 timesteps with the
same parameters as the equilibration, except with half the temperature. This causes the
particles to form clusters while creating large areas where only a few particles are located,
which can be seen in Figure 5.2. It is because of this change into an inhomogenous state, that
this experiment is a well suited application for autotuning as requirements to the algorithm
change during the simulation.

(a) frontal view (b) side view

Figure 5.2.: End of decomposition phase with 512000 particles.
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5.3. Results

To evaluate the performance of Active Harmony, the same simulation was also performed
using the already in AutoPas existing tuning strategies bayesian-search and full-search. The
tuning parameters mentioned in Subsection 4.1.2 were mostly set to allow all possible options.
Only the particle container option — and subsequently the traversal option — was restricted
to all options except DirectSum, VerletClusterLists, and VerletClusterCells. The first was
excluded to improve overall performance, the latter two because they were dysfunctional
at the time of the simulation. Every 1000 non-tuning iterations a new tuning phase was
performed, in which every configuration was evaluated three times using the minimum as
the final value. All simulation parameters were defined by a YAML file, which can be found
in Appendix A.

Table 5.2 shows performance measurements for the equilibration phase of the simulation
and Table 5.3 for the decomposition phase. One immediately notices that using full-search
led to a significant increase in runtime compared to both other tuning strategies. This is
hardly surprising since it is guaranteed to select every suboptimal algorithm multiple times
while adjusting other tuning parameters. Although full exploration of the search space
guarantees to find the optimal configuration, which results in full-search showing the lowest
average time per iteration outside the tuning phase, this cannot compensate for the time lost
during the tuning phase. Also, having such a large search space, and therefore a long tuning
phase, contributes to the poor performance of full-search. Furthermore, the combination of
the length of the tuning phase and the high runtime during it, makes full-search perform
particularly poor with small tuning intervals.

harmony bayesian full

Total time spent on
force calculations in
hours

12.26 18.30
terminated after

96 h

while tuning 2.44 4.52

while not tuning 9.82 13.76

Iterations used for
tuning

6588 2940

Average time per
iteration during
tuning

1.336 5.530

Average time per
iteration during
non-tuning

0.378 0.511

Table 5.2.: Runtime analysis of the equilibration phase of the simulation
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5.3. Results

harmony bayesian full

Total time spent on
force calculations in
hours

5.75 7.02 32.68

while tuning 1.18 2.11 30.50

while not tuning 4.58 4.91 2.18

Iterations used for
tuning

2502 900 15000

Average time per
iteration during
tuning

1.692 8.453 7.320

Average time per
iteration during
non-tuning

0.599 0.607 0.523

Table 5.3.: Runtime analysis of the decomposition phase of the simulation

The difference between bayesian-search and active-harmony is smaller but with a 50%
higher runtime during equilibration and a 22% higher runtime during decomposition still
noticeable. Upon further inspection, this can be largely accredited to a better exploration of
the search space by active-harmony. This means active-harmony selected less suboptimal
configurations during tuning, which is shown by the 78% lower average time per iteration,
while maintaining, or even improving, the quality of the ultimately chosen configuration.
The second part is explained by the different criteria on when to finish the tuning process.
Bayesian-search always stops after a specified number of configurations have been tested,
which means a close to optimal configuration might have not been found before tuning is
interrupted. On the other hand, active-harmony keeps generating new configurations, until
it can no longer significantly increase the performance of the optimal solution. Furthermore,
the fact that active-harmony performed relatively well during the tuning phase suggests
that it is particularly well suited for fast-changing simulation environments, which require
frequent tuning to achieve optimal performance.
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5.4. Conclusion

5.4. Conclusion

In this thesis, the auto-tuning library Active Harmony was successfully integrated into
AutoPas. The simulation of the spinodal decomposition mechanism was then used to
evaluate this library, which showed a significant performance increase over other tuning
strategies that are currently available in AutoPas. Compared to the bayesian-search strategy,
for example, a reduction in total runtime of about 18% was achieved. This can mostly be
explained by Active Harmony’s low average time per iteration during the tuning phase,
which suggests that it generates only a few bad configurations by using the Nelder-Mead
algorithm. Therefore, it can be expected that Active Harmony’s advantage over the other
tuning strategies will be particularly noticeable when more frequent tuning is required.

Another interesting part of Active Harmony, that might be subject to future work, is
its ability to tune multiple clients at once, especially since molecular dynamics simulations
often undergo heavy parallelization. This feature could potentially be used to allow similar
subdomains of a large simulation to be tuned together, which would significantly reduce
tuning time.
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A. YAML-input files

1 container : [ L inkedCel l s , Ve r l e tL i s t s ,
V e r l e tL i s t sCe l l s , VarVer le tL i s t sAsBui ld ]

2 verlet−rebuild−frequency : 10
3 verlet−skin−radius : 0 . 3
4 verlet−cluster−size : 4
5 selector−strategy : Fastest−Absolute−Value
6 data−layout : [ AoS , SoA ]
7 traversal : [ c08 , s l i c e d , c18 , c01 , v e r l e t− s l i c ed ,

ver let−c18 , ver let−c01 , cuda−c01 , v e r l e t− l i s t s , c01−combined−SoA , c04 ,
var−ver let− l i s t s−as−bui ld , c04SoA ]

8 tuning−strategy : active−harmony
9 tuning−interval : 1000

10 tuning−samples : 3
11 tuning−max−evidence : 10
12 functor : Lennard−Jones (12−6)
13 newton3 : [ enabled , d i s ab l ed ]
14 cutoff : 2 . 5
15 box−min : [−0. 25 , −0. 25 , −0 . 2 5 ]
16 box−max : [ 1 2 1 . 2 5 , 121 .25 , 1 21 . 2 5 ]
17 cel l−size : [ 0 . 3 4−2 ]
18 deltaT : 0 .00182367
19 iterations : 100000
20 periodic−boundaries : t rue
21 Objects :
22 CubeGrid :
23 0 :
24 particles−per−dimension : [ 8 0 , 80 , 80 ]
25 particle−spacing : 1 . 5
26 bottomLeftCorner : [ 0 , 0 , 0 ]
27 velocity : [ 0 , 0 , 0 ]
28 particle−type : 0
29 particle−epsilon : 1
30 particle−sigma : 1
31 particle−mass : 1
32 thermostat :
33 initialTemperature : 1 . 4
34 targetTemperature : 1 . 4
35 deltaTemperature : 2
36 thermostatInterval : 10
37 addBrownianMotion : t rue
38 vtk−write−frequency : 100000
39 vtk−filename : Sp inoda lDecompos i t i on equ i l i b ra t i on

Listing A.1: YAML input file for the equilibration phase of the spinodal decomposition

1 container : [ L inkedCel l s , Ve r l e tL i s t s ,
V e r l e tL i s t sCe l l s , VarVer le tL i s t sAsBui ld ]
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2 verlet−rebuild−frequency : 10
3 verlet−skin−radius : 0 . 3
4 verlet−cluster−size : 4
5 selector−strategy : Fastest−Absolute−Value
6 data−layout : [ AoS , SoA ]
7 traversal : [ c08 , s l i c e d , c18 , c01 , v e r l e t− s l i c ed ,

ver let−c18 , ver let−c01 , cuda−c01 , v e r l e t− l i s t s , c01−combined−SoA , c04 ,
var−ver let− l i s t s−as−bui ld , c04SoA ]

8 tuning−strategy : active−harmony
9 tuning−interval : 1000

10 tuning−samples : 3
11 tuning−max−evidence : 10
12 functor : Lennard−Jones (12−6)
13 newton3 : [ d i sab led , enabled ]
14 cutoff : 2 . 5
15 box−min : [−0 . 3 , −0 . 3 , −0 . 3 ]
16 box−max : [ 1 2 1 . 3 , 121 .3 , 1 2 1 . 3 ]
17 cel l−size : [ 0 . 3 4−2 ]
18 deltaT : 0 .00182367
19 iterations : 30000
20 periodic−boundaries : t rue
21 thermostat :
22 initialTemperature : 0 . 7
23 targetTemperature : 0 . 7
24 deltaTemperature : 2
25 thermostatInterval : 10
26 addBrownianMotion : f a l s e
27 vtk−filename : SpinodalDecomposit ion
28 vtk−write−frequency : 30000
29 checkpoint : Sp inoda lDecompos i t i on equ i l i b ra t i on 100000

. vtk

Listing A.2: YAML input file for the decomposition phase of the spinodal decomposition
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