
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Interdisciplinary Project report

AutoTuning using Bayesian Statistics in
AutoPas

Jan Nguyen

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Interdisciplinary Project report

AutoTuning using Bayesian Statistics in
AutoPas

AutoTuning via Bayessche Statistik in
AutoPas

Author: Jan Nguyen
Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz
Advisor: Fabio Gratl, M.Sc.
Submission Date: 26.01.20

I confirm that this interdisciplinary project report is my own work and I have docu-
mented all sources and material used.

Munich, 26.01.20 Jan Nguyen

Abstract

In many cases, a program can have many configuration options. The choice can have
a large impact on the performance, but may not always be trivial for the layman. It
is possible to recommend options that are efficient in most cases. However, if the
individual use case leads to significant differences in the optimal choice, automation
is preferable. We have analyzed how Bayesian statistics can be applied here. Such an
algorithm uses a probabilistic model to generate a good configuration by observing
some test runs. For the case of molecular dynamics simulations, we implemented this
idea into the C++ library AutoPas. This achieved on average significantly better results
than brute force and purely random methods.

iii

Contents

Abstract iii

1 Introduction 1

2 Problem statement 2

3 Gaussian process 3
3.1 Multivariate normal distribution . 3
3.2 Infinite dimensional generalization . 3
3.3 Regression . 5
3.4 Kernels . 6

4 Bayesian optimization 7
4.1 Algorithm outline . 7
4.2 Parameters . 7
4.3 Acquisition functions . 8

4.3.1 Variance . 8
4.3.2 Lower Confidence Bound . 8
4.3.3 Probability of decrease . 9
4.3.4 Expected decrease . 10

4.4 Update step . 10
4.4.1 Acquisition maximization . 10
4.4.2 Hyperparameter . 11

5 Performance tests 13
5.1 Experiment . 13
5.2 Results . 15

6 Conclusion 18

Bibliography 19

iv

1 Introduction

In high-performance computing (HPC) we try to solve various computing-intensive
problems. The calculation time for normal computers would be way too high in most
cases. Instead, more powerful supercomputers are used. For them, it is important how
their resources are optimally used as they are most often based on parallel computing.
How we use multiple processor cores can greatly affect the overall performance. One
example, which we also discuss extensively in this paper, are molecular dynamics
simulations. There are different algorithms to run the simulation, but they can use
the resources with varying degrees of efficiency depending on the simulation scena-
rio. This is an instance of the often encountered problem that expert knowledge is
necessary. Here the expert is needed to evaluate the possible choices of the simulation
parameters. To enable non-professionals to use such an algorithm, we try to transfer
the responsibility of parameter selection to the computer. Bayesian optimization as
described in Chapter 4 is ideal for this purpose as its usage does not require any prior
knowledge. This paper shows the general underlying idea and how we tailored it for
our purposes.

1

2 Problem statement

Given is an unknown objective function f which we want to optimize.

f : X 7→ R (2.1)

In our case, the function returns the time a run of the analyzed algorithm needs. The
space of all possible inputs X is called search space. An input of the algorithm may
consist of d independent choices. So the search space may be written as a Cartesian
product of d sets.

X := X1 ×X2 × ...×Xd (2.2)

f is a black-box function as we do not know how a configuration x relates to its
runtime f (x). We search for a configuration x∗ which leads to a minimal runtime.

x∗ = arg min
x∈X

f (x) (2.3)

A simple solution would be to pick a sufficient amount of elements from X to cover
it well and determine f (x) for each element. Although it is not quite obvious how a
good cover is defined. If X is finite, we would have the trivial option to check the
whole space. But in both cases, it is problematic if the evaluation of the function is
considered expensive in terms of time, money or the like. This forces us to limit the
number of evaluations, making the choice of each tested configuration crucial.

2

3 Gaussian process

3.1 Multivariate normal distribution

The main idea is to approximate the black-box function using a probabilistic model. A
good base is the multivariate normal distribution which is a generalization of the well-
known (univariate) normal distribution. A vector of random variables is (multivariate)
normal distributed if each linear combination of the variables is normally distributed.
Consequently a multivariate normally distribution N (µµµ, ΣΣΣ) is fully described by its
mean vector µµµ and its covariance matrix ΣΣΣ. Let XXX = (X1, X2, ..., Xd) a d-variate normally
distributed random vector.

XXX ∼ N (µµµ, ΣΣΣ) (3.1)

The corresponding density function for a d-variate normal distribution is:

fXXX(x1, ..., xd) =
1√

(2π)d|ΣΣΣ|
exp

(
−1

2
(xxx−µµµ)TΣΣΣ−1(xxx−µµµ)

)
(3.2)

Whereby |ΣΣΣ| and ΣΣΣ−1 are the determinant and inverse of ΣΣΣ respectively. Normal
distributions are a popular choice in statistics because of the central limit theorem.
The multivariate variant of this theorem states that the componentwise sum of k
independent and identical distributed random vectors will tend toward a multivariate
normal distribution if k is chosen sufficiently high. The theorem supposedly applies to
arbitrary distributions of the random vectors [Vaa98]. Therefore if the distribution is
unknown a normal distribution is a decent assumption most of the time.

3.2 Infinite dimensional generalization

The multivariate normal distribution can be extended to a model with infinite random
variables {h(x) : x ∈ X}. We call X the index set which may be infinite. The function h
maps each index to a random variable. If all finite subsets of the variables are normally
distributed we call the model a Gaussian process [Do07]. To describe this model

3

3 Gaussian process

completely we only need a mean value function m and a covariance function k.

m : X 7→ R (3.3)

k : X ×X 7→ R (3.4)

For vectors of indices xxx ∈ X n of any length n we define a random vector h(xxx), a
mean vector m(xxx) and covariance matrix K(xxx).

h(xxx) := (h(x1), ..., h(xn))
T (3.5)

m(xxx) := (m(x1), ..., m(xn))
T (3.6)

K(xxx) :=

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 (3.7)

Let GP(X , m, k) be a Gaussian process. Each random vector we can generate from
the index set is normally distributed.

∀n ∈N : ∀xxx ∈ X n : h(xxx) ∼ N (m(xxx), K(xxx)) (3.8)

Meaning our naming of the functions m and k is accurate.

m(x) = E
[

h(x)
]

(3.9)

k(x1, x2) = E

[(
h(x1)−E

[
h(x1)

]) (
h(x2)−E

[
h(x2)

])]
(3.10)

We may choose m without limitation but k has to lead to a valid covariance matrix
K(xxx) for any xxx. Since every covariance matrix is positive semi-definite, the same must
apply to k.

The main argument in favor of Gaussian processes is the possibility to represent
conditional distributions in closed form. Assuming we have a set of evidence Dn =

{(x1, y1), ..., (xn, yn)}. The set contains pairs (x, y) where each y is a measurement
performed on the corresponding random variable h(x). For example each variable
h(x) represents the runtime of a certain configuration x. To measure this variable we
run the algorithm with this configuration and time it. Since time depends on various

4

3 Gaussian process

factors, different results may be obtained at random. Given these measurements Dn the
distribution of an index x∗ is normally distributed.

h(x∗|Dn) ∼ N (µ(x∗|Dn), σ2(x∗|Dn)) (3.11)

If we define kkk(x) := (k(x, x1), ..., k(x, xn))T we can represent the expected value and
the variance as follows.

µ(x∗|Dn) = m(x∗) + kkk(x∗)T(K(xxx))−1(yyy−m(xxx)) (3.12)

σ2(x∗|Dn) = k(x∗, x∗)− kkk(x∗)T(K(xxx))−1kkk(x∗) (3.13)

This allows us to estimate the runtime of untested configurations and lets us weigh
how certain our estimate is. The most computationally intensive part is the calculation of
the inverse of the covariance matrix. But since these computations are independent of x∗,
we can pre-calculate them once and use them for estimates of different configurations.
For the mean function this also applies to (yyy − m(xxx)), allowing us to reformulate
Equation 3.12.

µ(x∗|Dn) = m(x∗) + kkk(x∗)Tλλλ with λλλ := (K(xxx))−1(yyy−m(xxx)) (3.14)

3.3 Regression

To perform a regression on a continuous function f we analyze following generative
model.

f (x) = Φ(x)Twww (3.15)

y(x) = f (x) + ε with ε ∼ N (0, σ2) (3.16)

The function Φ maps elements from the index set to a feature space. For vectors xxx we
define ΦΦΦ as the feature matrix such that ΦΦΦij = Φ(xi)j. In the feature space we assume
that we can represent the output of the function using a linear regression with weights
www. Additionally we account for noise with ε. Assuming a normal prior distribution
on the weights it can be shown that any output vector YYY = (y(x1), ..., y(xn))T is also
normally distributed.

www ∼ N (0, V0) (3.17)

YYY ∼ N (0, ΦΦΦV0ΦΦΦT + σ2III) (3.18)

5

3 Gaussian process

This means y is a Gaussian process. Unfortunately, it is often hard to define the
feature mapping. To avoid this problem we redefine A := ΦΦΦV0ΦΦΦT instead of finding a
suitable Φ. This is called the kernel trick. The values of A are inner products in the
feature space which are scaled by V0. Intuitively, each value Aij describes how similar xi
and xj are. So we replace the specific calculation of Aij with a kernel function k(xi, xj).

3.4 Kernels

Kernels may be chosen arbitary but to keep y a Gaussian process we have to use
a symmetric positive-definite function as they correspond to a covariance function.
Common choices are the Matérn kernels [RW06]. We represent the squared distance
between arbitary x1 and x2 as r2 using scaling factors θθθ.

r2 := (x1 − x2)
Tdiag(θ1, ..., θd)(x1 − x2) (3.19)

Using these distances Matérn defined a class of kernels to generate covariances.

k1/2(r) = θ2
0 exp(−r) (3.20)

k3/2(r) = θ2
0 exp(−

√
3r)(1 +

√
3r) (3.21)

k5/2(r) = θ2
0 exp(−

√
5r)(1 +

√
5r +

5
3

r2) (3.22)

kSE(r) = θ2
0 exp(−1

2
r2) (3.23)

Note that the scaling θθθ is freely configurable and needs to be tailored to the problem.
Without prior knowledge, there is also the possibility to utilize the evidence collected
so far to derive reasonable values for the hyperparameter as we will see in Section 4.4.

6

4 Bayesian optimization

4.1 Algorithm outline

With the help of Gaussian process regression we can estimate any black-box function f
[Sha+16]. In our case, this also includes the specific problem of estimating the runtime
for each configuration. More evidence may lead to more accurate approximations. But
since a piece of evidence corresponds to a test run of the algorithm, these are expensive
in our sense. To choose the most informative evidence, we use a one-step method. At
every step n we have n evidence Dn. Using all currently gathered evidence we update
our model. With the updated model, we estimate the input xn+1 which yields the
highest estimated informational gain α(x). We evaluate the function once to augment
the evidence set and then repeat this process.

Algorithm 1 Bayesian optimization

1: Choose first input x1: Randomly or with prior knowledge
2: D1 = {(x1, f (x1))}
3: for n = 1, 2, ... do
4: Update model with evidence Dn

5: Find optimal input: xn+1 = arg maxx∈X α(x|Dn)

6: Add to evidence: Dn+1 = Dn ∪ {(xn+1, f (xn+1))}

4.2 Parameters

To convert a concrete problem to a Gaussian process we only need to specify the
distance r(x1, x2) for any two element x1 and x2 in the search space. We simplify this
problem by choosing an encoding e : X 7→ Rd and applying Equation 3.19.

r(x1, x2)
2 := (e(x1)− e(x2))

Tdiag(θ1, ..., θd)(e(x1)− (x2)) (4.1)

Using Equation 2.2 we can encode each dimension of an element x ∈ X separately
and concatenate them together to a real vector. Values that are already numeric can
directly be converted or just copied. To handle finite sets whose element has no clear

7

4 Bayesian optimization

correlation to each other, we use a one-hot encoding. For example, a dimension of X is
the choice between the algorithms A, B, and C. We then map this dimension to three
values, each associated with its respective algorithm. A becomes (1, 0, 0) , B becomes
(0, 1, 0) and C becomes (0, 0, 1). This encoding can be extended to any size and it
always ensures that the difference between the two algorithms is 0 if and only if they
are the same.

4.3 Acquisition functions

With this model in place, we still have to clarify how we estimate the informational gain
of a given input. As described in the Section 3.2 we can represent the output of f (x)
given Dn as a normal distribution. With this base, we may define different acquisition
functions α. These functions map each encoded input v ∈ Rd to a value α(x|Dn) which
implements our approximations of gain in different ways.

4.3.1 Variance

An obvious choice is using the variance or the standard deviation of the normal
distribution as an acquisition function. Both cases lead to the same outcome, as they
trivially always have the same optimum.

αVar(x|Dn) := σ2(x|Dn) (4.2)

αSD(x|Dn) := σ(x|Dn) (4.3)

The main observation is that an evidence (x, y) minimizes the variance near x. Thus
at every step, this function "removes" the point of highest variance. Repeating this
process reduces the maximal variance over the whole search space. So we can make
more confident approximation at each point. As regions that do not contain evidence
have high variance the resulting evidence set often covers the search space thoroughly.

4.3.2 Lower Confidence Bound

Instead of simply searching for the whole area, we should focus on promising sections.
By analyzing Equation 3.14, we realize that the expected value is obtained by adding
up individual kernels scaled by the elements of the vector λλλ. As similar inputs lead to
similar kernels, we also expect similar outputs. So µ(x|Dn) can be used to search near
already discovered low runtimes. As we want to maximize acquisition functions, we
may choose −µ(x|Dn). Such an approach often gets stuck in a local minimum. That is

8

4 Bayesian optimization

why we used a mixture of −µ(x|Dn) and the standard deviation. The expected value
is used for exploitation and the standard deviation for exploration. We could scale
both values before adding them together, but because we compare all outputs of the
acquisition function in relation to each other the whole function can be scaled by an
arbitrary factor. Using this fact we can normalize the scaling factor from the expected
value to 1 and thereby obtain the following function.

αLCB(x|Dn) := −µ(x|Dn) + β · σ(x|Dn) (4.4)

β ∈ (0, ∞) is a hyperparameter that determines how much we weight the standard
deviation component. For large values of β, this function degenerates to αSD. This
acquisition function is called lower confidence bound (LCB), since the maximum of
this function corresponds to the minimum of µ(x|Dn)− β · σ(x|Dn). In our model, the
probability that x given Dn is greater than this value is fixed for any β. As an example
for β = 2, the probability is always approximately 98%. So we are confident that we
will not get a value below this bound, but we are optimistic that we get close to it.

4.3.3 Probability of decrease

Using the cumulative distribution function of the normal distribution, we can determine
the probability that the random variable is smaller than an arbitrary target value. If we
use the lowest runtime already observed ymin as the target, this results in the probability
of observing a lower runtime.

Z(x|Dn) :=
ymin − µ(x|Dn)

σ(x|Dn)
(4.5)

αPD(x|Dn) := P[f (x) < ymin|Dn] = Φ(Z(x|Dn)) (4.6)

Where Φ is the cumulative distribution function of the standard normal distribution
N (0, 1). As this function is monotonically increasing we want to maximize Z(x|Dn).
As the standard deviation is always positive, this acquisition function always prefers
x such that µ(x|Dn) < ymin because of other x lead to a Z(x|Dn) smaller or equal
zero. If µ(x|Dn) > ymin we want σ(x|Dn) to be high. This behaves similarly to LCB. If
µ(x|Dn) > ymin we would like a low standard deviation. This means that if we expect
an improvement, we want to be sure of it. This can again lead to the problem of a
local minimum. PD prefers small improvements in the vicinity of already tested places
because of the variance there is low.

9

4 Bayesian optimization

4.3.4 Expected decrease

To overcome the shortcomings of PD we also take into account how much exactly we
expect to improve. This acquisition function is called the expected decrease (ED). In
comparison to PD, a small difference ymin − f (x) will likely yield a low acquisition.

αED(x|Dn) :=E[max{ymin − f (x), 0}|Dn] =

=
(

ymin − µ(x|Dn)
)

Φ(Z(x|Dn)) + σ(x|Dn)φ(Z(x|Dn))
(4.7)

Where φ is the probability density function of N (0, 1). When we observe how
a change of µ(x|Dn) and σ(x|Dn) affects the acquisition function, we notice that it
behaves like LCB.

d
dµ

αED(x|Dn) = −Φ(Z(x|Dn)) < 0 (4.8)

d
dσ

αED(x|Dn) = φ(Z(x|Dn)) > 0 (4.9)

Decreasing µ increases αED and increasing σ increases αED. The difference to LCB is
that the changes to αED are not linear to the changes of µ and σ.

4.4 Update step

4.4.1 Acquisition maximization

With the acquisition function α(x|Dn) in place we want to find the input x that max-
imizes it. The problem cannot easily be solved analytically, instead, we evaluate the
acquisition function at some chosen points and select the optimum from this subset. If
we do not evaluate all possible points, we have at least to make sure that the parameter
space is well covered. If we choose a grid that uses c points for each dimension, we get
cd points for d dimensions. Hence polynomial many in relation to c. We want many
values within each individual dimension, but the total number of points should be
manageable. Latin hypercube sampling (LHS) allows us to fulfill this, generating only c
points in total. For each dimension, we choose c values. If the dimension is continuous,
we can select evenly spaced points in the interval. For dimensions with finitely many
values, we try to take each element equally often. If this does not add up, we choose the
rest randomly. We want each element at least once so c should be chosen accordingly.
This gives us d lists of c values. From each list, we take out one element at random and
combine them into one point in the parameter space. We repeat this until the lists are

10

4 Bayesian optimization

empty, which will result in c parameter points. For each of these points, we calculate
their acquisition and return the highest result as an estimated optimum.

4.4.2 Hyperparameter

The kernels we introduced in Section 3.4 led to new hyperparameters θθθ. We define
Kθθθ(xxx) as the covariance matrix using these hyperparemeters. Additionaly we simplify
the mean value function m(x) of our Gaussian process to a new hyperparameter cm.

m(x) = cm (4.10)

Thus the output vector yyy given the input vector xxx has following a normal distribution.

yyy|xxx ∼ N (cm111, Kθθθ(x) + σ2III) (4.11)

The corresponding probability density function can be obtained by inserting this into
Equation 3.2.

p(yyy|xxx, cm, θθθ) =
1√

(2π)n|Kθθθ(xxx) + σ2III|
exp

(
−1

2
(xxx− cm111)T(Kθθθ(xxx) + σ2III)−1(xxx− cm111)

)
(4.12)

Assuming a constant prior to the hyperparameters, we can use Bayes’ theorem to
represent the posterior of the hyperparameters up to a constant factor of κ.

p(cm, θθθ|Dn) =
p(yyy|xxx, cm, θθθ)p(cm, θθθ)

p(Dn)

=κ
1√

|Kθθθ(xxx) + σ2III|
exp

(
−1

2
(xxx− cm111)T(Kθθθ(xxx) + σ2III)−1(xxx− cm111)

) (4.13)

Both the inverse and the determinant can be calculated using Cholesky decomposition.
As the covariance matrix Kθθθ(xxx) is positive semi-definite, (Kθθθ(xxx) + σ2III) is positive
definite. Thus we can represent it with a lower triangular matrix L.

Kθθθ(xxx) + σ2III = LLT (4.14)

The inverse of a triangular matrix can be calculated easily. We also see that the
eigenvalues of a triangular matrix equal to its diagonal elements. This can be used as
the determinant of a matrix equals the product of its eigenvalues.

(Kθθθ(xxx) + σ2III)−1 = (L−1)T L−1 (4.15)

11

4 Bayesian optimization

√
|Kθθθ(xxx) + σ2III| = |L| =

n

∏
i=1

Lii (4.16)

Now that we can calculate the probability that certain θ and cm matches our evidence,
we could maximize it. But then we would ignore all hyperparameters, which could
have only a slightly lower probability. Instead, we use a set of hyperparameters Θ. If
we want to calculate an acquisition α, we calculate them for all hyperparameters in Θ
and sum them up weighted according to their respective probabilities.

ν := ∑
(cm,θθθ)∈Θ

p(cm, θθθ|Dn) (4.17)

α(x|Dn, Θ) =
1
ν ∑

(cm,θθθ)∈Θ
p(cm, θθθ|Dn) · α(x|Dn, cm, θθθ) (4.18)

The normalization factor ν cancels out the factor κ in Equation 4.13, so its value
does not have to be determined. In summary, we can use a set Θ of hyperparameters
instead of choosing a single one. The set can be constructed using LHS and each weight
p(cm, θθθ|Dn) can be precalculated as it is independent of x. Since the overhead of each
acquisition calculation is linear to the number of elements in the set Θ, one also may
cut off the elements with weights significantly lower than the rest.

12

5 Performance tests

The following tests were performed on the CoolMUC-2 system of the LRZ Linux Cluster.
Each node consists of 28-core Haswell nodes and has 64 GB RAM available.

5.1 Experiment

This work deals specifically with the application of the n-body problem. We want
to calculate the pairwise interactions between n objects. The n-body problem is for
example encountered in molecular dynamics (MD) as molecules apply different forces
to each other depending on their distance. The different forces are often modeled using
the Lennard-Jones potential which leads to the following formula to calculate the force
between any two molecules.

FLJ =
24ε

r

(
2
(σ

r

)12
−
(σ

r

)6
)

(5.1)

The variables ε and σ depend on the type of molecules we are examining and are
therefore constant over time. The distance r between two molecules on the other
hand generally changes over time. As the movement depends on the force acting
on the molecules we have to solve a differential equation if we want to predict the
exact position of the molecules at a given time. If the number of molecules is too
high this approach is unfortunately analytically intractable because the number of
interactions grows quadratically with the molecule count. That is why we resort to a
numerical approach instead. If we consider only a small time step, we can approximate
the changes in the system relatively well. To calculate the status of the system for
any time we make incremental steps. Force, acceleration, speed, and position can be
approximated for the small-time step and can this be repeated until the time steps
add up to the specified time. This makes the calculation much simpler, but we still
have the problem that n molecules lead to n(n − 1) interactions. There are several
ways to deal with this problem, most of them are based on the fact that the majority
of forces converge towards zero with increasing distance. We define a cutoff radius of
rc, for which we assume that molecules that are further apart than this radius do not
exert forces on each other. With this, we can choose from a variety of sub-algorithm to
calculate one timestep. These sub algorithms also often share the three hyperparameters

13

5 Performance tests

cell size factor, data layout and Newton3. Some algorithms divide the observed region
into cells with a side length of at least rc. The cell size factor is multiplied by rc

beforehand to obtain smaller or larger cells. For the data layout, we can choose between
an Array of Structures (AoS) or Structure of Arrays (SoA). This influences how the
data of the molecules are arranged in the memory and consequently have a strong
influence on SIMD operations. The Newton3 parameter refers to Newton’s third law of
motion which states that each force produces a counterforce of equal strength. Some
algorithms can use this to halve the number of force calculations. We have implemented
the Bayesian optimization algorithm in the C++ library AutoPas [Gra+19]. In AutoPas
we can re-select the hyperparameters in each iteration step, which leads to the following
parameter space.

Parameter Type Number of elements
Subalgorithm Discrete 9
Cell size factor Continuous ∞
Data Layout Discrete 2
Newton3 Discrete 2

Table 5.1: Parameter space

The parameters may have a significant influence on the runtime but it is not possible
to test all parameter combinations as the cell size factor is continuous. Our Bayesian
approach, however, works under these conditions. The Gaussian process decides which
parameters to select and we perform a couple of iterations with them. If we assume
that the time per iteration for given parameters only changes negligibly in the short
run, it can be estimated by measuring the time these runs need. We pass the time
to the Gaussian process as evidence to update it and then repeat this process. As all
these tuning steps are used for the simulation, our Bayesian optimization algorithm
could be used until the simulation ends. But because the matrices in the Gaussian
process become accordingly large, we stop after a given number of evidence and use
the evidence, which resulted in the lowest runtime, for the next iterations. Since the
particles move over time and the optimal parameter setting can change in the long run,
we define a tuning interval. The interval indicates when a new tuning phase is started.

In our measurements, we compare different acquisition functions, but also the brute
force method which tests the whole parameter space. As there are theoretically infinitely
many points, we reduce the continuous variable to a few selected values. The idea
between the comparisons is that the Bayesian optimization needs less tuning iterations,
but only makes a possibly sub-optimal choice for the next iterations. The exhaustive
search takes longer for tuning but should result in the best parameter choice. The

14

5 Performance tests

expectation is that the choice of the Bayesian approach is only slightly inferior and
therefore results in an overall lower runtime. The search space may also be so large
that an exhaustive search might be spending all its time tuning. In these cases, this
method is clearly unsuitable. Instead, we compare our method with an algorithm that
randomly selects parameters. Like our method, the lowest runtime is selected from the
evidence and its parameters are used until the next tuning interval.

5.2 Results

In the tests in Figure 5.1 a grid of particles was generated and in Figure 5.2 the
positions were chosen using a normal distribution. The first is a very homogeneous
scenario and the second is one where the particles are more concentrated in one point.
The figures show the runtime of hundreds of sample runs using a box-and-whisker
diagram. This visualization allows us to judge how the algorithms behave in most
cases. In these simple scenarios, the difference between the acquisition functions is
relatively small, but they all generally perform significantly better than the random
approach. So our approach indeed makes good decisions, but how does it behave
in a complicated scenario. Figure 5.3 shows the result of applying the algorithm
on a scenario that simulates spinodal decompositions [Cah61]. In this experiment,
a liquid is first equilibrated at a non-critical temperature. The particles should be
homogeneously spread after this phase. Then the mixture is cooled down to a subcritical
temperature, which leads to spots with a high concentration of particles and spots of
low concentrations. This effect can only be seen on the microscopic level at first, but
both spot types become larger over time. We focus only on the cooling phase where
various particle densities are created in different areas over time. So at any point in
time, other simulation-parameters may become the optimal ones. It is, therefore, more
effective to set the parameters on the fly rather than committing to them in advance
as the density of all regions for a given time is not trivial to predict. Our algorithm
generally performed better than an exhaustive full search as seen in Figure 5.3. Lower
confidence bound and expected decrease led to the lowest runtime on average.

15

5 Performance tests

(a) Grid of 60x60x60 particles. (b) Grid of 90x90x90 particles.

Figure 5.1: Total runtime box-and-whisker diagram of different acquistion function and
a random parameter selection in seconds. Particles are aligned in a 3D-Grid.
Each column consists of 100 samples.

(a) 150000 particles are normally distrbuted
using a standard deviation of 3.0.

(b) 150000 particles are normally distrbuted
using a standard deviation of 5.0.

Figure 5.2: Total runtime box-and-whisker diagram of different acquistion function and
a random parameter selection in seconds. The positions of the particles are
generated using a 3-variate normal distribution. Each column consists of
200 samples.

16

5 Performance tests

Figure 5.3: Runtime box-and-whisker diagram of different acquistion function and
exhaustive search in seconds. The runtime consists of the time needed
to calculate the forces in the cooling phase of a spinodal decomposition
scenario. Each column consists of 40 samples.

17

6 Conclusion

Bayesian optimization can easily adapt to other optimization problems by adjusting the
objective function. As an example, one can benchmark the performance per watt of
a run and use this as evidence. Maximizing this score leads to a program run which
tries to minimize the energy consumption of the used hardware. With the help of this
method, the system "kukai" was the second most energy-efficient system of the top 500
supercomputers worldwide in June 2017 [MSS18]. Likewise, the Bayesian approach can
be tailored to many other applications.

In summary, the Gaussian process model allows for regression of an arbitrary
continuous function f . With the use of kernels we do not need any prior knowledge of
the form of f , but a supply of evidence instead. Our Bayesian optimization algorithm
generates this evidence by estimation of the informational gain through the use of an
acquisition function. In our case, we use this algorithm to predict the runtime of a
program for given input parameters. No expert knowledge of the program is required
to select at least close-to-ideal input parameters. One mainly only has to choose one
acquisition function and our algorithm finds good input parameters by performing a
few test runs. Which acquisition function is a good choice depends on the given use
case, but over several tested cases, LCB and ED were generally on par or superior to
the other functions. Regardless of the choice, our method is generally better than brute
force and random methods.

18

Bibliography

[Cah61] J. W. Cahn. “On spinodal decomposition.” In: Acta Metallurgica 9.9 (1961),
pp. 795–801. issn: 0001-6160. doi: https : / / doi . org / 10 . 1016 / 0001 -

6160(61)90182-1.

[CGM01] H. Chipman, E. I. George, and R. E. McCulloch. The Practical Implementation
of Bayesian Model Selection. 2001.

[Do07] C. B. Do. Gaussian processes. 2007.

[Fra12] P. Frazier. “Tutorial: Optimization via simulation with Bayesian statistics
and dynamic programming.” In: Proceedings of the 2012 Winter Simulation
Conference (WSC). Dec. 2012, pp. 1–16. doi: 10.1109/WSC.2012.6465237.

[Gra+19] F. A. Gratl, S. Seckler, N. Tchipev, H. Bungartz, and P. Neumann. “AutoPas:
Auto-Tuning for Particle Simulations.” In: 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). May 2019, pp. 748–
757. doi: 10.1109/IPDPSW.2019.00125.

[Guo03] H. Guo. “A Bayesian Approach for Automatic Algorithm Selection.” In:
2003.

[MSS18] T. Miyazaki, I. Sato, and N. Shimizu. “Bayesian Optimization of HPC
Systems for Energy Efficiency.” In: ISC. 2018.

[NOR18] F. M. Nyikosa, M. A. Osborne, and S. J. Roberts. “Bayesian Optimization for
Dynamic Problems.” In: 2018.

[Nyi18] F. M. Nyikosa. Adaptive Bayesian Optimization for Dynamic Problems. 2018.

[RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
2006.

[Sha+16] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking
the Human Out of the Loop: A Review of Bayesian Optimization.” In:
Proceedings of the IEEE 104.1 (Jan. 2016), pp. 148–175. issn: 1558-2256. doi:
10.1109/JPROC.2015.2494218.

[SN12] R. Suda and V. S. Nittoor. “Efficient Monte Carlo Optimiation with ATMat-
hCoreLib.” In: 2012.

19

https://doi.org/https://doi.org/10.1016/0001-6160(61)90182-1
https://doi.org/https://doi.org/10.1016/0001-6160(61)90182-1
https://doi.org/10.1109/WSC.2012.6465237
https://doi.org/10.1109/IPDPSW.2019.00125
https://doi.org/10.1109/JPROC.2015.2494218

Bibliography

[Vaa98] A. W. van der Vaart. “Asymptotic Statistics.” In: (1998).

20

	Abstract
	Contents
	Introduction
	Problem statement
	Gaussian process
	Multivariate normal distribution
	Infinite dimensional generalization
	Regression
	Kernels

	Bayesian optimization
	Algorithm outline
	Parameters
	Acquisition functions
	Variance
	Lower Confidence Bound
	Probability of decrease
	Expected decrease

	Update step
	Acquisition maximization
	Hyperparameter

	Performance tests
	Experiment
	Results

	Conclusion
	Bibliography

