
©IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

1

Network Function Offloading through Classification
of Elephant Flows

Raphael Durner, Wolfgang Kellerer Chair of Communication Networks
Department of Electrical and Computer Engineering

Technical University of Munich, Germany
Email: {r.durner, wolfgang.kellerer}@tum.de

Abstract—With the move from traditional hardware appliance
based network functions to Network Function Virtualization,
software development is decoupled from the hardware. However,
as a network function is no longer optimized for hardware,
beneficial features of networking hardware may not be used any
more. Solutions such as SDN or NIC offloading aim to overcome
this antipodes by integrating networking hardware into the
packet processing pipelines. On the one hand, offloading traffic
of network functions to hardware can increase throughput and
reduce resource consumption. On the other hand, the number
of parallel flows in a network can be very high, exhausting the
capacity of the tables of the networking hardware and force
the system to fall back to software processing. Fortunately, it
is known that a large portion of the flows in the internet are
mice flows, whereas the majority of the traffic is constituted by
elephant flows. If the elephant flows can be detected efficiently,
the hardware tables can be used more efficiently as a larger
share of the traffic can be offloaded. We introduce a machine
learning based approach that takes its decision with the first
packet of a flow. A fundamentally different approach is using
packet sampling for the offloading decision. We are evaluating
both approaches in terms of complexity, offloaded share of the
traffic and table occupation. The results show that a machine
learning based offloading decision is possible with the first packet.
The sampling approach only reaches a comparable performance
at very high sampling rates.

Index Terms—Network function virtualization, Machine
Learning, Software-defined networks, Performance management.

I. INTRODUCTION

With the move towards Network Function Virtualization
(NFV), network functions are realized in software, imple-
mented on commodity hardware. This reduces costs and
increases the flexibility, as virtualization techniques support
sharing of hardware resources. On the downside, these novel
Virtualized Network Functions (VNFs) may provide lower
throughput when compared to hardware-based network func-
tions, as they cannot benefit any longer of specific hardware
features. Networking hardware commonly relies on hardware
tables that match on packets, more specifically on packet
headers. A hardware switch has a forwarding information
base that matches on the MAC addresses of the packets,
a router has its routing information base matching on the
destination IP addresses. Traditionally, hardware tables are
used in routers and switches as they are able to provide
high performance. SDN and especially OpenFlow introduces
means to program these hardware tables. Moreover, also other

networking hardware such as Network Interface Cards (NICs)
are providing programmable hardware tables nowadays.

VNFs solely rely on software but also use tables. For
example a stateful firewall needs to hold a table that stores
the mapping of connections. In contrast to a stateless firewall
that only filters based on the packet header, a stateful firewall
also considers the state of the connection. More specifically
in case of TCP, at first only SYN packets are accepted and
with the SYN packet an entry is added to the connection
table. Other packets are only accepted if the corresponding
entry is in the table and if TCP’s state machine was followed.
Likewise many other stateful network functions such as load
balancers or Network Address Translators (NATs) maintain
tables. Further, all these stateful network functions handle the
first packet of a flow separately; As the first packet of a flow
does not match the table, a corresponding entry has to be
created in a table.

It has been shown in recent works that the usage of network
hardware is beneficial to support VNFs. In the next section
we show two detailed example that combine hardware tables
and stateful VNFs to increase the performance. From the
examples we can see, that networking hardware provides
high throughput, but its capacity is limited in terms of table
entries. As the number of connections can be very high,
the applicability of hardware based approaches is limited.
Software tables do not suffer from this limitation as they
can theoretically be indefinitely large, but they provide worse
performance.

From a performance point of view, it is desirable to use
hardware tables for as much traffic as possible, while keeping
the number of concurrent connections within the capacity
of the hardware. Fortunately, it is known that few but large
elephant flows comprise the bulk part of the internet traffic.
Therefore we propose an offloading approach that uses of-
floading to hardware processing nodes for elephant flows. For
efficiency it is desirable to classify the flows with the first
packet, as the first packet is used to create a new entry in the
connection table. In this way, the specific processing of the first
packet can be used for the offloading decision at the same time.
We evaluate the offloading decision based on the number of
rules that are needed and how much of the overall data rate can
be offloaded. The better the offloading decision is, the higher
the rate that is handled in hardware while keeping the table
size small enough. The main benefit of NFV offloading is that
the resources that are consumed by the VNFs are reduced.



2

As the capacity of the VNFs is adapted to the demand by
scaling up and down, a larger offloaded share decreases the
consumption of resources in the NFV infrastructure.

The contributions of this work are as follows:
• Designing a classification based on machine learning for

the offloading decision with only the first packet of a
flow. Our NFV offloading solution includes identification
of features and pre-processing of the data in order to
improve the performance.

• Design of an improved heuristic for a simple sampling
based approach for NFV offloading. We show that the
performance of sampling based approaches heavily de-
pends on the sampling rate.

• Comparison of both approaches and discussion of the
pros and cons of each solution.

We belief that the results can be applied for a wide range
of network functions and architectures. First, many network
functions require matching on packets, two examples are given
in the next section, nevertheless also other network functions
such as billing functions need to match packets. Second, the
offloading cannot only be done via SDN devices or NICs.
The same decision mechanism can also be applied for other
emerging programmable networking hardware such as, e.g.,
P4 enabled hardware.

The rest of this paper is structured as follows: Section II in-
troduces two use cases for the presented offloading algorithms.
In Section III related work in the fields of network function
offloading and elephant flow detection is discussed. Section
IV introduces the machine learning approach, the evaluated
algorithms and shows a way how the data can be gathered.
Afterwards the sampling based approach is introduced in Sec-
tion V. In Section VI and VII both approaches are evaluated
in terms of possible share of the offloaded rate and necessary
table size. Furthermore different parameters are studied in
order to fine tune the approaches. We discuss the findings
and compare both approaches directly in Section VIII. Finally
Section IX concludes the work.

II. EXAMPLE USE CASES

In this work, we explore how to combine networking
hardware tables and software network functions. We use an
enterprise network firewall and a load-balancer architecture
as examples to provide a more specific view on our problem
scope.

A. Firewall offloading

The first use case scenario is depicted in Figure 1. The
NFV Infrastructure (NFVI) is a data center like centralized
infrastructure, hosting the virtual firewall (vFW) instances. If
every connection is filtered using vFWs the capacity of the
links to the NFVI must be high. Otherwise a few rate intense
flows can lead to capacity bottlenecks and poor performance.
One solution is to offload the connection filtering to the SDN
switches and to use the direct path. Offloaded flows are filtered
in SDN hardware, reducing the resource consumption in the
NFVI and in the network by avoiding detours to the NFVI.

Client

Client

vFirewall

SDN

Controller

NFVI

Direct PathNFV Path

vFirewallvFW

Figure 1. Network Function Offloading in an SDN/NFV environment. The
virtual firewall (vFW) filters the packets. As the infrastructure is centralized,
the NFV path takes a detour to the vFWs. To avoid such a detour, connections
can be offloaded for filtering to the SDN switches on the left side and can
then be routed on the Direct Path. However, only connections with high data
rate should be offloaded to keep the rule count in the hardware tables of the
switches small.

In [1] we showcased this solution with a proof-of-concept
using Linux netfilter as a vFW. First the vFW acts like a
normal stateful firewall. With the first packet an entry is added
to the connection table. Subsequent packets are then checked
if the protocol’s state machine is followed. In the prototype
the offloading decision was realized by detecting the current
run time of a connection. If one connection has been active a
certain duration, the vFW a flow is offloaded and a message
containing the flow five-tuple is sent via the northbound API
to the SDN controller. The SDN controller then installs the
necessary rules in the SDN switches and the load on the vFWs
is reduced. In the prototype setup the throughput could be
increased by one magnitude using this approach.

This simple approach is clearly in need of improvement as
it does neither consider the table size nor it is able to offload
connections from the first packet. But it confirms that already
a simple approach is of benefit with respect to the achievable
data rate. Due to the high number of connections in the
network and limited size hardware tables, not every connection
can be offloaded. The presented offloading algorithms can be
used to decide which connections should be offloaded to the
SDN switches.

B. NIC Offloading

As a second use case, we want to highlight the utilization
of Smart-NICs for offloading. Modern NICs provide packet
matching capabilities that can be used to reduce the load on
the CPUs of the NVFI. One example is the Intel FlowDirector
technology that enables a programmable matching on the NIC.
In this case, we are considering a stateful load-balancer. Load-
balancers are used to distribute the packets between different
endpoints. In current applications, e.g. web-apps, it is desirable
that packets of one connection are always served by the
same endpoint. Stateful load balancers ensure this connection
consistency by storing the connection to endpoint mapping in
a table.

The architecture of such a solution is given in Figure 2. The
first packet is always matched in software and the mapping
is stored in a software table. The load balancer installs the
mapping in the NIC as well. Subsequent packets are then
matched by the hardware. Although the NIC cannot directly



3

NIC Software 

LB

Offload

Traffic

NFV Server

(1)

(2)

Software 

LB
vLB

Figure 2. Offloading packet matching to the NIC. Modern NICs provide
matching capabilities that can be used to reduce the load on the CPU when
using a virtualized load-balancer (vLB). The first packet is always handled in
software subsequent packets can be matched in hardware. The table capacity
is limited, thus only elephant flows shall be offloaded.

rewrite the packets it can forward them to a specific queue. The
load-balancer software can then directly rewrite the packets
without any lookup. We have shown in [2] that this approach
reduces the load on the CPU and increases the throughput by
up to 50%.

The table capacity of the NIC is limited, e.g. for the utilized
Intel X550 NIC to 8000 entries. Thus only elephant flows
shall be offloaded. In case of traffic that has more concurrent
connections than available entries, an offloading decision has
to be taken. Even though the use case and the hardware utilized
are different from the first example, this decision should follow
the same principles: the maximization of the offloaded packet
rate with the available table capacity in focus.

III. RELATED WORK

In this section we give an overview of the related work. It
can be divided in two fields: Works that introduce techniques
for elephant flow detection and works that mainly consider
network function offloading.

A. Network function offloading

SciPass [3] use an OpenFlow switch for the offloading of
an institutional firewall in a science network. The system
consists of a 10G Firewall, a 100G OpenFlow switch and
the Bro Intrusion Detection System that is used to identify
the flows that can be offloaded. The evaluation shows that a
firewall bypass can significantly improve performance of the
network as the OpenFlow switch has a much higher data rate.
In contrast to our approach, SciPass is using a specialized
Intrusion Detection System for identification. The work also
focuses on the very specific use case of a science DMZ.

NFShunt [4] is a prototype implementation for firewall
offloading, realized with a Linux Netfilter based software
firewall and a OpenFlow switch, that is used as hardware
accelerator. The paper details the use-case of a science DMZ
and is showing implementation details of the prototype. In
contrast to our analysis, the authors are using static rules for
the offloading decision.

Heimgaertner et. al. [5] study firewall offloading that is
specifically designed to avoid congestion at the firewall. The
authors are using two different algorithms for the offload-
ing decision: A random decision chooses random flows for
offloading and a so called intelligent algorithm decides for
offloading based on the byte count of the flow. The results

show that the bypassing of the firewall can significantly
improve performance. Furthermore, it can be seen that the
decision algorithm is important, as more load is bypassed
using fewer rules in the OpenFlow switch with the intelligent
algorithm than with the random algorithm.

There are also several existing works on NIC offloading
that show that such approach can increase performance: Firstly
NIC offloading can be used for firewall offloading. Authors in
[6] utilize 5-tuple filtering in the NIC and show that offloading
firewall functions to NIC can improve both CPU utilization as
well as packet throughput.

Further, with NDN-NIC [7] the authors propose NIC of-
floading for name-based filtering. They utilize bloom-filters to
filter incoming packets to specific names. The pre-filtering of
the NIC reduces CPU overhead and the energy consumption
of the solution.

Finally, in a recent work Microsoft present their NIC Of-
floading solution for Azure [8]. They utilize custom NICs with
built-in FPGAs to realize network functions such as tunneling.
This solution frees CPU resources and increases their revenues
by selling this resources to customers.

None of the works on NIC offloading consider limitations in
the size of the NIC table. Instead, the above works concentrate
on the benefits of the solution and the respective implementa-
tion aspects.

B. Elephant flow detection

In general there is a lot of work on elephant flow detection,
mostly focusing on detecting elephant flows, when they are
already elephants. This means, many works concentrate on
detecting the flows that at a certain time constitute already
most to the overall network traffic, i.e. the redirection comes
too late. The overall problem is that the number of network
packets is too large in modern networks to be analyzed packet
by packet. There are a number of different approaches to tackle
this issue:

Many approaches require specific functionality in the data
plane: Widely used approaches such as NetFlow [9] and
FlowRadar [10] are using hash based approaches in the data
plane.

Other works are tracking the size of all flows and are
then choosing the heavy hitters from all flows [11], [12],
[13]. This is particularly useful for routers with a slow path
and a fast path. The flows that use the fast path are then
chosen using the largest flow from all flows. However in a
centralized approach like SDN, this is quite demanding in
terms of statistics collection. It has been found that handling
all flows in the control plane causes a high overhead [14].
To avoid this, DevoFlow [14] describes three different options
to detect elephant flows. First a sampling based approach is
suggested. Further the use of triggered reports and finally
approximate counters are proposed, the two last methods are
not available in current hardware and are hence out of scope.

Besides DevoFlow other sampling based approaches were
introduced [15], [16], [17], [5]. The underlying idea of these
approaches is that the number of packets of an elephant flow
is much higher than for a mice flow. Therefore, the probability



4

to miss an elephant flow is low, while the complexity of the
detection can be greatly reduced. In Section VII, we investigate
and compare to the sampling based approach and show that
the detection algorithm is of less importance than the sampling
rate.

In addition, there are approaches like Mahout [18] and
Hedera [19] that are using end-host based elephant flow
detection. However, in contrast to the presented approaches
in this work, [18] and [19] require modifications at the end-
hosts, which may be feasible in data centers but not in most
of the other networks.

Further there are also a number of works studying machine
learning approaches for elephant flow detection. Chabra and
Kiran [20] are using clustering algorithms to classify flows
retrospectively into mice and elephant flows. Therefore they
are researching the problem from a different angle, namely:
How to define an elephant flow.

Pouper et al. [21] propose the use of neural networks,
Gaussian mixture models and Gaussian process regression for
the prediction of the flow size. Xiao et al. [22] use C4.5
decision trees and Viljoen et al. [23] are using a neural network
to classify flows into mice and elephant. Chao et al. [24] uses
a 2-stage detection scheme with C4.5 trees as a first stage
and stream mining with Hoeffding trees in the second stage.
All works above show the feasibility of machine learning for
elephant flow detection, however none aims at a classification
with the first packet as proposed in our paper. Further their
evaluation is focusing on traffic engineering use cases, i.e. they
do not consider table size restrictions.

IV. OFFLOADING WITH THE FIRST PACKET

In order to overcome the limitations in the state of the art
with respect to flow classification, we introduce a classification
system that decides with the first packet if a flow is worth to be
offloaded to hardware or not. The envisioned use cases provide
stateful network functions; stateful network functions handle
the first packet of a flow separately. E.g., a stateful firewall
tracks the state of each connection and adds a new entry in
its state table with the first packet. In our approach we make
use of this specific processing path to forward the features of
the first packet from the VNF to a central entity. This central
entity e.g. an SDN controller can then classify the flow and
take the offloading decision.

This classification is done with a model that is trained using
machine learning.

Figure 3 illustrates the steps of the classification system:
1. In a first step the traffic is recorded by a monitoring

system. This step is described in more detail in the next
section.

2. From this raw data, a ground truth is derived: All flows
that are bigger than a threshold are labeled as 1 all others
are labeled with 0. This means the class is binary where
0 represents no offloading and 1 offloading.

3. The weights of the classes are equalized by weighting
some flows higher than others. This is necessary as much
more flows are of class 0 and the resulting models would
consequently also be biased towards class 0.

Flow 

Set
Trainingset

R
ec

o
rd

F
lo

w
s

Weighted 

Trainingset

Add 

Groundtruth

Equalize

weights
D

iscretize
&

 

R
ed

u
ce

Reduced 

Trainingset
Machine

Learning

Trained 

Model
Traffic Classify

Figure 3. The classification system: The packets from the trace resp. on
the line are recorded as flows. The ground truth is added depending on the
gathered statistics. After that some filters are applied aiming to build a basis
for the machine learning algorithm. The algorithm uses the set to train a model
that can be used to classify new connections. These connections are recorded
again for the next iteration.

4. The feature first packet size is discretized. Infrequent
nominal values of all features are merged.

5. The model is trained by the respective machine learning
algorithm.

6. The trained model is used by the offloading function to
decide if new flows are offloaded or not.

For the evaluation in this work Step 1 is replaced by a
packet-trace parsing script. Step 2-6 are implemented using
Weka [25]. Steps 1-5 have to be repeated regularly to retain
an up to date model for the classification.

A. Gathering the training-data

Gathering of the training-data is not in the focus of this
work. Nevertheless we want to outline an architecture that
could perform this necessary task. In particular, it is about the
realization of the measurement points. At the measurement
points the packets have to be grouped to flows and the features
described in IV-B are extracted from the first packet of a flow.
Therefore the measurement points have to be able to group the
flows using their five tuple, gather statistics and to extract the
size of the first packet. After the first packet, the accumulated
size of the transmitted data of the flow has to be gathered,
this information is needed to get the ground truth. In order to
provide valid data all the network traffic has to be analyzed and
not only a subset. This is especially important for a system
with deployed NFV hardware offloading. As the offloading
bypasses the VNFs, in turn these VNFs cannot be used alone
for the data gathering.

A centralized network monitoring system that merges the
measurements from hardware and software systems can solve
this problem. Figure 4 depicts such an architecture. By default,
offloading is not used, then all statistics, i.e. the size of the first
packet and the total size of the flow can be easily extracted
in a statistics network function (Statistics NF) realized in
software. Additionally the hardware has to be capable to count
the transmitted data of the offloaded flows. This is possible
with current networking hardware that provides statistics via
OpenFlow or sFlow. Finally, statistics from hardware and
software have to be merged together by a central entity, e.g.
an SDN controller or a network management system. The
resulting data set can then be used for labeling the ground



5

Client

Client

Statistics 

NF

Merge Statistics

NFVI
OpenFlow

Figure 4. Gathering the necessary statistics using multiple points in the
network. In a normal case packets are processed using a function chain located
at the NFVI, in this case statistics can be gathered using a statistics NF. If
a flow is offloaded the statistics have to be gathered by the hardware. All
statistics have to be consolidated in the end, e.g. using an SDN controller or
a network management system.

truth. All flows that have a total size of more than a threshold
Θf are labeled with class 1, all others with class 0. How
the threshold influences the offloading decision is shown in
Section VI-B.

In the presented work, we used a Python script to parse
the network traces that are shown in Section VI-A. Dumping
the network traffic to a file could also be used in a real
system. Though it might be problematic in practice, due to
high overhead for storing and recording such a trace.

B. Features

Our classification approach essentially tries to separate mice
from elephant flows. As the classification is used as an input
to the hardware offloading of network functions, the decision
should be available at the start of a flow. This is why only
features available with the first packet are used. Secondly,
as more and more traffic is encrypted, only features that
can be directly deduced from the packet header should be
used. Especially upcoming standards like QUIC and TLS 1.3
reduce the clear-text parts of the packets even further compared
to current standards. The chosen features that are shown in
Table IV-B are available with the first packet even when TLS
encryption is used.

IP source and destination combine both IPv6 and IPv4
addresses. L4 source and destination port are both UDP and
TCP ports, for other protocols this feature equals 0. Our notion
of flows is bidirectional, this means the first combination of a
five tuple is saved as a flow according to this packet’s headers.
If a packet of the same connection is seen in the opposite
direction it is counted for this flow. The five-tuple features IP
source, IP destination, IP protocol number, source port and
destination port are nominal or categorical features, as the
information depends on the specific number and not on the
range. In order to avoid over-fitting of the model and reduce
the complexity of both training and classification we merge
all nominal feature values with a frequency of less than f into
one value. An evaluation of parameter f is given in Section
VI-D

For each flow the size of the first packet in Bytes is stored
during flow recording. Figure 5 shows a histogram of the size
of the first packet at each flow. As can be seen from the
figure, the frequency of small packets with a size close to the

100 300 500 700 900 1100 1300 1500
Packet Size(Byte)

101

103

105

107

Fr
eq

ue
nc

y

Figure 5. Histogram of the size of the first packet from each flow for the
Wide A trace. The distribution shows high frequency for small packets.

Feature Type
IP source Nominal

IP destination Nominal
IP protocol number Nominal

L4 source port Nominal
L4 destination port Nominal
Size of first packet Nominal (Discretized)

Table I
FEATURES USED FOR MACHINE LEARNING. ALL FEATURES ARE

AVAILABLE WITH THE FIRST PACKET OF A FLOW. THIS ENABLES EARLY
CLASSIFICATION AND A LARGER GAIN COMPARED TO OTHER

APPROACHES.

minimum MTU of Ethernet is very high. These small packets
can be either e.g. ICMP packets that constitute a mice flow,
or possibly a TCP-Syn resulting in an elephant flow. Bigger
first packets can be part of a small or large flow as well (e.g.
a Syn with TCP Fast Open [26] or a DNS request). Therefore
using the packet size as a numeric feature will not give the
best classification results. Consequently, the size of the first
packet is discretized. We are using equal frequency binning
that creates bins with an equal number of instances, instead
of regular discretization where the bins cover the continuous
numeric space equally. This takes into account the differences
regarding the first packet frequencies and results in more
bins for small packet sizes and fewer bins for larger packet
sizes. We performed studies that show a significantly increased
performance with equal frequency binning compared to the
numeric feature.

C. Machine Learning Algorithms

In this section we briefly introduce the employed machine
learning algorithms.

NaiveBayes is a simple algorithm for creating a classifi-
cation model. It is based on Bayes’ theorem. To compute the
probabilities, NaiveBayes uses the assumption that the value of
one feature given the class is independent of the values of the
other feature. For our real world problem this is an assumption
that will not hold as for example the port and IP of a server are
coupled and are clearly not independent. Nevertheless it has
been shown in [27] that NaiveBayes still works well for many
real world cases even if the assumptions of Bayes’ theorem
do not hold.

On the one hand, a machine learning algorithm should
be able to build a model that is accurate, i.e. has a high
classification performance. On the other hand it should also



6

build a model that is fast in classifying new instances and
also understandable to support debugging. Decision tables can
support these concerns. For classifying the instances, the table
is searched for an exact match. If no match is found, the
majority class is returned. For building the table we used
the IDTM algorithm presented in [28]. Note that not all
features are included in the table. The feature subset is chosen
using BestFirst heuristic according to [28]. On the other hand,
decision tables are known to have a tendency to over-fit. This
means that the learned table fits very well to the training set
but is bad for predicting new unseen instances.

This can be solved by using tree algorithms, which can
be tuned in a way that avoids over-fitting. Additionally, the
complexity for the prediction in the offloading logic is low
when trees are used. J48 is the Java implementation of the
C4.5 algorithm presented in [29]. This algorithm generates a
decision tree from the training data, which is used for the
classification. Every decision node in the tree takes a decision
based on one attribute. J48 uses the entropy to decide the
distance to the root of the different attributes in the decision
tree. Each leaf of the tree identifies a class value, in our case
as the class is binary, 0 or 1. Therefore, the maximum number
of decisions that have to be made for a classification is p+1,
where p is the number of attributes. For our experiments, we
set the algorithm such that each leaf has to contain at least
2 instances. Additionally, we used pruning to reduce the tree
size and avoid over fitting with a pruning confidence of 0.5,
following best practice.

One way to improve classification performance is to use
ensemble methods. Ensemble methods combine the prediction
of multiple other learning algorithms. The drawback is that
complexity increases, as multiple base models have to be
trained or evaluated. We used two popular ensemble methods
namely Random Forest [30] and Adaptive Boost Algorithm or
shortly AdaBoost [31].

The Random Forest algorithm generates an ensemble of
trees, the decision is then taken by voting for the most popular
class. Random Forest is designed to improve classification
accuracy while being robust against outliers and noise. It uses
bagging together with random feature selection for creating
the trees. Bagging is a method to combine different models
created from samples of the training set. We used a bag size
of 5 % and a minimum number of instances of 100 per leaf.
Each tree uses F = log2p+1 randomly selected features from
a total of p features.

Random Forest is specifically created to be used with
tree algorithms, AdaBoost on the other hand can be used in
conjunction with many other algorithms. It combines team of
multiple inner models in a weighted sum, which is then used
for predicting the class. The AdaBoost algorithm chooses the
inner algorithms systematically to find a good classifier for
all instances in the learning set. For each iteration one inner
model is chosen such that the team with the new inner model
performs better than the old team. In this work we are using
the M1 variant of the algorithm with 10 iterations. As inner
classifiers we are using DecisionStump. DecisionStump builds
a decision tree based on one attribute with only one level,
i.e. it consists of the tree root and the leaves. Nevertheless in

vFirewall

Offloading Logic

NFVI

Network

vFirewallvFWn
s

: 
1

Figure 6. Sampling based Offloading approach: Every ns packet is forwarded
to the Offloading logic. If the decision is for offloading the flow of the
corresponding packet is offloaded by the SDN Controller.

conjunction with an ensemble learner like AdaBoost, the Deci-
sionStump algorithm can be used for building well performing
classifiers [31].

V. SAMPLING BASED APPROACH

An alternative approach for NFV offloading uses sampling:
Instead of being based on the first packet of a flow, the
offloading decision is based on randomly sampled packets.
Sampling is a common method for monitoring networks and is
realized e.g. by sFlow [32]. We compare our machine learning
algorithm with algorithms based on sampling.

In general, the sampling based offloading approach shown
in Figure 6 works as follows: The sampled packets are
forwarded to the decision logic. The logic decides if the flow
corresponding to this packet should be offloaded or not, based
on the packet and the internal state of the logic.

If the decision is for offloading, a new flow is installed
in the hardware table and the load on the network function
is reduced. Our employed decision algorithms are modified
versions of Heimgaertner’s [5] algorithm. Heimgaertner’s ap-
proaches are designed for imminent congestion and therefore
not directly comparable. The results show that the offloading
algorithm itself is, somehow surprisingly, of minor importance
for the sampling based approach, if real network traces are
used. Instead, we show in Section VII that the sampling rate
is the most important parameter. Therefore, we only show
two rather simple algorithms for the offloading decision in
the following.

A. Baseline Algorithm

One very simple yet effective offloading algorithm is to
always decide on offloading for every sampled packet. We call
this algorithm Baseline as it achieves the maximum reachable
offloaded rate for a certain sampling rate. Due to the sampling,
not every packet and thus not every flow is offloaded. Thus,
the maximum offloaded rate is limited. The only parameter of
this approach is the sample rate ns, i.e. only one out of ns

packets is forwarded to the offloading algorithm.

B. Table restricted approach Sample+

In order to restrict the table size necessary for the offloading,
the algorithm can be improved. The following algorithm is



7

based on Heimgaertner’s algorithm. In contrast to our ap-
proach, Heimgaertner’s algorithm is designed for Offloading
during immanent congestion and assumes that this only lasts
for a fraction of the time. Furthermore, it does not adapt the
offloading probability to the number of appearances of a flow.

We denote our advanced algorithm shortly as Sample+. The
target offload rate roff should be as large as the inverse of the
usage time of one entry treuse multiplied by the target number
of entries in the table nby .

roff =
nby

treuse
(1)

If Equation 1 holds, then the number of rules in the table
is exactly as large as targeted. The reuse time is not known
beforehand, it consists of the remaining active time of the
flow after offloading it trct and the soft timeout tout of the
OpenFlow switch table.

treuse = trct + tout (2)

Therefore it holds tout < treuse and we can upper-bound
roff <

nby

tout
. We denote the rate of new flows seen by the

algorithm as rf . It is estimated by the offloading logic using
UTEMA method [33]. Further we can then upper bound the
offloading probability poff as follows:

poff =
roff
rf
≤ nby

tout · rf
(3)

In order to compensate that Equation 3 gives only an upper
bound, we use a decreasing probability if the table is nearly
full. The offloading probability poff is then defined as:

poff = min

(
nby

tout · rf
,

nrem
by

tout · rf · th

)
(4)

nrem
by denotes the number of remaining entries, i.e. the

number of used entries subtracted from nby . The threshold
th specifies the border between the first and the second term
in the minimum. In our experiment we have set th = 0.1, i.e.
for a table occupation of 90% both terms in Equation 4 are
equally large.

VI. EVALUATION OF THE MACHINE LEARNING APPROACH

For the evaluation of the machine learning approach we
initially present the results using stratified cross-validation.
This approach delivers multiple outcomes for one data set and
allows a better grading of the algorithms than a single result
for each data set.

A. Data Sets

The machine learning approach tries to detect patterns in the
network traffic. One such pattern could be an IP address of a
popular video service, connections to this IP would be most
likely elephant flows. These patterns might be very diverse
in nature and therefore hard to model. As a consequence
simulated or emulated traffic cannot be used for the evaluation
and we have to use real traces.

Algorithm 1: Sample+ offloading algorithm

Input: Sampled Packet, t
Output: Offload Decision

1 5t = get5tuple(packet);
2 if 5t ∈ T then
3 Tc[5t] = Tc[5t] + 1;
4 else
5 rf = updateF lowRate(rf , t);
6 Tc[5t] = 0;
7 end

8 poff = min

(
nby

tout · rf
,

nrem
by

tout · rf · th

)
;

9 if random[0, 1] < poff · Tc[5t] then
10 return True;
11 else
12 return False;
13 end

WIDE WIDE WIDE CAIDA CAIDA
A B IX-24h 1 2

Duration 15 min 15 min 24 h 15 min 10 min
Flows 8M 8.6M 344M 45.6M 40.6M

Packets 99M 113M 15965M 977M 874M
Total 70 GiB 91 GiB 19 TiB 716 GiB 631 GiBTraffic

TCP flows 85.8 % 77.6 % 46.0 % 83.6 % 80.6 %share
UDP flows 12.4 % 22.1 % 48.33 % 16.2 % 19.2 %share

Table II
DATA SETS USED IN THIS WORK

We have chosen multiple traces among the publicly avail-
able traces to evaluate our results on diverse data sets in
terms of link capacity, average flow size and composition.
We use five publicly available data sets from three different
measurement points. Main parameters of the traces are shown
in Table II.

The WIDE data sets were retrieved from the MAWI Work-
ing Group Traffic Archive [34]. The traces WIDE A and
WIDE B are collected from the 1 Gbps transit link of WIDE
to their ISP. The traces were gathered at two consecutive days,
Thursday and Friday. They were chosen out of the daily traces
from the MAWI Working group. The daily traces are collected
every day at 14:00 to 14:15. Furthermore we use a 24 hours
trace (WIDE IX 24h) to study temporal effects of the machine
learning solution. This trace was gathered from the main link
of WIDE to the internet exchange point DIX-IE on a Tuesday.
The WIDE IX 24h trace has a significantly larger share of UDP
flows mostly due to a large number of DNS flows.

The CAIDA data sets were retrieved from the Center for
Applied Internet Data Analysis [35]. The traces were collected
at a data center’s link to the backbone of a Tier 1 provider
between 13:00 and 13:15. The link has a maximum data rate
of 10 Gbps, this yields a much higher data rate and a larger
number of parallel flows.

All traces where anonymized from the respective organiza-
tions. As statistical features were retained by the anonymiza-
tion, our results are not influenced.



8

0.90 0.95

ΘF = 1e3 B

ΘF = 1e4 B

ΘF = 1e5 B

ΘF = 5e3 B

ΘF = 5e4 B

(a) WIDE A: Offloaded share

2000 4000 6000

ΘF = 1e3 B

ΘF = 1e4 B

ΘF = 1e5 B

ΘF = 5e3 B

ΘF = 5e4 B

(b) Table occupation

0.85 0.90 0.95

ΘF = 1e3 B

ΘF = 1e4 B

ΘF = 1e5 B

ΘF = 5e3 B

ΘF = 5e4 B

(c) CAIDA 1: Offloaded share

25000 50000 75000

ΘF = 1e3 B

ΘF = 1e4 B

ΘF = 1e5 B

ΘF = 5e3 B

ΘF = 5e4 B

(d) Table occupation

Figure 7. Data Labeling: Offloaded share and table occupation if the labels are
used for the decision directly. For a small threshold ΘF the table occupation
is quite high even in this all-knowing case. But it quickly decreases. We chose
ΘF = 1e4B as a compromise between table occupation and offloaded rate.

B. Data Labeling

In this work, we are using supervised learning algorithms.
This class of algorithms needs labeled data. Our classification
problem is only binary with the class being the offloading
decision that can be True or False. We labeled the data using
a threshold with the following rule:

Offload =

{
True LF > ΘF

False LF ≤ ΘF

Where LF is the total size of a flow, meaning the sum
of the lengths of the packets belonging to one flow. Figure
7 shows the offloaded share and the table occupation for
different thresholds ΘF in the WIDE A and the CAIDA 1
data set. The results in the figure show the table occupation and
offloaded share if the labels are used directly for the decision.
As this requires a system with global knowledge, this approach
is not possible in reality.

Nevertheless, the results show the trade-off between re-
quired table size and offloaded share. As can be seen in the
figure, there is not one single best decision for ΘF .

Small thresholds yield a high table occupation obviously.
On the other hand, the results show that rate share and
table occupation are not proportional. E.g., in the WIDE A
set changing the threshold ΘF from 1e4 to 5e4, reduces
the offloaded rate share by only 1.1%, while reducing the
necessary table size by 11%. In contrast to that, the table
occupation for the CAIDA 1 set is much higher in the range of
40000 entries. The threshold should be chosen such that the
hardware table is fully utilized but not over-utilized. In our
testbed we have an OpenFlow enabled NEC PF5240 switch

WIDE WIDE WIDE CAIDA CAIDA
A B IX-24h 1 2

IP source 0.009 0.009 0.042 0.030 0.029
IP destination 0.007 0.007 0.029 0.021 0.019

IP protocol number 0.001 0.001 0.017 0.002 0.002
L4 source port 0.001 0.001 0.001 0.006 0.006

L4 destination port 0.009 0.010 0.037 0.008 0.008
Size of first packet 0.009 0.009 0.027 0.023 0.022

Table III
INFORMATION GAIN OF THE ATTRIBUTES IN BIT

with a table capacity of 64K entries suitable for the CAIDA
data set in the SDN Offloading use case. On the other hand
the FlowDirector enabled Intel X590 NIC has a capacity of
8K rules only. Following these guidelines, we decided to
use ΘF = 1e4 as a threshold in the following reaching an
offloading rate of 95% for both data sets.

C. Feature selection

Next we evaluate the information gain of the features, in
order to understand the main drivers of a good classification
scheme. Additionally, the results can be used to reduce the
complexity of training and classification, by omitting features
with low gain.

Table III shows the information gain of each attribute p:

InfoGain(Class, p) = H(Class)−H(Class|p)

where H(X) is the entropy of random variable X . From the
table it can be seen that the information gain of each feature is
small (maximum 0.042 bit for IP source and WIDE IX-24h)
and no single attribute can be used for a decision. Additionally,
the gain of attributes depends on the network conditions, as the
size of the first packet has a much higher gain for the CAIDA
data sets than for the WIDE data sets. Only the IP protocol
number shows little information gain and could be omitted
for performance reasons. As the notion of 5-tuples is very
common in packet processing systems we keep the feature for
the rest of the evaluation nevertheless. On the other hand using
only the 5-tuple features would cause a loss in information for
the classification and will therefore reduce the precision. This
complicates data gathering a little as for example sFlow cannot
be used to record the size of the first packet.

D. Merging infrequent nominal values

The employed features are mainly nominal, e.g. IP addresses
which are numerically close to each other do not necessarily
have similar effects on the classification. Consequently the
models have to use single nominal values to give a prediction.
As the learning sets can be built of a large number of flows
the value sets for nominal features can quickly become very
large. This is especially a problem for the IP addresses. Even
if only one packet is sent from one IP, the models have to
keep track of that.

In order to overcome this issue infrequent nominal feature
values are merged to one value. This is done by merging
all values that did occur in the training set less often than
the frequency f into one single nominal value. We apply
merging to all nominal features with the same f. Figure 8
shows the trade-off between table occupation and offloaded



9

0.75 0.85 0.95

f=100

f=1000

f=10000

f=50

f=500

f=5000

(a) WIDE A: Offloaded share

4000 6000

f=100

f=1000

f=10000

f=50

f=500

f=5000

(b) Table Occupation

0.75 0.85 0.95

f=100

f=1000

f=10000

f=50

f=500

f=5000

(c) CAIDA 1: Offloaded share

40000 55000

f=100

f=1000

f=10000

f=50

f=500

f=5000

(d) Table Occupation

Figure 8. Merging of infrequent values: The Figure shows the performance
of the offloading algorithm with J48 as machine learning algorithm on the
WIDE A and CAIDA 1 data sets. Nominal features with a lower frequency
than the minimum frequency f are merged. f=500 provides a good compromise
between table occupation and offloaded share.

bitrate that occurs with this parameter. A low f causes over-
fitting and elephant flows are not recognized well. On the other
hand, a high f under-fits and the table occupation necessary
in turn increases. Additionally the complexity of training and
classification largely depends on f.

A frequency of f=500 provides a good compromise between
over- and under-fitting for both data sets, even though they are
quite different. Thus f=500 is used for all other results.

E. Algorithm evaluation

1) Precision: The precision of the classification is defined
as usual:

Precision =
True Positives

TruePositives + False Positives

As we want to select those flows that are worth offloading in
hardware, we want a high true positive rate for class 1. On
the other hand, if we select too many flows for the offloading,
we need a large hardware forwarding table and might exceed
its capacity. Figure 9 shows the results for the different data
sets and both classes. The boxes are ranging from the lower
to the upper quartile of the outcomes. The whiskers mark the
full range of the outcomes. The line in the box represents the
mean.

The mean precision ranges between 0.85 and 0.95 depend-
ing on data set and algorithm. J48 and RandomForest show
the best classification precision in general. Especially J48
shows a high precision for both classes. The precision of
the DecisionTable classifier is below 85 % for some folds in
the CAIDA data sets, on the other hand the results for the
WIDE data sets are unremarkable. Another outstanding result

is the precision of the boosted DecisionStump algorithm in
the CAIDA 1 data set. The model almost always decides for
class 0, this results in precision of almost 100 % for class 0
and close to 50 % (out of the scale of the figure) for class 1.
For the other data sets the performance is clearly worse than
that of other algorithms. Consequently we did not consider
boosted DecisionStump further in the following.

2) Offloaded bit rate vs table requirement: One main draw-
back of networking hardware compared to software solutions,
is the limited hardware resources especially the tables. In
the ideal case we are only using hardware offloading for
large flows and consequently can treat the lion’s share of the
total data rate in hardware using few matching rules. As the
machine learning algorithms are imperfect, we have to either
sacrifice data rate or use a larger hardware table.

For this evaluation, we made the simplifying assumption
that the flow can be offloaded from the first packet. As we
cannot always sense the end of a flow, we always assumed that
one rule has to be kept in the hardware table for additional
three seconds after the last packet. This matches the soft
timeout mechanism used in OpenFlow devices, but could also
be used for other acceleration technologies. In Figure 11, we
present the mean table occupation for the offloading solution,
Figure 10 shows the offloaded data rate. Specifically for the
CAIDA data sets more than 80% and for the WIDE data
sets even more than 90% of the data rate can be handled in
hardware. On the other hand a fairly large hardware table is
necessary, 8000 entries in the WIDE case and 45000 in the
CAIDA case. This corresponds to roughly 20 % of all flows
handled in hardware. This is surely a significant number, but
as regular Binary Content Addressable Memory (BCAM) can
be used instead of expensive Ternary Content Addressable
Memory (TCAM) it is still feasible with the hardware available
today.

F. Classification Complexity

From the results shown before, we can see that especially
the tree algorithms, J48 and RandomForest, are always in the
group of the best performing algorithms. This is why we want
discuss the aspect of the classification complexity. J48 builds
a decision tree which makes a fast classification possible.
RandomForest is more complex in general as multiple trees
are evaluated and weighted. As RandomForest does not show
a superior performance, J48 seems to be a better choice. The
other algorithms require the evaluation of tables (NaiveBayes
and DecisionTables). This means their classification process is
more complex in general.

In case of J48, the complexity of the decision depends on
the depth of the leaves and the degree of the decision nodes.
As this metric is not easy to tackle we evaluated the decision
tree of the J48 learned model with the tree size. The tree size
is the number of all nodes in the tree.

We reduced the tree size (and consequently the decision
complexity) by allowing only leafs in the tree that are match-
ing a minimum number of weighted training instances. Figure
12 shows the tree size on the left axis and the necessary table
size on the right axis for a growing number of minimum



10

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

(a) WIDE A

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

(b) WIDE B

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

(c) CAIDA 1

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

(d) CAIDA 2

Figure 9. Precision of the selected algorithms with the different data sets. The mean precision for class 0 (offload=No) ranges between 0.84 and 0.96 depending
on data set and algorithm. The precision for class 1 is worse in general. J48 and RandomForest show the best classification precision in general. The Decision
Table classification precision is differing largely for the CAIDA data sets. Boosted DecisionStump is showing decent performance for the WIDE data sets but
has only low accuracy in the CAIDA data sets.

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(a) WIDE A

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(b) WIDE B

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(c) CAIDA 1

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(d) CAIDA 2

Figure 10. Offloaded data rate using the different learning schemes. The bit rate that is processed by hardware is approximately as good as with the all-knowing
ideal scheme. This is due to the much higher number of processed flows compared to the ideal case. In general the lion’s share of the rate can be processed
in hardware.

2000 4000 6000

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(a) WIDE A

2000 4000 6000

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(b) WIDE B

25000 40000 55000

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(c) CAIDA 1

25000 40000 55000

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(d) CAIDA 2

Figure 11. Mean table occupation. One major limitation is the number of rules in the hardware table. J48 requires the lowest number of table entries. On the
other hand the overhead compared to the ideal case is quite large for all learning schemes.



11

101 102 103 104

Minimum Number of Instances per Leaf

103

104

105
Tr

ee
Si

ze

0

1000

2000

3000

4000

Ta
bl

e
Si

ze

Figure 12. Decision tree size and table size when increasing the minimum
number of instances per leaf. The Figure shows the results using WIDE B
data set. A reduction of the tree by one magnitude only increases the table
size necessary by 12.5 %.

0.75 0.85 0.95

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(a) Offload share

2000 4000 6000 8000

AdaBoostM1 DecisionStump

DecisionTable

J48

NaiveBayes

RandomForest

Ideal

(b) Table Occupation

Figure 13. Temporal Stability: Offloading performance when using the Model
trained with WIDE A data set for classifying WIDE B data set. DecisionTable,
NaiveBayes and boosted NaiveBayes perform worse in this scenario. J48 and
RandomForest algorithm show less degradation. The offloaded rate is still in
the same range as for the ideal decision, the table occupation is ∼20 % higher
when compared to the model learned by cross validation.

instances per leaf. As the main effect of a modification in
the learning algorithm is visible in the necessary table size
only this metric is shown here. The results show that a
reduction of the tree by one magnitude increases the table size
necessary by 12.5 %. We can therefore reduce the complexity
significantly while only increasing the necessary table size
gradually. Nevertheless, in a deployment scenario it could be
more pressing to reduce the table size while scarifying the
decision complexity.

G. Temporal stability

In this work, we are using an offline learning approach. One
question that is arising is how stable the model is regarding
a longer period of time between the time the training set was
recorded and the time the model is used. Figure 13 shows
the results in this case: We have used the WIDE A data
set for training the model and applied it then to the WIDE
B data set. We again stratified the test set to end up with
results that can be compared. This way the test sets are the
same as in Figure 10(b), only the training sets differ. The
results show that the offloaded bit rate does not change much
with the delay between training and classification. Only the
offloaded bit rate using DecisionTable classification is clearly
lower. This can be explained by over fitting the training data.

0.85 0.90 0.95

Crossvalidation

Every 15min

Every 30min

Every hour

Every 4 hours

Every 8 hours

(a) Offload share

2000 4000 6000

Crossvalidation

Every 15min

Every 30min

Every hour

Every 4 hours

Every 8 hours

(b) Table Occupation

Figure 14. Temporal Stability: Offloading performance for the WIDE 24h
data set and J48. Performance is not impacted largely when different learning
intervals are used.

Both tree algorithms, J48 and RandomForest, show a slightly
higher offloaded rate when compared to NaiveBayes.

A more in depth view can be gained if we apply the
approach to a longer trace. Thus we also applied it to the
WIDE IX-24h data set and used different training intervals.
Figure 14 shows the results for different training intervals,
e.g., every 15min means that the model is retrained every 15
minutes. We use always data from 15 minutes for training. The
results show that the performance is slightly reduced due to the
time shift. A more frequent training does not yield significantly
better results. Further, the spread of both offloading share and
table occupation is quite large.

We see the reason for this result in Figure 15. For this figure
we split the data into 15 minutes chunks. The figure shows the
mean offloading share of all combinations of training and test
sets. From the figure it can be seen that there are more and
less challenging times of the day. While the performance in
the morning (until 12:00 pm) and in the night (after 23:00
pm) is above 90% for most of the training sets, it is different
for a short interval around 13:00 pm and especially in the
evening after 18:00 pm. The analysis of the data shows that
during these short intervals the average size of the flows is
smaller than at all other times of the day. During these short
intervals a 20-50% (not shown in the figure) decreased flow
size is consistently visible. The reduction is caused by a larger
number of mice flows. This shift makes correct classification
more challenging.

It should be noted that the pattern reverts to its normal
behavior after 23:00 as can be seen by the high offloading
shares even with training sets in the early morning. On the
other hand, training more frequently does not significantly
improve the performance, as the pattern is changing quite often
at this time of the day (visible by the stripes in the upper right
corner of Figure 15).

This means that it is sufficient to retrain the model every
day without losing too much performance. We imagine to do
this as a regular job that is executed during less busy hours in
a real deployment scenario.

VII. EVALUATION OF THE SAMPLING APPROACH

In order to evaluate the sampling approach we applied both
algorithms described in Section V for the data sets WIDE A



12

0400 0800 1200 1600 2000
Test Set (time of day)

0400

0800

1200

1600

2000

Tr
ai

ni
ng

Se
t(

tim
e

of
da

y)

50

60

70

80

90

Figure 15. Temporal Stability: Offloading share for the WIDE 24h data set
in a heat map. This view on the results shows that some times of the day
have a different traffic pattern than others.

0.75 0.85 0.95

ns = 10

ns = 50

ns = 100

ns = 200

(a) WIDE A: Offloaded share

2000 4000 6000

ns = 10

ns = 50

ns = 100

ns = 200
Sample+
Baseline

(b) Table Occupation

0.75 0.85 0.95

ns = 10

ns = 50

ns = 100

ns = 200

(c) CAIDA 1: Offloaded share

20000 30000 40000

ns = 10

ns = 50

ns = 100

ns = 200
Sample+
Baseline

(d) Table Occupation

Figure 16. Offloading using Sampling: For lower sampling rates all flows
that belong to sampled packets are offloaded, thus Sample+ and Baseline
algorithm perform equally. Only for higher rates we can see that Sample+ is
much more economically regarding table occupation.

and B and both CAIDA data sets. One main parameter of both
algorithm is the sampling rate ns, we used different settings
for ns, starting with moderate sampling of ns = 200 up to a
high sampling rate with ns = 10. This is the only parameter of
the baseline algorithm, from runs with this algorithm we can
derive how many table entries are necessary in the restricted
case. We have chosen a table size of 4000 for the data set
WIDE A and 45000 for CAIDA 1, this allows for a high
offloading rate in both cases.

Figure 16 shows the results for both algorithms. It can be
seen that for lower rates up to ns = 50 both algorithms have
the exact same performance and the table is not filled to the

targeted value. This is due to the fact that many flows are not
even seen by the offloading algorithms as no packet of these
flows is sampled. As the heuristic tries to use the table up to
the allowed level it behaves equal to the baseline algorithm.
On the other hand it can be seen that the offloaded rate is
quite high if compared to the table occupation. This is due to
the fact that sampling itself already filters the flows as large
flows have a higher probability to be sampled, this directly
resembles the fact that elephant flows makeup the major share
of the complete traffic.

The downside of the sampling based approach is that the
overhead is quite high. While the sampling itself can be done
in hardware that is deployed quite often nowadays, the rate
that has to be processed by the algorithm is still high. E.g.
if the share of the offloaded traffic should reach 90% it is
necessary to set the sampling rate to ns = 50, this results
in a packet rate of 110 · 103 packets per second (pps) for the
WIDE A data set. Even though it is feasible to process such
a number, it is demanding and can be infeasible for scenarios
with higher rates.

VIII. DISCUSSION

In this section, we are summarizing the findings and assess
them in context of the NFV acceleration approach.

In Section IV, we are introducing a classification model that
is used to build a model for the classification of the flows in
small flows and large flows used for offloading. We present
a monitoring approach for gathering the necessary training
data. We argue that a combined approach that uses statistics
from a NFV based tailored statistics network function for the
first packet size and a conventional monitoring system using
OpenFlow statistics or sFlow can be used.

Furthermore we introduce the features that are used for
training and how they are preprocessed. The preprocessing
is based on domain knowledge and is an important step for a
good classification performance.

The preprocessing uses the parameters offloading threshold
ΘF and the minimum frequency f of the nominal features.
We tuned the parameters independent of each other using the
data sets CAIDA A and WIDE A. The results are similar for
both data sets even though the data sets are quite different,
as CAIDA A has much higher data rate and many more
concurrent flows. Further, we use the same parameters for
the data sets CAIDA B, WIDE B and WIDE IX-24 with
good results. This implies that the parameters hold for typical
internet traffic. However, for different network conditions such
as, e.g., an industrial network, the optimal parameters might
be different. Nevertheless, we argue that the pipeline itself can
be applied to other conditions with minor or no changes.

In Section VI, we apply different machine learning al-
gorithms using the presented classification system. We rely
on publicly available data sets. Figures 9, 10 and 11 show
the results. It can be seen that DecisionTable and boosted
DecisionStump algorithm do not provide a reliable perfor-
mance with the investigated data sets. Therefore we argue that
they are not suitable for the presented application. Overall
RandomForest and J48 achieve high offloaded rates with



13

0.75 0.85 0.95
Offloaded share

WIDE A

WIDE B

CAIDA 1

CAIDA 2

Sample+ n=200
Sample+ n=100
Sample+ n=50

Sample+ n=10
J48
RandomForest

Figure 17. Overview of the offloaded share for all algorithms and data sets.
In order to reach the performance of the Machine Learning algorithms a high
sampling rate is necessary.

slightly lower table occupation. We argue that J48 has a lower
complexity than RandomForest and analyze this property more
deeply for J48 in Section VI-F.

The model is employed for classifying new flows with the
first packet and the acceleration use cases as shown in Section
II can be used. As the model is network specific and not static
it has to be retrained regularly. In Section VI-G, we have
shown that a daily retraining is sufficient for the evaluated
network. As the old model can still be used while the new one
is trained we do not have any interruptions of the acceleration.

Section V introduces two sampling based approaches that
can be used alternatively for the offloading decision. The
baseline algorithm always decides for offloading. Due to the
sampling not all flows are offloaded, as it can happen that
all packets of a flow are not part of the sampled subset.
The table restricted approach, Sample+ takes a maximum
allowed table size as input and keeps the number of rules
below this threshold. Notably the most important parameter
of the sampling approach is the sampling rate, for low to
medium sampling rates it does not even matter if the offloading
algorithm decides on offloading all the time, as shown with
the Baseline algorithm.

Figure 17 shows an overview of the results for both
approaches. We have chosen the best performing machine
learning algorithms namely J48 and RandomForest here. It
can be seen that the offloaded share for the WIDE data sets
is significantly higher compared to the CAIDA data sets. This
indicates that large flows have a smaller share in this network.
In general both presented learning algorithms perform better
and especially more stable for the WIDE sets. We can conclude
that the algorithms are more suitable for small scale networks
like campus networks. All results support the finding that the
sampling based algorithms require a large sampling rate to
reach the performance of the Machine Learning algorithms:
For the WIDE data sets we do not even meet the performance
with a sampling rate of 1:10, for the CAIDA data sets still

a sampling rate of 1:50 is necessary. A high sampling rate
requires significant compute resources as all the sampled
packets have to be processed. That is with the presented
sampling rate and the WIDE A data set a packet rate of
110 · 103 pps.

Even though the sampling rate for the CAIDA traces can
be lower, the resulting packet rate that must be processed by
the sampling approach is higher: 1 · 106 pps.

The traces differ a lot in terms of table occupation. The
traces that were retrieved from the WIDE traffic archive
require table sizes in the range of a few thousand entries. In
contrast to that the traces retrieved from CAIDA require much
bigger tables of several ten thousand entries. This observation
holds for both approaches as can be seen from Figure 11 and
Figure 16. This difference in the order of magnitude stems
from the fact, that the WIDE traces are gathered from a
1G uplink, while the CAIDA traces are gathered at a 10G
backbone link. This indicates that different hardware, in terms
of size of the hardware table, is necessary, depending on how
aggregated a link is. On the one hand, highly aggregated links
require acceleration hardware providing large tables. On the
other hand, less aggregated links like those in the WIDE case
suffice with smaller tables.

Finally, the analysis of the data set shows that the approach
performs better if the data set is less noisy. Especially a very
high number of small micro flows, like in the CAIDA sets or
during some hours in the WIDE IX-24h set can cause some
performance degradation.

IX. CONCLUSION AND OUTLOOK

In this work, we explore the capabilities of different algo-
rithms for deciding if a flow should be offloaded to hardware
or not. We consider two fundamentally different approaches:
First, offloading with the first packet of a flow using machine
learning. The first packet is sent by the VNF to the algorithm.
Secondly, offloading with sampling, where all packets are
sampled and the sampled packets are used for the decision.

The results show that the lion’s share of the data rate can
be handled in hardware using our approaches. The drawback
is that the necessary hardware table is comparably large, as a
fairly big number of flows are classified for offloading falsely.
As regular BCAM can be used for matching, the approach is
feasible nevertheless.

The results show that the J48 algorithm has the best prop-
erties of all the investigated machine learning algorithms. It
combines low table occupation with a high offloaded data rate
and additionally has a low complexity of the classification.
On the other hand, other algorithms like RandomForest and
NaiveBayes are only slightly worse and could also be used.

The sampling based approach can also reach a high of-
floaded share, however it requires a quite high sampling rate
to meet the performance of the machine learning approach.
If the overhead of sampling the complete traffic should be
avoided, offloading with the first packet is a viable alternative
to sampling.



14

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their important feedback during the review process. This
work has been partially funded by the German Research
Foundation (DFG) under the grant number KE 1863/8-1 and
by the Federal Ministry of Education and Research Germany
(BMBF) under grant number 16KIS0260. The authors alone
are responsible for the content of the paper.

REFERENCES

[1] B. Pfaff, J. Scherer, D. Hock, N. Gray, T. Zinner, P. Tran-Gia, R. Durner,
W. Kellerer, and C. Lorenz, “SDN/NFV-enabled Security Architecture
for Fine-grained Policy Enforcement and Threat Mitigation for Enter-
prise Networks,” in Proceedings of the SIGCOMM Posters and Demos,
2017, pp. 15–16.

[2] R. Durner, A. Varasteh, M. Stephan, C. Mas Machuca, and W. Kellerer,
“Hnlb: Utilizing hardware matching capabilities of nics for offloading
stateful load balancers,” in IEEE International Conference on Commu-
nications (ICC ’19), 2019.

[3] E. Balas and A. Ragusa, “Scipass: a 100gbps capable secure science
dmz using openflow and bro,” 2014.

[4] S. Miteff and S. Hazelhurst, “NFShunt: A Linux firewall with
OpenFlow-enabled hardware bypass,” IEEE Conference on Network
Function Virtualization and Software Defined Network (NFV-SDN),
2015.

[5] F. Heimgaertner, M. Schmidt, D. Morgenstern, and M. Menth, “A
Software-Defined Firewall Bypass for Congestion Offloading,” in In-
ternational Conference on Network and Service Management (CNSM),
2017.

[6] Y. Weinsberg, E. Pavlov, Y. Amir, G. Gat, and S. Wulff, “Putting it on
the nic: A case study on application offloading to a network interface
card (nic),” in 3rd IEEE Consumer Communications and Networking
Conference (CCNC), 2006.

[7] J. Shi, T. Liang, H. Wu, B. Liu, and B. Zhang, “Ndn-nic: Name-based
filtering on network interface card,” in Proceedings of the 3rd ACM
Conference on Information-Centric Networking, 2016.

[8] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al., “Azure
accelerated networking: Smartnics in the public cloud,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), 2018.

[9] B. Claise, “Cisco systems netflow services export version 9,” Tech. Rep.,
2004.

[10] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: a better netflow for data
centers,” in 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2016.

[11] L. Che and B. Qiu, “Landmark LRU: An efficient scheme for the
detection of elephant flows at internet routers,” IEEE Communications
Letters, vol. 10, no. 7, 2006.

[12] R. B. Basat, G. Einziger, R. Friedman, and Y. Kassner, “Optimal
elephant flow detection,” in IEEE Conference on Computer Commu-
nications(INFOCOM), 2017.

[13] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Lever-
aging Zipf’s law for traffic offloading,” ACM SIGCOMM Computer
Communication Review, 2012.

[14] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 254–265, 2011.

[15] T. Mori, M. Uchida, R. Kawahara, J. Pan, and S. Goto, “Identifying
elephant flows through periodically sampled packets,” in Proceedings of
the 4th ACM SIGCOMM conference on Internet measurement, 2004.

[16] K. Psounis, A. Ghosh, B. Prabhakar, and G. Wang, “Sift: A simple
algorithm for tracking elephant flows, and taking advantage of power
laws,” in 43rd Allerton Conference on Communication, Control and
Computing, 2005.

[17] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff, “Sampling
and large flow detection in sdn,” ACM SIGCOMM Computer Commu-
nication Review, vol. 45, no. 4, pp. 345–346, 2015.

[18] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead
datacenter traffic management using end-host-based elephant detection,”
in IEEE Conference on Computer Communications(INFOCOM), 2011.

[19] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat
et al., “Hedera: dynamic flow scheduling for data center networks.” in
7th USENIX conference on Networked systems design and implementa-
tion (NSDI), 2010.

[20] A. Chhabra and M. Kiran, “Classifying elephant and mice flows in high-
speed scientific networks,” in Proceedings of INDIS, 2017.

[21] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen,
K. Chen, and H. Jin, “Online flow size prediction for improved network
routing,” in International Conference on Network Protocols (ICNP),
2016.

[22] P. Xiao, W. Qu, H. Qi, Y. Xu, and Z. Li, “An efficient elephant flow
detection with cost-sensitive in sdn,” in 1st International Conference on
Industrial Networks and Intelligent Systems (INISCom), 2015.

[23] N. Viljoen, H. Rastegarfar, Mingwei Yang, J. Wissinger, and M. Glick,
“Machine learning based adaptive flow classification for optically inter-
connected data centers,” in 18th International Conference on Transpar-
ent Optical Networks (ICTON), 2016.

[24] S. Chao, K. C. Lin, and M. Chen, “Flow classification for software-
defined data centers using stream mining,” IEEE Transactions on Ser-
vices Computing, vol. 12, no. 1, pp. 105–116, 2019.

[25] F. Eibe, M. Hall, and I. Witten, “The WEKA Workbench. Online
Appendix for ”Data Mining: Practical Machine Learning Tools and
Techniques”,” Morgan Kaufmann, 2016.

[26] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “Rfc 7413 - tcp fast
open,” 2014. [Online]. Available: http://tools.ietf.org/html/rfc7413

[27] H. Zhang, “The optimality of naive bayes,” AA, vol. 1, no. 2, p. 3, 2004.
[28] R. Kohavi, “The power of decision tables,” in 8th European Conference

on Machine Learning. Springer, 1995, pp. 174–189.
[29] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:

Morgan Kaufmann Publishers, 1993.
[30] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[31] Y. Freund and R. E. Schapire, “Experiments with a new boosting al-

gorithm,” in Thirteenth International Conference on Machine Learning.
San Francisco: Morgan Kaufmann, 1996, pp. 148–156.

[32] P. Phaal and M. Lavine, “sFlow Specification Version 5,” 2004.
[33] M. Menth and F. Hauser, “On moving averages, histograms and time-

dependentrates for online measurement,” in Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering,
2017, pp. 103–114.

[34] WIDE MAWI Working Group, “Wide traffic archive,” http://mawi.wide.
ad.jp/.

[35] Center for Applied Internet Data Analysis, “Caida Anonymized Internet
Traces 2016,” http://www.caida.org/data/passive/passive 2016 dataset.
xml.

Raphael Durner received the M.Sc. degree in elec-
trical engineering from the Technical University of
Munich, Munich, Germany, in 2014. In November
2014, he joined the Chair of Communication Net-
works, Technical University of Munich as a member
of the research and teaching staff. His research
focuses on network softwarization approaches and
their impacts on network performance.

Wolfgang Kellerer Wolfgang Kellerer (M’96,
SM’11) is a Full Professor with the Technical
University of Munich (TUM), heading the Chair
of Communication Networks at the Department of
Electrical and Computer Engineering. Before, he
was for over ten years with NTT DOCOMO’s Euro-
pean Research Laboratories. He currently serves as
an associate editor for IEEE Transactions on Net-
work and Service Management and on the Editorial
Board of the IEEE Communications Surveys and
Tutorials.


