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A B S T R A C T

Unprecedented urbanization in particular in countries of the global south result in informal urban development
processes, especially in mega cities. With an estimated 1 billion slum dwellers globally, the United Nations have
made the fight against poverty the number one sustainable development goal. To provide better infrastructure
and thus a better life to slum dwellers, detailed information on the spatial location and size of slums is of crucial
importance. In the past, remote sensing has proven to be an extremely valuable and effective tool for mapping
slums. The nature of used mapping approaches by machine learning, however, made it necessary to invest a lot
of effort in training the models. Recent advances in deep learning allow for transferring trained fully convolu-
tional networks (FCN) from one data set to another. Thus, in our study we aim at analyzing transfer learning
capabilities of FCNs to slum mapping in various satellite images. A model trained on very high resolution optical
satellite imagery from QuickBird is transferred to Sentinel-2 and TerraSAR-X data. While free-of-charge Sentinel-
2 data is widely available, its comparably lower resolution makes slum mapping a challenging task. TerraSAR-X
data on the other hand, has a higher resolution and is considered a powerful data source for intra-urban structure
analysis. Due to the different image characteristics of SAR compared to optical data, however, transferring the
model could not improve the performance of semantic segmentation but we observe very high accuracies for
mapped slums in the optical data: QuickBird image obtains 86–88% (positive prediction value and sensitivity)
and a significant increase for Sentinel-2 applying transfer learning can be observed (from 38 to 55% and from 79
to 85% for PPV and sensitivity, respectively). Using transfer learning proofs extremely valuable in retrieving
information on small-scaled urban structures such as slum patches even in satellite images of decametric re-
solution.

1. Introduction

Poverty is considered one of the major challenges for our society in
the upcoming decades, making it the number one issue of the
Sustainable Development Goals as defined by the United Nations (UN,
2017). In urban areas, slums are the most visible, distinct manifestation
of poverty (Amnesty International, 2016). Unprecedented processes of
urbanization over the past decades have transformed mankind into an
urban species with two thirds of the global population being expected
to live in urban areas by the year 2050 (UN, 2015). This rural-urban
migration is especially intense in mega cities of the global south, such as
Mumbai in India which grew at a pace of up to 300,000 inhabitants per
year (Burdett and Rhode, 2010). Since formal urban development
cannot keep up with this pace of rural-urban migrants, many new urban

dwellers are forced to find their new homes in settlements of informal
nature with poor living conditions, lack of basic services such as access
to safe water and sanitation facilities. Today, these slums are home to
almost an estimated billion dwellers on a global scale (UN Habitat,
2015). In some cities, the share of slum dwellers accounts for up to 42%
of the city’s total population in official numbers (and a significantly
higher number in estimations) such as it is the case for Mumbai
(Taubenböck and Wurm, 2015). Various strategies for dealing with
slums have been developed by local authorities, however a recent
change can be observed towards a strategy of integrating the ‘invisible
city’ into governing structures is today for many cities the accepted way
to deal with those informal areas since the presence of slums cannot be
neglected anymore (Wurm and Taubenböck, 2018). Thus, the deriva-
tion of reliable, spatial information on the size and location of slum
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areas by mapping approaches has gained much of interest over the past.

1.1. Morphological characteristics of slums from a remote sensing
perspective

As it can be observed for many applications in the context of urban
remote sensing, the turn of the millennium marks an important date
with the advent of very high resolution satellites providing images at
resolutions of 1m or better. Especially for the discrimination of very
small, heterogeneous objects such as buildings within the urban en-
vironment, high image resolutions are of crucial importance. Thus, also
in the context of slum mapping, an increased interest in the utilization
of VHR satellite images can be observed since then. This goes in parallel
with the advent of more sophisticated image analysis techniques such
as object-based image analysis or, recently, deep learning methods.
Thus, in the following we review previous works on remote sensing-
based slum mapping based on different methods and image features in
the light of the complex nature of slum morphology.

From a synoptic perspective, urban poverty finds its physical ex-
pression in many different ways which usually do not follow a strict and
universal concept (Taubenböck et al., 2018; Kuffer et al., 2017).
However, some forms of urban poverty in particular can be directly
associated with the morphology of the built environment, though
(Sandborn and Engstrom, 2016; Jean et al., 2016; Wurm and
Taubenböck, 2018). Most commonly, organic, irregular arrangements
of buildings are associated with slum areas, as well as low building
heights, poor construction materials and a generally high building
density in often hazardously exposed areas (Baud et al., 2010; Kuffer
et al., 2016a; Graesser et al., 2012; Jain, 2007). These characteristic
morphologic features are extensively exploited in remote sensing-based
image analysis for slum mapping. Since recently thorough studies on
the state of slum mapping have been released (Kuffer et al., 2016a;
Mahabir et al., 2018), we only summarize below past research efforts
based on significant cornerstones in methods or data. While generally,
very high mapping accuracies are achieved by visual image inter-
pretation (Wurm and Taubenböck, 2018; Taubenböck et al., 2018) or
knowledge-based methods using object-based image analysis (OBIA)
relying on tuned parameters (Kuffer et al., 2014; Baud et al., 2010),
large-area mapping of slums is usually based on machine learning al-
gorithms which aim at generalizing specific semantic knowledge in the
images based on labeled elements and image descriptors to provide
transferability of the learned knowledge into unknown areas. One key
feature in the identification of slums is their sharp contrast in their
physical appearing compared to formal developed urban areas. There-
fore, contextual image features such as the grey-level-co-occurrence-
matrix (GLCM) was used extensively in slum mapping in combination
with machine learning techniques such as random forests (e.g. Kuffer
et al., 2016b; Graesser et al., 2012; Wurm et al., 2017; Owen and Wong,
2013) or support vector machines (Huang et al., 2015). Besides the
extensive use of VHR optical data, only few studies were dedicated to
the exploitation of actively acquired data, e.g. such as dual-polarized X-
band SAR data from TerraSAR-X (Wurm et al., 2017; Schmitt et al.,
2018). Only recently, the current trend in machine learning for se-
mantic segmentation of images has been taken up by the application of
deep learning for the detection of slums in VHR images confirming
current trends in deep learning methods to outperform state-of-the-art
machine learning techniques (Persello and Stein, 2017). The next sub-
sequent step to learning and applying a network on the same data set is
to transfer a pretrained network to sensors of different resolutions.
Thus, deeper networks consisting of more hidden layers need to be
considered (Oquab et al., 2014).

1.2. Transfer learning for semantic segmentation using convolutional neural
networks

Generally, most machine learning methods work well because

human-designed representations and features are used to optimize
weights for an accurate prediction. Representation learning attempts to
automatically learn good features or representations, which works well
for small problems. In contrast, manually designed features are often
over-specified, incomplete, and are very time-consuming for design and
validation. Deep learning algorithms attempt to automatically learn
multiple levels of representations exclusively from its input data,
without the need of additional user input (Zhu et al., 2017). Besides its
effectiveness, this can be regarded as one of the reasons for the big
success of deep learning in machine learning since the task of training
and prediction is facilitated. Recent advances in the field have proven
deep learning a very successful set of tools, sometimes even able to
surpass human ability to solve highly computational tasks (Zhu et al.,
2017). Especially for image representations, convolutional neural net-
works have proven to excel at extracting mid- and high level abstract
features from raw images. Recent studies indicate that the feature re-
presentations learned by CNNs are greatly effective in large scale image
recognition (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014),
object detection (Girshick et al., 2016) and semantic segmentation
(Long et al., 2015).

Image segmentation aims at understanding an image at pixel level,
i.e. each pixel of an image is assigned a semantic class. Initially, images
of a fixed size were required for classification, but soon fully convolu-
tional networks (FCNs) without fully connected layers popularized CNN
architectures for dense predictions of images of any size and sig-
nificantly increased speed (Long et al., 2015). Apart from fully con-
nected layers, one of the main challenges using CNNs for semantic
segmentation are the ‘pooling layers’. They increase the field of view
and are able to aggregate the context while discarding the location
information. However, semantic segmentation requires the exact
alignment of class maps and thus, needs the spatial information to be
preserved. This issue can be tackled by encoder-decoder architectures
where an encoder gradually reduces the spatial dimension with pooling
layers and a decoder which gradually recovers the object details and
spatial dimension using transposed/fractionally strided convolutions.
While FCNs can learn the interpolation during the decoding process,
upsampling produces coarse segmentation maps because of loss of in-
formation during pooling. Therefore, skip connections are introduced
from higher resolution feature maps.

In Long et al. (2015), the authors describe the key observation that
fully connected layers in classification networks can be viewed as
convolutions with kernels that cover their entire input regions. This is
equivalent to evaluating the original classification network on over-
lapping input patches but is much more efficient because computation
is shared over the overlapping regions of patches. In remote sensing, the
use of deep learning brings up new challenges, since satellite image
analysis raises some unique issues that need to be considered, e.g. geo-
location of satellite images, sensor specifics (resolution, incidence an-
gles, data quality etc.) or the big data challenge (Zhu et al., 2017).

In the context of remote sensing, scene classification of satellite
images, which aims to automatically assign a semantic label to each
pixel in an image, has recently been an active research topic in the field
of VHR satellite images. Generally, scene classification can be divided
into two steps: feature extraction and classification. With growing num-
bers of images, training a complicated non-linear classifier is very time
consuming. Hence, to extract a holistic and discriminative feature re-
presentation is the most significant part for scene classification.
Traditional approaches are mostly based on the Bag-of-Visual-Words
model (Sivic and Zisserman, 2003; Zhu et al., 2016), but their potential
for improvement was limited by the ability of experts to design the
feature extractor and the expressive power encoded. In contrast, deep
learning architectures have been successfully applied to the problem of
scene classification of high-resolution satellite images outperforming
state-of-the-art image classifiers (Zou et al., 2015; Penatti et al., 2015;
Castelluccio et al., 2015; Mou et al., 2017).

As deep learning is a multi-layer feature learning architecture, it can
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learn more abstract and discriminative semantic features with growing
depth. Thus, it has been shown that it can achieve far better classifi-
cation performances compared to mid-level approaches (Zhu et al.,
2017). Training of neural networks, is usually performed using pre-
trained networks on large image datasets, e.g., COCO (Lin et al., 2014),
Pascal VOC (Everingham et al., 2010) or ImageNet (Deng et al., 2009)
which in general reach impressive accuracies (Hu et al., 2015; Zou
et al., 2015). Expanding the three channel input limitations of tradi-
tional deep learning algorithms (Kemker et al., 2018; Marmanis et al.,
2018) use specific architectures to use elevation information and mul-
tispectral imagery to boost performance in semantic segmentation fra-
meworks. Training networks from scratch is an extremely elaborate and
time consuming method which is usually employed only if the data has
completely different characteristics compared to internet images, for
example hyperspectral images (Mou et al., 2018; Pan et al., 2018) or
SAR (Gong et al., 2017; Hughes et al., 2018).

In general, transfer learning builds upon learned knowledge from
one dataset to improve learning in another dataset. More specifically, it
can be described as a method which aims to improve learning the target
predictive function f (·)T in the new target dataset DT using the
knowledge learned in the source dataset DS. As described by Pan and
Yang (2010), transfer learning can be divided into three categories: (a)
In inductive transfer learning the target task is different from the source
task, no matter if the source or target datasets are the same or not. In
this case labeled data is required to induce the target learning task. (b)
For transductive transfer learning both target and source learning tasks
are the same while their datasets are different. In this situation no la-
beled data in the target dataset are required. Lastly, (c) unsupervised
transfer learning is used when the target and source tasks are different,
and no labeled data is available in both source and target datasets.

Selection of transfer learning strategies not only depends on the
availability of existing labels in both source and target datasets and the
similarity of the source and target dataset but also if weights learned in
the source task can be adjusted or shared in the target task. Transfer
learning can be achieved using multiple strategies. Multi-task learning
has been used to improve object detection accuracy by transferring
knowledge from one object class to another using a support vector
machine’s (SVM) discriminative training framework for HOG template
models (Aytar and Zisserman, 2011) or using a hierarchical classifica-
tion model that allows rare objects to borrow statistical strength from
related objects (Salakhutdinov et al., 2011). Two multi-task classifiers
are used to obtain a more robust classifier for object detection in videos
(Ma et al., 2014). In hyperspectral remote sensing domain adaption
technology can be applied to share knowledge between different geo-
graphical domains when using support vector machines (Sun et al.,
2012) or random forest classifiers with transfer component analysis
(Xia et al., 2017). Impressive results could be observed using un-
supervised feature representation using pretrained CNNs for scene
classification in very high resolution remote sensing imagery (e.g.
Castelluccio et al., 2015; Hu et al., 2015). Inductive transfer learning
enables to further improve the learning task where backpropagation
successfully re-weights labeled data from natural image datasets, e.g.
ImageNet to solve new problems in remote sensing datasets (e.g.
Maggiori et al., 2017; Marmanis et al., 2016; Nogueira et al., 2017;
Kang et al., 2018). Therefore, in this study inductive transfer learning of
a FCN is used due to relative large labeled datasets where the fine
tuning of weights during backpropagation aims to achieve best possible
results.

1.3. Transferring deep features between various remote sensing data sets

In slum mapping, in particular approaches using remotely sensed
data from satellite images with varying characteristics were used ex-
tensively for assessing image processing and analysis techniques (Kuffer
et al., 2016a; Mahabir et al., 2018). Both scientific meta-studies state
that while previous work on remote sensing-based slum mapping has

acknowledged the advances of recent machine learning techniques for
locating slums in satellite images, they lack transferability between
various data sets. Costs for the large-area availability of very high re-
solution (VHR) optical satellite imagery at a geometric resolution of 1m
and below are a limiting factor and thus, multi-sensor approaches with
data sets of varying origins are proposed.

In this study we want to address these identified issues by using
state-of-the-art machine learning techniques from the family of con-
volutional neural networks (CNN) which need no tuning of parameters
and have therefore better capabilities for transferring a trained network
to another data set, as long as the training data set is sufficiently large
and representative. Specifically, we want to explore the capabilities of
this process of ‘transfer learning’ to adopt a pretrained CNN from VHR
optical Quickbird imagery to be applied to satellites with larger map-
ping areas but lower geometric resolution such as Sentinel-2. Further, in
a second experiment we want to assess the capabilities of transfer
learning from optical imagery to active SAR imagery from TerraSAR-X.

The remainder of this article is structured as follows: in the fol-
lowing Section 2 we present the methodological framework of fully
convolutional networks (FCN), transfer learning for slum mapping and
used data sets among the experimental set-up. In Section 3 we present
the results and discussion of the performed experiments, while Section
4 concludes the paper.

2. Methods and experimental set-up

2.1. Method: The fully convolutional network FCN-VGG19

FCNs, first introduced by Long et al. (2015) allow for semantic
segmentation to train end-to-end and pixel-to-pixel for the prediction of
dense outputs from arbitrary sized input images. Learning and inference
are performed on the entire image by dense feedforward computation
and backpropagation. Within the network upsampling layers enable a
pixelwise prediction and learning with subsampled pooling. For our
experiments, we use the CNN based on the classification architecture
VGG19 by the Visual Geometry Group of Oxford University (Simonyan
and Zisserman, 2014). The CNN relies on rather small receptive fields of
3×3 pixels which are convolved with the input at every pixel. In this
way a stack of two 3×3 convolutional layers has an effective receptive
field of 5×5. Consequently, four layers have a 9×9 effective re-
ceptive field. This strategy has the advantage of incorporating four non-
linear rectification layers instead of a single one, making the decision
function more discriminative. Furthermore, it decreases the number of
parameters: 4(32C2)= 36C2 produces less trainable weights than a
single 9×9 convolutional layer: 92C2= 81C2.

To adapt the CNN-VGG19 architecture to an FCN some modifica-
tions are required: The final classification layer is discarded and re-
placed with a 1× 1 convolution and with the channel dimension of the
number of used classes. Further, deconvolutional layers are introduced
for bilinear upsampling of the coarse outputs to pixel-dense outputs. In
this case, upsampling through deconvolutional layers means using
transpose convolutions. This operation simply reverses the forward and
backward passes of the convolution. Upsampling is performed for end-
to-end learning by backpropagation from a pixelwise loss (Long et al.,
2015).

A graphical representation of the used FCN-VGG19 architecture is
depicted in Fig. 1. It shows that the FCN uses skips, which combines the
final prediction layer with lower level layers with finer strides. Fusing
fine layers and coarse layers lets the model make local predictions that
respect a global structure. The FCN fuses the upsampled output of the
VGG19 network architecture with predictions computed on top of the
third and fourth pooling layer.

2.2. Method: Transfer learning approach

Training the FCN was performed using an inductive transfer
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learning approach (cf. Section 1.3). When given a source domain da-
taset DS and a learning task TS, a target domain dataset DT and learning
task TT aims to improve the learning of the target predictive function
f (·)T in DT using the knowledge in DS and TS where T TS T (Pan and
Yang, 2010). In this case the target domain dataset DT and the learning
task TTbenefit from using the knowledge learned in the source domain
dataset D .S We present two groups of experiments. In our first approach
weights from a vgg19 CNN which was pretrained on the ImageNet
dataset are transfer learned for 100 epochs with all weights available
for tuning during the backpropagation algorithm on all three remote
sensing datasets where the source domain is the ImageNet dataset
DS

ImageNet and the target domain is QuickBird, Sentinel-2 and TerraSAR-
X imagery (FCN QB, FCN S2, FCN TX). Instance transfer allows to re-
label weights from the source domain to the target domain and ensures
adapting the backpropagation algorithm to improve the target learning
task. Table 1 indicates a small dataset in the target domain for Sentinel-
2 DT

S2 with only 219 image tiles and also in the TerraSAR-X target
domain DT

TX with only 2113 image tiles. A small target domain in
DT

S TX2, is usually insufficient for finding good feature representations
between the source learning task TS

ImageNet and the target learning task
TT

S TX2, for which reason a second group of transfer learning experiments
was performed. It aims to reduce differences between the source and

target domain where both domains are based on satellite images. Thus,
the FCN trained on the QuickBird dataset (FCN QB) from the first group
of experiments acts as a new source domain DS

QB for the second group.
The target learning task for Sentinel DT

S2 benefits from a better feature
representation since both datasets DS

QB and DT
S2 are optical remote

sensing images. In the same way, the experiment is performed for the
TerraSAR-X target domain DT

TX . For both transfer learning experiments
all trainable variables of the FCN are available during backpropagation
to ensure adapting all parameters for the different resolutions and
image sensing methods of the remote sensing data.

2.3. Material: Satellite images for slum mapping

For our experiments, space-borne satellite images of three different
sensors (QuickBird, Sentinel-2, TerraSAR-X) with entirely different
specifications are investigated. Since we aim at testing the capabilities
of transfer learning of pretrained models between different images, we
briefly introduce the used satellite images for our experiments below
(Table 1). In general, our main image data set is from QuickBird. For
transfer learning we use Sentinel-2 and TerraSAR-X.

QuickBird: was the first VHR commercial space-borne sensor with a
sub-meter resolution of 0.5m in the panchromatic band. The four

Fig. 1. Architecture of the FCN-VGG19 adapted from Long et al. (2015) which learns to combine high level information with fine, low level information using skips
from the third and fourth pooling layer. Hidden layers are equipped with rectified linear units (ReLUs) and the number of channels for the convolutional layers
increases with the depth of the network. During training the input image is a fixed size of 224×224 pixels, while receptive fields for all filters are 3× 3 pixels
throughout the whole network. This configuration allows the FCN to learn approximately 140 million parameters. Prediction is performed using upsampling layers
with four channels for the all classes [ncl] in the reference data. Upsampling layers are fused with 1×1 convolutions of the third and fourth pooling layers with the
same channel dimension [x,y,ncl]. The final upsampling layer predicts fine details using fused information from the last convolutional layer, third and fourth pooling
layer upsampled at stride 8.

Table 1
Characteristics of satellite images for testing transfer learning techniques for the FCN-VGG19.

GSD Scene size Bands/Polarization Date Incidence Angle Image tiles

QuickBird 0.5 m 103 km2 blue, green, red, nir Nov 17, 2008 16.6° 7487
Sentinel-2 10m 781 km2 blue, green, red, nir Nov 19, 2017 4.8° 219
TerraSAR-X 6m 242 km2 HH/VV Sep 29, 2013 33.7° 2113

6m 242 km2 VV/VH Dec 11, 2013 33.7°
6 m 308 km2 HH/VV Oct 10, 2013 34.7°
6 m 308 km2 VV/VH Dec 04, 2013 34.7°
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multispectral bands blue, green, red and nir are acquired at 2m resolu-
tion. Scenes usually have a swath width of ∼17 km.

Sentinel-2: is the high resolution optical sensor of the European
Copernicus Programme with 12 spectral and thermal bands at varying
resolutions. The blue, green, red and nir bands are acquired at 10m re-
solution. The swath width is 290 km.

TerraSAR-X: is an active SAR sensing system with various imaging
modes of polarizations and resolution. For the commonly used stripmap
mode, dual and cross polarized images are acquired at a ground sam-
pling distance (GSD) of 6m. The swath width is 11 km.

Satellite images are split into image tiles of 224×224 pixels with
an overlap of 28 pixels to increase the amount of input data and to
counter classification problems near edges. Since semantic segmenta-
tion performs classification of the entire images, four semantic classes
are defined which cover the entire scenes: ‘urban’, ‘vegetation’, water’
and ‘slums’. For training and evaluation, fully labeled images are cre-
ated for each data set (Fig. 2). Labeling of reference data is based on a
multi-step image analysis procedure through a combination of hier-
archical, knowledge-based and object-based classification, machine
learning and visual image interpretation: in a first step, image objects
are generated through a combined workflow of quad-tree and multi-
resolution image segmentation methods. Further, spectral and spatial
image features are calculated for each image object and basic landcover
classes such as water and vegetation are classified using a random forest
classifier based on visually derived training objects. In a subsequent
step, slum patches are derived by visual image interpretation from
image analysts and cross-validated. The reference map is controlled by
a stratified spatial random sample of 800 test points over the image
with a resulting overall accuracy of 93% and a kappa value of 0.91.
Accuracy for the slum class is reported with sensitivity of 92% and a
positive prediction value of 95%. For the transfer learning experiments,
the reference map was adapted to the geometric resolution of each
target image data set.

2.4. Experimental set-up

The FCNs are trained on an Nvidia Titan X GPU using the ‘adam
optimizer’ (Kingma and Ba, 2014) and a batch size of two image tiles.
All FCNs use fixed learning rates of 10−5 and a dropout value of 15%.

The training methodology for the FCNs was as following: first, a pre-
trained model is initially trained for 100 epochs on all three datasets
(QuickBird, Sentinel-2 and TerraSAR-X) to set-up the FCN. Second, two
transfer learning experiments are conducted: the pretrained QuickBird-
FCN is transferred on Sentinel-2 and TerraSAR. The implementation of
the FCN is based on the TensorFlow™ framework of Shekkizhar (2017).

Performance of the FCN is evaluated within a 4-fold cross validation
procedure where each scene is split into four equal data strips. Out of
the four data strips, three strips are used as training samples which are
randomly shuffled after each epoch and the remaining strip is used for
validation. The cross-validation process is repeated four times, with
each of the four strips used exactly once for validation. Finally, the four
results of the folds are mosaicked to produce a single output covering
the entire scene with each strip being the result of one of the four
classification experiments and thus allowing for assessment of in-
dependent results.

For quantitative assessment of the accuracy of the outputs of se-
mantic segmentation, some commonly accepted performance measures
are used: First, overall measures assess the general performance and
second, class-specific measures reveal specific insights. The kappa index
is applied as a measure to define to what extent the classification out-
come differs from a random result with ranges between 0 and 1; where
0 corresponds to a completely random result and 1 corresponds to a
completely nonrandom result. The overall accuracy (OA) and inter-
section over union (IoU; also known as Jaccard Index) are calculated in
addition. OA is generated from an error matrix between the classifica-
tion map and the reference map and allows for a general assessment of
the agreement between the two maps; however, OA can be subject to a
strong bias for very imbalanced semantic class distributions.

Class-specific accuracy measures are calculated to assess the pro-
portion of correctly classified pixels from the reference (sensitivity) and
the fraction of correctly classified pixels from the output (positive
prediction value; PPV). These multiple standard measures are used for
comparison with other classification experiments and are, much like
OA, subject to well-known biases due to class-imbalance. Therefore, IoU
is used in deep learning such as PASCAL VOC and CITYSCAPES chal-
lenge (Long et al., 2015). This accuracy measure compares the simi-
larity between two maps and is calculated by the sum of true positives
divided by the sum of true positives, false positives and false negatives

Fig. 2. Composites and reference labels for all datasets: QuickBird and Sentinel-2 in false color and TerraSAR-X as PCA composite for a subset of central Mumbai.
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over the whole data set. It can be viewed as a precise indicator to the
success of a classifier.

Besides the above introduced pixel-based performance evaluation
strategies, a patch-based accuracy assessment is applied to account for a
dependency of the slum patch area and the accuracy of the FCN. In this
way, slum patch sizes are grouped into three size-based classes: smaller
than 5 ha, 5–25 ha and larger than 25 ha. Accuracy assessment is per-
formed for each slum patch size and analyzed (see Section 3.3).

3. Results and discussion

In this section, the capabilities of deep learning for slum mapping in
different remotely sensed data sets with varying characteristics are
analyzed subject to the quantitative results of the performed semantic
segmentation experiments. Performance of the FCN is first evaluated for
all four semantic classes in general and second for the slum class in
particular. In total, five experiments were performed in two groups:

(1) training a pretrained model on the high resolution QuickBird image
(FCN QB), on Sentinel-2 (FCN S2) and on TerraSAR-X (FCN TX).

(2) transfer learning of the pretrained FCN on Quickbird to Sentinel-2
(FCN-TL S2) and TerraSAR-X (FCN-TL TX).

Training the FCN is performed using a sparse softmax cross entropy
loss function within TensorFlow™ to measure the performance of the
model. The loss is a summation of the errors made for each example
during the training stage, which implies how well or poorly a certain
model behaves after each iteration of optimization. The respective loss
curves are presented in Fig. 3 where all five FCNs indicate an inter-
pretation on how well the model performs for the training datasets. All
networks show convergence towards zero with some minimal jitter
between 0.01 and 0.5. Both transfer learned FCNs (FCN-TL S2 and FCN-
TL TX) reach a low loss value much faster than the pretrained FCNs,
while the FCN trained on Sentinel-2 data takes considerably longer to
converge against zero.

Semantic segmentation based on the FCN is performed on all total
scenes (cf. extents in Fig. 2) according to the above described experi-
mental set-up (cf. Section 2.4). A graphical depiction of the results for
the same subset of a central area in Mumbai is depicted in Fig. 4. Visual
interpretation of the results indicates very fine-structured patches for
FCN QB as it is also the case in the reference data set. For that reason
high accuracies are to be expected for the QB data set. As regards with
the Sentinel-2 data, the effects of transfer learning become clearly

visible: from large-structured patches of the results for FCN S2, a major
increase in granularity using the transfer learning approach FCN-TL S2
is observed: even at a geometric resolution of 10m, small fractions of
vegetation and slum patches are successfully detected. For TerraSAR-X
(FCN TX), no significant alteration of the classification result is ob-
served through transfer learning.

3.1. Overall accuracies

Quantitative results in terms of overall performance for the se-
mantic segmentation are presented in Table 2 for all five experiments.
With regards to overall measures, all five experiments obtained con-
siderable accuracies with Kappa values between 0.72 and 0.85. The best
performing set-up is reported, as expected, for QuickBird (FCN-QB). The
Kappa value (0.85) and the Overall Accuracy (90.62%) show a very
high agreement. This is followed by the Sentinel-2 experiment (FCN-TL
S2) with the same Kappa value (0.85) and marginally lower OA
(89.64%). Interestingly, highest IoU (87.43%) is reported for Sentinel-2
(FCN–TL S2) which can be considered as being mostly related to the
substantially larger area of interest for Sentinel-2 (cf. Fig. 2) and the
respectively larger shares of water bodies (cf. Table 3) which impact
significantly the overall measures in general and the IoU in particular.

Transfer learning from the ImageNet domain DS
ImageNet to the remote

sensing domains DT
QB,S2,TX performs well for the QuickBird learning task.

This can be accounted for by a sufficient quantity of training data inDT
QB

(cf. Table 1). The second transfer task DT
S2,TX with less training data

performs significantly poorer. Two possible reasons can explain this
aspect: for the Sentinel-2 target learning task there is just not enough
data available for a good knowledge transfer from DS

ImageNet to DT
S2. The

same accounts the for transfer learning task to TerraSAR-X data in-
cluding another difficulty of a stark difference in feature representation
of optical image data in DS

ImageNet and radar data in DT
TX.

As regards with the performance of transfer learning against the
performance of pre-trained networks, we observe remarkable differ-
ences among the transfer between QB/S2 and QB/TX: the transfer
learning approach could significantly increase all overall performance
measures for S2; however, no relevant change in accuracy is observed
for the transfer between QuickBird and TerraSAR-X data. In fact, ac-
curacy is even marginally lower for the transfer learning approach in
this particular setting. We interpret this effect by difficulties of the
network in transferring the learned model from optical features to SAR
image features (cf. Hughes et al., 2018). Thus, no additional improve-
ment of the model can be achieved.

Fig. 3. Logarithmic learning curves for training five FCNs. The x-axis shows all FCNs trained for an equal duration of 100 epochs. The y-axis shows the cross entropy
loss computed during training.
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Transfer learning from the QuickBird domain DS
QB to the Sentinel-2

domain DT
S2 improves performance for all accuracy measurements sig-

nificantly due to the similar feature representation in both the source
and the target domain. Performance when using transfer learning
techniques from the QuickBird domain DS

QB to TerraSAR-X 2 domain
DT

TX stagnates or decreases to about 1–2% in the accuracy

measurements. Prior studies have already pointed out this observation
when dealing with SAR data (Zhu et al., 2017). We can confirm these
issues where the upper limit of SAR classification accuracy is reached
when only 2113 image tiles are available. The knowledge transfer is too
difficult when transfer learning from either ImageNet or QuickBird to
SAR data due to the significantly different image information re-
presentation

3.2. Class-based accuracies

While overall performance measures allow for a general assessment
of the conducted experiments, detailed interpretation of class-based
performance evaluation shed more light on the segmentation results.
Thus, class-specific performance measures are presented in Table 3.
With respect to the individual semantic classes, we observe the fol-
lowing: by far the highest accuracies in all performance measures for
the classes ‘urban’ and ‘slum’ are obtained by QuickBird (FCN-QB). For

Fig. 4. Results of the semantic segmentation for the five experiments on the three data sets: QuickBird [QB], Sentinel-2 [S2] and TerraSAR-X [TX] on pre-trained
FCNs and transfer learned FCNs [FCN-TL].

Table 2
Performance Evaluation of the FCN For all Classes. OA: Overall Accuracy; IoU:
Intersection over Union; TL: Transfer Learned.

Approach Kappa OA (%) IoU (%)

FCN-QB 0.85 90.62 84.12
FCN-S2 0.81 86.71 83.94
FCN-TL S2 0.85 89.64 87.43
FCN-TX 0.73 80.68 73.96
FCN-TL TX 0.72 80.03 73.02

Table 3
Performance Evaluation of the FCN for the Individual Semantic Classes for the total scenes. IoU: Intersection over Union; TL: Transfer Learned; PPV: Positive
Prediction Value; Sens: Sensitivity; A: area (percentage of scene coverage). Best results are marked in bold.

Urban Vegetation Water Slum

Approach Sens (%) PPV (%) IoU (%) Sens (%) PPV (%) IoU (%) Sens (%) PPV (%) IoU (%) Sens (%) PPV (%) IoU (%)

FCN-QB 91.37 90.34 83.24 92.90 95.35 88.88 90.78 90.97 83.28 85.70 88.39 77.02
FCN-S2 87.47 75.87 68.43 96.42 98.44 94.97 85.35 89.72 77.75 38.21 78.82 35.51
FCN-TL S2 87.62 82.00 73.49 97.47 98.57 96.12 90.14 90.61 82.44 55.47 85.25 51.23
FCN-TX 84.29 83.13 71.99 93.86 94.03 88.59 78.46 75.65 62.63 51.64 72.50 46.27
FCN-TL TX 85.78 80.21 70.80 93.49 93.58 87.85 75.82 75.64 60.94 43.64 78.43 38.42
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the ‘vegetation’ class, Sentinel-2 (FCN-TL S2) obtained best results, most
likely due to the aggregation of information in Sentinel-2 and the
consequential less small-structured vegetation fraction. Accuracies for
the water class are quite similar between QuickBird (FCN-QB) and
Sentinel-2 (FCN-TL S2) with only marginal differences. While for the
urban class, QuickBird (FCN-QB) performs considerably better than
Sentinel-2 (FCN-TL S2). The effect for the ‘slum’ class is most striking:
the small-scaled buildings and their very organic arrangements are best
segmented by the sensor with the highest geometric resolution being
also capable of identifying individual buildings or shacks. Both, positive
prediction value (88.4%) as well as sensitivity (85.7%) reach very high
accuracies, i.e. the majority of slum areas as classified in the reference
data set could be detected and only very few false positives occur. These
effects are underpinned by high very IoU values (77%) which can be
seen a very conservative measure of accuracy.

Comparing the results for pretraining and transfer learning, we
observe a significant gain in accuracy in all semantic classes for
Sentinel-2. Especially the performance of slums is increased remarkably
making the effect of transfer learning in this case extremely valuable. As
already reported in literature (Hughes et al., 2018), no positive effect is
observed for TerraSAR-X data. Here, almost all classes are better

represented by the pretraining approach (FCN-TX) than the transfer
learning approach (FCN-TL TX); however, with one exception: PPV of
slums is increased. If considering only the slum class, however, very
competitive results in comparison to Sentinel-2 are obtained (55.47%
vs. 51.64%).

All in all, we can state the following:

(1) the pretrained network on QuickBird performs very well in classi-
fying heterogeneous urban environments.

(2) transfer learning for Sentinel-2 can significantly improve the re-
sults.

(3) for TerraSAR-X performance is reported lower than for the optical
data.

(4) Transfer learning for TerraSAR-X could not improve the perfor-
mance.

3.3. The impact of slum patch size

As stressed already in prior studies slum patch sizes vary sig-
nificantly within cities (e.g. Wurm et al., 2017). Friesen et al. (2018)
found that slum patch size distribution in several mega cities in the
world follow very closely Zipf’s law and can be analyzed via rank size
distribution (Zipf, 1941). The case for Mumbai is presented in Fig. 5.
We observe a majority of small slums with areas below 5 ha and only a
handful of large slums above 25 ha. Their respective contribution to the
total slum area is, however, inverse, as presented in Table 4.

Based on these observations, we additionally perform a patch size-
based accuracy assessment for the specific class of ‘slums’ to analyze the
impact of slum patch size on the resulting classification performance.
Both, a visual comparison for all approaches, and a quantitative as-
sessment of sensitivity are conducted (Table 5). Small slum patches
(< 5 ha) are presented in Fig. 6 with very good slum mapping cap-
abilities for QuickBird (FCN-QB: 78.57%). Further, a significant in-
crease of sensitivity for Sentinel-2 between pretrained and transfer
learned is observed (9.32 vs. 24.67%). Prior discussed effects for Ter-
raSAR-X images are also observed for the smallest group of patches:
decreasing sensitivity between pretrained and transfer learned (31.26
vs. 20.78%). Both, Sentinel-2 and TerraSAR-X, however, perform very
poor for this smallest group of patch sizes which is to be expected at
image resolutions of 10m and 6m, respectively.

Medium-sized slum patches are presented in Fig. 7. Here the same
trend is identified as for small patches: highest sensitivity is obtained by
QuickBird (FCN-QB: 83.63%) and transfer learning significantly im-
proves slum patch detection for Sentinel-2 against pre-training (28.19
vs. 50.64%). Again, a decrease is measured for the approach using
TerraSAR-X (47.36 vs. 37.98%).

Finally, results for large slum patches (Fig. 8) are reported highest
for all performed experiments. In QuickBird 88.39% of the reference
slum pixels are detected (FCN-QB). For Sentinel-2, again, transfer
learning significantly enhances mapping capabilities (47.18 vs.
62.46%) and a decrease in a performance is observed for TerraSAR-X
(48.36 vs. 55.34%). Summarizing these observations, a strong effect of
slum patch size on the detection rate is reported for all experiments (cf.
Wurm et al., 2017).

4. Conclusion

In this paper, we perform a series of experiments to analyze the
capabilities of fully convolutional neural networks for semantic seg-
mentation of slums for the example of Megacity Mumbai using satellite
images with different characteristics. As a result, we observe the fol-
lowing effects:

(1) very high geometric resolution of 0.5 m in QuickBird imagery al-
lows for the best results of all experiments.

(2) transfer learning of a pre-trained network from QuickBird to

Fig. 5. Rank size distribution of slum patch sizes in Mumbai in a loglog plot.

Table 4
Proportions of number of slum patches and area for three size-based classes.

Small slums
[< 5 ha]

Medium slums
[5–25 ha]

Large slums
[> 25 ha]

Patches 84.63% 13.62% 1.75%
Area 26.10% 36.40% 37.50%

Table 5
Sensitivity measurement as a function of varying slum patch size.

Approach Small slums
[< 5 ha]

Medium slums
[5–25 ha]

Large slums
[> 25 ha]

FCN-QB 78.57 83.63 88.39
FCN-S2 09.32 28.19 47.18
FCN-TL S2 24.67 50.64 62.46
FCN-TX 31.26 47.36 55.34
FCN-TL TX 20.78 37.98 48.36
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Fig. 7. Comparative alignment of medium sized slums [5 ha–25 ha] showing differences in segmentation results obtained by pre-trained FCNs and transfer learned
FCNs (FCN-TL) on QuickBird, Sentinel-2 and TerraSAR-X images. Slum patches in the reference map are depicted in yellow. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparative alignment of small slum patches [< 5 ha] showing differences in segmentation results obtained by pre-trained FCNs and transfer learned FCNs
(FCN-TL) on QuickBird, Sentinel-2 and TerraSAR-X images. Slum patches in the reference map are depicted in yellow. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Sentinel-2 images significantly improves the segmentation results.
This makes medium resolution sensors at 10m GSD an opportunity
for very large-area mapping of slums for entire countries or sub-
continents.

(3) for active satellite imagery such as TerraSAR-X, the transfer
learning approach does not improve the results, but even decrease
the performance. We relate this observation to the fact that the
network is not able to transfer the learned image features from
optical imagery to the SAR representation of urban structures.

(4) Further, we observe a strong effect of slum patch size for being
detected by the segmentation approaches. While this effect is
smallest for high resolution QuickBird imagery which already per-
forms at a very high level: from 79.57% for< 5 ha to 88.39%
for> 25 ha, an increase from 9.32 to 47.18% in sensitivity is ob-
tained for Sentinel-2 pretrained (FCN-S2) and from 24.67 to 62.46%
for Sentinel-2 transfer learned (FCN-TL S2). The same effect is also
observed for TerraSAR-X: from 31.26 to 55.34% for pre-trained
(FCN-TX) and 20.78 to 48.36% for transfer learned, respectively
(FCN-TL TX).

Finally, segmentation outcomes are extremely promising and en-
couraging for further experiments using transfer learning and fully
convolutional networks for slum mapping in satellite imagery. Further
experiments need to focus on large-area approaches and the transfer
between different geographical regions. This challenging task needs to
address the morphological representations of slums in different cultural
areas as shown by Taubenböck et al. (2018), since the physical nature
of slums is represented by a large variety of morphological structures.
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