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ABSTRACT

Background: Modern data-driven approaches to medical research require patient-level information at compre-
hensive depth and breadth. To create the required big datasets, information from disparate sources can be
integrated into clinical and translational warehouses. This is typically implemented with Extract, Transform,
Load (ETL) processes, which access, harmonize and upload data into the analytics platform.

Objective: Privacy-protection needs careful consideration when data is pooled or re-used for secondary purposes,
and data anonymization is an important protection mechanism. However, common ETL environments do not
support anonymization, and common anonymization tools cannot easily be integrated into ETL workflows. The
objective of the work described in this article was to bridge this gap.

Methods: Our main design goals were (1) to base the anonymization process on expert-level risk assessment
methodologies, (2) to use transformation methods which preserve both the truthfulness of data and its schematic
properties (e.g. data types), (3) to implement a method which is easy to understand and intuitive to configure,
and (4) to provide high scalability.

Results: We designed a novel and efficient anonymization process and implemented a plugin for the Pentaho
Data Integration (PDI) platform, which enables integrating data anonymization and re-identification risk ana-
lyses directly into ETL workflows. By combining different instances into a single ETL process, data can be
protected from multiple threats. The plugin supports very large datasets by leveraging the streaming-based
processing model of the underlying platform. We present results of an extensive experimental evaluation and
discuss successful applications.

Conclusions: Our work shows that expert-level anonymization methodologies can be integrated into ETL
workflows. Our implementation is available under a non-restrictive open source license and it overcomes several
limitations of other data anonymization tools.

1. Introduction

complex analyses. The i2b2 platform [6] is a well-known example of a
system that focuses on data generated by clinical and health services

Modern medical research requires data of comprehensive depth and
breadth to improve our understanding of the development and course
of diseases and to ultimately develop methods for prevention, targeted
diagnosis and therapy. In a learning health system “every clinical en-
counter contributes to research and research is being applied in real
time to clinical care” [1]. To implement this on a large scale, data must
be made accessible, harmonized and integrated [2,3]. This also requires
using data for secondary applications that go beyond the initial purpose
of collection [4,5].

Data integration and in particular data warehouses are central to
these efforts. In this context, database systems are set up that integrate
disparate data into a common layout which efficiently supports
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and by epidemiological studies [7]. A related platform is tranSMART,
which has been developed for the analysis of integrated clinical and
‘omics’ data for translational research [8]. Some institutions, such as
the Vanderbilt University Medical Center [5], have also developed
custom solutions.

Data is typically replicated from routine systems into warehouses
using ETL processes [9,10]: (1) data is extracted from source systems,
(2) cleansed, harmonized and transformed into a form suitable for
analyses, and (3) loaded into the analytics solution. To manage the
complexity of such processes, they are often implemented using specific
environments, which offer libraries of connectors to different types of
sources, transformation operators and a graphical workbench for
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combining them into complex workflows. Well-known solutions are
Pentaho Data Integration (PDI, also known as Kettle) [11], which is the
standard tool for loading data into tranSMART, and Talend Open Studio
(TOS) [12], which is a central component of the Integrated Data Re-
pository Toolkit (IDRT) [13] for creating i2b2-based warehouses.

When pooling medical data or when re-using it for secondary pur-
poses, privacy concerns and legal requirements need careful con-
sideration. Privacy protection involves ethical, legal and societal issues
(ELSI) and several layers of technical and non-technical measures are
typically required to implement it [14]. On the technical side, the
privacy of patients and probands is often protected by data anonymi-
zation, which means that datasets are altered in a way that prevents
successful re-identification. National and international privacy regula-
tions address data anonymization. In the United States, the Safe Harbor
method of the Privacy Rule of the Health Insurance Portability and
Accountability Act (HIPAA) provides a catalog of attributes for which
values need to be removed or modified [15]. In addition, the Expert
Determination method permits the use of formal and statistical methods
for assessing and managing re-identification risks, which is similar to
the way in which data anonymization needs to be implemented in the
European Union [16].

Data anonymization is a complex process in which the resulting
reduction of re-identification risks needs to be balanced against a re-
duction of data utility [14,17]. A wide variety of different models and
methods for data transformation, risk assessment and utility estimation
have been proposed to address this trade-off. To manage this complex
process, a number of tools have been developed, including sdcMicro
[18], which focuses on official statistics, and ARX [19], which has
specifically been designed for applications to biomedical data by im-
plementing methods which have been recommended in the field
[19-21]. Both tools offer a high level of maturity and they have been
included into official guidelines, e.g. from the European Union Agency
for Network and Information Security (ENISA) [22] and the European
Medicines Agency (EMA) [23].

1.1. Objectives and outline

Performing data anonymization and re-identification risk analyses
as part of ETL workflows is a common requirement (see Section 4.1).
Typical application scenarios include the loading of data into clinical
and translational warehouses, the extraction of data from cross-in-
stitutional research registries, and the sharing of data with external
research groups. However, ETL platforms such as TOS or PDI do not
provide modules which support formal methods of data anonymization
and re-identification risk analysis. Although anonymization tools such
as sdcMicro or ARX can be used for these purposes, they are based on
their own working environments which cannot easily be integrated into
ETL platforms (see Section 2).

To bridge this gap, we have developed a plugin for an ETL platform,
which supports data anonymization and re-identification risk assess-
ment. The most important design goals were (1) to utilize expert-level
risk assessment methodologies, (2) to implement a data transformation
method which preserves both the truthfulness of input data and its
schematic properties (e.g. data types), (3) to utilize an anonymization
process which is easy to understand and intuitive to configure, and (4)
to achieve high scalability.

To meet these design goals we had to overcome various challenges.
First, we needed to decide on a suitable design and execution en-
vironment for ETL processes. Second, we needed to select and integrate
methodologies for risk assessment and anonymization which are well-
known, flexible and easy to understand. This involved managing the
complex interplay of methods for measuring and reducing privacy risks.
Finally, we had to develop an efficient implementation.

The remainder of this paper is structured as follows: in Section 2 we
describe the methods for risk assessment that we build upon, present a
novel anonymization method, and describe how we have implemented
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and integrated it into an existing ETL platform. In Section 3 we describe
how we designed our experiments and present the results. In Section 4
we discuss the principal results, applications in practice, and perform a
conceptual comparison with prior work. In Section 5 we conclude and
point out directions for future work.

2. Materials and methods

Our method for integrating data anonymization and risk assessment
into ETL processes is based on established methods for estimating re-
identification risks of medical data, which we present in the first part of
this section. In the second part we present a novel anonymization al-
gorithm which we have developed in order to facilitate an effective
integration of these methods into ETL platforms. The last part of this
section focuses on how we implemented these methods and how we
integrated them into a concrete ETL platform.

2.1. Common models for risk assessment

Re-identification is the primary threat addressed by laws and reg-
ulations [15,16] and models for quantifying related risks are therefore
central to data anonymization and privacy risk management. Re-iden-
tification can be understood as a linkage process [24]: the uniqueness of
(combinations of) attributes is exploited to link records of datasets with
additional data or background knowledge of the adversary. Attributes
that can be used for establishing a link are termed quasi-identifiers [25].
Typical examples include demographic data and other information that
is likely to be known to adversaries, such as educational or employment
status [21]. Implementing protection requires to consider various fac-
tors, e.g. the objectives of likely attackers, the replicability and distin-
guishability of the data to be protected, and the availability of back-
ground knowledge [26,27].

Three different threat scenarios can be distinguished [28]. Under
the prosecutor model, the adversary is assumed to target a specific in-
dividual and to know that data about this individual is contained in the
dataset. The risk of a successful attack can be calculated, based on the
distinguishability of records in the dataset regarding the quasi-identi-
fiers [26]. It has been shown, however, that this method significantly
over-estimates risks in most cases [29]. Under the journalist model, the
adversary is assumed to target an arbitrary individual without prior
knowledge about membership. Often, this background knowledge is
much more realistic than in the prosecutor model, as the set of in-
dividuals represented in a dataset is just a sample of a larger population.
However, the fact that knowledge about the population is typically not
available makes it also difficult to reliably determine and manage the
risk of successful journalist attacks. Finally, under the marketer model,
the adversary is assumed to aim at re-identifying as many individuals as
possible. Thus the risk of a successful attack can be expressed as the
expected average number of re-identified individuals.

El Emam has proposed a methodology that combines estimates of
risks under these established models [28]. As journalist risk cannot be
quantified in most cases, the methodology makes use of the fact that
prosecutor risk is always an upper bound for journalist and marketer
risk. Prosecutor risk is quantified for all records and aggregated into
three global measures. The first measure is the Highest Risk (Rp). It
quantifies risks in the worst case scenario, i.e. a prosecutor attack
against the record with the highest re-identification risk in the whole
dataset. For each record r, the re-identification risk is calculated as %,
where f, is the number of records in the dataset that are indis-
tinguishable from r regarding the quasi-identifiers (including r itself).
As noted before, this is also an upper bound for risks in the other sce-
narios, i.e. for journalist or prosecutor attacks. Even when this risk is
bound by a threshold, an attacker can expect to re-identify a certain
number of individuals by random linkage to matching records. This is
captured by the second measure, Average Risk (R,), which provides a
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more tight bound for marketer risks. To account for the fact that the
prosecutor model is based on worst-case assumptions, a third measure,
called Records at risk (R,) can be used to slightly relax the protection
requirements. It expresses the frequency of records that are associated
with a re-identification risk higher than a given threshold 6. Formal
definitions of these three risk measures are provided in Section A of the
supplementary file.

With this methodology and just a single user-specified parameter
(0), three intuitive risk measures can be derived that quantify the sus-
ceptibility of data to all types of attacks considered. At the same time,
the model facilitates a balancing of privacy protection and the useful-
ness of data, as it enables the user to permit that a fraction of records
has a risk that is higher than the threshold 6. Given a sufficiently small
6 and a sufficiently small fraction of records at risk, a high degree of
protection can be assumed, as it is very unlikely that the record targeted
in a (prosecutor or journalist) attack is one of the records that exceeds
the threshold [28]. Thresholds z, for the average risk R, and 7 for the
highest risk Ry can be introduced in addition to 0 to specify protection
levels which must be satisfied by a data anonymization procedure.

2.2. A novel anonymization method

Automatically altering data such that it meets user-specified risk
thresholds is complex and requires integrating risk models with data
transformation techniques and methods for measuring data utility.
Producing truthful output data implies that input data is not perturbed
and that no synthetic data is generated, which is particularly important
in medical research where plausibility and correctness are central [30].
Therefore, we decided against transformation schemes which employ
noise addition [31] or aggregation of data [32]. Moreover, we wanted
to ensure that our method can be integrated into existing ETL work-
flows without the need to modify intermediate or target data re-
presentations. This implies that schematic properties of input data must
be preserved, which means that data types must not be altered and that
no additional attributes must be introduced into the tables and rows
processed. Thus we could not use data generalization [25] or buck-
etization [33].

Based on these considerations, we decided to implement a cell
suppression algorithm. With this model, risk thresholds are enforced by
removing individual attribute values from individual records. The
method requires zero configuration (apart from specifying risk thresh-
olds), output data is truthful and schematic properties are being pre-
served. Moreover, the results are well suited for performing common
statistical analyses, provided that the effect of cell suppression is con-
sidered (e.g. by imputation) [28,30,34].

Fig. 1 shows how cell suppression can be used to protect a dataset
from two different threat scenarios. In this simplified example, a clin-
ical dataset is protected from marketer attacks by external attackers
using the demographic attributes {Age, Sex, Region} and from
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prosecutor attacks by internal attackers using the clinical attributes
{Weight, ICD-10}. Suppressed values (which are denoted by *) are
treated as an own category, which means that suppressed values are
only considered to be equal to other suppressed values. Under this as-
sumption all sets of rows containing the same quasi-identifying attri-
bute values are pairwise disjoint and form so-called equivalence classes.
Each equivalence class describes a set of records which are indis-
tinguishable to the attacker and hence its size determines the risk of
successful re-identification. In the example, equivalence classes are il-
lustrated by dotted lines. By suppressing 20 of the 50 attribute values in
the dataset (40%), the risk of a successful external attack dropped from
60% (R, = %) to 30% (R, = %) and the risk of a successful internal

attack dropped from 100% (R), = %) to 33% (R, = é). The example also
shows that cell suppression is challenging to implement efficiently, as
the space of potential solutions for a given dataset consists of O (2"™)
transformations where n is the number of records and m is the number
of attributes that could be used for linkage. This equates to 2°° potential
solutions already in our simple example. Thus cell suppression is typi-
cally performed using heuristic algorithms.

Our implementation follows this approach by recursively enforcing
the user-defined thresholds z, and 7, for subsets of the input dataset.
This is implemented with ARX, which is able to compute an optimal
solution to a data anonymization problem that is specified as follows
[35]: (1) all risk thresholds must be met, (2) each column that contains
quasi-identifying values may either be kept as-is or suppressed entirely
(attribute suppression), (3) a specified number of records may be en-
tirely suppressed (called the suppression limit), (4) the overall number of
suppressed cells must be minimal. Our method executes this process
recursively for the records that have been suppressed, as is illustrated in
Fig. 2. In each iteration, 7, and z, are enforced on a set of the records;
the others are suppressed. We use the k-anonymity privacy model to
enforce 7;, [25] and enforce 7, by specifying an upper bound on the
arithmetic mean of the records’ re-identification risks. An additional
parameter [ specifies the maximum number of recursive calls by de-
fining a suppression limit for each iteration. Pseudocode illustrating the
anonymization method in more detail and a discussion of implications
for data quality is provided in Section B of the supplementary file.
While this process is very efficient and effective, as we will show in the
next section, it remains necessary to show that it is actually correct. It is
easy to see that enforcing an overall threshold on the highest re-iden-
tification risk Ry can be performed by enforcing the same threshold on
disjoint subsets of records. However, it is not trivial to see that this
process can be used to implement a global threshold on the average re-
identification risk R,. A proof is provided in Section C of the supple-
mentary file.

2.3. Implementation and integration

To make our solution accessible to a broad spectrum of users we

Age Sex Region Weight ICD-10 Age Sex Region Weight ICD-10
53 F North 73 C18.7 * * North * C18.7
""" 68 F  "North 73 C18.7 * * North * C18.7
68 M North 82  Ci87 * * North * C18.7
63 A Nowth — i Gigs — N o . o187
71 M North 73 Ci8.2 * M North * “Ci18.2°
71 M North 67 ¢ig2 * M North * C18.2
68 M~ South 67 C18.2 68 L South * C18.2
e g G g 63 y South g Gian
68 F South 67 C18.7 68 N South 67 C18.7
68 F South 67 C18.7 68 N South 67 C18.7

(a) Input dataset

(b) Output dataset

Fig. 1. Example dataset before (a) and after (b) it has been transformed using cell suppression. Dotted lines illustrate equivalence classes with respect to two different

sets of quasi-identifiers: {Age, Sex, Region} and {Weight, ICD-10}.
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Step 1 Step 2

Step 3

Step 4

Fig. 2. Illustration of the recursive cell suppression algorithm. In each of the recursion steps the algorithm determines the optimal balance between attribute and

record suppression.

decided on a two-step implementation strategy. In the first step, the
described anonymization and risk assessment methodology was im-
plemented into ARX. This allowed us to leverage its highly scalable
anonymization framework [19] to create a risk assessment and anon-
ymization operator which can then be integrated into ETL environ-
ments in the second step. In this context, we decided to develop a plugin
for the PDI platform for several reasons. First, we frequently use PDI for
loading data into tranSMART. Second, the interface provided by PDI is
quite intuitive while the learning curve for TOS can be considered to be
somewhat steeper. Third, PDI offers a broad set of features in its com-
munity edition (e.g. deployment to clusters) while most advanced fea-
tures of TOS are only available through a commercial license. More-
over, with the recent release (version 8.0), the programming interfaces
of the PDI platform have received significant modernization.

In the PDI workbench, ETL processes can be modeled as directed
graphs, where data sources, transformations, and data sinks are re-
presented as nodes called “steps”. Data flow between nodes is re-
presented by edges. Data that could not be processed can be annotated
with additional information and routed to a dedicated error output. By
combining multiple steps, complex ETL processes integrating hetero-
geneous sources can be designed, executed and monitored. Fig. 3 shows
a screenshot of an ETL process in which data from three different data
sources (a CSV file, a relational database, and a HL7 message stream)
are joined, validated, transformed, and finally loaded into a target da-
tabase.

Data processing in PDI is stream-oriented with single rows of data
constituting atomic and isolated units of a data stream. This means that
data is passed through the ETL pipeline row by row. This enables pi-
peline parallelism across a chain of steps. However, it also implies that
plugins that require a holistic view on the overall dataset, such as our
plugin for assessing risks or anonymizing data, need to buffer the

3% Example-ETL-Workflow 3

>~ ® G >
)

CSVfileinput ™~

=
(]

# B LT B

100% ~

= >

incoming rows. There are trade-offs involved in implementing this, as
the latter breaks pipeline parallelism and high volume datasets can be
too large to completely materialize them in main memory.

To solve this issue, we implemented a technique called row blocking.
This means that our plugin materializes sets of records (i.e. blocks) of a
user-defined size, which are then analyzed or anonymized. As soon as
each block has been processed, the contained rows are passed on to the
next plugin in the workflow. As a consequence, parallelism can be
maintained and very large datasets can be processed. In terms of
privacy protection, the approach is guaranteed to be correct (see
Section C of the supplementary file).

We implemented all methods into a plugin for the PDI platform. Our
implementation is available as open source software [36,37] which is
compatible with the latest version 8.0 of PDI. The plugin provides
methods for re-identification risk analyses and data anonymization. It is
compatible with all other functionalities and plugins of PDIL

The tab Risk thresholds, which is shown in Fig. 4(a), enables users to
specify quasi-identifiers and the thresholds described previously.
Compatible to the relational model underlying the ETL environment,
values that are suppressed are replaced with NULL. Thus the schema
and data types of input data are preserved. When risks are assessed and
any of them exceeds a user-defined threshold, the incoming data will
not be transferred to the subsequent step and, if desired, it can be
routed to an error exit. Risk measures are printed to the console for
logging purposes. The tab Runtime settings, which is shown in Fig. 4(b),
can be used to specify parameters affecting the runtime behavior of the
anonymization algorithm.

To address multiple threat scenarios, data can be passed through
different instances of the plugin configured to address different threat
scenarios (cf. example in Fig. 1). This is possible because the plugin
preserves the schematic properties of input data and because it makes

| ;_H
J 5
=
PostgreSQL Bulk Loader  Select values Merge Join Data \i{lidator

@—&—F

HL7 Input

Select values 2 Value Mapper

o—>—{7———{3)]

Manage re-identification risks Insert / Update DWH

Send message to Syslog

Fig. 3. A typical ETL process in PDI's design environment Spoon.
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¥ Manage re-identification risks - [m] X

Step name Manage re-identification risks

Risk thresholds . Runtime settings

Risk thresholds

Highest risk (35) | 20.0 ‘
Average risk (%) | 5.0 ‘
Records at risk (%) | 1.0 ‘
Key fields [~ ) .
#  Field name Key field
1 | sex Yes
2 age Yes
3 zip-code Yes
4 diagnosis No
Get Fields
oK Cancel
@ Help

¥ Manage re-identification risks - [m] X

Step name Manage re-identification risks

Risk thresholds | Runtime settings
Mode | ANONYMIZE v

lterations

Records per iteration (%)

]

Use time limit when Qls exceed ‘ 15 ‘

Time per iteration (s)

30 \

Caching

Max. snapshot size dataset (%)

200 |
800 \
Cache size l 200 ‘

Max. snapshot size snapshot (%)

Row blocking

Block size‘ 0 ‘

oK Cancel

@ Help

(a) Privacy related parameters.

(b) Parameters determining runtime behavior.

Fig. 4. Screenshots of the plugin's configuration dialogs.

use of different ways of interpreting suppressed values. During anon-
ymization, suppressed values are treated as an own category, meaning
that NULL only matches NULL when calculating the distinguishability
of records. However, in a chain of anonymization steps with overlapping
quasi-identifiers, this can lead to situations, in which one anonymiza-
tion operation invalidates the privacy guarantees that have been en-
forced in previous steps because new categories are introduced into
quasi-identifying variables addressed previously (an example can be
found in Section D of the supplementary file). For this reason, when
assessing risks, our plugin interprets suppressed values as wild cards.
This means that they can match any other (suppressed or unmodified)
value, which avoids this problem. While it has been shown that this
interpretation can provide adversaries with attack vectors under rare
circumstances [38], we point out that this is the standard interpretation
in the field of statistical disclosure control and also the default in
sdcMicro.

3. Results
3.1. Experimental setup

In this section, we present results of evaluating the scalability of our
solution as well as the quality of output data, including comparisons
with prior work. We point out that a theoretical bound on the data
quality provided by our approach cannot easily be obtained (for a
discussion of optimality aspects we refer to Section B of the supple-
mentary file). Hence, we focus on an experimental evaluation with real-
world datasets to analyze how the method performs in practice. We
performed four different sets of experiments:

e Comparison with prior work: We first compared the performance
of our plugin to sdcMicro (version 5.0.3) [18], which features a cell
suppression algorithm that has been implemented in C+ + and
linked into the software. Next, we studied the utility of output data
produced by our cell suppression method in comparison to other
data transformation methods using the concept of privacy-preser-
ving data cubes proposed by Kim et al. [39].

e Comparison using different threat scenarios: sdcMicro and the
work by Kim et al. focus on simple threat scenarios, while our ap-
proach supports combinations of several different risk thresholds.
We  performed additional experiments using various
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parameterizations and measured output data quality to study their
effects.
o Analysis of risk-utility trade-offs: In the third set of experiments
we constructed risk-utility frontiers, which are plots visualizing the
trade-offs that an anonymization method provides between privacy
protection and data quality [40].
Analysis of the effect of row blocking: The parameter that spe-
cifies the block size has various influences on the quality of output
data and the execution time of the anonymization process. In a final
set of experiments we studied these effects to determine whether
row blocking is an effective mechanism for processing large datasets
with our plugin.

We used two datasets, which differ in scope and size and which have
already been utilized for evaluating previous work on data anonymi-
zation: (1) US Census, an excerpt of 30,162 records from the 1994
census database, which serves as the de-facto standard for the evalua-
tion of anonymization algorithms, and (2) Health Interviews, a set of
1,193,504 responses to a large health survey. For a detailed description
we refer to [41]. For each dataset we selected up to nine quasi-identi-
fiers, consisting of demographic data and further attributes, which are
often considered to be associated with a high risk of re-identification
[21]. All experiments were performed on a desktop machine equipped
with a quad-core 3.2 GHz Intel Core i5 CPU running a 64-bit Windows 7
operating system. The PDI platform (version 8.0) was executed using a
64-bit Oracle JVM (1.8). The number of iterations performed by our
algorithm (parameter [;) was set to 100 in all experiments.

3.2. Experimental comparison with prior work

We first compared our plugin to sdcMicro [18]. The cell suppression
algorithm of sdcMicro has been implemented in C+ + and linked into
the package to improve scalability. The software only supports cell
suppression for enforcing a threshold on the highest risk. Hence we set
7, (records at risk) to zero and used a threshold on the prosecutor re-
identification risk (z3) of 20%, which is a common parameterization
[21].

Fig. 5(a) shows the execution times measured while increasing the
number of quasi-identifying attributes. It can be observed that our
implementation is significantly more scalable than sdcMicro. While our
method was able to easily handle the US Census dataset regardless of
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== Own === sdcMicro

US Census Health Interviews

US Census Health Interviews US Census Health Interviews
= 1500 100 g 20% 20% § 100% 100% _-.\
21000 2 5
B 50 3 10% 10% g 75% 75%

5 500 o .

g o =

e 0 0 a 0% 0% Z 50% 50%
123456789 123456789 123456789 123456789 123456789 123456789

Quasi-identifiers  Quasi-identifiers

(a) Scalability (lower is better)

Quasi-identifiers

(b) Suppressed cells (lower is better)

Quasi-identifiers Quasi-identifiers Quasi-identifiers

(c) Data quality (higher is better)

Fig. 5. Comparison of the results obtained with our plugin and the results obtained using sdcMicro. We report average execution times, the number of suppressed

cells and data quality quantified with the Non-Uniform Entropy model.

the number of quasi-identifiers selected (<25 in all configurations),
sdcMicro already needed more than 1000 s to process the dataset with
nine quasi-identifiers configured. Furthermore, sdcMicro was not able
to handle the Health Interviews dataset within 1800 s when more than
four quasi-identifiers were specified. For practical reasons, we cancelled
all experiments using sdcMicro that did not complete within this time
frame. Our plugin generally processed this dataset in not more than
94s. It can be seen that both implementations were affected by the
exponential increase in the size of the solution space with an increasing
number of quasi-identifiers [35]. However, our plugin can be config-
ured to use an effective heuristic algorithm when the solution space
becomes too large [42].

Regarding data quality, we measured comparable numbers of cells
suppressed by our method and by sdcMicro (Fig. 5(b)). Finally, Fig. 5(c)
shows how anonymization has impacted the distributions of attribute
values. To measure this, we used the Non-Uniform Entropy model [43]
which is often used to assess the quality of de-identified data and is
based on the concept of mutual information [28]. We normalized the
results obtained by this model in such a way that 100% represents the
original input dataset while 0% represents a dataset from which all
values have been removed. It can be seen that data quality decreased
when the number of quasi-identifiers increased, especially for the
smaller dataset US Census. It can also be observed that our method had
less impact on the distribution of attribute values, implying a more
balanced application of value suppression.

Recently, Kim et al. performed an experimental evaluation of the
effects of different data anonymization methods when implementing
privacy-preserving warehouses for medical data [39]. In their study,
data was anonymized and then aggregated into data cubes, which is a
model used in warehousing applications. The authors then measured
the information loss induced by the anonymization methods and the
precision of the results of two types of queries issued against the data
cubes: point queries, which count the number of records matching a
specific combination of attribute values and range queries, which count
the number of records matching a combination of ranges over the do-
main of attribute values. They studied two generalization-based ap-
proaches and one bucketization algorithm.

We exactly reproduced their experimental setup, which also used
the US Census dataset, and compared results obtained using our method
with the results presented in [39]. For an exact specification of the
algorithms and an in-depth discussion of the results we refer to Section

Table 1

E of the supplementary file. As can be seen in Table 1, our method
outperformed both generalization-based approaches in terms of in-
formation loss, performed very well on point queries and provided
reasonable performance on range queries. At the same time, our
method is the only approach considered in the experiments that pre-
serves the schematic properties of input data, and it is much easier to
configure than generalization-based algorithms.

3.3. Experimental analysis using different threat scenarios

Our plugin supports thresholds on prosecutor re-identification risk
(zy) and marketer re-identification risk (z,). Strict-average risk [21] is a
common privacy model combining both risk thresholds. To analyze the
improvements in data utility that can be obtained by using this model,
we have performed a comparison of both approaches. As a risk
threshold, we also used 20%. We used the same threshold once for
controlling prosecutor risk and once for controlling marketer re-iden-
tification risk but combined the latter with a threshold of 50% on
prosecutor risk, which ensures that no record is uniquely identifiable.
We note that this comparison focused on our plugin only, as strict-
average risk is to our knowledge not supported by any other tool.

We measured no significant differences in execution times when
using the two models. We did, however, observe notable improvements
in data quality when using strict-average risk. Fig. 6(a) shows the
number of suppressed cells when enforcing the thresholds on strict-
average risk relative to the number of suppressed cells when enforcing
the threshold on prosecutor risk. It can be seen that using strict-average
risk resulted in significantly less suppressed cells, especially when
configurations with fewer quasi-identifiers were being used. Effects on
the distribution of attribute values are presented in Fig. 6(b). In contrast
to the effect on the number of suppressed cells, the improvements ob-
tained in terms of Non-Uniform Entropy increased with the number of
quasi-identifiers. This implies that data quality can be more effectively
increased by using less strict privacy models when it must be assumed
that the adversary possess a lot of background knowledge.

3.4. Experimental analysis of the risk-utility trade-off provided

Our plugin provides a broad spectrum of anonymization options,
ranging from very strict to very relaxed parameterizations. To analyze
these different options in more detail, we constructed risk-utility

Comparison of methods for creating privacy-preserving data cubes as proposed by Kim et al. [39].

Global generalization

Information loss 0.41
Median relative error for point queries (%) 18.3
Median relative error for range queries (%) 10.16

Local generalization Bucketization Cell suppression
0.13 Not applicable 0.10
9.79 0.02 0.00
0.81 0.02 41.33
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Fig. 7. Risk-utility frontiers for different risk models and different interpretations of missing values.

frontiers, which are plots visualizing the trade-offs that an anonymi-
zation method provides between privacy protection and data quality
[40]. Each point in these plots represents a transformed dataset offering
an optimal privacy/utility trade-off, which means that risk cannot be
reduced further without reducing quality and vice versa. Fig. 7 shows
the results of our method for both datasets using two extreme config-
urations addressing all quasi-identifiers. In the best case scenario,
thresholds on the average risk R, have been enforced while interpreting
missing values as wild cards. In the worst case scenario, thresholds on
the highest risk R, have been enforced while treating missing values as
an own category. Data utility was estimated with the relative number of
cells that have not been suppressed.

As can be seen, we could not measure any significant differences
between the results for the two datasets. In both cases, we observed that
high data quality can be maintained at very low risk levels. The fron-
tiers for the best case scenarios were almost optimal. Here, we mea-
sured an area under the curve (AUC, 1 optimal, 0 worst) of 0.971 for the
US Census dataset and 0.966 for the Health Interviews dataset. In the
worst case scenarios we measured AUCs of 0.901 and 0.912, respec-
tively.

3.5. Experimental analysis of the effect of row blocking

Next, we investigated the effect of row blocking on execution times
and on output data quality. The experiments were performed with nine
quasi-identifying attributes and the same risk models and thresholds as
in the previous experiments while varying the block size. Previously, we
did not use row blocking and were thus able to only report the time
needed to anonymize the data. In the results presented here, execution
times include the time needed to read the data from disk, anonymize it
and persist the results on disk.

As can be seen in Fig. 8(a), execution times decreased with in-
creasing block sizes up to a block size of roughly 10°, from where on
they slowly increased again. This increase can be explained by the fact
that much larger data volumes needed to be processed in each anon-
ymization operation. For strict-average risk and block sizes between 102
and 10%, we also observed an increase of execution times. This can be
explained by the fact that this setup significantly increased the number
of invocations of the underlying anonymization algorithm. Although
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each invocation had to handle a smaller number of records, the com-
plexity of the anonymization problem with respect to the number of
quasi-identifiers remained constant. Moreover, anonymizing fewer re-
cords tends to be more computationally expensive, as good solutions
are harder to find [35]. Regarding the number of suppressed cells and
effects on data quality, when increasing block sizes, we measured a
logarithmic decrease (Fig. 8(b)) and increase (Fig. 8(c)), with values
converging towards the baselines (dotted) obtained without row
blocking. With block sizes of about 10* (US Census) and 10° (Health
interviews) or bigger, the effects of row blocking on output data quality
were almost negligible compared to anonymization without row
blocking. This indicates that row blocking can be used to effectively
balance data quality and execution times when processing large data-
sets.

4. Discussion
4.1. Principal results and applications in practice

In this article, we have presented a plugin supporting integrated
data anonymization and re-identification risk analysis during ETL
processes. Our implementation is based on the PDI platform, which is in
widespread use within the biomedical field. The methods presented in
this paper have also been implemented directly into ARX [19]. The risk
assessment methodology described is robust, easy to configure and it
provides a good balance between simple but strict approaches such as k-
anonymity [25] and more flexible but complex models that provide
higher degrees of output data quality (e.g. super-population models
[44] or game theoretic approaches [45,46]). The proposed transfor-
mation method produces truthful datasets which are well suited for
performing common statistical analyses [21,28,47,34]. Finally, the
software overcomes several limitations of previous data anonymization
solutions: data can easily be protected from multiple threats by com-
bining different anonymization operations within a single ETL work-
flow and very large datasets can be processed by leveraging the
streaming-based processing model of the underlying platform. Due to
the fact that our approach can be used to process data which has been
partitioned into independent subsets (see Section 2.3 and Section C of
the supplementary file) it can also be used to incrementally add data to
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Fig. 8. Semi-log plots visualizing the results of row blocking experiments. We report average execution times, the number of suppressed cells and data quality as
reported by the Non-Uniform Entropy model. Dotted lines represent baseline values obtained without row-blocking.

existing databases without violating the privacy guarantees provided.

The software described in this article has already been used in
various projects. For example, it was used to anonymize demographic
data for a research data warehouse at the Department of Cardiovascular
Diseases of the German Heart Centre Munich. The warehouse in-
tegrated phenotypic and genotypic data of more than 70,000 patients
with coronary artery disease to support data visualization, cohort dis-
covery and hypothesis generation. We have also frequently used the
methodology described here when protecting data extracts before
sharing them with external partners, for example in the context of re-
search registries for mitochondrial disorders [48] and for neurodegen-
erative diseases [49]. Finally, the described methods have also been
used through ARX by other research groups, for example to create an
open dataset for studies of learning behaviour [50] and for anon-
ymizing data from a cancer screening program [51].

4.2. Conceptual comparison with prior work

On the conceptual level, prior work can be found in many areas,
including data anonymization, synthetic data generation and data
masking. We have already covered related environments for im-
plementing ETL processes and other open source data anonymization
solutions in the previous sections. Another software worth mentioning
is Privacy Analytics Eclipse [52], which is a commercial data anon-
ymization platform built on Apache Spark [53]. While the software
implements formal methods that are quite similar to the ones im-
plemented by our plugin, little has been published about the exact
methodology and its implementation.

In the remainder of this section, we focus on further solutions that
integrate data protection features into ETL processes. Data masking is a
technique which has also been integrated into ETL platforms. Methods
from this field are not based on formal risk assessment and data
anonymization, but they implement simple rule-based transformation
processes, e.g. for the removal of data. They are typically used to create
data for software development and testing purposes. Examples of re-
levant implementations include Informatica's Data Masking [54], IBM's
InfoSphere Optim Data Privacy [55], Oracle's Data Masking and Sub-
setting Pack [56], ProxySQL [57], and Hush Hush's Data Masking
Components [58]. Also, TOS and PDI both offer modules providing
basic data masking functionalities.

Synthetic data generation is also supported by the masking solutions
presented in the previous paragraph. Most implementations are rather
simple, but there are also sophisticated approaches, such as the algo-
rithms supported by sdcMicro [18] which are able to preserve uni- and
multivariate statistical properties of input data. Random data genera-
tion is also supported by plugins for TOS and PDI. Bijoux is another
well-known example [59]. However, data generation plugins for ETL
processes are typically too simple to be useful for more than test data
generation.
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5. Conclusion and future work

In this article, we have described a plugin for a common ETL plat-
form which supports robust anonymization and risk assessment func-
tionalities. The software is available under a non-restrictive open source
license. Our method can be integrated into existing ETL workflows, and
it supports typical warehousing solutions for biomedical data, such as
i2b2 and tranSMART. Even in cases where it is not possible to sig-
nificantly reduce risks without considerable impacts on data utility, our
software can be used to perform quantitative re-identification risk as-
sessments for documenting privacy threats. This is an important aspect
of modern privacy laws, such as the European General Data Protection
Regulation [16].

The methods and implementations presented in this article are
particularly well suited for protecting data that is collected infrequently
(e.g. demographics) or which remains rather stable over time (e.g. di-
agnoses or lab values of particular interest for a specific study) [14,27].
If longitudinal or frequently changing data needs to be protected from
linkage attacks, specific measures must be implemented that can cope
with higher dimensionality and changes to data [60]. While we plan to
extend our software to cover such use cases in future work, we also
emphasize that such data often poses much less risk, as it is unstable,
difficult to replicate and it is therefore less likely that adequate back-
ground knowledge is available to adversaries [14,27]. An additional
area of future work is improved support for incrementally adding new
data. While this is supported already by the current version of our
plugin, we plan to add functionalities for considering data that already
exists within the database when measuring and reducing risks during
the process of loading new data. This could help to further reduce the
amount of suppression needed.

Cell suppression enables the anonymization of datasets with
minimal configuration efforts, but further transformation methods can
also be useful in certain scenarios. Data generalization and micro-
aggregation are two techniques of specific interest. We plan to add
support in future versions of the plugin. However, as these methods
may have impacts on the schematic properties of data (e.g. changes in
data types and scales of measure) integrating them with the processing
environments of ETL solutions is challenging. An alternative anon-
ymization approach to cell suppression is cell swapping (or data
swapping) [61] which essentially works by exchanging attribute values
between records. Analogously to our work, it preserves the schematic
properties of data. In contrast to our approach, data swapping does not
remove attribute values and hence it preserves statistical aggregates
such as counts of attribute values. However, unlike cell suppression,
data swapping is inherently perturbative. Hence, it does not satisfy
truthfulness, which is an important requirement in our context (cf.
Section 2.2). Moreover, data swapping is typically implemented based
on simple risk models, which offer much lower degrees of protection
than the methods used in our work. A potential direction for future
work would be to investigate how data swapping could be integrated
into the proposed anonymization framework, including the strong
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protection models used, and to examine potential resulting increases of
data utility. One possible approach for this would be to firstly perform
anonymization using cell suppression, including risk assessment as
described in this article. This step could then be followed by a post-
processing step in which the original values of suppressed cells are
being swapped and then re-inserted into the output dataset.

While our plugin supports one of the most widely adopted en-
vironments for implementing ETL processes, TOS is also frequently used
in biomedical data warehousing projects. We have already started to
port our plugin to this platform but, due to the differences between
development environments and concepts for managing data and control
flows, a complete integration will require more work.

Summary points
What was already known on the topic?

e Anonymization is important in biomedical research, especially when
data is pooled or re-used for secondary purposes.

e Common ETL (Extract-Transform-Load) tools for integrating data
into clinical and translational warehouses do not support anon-
ymization. Moreover, common anonymization tools cannot easily be
integrated into ETL workflows.

e Anonymization tools can be difficult to configure and they have
scalability issues when processing very large datasets.

What has this study added to the body of knowledge?

Expert-level anonymization methodologies can be integrated as in-
tuitive plugins into ETL platforms.

e With these plugins, data can be protected from multiple threats

within a single ETL workflow.

e Very large datasets can be anonymized efficiently by leveraging the
streaming-based processing model of ETL platforms.

High data utility and compatibility with existing databases and
platforms can be achieved by using transformation methods that
preserve both the truthfulness of data and its schematic properties.
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