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a b s t r a c t

Building spiking neural networks (SNNs) based on biological synaptic plasticities holds a promising
potential for accomplishing fast and energy-efficient computing, which is beneficial to mobile robotic
applications. However, the implementations of SNNs in robotic fields are limited due to the lack of
practical training methods. In this paper, we therefore introduce both indirect and direct end-to-end
training methods of SNNs for a lane-keeping vehicle. First, we adopt a policy learned using the Deep
Q-Learning (DQN) algorithm and then subsequently transfer it to an SNN using supervised learning.
Second, we adopt the reward-modulated spike-timing-dependent plasticity (R-STDP) for training SNNs
directly, since it combines the advantages of both reinforcement learning and the well-known spike-
timing-dependent plasticity (STDP). We examine the proposed approaches in three scenarios in which a
robot is controlled to keep within lane markings by using an event-based neuromorphic vision sensor.
We further demonstrate the advantages of the R-STDP approach in terms of the lateral localization
accuracy and training time steps by comparing them with other three algorithms presented in this
paper.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Utilizing robots to carry out complicated tasks with auton-
omy has been a realistic prospect for the future, e.g. in the
fields of unmanned vehicles, social humanoid robots, and indus-
trial inspection. In order to acquire this advanced intelligence
and operate in the real-life scenes, robots have to be able to
sense their environment with sensors, which usually produce
high-dimensional or large-scale data. Nowadays, inspired by the
biological nervous system deep learning architectures have be-
come a promising solution, due to their superiorities for process-
ing multi-dimensional non-linear information from training data.
Yet, they differ a lot from the brain-like intelligence in both of the
structural and functional properties, which make them incompat-
ible with neuroscience findings. Meanwhile, due to their nature
of deep architecture and substantial data, training and operating
them is energy-intensive, time-consuming, and latency-sensitive.
Taking self-driving cars as an example, the overall computation
consumes a few thousand watts, as compared to the human
brain, which only needs around 20 watts of power (Drubach,
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2000). These are considerable disadvantages, especially in mobile
applications where real-time responses are important and energy
supply is limited.

A possible solution to some of these problems could be pro-
vided by event-based neural networks or spiking neural networks
(SNNs) that mimic the underlying mechanisms of the brain much
more realistically (Bing, Meschede, Röhrbein, Huang, & Knoll,
2018; Kasabov, 2018). In nature, information is processed using
impulses or spikes, making seemingly simple organisms able to
perceive and act in the real world exceptionally well and outper-
form state-of-the-art robots in almost every aspect of life (Brette,
2015). SNNs are able to transmit and receive large volumes of
data encoded by the relative timing of only a few spikes, which
leads to the possibility of very fast and efficient computing, both
in terms of accuracy and speed. For example, human brains can
perform visual pattern analysis and classification in just 100 ms,
despite the fact that it involves a minimum of 10 synaptic stages
from the retina to the temporal lobe (Thorpe, Delorme, & Rullen,
2001).

On the other hand, training these kinds of networks is no-
toriously difficult. The error back-propagation mechanisms com-
monly used in conventional neural networks cannot be directly
transferred to SNNs due to the non-differentiabilities at spike
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Fig. 1. Robot task: lane keeping.

times. Therefore, there has been a dearth of practical learn-
ing rules to train SNNs (Lee, Delbruck, & Pfeiffer, 2016a). Ini-
tially, SNN-based control tasks were performed by manually set-
ting network weights, e.g. in Indiveri (1999), Lewis, Etienne-
Cummings, Cohen, and Hartmann (2000), and Ambrosano et al.
(2016). Although this approach is able to solve simple behavioral
tasks, such as wall following (Wang, Hou, Tan, Wang, & Hu,
2009) or lane keeping (Kaiser et al., 2016), it is only feasible
for lightweight networks with few connections. On the level of
single synapses, experiments have shown that the precise timing
of pre- and post-synaptic spikes seems to play a crucial part in
the change of synaptic efficacy (Song, Miller, & Abbott, 2000).
With this spike-timing-dependent plasticity (STDP) learning rule,
networks have been trained in various tasks. For example, Wang
constructed a single-layer SNN using proximity sensor data as
conditioned stimulus input and then trained it in tasks such as
obstacle avoidance and target reaching (Wang, Hou, Lv, Tan, &
Wang, 2014; Wang, Hou, Zou, Tan, & Cheng, 2008). However, it is
still not clear how the brain assigns credit as efficiently as back-
propagation does, even some preliminary research has tried to
bridge the gap by combining back-propagation with SNNs Ben-
gio, Mesnard, Fischer, Zhang, and Wu (2017), Bogacz (2017), Lee
et al. (2016a), Whittington and Bogacz (2017).

Furthermore, some research has attempted to implement bi-
ologically plausible reinforcement learning algorithms based on
experimental findings in SNNs. Reward-modulated spike-timing-
dependent plasticity (R-STDP) (Florian, 2007; Legenstein, Pecevski,
& Maass, 2008a, 2008b), which is a learning rule that incor-
porates a global reward signal in combination with STDP, has
recently been a research focus. This approach intends to mimic
the functionalities of those neuromodulators which are chemicals
emitted in human brain, e.g. dopamine. Therefore, R-STDP can
be very useful for robot control, because it might simplify the
requirements of an external training signal and leads to more
complex tasks.

However, practical robotic implementations based on R-STDP
are rarely found due to its complexity in feeding sensor data
into SNNs, constructing and assigning the reward to neurons,
and training the SNNs. Specifically, typical sensor data is time-
based, such as data from proximity sensor and conventional
vision sensor, rather than event or spike-based. In order to feed
the data into an SNN, it has to be converted into spikes somehow.
In addition, the reward should be carefully assigned to the SNN,
a value that is either too high or too low will make the learning
instable. The network weights are critical for learning as well,
otherwise the learning process will consume more time or even
cause failures.

On the basis of our previous work (Bing et al., 2018), this
paper aims to explore the training algorithms for spiking neural
networks from two different ends and implement them for end-
to-end control in the robotics domain. We conduct our research

in four parts. First, we construct a simulated lane scenario and
adapt it with different lane patterns for evaluating different algo-
rithms, in which a pioneer robot mounted with a dynamic vision
sensor (DVS) (Lichtsteiner, Posch, & Delbruck, 2008) is deployed
to perform the task. The DVS directly outputs event-based spikes
when there is a change of illumination on the pixel level. Thus, it
fits SNNs well due to its spike-based nature and offers some great
advantages over traditional vision senors, such as speed, dynamic
range, and energy efficiency (Lichtsteiner et al., 2008). Second,
in an indirect training setup, a conventional ANN is trained in a
classic reinforcement learning setting using the Deep Q-Learning
(DQN) algorithm. Afterwards, the learned policy is transferred to
train an SNN on a state–action dataset created by collecting data
from the RL scenarios using supervised learning. Third, an event-
based neural network is constructed using the STDP dopamine
synapse model and directly trained by the R-STDP learning rule.
The reward given to the SNN is defined for each motor indi-
vidually as a linear function of the lane center distance. Finally,
we compare the training performances of all four networks by
running them in the training and testing scenarios.

Our main contributions to the literature are summarized as
follows. First, our indirect approach utilizes the learned knowl-
edge from a classical reinforcement learning setting and success-
fully transfers it into an SNN-based controller. This transition
offers a way to quickly build up an applicable spike-based con-
troller on the basis of conventional ANNs in robotics, which can
be further executed on a neuromorphic hardware to achieve fast
computation. Second, our direct approach trains the SNN with
the R-STDP learning rule in a biologically plausible way and
demonstrates fast and accurate learning process when taking the
advantages of an event-based vision sensor. This approach resem-
bles the neural modulation process, which serves as one of the
main functionalities in brains and is responsible for strengthening
the synaptic connections and then reinforcing desired behaviors
or actions. Third, by comparing the performances of all con-
trollers, we demonstrate the superiorities of the R-STDP approach
in terms of the training time steps, lateral localization accuracy,
and adaption to unknown challenging environment. Those advan-
tages make this method very suitable for being used in mobile
robots applications, which usually require quick learning ability
and environmental adaptation.

The remainder of the paper is organized as follows: Section 2
introduces the simulation setups for performing the lane-keeping
tasks. Section 3 present the indirect learning method for trans-
ferring the policy from DQN to SNN. Section 4 presents the
implementation details of the direct training based on R-STDP. In
Section 5, the training details of each controller are presented.
In Section 6, we provide the experimental results and make a
comparison to other controllers. Section 7 summarizes our study
and presents the future work.
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Fig. 2. Pioneer P3-DX robot with dynamic vision sensor (DVS).

Fig. 3. Scenario 1: The simple lane-keeping scenario consists of a road with two
lanes (inner and outer) and six different sections A, B, C, D, E, and F. Starting
positions are marked with S. Dimensions: r1inner = 1.75 m, r2inner = 3.25 m,
r1outer = 2.25 m, r2outer = 2.75 m, l1 = 5.0 m.

Fig. 4. (a) Scenario 2: Single lane pattern without boundaries. (b) Scenario 3:
Lanes with two different patterns.

2. Lane-keeping tasks

In order to provide a simple and flexible environment to test
and compare different algorithms, simulated lane-keeping tasks
with different lane patterns for a Pioneer robot are set up using
Virtual Robotics Experiment Platform (V-REP) (Rohmer, Singh, &
Freese, 2013) (see Fig. 1). All the sensor messages and motor

Fig. 5. Action space in lane-keeping task with three discrete actions: (0) Turn
left: Set left motor speed to vs − vt and right motor speed to vs + vt . (1) Go
straight: Set left and right motor speed to vs . (2) Turn right: Set left motor speed
to vs + vt and right motor speed to vs − vt .

commands between the simulator and the neural networks are
transmitted via ROS (Quigley et al., 2009).

Instead of using the on-board ultrasonic sensors, a DVS camera
is attached to the front of the robot with a 30◦ depression angle
as shown in Fig. 2. For further validating the effectiveness and
adaptability of the proposed algorithms, three scenarios with
different lane patterns are shown in Fig. 4. The first scenario in
Fig. 3 consists of a closed loop course with a two-lane road. The
road is comprised of two solid lines and a uniformly dashed line
in the middle. From the starting position onwards, the outer lane
can be divided into six sections: (A) straight , (B) left , (C) straight ,
(D) left , (E) right , (F ) left . During each episode in the training, the
robot will switch the start position and moving direction between
inner and outer lane at each reset. Therefore, it will experience
both left and right turns equally and with different radii as well.

Based on the same layout and dimensions, a second scenario
was implemented, testing the algorithms on a different road pat-
tern where the left and right solid lines are missing (see Fig. 4(a)).
In a third scenario, two different road patterns have to be learned
in parallel (see Fig. 4(b)).

3. Indirect learning based on DQN

In this section, we will first solve the lane-keeping tasks us-
ing a classic Deep Q-Learning (DQN) reinforcement learning al-
gorithm. Then we will introduce the indirect training method
by transferring the learned policy from the DQN to an SNN
within the framework of supervised learning. All the simulation
parameters can be found in the tables in the appendix.

3.1. Lane keeping as MDP

Reinforcement learning tasks are usually described as a Markov
decision process (MDP), which is defined as a 5-tuple of ac-
tions, states, transition probabilities, rewards, and discount factor.
While the transition probabilities can be ignored when using
model-free algorithms such as Q-learning, other components of
the MDP have to be carefully chosen to ensure fast and stable
learning.

Fig. 5 shows three discrete actions that the robot can take for
these tasks. It can go straight, letting left and right motors run
at the same speed, or it can take a turn by adding or subtracting
speed to both motors depending on the desired moving direction.

3.2. DVS input generation

In similar reinforcement learning tasks using conventional
cameras (Lillicrap et al., 2015; Mnih et al., 2015), scaled images
could be directly used as state input for the MDP; this is more
difficult when using a DVS device. Dynamic Vision Sensor, as
an emerging neuromorphic sensor, generates sparse, event-based
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Fig. 6. Conversion of consecutive DVS frames into state input for reinforcement
learning. This is done by dividing the original 128 × 128 DVS frames into small
4 × 4 regions and counting every event over consecutive frames regardless of
the polarity. Furthermore, the image is cropped at the top and bottom, resulting
in a 32 × 16 image.

output that represents the positive and negative relative lumi-
nance change of a scene. Due to its advantages, such as speed,
dynamic range, and energy efficiency (Lichtsteiner et al., 2008),
DVS is used in this study to detect the lane marks and generate
spikes. First, in order to decrease the computational complexity
of the task, images are reduced to a lower resolution as well.
Second, due to the event-based nature of the DVS data, image
frames coming from the simulation do not always contain suffi-
cient information for the network to make meaningful decisions.
Therefore, the state input is computed by condensing information
from several consecutive DVS frames into a single image. To
be clear, the DVS frame means the events accumulated in the
50 ms interval instead of being the whole image frame as tra-
ditional vision sensor. As shown in Fig. 6, this is done by dividing
the original 128 × 128 DVS frames into small 4 × 4 regions
and counting every event over consecutive frames regardless of
the polarity. Furthermore, the image is cropped at the top and
bottom, resulting in a 32 × 16 image. To further increase the
performance, the final DQN state input sM×N is a binary version
of the state input iM×N , only containing ones and zeros:

sM×N =

{
0 if iM×N = 0
1 if iM×N > 0

(1)

In the simulation, DVS frames are calculated and published ev-
ery 50 ms (with every simulation time step). Actions are executed
every 500 ms. Therefore, during one action step, DVS frames are
stored in a first-in first-out (FIFO) queue of length 10, and the last
ten DVS frames are then converted into the final state input.

3.3. Reward generation for DQN

Rewards play a crucial role in reinforcement learning and
define the goal of an agent. In this research study, the robot

is supposed to learn to follow a lane staying as close to the
center as possible. Fig. 7 shows the definition of the reward
that is given at every time step of the MDP. It is defined as a
Gaussian distributed function of the lane center distance. As the
model-free DQN algorithm learns from experience samples with
a one-step lookahead, it is beneficial for learning to use a reward
that is well distributed over the state space and monotonically
increasing towards the goal. This ensures that the robot will learn
to navigate in the direction of the goal, even if it has not been
there yet. Besides DVS data, the simulator publishes position data
of the robot every 50 ms as well. With a mathematical model of
the lane center in both directions, this data is used to calculate
the exact distance of the robot to the lane center and the resulting
reward.

If the robot reaches a position where its distance to the lane
center is greater than 0.5 m, training episodes are terminated and
a reset message is generated that causes the simulator to place
the robot at its starting position on the opposite lane. Letting
the robot alternate between both lane directions increases its
experienced states and results in a more generalized policy after
learning. In reinforcement learning, the extent to which an agent
takes expected future rewards into account is usually controlled
by a discount factor. Although the lane-keeping task does not
necessarily require looking ahead many steps, the discount factor
is set to 0.99, therefore potentially being able to solve tasks that
involve some foresight as well.

3.4. DQN-based controller

A fully connected feedforward network architecture using rec-
tified linear units (ReLU) as activation function was chosen, in-
spired by similar work (Diehl, Neil, Binas, Cook, Liu, & Pfeiffer,
2015a; Lee, Delbruck, & Pfeiffer, 2016b). The network takes the
binary state image as input, resulting in 32×16 = 512 input neu-
rons. It consists of two hidden layers with 200 neurons each and
three output neurons representing the discrete actions. Training
is performed using the stochastic optimization algorithm Adam.

Fig. 8A shows a detailed flow chart of the DQN algorithm.
There are two networks being used in the DQN algorithm, which
share the same architecture but with different weight parameters.
The action-value network Q is used to determine the action with
the highest Q value, of which the weights are updated every
step. The target action-value network Q̂ is used to predict the
q_target value, of which the weights will be updated every several
steps by assigning the weights as Q̂ = Q. More details about
the DQN algorithm itself can be found in Van Hasselt, Guez, and
Silver (2016). At the beginning, the action-value network Q is
initialized with random weights and copied to the target action-
value network Q̂. Each episode of the training procedure begins
with a reset of the robot to its starting position, switching lanes
after each episode. Hereby, the initial state input is a vector of
zeros. At each time step, actions are chosen from Q following an
ϵ-greedy policy. This means that with a probability of ϵ ∈ [0, 1]

Fig. 7. Reward given in the lane-keeping task. It is defined as a Gaussian distribution over the distance to the center of the lane with a standard deviation of σ = 0.15
and mean at 0. The lane markings are 0.25 m away from the lane center. If the robot goes further than 0.5 m from the lane center, episodes are terminated and
the robot is positioned at its starting position.
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Fig. 8. A. Flowchart of the DQN algorithm. B. Flowchart of the policy transfer
from DQN to SNN.

the agent will randomly select an action. Otherwise, it will select
the action with the highest action value. At the start, ϵ is set to 1,
ensuring pure exploratory behavior. After predefined 1000 time
steps, ϵ then linearly decreased to its end value close to zero.

Chosen actions at are sent to the environment handler, which
will communicate with the simulator to acquire the reward rt ,
next state image st+1, and the distance to the lane center dt .
Moreover, each transition (st , at , rt , st+1) is stored in the experi-
ence buffer. Every n steps, the actual training step is performed by
randomly sampling transitions from the experience buffer. Using
the target action-value network Q̂ for calculating the updating
targets, the loss function is then constructed in order to perform
a stochastic gradient descent step on the action network. At the
end of each training step, the target action-value network Q̂
weights are gradually updated towards the action-value network
Q weights with τ ∈ [0, 1] and τ ⩽ 1 (Lillicrap et al., 2015).

Training episodes will be terminated if the robot goes beyond
the maximum distance to the lane center or if the maximum
number of steps in an episode is reached. The latter mechanism
guarantees that the robot will experience both directions of the
road, even if it has already learned a good policy for keeping the

lane. The overall training procedure is ended either after reaching
a predefined number of episodes or total training steps.

3.5. DQN-SNN based controller

The aforementioned DQN algorithm handles event-based data
by storing consecutive DVS frames and batch processing them
at every step in the MDP. Clearly, this approach cannot be the
ideal mechanism for handling DVS data, as it annihilates some of
the advantages that make the sensor powerful in the first place,
e.g. its temporal resolution. However, handling data streams is
precisely what the SNNs are good at, e.g. from a DVS device,
without the need for batch processing. Due to their event-based
nature, spikes have to be decoded somehow in order to ob-
tain real values, which makes it very difficult to get network
output with similar precision as well as DQN. Moreover, the non-
differentiability of spike events makes it very difficult to use a
training mechanism such as back-propagation. Therefore, in this
sub-section we show how the previously learned DQN policy can
be used to create a state–action dataset created by collecting from
the RL scenario for training an SNN using supervised learning
(Fig. 8B).

To address this problem, ReLU is considered as an activation
function of the input stimulus and the firing frequency, rather
than the function of the input stimulus and the action potential,
since there is a linear relationship between the action potential
and the firing frequency. Based on the fact that simple integrate-
and-fire (IF) neurons in SNNs behave very similarly to rectified
linear units (ReLU) in conventional ANNs, an indirect training
method can be used for training:

1. Create the state–action dataset by labeling stored states
with corresponding actions.

2. Train conventional ANN with no hidden layer biases and
ReLU activation functions.

3. Normalize weights.
4. Transfer weights to SNN with IF neurons and perform

control task.

For training ANNs using stochastic gradient descent on the
prediction error, the DQN algorithm stores every single transition
in the previously discussed experience buffer. This makes it very
convenient to use the same data for training the SNN as well.
Therefore, first, all stored state images as shown in Fig. 6 are
labeled using the pre-trained action network from DQN. It is im-
portant to note that the input images sM×N for previously training
the DQN are still used here to train the SNN. Furthermore, the
pixel values im,n, describing the number of spike events in the
same 4 × 4 window over consecutive DVS frames, are scaled to
îm,n ∈ [0, 1] by dividing every value by the maximum pixel value
imax = maxj,m,n(i

j
m,n) in the whole dataset. As a result, the input

values can be interpreted as spike firing rates making the network
transferable to an SNN.

In the next step, the labeled dataset is used to train a conven-
tional ANN. The fully connected feedforward network consists of
an input layer with bias and 32 × 16 = 512 input neurons, a
hidden layer with 200 neurons, and an output layer with three
output neurons. For converting an ANN to an SNN, we would
like all the neurons in the hidden layer and the output layer are
only effected by the activities of the neurons in the previous layer.
Then, we can scale the weights only according to the threshold
value, which is used for all the neurons in the same layer and
do not have to worry about the bias value for each individual
neuron. Therefore, all the neurons in the hidden layer and the
output layer are set without bias. After training, the weights
can be transferred to an SNN with IF neurons that matches the
previous network architecture. There is a possibility that the
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Algorithm 1: Model-Based Normalization (Diehl et al., 2015b).
1: for layer in layers do
2: max_input = 0
3: for neuron in layer.neurons do
4: input_sum = 0
5: for input_wt in neuron.input_wts do
6: input_sum += max(0, input_wt)
7: end for
8: max_input = max(max_input, input_sum)
9: end for

10: for neuron in layer.neurons do
11: for input_wt in neuron.input_wts do
12: input_wt = input_wt / max_input
13: end for
14: end for
15: end for

inputs will stimulate the hidden neurons, firing immediately in
a single simulation time step. In this case, the information from
inputs cannot be precisely transmitted and indicated by the firing
rate of the hidden neurons, which may cause information loss for
the output layer. Therefore, we have to make sure that all the
neurons can only fire once in each time step and then ensure
minimal accuracy reductions in the SNN with transferred weights.
This can be done by scaling weights so that the maximal weighted
input to a neuron in each layer is equal to the firing threshold. In
other words, the weights are normalized for each layer separately
beforehand.

The normalization algorithm is explained in Diehl et al. (2015a)
and shown in Algorithm 1. For the first layer, the bias is necessary
to handle input vectors consisting of zeros only. Without any bias,
the network output would be always zero as well, regardless
of its weights. In multi-layered SNNs, external input currents
introducing biases to deeper layers are difficult to handle, because
they have to be scaled to match the firing rates coming from
previous layer neurons. For the first layer though, the bias can be
interpreted as an additional input current with a constant firing
rate of 1.

The SNN with simple IF neurons is implemented, inspired
by Diehl et al. (2015a), which uses a time-step-based approach in
order to propagate spikes through the network and update mem-
brane potentials. As mentioned earlier, the simulator publishes
DVS data every 50 ms. The data is then scaled to [0, 1], causing
Poisson input neurons (Stevens & Zador, 1996) to fire for 50 ms
as well. The scaling factor can be roughly estimated by dividing
the maximum pixel value vmax by the number n of consecutive
DVS frames used in the data set. Therefore, if a Poisson neuron
fires with its maximum frequency over n simulation steps, it can
be interpreted as the maximum firing rate of 1 in the data set.

The information from consecutive DVS frames is propagated
through the SNN over time. When a neuron fires and sends
a spike to the next layer, it increases the membrane potential
of the next layer’s neurons. Therefore, information is stored in
the membrane potentials and it takes some time to generate
output spikes. As a consequence, this means that output spikes
are generated sparsely in time, leaving simulation steps with no
spike output at all. In order to generate a control signal, even
if there are no output spikes during a simulation step, a trace
is implemented for each action. The action trace zat accumulates
output spikes st for each action respectively and decays over time
with a factor c ∈ [0, 1]. The action at with the highest trace value
is eventually chosen at every simulation step:

zat+1 = c · zat + st (2)

at = argmaxa(z
a
t ) (3)

4. Direct learning of SNN with R-STDP

Training a neural network with DQN to learn a policy and
transferring the policy to a SNN by creating an labeled state–
action dataset is cumbersome, and it introduces some loss in the
training process. Furthermore, this approach ignores one of the
main strengths that SNNs bring compared to conventional ANNs,
which is their ability to take the precise timing of spikes into
account and not just the averaged rate. To tackle this problem,
an SNN is constructed and trained using R-STDP for steering the
robot in the aforementioned lane-keeping tasks.

4.1. R-STDP learning rule

As the most important theory in neuroscience explaining the
adaption of synaptic efficacies in the brain during the learn-
ing process, the spike-timing-dependent plasticity (STDP) learn-
ing rule (Caporale & Dan, 2008) has been successfully proven
by neuroscience experiments (Bi & Poo, 1998; Markram, Lübke,
Frotscher, & Sakmann, 1997).

For this study, the weight update rule under STDP as a function
of the time difference between pre- and postsynaptic spikes is
defined as

∆t = tpost − tpre (4)

W (∆t) =

{
A+e−∆t/τ+ , if ∆t ≥ 0
−A−e∆t/τ− , if ∆t < 0

(5)

∆w =

∑
tpre

∑
tpost

W (∆t), (6)

where w is the synaptic weight. ∆w is the change of the synaptic
weight. tpre and tpost stand for the timing of the firing spike
from pre-neuron and post-neuron. A+ and A− represent positive
constants scaling the strength of potentiation and depression,
respectively. τ+ and τ− are positive time constants defining the
width of the positive and negative learning window.

A simple learning rule combining models of STDP and a global
reward signal was proposed by Izhikevich (Izhikevich, 2007) and
Florian (Florian, 2007). In the R-STDP, the synaptic weight w
changes with the reward signal R. The eligibility trace of a synapse
can be defined as,

ċ(t) = −
c
τc

+ W (∆t)δ(t − spre/post )C1 (7)

where c is an eligibility trace. spre/post means the time of a pre-
or postsynaptic spikes. C1 is a constant coefficient. τc is a time
constant of the eligibility trace. δ is the Dirac delta function

ẇ(t) = R(t) × c(t) (8)

where R(t) is the reward signal. More details on the R-STDP
mechanism can be found in Frémaux and Gerstner (2016), Pot-
jans, Morrison, and Diesmann (2010).

4.2. Reward generation for R-STDP

Instead of dividing the input data and feeding it into two
separate networks with static weights as was done in Kaiser et al.
(2016), a single SNN based on R-STDP is designed as shown in
Fig. 9. The input data is scaled and used for excitation of Poisson
neurons, in a single network with 8×4 = 32 input neurons. Then,
the input layer is connected to two LIF output neurons in an ‘‘all
to all" fashion using R-STDP synapses. The reward signal given at
each simulation time step is shown in Fig. 10. It is defined for
each motor with opposite signs linearly dependent on the robot’s
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Fig. 9. Network architecture of the R-STDP implementation using DVS frames
as input.

distance to the lane center. When the robot is on the right side of
the lane center and should turn left to get back, connections that
lead the right motor neuron to fire are strengthened, connections
that lead the left motor neuron to fire are weakened. Conversely,
if the car is on the opposite side of the lane-center, this process
is reversed. Over time, the robot should learn to associate certain
input stimuli with left or right turns and act accordingly. These
considerations lead to the following rewards for left and right
motors neuron connections, with d being the distance to the lane
center and cr a constant scaling the reward:

rleft/right = −/+(d · cr ) (9)

4.3. Encoding and decoding

For communicating with robot sensors and motors in SNNs,
the sensory information should be encoded into input spikes and
the output spikes should be decoded into motor commands. A
similar processing procedure for the encoding and decoding can
be found in Kaiser et al. (2016). The same model is implemented
in this paper with only one change. Instead of steering angles,
turning speeds are computed and added or subtracted for the left
and right motors. First, the output spike count nleft(right)

t is scaled
by the maximum possible output nmax:

mleft(right)
t =

nleft(right)
t

nmax
∈ [0; 1], with nmax =

Tsim
Trefrac

, (10)

where Tsim denotes the simulation time step length and Trefrac
describes the refractory period length of the LIF neuron. Based
on the difference of the normalized activities mleft

t and mright
t and

a turning constant cturn, the turning speed is defined as

St = cturn · at , with at = mleft
t − mright

t ∈ [−1; 1]. (11)

Furthermore, in order to ensure a minimum running for the robot,
the overall speed is controlled according to

Vt = −|at | · (vmax − vmin) + vmax, (12)

where vmin and vmax are predefined speed limits. Since controlling
a car is generally a continuous process, overall speed and turn
speed were smoothened based on the activities:

vt = c · Vt + (1 − c) · vt−1, (13)

st = c · St + (1 − c) · st−1, (14)

with c =

√
(mleft

t )2 + (mright
t )2

2
(15)

Finally, the control signals for the left and right motors are com-
puted by

v
left
t = vt + st and v

right
t = vt − st . (16)

4.4. Training

In order to train the network successfully, the parameters of
the R-STDP controller have to be carefully chosen (see Table 3 in
the appendix). First, the training result is closely related to the
reward in (9). If the value is too low, the learning will take too
much time and it might be difficult to see any progress at all. By
contrast, if it is too high, the learning will become increasingly
instable and the robot will not learn anything. Second, the initial
network weights are critical for learning as well. In this study,
weights are initialized uniformly at a relatively low value of 200.
The weights have to be larger than zero, because both motor
neurons must be excited from the beginning in order to induce

Fig. 10. Reward given by the R-STDP controller: It is defined for each motor individually as a linear function of the lane center distance scaled by a constant cr . The
lane markings are 0.25 m away from the lane center. If the robot goes further than 0.2 m from the lane center, episodes are terminated and the robot is positioned
at its starting position.
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Table 1
DQN parameters.

DQN

network architecture 512 - 200 - 200 - 3
connections fully connected
batch size 32
update frequency 4
soft update τ = 0.001
learning rate α = 0.0001
buffer size 5000

ϵ-greedy policy

pre-training steps 1000
annealing steps 49000
random probability start 1.0
random probability end 0.1

MDP

discount factor γ = 0.99
reset distance 0.5 m
maximum episode steps 1000
time step length 0.5 s

Robot motor speed straight vs = 1.0 m/s
motor speed turn vt = 0.25 m/s

Fig. 11. Scenario 1: After 500 episodes, the robot learns to follow the lane
without triggering a reset. Episodes are limited to 1000 action steps. The
accumulated rewards collected in 1000 action steps still improve after the robot
has reached the step limit.

weight changes following the R-STDP learning rule. Furthermore,
the weights are clipped to [0 : 3000], only allowing excitatory
synaptic connections.

5. Results

With the lane-keeping tasks in mind, DQN, DQN-SNN, and R-
STDP controllers for the Pioneer robot were presented earlier in
this paper with regard to the basic principles and implementation
details. In this section, the training results of each controller
are discussed and their performances are also compared with
each other and with the Braitenberg controller from Kaiser et al.
(2016).

5.1. DQN training results

Fig. 11 shows the training progress of the DQN algorithm in
the first scenario. Training parameters are presented in Table 1.
At the beginning, the robot will randomly choose actions regard-
less of the rewards. Episodes are terminated once these random
actions lead the robot beyond the 0.5 m lane-center distance
threshold. Therefore, action steps and rewards are randomly dis-
tributed at a low level at the beginning. Even though the ϵ-greedy
policy constantly increases the chance of choosing the action with
the highest action value, the robot does not show any learning
effect until episode 400. At around episode 300, action steps and
rewards actually decrease, because the robot is following a policy
that is not optimal yet. After approximately 580 episodes, the
robot has learned to follow the lane without trigging a reset.

Fig. 12. Scenario 2: Action steps and rewards for each training episode of the
DQN controller.

Fig. 13. Scenario 3: The algorithm failed to learn a stable policy after 1,186
episodes and 170,000 steps.

To ensure experiences from both inner and outer lanes, even if
the robot has successfully learned to follow them, episodes are
also terminated after 1000 action steps (10,000 time steps), since
competing a full lap takes around 5000 time steps at the pre-
defined motor speed. After each episode, the robot is placed at
the start point of the other side of the road. The accumulative
rewards have exceeded 1000 action steps after 580 episodes, and
still slowly increase, approaching a reward maximum afterwards.

Similarly, the algorithm learns a control strategy in the sec-
ond scenario as well. Due to the reduced complexity in the
state images, effective learning already begins after 300 episodes
(Fig. 12). Interestingly, we can observe that the DQN learns faster
compared with the process in the first scenario. The reason is
that the right side of the input image does not generate any
information due to the missing boundary lane, which leads to
less complexity in the network. In the third scenario, by contrast,
the DQN algorithm failed to learn a stable policy. Fig. 13 shows
the episode lengths and rewards in 170,000 time steps total.
The starting positions in the scenario are switched so that the
robot experiences both road patterns from the beginning. At
around episode 800, the robot learns to follow the lane, even
completing laps and reaching the time step limit at times. Un-
fortunately, it does not learn a generalized policy that works for
both lanes. Once the algorithm figures out how to take a turn
or a transition section from one pattern to another, it seems
to have detrimental effects on its behavior in other situations.
Even though the average reward over several episodes increases
towards the end, the algorithm never reaches the time step limit
in consecutive episodes. Taken together, the algorithm in the
third scenario optimizes its behavior but fails to reach a global
reward maximum.
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Fig. 14. Scenario 1: Static connection weights to the left and right motor
neurons of the Braitenberg vehicle controller.

Table 2
DQN-SNN parameters.

ANN training

network architecture 512 - 200 - 3
connections fully connected
batch size 50
training steps 10000
optimizer ADAM
learning rate 0.0001

SNN simulation

simulation time 10 ms
max. firing rate 1000 Hz
simulation step length 1 ms
membrane potential threshold 1 mV

5.2. DQN-SNN training results

For the policy transfer from the DQN action network to an
SNN, an state–action dataset is created using the state samples
stored in the experience buffer. During training of the DQN con-
troller in the first scenario, 98,990 state samples are visited and
stored. At the beginning of the training procedure, the robot
experiences many states that are far from the optimal lane center
position. Once it has learned to follow the lane, however, it will
experience only states close to the lane center. These states are
much more important for the policy transfer, because the robot
controlled by the SNN will likely never see those ‘‘poor" states far
from the lane center. Therefore, it is important to train the SNN
on a dataset with mostly ‘‘good" states. This is achieved by letting
the robot run and collect states for a while after successfully
learning a good policy to ensure a favorable distribution of states
in the dataset. Using the previously trained DQN action network,
all states are labeled with actions and an ANN is trained reaching
a classification accuracy of 93.05%. Further training and network
parameters are shown in Table 2. Following that, the network
weights are normalized and transferred to an SNN based on Algo-
rithm 1 with the same architecture performing the robot control
task. In the second scenario, 100,236 states could be classified
with an accuracy of 91.71% following the same procedure. Due
to the fact that the DQN algorithm could not successfully learn
a stable policy in the third scenario, the DQN-SNN controller is
only implemented for the first two scenarios.

Table 3
Simulation parameters specification.

Steering model

max. speed vmax = 1.5 m/s
min. speed vmin = 1.0 m/s
turn constant cturn = 0.5
max spikes during nmax = 15
a simulation step

Poisson neurons
max. firing rate 300 Hz
number of DVS events for n = 15
max. firing rate

SNN simulation simulation time 50 ms
time resolution 0.1 ms

LIF neurons

NEST model iaf_psc_alpha
Resting membrane potential EL = −70.0 mV
Capacity of the membrane Cm = 250.0 pF
Membrane time constant τm = 10.0 ms
Time constant of postsynaptic τsyn,ex = 2.0 ms
excitatory currents
Time constant of postsynaptic τsyn,in = 2.0 ms
inhibitory currents
Duration of refractory period tref = 2.0 ms
Reset membrane potential Vreset = −70.0 mV
Spike threshold Vth = −55.0 mV
Constant input current Ie = 0.0 pA

R-STDP synapse

NEST model dopamine_synapse
Amplitude of weight change A+ = 1.0
for facilitation
Amplitude of weight change A− = 1.0
for depression
STDP time constant τ+ = 20.0 ms
for facilitation
Time constant of τc = 1000.0 ms
eligibility trace
Time constant of τn = 200.0 ms
dopaminergic trace
Minimal synaptic weight 0.0
Maximal synaptic weight 3000.0
Initial synaptic weight 200.0
Reward constant cr = 0.01

5.3. Braitenberg vehicle controller

To serve as a basis for further investigations, Kaiser proposed
a simple Braitenberg vehicle controller for the lane following
task (Kaiser et al., 2016). Depending on simple static connection
schemes between sensors and motors, the vehicle exhibits simple
animal-like behavior, such as turning towards or away from a
sensory stimulus, e.g. in the form of light.

In a classic Braitenberg vehicle, the activity of sensory inputs
steers the agent towards stimuli or away from stimuli depending
on the connection scheme. In the first scenario, the robot is
supposed to follow the lane without crossing the solid line on
the right or the dashed line in the middle of the road. Therefore,
if the robot deviates from the lane center, the motor neuron
activities should increase or decrease so that the robot adjusts its
direction accordingly. Fig. 14 shows the weights of the synaptic
connections to the left and right motor neurons. If a line in the
robot’s vision gets closer to the bottom center of the image, the
related motor neuron activity will be increased while the opposite
motor neuron’s activity will be decreased. If the robot gets close
to the solid line on its right side, for example, left and right motor
neurons will decrease and increase their firing rate, respectively,
causing the robot to turn to the left. The same principle applies
for the opposite side as well. The network weights are chosen
manually by trial and error. This controller is only applied in the
first scenario for further performance comparison.

5.4. R-STDP training results

Fig. 15 shows the training progress of the R-STDP controller in
the first scenario. Specifically, the changes in the synaptic weights
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Fig. 15. Scenario 1. Learning progress of the R-STDP controller over every 8000 steps (1 step = 50 ms). Learned connection weights to the left and right motor
neurons of the R-STDP controller are shown in last row after 30,000 simulation steps.

are shown every 8000 steps over the course of the simulation.
Fig. 16 shows the termination position of the robot at each trail
when it exceeds the lane center distance of 0.2 m, triggering
a reset. A simulation step is equivalent to 50 ms both for the
simulation of the SNN as well as the robot simulator itself. At
the beginning of the training procedure, the robot will go straight
forward, because all connection weights for both motor neurons
have been set to the same value. Therefore, during the first 10,000
simulation steps, trials are mostly terminated at the first turn
in both directions, when the robot misses the turn and the lane
center distance exceeds 0.2 m. Each time the robot misses a turn,
it will periodically induce high reward values at the beginning,
changing the synaptic weights. Shortly before step 10,000, the
robot has learned to take the turn, but it still deviates from
the optimal lane center position. Consequently, the high reward
over a longer period of time causes a significant change in the
connection values. The learned weights after 30,000 simulation
steps are shown in the last row of Fig. 15. Interestingly, the
connection weights resemble the theoretically derived weights of
the Braitenberg controller (see Fig. 14), with very low values in
one half of the image and increasing values from the top corner
to the bottom center in the other half of the image. Furthermore,
it can be seen that left and right motor neurons mostly seem to
be triggered through the middle and right road line enclosing the
lane.

The training results of the controller in the second scenario
are shown in Figs. 17 and 18. The results are similar to the first
scenario, completing the first full lap in less than 5000 simulation

Fig. 16. Scenario 1. Termination position of the robot at each trail is marked by
a star. During the first 10,000 simulation steps, the robot triggers resets at each
trial in the first turn in both directions. Afterwards, it has successfully learned
how to follow the lane, only triggering a reset when a complete lap is finished.

steps. The weights of the controller network after 30,000 simula-
tion steps are shown in the last row of Fig. 17. While the networks
weights on the left side from both motor neurons resemble the
connection weights learned in the first scenario, it can easily be
seen that the weights on the right side have been left unchanged,
due to the missing lines in this scenario and the consequential
lack of activity during training.

Fig. 19 shows the learning progress during the training in
the third scenario. First, learning a successful control strategy
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Fig. 17. Scenario 2. Learning progress of the R-STDP controller over every 8000 steps (1 step = 50 ms). Learned connection weights to the left and right motor
neurons of the R-STDP controller are shown in last row after 30,000 simulation steps.

takes considerably more time than in the first two scenarios.
The obvious explanation for this is that the third scenario in-
corporates two different road patterns, making the environment
more complicated. Therefore, the controller has to distinguish
between a higher number of different situations as well as slow-
ing down the learning procedure. Moreover, due to the simple
fact that the robot does not encounter certain situations until
it has learned how to get there, it will only start learning a
generalized control strategy that works for both lanes towards
the end. The termination positions are shown in Fig. 20. As we
can see, after an initial learning phase until approximately step
20,000, the controller is mostly reset in Section B (outer lane)
and D (inner lane). When the weights have adapted sufficiently
after approximately 75,000 steps, the robot finished the laps on
both lanes. The last row of Fig. 19 shows the learned weights
after 100,000 steps. In comparison to the first scenario, the weight
patterns seem very similar, which makes sense considering the
fact that the road pattern in the first scenario is the combination
of both road patterns in the third scenario.

6. Performance & comparison

At the beginning, all the controllers are successfully trained
and tested in the first scenario. While the Braitenberg controller
is only implemented for the first scenario for comparison pur-
poses, the remaining controllers learned a control strategy for
the second scenario as well. Only the R-STDP controller, however,

Fig. 18. Scenario 2. Termination position of the robot at each trail is marked by
a star. The robot is mostly reset in sections B until laps are completed on both
lanes after approximately 14,000 steps.

learned a stable control strategy for the third scenario. In order
to obtain comparable performance metrics for each controller,
they are evaluated after completing one lap on the outer lane in
each scenario. Figs. 21–23 show the deviation of the robot from
the lane center over the projected course position during one lap
for each successful controller in all three scenarios, respectively.
Moreover, the course is divided into the six sections as shown in
Fig. 3. The robot path representation as a projection to the lane
center line allows for a numerical analysis of the performance of
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Fig. 19. Scenario 3. Learning progress of the R-STDP controller over every 25,000 steps (1 step = 50 ms). Learned connection weights to the left and right motor
neurons of the R-STDP controller are shown in last row after 100,000 simulation steps.

Fig. 20. Scenario 3. Termination position of the robot at each trail is marked
by a star. After an initial learning phase, the robot is mostly reset in sections B
and D until laps are completed on both lanes after approximately 75,000 steps.

all controllers . Specifically, the error distribution (distance to the
lane center) can be shown in the form of a histogram as well as
the mean error for each controller.

Initially, the DQN controller is trained and tested in the first
scenario (see Fig. 21). The behavior of the robot very clearly
depends on the section that it is in. In the straight sections A
and C of the first scenario, the robot exhibits a tendency to the
left (−0.1, defined in Fig. 7). In the left turn sections B, D, and F
as well as the right turn section E, the robot tends to the right
side of the lane (+0.1). While the controller does not optimally

minimize the lane center distance over the whole course, it seems
to be very stable with a constant deviation during each section.
This behavior can also be seen in the error histogram with two
peaks at both sides of the lane center. In contrast to the other
controllers, the DQN algorithm leads to the highest numerical
error with a mean deviation of e = 0.041 m. In the second
scenario, the DQN algorithm shows a higher mean error (see
Fig. 22), which can be explained by the reduced information in the
state images. Especially in turns on the outer lane, when the robot
sees only a very small part of the dashed line, there are only a few
pixels containing any information. During the straight sections
A and C, on the other hand, the robot follows the lane very
close to its center, having enough information for a near-optimal
control strategy. As discussed in the previous section, the DQN
algorithm does not learn a stable policy in the third scenario that
combines two different road patterns. During training, however,
it manages to complete full laps and reaches the time step limit
several times, proving that it can in fact learn a good policy with
different road patterns. The problem here seems to be a general
policy that works for both lanes, handling the full complexity
of the task. Considering that other reinforcement learning tasks
have successfully been solved using DQN (e.g. playing Atari games
in Mnih et al. (2015)), it seems likely that this is mainly due to
the simple network architecture that is implemented in this study
which fails to evaluate states accurately enough in order to learn
a stable policy.

Following the DQN controller, an SNN is trained in order to
approximate the policy learned by the DQN algorithm. Therefore,
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Fig. 21. Scenario 1: Comparison of different controllers on the outer lane. The deviation from the lane center is shown over the robot position projected to the lane
center. Positive lane center distances correspond to deviations to the right side, negative distances to the left side. Course sections are marked by vertical dashed
lines (A=straight, B=left, C=straight, D=left, E=right, F=left). On the right side, error distributions for all controllers as well as mean errors e (mean distance to the
lane center) are shown.

Fig. 22. Scenario 2: Comparison of different controllers on the outer lane. The deviation from the lane center is shown over the robot position projected to the lane
center. Positive lane center distances correspond to deviations to the right side, negative distances to the left side. Course sections are marked by vertical dashed
lines (A=straight, B=left, C=straight, D=left, E=right, F=left). On the right side, error distributions for all controllers as well as mean errors e (mean distance to the
lane center) are shown.

Fig. 23. Scenario 3: R-STDP controller on the outer lane. The deviation from the lane center is shown over the robot position projected to the lane-center. Positive
lane center distances correspond to deviations to the right side, negative distances to the left side. Course sections are marked by vertical dashed lines (A=straight,
B=left, C=straight, D=left, E=right, F=left). On the right side, the error distribution as well as the mean error e (mean distance to the lane center) are shown.

when looking at the performed lap, the DQN-SNN controller
exhibits some similarities to the DQN controller, e.g. its left ten-
dency in straight sections (A and C) or its right tendency in right
turns (E). Overall, the controller seems more unstable, exhibiting
a lot more oscillatory behavior, especially in left turns (sections B,
D and F). When looking at the histogram, the error distribution of
the DQN-SNN controller looks like a smoothened version of the
DQN controller. Moreover, the mean error of the transferred SNN
controller is surprisingly lower than the one of the original DQN
controller. One explanation for this interesting behavior could be

the decision frequency that is much higher than before. For every
decision, the DQN controller collects consecutive frames in order
to have enough data and combines them into one single state
image. In this study, states images are composed of 10 DVS frames
and decisions are made every 10 × 50 ms = 500 ms. The SNN,
on the other hand, does not have to accumulate DVS frames be-
forehand. The network architecture will combine the data in the
membrane potentials over time. Therefore, the network output
can be read every 50 ms without having to wait for 10 simulation
steps, although it takes some time until enough data has been
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propagated through the network to produce meaningful output
spikes. In fact, in many time steps during the simulation the
SNN will not produce any output spikes at all, which is why
action traces (defined in (3)) are used to ensure a control signal
even if there are no output spikes. Considering the loss that was
introduced when training the SNN on the state–action dataset,
the performance of the controller still seems pretty good. In the
second scenario (see Fig. 22), the SNN controller exhibits strong
oscillatory behavior. Again, this can probably be explained by
the reduced amount of information in the image data due to
the missing lines. If fewer events are created and fed into the
network, it takes longer until the information gets propagated
through the network and generates an output spike. Therefore,
the frequency in which the network can make decisions is much
lower, resulting in this unstable behavior.

Next, the Braitenberg controller is evaluated while perform-
ing the same lap in the first scenario (see Fig. 21). While the
controller successfully finishes the course, it can be seen quite
clearly that it strongly tends to the right side of the lane, which
can be explained by the robot’s field of view. In the right half
of the DVS images, the robot usually only sees the right solid
line. In the left half, however, the robot sees the left solid line
as well as the dashed middle line of the road, leading to a higher
number of detected events and eventually greater activity of the
left motor neuron. This will shift the robot to the right until it has
reached a balance in the activity of the motor neurons. Even in the
right turn (section E), the robot is mostly to the right of the lane
center. In left turns, the distance to the lane center grows until
a point is reached where previously unstimulated neurons with
high weights are now excited. These will push the right motor
neuron activity, leading to a movement correction back to the
center. This can be seen in all three left turns (sections B, D, and
F). The value of the controller’s mean error during the performed
lap is comparable to the first two controllers.

The purpose of the Braitenberg controller is to show the basic
underlying control principle here. Instead of improving the con-
troller performance by iteratively adjusting the network weights,
the network is re-implemented using R-STDP synapses so that the
weights could be automatically learned by the robot. In the pre-
vious section, we have already shown that those learned weights
resemble the theoretically derived weights of the Braitenberg
vehicle controller. Of all four controllers, the R-STDP controller
shows the best performance in this task with comparatively very
small deviations from the lane center. This gets even clear when
looking at the performance histogram and the mean error that is
almost an order of magnitude lower in comparison to the other
controllers. First, one explanation for this behavior can be found
in the very nature of SNNs that allow for high frequency decision-
making without the need to split time into discrete steps. Second,
the R-STDP training algorithm and the related reward are to a
great extent tailored to this specific problem. The great success
of deep reinforcement learning methods such as DQN lies in
their capability to learn value functions in high-dimensional state
spaces. This property allows for a general algorithm that is ca-
pable of solving sequential decision-making tasks formulated as
MDP, even if rewards are sparse and delayed in time. The R-STDP
controller, on the other hand, does not have this property. Basi-
cally, the R-STDP reward can be interpreted as a pre-defined value
function with a global maximum that the algorithm will seek out.
Furthermore, the reward signal incorporates prior knowledge,
e.g. that increasing or decreasing motor neuron activities will
lead the robot back to the center. Therefore, the R-STDP training
algorithm solves a mathematically much less complex problem,
leaving out the state evaluation step estimating future rewards
that is crucial for every classic reinforcement learning algorithm
solving MDPs with sparse, delayed rewards.

Fig. 24. Training time steps comparison for DQN and R-STDP controllers. The
left group of bars shows the training time for achieving the first successful lap
for both controllers. The right group shows the total training time steps for a
stable policy. The standard deviation is marked with a black solid line for three
training trails. For the DQN controller in the third scenario, it is marked with a
X , since it fails to learn a stable policy.

Moreover, the training time steps of the DQN and R-STDP
controllers for the three scenarios are shown in Fig. 24. For
the first two scenarios, the R-STDP controller takes notably less
time to learn a stable policy as compared to the DQN controller,
even the DQN only takes random actions for the first 1000 time
steps. For the third scenario, the R-STDP takes about 40,000
time steps to complete the successful learning process, while the
DQN fails to learn a stable policy to accomplish consecutive full
inner and outer laps. On the other hand, even for completing
the first successful lap, the R-STDP still takes less time. For the
DQN controller, there are still many episodes to be conducted to
achieve a stable policy after the first successful trial. However,
for the R-STDP controller, it will almost learn a stable policy once
it completes the first successful lap. The possible explanation for
the DQN controller is obvious, since the DQN achieves the first
full lap by chance during the process of maximizing its rewards,
rather than seeking its global maximum as R-STDP. In overall time
steps, the R-STDP also beats the DQN, due to its inherent high
frequency making for processing event-based data.

7. Conclusion

Spiking neural network, inspired by the mechanism of the
brain, offers a promising solution to control robots with biolog-
ical plausibility and exceptional performances. However, it lacks
sophisticated training algorithms and practical robotic implemen-
tations, due to its complexities in constructing and optimizing
an SNN. To bridge this gap, we trained an SNN controller with
indirect and direct methods based on DQN policy transfer and R-
STDP learning rule, respectively, and further implemented them
in lane-keeping tasks for a Pioneer robot. For the indirect training,
we first trained a DQN controller to accomplish lane-keeping
tasks and then transferred its policy to an SNN controller by
training it on an state–action dataset using supervised learn-
ing. Our indirect methods offer a quick and efficient way to
build up an applicable spike-based controller that is able to be
executed on neuromorphic hardwares. For the direct training,
our method directly learns an SNN by utilizing the biological R-
STDP learning rule and the event-based vision sensor, aiming to
bring reinforcement learning capabilities to SNNs directly. Finally,
we demonstrated the superiority of the controller trained by R-
STDP by comparing the training results and their performance
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of all controllers in terms of accuracy and speed, which were
represented by the lateral localization accuracy and training time
speed.

For future research, the R-STDP controller is intended to be a
first step towards more sophisticated algorithms with real rein-
forcement learning capabilities. To date, research has not incorpo-
rated reward prediction errors yet, even though this phenomenon
was observed in the brain. Therefore, such networks based on R-
STDP should also be implemented using deep architectures in the
future.
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Simulation parameters for each controller are listed in Ta-
bles 1–3.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.neunet.2019.05.019.

References

Ambrosano, A., Vannucci, L., Albanese, U., Kirtay, M., Falotico, E., Martínez-
Cañada, P., et al. (2016). Retina color-opponency based pursuit implemented
through spiking neural networks in the neurorobotics platform. In N. F. Lep-
ora, A. Mura, M. Mangan, P. F. Verschure, M. Desmulliez, T. J. Prescott (Eds.),
Biomimetic and biohybrid systems (pp. 16–27). Cham: Springer International
Publishing.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., & Wu, Y. (2017). STDP-
Compatible approximation of backpropagation in an energy-based model.
Neural Computation.

Bi, G.-q., & Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsy-
naptic cell type. Journal of Neuroscience, 18(24), 10464–10472. http://
dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998, http://www.jneurosci.org/
content/18/24/10464.

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M., et al. (2018). End
to end learning of spiking neural network based on r-STDP for a lane keeping
vehicle. In 2018 IEEE international conference on robotics and automation (pp.
1–8). http://dx.doi.org/10.1109/ICRA.2018.8460482.

Bing, Z., Meschede, C., Röhrbein, F., Huang, K., & Knoll, A. C. (2018). A survey
of robotics control based on learning-inspired spiking neural networks.
Frontiers in Neurorobotics, 12, 35. http://dx.doi.org/10.3389/fnbot.2018.00035,
https://www.frontiersin.org/article/10.3389/fnbot.2018.00035.

Bogacz, R. (2017). A tutorial on the free-energy framework for modelling per-
ception and learning. Journal of Mathematical Psychology, 76, 198–211. http://
dx.doi.org/10.1016/j.jmp.2015.11.003, http://www.sciencedirect.com/science/
article/pii/S0022249615000759, Model-based cognitive neuroscience.

Brette, R. (2015). Philosophy of the spike: Rate-based vs. spike-based the-
ories of the brain. Frontiers in Systems Neuroscience, 9, 151. http://
dx.doi.org/10.3389/fnsys.2015.00151, http://journal.frontiersin.org/article/10.
3389/fnsys.2015.00151.

Caporale, N., & Dan, Y. (2008). Spike timing–dependent plasticity: a Hebbian
learning rule. Annual Review of Neuroscience, 31(1), 25–46. http://dx.doi.org/
10.1146/annurev.neuro.31.060407.125639, PMID: 18275283.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., & Pfeiffer, M. (2015).
Fast-classifying, high-accuracy spiking deep networks through weight and
threshold balancing. In 2015 international joint conference on neural networks
(pp. 1–8). http://dx.doi.org/10.1109/IJCNN.2015.7280696.

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., & Pfeiffer, M. (2015).
Fast-classifying, high-accuracy spiking deep networks through weight and
threshold balancing. In 2015 international joint conference on neural networks
(pp. 1–8). http://dx.doi.org/10.1109/IJCNN.2015.7280696.

Drubach, D. (2000). The brain explained. Prentice Hall.

Florian, R. V. (2007). Reinforcement learning through modulation of spike-
timing-dependent synaptic plasticity. Neural Computation, 19(6), 1468–1502.

Frémaux, N., & Gerstner, W. (2016). Neuromodulated spike-timing-dependent
plasticity, and theory of three-factor learning rules. Frontiers in Neu-
ral Circuits, 9, 85. http://dx.doi.org/10.3389/fncir.2015.00085, http://journal.
frontiersin.org/article/10.3389/fncir.2015.00085.

Indiveri, G. (1999). Neuromorphic analog VLSI sensor for visual tracking: circuits
and application examples. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, 46(11), 1337–1347. http://dx.doi.org/10.1109/82.
803473.

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage
of STDP and dopamine signaling. Cerebral Cortex, 17(10), 2443–2452. http:
//dx.doi.org/10.1093/cercor/bhl152.

Kaiser, J., Tieck, J. C. V., Hubschneider, C., Wolf, P., Weber, M., Hoff, M., et
al. (2016). Towards a framework for end-to-end control of a simulated
vehicle with spiking neural networks. In 2016 IEEE international conference on
simulation, modeling, and programming for autonomous robots (pp. 127–134).
http://dx.doi.org/10.1109/SIMPAR.2016.7862386.

Kasabov, N. K. (2018). Time-space, spiking neural networks and brain-inspired
artificial intelligence: Vol. 7. Springer.

Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016a). Training Deep Spiking Neural
Networks using Backpropagation, 10(November), 1–10. http://dx.doi.org/10.
3389/fnins.2016.00508, arXiv:1608.08782.

Lee, J. H., Delbruck, T., & Pfeiffer, M. (2016b). Training deep spiking neural
networks using backpropagation. Frontiers in Neuroscience, 10, 508. http://
dx.doi.org/10.3389/fnins.2016.00508, https://www.frontiersin.org/article/10.
3389/fnins.2016.00508.

Legenstein, R., Pecevski, D., & Maass, W. (2008a). A learning theory for
reward-modulated spike-timing-dependent plasticity with application to
biofeedback. PLoS Computational Biology, 4(10), http://dx.doi.org/10.1371/
journal.pcbi.1000180.

Legenstein, R., Pecevski, D., & Maass, W. (2008b). A learning theory for
reward-modulated spike-timing-dependent plasticity with application to
biofeedback. PLoS Computational Biology, 4(10), 1–27. http://dx.doi.org/10.
1371/journal.pcbi.1000180.

Lewis, M. A., Etienne-Cummings, R., Cohen, A. H., & Hartmann, M. (2000).
Toward biomorphic control using custom aVLSI CPG chips. In Proceedings
2000 ICRA. Millennium conference. IEEE international conference on robotics and
automation. symposia proceedings (Cat. No. 00CH37065): Vol. 1 (pp. 494–500).
http://dx.doi.org/10.1109/ROBOT.2000.844103.

Lichtsteiner, P., Posch, C., & Delbruck, T. (2008). A 128×128 120 dB 15µs latency
asynchronous temporal contrast vision sensor. IEEE Journal of Solid-State
Circuits, 43(2), 566–576. http://dx.doi.org/10.1109/JSSC.2007.914337.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015).
Continuous control with deep reinforcement learning. ArXiv preprint. arXiv:
1509.02971.

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of
synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,
275(5297), 213–215. http://dx.doi.org/10.1126/science.275.5297.213, http://
science.sciencemag.org/content/275/5297/213.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Potjans, W., Morrison, A., & Diesmann, M. (2010). Enabling functional neu-
ral circuit simulations with distributed computing of neuromodulated
plasticity. Frontiers in Computational Neuroscience, 4, 141. http://dx.doi.
org/10.3389/fncom.2010.00141, https://www.frontiersin.org/article/10.3389/
fncom.2010.00141.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). ROS:
an open-source robot operating system. In ICRA workshop on open source
software: Vol. 3(3.2) (p. 5). Kobe.

Rohmer, E., Singh, S. P. N., & Freese, M. (2013). V-REP: A versatile and scalable
robot simulation framework. In 2013 IEEE/RSJ international conference on
intelligent robots and systems (pp. 1321–1326). http://dx.doi.org/10.1109/
IROS.2013.6696520.

Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neuroscience,
3(9), 919–926. http://dx.doi.org/10.1038/78829.

Stevens, C. F., & Zador, A. M. (1996). When is an integrate-and-fire neuron like
a Poisson neuron? In Advances in neural information processing systems (pp.
103–109).

Thorpe, S., Delorme, A., & Rullen, R. V. (2001). Spike-based strate-
gies for rapid processing. Neural Networks, 14(6), 715–725. http://
dx.doi.org/10.1016/S0893-6080(01)00083-1, http://www.sciencedirect.com/
science/article/pii/S0893608001000831.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence.

https://doi.org/10.1016/j.neunet.2019.05.019
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb1
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb2
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb2
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb2
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb2
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb2
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://dx.doi.org/10.1523/JNEUROSCI.18-24-10464.1998
http://www.jneurosci.org/content/18/24/10464
http://www.jneurosci.org/content/18/24/10464
http://www.jneurosci.org/content/18/24/10464
http://dx.doi.org/10.1109/ICRA.2018.8460482
http://dx.doi.org/10.3389/fnbot.2018.00035
https://www.frontiersin.org/article/10.3389/fnbot.2018.00035
http://dx.doi.org/10.1016/j.jmp.2015.11.003
http://dx.doi.org/10.1016/j.jmp.2015.11.003
http://dx.doi.org/10.1016/j.jmp.2015.11.003
http://www.sciencedirect.com/science/article/pii/S0022249615000759
http://www.sciencedirect.com/science/article/pii/S0022249615000759
http://www.sciencedirect.com/science/article/pii/S0022249615000759
http://dx.doi.org/10.3389/fnsys.2015.00151
http://dx.doi.org/10.3389/fnsys.2015.00151
http://dx.doi.org/10.3389/fnsys.2015.00151
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00151
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00151
http://journal.frontiersin.org/article/10.3389/fnsys.2015.00151
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://dx.doi.org/10.1109/IJCNN.2015.7280696
http://dx.doi.org/10.1109/IJCNN.2015.7280696
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb11
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb12
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb12
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb12
http://dx.doi.org/10.3389/fncir.2015.00085
http://journal.frontiersin.org/article/10.3389/fncir.2015.00085
http://journal.frontiersin.org/article/10.3389/fncir.2015.00085
http://journal.frontiersin.org/article/10.3389/fncir.2015.00085
http://dx.doi.org/10.1109/82.803473
http://dx.doi.org/10.1109/82.803473
http://dx.doi.org/10.1109/82.803473
http://dx.doi.org/10.1093/cercor/bhl152
http://dx.doi.org/10.1093/cercor/bhl152
http://dx.doi.org/10.1093/cercor/bhl152
http://dx.doi.org/10.1109/SIMPAR.2016.7862386
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb17
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb17
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb17
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
http://arxiv.org/abs/1608.08782
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1371/journal.pcbi.1000180
http://dx.doi.org/10.1109/ROBOT.2000.844103
http://dx.doi.org/10.1109/JSSC.2007.914337
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://dx.doi.org/10.1126/science.275.5297.213
http://science.sciencemag.org/content/275/5297/213
http://science.sciencemag.org/content/275/5297/213
http://science.sciencemag.org/content/275/5297/213
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb26
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb26
http://dx.doi.org/10.3389/fncom.2010.00141
http://dx.doi.org/10.3389/fncom.2010.00141
http://dx.doi.org/10.3389/fncom.2010.00141
https://www.frontiersin.org/article/10.3389/fncom.2010.00141
https://www.frontiersin.org/article/10.3389/fncom.2010.00141
https://www.frontiersin.org/article/10.3389/fncom.2010.00141
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb28
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb28
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb28
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb28
http://refhub.elsevier.com/S0893-6080(19)30159-5/sb28
http://dx.doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1109/IROS.2013.6696520
http://dx.doi.org/10.1038/78829
http://dx.doi.org/10.1016/S0893-6080(01)00083-1
http://dx.doi.org/10.1016/S0893-6080(01)00083-1
http://dx.doi.org/10.1016/S0893-6080(01)00083-1
http://www.sciencedirect.com/science/article/pii/S0893608001000831
http://www.sciencedirect.com/science/article/pii/S0893608001000831
http://www.sciencedirect.com/science/article/pii/S0893608001000831


36 Z. Bing, C. Meschede, G. Chen et al. / Neural Networks 121 (2020) 21–36

Wang, X., Hou, Z.-G., Lv, F., Tan, M., & Wang, Y. (2014). Mobile robot’
modular navigation controller using spiking neural networks. Neurocom-
puting, 134, 230–238. http://dx.doi.org/10.1016/j.neucom.2013.07.055, http:
//www.sciencedirect.com/science/article/pii/S0925231214000976, Special is-
sue on the 2011 sino-foreign-interchange workshop on intelligence science
and intelligent data engineering (IScIDE 2011) learning algorithms and
applications.

Wang, X., Hou, Z., Tan, M., Wang, Y., & Hu, L. (2009). The wall-following
controller for the mobile robot using spiking neurons. In 2009 international
conference on artificial intelligence and computational intelligence: Vol. 1 (pp.
194–199). http://dx.doi.org/10.1109/AICI.2009.448.

Wang, X., Hou, Z.-G., Zou, A., Tan, M., & Cheng, L. (2008). A behavior con-
troller based on spiking neural networks for mobile robots. Neurocomputing,
71(4), 655–666. http://dx.doi.org/10.1016/j.neucom.2007.08.025, http://www.
sciencedirect.com/science/article/pii/S0925231207003025, Neural networks:
algorithms and applications 50 years of artificial intelligence: a neuronal
approach.

Whittington, J. C. R., & Bogacz, R. (2017). An approximation of the error
backpropagation algorithm in a predictive coding network with local hebbian
synaptic plasticity. Neural Computation, 29(5), 1229–1262. http://dx.doi.org/
10.1162/NECO_a_00949, PMID: 28333583.

http://dx.doi.org/10.1016/j.neucom.2013.07.055
http://www.sciencedirect.com/science/article/pii/S0925231214000976
http://www.sciencedirect.com/science/article/pii/S0925231214000976
http://www.sciencedirect.com/science/article/pii/S0925231214000976
http://dx.doi.org/10.1109/AICI.2009.448
http://dx.doi.org/10.1016/j.neucom.2007.08.025
http://www.sciencedirect.com/science/article/pii/S0925231207003025
http://www.sciencedirect.com/science/article/pii/S0925231207003025
http://www.sciencedirect.com/science/article/pii/S0925231207003025
http://dx.doi.org/10.1162/NECO_a_00949
http://dx.doi.org/10.1162/NECO_a_00949
http://dx.doi.org/10.1162/NECO_a_00949

	Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle
	Introduction
	Lane-keeping tasks
	Indirect learning based on DQN
	Lane keeping as MDP
	DVS input generation
	Reward generation for DQN
	DQN-based controller
	DQN-SNN based controller

	Direct learning of SNN with R-STDP
	R-STDP learning rule
	Reward generation for R-STDP
	Encoding and decoding
	Training

	Results
	DQN training results
	DQN-SNN training results
	Braitenberg vehicle controller
	R-STDP training results

	Performance & comparison
	Conclusion
	Acknowledgments
	Appendix
	Appendix B. Supplementary data
	References


