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Deep neural networks (DNNs) transform stimuli across multiple

processing stages to produce representations that can be used

to solve complex tasks, such as object recognition in images.

However, a full understanding of how they achieve this remains

elusive. The complexity of biological neural networks

substantially exceeds the complexity of DNNs, making it even

more challenging to understand the representations they learn.

Thus, both machine learning and computational neuroscience

are faced with a shared challenge: how can we analyze their

representations in order to understand how they solve complex

tasks? We review how data-analysis concepts and techniques

developed by computational neuroscientists can be useful for

analyzing representations in DNNs, and in turn, how recently

developed techniques for analysis of DNNs can be useful for

understanding representations in biological neural networks.

We explore opportunities for synergy between the two fields,

such as the use of DNNs as in silico model systems for

neuroscience, and how this synergy can lead to new

hypotheses about the operating principles of biological neural

networks.
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Introduction
Neuroscience is in the midst of a technological transfor-

mation, enabling us to investigate the structure and

function of neural circuits at unprecedented scale and

resolution. Electrophysiological technologies [1] and

imaging tools [2] have made it possible to record the

activity of hundreds of neurons simultaneously, and opto-

genetic techniques enable targeted perturbations of
www.sciencedirect.com 
neural activity [3,4]. These advances hold the promise

of providing fundamental insights into how populations of

neurons collectively perform computations. However, it

has also become increasingly clear that interpreting the

complex data generated by these modern experimental

techniques, and distilling a deeper understanding of

neural computation is a challenging problem which

requires powerful analysis tools [5].

In parallel, the field of machine learning is undergoing a

transformation, driven by advances in deep learning. This

has lead to a large increase in the performance and wide-

spread use of DNNs across numerous diverse problem

domains such as object recognition [6,7], automated lan-

guage translation [8], game-play [9,10] and scientific appli-

cations [11]. Deep networks consist of large numbers of

linearly connected nonlinear units whose parameters are

tuned using numerical optimization. Neuroscience and

cognitive science were influential in the early development

of DNNs [12] and convolutional neural networks (CNNs),

widely used in computer vision [13,14,6], were inspired by

canonical properties of the ventral visual stream.

Even though we have full access to DNNs which allows

us to measure complete connectivity and complete acti-

vation patterns, it has nonetheless been challenging to

develop a theoretical understanding of how and why they

work. One reason that it is difficult to understand DNNs

is that they usually contain millions of parameters. For

example, ‘AlexNet’, which is well known for having

demonstrated the potential of CNNs, contains 8 layers

and a total of 60 million parameters [6]. Modern state of

the art networks are often much larger. We still do not

fully understand how and why DNNs can generalize so

well without overfitting [15��,16], nor do we fully under-

stand how invariant representations arise in these multi-

layer networks [17,18].

Therefore, both neuroscience and deep learning face a

similar challenge: how do neural networks, consisting of

large numbers of interconnected elements, transform

representations of stimuli across multiple processing

stages so as to implement a wide range of complex

computations and behaviours, such as object recognition?

What data-analysis techniques are most useful in this

endeavor? How can we characterize and analyze repre-

sentations in high-dimensional spaces? These common

challenges open up opportunities for synergy in analysis

across neuroscience and machine learning [19]. In this

review, we explore statistical tools from both of these
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disciplines that provide insight into neural representation

and computation by analyzing activity-measurements of

both single neurons and neural populations.

Receptive fields: what stimulus-features do
single neurons represent?
Receptive field analysis is the canonical method in

neuroscience for analyzing single neuron activity

[21,19]. The receptive field of a neuron usually refers

to the region of stimulus space that causes a neural firing

response. More generally, it is often characterized as the

‘preferred stimulus’ for a neuron — the stimulus that

elicits a maximal response. Perhaps the most famous

receptive field analysis was the Nobel prize winning

work of Hubel and Wiesel, who discovered that the

receptive fields of simple cells in the visual cortex have

a spatially localized edge-like structure [22]. Our canon-

ical understanding of visual processing has been largely

informed by receptive field analysis. According to this

perspective, the receptive fields of neurons along the

ventral stream of the visual processing pathway become

progressively larger [23], increasingly complex [24,25]

and increasingly invariant to changes in the input-statis-

tics [26], culminating in concept cells that are tuned to

individual objects, but largely invariant to their visual

appearance [27].
Figure 1

Receptive field analysis of neural filters from a DNN known as VGG-M. A sc

progressively processed through banks of convolutional (conv) filters, follow

class label as output. Receptive fields (bottom) for each layer are calculated

increasingly complex, with earlier units having edge-like structure, intermed

responding to object-like images. It is not always possible to find a semant

intermediate layers.

Adapted by permission from Springer Nature: Springer International Journal

Using Natural Pre-images, Aravindh Mahendran and Andrea Vedaldi, 2016.
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In recent years, receptive field analysis has also become a

canonical method for analyzing response properties in

artificial neural networks [28–31,20��]. For example, a

receptive field analysis method known as activation max-

imization [20��,32,33] can be used to synthesize images

which maximally activate units in artificial neural net-

works (Figure 1) [20��]. Similar to the ventral pathway,

the receptive fields of units in CNNs become progres-

sively larger [31] and increasingly complex. Earlier units

having edge-like receptive fields and later units respond

to more complex textures [28,20��] The units of the final

layer have class-specific receptive fields (Figure 1) which

correspond to specific object categories, akin to concept-

cells [27,34,20��].

Ablations: how relevant are single neurons to
the overall computation?
Historically,neurosciencehasfocusedonsingleneuronswith

clearly defined tuning properties, in part, due to the technical

constraints involved in recording neural activity. However, a

number of recent studies have demonstrated that neurons

with clearly defined tuning, such as visual cortex simple cells,

are relatively uncommon and that neurons with ambiguous

tuning properties often contain substantial amounts of task-

relevant information, especially when analyzed as popula-

tions [36–41]. This leads to the question: how important are

selective, clearly tuned neurons?
hematic of the VGG-M network (top) illustrates how an input image is

ed by a series of fully connected (fc) layers before finally producing a

 using activation maximisation [20��]. The receptive fields become

iate layers responding to complex textures and the final layer

ically meaningful description of a receptive field, as can be seen for the

 of Computer Vision, Visualizing Deep Convolutional Neural Networks
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Figure 2

Impact of neural ablations on DNN accuracy. (a) By ablating neurons and measuring DNN classification accuracy, the impact of neural ablations

on DNN performance can be evaluated. A network with good generalization ability (cyan) is much more robust to ablation than networks which

overfit the data using memorisation strategies (purple). (b) The relationship between the class selectivity of a neuron and the importance of a

neuron for classification can be evaluated by measuring the impact of neuron ablation on classification accuracy as a function of the neuron class

selectivity index. Most neurons have little impact on accuracy, and neuron class selectivity does not correlate strongly with the impact of neuron

ablation.

Figures reproduced with modification from [35��].
Ablation analysis allow us to answer this question by

silencing neurons and measuring the impact of this inter-

vention on network output. However, it is difficult to

perform single-neuron ablation analysis in biological neu-

ral networks, due to technical constraints [42], although

this may change in the coming years due to the advent of

optogenetics and targeted two-photon stimulation [3,4].

In theoretical neuroscience single-neuron ablation analy-

sis is possible, and has allowed us to understand the

impact of ablations on neural computation in model

systems of both intact and damaged biological networks

[43].

Ablation analysis is also possible in DNNs, as we can

perfectly characterize the activity of every neuron in

response to any arbitrary ablation. For example, ablation

was recently used to evaluate the relationship between

unit selectivity and unit importance as well as the rela-

tionship between network robustness and generalization

in CNNs performing image classification tasks [35��]. By

measuring how network accuracy dropped as increasing
www.sciencedirect.com 
numbers of neurons were deleted and training on both

normal datasets (which allow generalizable solutions) and

datasets in which image labels were randomized (which

destroys structure and forces memorization), it was found

that networks which learn generalizable solutions (i.e.

those solutions which generalize to images never seen

during training) were more robust to ablations than those

which simply memorize the training data (and are there-

fore unable to generalize to unseen images; Figure 2a).

Leveraging the ability to simultaneously characterize unit

selectivity and unit importance, the impact of ablation on

network accuracy and on the class selectivity of each unit

was calculated. Perhaps surprisingly, there was little

relationship between class selectivity and importance,

suggesting that units critical to network computation

were just as likely to exhibit ambiguous tuning as they

were to be clearly tuned (Figure 2b). If the maximum

drop of accuracy for any class is calculated rather than the

drop in overall accuracy [44], a significant but relatively

weak (��0.22) correlation between class selectivity and

maximum class accuracy drop was observed — some
Current Opinion in Neurobiology 2019, 55:55–64
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highly selective units were critical for individual classes,

whereas many were unimportant.

These results raise an intriguing question: If selectivity is

not predictive of unit importance, what is? This question

has been extensively studied in the deep learning liter-

ature, primarily with the aim of ‘pruning’ neural networks

to generate smaller networks which can run on resource

limited devices [45,46]. One of the best signals of feature

map importance has been found to be the summed

absolute value of weights, suggesting that the magnitude

of a feature map may be a deciding factor for importance

[46]. Pruning remains an active area of research, and a

better understanding of the factors which influence unit

importance may prove highly insightful. This is particu-

larly true for recurrent neural networks (RNNs) [47]: in

RNNs, the contribution of a neuron can be nonlinearly

amplified or reduced through recurrent interactions,

which can make it more challenging to decipher which

neurons ultimately contribute to a computation.

Dimensionality reduction: how can we
characterize distributed representations?
If neural networks employ distributed representations

[37,39,41], what analysis methods are available for us to

make progress towards understanding these representa-

tions? A powerful approach which has been applied in

neuroscience is to search for low-dimensional structure in

large populations of neurons [5,48]. The use of low-

dimensional codes embedded in high dimensional repre-

sentations has been hypothesized to be an important

organizing principle of neural computation in the brain

[49,43,50], and so, dimensionality reduction methods are

particularly suitable for characterizing neural activity.

Dimensionality reduction methods attempt to identify

the neural signals that are maximally correlated with

sensory stimuli [51], behavioural observations [52], neural

activity in other brain areas [53] and instantaneous and

temporal covariation within a brain area [54–56]. Multiple

studies have found that neural dynamics and information

about stimuli and behaviour are indeed concentrated in

low-dimensional subspaces or manifolds [38,5,57,58,59�]
and are often distributed across many neurons [60,61]. For

example, it has been found that dynamics in the motor

cortex can be organized into low-dimensional manifolds

within a high-dimensional distributed representation

[62,61].

Do these manifolds only reflect correlations in the data, or

do they impose constraints on what can be learned? To

investigate this question, [57] used multi-electrode

recordings to control a brain-machine interface. By chang-

ing the decoder for the brain-machine interface, they

demonstrated that animals can learn to adapt to new

decoders whenever the required activity patterns

remained in the underlying manifold, but could not adapt
Current Opinion in Neurobiology 2019, 55:55–64 
otherwise. This result suggests that low-dimensional

neural manifolds represent functional structure and are

not simply a byproduct of statistical correlations. This also

has implications for future data-analysis: if the dynamics

underlying neural data are low-dimensional and distrib-

uted across neurons, a small number of measurements is

sufficient for decoding them [63,48].

Substantial redundancies in representations have also

been reported for DNNs. [64] observed that most param-

eters in DNNs can be predicted from a small number

(�5%) of parameters without significant reduction in

network performance. [65] reported that the intrinsic

dimensionality of neural networks can be orders of mag-

nitude lower than the number of parameters. Moreover,

ablation studies like the ones described in the previous

section have found that more than 85% of parameters can

be removed with minimal performance loss. In addition to

linear dimensionality-reduction techniques, nonlinear

dimensionality reduction techniques, such as t-SNE

[66] have also been used extensively to analyze DNNs

(e.g. [9]).

Relatively little is known about the relationship between

DNN performance and the dimensionality of stimulus

representations. Recent theoretical studies using

approaches from statistical physics [67��] and computa-

tional neuroscience [68] are providing frameworks for

studying the geometrical properties of object-related

manifolds in neural networks: How high-dimensional

are representations? Do they correspond to smooth or

highly irregular manifolds? How do these geometrical

properties impact the capacity and robustness of neural

networks? These advances are providing opportunities for

development and application of theory-driven data anal-

ysis techniques.

Cross-correlation: how can we compare
representations across networks?
Just as we may need to go beyond single neuron analyzes

toward neural population analysis, we often need to go

beyond single population analysis so that we can compare

representations across multiple populations of neurons.

Such analysis is necessary whenever we need to answer

questions about the transformation of representations

across layers, or across time. Also, looking towards oppor-

tunities for synergy between computational neuroscience

and machine learning, it may be useful to compare

representations in biological networks directly to repre-

sentations in artificial networks.

Canonical Correlation Analysis (CCA) is a suitable

method for comparing representations across networks

[72,53,73,69��,74]. CCA exposes directions which capture

correlations between two data-sets (which may contain

different numbers of neurons), just as Principal Compo-

nent Analysis exposes directions in a data-set that
www.sciencedirect.com
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maximize variance. Raghu et al. [69��] developed an

extension of CCA to compare activation-vectors of differ-

ent neural layers. This analysis revealed low-dimensional

structure in distributed representations, consistent with

previous dimensionality reduction analysis. Going fur-

ther, they used this approach to compare different

‘snapshots’ of a network during training and they found

that the neural representations in the lower layers of

DNNs stabilize much earlier than representations in

higher layers (Figure 3a). Based on this observation, they

proposed a new, computationally efficient training-

approach in which lower layers are sequentially ‘frozen’

to focus computation-time on higher layers. Finally, they
Figure 3

Statistical methods for comparing representations across networks: (a) Lea

Correlation Analysis (SVCCA): Each entry in the matrix describes how simila

layer after training. One can see that some layers are highly similar to their 

final values. (b) Representational similarity analysis (RSA) evaluates the (dis)

example shows a comparison between recordings in IT and a deep neural n

activation vectors between networks. The example shows 3 activation vecto

the top layer of a CNN (red). Panel a was reproduced with modification from

published under a CC-BY attribution license: https://creativecommons.org/l

www.sciencedirect.com 
used their CCA-based algorithm to compare two different

network architectures trained on the same task (a ResNet

and a ConvNet). They found that their representations

were similar in early layers, but not in late layers. Li et al.
[75�] used a related approach to investigate whether

DNNs trained on the same task but with a different

initial random seed can achieve similar representations.

They reported that different networks have units which

span overlapping subspaces, even when individual neu-

rons differ.

Representational similarity analysis [76], which was orig-

inally proposed to compare representation between
rning dynamics in a DNN analyzed using Singular Vector Canonical

r, during training, the representation in each layer is with each other

neighbouring layers, and that some layers converge quickly to their

-similarities that two networks assign to different pairs of inputs. The

etwork. (c) Linear regressions can be used to align individual

rs measured in IT cortex (black), and reconstructions from those of a

 [69��], b was reproduced with modification from [70], originally

icenses/by/4.0/legalcode, and c from [71].
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different neural imaging modalities, can also be used to

compare networks. In this approach, each network (or

layer of a network) is characterized by a ‘representational

similarity matrix’ (Figure 3b), which describes which

pairs of stimuli a network considers to be similar or

dissimilar. These pairwise similarities can be calculated

from correlation matrices of the corresponding network

activations.

Just as it is possible to compare representations in a DNN

with another DNN, it is possible to compare DNN

representations directly to biological neural representa-

tions. This is particularly interesting, as it opens up the

possibility of directly using artificial neural networks as

model systems for biological neural networks. This

approach was recently adopted by Yamins et al. who used

linear regression to identify correspondences between

activation vectors of biological neural activity measure-

ments and DNN activity measurements [71,23]. By pre-

dicting each ‘recorded’ activation vector from a linear

combination of DNN-activation vectors from different

layers of a DNN, they found that V4 activity could be best

reconstructed from intermediate layers, and IT activity

from top layers of the DNN (Figure 3c). This result is

broadly consistent with receptive field analysis in artificial

and biological neural networks which indicates that there

are similarities between visual processing in a DNN and

the ventral stream (Figure 1).

Challenges and opportunities
Neuroscientists and machine-learning researchers face

common conceptual challenges in understanding compu-

tations in multi-layered networks. Consequently, there is

an opportunity for synergy between the disciplines, to

redeploy DNN analysis methods to understand biological

networks and visa-versa. To what extent is synergy pos-

sible, and what challenges need to be overcome?

The first challenge is that DNNs allow full experimental

access, whereas this is not possible for biological neural

networks. Consequently, many DNN analysis methods

can exploit information that is unavailable to neuroscien-

tists. For instance, the activity of all units in a network in

response to arbitrary stimuli can be simultaneously mea-

sured; the complete weight matrix (‘the connectome’) is

known; and precise ablation and perturbation experi-

ments can be performed. Moreover, the full behavioural

history of the network (including every stimulus it has

ever seen) is known, as is the learning process which

determined the weights. Finally, it is usually possible to

take gradients with respect to model parameters in DNNs

and use these gradients for analysis.

The second challenge is that, despite both conceptual

and empirical similarities [71,70,77�,25,23] between bio-

logical and artificial neural networks at the computational

and algorithmic level (see [78�,79] for differences), there
Current Opinion in Neurobiology 2019, 55:55–64 
are manifest differences at the mechanistic level. Neural

networks used in deep learning are not biologically plau-

sible because, for instance, they rely on the backpropaga-

tion algorithm (though see [80�,81]). Also, they do not

produce spike-based representations. The constraints

and demands faced by artificial and biological networks

are also very different. For instance, brains need to be

incredibly power efficient, whereas DNNs must be small

enough to fit into computer memory. Whether and when

DNNs and biological neural networks use similar repre-

sentations and algorithms remains an open question.

Consequently, analysis methods that may be informative

for DNNs may not be appropriate for biological networks.

A third challenge is that we do not yet fully understand

the solutions that DNNs learn, despite having full exper-

imental access in DNNs, and despite them having sim-

pler neural machinery. Since biological networks are

substantially more complicated than DNNs, we should

expect that it will be even more challenging to under-

stand computation in the brain.

Notwithstanding these challenges, there are ample

opportunities for synergy. First of all, several analysis

methods for DNNs can be applied to biological systems

without modification. For example, dimensionality

reduction techniques such as CCA only require access

to activity recordings. CCA could be used to study con-

sistencies in activity patterns in the same neurons over

time, across different layers, regions or animals, or to

study the similarity of representations across subjects

or brain areas. Moreover, a variety of dimensionality

reduction algorithms which are specifically suited to

biological neural network data have been developed, such

as methods that are robust to missing data [82], methods

that allow multiple recordings to be combined [56], and

methods that are well matched to the statistics of spiking-

noise [55,83] and to non-stationarities [58,59�].

Second, there is potential for overcoming some limitations

that prevent the direct use of DNN analysis methods in

neuroscience. For example, for some algorithms which

depend on access to gradients, alternative ‘black-box’ var-

iants are being developed which do not require such access

and which might enable future application to biological

systems, such as recent work on adversarial examples

[84�]. It will be an important avenue for future work to adapt

such methods to the statistical properties of neural activity

measurements, and in particular to the fact that typically, we

only have access to sparse, noisy and limited, non-stationary

measurements in biological neural networks.

Third, DNNs can serve as idealized, in-silico model

systems, which can allow researchers to rapidly develop,

test and apply new data-analysis techniques on models

that can solve complex sensory processing tasks

[67��,77�].
www.sciencedirect.com
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Fourth, deep learning is providing new tools for the

development of flexible, efficient and powerful neural

analysis tools. For example, many Bayesian inference

methods were too computationally expensive previously

for large-scale data analysis. New approaches for training

DNNs to perform Bayesian inference [85,86] are now

opening up new avenues to develop efficient Bayesian

inference methods for complex, mechanistic models in

neuroscience (e.g. [83,87,88]).

Fifth, an important component of analysis and measure-

ment in machine learning is the use of benchmark data-

sets to empirically compare algorithm performance. This

approach may also be useful in neuroscience where it can

often be difficult to determine, or even quantify, progress.

Publicly accessible, large-scale, standardized data-sets are

becoming available in neuroscience [89], which may

enable the development of neuroscience benchmarks

and challenges, for example, to predict the response-

properties of neurons along the visual hierarchy, or for

comparing representations between artificial networks

and the brain [90]. These approaches might be useful

in comparing, selecting, and ruling out competing

models.

Finally, the fact that it has been difficult to understand

DNNs — despite full experimental access and the use of

simple neural units — serves as a reminder that better

experimental tools for probing the activity and connectivity

of neural circuits are necessary, but not sufficient. Rather, to

understand computations in biological neural networks, we

additionally require powerful methods for data-analysis,

and ultimately we will require quantitative theories

explaining these phenomena. Here again, another oppor-

tunity for synergy arises between the disciplines. Since

DNNs have demonstrated that it is possible for neural

systems to support a wide range of complex behaviours, the

theoretical insights and understanding that has been devel-

oped for DNNs may be directly useful for informing new

theoretical neuroscience. For instance, the observation that

many of the features of DNNs can arise from very simple

underlying principles such as numerical optimization of a

loss-function suggests that many features of biological

systems may also be understood from similar underlying

optimization principles [91].

The co-incidental revolutions underway in neuroscience

and machine learning have opened up a wide array of

questions and challenges that have been long beyond our

reach. ‘Out of adversity comes opportunity’ (B. Franklin),

and where there are shared challenges there are oppor-

tunities for synergy. At their beginnings, the study of

biological and artificial neural networks often confronted

these challenges together, and although our disciplines

have drifted and diverged in many ways, the time seems

to be right, now, to return to this inter-disciplinary col-

laboration, in theory and in analysis.
www.sciencedirect.com 
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integrated silicon probes for high-density recording of neural
activity. Nature 2017, 551:232.

2. Ahrens MB, Li JM, Orger MB, Robson DN, Schier AF, Engert F,
Portugues R: Brain-wide neuronal dynamics during motor
adaptation in zebrafish. Nature 2012, 485:471.

3. Packer AM, Russell LE, Dalgleish HWP, Häusser M: Simultaneous
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