
Solving Hyperbolic PDE Systems with ExaHyPE
M. Bader, J.-M. Gallard, L. Rannabauer, A. Reinarz (Technical University of Munich)
M. Dumbser (Univ. Trento), A.-A. Gabriel (LMU Munich), T. Weinzierl (Durham Univ.)

Towards an Exascale PDE Engine
ExaHyPE is designed to enable medium-sized
interdisciplinary research teams to quickly realise
extreme-scale simulations of grand challenges.
The ExaHyPE Engine solves systems of first-order
hyperbolic PDEs of the form:

P
∂Q
∂t

+∇ · F(Q,∇Q) +
d∑

i=1

Bi(Q)
∂Q
∂xi

= S(Q) +
∑

δ

ExaHyPE employs higher-order ADER-DG on
tree-structured adaptive Cartesian grids using
a-posteriori subcell Finite-Volume limiting [4]:

Finite Volume Limiting

Code Generation

High Order ADER-DG

Tree Structured AMR

Parallel AMR and Tasking:

I based on the Peano framework:
www.peano-framework.org

I 2D and 3D dynamic mesh refinement on
tree-structured Cartesian grids

I task-based implementation of space-time
predictor, corrector, limiter steps
→ single amortized traversal per time step [2]

I shared memory parallelisation through Intel’s
Threading Building Blocks (TBB)

I distributed memory parallelisation with MPI
(Peano framework)

Role-Oriented Code Generation:
Toolkit and Code Generator [3] provide views for:
I application expert(s): straightforward user API

that hides complexity of solver and optimization
I algorithms expert(s): architecture-oblivious

algorithm design via custom macros that isolate
low-level optimizations

I optimization expert(s): templating logic, e.g.
for hardware-aware optimizations

Toolkit and Code Generator are stand-alone
applications based on the Jinja2 templating engine.

How to Create Code that is Easy to Use & Extend, Flexible, Efficient, . . . ?

ExaHyPE user solver

Optimised or generic kernels

PDE terms (C/C++ or Fortran)

ExaHyPE core

Solver base classes (ADER-DG, FV, ...)

Algorithms (time stepping, AMR, ...)

Plotters for various file formats

E
x
a
H

y
P

E
 s

p
e
c
ifi

c
a
ti

o
n

 fi
le

E
x
a
H

y
P

E
 t

o
o
lk

it

li
b

x
s
m

m
Peano

Grid management and heaps

Distributed-memory parallelisation

Shared-memory parallelisation

steers

generates

written by user

toolkit/prepared by toolkit

Using the ExaHyPE Toolkit:

1 create a specification file that
defines the domain, PDE system,
required architecture,
parallelisation, etc.

2 ExaHyPE toolkit creates glue code,
application-specific template
classes and core routines (tailored
to application and architecture)

3 implement the application classes
with PDE- and scenario-specific
methods:
– flux(...), ncp(...), . . . for PDE terms

(conservative fluxes, non-conservative
products, etc.)

– eigenvalues(...) to compute
eigenvalues (for Riemann solvers)

– boundaryValues(...), etc.

Creating an ExaHyPE Application
Specification file: Implementation of flux function:
exahype -project Elastic

peano -kernel -path const = ./Peano
exahype -path const = ./ ExaHyPE
output -directory const = ./ Elastic

computational -domain
dimension const = 3
offset = 0.0, 0.0, 0.0
width = 1.0, 1.0, 1.0
end -time = 1.0

end computational -domain

solver ADER -DG ElasticWaveSolver
variables const = v:3,sigma :6
parameters const = rho:1,cp:1,cs:1
order const = 7
maximum -mesh -size = 2e-2
maximum -mesh -depth = 2
terms const = flux ,ncp ,

material_parameters ,point_sources
optimisation const = optimised
language const = C
basis = Lobatto

end solver
end exahype -project

void Elastic :: ElasticWaveSolver
::flux(const double* const Q,

double ** const F) {

// PDE -specific implementation:
VariableShortcuts s;
double sigma_xx=Q[s.sigma + 0];
double sigma_yy=Q[s.sigma + 1];
double sigma_zz=Q[s.sigma + 2];
double sigma_xy=Q[s.sigma + 3];
double sigma_xz=Q[s.sigma + 4];
double sigma_yz=Q[s.sigma + 5];

F[0][s.v + 0] = -sigma_xx;
F[0][s.v + 1] = -sigma_xy;
F[0][s.v + 2] = -sigma_xz;

F[1][s.v + 0] = -sigma_xy;
F[1][s.v + 1] = -sigma_yy;
F[1][s.v + 2] = -sigma_yz;

F[2][s.v + 0] = -sigma_xz;
F[2][s.v + 1] = -sigma_yz;
F[2][s.v + 2] = -sigma_zz;

}

Application Examples: SWASI Experiment, Cloud Formation, TOV Star

References
[1] A. Reinarz et al.: ExaHyPE: An engine for parallel dynam-

ically adaptive simulations of wave problems, under review
(Comp. Phys. Comm.), https://arxiv.org/abs/1905.07987.

[2] D. E. Charrier, T. Weinzierl: Stop talking to me – a commu-
nication avoiding ADER-DG realisation, under review (SIAM
J. of Scient. Comput.), https://arxiv.org/abs/1801.08682.

[3] J.-M. Gallard et al.: Role-oriented code generation in an
engine for solving hyperbolic PDE systems. 2019 Int. Work-
shop on Softw. Eng. for HPC-Enabled Research (SE-HER).

[4] O. Zanotti, F. Fambri, M. Dumbser, A. Hidalgo: Space-
time adaptive ADER discontinuous Galerkin finite element
schemes with a posteriori sub-cell finite volume limiting.
Computers & Fluids 118, 2015, p. 204–224.

Download the ExaHyPE engine from:
www.ExaHyPE.org

Acknowledgments
ExaHyPE was developed as a joint project of:

in particular by:

Dominic Charrier, Benjamin Hazelwood, Tobias Weinzierl (University of Durham), Michael Dumbser, Francesco Fambri, Maurizio
Tavelli, Olindo Zannotti (University of Trento), Alice Gabriel, Kenneth Duru (Ludwig-Maximilians-University Munich), Luke Bovard,
Luciano Rezzolla, Sven Köppel (Frankfurt Institute for Advanced Studies), Jean-Mathieu Gallard, Leonhard Rannabauer, Anne
Reinarz, Philipp Samfaß, Angelika Schwarz and Vasco Varduhn (Technical University of Munich).
We thank the Leibniz Supercomputing Centre and the Russian Academy of Sciences for their support.

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreements
No 823844 (project ChEESE, https://cheese-coe.eu/) and No 671698
(www.exahype.eu).

ExaSeis: Seismic Simulations with ExaHyPE
L. Rannabauer, J.-M. Gallard, A. Reinarz, M. Bader (Technical University of Munich)
K. Duru, D. Li, A.-A. Gabriel (LMU Munich), M. Tavelli, M. Dumbser (University of Trento)

Wave Propagation with Complex Topography

We analyze wave scattering effects on complex, free-surface topographies. For that purpose we designed
a scenario in the Alpine region including the Zugspitze and run simulations with the same initial conditions
with and without topography. The choice of method is crucial as DIM and Curvilinear Mesh show high
differences in the representation of the topography.

0 5 10 15 20 25 30

0.1

0.0

0.1

0.2

u
(m

/s
)

PML no Topograpy
PML with Topograpy

0 5 10 15 20 25 30

0.05

0.00

0.05

0.10

v
(m

/s
)

0 5 10 15 20 25 30
time (s)

0.15

0.10

0.05

0.00

0.05

0.10

w
(m

/s
)

Towards Urgent Seismic Simulation – A ChEESE Pilot Demonstrator (www.cheese-coe.eu):

This pilot shall explore the possibilities of employing urgent supercomputing to obtain fast (hours) shaking
maps for regions affected by recent earthquakes. We created an interface in ExaHyPE to the MUQ C++
toolbox for uncertainty quantification (muq.mit.edu) and plan to exploit the strengths of ExaSeis (fast
initialization of single forward simulations as no meshing is required) to compute UQ-based shaking maps.

Optimized Kernels: Vectorization and Minimization of Memory Footprint
ExaSeis faces conflicting demands for data layout:
I DG tensor operations are turned into sequences of

matrix multiplications (“loop over gemm”)
→ suggests quantities as leading dimension (AoS)

I evaluation of fluxes loops over integration points calling
user-functions (flux(), e.g.) → suggests integration
points as leading dimension (SoA)

I choose AoSoA as data layout:
→ single out one dimension

I In addition: provide dimensional flux() function to
reduce the memory footprint

Extracting matrix slices from a tensor A:

i

j
k

A(k,j,i), 3x2x3 tensor

A(1,:,:), 3x2 matrix slice

A(:,1,:), 3x3 matrix slice

offset

slice stride

Contiguous matrix

Matrix with leading

dimension padding

=

=

// scalar version of flux_x
void flux_x(double* Q, double* F) {

F[0] = -Q[3];
F[1] = -Q[6];
F[2] = -Q[7];

}

// vectorized formulation of flux_x
void flux_x_vect(double* Q, double* F) {

#pragma omp simd aligned(Q,F:ALIGNMENT)
for(int i=0; i<VECTLENGTH; i++) {

F[0* VECSTRIDE+i] = -Q[3* VECSTRIDE+i];
F[1* VECSTRIDE+i] = -Q[6* VECSTRIDE+i];
F[2* VECSTRIDE+i] = -Q[7* VECSTRIDE+i];

}
}

4 5 6 7 8 9 10
0

10

20

Av
ai

la
bl

e
Pe

rf
(%

) Generic
LoG
SplitCK
AoSoA SplitCK

4 5 6 7 8 9 10
Order

30

40

50

M
em

or
y

St
al

l (
%

)

I significantly reduces the L2-cache footprint
I 5.7× speedup for order 10 compared to

generic implementation.

ADER-DG on Curvilinear Meshes
ExaHyPE is based on Cartesian Meshes. To allow
boundary fitting meshes, we developed a curvilinear
method that maps Cartesian to curvilinear elements:
I retains the tensor structure of the DG basis
I allows automated initial mesh generation
I flux and source terms of the system are

transformed with the element Jacobian
I but: eigenvalues (and thus the time-step size)

highly depend on the perturbation introduced by
the topography

Diffuse Interface Method
In this approach, we work with strictly Cartesian
(adaptive) meshes, but augment the elastic wave
equation with a color function α, which represents
the location of solid medium and vacuum:

∂σ

∂t
− E · 1

α
∇(αv) + E · v ⊗∇α = 0,

∂αv
∂t
− α

ρ
∇ · σ − 1

ρ
σ∇α = 0

I α represents the volume fraction of the solid
medium (Baer-Nunziato approach)

I completely avoids problems with mesh generation
I time step sizes (and shape of grid cells) are not

influenced by topography
I but: wherever α 6= 1, fluxes are no longer linear

(requires limiting!)

Perfectly Matched Layers
PML entirely avoids wave reflections at boundaries.
We can place point sources and receivers close to
boundaries and keep the domain small.
I based on complex coordinate stretching
I requires extension of the numerical DG fluxes,

inter-element and boundary procedures to ensure
numerical stability

I only applied in cells close to the boundary

Acknowledgments

ExaSeis is a joint development of:

This project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreements
No 823844 (project ChEESE, https://cheese-coe.eu/) and No 671698
(www.exahype.eu).

References
[1] K. Duru et al.: A new discontinuous Galerkin method for

elastic waves with physically motivated numerical fluxes J.
Comp. Phys. 386, 2019, submitted

[2] M. Tavelli et al.: A simple diffuse interface approach on adap-
tive Cartesian grids for the linear elastic wave equations with
complex topography. J. Comp. Phys. 386, p. 158–189.

[3] K. Duru et al.: A stable discontinuous Galerkin method for
the perfectly matched layer for elastodynamics in first order
form” Numerische Mathematik, 2019, submitted

