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DASON: Dependability Assessment Framework for
Imperfect Distributed SDN Implementations

Petra Vizarreta, Kishor Trivedi, Veena Mendiratta, Wolfgang Kellerer, and Carmen Mas Machuca

Abstract—In Software Defined Networking (SDN), network
programmability is enabled through a logically centralized con-
trol plane. Production networks deploy multiple controllers for
scalability and reliability reasons, which in turn rely on dis-
tributed consensus protocols to operate in a logically centralized
manner. However, bugs in distributed control plane can have
disastrous effects on the data plane, e.g., losing traffic by
installing paths containing blackholes. In this paper we study
the prevalence of issues in state-of-the-art distributed frameworks
in SDN, by analyzing 500+ issues reported in two of the largest
open source SDN controller platforms: Open Network Operating
System (ONOS) and OpenDaylight (ODL), during the period
between 2014-2019. We identify system vulnerabilities, localize
dependability bottlenecks, and provide stochastic models for a
holistic assessment of system dependability.

Index Terms—Software Defined Networking, SDN controller,
ONOS, OpenDaylight, distributed system, distributed consensus,
high availability, fault tolerance, software reliability.

I. INTRODUCTION

A. Problem definition and research challenges

In Software Defined Networking (SDN), the control plane
logic of forwarding devices is offloaded to an SDN controller,
which assumes the role of a network operating system. Logi-
cally centralized network control enables fine-grained resource
management, dynamic per-flow QoS control and simplified
enforcement of traffic engineering policies, spanning a diverse
set of network devices. Present-day production grade SDN
controllers additionally provide support for legacy network
protocols and hybrid devices, advanced security features,
automated bootstrapping and interworking with virtualization
platforms and cloud management systems. The heterogene-
ity of supported networks and services has resulted in the
controllers becoming rather complex software systems, and
recent studies [1]–[3] on large scale operational networks
have reported that software bugs caused more than 30% of
documented customer impacting incidents.

Production networks deploy multiple controllers to ensure
scalability, high availability and high performance. In such
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distributed architectures, the benefits of logically centralized
network control are maintained by means of distributed pro-
tocols such as Gossip and Raft [4]. However, correct and
stable implementation of distributed network control plane
is not trivial, as confirmed by Google’s report on critical
network outages [1], which showed that control plane issues
prevail in their B4 WAN1. Their analysis showed that under
control plane software failures, maintaining globally consis-
tent network state is a difficult, and the cascade of control-
plane element failures is a common culprit of critical customer
impacting failures.

Despite the magnitude and ubiquity of network control
software failures, the state of the art literature is still missing
realistic dependability models of SDN controllers. The goal of
this study is to provide high fidelity models that can reproduce
the stochastic behaviour of real-life distributed SDN platforms.
Such models are needed in order to identify dependability
bottlenecks, and reliably assess whether SDN solutions are
ready to be deployed in a particular use-case scenario, such as
industrial networks [6]. The controllers in our study are Open
Network Operating System (ONOS) [7] and OpenDaylight
(ODL) [8], two of the largest production-grade open source
SDN orchestration platforms, whose code internals and bug
repository are publicly available, allowing us to perform an
in-depth dependability assessment.

B. Towards data-driven dependability assurance

We propose DASON, a data-driven dependability assess-
ment framework, for a holistic assessment of dependability,
as illustrated in Fig. 1. The framework implements a gen-
eral analyse-model-evaluate meta-workflow for dependability
assessment, applied the use-cases of open-source distributed
SDN orchestration platforms.

1) Mining software repositories: In the analysis step, the
system architecture and failure modes are extracted by mining
software repositories of two distributed SDN platforms, ONOS
and ODL. We leverage the fact that the code repositories and
issue trackers are open to the public, enabling us to perform
detailed analysis of system vulnerabilities. The outcome of
this analysis, i.e., prevalent failure modes, has been used to
guide the construction of stochastic models proposed in the
next step.

2) Modelling abstractions: The modelling abstractions
are provided by the formalism of Stochastic Reward Nets
(SRN) [9]. SRNs can be directly mapped to Markov chains,

1B4 [5] Google’s internal Wide Area Network (WAN), carrying the traffic
between data center clusters, is arguably the biggest live SDN network, both
in geographical scale and the volume of traffic it serves.
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Fig. 1: An overview of DASON: Data-driven dependability
assurance framework based on Stochastic Reward Nets (SRN).

and are widely used in modelling complex systems consist-
ing of large number of dependent components. We model
separately single controller nodes, their interaction using dis-
tributed system protocols, as well as the services that run
in such architectures. Dependability KPIs of interest, e.g.,
downtime distribution and outage frequency, are computed
by assigning reward rates at the SRN level. Model input
parameters are based on real-life controllers and systems.

3) Quantitative dependability evaluation: Once the
stochastic models are defined and parametrized, they can
be used as a tool for forecasting the control plane outages
and dependability benchmark platform. For instance, the
models can be used to characterize the failure dynamics in
a distributed SDN control plane, as well as their impact on
user-perceived service availability. Different control plane
designs, e.g., cluster size and deployment scenarios, can
be compared easily, by modifying the parameters of the
stochastic models.

C. Our contribution
The work in this article is strongly motivated by the results

presented in our previous two papers [10], [11], although
it does not presents their direct extension. The modelling
abstractions proposed in [10] focused on independent con-
troller failures, but has neglected the complex interaction be-
tween different replicas in a cluster replicas (assuming perfect
handover, and no synchronization overhead). The empirical
study in [11], which analyzed the large ODL bug repository,
showed that these assumptions do not hold in practice, since
the clustering component is one of the most buggy modules
in ODL core subsystem. In this article we provide more
accurate modelling abstractions for imperfect distributed SDN
implementations. Moreover, we extend [11] with taxonomy of
defects in distributed SDN control plane, as well as service-
control plane dependencies. The contributions of this article
can be summarized as:

i. We analyse real-life distributed SDN implementations,
and localize software defects and common failure modes.

ii. We propose modelling abstractions for imperfect dis-
tributed control plane, and interaction with service plane.

iii. We characterize the failure dynamics in realistic scenar-
ios, including not only pure control plane dependability
metrics, but also user-perceived service availability.

The remainder of the paper is organized as follows. Sec. II
provides an overview of the related work on distributed SDN
controller frameworks, and key empirical and model-based
studies relevant for our methodology. Sec. III presents an
overview of distributed SDN control planes, while Sec. IV
discusses defects of real life distributed SDN implementations.
In Sec. V modelling abstractions based on SRN for imperfect
distributed SDN plane are presented, and are used for the
quantitative analysis of control plane and service availability
in Sec. VI. Sec. VII concludes the paper with a summary and
discussion of the results.

II. RELATED WORK

The following sections provide an overview of the related
work on distributed SDN controller frameworks (Sec. II-A) ,
and relevant empirical and model-based dependability studies
(Sec. II-B).

A. High-availability in distributed SDN implementations

A good overview of distributed SDN control platforms is
presented in [12]. The survey compared different architectural
designs and their approaches to address scalability and high-
availability issues. However, most of the presented controllers
have not made it into production environments, such as Onix,
HyperFlow, DISCO and Kandoo [13]–[16], or are closed pro-
prietary solutions, such as Google’s B4 [5] and Espresso [2].
Hence, we choose to focus on ONOS [7] and ODL [8],
two production-grade open source controllers, which form the
code-basis for many other commercial vendor products.

The software maturity of these two platforms, in terms of the
reliability growth, was compared in [17]. The further mining of
the software repositories [11] identified the clustering module
(distributed control plane implementation) as the culprit in
many of the ODL controller failures, but did not further
investigate the nature of such issues.

Stability issues under high load of distributed control plane
implementation with ONOS was analyzed in [18]. The authors
have shown that consensus protocols, such as Raft, misbehave
in overload conditions, due to increases in the delay of heart-
beat messages and time-threshold based failure detectors. Such
behaviour triggers the frequent leader re-elections, leading
to a crash of the entire control plane. The same effect of
performance degradation under load causing a node flapping,
repeated leader elections, and a cascade of control plane
failures was also observed in [19], which noted that the prob-
lem was already reported in the bug repository. Sakic et. al.
proposed ODL control plane enhancements, such as adaptive
consistency [20], [21] addressing the issue of chattyness of
consensus protocols, and Byzantine Fault Tolerance (BFT)
protocols [22] addressing the security and reliability issues
of misbehaving controllers. Our mining of ONOS and ODL
bug repositories, discussed in Sec. VII, exposed many more
issues of practical distributed control plane implementations.
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Two informal measurement standards on SDN control plane
benchmarking, by the IETF [23] and the ONF [24], specify
cluster performance and stability tests. The performance of
ODL clustering, in terms of synchronization overhead, failure
detection and failover time, was analyzed in [25], while ONOS
inter-controller traffic in different scenarios was measured
and modelled in [26]. An ONOS report on SDN control
plane performance [27] discusses distributed design solutions
considered by developers, as well as the final implementation,
and demonstrates the improvements compared to an older
release. These standard performance and cluster stability tests
have already been incorporated in the ONOS and ODL test
suites.

Despite the extensive testing many of the bugs go unnoticed
during testing, manifesting only in the production environ-
ment. One of the reasons why many bugs escape the testing
phase is non-determinism, such as racing and concurrency
issues, which makes them extremely hard to reproduce, since
triggering requires precise timing between input events and
internal procedures [28]. In [29], [30] the authors showed
a huge number of concurrency violations in SDN controller
applications. In the follow-up work [31], the concurrency vio-
lations were clustered and filtered, facilitating fault localization
of the root causes analysis for the developers, demonstrating its
efficiency on the Floodlight controller. Indeed, our analysis of
production-grade controllers showed that concurrency issues
are the root cause in many of the reported issues related to
distributed protocols.

Google’s report on critical network outages [1], showed
that control plane issues prevail in their SDN-based B4 WAN.
Their analysis showed that maintaining globally consistent net-
work state is a challenge, due to the control plane convergence
delays, inconsistency between control plane elements, as well
as synchronization between data and control plane. A number
of partial and complete failures of control plane elements and
the control plane network, including the cascade of control-
plane element failures were observed. Noteworthy are also the
operational issues due to the buggy control plane software
update push.

Another empirical study on defects in well-known dis-
tributed systems, such as Cassandra and HDFS [32], showed
that faulty/error handling was the cause of 95% of catastrophic
failures. In most of the cases the error handling code was
either empty or incomplete, ignoring the local failure which
then propagated to entire system, or was overreacting, allow-
ing a minor failure to crash the entire system. The authors
also noticed resource leaks and incorrect performance issues,
which have not been analyzed before in the context of SDN.

New vulnerabilities, due to cyclic dependencies between
the control and data planes in distributed SDN, are discussed
in [33]. The authors demonstrate how control plane network
failures may render the cluster down, even in the absence of
partitions. Illustrative examples of the problems of oscillating
leaders and lost leadership were also presented. Alternative
adaptive consistency models for ONOS have been discussed
in [34], while relaxation of strong consistency models used in
ODL was proposed in [35].

Large scale empirical studies on real-life incidents in

Google and Microsoft networks [36], IP Backbone [37] and
data center networks [38], [39] provide valuable data to the in-
dustry and to researchers, exposing network vulnerabilities and
suggesting preventive measures. However, a comprehensive
study on network control software in SDN is still missing. To
fill this gap, we systematically analyze two of the largest open
source repositories (10k+ bugs) to locate the vulnerabilities in
production-grade distributed controller platforms.

B. Model-based studies on SDN control plane dependability

Despite the diversity and complexity of SDN control plane
failures, most of the studies on SDN control plane depend-
ability reduce the controller to a single failure mode, i.e.,
assuming it is either operational or non-operational. Dynamic
models often assume that software failure and repair time
are exponentially distributed, which is an assumption thought
necessary to obtain analytically tractable results, rather than
reflecting controller behaviour from real life deployments or
testbed measurements.

The first studies on the reliability of SDN control plane
consider the controller as perfectly reliable, assuming only
control path link failures [40], and distributing the controllers
only for latency reasons. More recent studies [41]–[43] also
accounted for the software failures. The authors in [41] model
controller availability as a deterministic variable, while in [42]
the assumption was that the operational times of network
elements, including the controllers, have different i.i.d. Weibull
distributions. The temporal variations in software failure rates
due to reliability growth are modelled as Non-Homogeneous
Poisson Process (NHPP) in [17], [44]. Longo et al. [43] discuss
the limitations of Markovian models, and assume the reliability
of the controller to follow phase-type distribution (general-
ized hypoexponential distribution), which captures better the
changes in operational conditions, when some of the controller
instances fail.

More complex dependencies and interactions between the
elements of a complex systems use the Stochastic Reward
Nets (SRN). The models described using the SRN modelling
formalism can be directly translated to large Continuous Time
Markov Chains (CTMC). The SRN models for the interaction
between SDN control and data plane have been proposed
in [20], [45]–[48]. In our previous work [10] we proposed
a dynamic controller model based on SRN. The model in-
cluded five failure modes (e.g., transient and stop-fail software
failures), as well as the temporal fluctuations of controller
software failure rates, which change in the long term due to
maturity and in the short-term due to resource leaks. However,
the model did not address the interaction between controllers.

Overall, an important limitation of the previous models is
the assumption about the perfect failover between identical
controller replicas. Our analysis shows that simple controller
replication is ineffective, because of i) shared failures, e.g.,
semantic bug in path computation, ii) faulty error handling
mechanisms, which may lead to a erroneous failover and cause
a cascade of controller failures and iii) failures specific to
distributed control plane implementations, such as a software
bug in distributed consensus protocols. These inefficiencies are
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Fig. 2: A primer on distributed SDN control plane implementations with ONOS and ODL

modelled as the common mode failure (i), and the coverage
factor (ii) in system dependability literature, while the failures
specific to distributed systems (iii) are typically neglected.

Indeed, the complexity of interaction between SDN con-
troller replicas has been widely overlooked in the literature.
The failure correlation due to control plane misconfiguration
was discussed in [46], while Mendiratta et al. [47] also
discussed the imperfect failover. The study by Gonzalez et al.
[48] modelled the synchronization process between controller
replicas, with the focus on the trade-off between consistency
and performance. Sakic et al. [20] provided a realistic response
time model of the Raft consensus algorithm under different
failure rates, complementing it with the measurements from
an ODL testbed. SRN models proposed in this paper, aim to
combine all failure modes of distributed SDN implementa-
tions, for a holistic assessment of system dependability.

Model-based dependability assurance based on SRN has
been successfully applied to various communication systems,
such as software defined backbone network [46], NFV-based
virtualized core [49], VoIP system [50], IaaS cloud [51], as
well as distributed consensus protocols, such Raft [20], Paxos
BFT [52], and their application in permissioned block chain
systems [53]. We follow a similar approach to provide high
fidelity models that account for all failure modes encountered
in the issue repositories of distributed SDN platforms.

III. ANALYSIS OF DISTRIBUTED SDN IMPLEMENTATIONS
WITH ONOS AND ODL

Next, we present the basic concepts of distributed systems,
with the focus on distributed SDN control plane, implemen-
tations with ONOS and ODL. Our analysis is based primarily
on the official code documentation and the presentations by
ONOS2 and ODL3 distributed system engineering teams.

2Thomas Vachushka: ONOS Distributed Core and Jordan Halterman: Dis-
tributed Systems in ONOS with Atomix 3: Architecture and Implementation

3Colin Dixon: Clustering in OpenDaylight, Robert Varga, Jan Medved:
OpenDaylight Clustering: What’s new in Boron, Moiz Raja, Tom Pantelis:
MD-SAL Clustering Internals

A. A Primer on Distributed Control Plane in SDN

In practice, a cluster of multiple SDN controllers is deployed
in order to provide high performance, scalability and high
availability. Appearance of the logically centralized control
plane is possible due to distributed protocols, which take
care of the coordination, knowledge dissemination and seam-
less failover between different controller replicas. Services
provided by the SDN control plane to network devices and
applications should be unaware of the distributed control
plane implementation. Fig. 2a illustrates how the separation
of concerns and location transparency are implemented.

In order to manage large-scale networks, network state is
partitioned into smaller chunks, called shards. Provisioning
of a fault-tolerant system requires shards to be replicated on
several nodes. Shard replicas can be updated in a strongly
consistent or eventually consistent manner. Distributed systems
use different replication styles (Fig. 2b) depending on the
application requirements and access patterns. i) Consensus
based protocols like Raft [4] provide strong consistency,
requiring the majority of the replicas to acknowledge the
update before it can be committed by the leader, and used to
create the response to the client. ii) Gossip protocols provide
eventual consistency, using the epidemic style of propagation,
where random pairs of neighbours compare their version of
the data, known as anti-entropy, and agree on an appropriate
final state if concurrent updates have occurred, which is known
as reconciliation. iii) Another style of replication is primary-
backup. The performance-consistency trade-off is balanced by
choosing the number of replicas and replication flavour.

Timestamps and version vectors are used for ordering of the
events. Distributed systems are inherently asynchronous and
typically there is no global clock. Local clocks skew and drift,
and even the NTP protocol can provide a limited accuracy.
Event ordering is necessary to enforce causal relationships
between the events. Hence, the vector clocks, also called
version vectors, are often used instead. With Raft, the leader
is responsible for the correct ordering of the updates.

https://goo.gl/N8bToQ
https://goo.gl/fL5q6W
https://goo.gl/fL5q6W
https://goo.gl/KQoisv
https://goo.gl/1Z7783
https://goo.gl/vUPDvR
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Cluster membership and role management with Raft is
illustrated in Fig. 2c. The controller (re-)joining the cluster
starts as the follower. If the leader heartbeat is not received
within a given threshold, it becomes a candidate, increases
the election term, votes for itself and requests the votes from
other members. Three outcomes are possible: if the candidate
receives the majority of the votes before the election timeout
it becomes the leader; if it discovers a candidate with higher
term or a current leader it becomes the follower; otherwise, it
increases the term count and starts the new election round. If
a leader discovers a node with a higher term, it gives up the
leadership. Raft uses randomized election timeout to reduce
the probability of split votes. The leader election service can be
used without using Raft’s strongly consistent data replication,
e.g., for the assignment of the primary-backup roles.

After leader failure, the follower with the largest term and
the longest log will win the election. The leader proves its
liveliness by sending periodic heartbeats to its followers. How-
ever, the independent controller nodes communicate over an
unreliable network, which typically does not provide bounded
delay guarantees, and it is practically impossible to distinguish
between network and controller node failures. The messages
can be delayed (network congestion or high load on the
controller node), or lost (partitioned network or node crash),
which can result in temporary inconsistencies between the
network state seen by replicas. Failure detection is based on
time thresholds, which have to be carefully tuned balancing
the trade-off between stability and failure detection efficiency.

The ϕ-accrual failure detector [54], is widely used in
distributed systems, including in the SDN controllers im-
plementations addressed here. The detector accounts for a
suspicion level, Φ = − log10(1 − F (t)), where F (t) repre-
sents a distribution of previous heartbeat inter-arrival times,
implicitly assuming a normal distribution. Raft requires the
majority of the controllers to be available, hence, it requires
2f+1 controllers to tolerate f failures. In the case when
network partitioning split the cluster into two parts that cannot
communicate, either both partitions continue operating inde-
pendently (fav. availability) or one of the partition freezes (fav.
consistency), as consequence of the CAP theorem [55].

After the crash, a node re-joining the cluster has to syn-
chronize with the rest of the cluster. The changes to the data
store are kept in a log, or a journal. Log compaction, or state
compression, is the process of removing the entries from the
log that no longer affect the current state. It is performed
periodically to prevent the uncontrollable growth of the log.
The replicas may request logs from another replicas after order
to fill in missing transactions. Snapshots of data store state are
saved, as a checkpoint in case the node crashes. Journals and
snapshots are stored on disk for persistence.

The implementation of distributed systems requires fine-
tuning of configuration parameters. The controller nodes have
finite resources, such as CPU and memory, which can eas-
ily exhaust if not dimensioned and managed properly. The
nodes may slow down during high load, or computationally
expensive operations, such as serialization of large messages.
Distributed systems rely on 3rd-party libraries, which may
introduce interoperability issues.

B. ONOS Implementation

The focus of ONOS, since its inception has been on provid-
ing scalability, high availability and carrier-grade performance
fulfilling the requirements of large operator networks. The
project is supported by the key partners from the telecom
operators and network equipment vendors. Distributed core
was introduced from the beginning, and has evolved together
with the application ecosystem.

ONOS core provides low level distributed primitives, such
as EventuallyConsistentMap and ConsistentMap,
offering different consistency models and replication styles.
Distributed primitives provide interfaces similar to standard
Java classes, implementing the data structures and synchro-
nization operations upon which data stores are built. De-
veloper guidelines suggest that control plane data, such as
resource reservation and other network configuration data,
use strong consistency. Data originating from the environ-
ment, such as network topology (read-intensive), should use
eventual consistency to provide faster reaction to the net-
work events. A primary-backup replication is used for the
partitioned FlowRuleStore, while device mastership uses
LeadershipService. Journals and snapshots are stored
on disk for persistence.

C. ODL Implementation

ODL is a much larger and older project, foreseen from
the beginning to be the Linux of the networks, supporting a
variety of southbound protocols to ensure the smooth transition
from legacy networks. The majority of ODL key partners are
vendors, and the focus at the beginning was on the applications
in data centers and coexistence with network virtualization
technologies. Development of major clustering project features
started only after the fifth release (Boron).

ODL provides essentially two data stores, configurational
to store a desired state, e.g. configuration of the flows, and
operational store, storing the actual network state. All data
is stored in the data tree, which is broken into shards. There
are module-based shards, e.g., inventory, topology, while the
rest of data goes to default shard. The shards are replicated to
followers for high availability. Data replication uses the Raft
consensus protocol, providing only a strong consistency model
for all network primitives. The EntityOwnership service
takes care of the leader election, handles failover, as well as co-
locating tasks and data. Data change notifications and Remote
Procedure Calls (RPCs) operating on a given shard are directed
to the entity owner, i.e., the leader.

In ODL, the Akka [56] framework encapsulates the com-
plexity of the distributed protocols. Akka actors implement
the data tree shards, so interacting with the remote data shard
is done by sending the messages to actors. Akka clustering
implements Raft, and is responsible for the discovery of
the nodes, their IP address, as well as the liveliness and
reachability of the member. Cluster messaging relies on Akka
remoting, while Akka persistence is responsible for durability.
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Fig. 3: The number of software defects related to distributed implementations reported over time for ONOS and ODL. The
dates of major releases for both distributed controller platforms are indicated in the figure.

IV. LOCALIZING DEPENDABILITY BOTTLENECKS IN
DISTRIBUTED SDN IMPLEMENTATIONS

Next, we provide the insights into defects reported in
different functional areas of distributed control plane. We
localize the most vulnerable components, as well as identify
prevalent failure modes and their manifestation patterns.

Problems in ONOS and ODL controllers are reported in
their public Jira issue trackers4. Such bug repositories are a
valuable source of information, as they contain the detailed
fault reports from test and production environments. In our
analysis we consider the issues labelled as “bugs” rather than
new feature requests or enhancements. We filter the issues
related to defects in distributed implementations. In the case
of ODL we select the issues tagged as part of the clustering
project, while in the case of ONOS we use manual inspection.

The number of bugs over time for both controllers is
presented in Fig. 3. The monthly failure rate for ONOS peaks
right before Blackbird (2nd release), while in the case of ODL
the number of defects peaks before Carbon (6th release), which
is consistent with these controllers’ evolution.

In total 500+ issues related to the distributed implementa-
tion were reported. We divide these issues into the following
four categories: i) defects in the implementation of distributed
protocols (DP), ii) scalability and performance (SP), iii) high
availability (HA), and iv) operational (OP) issues. In case of
ambiguity, we assign a bug to the primary trigger, a necessary
condition, which serves as a precursor for the manifestation
of a bug as a user perceived failure.
A. Defects in the implementation of distributed protocols (DP)

In a multi-controller architecture, all controllers must have a
consistent view of the network state in order to provide correct
logically centralized operation, which is ensured by means of
distributed protocols, Raft and Gossip. We identify 216 (40%)
issues in this category, related to state inconsistency, leader
election process, and cluster messaging implementations.

1) State inconsistency: State inconsistency between control
plane and data plane elements has already been identified as
one of the leading causes of critical outages in operational

4Data retrieved on March 3, 2019 from ONOS and ODL bug repositories

SDN networks [1]. Our analysis affirms this finding, discov-
ering 52(10%) of defects reported in this category.

One reason of the state inconsistency are the missing data
change notifications. The notifications are missing for a par-
ticular data stores [dp1,dp2], update event types [dp3,dp4] and
occasionally under particular conditions, e.g., master handover
and load balancing [dp5,dp6].

The second root cause of the state inconsistency are clus-
ter synchronization issues. It was noted that in the relaxed
consistency mode it is possible to be out-of-sync indefinitely
[dp7], while [dp8] reports that the node re-joining as follower
could not synchronize, and the lagging follower must be
forced by the leader to install a snapshot. Another common
synchronization issue are event ordering problems. This hap-
pened, e.g., when last applied index in Raft state machine
moves backwards, leading to violation of transaction ordering
[dp9,dp10]. For instance, in [dp10]] time moves backwards
due to the Daylight Saving Time, suggesting that instead of
calendar, the vector time should be used for versioning.

2) Leader election issues: Leadership assignment and
hand-off are essential for load balancing, scale-in/out and
failure mitigation operations. Our findings show that a stable
leader/master is hard to implement, given that 58(10%) issues
were reported in this category.

EntityOwnership least load policy not working as
expected [dp11], or not balancing the load properly [dp12],
have been reported. Sometimes, the controller role change
messages are not being delivered and the devices intermittently
loose their master [dp12,dp13,dp14].

3) Cluster messaging system: Another challenge lies in
the implementation of the reliable cluster messaging system,
which relies on 3rd-party data serialization (Kryo) and mes-
saging (Netty) libraries. Serialization is an expensive operation
which can significantly slow down the controller, degrading
the performance and eventually leading to the crash of other
operations. BGP router crashing during Kryo serialization was
reported in [dp15], while in [dp16] the processing of a large
message incorrectly triggered UnreachableMember.

https://jira.onosproject.org
https://jira.opendaylight.org
https://jira.onosproject.org/browse/ONOS-7705
https://jira.onosproject.org/browse/ONOS-7726
https://jira.onosproject.org/browse/ONOS-7623
https://jira.onosproject.org/browse/ONOS-2121
https://jira.onosproject.org/browse/ONOS-1883
https://jira.onosproject.org/browse/ONOS-436
https://jira.onosproject.org/browse/ONOS-4423
https://jira.opendaylight.org/browse/CONTROLLER-1630
https://jira.opendaylight.org/browse/CONTROLLER-1755
https://jira.opendaylight.org/browse/CONTROLLER-1580
https://jira.opendaylight.org/browse/CONTROLLER-1580
https://jira.opendaylight.org/browse/CONTROLLER-1735
https://jira.opendaylight.org/browse/CONTROLLER-1735
https://jira.opendaylight.org/browse/CONTROLLER-1717
https://jira.onosproject.org/browse/ONOS-4515
https://jira.onosproject.org/browse/ONOS-4529
https://jira.onosproject.org/browse/ONOS-1400
https://jira.opendaylight.org/browse/CONTROLLER-1572
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B. Scalability and Performance (SP) Issues

Increasing the scalability of the control plane should not
affect the system performance [27], which should remain
stable over the long hours of operation. However, we identified
91 (17%) of issues belonging to this category.

1) Scalability Issues: Providing a performant SDN control
plane is non-trivial for large service provider networks, which
induces high load on the controllers, both, in terms of topology
size and the volume of network events they must handle.

A recurring issue in both controllers is seen when pro-
cessing a large number of events slows down a node, delay-
ing the heartbeats. Several issues related to the unexpected
UnreachableMember when the cluster is under load have
been reported, under umbrella bug [sp1]. Delayed heartbeats
have severe consequences on the cluster operation, leading
to frequent leader re-election, control plane instability and
eventual crash, as was discussed in [18] and [19]. Indeed,
Raft requirements for the correct leader election and stable
operation requires the following constraints to be satisfied [4]:

BroadcastTime� electionTimeout� MTBF

where BroadcastTime represents the time to send and receive
responses from to all the cluster nodes in parallel (including
network propagation delay and node processing time), MTBF
is the mean time between failures of a single server and
electionTimeout (Fig. 2c).

Slow controller under load can also cause other operations
to timeout and misbehave, e.g, installation of large number of
flows [sp2], load balancing on large topologies [sp3,sp4], or
loose data during scale-out operation [sp5].

2) Performance regression: Maintaining the same perfor-
mance at scale is presumably an even harder challenge, due to
the overhead introduced by distributed protocols (e.g., leader
election, consensus-based replication), as well as the resource
leaks which can degrade the performance over time.

Several issues related to performance degradation in multi-
node setup have been reported. E.g., maximum number of
installed intents being lower in the cluster than stand-alone
mode, resource reservation taking more time and higher re-
action time to network events [sp6,sp7]. The performance
overhead in a cluster setup when using strongly consistent Raft
replication style was discussed in [20], and in [21] the authors
proposed adaptive consistency models to balance response
time and reliability.

Resource leaks, such as unclosed transactions and memory
leaks, can cause the performance to degrade over time and
lead to the controller crash, due to the resource exhaustion.
E.g., a bug in Atomix log compaction timer [sp8] caused
the nodes to eventually run out of disk space. Moreover, a
number of memory leaks have been reported, in particular data
stores [sp9, sp10,sp11], as well as 3rd-party libraries, such
as Netty messaging manager [sp12], and Kryo serialization
[sp13]. The increase in resource consumption does not happen
only due to the bugs. For instance, expired flows remain in
the ODL configurational data store [sp14], while in ONOS
EventuallyConsistentMap naturally grows due to the
usage of placeholders replacing dead objects [sp15].

C. High Availability (HA) Issues

HA is a key enabler for mission critical operations, and
in many use cases the main reason to adopt a distributed
SDN design. The principles to ensure HA are reliable failure
detection, failure contention, and fast recovery. Nevertheless,
our analysis exposes 118(21%) defects in HA subsystem.

1) Failure Detection: Failure detection in ONOS and ODL
is based on the ϕ-accrual failure detector [54], which detects
when the heartbeat intervals have exceeded given suspicion
level. The parameters of the failure detector should be care-
fully tuned to avoid false positives, triggering unnecessary
leader re-elections. Previously, the heartbeatInterval
and phiFailureThreshold could not be configured
[ha1]. In addition to false positives caused by slow-performing
nodes, some configuration changes [ha2,ha3] can lead to
unnecessary state changes.

2) Failure Mitigation: When failures occur, it is important
that the nodes fail gracefully, recover quickly and synchronize
with the rest of the cluster.

Failure contention is not trivial, due to a tight interaction
of the cluster members. Failure contention mechanisms that
should be in place to avoid that a failure of one instance
propagating entire cluster can be faulty [ha4, ha5, ha6,ha7].
In the last example, a Raft client continually retried a failed
operation as long as it could maintain its session, increasing
CPU/memory usage in already overloaded partitions, causing
the cluster to spiral out of control.

Failing fast and gracefully is another desirable property
of highly-available systems, especially given that many other
subsystems have transitive dependency to this module [ha9].
Sometimes the nodes hang in a non-recoverable state, instead
of crashing hard [ha8]. In case of failures, the leadership
handover should happen quickly and without a data loss
[ha10,ha11,ha12,ha13].

An efficient recovery after failures: Snapshots of data stores
and transaction journals are occasionally persisted for durabil-
ity, to ensure quick recovery after failures. The state persis-
tence is not perfect, as reported in [ha14,ha15], for flow and
intent stores in ONOS. Nevertheless, the most prevalent issue
is faulty recovery, with 53(10%) reported bugs. Typical issues
are a node failing to join and sync with the rest of the cluster
[ha16,ha17], and a data loss upon restoration [ha18,ha19],
leading to the state inconsistency between controller replicas.

D. Operational (OP) Issues

Operational issues include supporting functions, not neces-
sary related to the buggy controller code, but rather to practical
deployment scenarios. This category includes 76(14%) issues,
related to documentation and test automation/coverage, cluster
configuration and bootstrapping, interworking with virtualiza-
tion platforms, upgrades and updates of the 3rd-party libraries.

1) Documentation and testing: An adequate documentation
should be provided to facilitate correct usage and configuration
of the multi-node cluster [op1]. The execution of the test suites
should be automated [op2], and occasionally extended with the
new test cases [op3,op4], covering new failure modes, which
were previously unaccounted for.

https://jira.opendaylight.org/browse/CONTROLLER-1703
https://jira.onosproject.org/browse/ONOS-356
https://jira.onosproject.org/browse/ONOS-2106
https://jira.onosproject.org/browse/ONOS-581
https://jira.onosproject.org/browse/ONOS-4785
https://jira.onosproject.org/browse/ONOS-4567
https://jira.onosproject.org/browse/ONOS-5279
https://jira.onosproject.org/browse/ONOS-7024
https://jira.onosproject.org/browse/ONOS-6859
https://jira.onosproject.org/browse/ONOS-7382
https://jira.onosproject.org/browse/ONOS-6205
https://jira.onosproject.org/browse/ONOS-7412
https://jira.onosproject.org/browse/ONOS-1631
https://jira.opendaylight.org/browse/OPNFLWPLUG-962
https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-6149
https://jira.onosproject.org/browse/ONOS-7754
https://jira.onosproject.org/browse/ONOS-7755
https://jira.onosproject.org/browse/ONOS-6682
https://jira.onosproject.org/browse/ONOS-5992
https://jira.onosproject.org/browse/ONOS-5347
https://jira.onosproject.org/browse/ONOS-7528
https://jira.onosproject.org/browse/ONOS-1673
https://jira.onosproject.org/browse/ONOS-3423
https://jira.onosproject.org/browse/ONOS-7586
https://jira.opendaylight.org/browse/CONTROLLER-1693
https://jira.onosproject.org/browse/ONOS-1883
https://jira.opendaylight.org/browse/CONTROLLER-1491
https://jira.onosproject.org/browse/ONOS-6042
https://jira.onosproject.org/browse/ONOS-5690
https://jira.opendaylight.org/browse/CONTROLLER-1794
https://jira.opendaylight.org/browse/CONTROLLER-1630
https://jira.onosproject.org/browse/ONOS-1965
https://jira.onosproject.org/browse/ONOS-2015
https://jira.opendaylight.org/browse/CONTROLLER-1420
https://jira.opendaylight.org/browse/CONTROLLER-1581
https://jira.opendaylight.org/browse/CONTROLLER-1420
https://jira.opendaylight.org/browse/CONTROLLER-779
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sw_ok

intermittent_fail

ctrl_crash
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cluster_crash

sw_prone

os_failed

hw_failed

reset_cluster

sw_fail
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cluster_rcv
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(FAILURE CONTENTION)

Fig. 4: Modelling abstraction for imperfect SDN cluster.

2) Cluster configuration and bootstrapping: The con-
trollers in a cluster have to be correctly configured and
able to automatically discover the peers. The issues, such as
serialization of cluster configuration change, cluster config-
uration issues [op5,op6], are typically discovered before the
deployment.

3) Deployment & Orchestration Issues: The controller soft-
ware requires a host operating system, and the multi-instance
setup is often deployed in virtualization environment, with
dockers or virtual machines. The interactions with virtualiza-
tion layers have to be carefully tested [op7, op8,op9].

4) Upgrades & Updates: The regression tests must be
in place to efficiently detect 3rd-party vulnerabilities and
backward compatibility issues, for 3rd-party libraries, as well
as internal modules [op10].

E. Prevalent failure modes

The presented categories of defects significantly differ in
their impact on the network services. Most of the bugs in the
implementation of distributed protocols lead to soft failures,
e.g., transient state inconsistencies [1], while memory leaks,
slowing down the controller node are more likely to lead to a
hard crash [26], leading to a delay of the heartbeats, which
consequently may trigger a fatal cascade of control plane
failures [1], [19]. Faulty failure contention mechanisms are
the most critical, while they allow a single instance failure
to propagate to entire cluster. In the following section we
propose the modelling abstractions that capture these effects
and can replicate all failure modes in imperfect SDN controller
platforms.

V. MODELLING ABSTRACTIONS FOR IMPERFECT
DISTRIBUTED SDN IMPLEMENTATIONS

The modelling abstractions for imperfect distributed SDN
implementations are provided in the formalism of Stochastic
Reward Nets (SRN), a stochastic extension of Petri Nets [57].
We explain the key SRN modelling ideas via the examples

Fig. 5: SRN for service request dynamics.

Fig. 6: SRN extension for preventive maintenance.

of cluster (Fig. 4), service (Fig. 5) and rejuvenation (Fig. 6)
models. In the SRN framework, the combination of markings
in the places (circles) represents model states. The system
state is changed upon the firing of the activities, which can
be instantaneous (inconsistent_state → sw_ok), de-
terministic (sw_prone → planned_restart), or follow
an n.e.d distribution. An SRN model can be automatically
translated to equivalent Continuous Time Markov Chains
(CTMC). he states and activities are associated with the cor-
responding rewards, which allows straightforward evaluation
of system performance metrics, such as the expected number
of operational controllers.

A. Modelling abstraction for imperfect SDN cluster

Next, we elaborate how the failure patterns discussed in
Sec. IV, are incorporated in the proposed SRN model in Fig. 4.

1) Resource leaks: When the controller is initiated or
reloaded after a crash, it starts from the clean state sw_ok.
The baseline software failure rate in this state is λ0. During
the continuous operation the resource leaks are accumulated
and the controller performance starts to degrade. A common
way to model this effect is to assume that the risk of failure
significantly increases after a certain utilization threshold is
exceeded [58], as seen in practice [sp15]. For instance, [19]
note that the controller throughput and response time degrade
significantly when available memory is below 4 GB. We model
this effect by introducing the state sw_prone. The time to
reach this utilization threshold depends on the controller load
and the type of network applications serves. We account for the
randomness in the resource leaks by modelling it as Poisson
process with the rate λleak.

2) Soft and hard software failures: Our analysis in Sec. IV
showed two distinct types of failures, soft failures, resolved
by a simple retry of the operation, and hard failures leading
to a controller crash, requiring a restart. Soft failures are short
interruptions in the controller operation, due to failed or timed-
out transactions, concurrency and data race issues, leader
movement and load balancing. They are typically resolved by
retrying the operation, which occurs at the rate µretry . Hard
failures, i.e., software crash, can happen when the controller
node runs out of resources, e.g., with out-of-memory error.

https://jira.onosproject.org/browse/ONOS-7213
https://jira.onosproject.org/browse/ONOS-3453
https://jira.onosproject.org/browse/ONOS-6647
https://jira.onosproject.org/browse/ONOS-7219
https://jira.onosproject.org/browse/ONOS-6401
https://jira.onosproject.org/browse/ONOS-7769
https://jira.onosproject.org/browse/ONOS-4212
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The controller restart time (rate) µrestart accounts not only
for the application restart, but also for the loading time of all
dependent bundles, as well as the time to reconnect with peers,
and discover the leaders of data store shards.

A distribution between soft and hard failures are pokhard =
1 − poksoft in the initial state (sw_ok) and pokhard = 1 − poksoft
in failure prone state (sw_prone).

3) Transient state inconsistencies and cluster crash:
A qualitative analysis in the previous section showed that
software failures can be either i) successfully recovered
from, or can result in ii) transient state inconsistencies,
or iii) cluster-wide failure. Transient state inconsistencies
(inconsist_state) occur with probability pstate, due to
missing notifications, wrong event ordering, lagging followers,
data loss in journals and snapshots, which are used upon
recovery. Cluster failures reflect the cases when the failure
contention fails (prob. pcrash) and crash of a single controller
brings down the entire control plane. The cluster repair rate
µcluster is longer than the restart of the single controller node.

Distribution between successful repairs (pok), transient state
inconsistencies (pstate) and cluster crash (pcrash) are hard to
estimate from the bug reports. Hence, we make a reasonable
assumption, and conduct the sensitivity analysis to evaluate
the impact of uncertainty regarding its value.

4) Operational failures: From all operational issues dis-
cussed in Sec. IV-D the interaction with the environment, e.g.,
host operating system and computing hardware will have the
highest impact on the services in the production environment.
The operating system, including the virtualization layer, fails
with the rate λos, and is rebooted with the rate µos. Similarly,
computing hardware fails with the rate λhw, and is repaired
with the rate µhw. Bugs in the failure contention mechanism
may lead to a complete system crash, which happens in poscrash
and phwcrash of the cases, respectively.

We introduce a common failure mode to account for dif-
ferent deployment scenarios. In cases when controller replicas
are deployed as virtual machines (VM) on the same server, the
crash of a server will render all the replicas down. Similarly,
in case when the replicas run in docker containers (DC),
the host operating system is shared as well, and its failure
will lead to a cluster-wide failure. This effect is modelled by
adding reset_cluster output gate following the transi-
tions {os,hw}_fail (see Fig. 12).

B. Reference stand-alone model

A controller operating in a stand-alone mode is used as
a reference model, to evaluate the gains in terms of control
plane dependability in a distributed setup. In stand-alone mode
many of the failure modes will be shared, since the controller
uses the same data structures as in the cluster mode. State
inconsistencies between control and data plane can still occur,
due to the slow node failing to process the network events on
time, or faulty journal recovery upon restart. Resource leaks,
especially those related to the natural increase in memory
usage, do occur as well in the stand-alone operation. Hence,
we reuse the model in Fig. 4, but remove cluster_crash
place, and all the transitions associated with it (pcrash → 0).

C. Modelling abstraction for control plane services

SDN controllers provide services, such as management of
the forwarding devices through the south-bound interface, and
implementation of the high level policies through the north-
bound interface. The generic modelling abstractions for control
plane services is illustrated in Fig.5. A given number of
requests N req

sent arrives with a given rate λreq, and are served
at the rate µreq . In cases when the majority of the controllers
is down, new requests cannot be processed (N req

unavail.), and the
ongoing requests will be interrupted (N req

interrupt.). λreq and µreq

depend on a particular service, as well as the performance of
the particular control plane configuration. The serving rate can
be tied to the number of operational controllers and current
simulation time, accounting for a degraded performance due
to resource leaks. For the simplicity, we keep µreq constant
throughout the experiment, leaving it to the future work to
study more complex parameter relationships.

D. Preventive maintenance policies

The failure rate after long hours of operation (sw_prone)
is higher due to the lower amount of available resources,
caused by resource leaks, i.e., software ageing [58]. An oper-
ator can decide to preventively restart the controller, cleaning
up the internal data structures, dead objects, zombie processes,
and unclosed connections. Such preventive measure can be
implemented by starting a timer (deterministic action with rate
λR), once the certain utilization threshold is reached. Duration
of the planned outage (1/µR), also called software rejuvena-
tion, of the controller depends on the level of rejuvenation,
e.g., process or application restart. We assume rejuvenation is
triggered only when majority of controllers is available.

E. Dependability metrics of interest

Dependability metrics are defined by assigning rewards.
1) Availability: steady state availability (SSA) is evaluated

as the probability of being in the operational states: sw_ok
and sw_prone. Note that the place related to state inconsis-
tency (sw_state) is a transient state.

Depending on the replication style, the control plane will
need the majority of the nodes participating in the cluster to
be available (Raft), at least two operational controllers for
primary-backup replication, or at least one operational replica
for Gossip style replication.The model does not differentiate
leader and followers, since different nodes may be leaders for
different data shards. We define availability metrics as:

Ai =


A1/N = P{Noperational ≥ 1} (Gossip)

A2/N = P{Noperational ≥ 2} (P-B)

Amaj. = P{Noperational > bN
2 c} (Raft)

(1)

where the number of operational controllers is defined as:

Noperational = Tokens(sw_ok) + Tokens(sw_prone)

2) Failure dynamics: We are interested in time spent in
individual failure states (rate reward), in order to quantify
the contribution of different failure modes to control plane
outages, as well as the frequency (impulse rewards) of different
controller and system failures.
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TABLE I: SRN model parameters [45], [59]–[62]

Parameter Description Baseline value

λ−1
0 Baseline failure rate (sw_ok) 7 days

λ−1
high High failure rate (sw_prone) 3 days

λ−1
leak Resource leak rate 1 day

µ−1
retry Retry operation upon timeout 5 sec

µ−1
restart Application process restart 3 min

µ−1
cluster Restarting cluster nodes 10 min

poksoft Proportion of soft failures (sw_ok) 0.75

pprone
soft Prop. of soft failures (sw_prone) 0.25

pok,prone
hard Prop. of hard failures 1− pok,prone

soft

pok Probability of successful recovery 1− pst. − pcr.
pstate Prob. of transient state inconsistency 0.40

pcrash Prob. of cluster-wide crash 0.05

λ−1
os Mean time between OS failures 60 days

µ−1
os OS reboot time 30 min

λ−1
hw Mean time between HW failures 6 months

µ−1
hw HW replace time 2 hours

3) User-perceived service availability: The control plane
services are not needed continuously. Depending on the ser-
vice, the control plane availability will be sampled at different
times, i.e., at request arrival, and for a different duration, i.e.,
request serving. We define Service Availability (SA), Service
Continuity (SC) and Request Completion Success Rate (SR):

SA =
N req

received

N req
sent

=
N req

received

N req
received +N serv.

unavail.
(2)

SC =
N req

served

N req
received

=
N req

served

N req
served +N req

interrupt.
(3)

SR =
N req

served

N req
sent

=
N req

served

N req
received +N serv.

unavail.
= SA× SC (4)

VI. CHARACTERIZATION OF FAILURE DYNAMICS AND
USER-PERCEIVED SERVICE AVAILABILITY

Next, we present the case study on realistic SDN controller
platforms. The proposed models are used to quantify control
plane dependability metrics. Moreover, we show the practical
applications for network operators, by analysing different
deployment scenarios and preventive maintenance policies.

Model parameters are based on empirical data presented
in Sec. IV, and on the studies of software components of a
similar complexity. Parameters related to the software failure
rates [45], [59], resource leaks [62], and recovery proce-
dures [59], [61], as well as the parameters related to the
availability of operating system and computing hardware [45],
[63], are presented in Tab. I.

A. Control plane availability

1) Steady-state availability: SSA for different cluster con-
figurations is presented in Tab. II. Since the availability for
larger clusters are rather small, we present the Steady State

TABLE II: Steady State Unavailability (1− SSA)

Unavailability N=1 N=3 N=5 N=7

1-A1/N 1.2176e-03 3.1460e-04 5.1909e-04 7.197700e-04

1-A2/N 1.0 3.1899e-04 5.1909e-04 7.197700e-04

1-Amaj. - 3.1899e-04 5.1911e-04 7.197701e-04

0.99955 0.99960 0.99965 0.99970 0.99975 0.99980

cluster

pcrash

high

leak

0
os

hw

restart

os

hw

retry

psoft_ok

psoft_high

pstate

A2/N

- 30%
+ 30%

Fig. 7: Sensitivity analysis for A2/3.

Unavailability (SSU), to illustrate the magnitude of difference
between various cluster configurations. We observe that un-
availability of stand-alone controller is an order of magnitude
higher than in distributed setup (N>1), because of better fault
tolerance to the failures of single controller instance. However,
as the number of controllers in the cluster increases, the
unavailability of the cluster actually slightly decreases. This
effect is in part due to specific, cluster-induced, failures, such
as the ones due to faulty failure contention. Other reason why
the unavailability of strongly-consistent application is lower
in larger clusters, is due to the fact that larger number of the
cluster members (i.e., majority) is required to be operational.

2) Parameter uncertainty: sensitivity analysis for A2/3 is
conducted to study the impact model parameters uncertainty.

We observe in Fig. 7 that cluster recovery failures µcluster

and failure contention success rate 1− pcrash have the largest
impact on availability of strongly consistent services A2/3.
The qualitative analysis in the previous section exposed many
defects in failure contention mechanism. The results of the
sensitivity analysis only emphasize the need to prioritize the
hardening of failure contention mechanism.

The following parameters, by the impact of their uncertainty
of the strongly consistent services are failure rate in failure-
prone state λhigh and resource leak rate λleak. Unfortunately,
these parameters depend on many factors, such as work-
load, service request type, hardware configuration, available
resources (CPU, RAM, etc.), and hence, have to be measured
for a particular distributed setup and use case.

The uncertainty of software λ0, operating system λos and
hardware λhw failure rates has slightly lower impact. Fortu-
nately, these parameters are well reported in the past empirical
and model-based studies.
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Fig. 8: Downtime (DT) distribution.

B. Failure dynamics

The failure modes differ significantly in terms of their
frequency and control plane outage, which we define here as an
event in which the majority of the controllers were unavailable.

In total 10.25 control plane outages, of cumulative duration
of 2.8 hours are expected within one year of operation of
3-node cluster. In 9.88 (96%) of the cases the control plane
is caused by unsuccessful failure contention. Moreover, the
state inconsistency between control and data plane elements
is expected to occur 73.91 times within one year. Although
transient state inconsistencies are resolved quickly, not af-
fecting the control plane availability, they can have adverse
effect on data plane operation. State inconsistency can cause
traffic loss by installing the paths with blackholes, or overload
the links by installing the paths with loops, and install flow
rules implementing conflicting policies. Practical experience
reports on operational SDN networks demonstrate that state
consistency issues cannot be neglected [1].

Downtime distribution (ECDF) is presented in Fig. 8. As
a reference, PDF is also presented (shaded grey area). We
observe that the median of system outage in a reference setup
of 3-node cluster duration is below 10 min, while 90%-tile
is below 30 min, with many short-term interruptions due
software failures. Such failure dynamics of the control plane
failures has a detrimental impact on which services get affected
by the system outages.

C. User-perceived service availability

User-perceived availability depends on the service dynam-
ics, i.e., request arrival (λreq) and serving rates (µreq). The
impact of λreq and µreq on service availability metrics, SA, SC
and SR, is presented in Tab. III and Fig. 9. In Tab. III several
typical services are presented. Request serving rate ranges
from 500 ms for an installation of large batch of flows, up to 15
min for in-service software upgrades (ISSU). Request arrival
rate varies between 1 min to 1 hour, representing different
control plane traffic patterns, e.g., PACKET_IN or network
statistics poll. We observe that SR = SA × SC is mainly
affected by SA, service unavailability at the moment of request

500 ms 5 s 1 min 5 min 15 min
Serving rate 1/ req

10 3

10 2

10 1

1
SA

×
SC

User-perceived service availability

Arrival rate
1/ req= 5 min
1/ req= 15 min
1/ req= 1 h

Fig. 9: User-perceived service unavailability.

TABLE III: Service request and serving rates

Service Service A Service B Service C Service D

λreq 5 min 5 min 1 h 1 h

µreq 500 ms 5 sec 5 sec 5 min

SA 99.9790% 99.9807% 99.9802% 99.9814%

SC 99.9999% 99.9998% 99.9999% 99.9890%

SR 99.9790% 99.9805% 99.9801% 99.9704%

arrival, more than service continuity SC, which is an order of
magnitude higher in a given setup.

Fig. 9, illustrating unsuccessful service request completion
rate (1 − SR), demonstrates how the longer serving rate can
increase the service unavailability up to an order of magnitude.
Similarly, higher request arrival rate, resulting in frequent
sampling of the control plane availability, results in lower user-
perceived service availability, as it is more likely to be affected
by short, but frequent software failures.

D. Comparison of different deployment scenarios

In small resource-constrained networks, such as industrial
networks [6], the network operator may choose to run the clus-
ter of controller nodes on shared physical machines. Deploying
the controllers in separate virtual machines (VM) provides
better isolation between software instances, but introduces
additional overhead, since every instance runs its own oper-
ating system. Docker containers (DC) provide a lightweight
virtualization, but imply an additional common mode failure,
since a crash of the operating system will render all instances
unavailable.

Control plane availability A2/N for different deployment
scenarios is illustrated in Fig. 10. We observe that in the case
of VMs running on the same physical machine, i.e., shared
hardware failures, the availability is only slightly lower. In the
case of DC, the availability loss is much higher, being an order
of magnitude lower than in the first two deployment scenarios.

E. Optimization of the preventive maintenance policies

The impact of different rejuvenation policies, i.e., rejuve-
nation scheduling λR, for different rejuvenation duration is
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Fig. 10: A2/N in different deployment scenarios: separate
physical machines (PHY), virtual machines (VM) and docker
container (DC) sharing the same physical hardware.

illustrated in Fig. 11. We observe that early rejuvenation is
beneficial in all studied scenarios, and optimally is done as
soon as the sw_prone state is entered (λR →∞). The opera-
tor and/or controller software developers should determine the
precise threshold when this state is reached, by measuring the
resource leak rates (λleak) for a given configuration setup and
operational workload profiles. We leave it to the future work
to conduct an exhaustive measurement campaign for real-life
distributed SDN controller platforms.

VII. CONCLUDING REMARKS

This article presents a comprehensive analysis of defects and
vulnerabilities in real-life SDN controller platforms, as well as
the modelling abstractions of imperfect distributed controller
plane. In the first part, we demonstrate that while some of
the defects have been already studied, e.g., stability under
overload and overhead of Raft-based synchronization, there
are many more critical defects that have been overlooked, e.g.,
resource leaks and failure contention. In the second part, we
provide modelling abstractions accounting for all the failure
modes identified during our qualitative analysis. Dependability
models, in the formalism of SRN, are used to evaluate different
dependability metrics, such as steady state availability, failure
dynamics, as well as the impact on the user-perceived service
availability. Moreover, we demonstrate how an SRN model can
assist the operators and network architects to compare different
deployment scenarios and optimize preventive maintenance
policies. The main threats to validity in our study is the
accuracy of model parameters. While majority of the model
parameters are based on the empirical data, and reported values
in similar studies, few parameters are based on reasonable
assumptions. Hence, we focus on the methodology and model
structure, rather than numerical results. Nevertheless, we be-
lieve that the quantitative analysis give a reasonable estimation
of the order of magnitude of the impact of different failure
modes. We hope that the proposed framework is only the first
step towards robust, data-driven, model-based certification of
softwarized networks.
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Fig. 11: Software rejuvenation policies.

The proposed DASON framework can aid the operators
to assess and improve the network dependability in several
ways. First, the analysis in Sec. IV can help the developers
to design more reliable distributed network control software.
A taxonomy and localization of defects in distributed SDN
platforms should raise awareness about potential vulnerabili-
ties in network control software. Such analysis should guide
the software development process and design of test suites,
in order to prevent recurrence of the same defects in future
releases and facilitate their early detection/mitigation (before
releasing it to operational networks). Second, the models
presented in Sec. V offer a valuable tool for forecasting the
control plane outages and dependability benchmark platform.
We have provide high fidelity stochastic models, based on a
data collected from the real-life bug reports. The modelling
abstractions can replicate all failure modes in imperfect SDN
controller platforms, from transient state inconsistencies to
failures of the operational environment. The model parameters
can be easily tuned based on the control plane configuration
(e.g., cluster size, virtualization flavor), and measurements
(e.g., recovery times in a particular setup). This offers the
operators a statistical benchmark platform to compare different
“what-if scenarios”. Third, DASON can be applied to quantify
user satisfaction. The proposed modelling abstractions capture
the interplay between network control plane and services
offered to users and application. These compound models
allow us to quantify user-perceived service quality, in terms of
KPIs, such as service accessibility, continuity and probability
of successful request completion. Up to the best of our
knowledge, this is the first work that quantifies the impact
of SDN control plane dependability to service quality.
Moreover, the identified vulnerabilities and modelling abstrac-
tions are applicable to other commercial platforms based on
ONOS and ODL, such as Cisco Open SDN Controller and
Ericsson Cloud SDN.
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APPENDIX

A. Dataset from Bug Repositories

This section presents the mapping of aliases for software
defects (used in Sec. IV) to their respective keys used in Jira
repositories are presented in (Tab. IV). The bug IDs used in
this article (first column) are mapped to the real bug IDs that
can be found in actual bug repositories (second column). Short
bug descriptions from the repositories (third column) are also
included for the convenience.

B. Modelling Abstractions

In Sec. V only baseline clustering model was presented in
detail, due to space limitations. In this section we include
the modelling abstractions for different deployment scenarios
(Fig.12), and preventive rejuvenation policies (Fig.13).

(a) Controller replicas deployed as VMs on the same server have
common HW failure mode. After HW failure, the gate fc_hw resets
all nodes to cluster_crash state.

(b) Controller replicas deployed as DCs on the same server addi-
tionally have common OS failure mode. After OS failure, the gate
fail_dc resets all nodes to cluster_crash state.

Fig. 12: Modelling abstractions for different deployment sce-
narios. In cases when controller replicas are deployed as virtual
machines (VM) on the same server, the crash of a server
will render all the replicas down. Similarly, in case when
the replicas run in docker containers (DC), the host operating
system is shared as well, and its failure will lead to a cluster-
wide failure.

https://akka.io/
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Fig. 13: Modelling abstractions for software rejuvenation policies. An operator can decide to preventively restart the controller,
preventing the effects of software ageing, e.g., leaks leading to resource exhaustion [58]. One such preventive measure is
implemented by starting a timer once the certain utilization threshold is reached (sw_prone state). Controller node is
rejuvenated, i.e., taken out of service (planned_restart state) after the timer has expired (start_cleanup → 1/λR).
We assume rejuvenation (end_cleanup → 1/µR) is triggered only when majority of controllers is available (maj_ok).
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TABLE IV: Defects in the implementation of distributed control plane in open source SDN controllers: ONOS and ODL. The
bug IDs in the first column are hypersensitive, containing the hyperlink to the bugs in the public issue trackers.

Bug ID (article) Bug ID (repository) Short description from bug repository

dp1 ONOS-7705 Only master of a device sees correct flow count
dp2 ONOS-7726 Links disappear after balancing masters
dp3 ONOS-7623 Device events are not replicated to other instances
dp4 ONOS-2121 Some ConsistentMap update operations do not publish events
dp5 ONOS-1883 Links disappear when devices change master
dp6 ONOS-436 Hosts learned via Gossip sometimes are missing ips
dp7 ONOS-4423 In releaxedConsistencyMode it is possible for a ConsistentMap instance to be out of sync indefinitely
dp8 CONTROLLER-1630 Follower not sync’ing up after rejoining cluster
dp9 CONTROLLER-1755 RaftActor lastApplied index moves backwards

dp10 CONTROLLER-1580 sal-remoterpc-connector: do not use calendar time for Bucket versions
dp11 CONTROLLER-1735 Entityownership leastload policy doesn’t work normally

dp12 CONTROLLER-1717 RequestTimeoutException due to ”Failed to transfer leadership” after become-prefix-leader with
RoleChangeNotification not delivered

dp13 ONOS-4515 Cluster Device Role States out of Sync
dp14 ONOS-4529 intermittently OVS1.3 device lost mastership
dp15 ONOS-1400 BGPRouter crashes while kryo serialization due to recent change of distributed group store
dp16 CONTROLLER-1572 ReadDataReply Message was too large can result in ”Received UnreachableMember” in cluster

sp1 CONTROLLER-1703 Tweak Akka and Java timeouts to a reasonable compromise between stability and failure detection
sp2 ONOS-356 Timeout in OpenFlowProvider when Intstalling large number of Intents
sp3 ONOS-2106 with a 625-sw topo, balance master does not balance well
sp4 ONOS-581 Chordal ring topology does not converge on ONOS until ONOS restart
sp5 ONOS-4785 Potential data loss during cluster scaling
sp6 ONOS-4567 Max number of intents install is less with cluster than standalone
sp7 ONOS-5279 Resource reservation takes too long in multi node cluster
sp8 ONOS-7024 Atomix 2.x timeouts
sp9 ONOS-6859 ResourceStore opens new Raft session on each transaction
sp10 ONOS-7382 Memory leak in ECFlowRuleStore
sp11 ONOS-6205 Memory leaks in DistributedMeterStore
sp12 ONOS-7412 Memory leaks in NettyMessagingManager
sp13 ONOS-3531 GossipApplicationStore throws StackOverflowError
sp14 OPNFLWPLUG-962 Multiple ”expired” flows take up the memory resource of CONFIG DS which leads to Controller shutdown.
sp15 ONOS-4212 Memory leak problem when running CHO test

ha1 ONOS-6149 Not able to configure heartbeatInterval and phiFailureThreshold properties in DistributedClusterStore
ha2 ONOS-7754 Configuration change causes false positives in failure detectors
ha3 ONOS-7755 False positives in failure detection when applying initial cluster configuration
ha4 ONOS-6682 Cluster becomes unavailable after a node becomes unavailable
ha5 ONOS-5992 ONOS HA cluster failure
ha6 ONOS-5347 ONOS cluster not able to recover after killing one of cluster member
ha7 ONOS-7528 Limit memory/CPU usage when Raft partitions are overloaded
ha8 ONOS-3423 When ONOS gets an out of memory exception it essentially becomes a zombie
ha9 ONOS-1673 Fail fast when DatabaseManager does not start up cleanly

ha10 ONOS-7586 ONOS leadership change does not occurs sometimes.
ha11 CONTROLLER-1693 UnreachableMember during remove-shard-replica prevents new leader to get elected
ha12 ONOS-1883 Links disappear when devices change master
ha13 CONTROLLER-1491 Entity Ownership Service: support graceful state handoff
ha14 ONOS-6042 Flows are not getting persisted after enabling the ”persistenceEnabled” flag
ha15 ONOS-5690 Intent Persistence can’t be enabled in ONOS
ha16 CONTROLLER-1794 Controller fails to join cluster
ha17 CONTROLLER-1630 Follower not sync’ing up after rejoining cluster
ha18 ONOS-1965 Deadlock can occur when a old candidate restarts and does not re-enter ledership race
ha19 ONOS-2015 Some devices have no ports after ONOS cluster restart

op1 CONTROLLER-1385 Make manual-down the default for akka-cluster
op2 CONTROLLER-1581 Clustering: Maintain a script to generate default akka configuration for multinode CSIT tests.
op3 CONTROLLER-1420 Clustering: Add a count field to stress-test RPC in car yang model
op4 CONTROLLER-779 Add test-case to check Install Snapshot functionality is handled correctly
op5 ONOS-7213 New cluster configuration cannot be serialized to JSON on configuration change
op6 ONOS-3453 Bundles not loaded in all nodes in a cluster
op7 ONOS-6647 Cluster formation using docker + kubernetes
op8 ONOS-7219 Single node ONOS from Docker image can’t read cluster metadata
op9 ONOS-6401 ONOS nodes timeout when trying to connect to the cluster in vm test cluster

op10 ONOS-7436 Port latency and switch latency up/down went up dramatically after atomix 2.0.14
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https://jira.onosproject.org/browse/ONOS-7726
https://jira.onosproject.org/browse/ONOS-7623
https://jira.onosproject.org/browse/ONOS-2121
https://jira.onosproject.org/browse/ONOS-1883
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https://jira.onosproject.org/browse/ONOS-4515
https://jira.onosproject.org/browse/ONOS-4529
https://jira.onosproject.org/browse/ONOS-1400
https://jira.opendaylight.org/browse/CONTROLLER-1572
https://jira.opendaylight.org/browse/CONTROLLER-1703
https://jira.onosproject.org/browse/ONOS-356
https://jira.onosproject.org/browse/ONOS-2106
https://jira.onosproject.org/browse/ONOS-581
https://jira.onosproject.org/browse/ONOS-4785
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https://jira.onosproject.org/browse/ONOS-7412
https://jira.onosproject.org/browse/ONOS-3531
https://jira.opendaylight.org/browse/OPNFLWPLUG-962
https://jira.onosproject.org/browse/ONOS-4212
https://jira.onosproject.org/browse/ONOS-6149
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https://jira.onosproject.org/browse/ONOS-5347
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https://jira.onosproject.org/browse/ONOS-1883
https://jira.opendaylight.org/browse/CONTROLLER-1491
https://jira.onosproject.org/browse/ONOS-6042
https://jira.onosproject.org/browse/ONOS-5690
https://jira.opendaylight.org/browse/CONTROLLER-1794
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