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Within the vibro-acoustic optimisation of complex components under dynamic loading the radiated
sound power is commonly used as an objective. For this purpose, the frequency-dependent sound power
has to be quantified by a single scalar objective. For the required steady state simulations the mode-based
frequency spacing can include non-equidistant step sizes as well as can change due to structural or mate-
rial modifications. Thus, the total number of frequency steps is depending on the number of contributing
modes that can be changed during optimisation processes with structural or material modifications.
Furthermore, the accuracy of the objective has to be assured by choosing the required number of
frequency steps and avoiding either under-resolved peaks or too many frequency steps.
In this study, we present an approach for the determination of the averaged sound power within the

covered frequency range with non-equidistant spacing based on the power spectral density. These scalar
quantities are robust to any model changes. Thereafter, the mean power is used as a convergence
criterion to determine the number of required frequency steps for a single mode and thus to reduce
the computational efforts to a minimum.
Further, a recommendation for a common rule for the spacing of single mode is given. This results in

the frequency spacing estimation depending on the distance of neighbouring modes as well as the damp-
ing and biasing. Moreover, the combination of robust scalar objectives and efficient frequency spacing
opens the prospects of accessing sound power objectives for complex optimisation problems.
� 2018 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lightweight components are typically thin-walled and stiff and
thus tend to be sensitive for significant sound radiation. In addi-
tion, fibre-reinforced plastics (frp) with a wide range of adjustable
material properties such as stiffness and even damping induced by
manipulating layup, fibre/matrix material or fibre volume content
are used.

Due to the acoustic sensitivity of stiff and thin-walled struc-
tures the sound radiation behaviour is a common optimisation
objective within lightweight design [1–3]. Furthermore, the design
of quiet structures implies a large potential of structural-acoustic
optimisation. Fast frequency response analysis as well as its
numerous repetitions with different parameter sets are a key issue
in efficient optimisation processes [4,5].
Within these optimisation processes, the radiated sound power
is used to express the radiation of components and machines and is
formulated as the integral of the intensity over the radiating sur-
face. Analytical solutions of sound power are limited to a few cases
with regular geometries [6–8]. In addition, precise numerical
approximation methods solving fluid–structure-interaction in
one or both directions are used but are computationally expensive.
Furthermore, the boundary element method (BEM) including fast-
multipole techniques is a very popular approach for large-scale
problems but is limited in applications with a large frequency
range or modified structures within optimisation loops, e. g. [9].

In between fast analytical solutions of simple structures and
computationally expensive BEM models are different approaches
based on structural dynamic finite element analysis (FEA) using
the surface velocity of the component. Particularly, there is the
equivalent radiated power (ERP) as well as the more precise
lumped parameter model (LPM) [10].
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These simplification methods are based on some of the follow-
ing general assumptions. Stiff thin-walled structures with hard
reflecting surfaces show identical particle velocity and normal
structure velocity. Here, the sound pressure is evaluated on the
structure’s surface [10,11]. Last, the kinetic energy is implicitly
given in steady state FEA solutions and thus provides information
about the dynamic behaviour without any additional efforts. Possi-
bilities and limits of estimating the radiated sound power by these
methods have been shown by numerical studies on a composite
component [12]. Moreover, the total power as an integral over fre-
quency is used to demonstrate the feasibility and accuracy of such
optimisation objectives.

As stiffness and damping are contradictorily influenced by fibre
volume content, fibre orientation as well as stacking sequence
optimising the material properties of frp results in non-linear
dependencies [13,14]. In addition, composites show significant
uncertainties in fibre orientation [15]. Thus, numerous finite-
element simulations may be required either for genetic or gradient
based optimisations. In summary, there is a need for efficient
numerical quantities of structure-borne sound radiation of such
processes [16].

Additionally, frequency domain structural dynamic FEA with
modal superposition can be used to integrate anisotropic damp-
ing of composites by using an energy related approach [17–20]
and is thus suitable for acoustic laminate optimisations. More-
over, the previous modal analysis can be used for a mode-based
frequency spacing. This assures an accurate representation of
the resonances but leads to non-equidistant frequency steps.
The total number of frequency steps depends on the number of
modes within the treated frequency range. Changing geometry
or material parameters within optimisation procedures may
result a varying number of contributing modes and thus different
frequency stepping.

Reducing the radiated sound power by numerical optimisation
methods requires a robust objective [4,21], typically as a scalar
value. This reduction of information is in contrast to the strong
dependency of the radiated sound power on the frequency wherein
resonances contribute the most. Thus, a frequency-dependent
assessment of the final design in relation to the excitation spectra
is required.

Within this study, an approach to determine the average power
in the given frequency range based on the power spectral density is
presented. It is based on a subdivision of the sound intensity
within the total bandwidth into small frequency intervals wherein
only small changes of intensity appear [22]. The determination is
independent of the number of modes and frequency steps and
valid for varying frequency step sizes. This enables the comparison
of different components, materials or geometries as well as the
implementation as an optimisation objective.

Thereafter, the mean power is used as a convergence criterion
to determine the number of required frequency steps for a single
mode and thus to reduce the computational efforts to a minimum.
As a result, the frequency spacing can be estimated depending on
the distance of neighbouring modes as well as the damping and
biasing.
2. Theoretical background of FEA-based sound power
quantification

2.1. Structural FEA-based sound power approaches

The radiated sound power P is commonly used to quantify the
structure-borne sound of vibrating parts. It is an integral of sound
intensity I in normal direction over a closed surface C circumscrib-
ing the radiating object [10]
P ¼
Z

~I �~n dC with ~I ¼ 1
2
R p~v�ð Þ ð1Þ

wherein � denotes a conjugate complex value as well as R the real
part of a complex state variable. The velocity normal to the surface
vn ¼ ~v �~n is determined by steady state structural dynamic FE-
analysis. Hence, a simple, popular and efficient approach for the
sound pressure in local relation is

p � qf cfvn ð2Þ

with the fluid’s density qf as well as its speed of sound cf . The rela-
tion between particle velocity and sound pressure is reduced to the
fluid’s characteristic impedance

Z0 ¼ qf cf : ð3Þ
The approximation by the equivalent radiated sound power (ERP) is
typical in far fields and high frequencies and results in the sound
power as a surface integral

PERP ¼ 1
2
qf cf

Z
C
vnj j2dC ð4Þ

which is eqivalent to a radiation efficiency of r ¼ 1 or a discretised
formulation for Ne constant elements with an area Sl

PERP ¼ 1
2
qf cf

XNe

l¼1

Slvnlv�
nl : ð5Þ

This simple formulation is based on the assumption of the same
radiation efficiency r ¼ 1 for all elemental sources. It neglects
effects such as interaction between local sources. Generally overes-
timating the radiation, it gives a good impression of an upper
bound for convex rigid bodies and high frequencies.

The most accurate approximation is the lumped parameter
model (LPM) by KOOPMANN and FAHNLINE [23–25]. It is a simplification
of the RAYLEIGH-integral including a TAYLOR series for the GREEN’s func-
tion as a multi-pole expansion. This yields to a formulation for a
source at xl and a receiver at ym

PLPM ¼ 1
2
k qf cf

XNe

l¼1

XNe

m¼1

SlSm
sin kjxl � ymj

� �
2pjxl � ymj

R vlv�
m

� � ð6Þ

also considering the interactions of the elemental sources. With the
wave number k it includes a frequency-dependent radiation effi-
ciency. The LPM predictions are exact for dipole modes. Besides, it
already provides appropriate results in the low and mid frequency
range.

In summary, the FEA-implementation of the sound power
approximations is based on piecewise constant elements.

P ¼
XNe

l¼1

XNe

m¼1

Plm ¼
XNe

l¼1

Pll þ 2
XNe�1

l¼1

XNe

m¼lþ1

Plm ð7Þ

The sound power portions Plm are understood as a partial sound
power of all Ne constant elements acting as a monopole source. In
detail, Pll considers the independent source distributions whereas
Plm(l – m) represents the interaction between these sources.

The matrix is symmetric and its elements can be determined by

Plm ¼ Pml ¼ 1
2
qf cf Sl rlm R vlv�

m
� � ð8Þ

with the dimensionless radiation efficiency rlm. It gives a good
impression of the different considerations of local effects and
frequency-dependency. For the different sound power models rlm

acts as

rlm ¼ dlm for ERP; ð9Þ
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rlm fð Þ ¼ k2 Sm
2 p

sin k jxl � ymj
� �
k jxl � ymj

for LPM: ð10Þ

Concerning accuracy and efforts, there are more FEA-based
approaches between ERP and LPM, which are not explained in
detail here. Weighting functions for the ERP are used to reduce
low frequency deviations [12,26]. In addition, the volume velocity
is a simplification of the LPM and appropriate for low and mid fre-
quencies only [10,12].

In acoustics, the power levels are related to a reference of
P0 ¼ 10�12W

LW ¼ 10 lg
P
P0

� �
dB: ð11Þ
2.2. Energetic quantities in steady state FEA

The energy balance is estimated inherently within steady state
finite element simulations and consists of different elastic and dis-
sipating components. By solving the energy balance, the kinetic
energy is directly accessible without any additional post-
processing efforts. Thus, the kinetic energy of the whole system
or several components is given by the integral over the volume V

Ekin ¼
Z
V

1
2
qs vHvdV ð12Þ

with the density of the solid surface qs and the arbitrarily oriented
velocity v [27].

For thin-walled components the sound radiation is dominated
by out-of-plane waves. Thus, the displacement characteristics are
reasonably assumed to be basically in surface normal direction.
As kinetic energy and all previous sound power estimates depend
on the second order of the velocity, these global quantities are suit-
able to determine the acoustic radiation behaviour [12,23].

Steady state FEA assures pure harmonic vibrations in every sin-
gle frequency step. The provided solutions are thus point-wise
exact. The kinetic energy can further be rated as the mechanical
(input) power of the whole vibrating system [12].

Pkin fð Þ ¼ 2p � f � Ekin fð Þ ð13Þ
2.3. Scalar sound quantification standards

Sound radiation is strongly depending on frequency with most
relevant contributions at the resonances. Changing material or
geometry in optimisation processes may result in a different num-
ber of modes contributing within the considered frequency range
f u � f lð Þ.

In contrast to the given complex frequency-dependent
quantities, scalar values are more likely to be implemented as an
Fig. 1. Frequency integral approach (left): determination o
objective within numerical optimisations [16,28]. Therefore, the
mean power within the treated frequency range is determined by

P ¼ 1
f u � f lð Þ

Z f u

f l

P fð Þdf ¼ 1
f u � f lð Þ

XNf

n¼1

df nPnð Þ ð14Þ

and is estimated by a frequency integral over all Nf frequency steps
with

df n ¼ f nþ1 � f n�1

2
for 2 6 n 6 Nf � 1 ð15Þ

df 1 ¼ f 2 � f 1
2

ð16Þ

df Nf
¼

f Nf
� f Nf�1

2
ð17Þ

referring to Fig. 1. It represents the same area under the curve
within f u � f lð Þ as the frequency-dependent approaches. The mean
sound power level LW is defined by (11).

This mean power determination with non-equidistant fre-
quency steps is required to develop guidelines for an appropriate
and efficient frequency spacing in the following sections.

It should be mentioned, that this idea similar to adaptive inte-
gration [29] and can be further extended using GAUSS-LEGENDRE-
quadrature or the adaptive SIMPSON quadrature routine [30,31].
3. Example of problem: sound radiation of a rectangular plate

3.1. Model description

For an FEA parameter study, a model of a free-free rectangular
plate of 278� 234� 2 mm3 with 1600 quadratic shell elements
(4961 nodes) has been used [32]. Linear isotropic material beha-

viour has been considered (E ¼ 200 GPa; m ¼ 0:3;q ¼ 7:89 g=cm3)
and a viscous damping (D ¼ 0:0001) implied. The plate is excited
in normal direction with 1 N at an arbitrary point apart from diag-
onals or symmetry axes.

With an aspect ratio of 1:1.188 and the given dimensions the
plate is tuned to have its first (torsion) mode at 100 Hz as well as
a maximum frequency difference of the first five modes (Fig. 2)
within the range up to 300 Hz. Higher in frequency, the modal den-
sity typically is increasing, which is illustrated by the increasing
number of modes per third octave band (blue) as well as the modal
frequencies appearing more closely (red).
3.2. Frequency spacing control in steady state simulations

The number and distribution of the frequency steps can be con-
trolled by different parameters within steady state FEA. Using ABA-
QUS v. 6.14 during this study, its given frequency spacing options
f the surface integral (centre) and mean power (right).



Fig. 2. Modal analysis of a rectangular plate: eigenfrequencies (red) and number of modes per third octave band (blue). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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are state of the art and further compared to show their restrictions
considering accuracy and numerical efforts.

For illustration of the different frequency step options FEA mod-
els with 55 frequency steps in a range from 10 Hz to 350 Hz have
been used covering the first five modes of the plate (noted with
vertical lines). Fig. 3 (top) shows the sound power results with a
shift of 50 dB between the curves due to readability. Each curve
is overlaying an accurate solution with a very high frequency
resolution of 10,000 points within the given frequency range. In
addition, the distribution of frequency steps is compared directly
within Fig. 3 (bottom). The given spacing options within the FEA,
namely linear and logarithmic range, mode-based as well as spread
spacing, are described in detail in the following.

First, either a continuous linear (red) or a logarithmic (blue)
spacing within the frequency range (þ) is clearly underestimating
the significant contributions of the resonances due to the low
frequency resolution. For coarse step sizes frequency steps at the
Fig. 3. Results of steady state FEA with different frequency step definitions: sound power
of 50 dB between the curves due to readability (top) and frequency step distributions (b
with bias 1 (red), linear frequency step distribution with bias 3 (green), logarithmic fre
options: range (x), mode-based (�) and spread (þ). (For interpretation of the references to
resonances and close by are missing. Further increasing the num-
ber of frequency points with these spacing options leads to an
appropriate amount results in over-resolved peaks at high frequen-
cies for linear spacing as well as for peaks at low frequencies for
logarithmic spacing. Thus, either an inaccurate solution, an exces-
sive computation or a combination of both is expected here [33].

In contrast, the available mode-based spacing (�) forces one fre-
quency step exactly at each of the resonances assuring to capture
the most significant modal contributions. The given number of
frequency steps than is can linearly (red) and thus equidistant or
logarithmically (blue) distributed. The frequency resolution with
a fixed number of frequency steps for every mode is than depend-
ing on the difference between the modal frequencies only. More-
over, the biasing option allows concentrating the frequency steps
close to the eigenfrequencies (e.g. bias = 3 in green). In summary,
mode-based spacing again may cause conflictive definitions.
Assuming a constant number of frequency steps per mode, a high
estimations each overlaying an exact solution with high frequency resolution, offset
ottom); color scheme: reference solution (black), linear frequency step distribution
quency step distribution (blue); in combination with makers for different spacing
colour in this figure legend, the reader is referred to the web version of this article.)
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frequency resolution can be achieved on the one hand as the modal
density is increasing for higher frequencies (Fig. 2) or two modes
occasionally may appear closely. On the other hand, an inappropri-
ate spacing is achieved, if neighbouring modes appear with a high
distance.

In addition, a frequency spread of f s ¼ 0:1 has been used dis-
tributing the frequency steps linearly within �10% of the related
eigenfrequency. Spread-based step definitions might fail for high
modal densities with significant overlapping of neighbouring
spreads. Then, an unnecessarily high resolution is achieved for less
contributing frequencies between the modes which again is ineffi-
cient (e.g. Fig. 3: 250–280 Hz).

The constant quality factor

Q ¼ f 0
Df

¼ 1
2D

ð18Þ

describing the sharpness of the resonance at f 0 with a viscous
damping D is commonly determined by the half-power band width
(3 dB bandwidth) Df . The quality factor has been used in previous
studies to achieve an efficient but accurate frequency resolution
within a wide frequency range [28,33]. There, at least five points
per mode have been used to discretise the half-power band of a sin-
gle mode.

In summary, the available options for the frequency spacing are
all quite simple and all yield to certain limitations, either due to a
low accuracy, high computational efforts or even both. An adaptive
interpolation routine is further introduced and likely to be much
more accurate and efficient. This approach is based on the mode-
based spacing option with biasing but will focus on an adaptive
number of frequency steps.
4. Convergence analysis of sound power determination

4.1. Convergence analysis: sound radiation of a single mode

In the following, a single mode of the plate is investigated to
determine the required frequency spacing parameters. Therein,
the general aim is to define a frequency range around each mode
being broad enough to consider the modal contribution completely
using the least possible number of frequency points.
Fig. 4. Mean power radiated by the first mode of a rectangular plate: dependency o
Thus, the basic question for spread-based frequency step size is
an appropriate definition of the required frequency range including
most of the radiated sound by choosing the correct spread factor

s ¼ f u � f lð Þ
f 0

¼ 1
Q
: ð19Þ

For this purpose, the first torsional mode of the plate at 100 Hz
has been investigated. As the sharpness of the peak is depending
on the damping, the required spread factor

s ¼ h � Df
f 0

with h ¼ 1;1000½ 	 ð20Þ

for various frequency ranges h � Df is related to the half-power
bandwidth of the mode to be able to transfer the results to every
resonance frequency. In this study. the evaluated frequency spread
is chosen in a range of 1–1000 times the half-power bandwidth.
Thus, the following results are independent of the specific material
damping (0.0001 here) or quality factor (5000).

In addition, the number of frequency steps Nf within the fre-
quency range has been varied from 3, which is the least valid value,
to 10,000. Last, biasing allows a compression of the points near the
resonance as well as an expansion in the frequencies in higher dis-
tance. The frequency f n than is given by

f n ¼
1
2

f uþ f lð Þþ1
2

f u� f lð Þ � jyj1=bsign yð Þ with y¼�1þ2
n�1ð Þ
Nf �1

ð21Þ
The bias parameter b is an exponent and thus chosen between 1
(equidistant spacing) and 3 (default value).

As the improper integral over the area beneath the sound power
spectrum over frequency (as in Fig. 1) is infinite, convergence can
only be achieved in a defined frequency range of interest. There-
fore, the mean power levels (14) are estimated assuring a fre-
quency range being broad enough to represent all of the radiated
sound (Fig. 4). The results are shown and discussed for the ERP
approximation only. Both, the LPM as well as the kinetic energy
achieve exactly the same convergence behaviour.

The most accurate sound power determination is assumed to be
for a configuration of h = 1000, bias 3.0 and 10,000 points leads to a
reference value of 89.23 dB.
n frequency range and number of frequency steps for different bias parameters.
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Fig. 4 illustrates a contradictory convergence: analysing only a
narrow frequency range around the mode will underestimate the
total power. In contrast, using a broad frequency range around
the mode tends to an overestimation for low NF followed by a con-
vergence against the exact solution. Thus, the deviation of the
mean sound power level DLW is further understood as the differ-
ence of any solution to the most accurate solution. Fig. 5 sum-
marises the convergence of the parameter study using the
deviation and introducing a 0.1 dB as well as a 0.5 dB criterion
(dark/light green).

Assuming a suitable deviation DLW < 0:5 dB, convergent results
are achieved for a frequency range of at least 20 times the half-
power band width (h > 20). In detail, for equidistant modal spacing
the results seem to be satisfying for Nf > h=3. Biasing helps to
achieve convergence for less frequency steps whereas high bias
factors require wide frequency ranges (h P 100). In summary, a
relation of

Nf >
h
3 b

for DLW < 0:5dB ð22Þ

can be given as a rule of thumb to estimate the required frequency
steps for a single mode.
Fig. 5. Deviation of the mean power radiated by the first mode of a rectangular plate re
range and number of frequency steps for different bias parameters within a deviation of t
the references to colour in this figure legend, the reader is referred to the web version o

Fig. 6. Modal analysis of the rectangular plate: relative distance of eigenfrequencies withi
for D ¼ 0:0001.
A more restrictive deviation criterion of DLW < 0:1 dB, requires
a more broad frequency range of h > 50 with similarly using

Nf >
h
2 b

for DLW < 0:1 dB ð23Þ
to determine the number of required frequency steps for one mode.

Due to (20), the mentioned frequency spread being broad
enough to capture the total modal contribution can be directly
related to the viscous damping. As a result a relations

s > 20D for DLW < 0:5 dB ð24Þ
s > 50D for DLW < 0:1 dB ð25Þ
should be considered for an appropriate specification of the fre-
quency range to achieve the accurate mean power results.

4.2. Guidelines for mode-based frequency spacing with multiple
contributing modes

To define an accurate spacing, the required frequency step has
to be related to the distance between two modes f m � f m�1ð Þ.
Therefore, the given example of the rectangular plate has been fur-
ther investigated considering all modes in the audible frequency
range (see Fig. 2) and used to illustrate this relation.
lated to an accurate solution (Nf ¼ 104;h ¼ 1000; b ¼ 3): dependency on frequency
he mean power of 0.1 dB (dark green) and 0.5 dB (light green). (For interpretation of
f this article.)

n s > 20D (light green) and within s > 50D (green) as well as modal interaction (red)
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Narrow modes may be close enough to automatically fulfil the
spread. This is highlighted in Fig. 6 with light green for the
0.5 dB mean power criterion as with dark green for additional
modes within the 0.1 dB mean power deviation. A white back-
ground represents the modes where spread-based frequency step-
ping is more efficient than mode-based. At some point, high modal
overlap may occur and resolving single modes is not useful any
more. Thus, a red background is drawn for the modes overlapping
within their half power band width. For the given example, there is
only one modal interaction found.

It should be mentioned that this figure is valid for one specific
modal damping (D = 0.0001 here). Higher damping would shift
the green domain to higher modal distances.

Moreover, the spacing rules for a single mode (22) and (23) as
well as the determinedmodal distances have been combined. Thus,
the minimum number of frequency steps of mode f m

Nf m >
6

Dmbm
max

f m � f m�1

f m
;
f mþ1 � f m

f m

� 	
for DLW < 0:5 dB ð26Þ

Nf m >
4

Dmbm
max

f m � f m�1

f m
;
f mþ1 � f m

f m

� 	
for DLW < 0:5 dB ð27Þ

is estimated using all relevant modal spacing parameters and com-
paring both neighbouring modes whereas the bigger distance is
relevant.

As biasing is recommended to achieve a higher resolution at the
sharp resonances, the results of (22) and (23) are shown in Fig. 7
with b ¼ 3. It can be observed, that the number of frequency steps
is critical especially for low modal densities in the low frequency
domain in combination with low damping. In addition, less biasing
will increase Nf , too.

In the given example, low frequency modes require resolutions
of order 102 whereas less than 30 steps are to be applied for mid
and high frequencies.
Fig. 7. Radiated sound power at each resonance (top) as well as minimum number of fre
the rectangular plate for various damping coefficients using b ¼ 3 (bottom).
Last, the radiation in the entire frequency range is dominated by
some low frequency modes (Fig. 7). In this case, these modes
require the highest number of frequency steps, too. Thus, the
modal contributions have to be considered for the spacing in a
wide frequency domain further on.
4.3. Application to full frequency range analysis

Last, the given plate example has been investigated within the
entire audible frequency range covering all 132 modes (compare
Fig. 2). Lacking free frequency step definitions in the software,
the spacing has been applied with equal bias and number of fre-
quency steps for all modes.

Fig. 8 shows a convergence study of the mean power radiated in
the frequency range for a different number of frequency steps per
mode as well as biasing up to 10. The results are related to a solu-
tion with high computational costs (Nf ¼ 1000; b ¼ 3). Thus, the
previously determined error tolerance of less than 0.1–0.5 dB per
mean power of a single mode is accumulated for all modes and
thus a deviation to the reference solution of 0.5 and 1 dB is
highlighted.

Due to the dominant low frequency modes requiring high
modal resolutions, accurate solutions can be achieved for b > 2
as well as Nf > 50 only.

A huge number of frequency steps leads to significant computa-
tional costs. Regarding Fig. 9, the efforts linearly increase with Nf .
Thus, an adequate spacing helps directly to reduce the total num-
ber of evaluation frequencies and thus the total computation
efforts.

In addition, significant savings can be achieved for qualitative
studies and optimisation procedures on thin-walled components
avoiding the computationally expensive acoustic post-processing
of the structural dynamic FEA by using the implicitly given kinetic
energy only [34].
quency steps for an accurate sound power determination of the different modes of



Fig. 8. Mean sound power radiated by the all audible modes of a rectangular plate: dependency on number of frequency steps and bias parameters; dotted horizontal line:
mean power of an accurate solution (Nf ¼ 103; b ¼ 3); deviation of the mean power within 0.5 dB (dark green) and 1.0 dB (light green).

Fig. 9. Total cpu time for the steady state FEA of 132 modes of the rectangular plate for different number of frequency steps per mode.
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5. Conclusions

Within this study, structural steady state FEA and further sur-
face velocity-based sound power approaches have been applied
to determine the structure borne sound. Using mode-based model
reduction, damping and frequency spacing with biasing, this leads
to non-equidistant frequency steps throughout the frequency
domain. To achieve a scalar objective of the frequency-dependent
sound power, the average power in the given frequency range is
determined based on the power spectral density. This approach
is independent of the number of modes and frequency steps and
valid for varying frequency step sizes and enables the implementa-
tion as an optimisation objective.

The steady state FEA is based on a previous modal analysis and
using a mode-based frequency spacing with at least one step exact
on each of the resonance points. Thus, the total number of
frequency steps depends on the number of modes within the
treated frequency range, the modal damping as well as biasing.
In contrast, basic linear step definitions within a given range may
cause a significant underestimation of the sound power by missing
the resonance peaks. Despite, spread-based step definitions might
be inefficient for high modal densities with overlapping frequency
spreads.

The radiated sound of a single mode of a rectangular plate is
used to demonstrate convergence concerning the number of
required frequency steps. In general, accuracy and efforts are con-
tradictory goals in iterative computations. The given rules should
help to reduce the computational expense to a minimum. As a
result, a relation to estimate the required frequency spacing of sin-
gle mode is presented depending on the distance of neighbouring
modes as well as damping and biasing. Related to modal density,
a recommendation for a common spacing rule is given.
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Further studies will address common thin-walled parts besides
the academic plate case and include the acoustic quantity in opti-
misation objectives. Besides, an efficient approach of the frequency
integral as a weighted sum over the input mobility using computa-
tions at complex frequencies and thus shifting the problem to the
complex frequency plane [35,36] may be tested. Another enhance-
ment is the application of a functionality-based approach of adap-
tive integration techniques, e.g. based on Gauß-Legendre
polynomials.
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